AU624729B2 - Reverse installation type variable damping force shock absorber variable of damping characteristics both for bounding and rebounding stroke motions - Google Patents

Reverse installation type variable damping force shock absorber variable of damping characteristics both for bounding and rebounding stroke motions Download PDF

Info

Publication number
AU624729B2
AU624729B2 AU59067/90A AU5906790A AU624729B2 AU 624729 B2 AU624729 B2 AU 624729B2 AU 59067/90 A AU59067/90 A AU 59067/90A AU 5906790 A AU5906790 A AU 5906790A AU 624729 B2 AU624729 B2 AU 624729B2
Authority
AU
Australia
Prior art keywords
fluid
chamber
fluid path
inner cylinder
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU59067/90A
Other versions
AU5906790A (en
Inventor
Junichi Emura
Shinobu Kakizaki
Mitsuo Sasaki
Hiroyuki Shimizu
Fumiyuki Yamaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Atsugi Unisia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP18391089A external-priority patent/JP2804792B2/en
Priority claimed from JP18391189A external-priority patent/JPH0351548A/en
Application filed by Atsugi Unisia Corp filed Critical Atsugi Unisia Corp
Publication of AU5906790A publication Critical patent/AU5906790A/en
Application granted granted Critical
Publication of AU624729B2 publication Critical patent/AU624729B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • B60G15/07Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper the damper being connected to the stub axle and the spring being arranged around the damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/001Arrangements for attachment of dampers
    • B60G13/005Arrangements for attachment of dampers characterised by the mounting on the axle or suspension arm of the damper unit
    • B60G13/008Arrangements for attachment of dampers characterised by the mounting on the axle or suspension arm of the damper unit involving use of an auxiliary cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/06Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
    • F16F9/064Units characterised by the location or shape of the expansion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/466Throttling control, i.e. regulation of flow passage geometry
    • F16F9/467Throttling control, i.e. regulation of flow passage geometry using rotary valves
    • F16F9/468Throttling control, i.e. regulation of flow passage geometry using rotary valves controlling at least one bypass to main flow path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/48Arrangements for providing different damping effects at different parts of the stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/58Stroke limiting stops, e.g. arranged on the piston rod outside the cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/42Electric actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/102Damping action or damper stepwise

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)
  • Vehicle Body Suspensions (AREA)

Description

Form COMMONWEALTH OF AUSTRALIA PATENTS ACT 1952 COMPLETE SPECIFICATION FOR OFFICE USE Short Title: Int. C1: Application Number: Lodged: Complete Specification-Lodged: Accepted: Lapsed: Published: Priority: Related Art: TO BE COMPLETED BY APPLICANT o n ii B oo to
O
Name of Applicant: Address of Applicant: Actual Inventor: Address for Service: ATSUGI UNISIA CORPORATION 1370, Onna, Atsugi-shi, Kanagawa-ken,
JAPAN
Furiyuki YAMAOKA; Shinobu KAKIZAKI; Mitsuo SASAKI; Hiroyuki SHIMIZU and Junichi EMURA GRIFFITH HACK CO 71 YORK STREET SYDNEY NSW 2000 Complete Specification for the invention entitled: REVERSE INSTALLATION TYPE VARIABLE DAMPING FORCE SHOCK ABSORBER VARIABLE OF DAMPING CHARACTERISTICS BOTH FOR BOUNDING AND REBOUNDING STROKE MOTIONS The following statement is a full description of this invention, including the best method of performing it known to us:- 21008-H DJH/SMcL 2208A/SMcL 1 r REVERSE INSTALLATION TYPE VARIABLE DAMPING FORCE SHOCK ABSORBER VARIABLE OF DAMPING CHARACTERISTICS BOTH FOR BOUNDING AND REBOUNDING STROKE MOTIONS BACKGROUND OF THE INVENTION Field of the Invention The present invention relates generally to a variable damping force shock absorber for an automotive vehicle. More specifically, the invention relates to a reverse installation type shock absorber designed to be connected to a suspension member, such as suspension arm, suspension link or so forth, at the lower end of a piston rod and for variation of damping characteristics depending upon piston stroke.
Description of the Backgjround Art Such reverse installation type shock absorber has been disclosed in Japanese Patent First (unexamined) Publication No. 58-97334, for example. The shown shock absorber is designed for installation between a vehicular body and a suspension member which rotatably supports a vehicular wheel, in reversed manner to the usual shock absorber. The shock absorber includes a cylinder tube, a piston thrustingly or slidingly disposed within the internal space of the cylinder tube, and a strut tube thrustingly and slidingly supportinZ the cylinder tube. The top end of the cylinder tube is connected to a vehicular body. On the other hand, a piston rod extends downwardly from the bottom of cylinder tube for connection with the suspension member.
Such prior proposed reverse installation type shock absorber is defective in some aspects, For instance, the prior proposed shock absorber is so designed as to permit fluid flow from an upper fluid chamber to a lower fluid chamber via a predetermined bounding stroke fluid path and from the upper fluid chamber to an annular reservoir 2 chamber defined between the cylinder tube and the strut tube. For this, when flow restriction magnitude for the fluid from the upper fluid chamber and to the lower fluid chamber cannot be great enough to provide satisfactorily high damping characteristics due to possibly caused cavitation. As a result, variation range of the damping characteristics is strictly limited since the cylinder tube and the strut tube may be subject to force transversely to the axis thereof. For this reason, the cylinder tube requires not only high precision level in production for assuring smooth motion of the piston but also sufficiently high strength for resisting against the transverse force. This clearly causes high cost in production.
SUMMARY OF THE INVENTION An aim of the present invention is to provide a reverse installation type shock absorber which J',i ameliorates at least some of the drawbacks in the prior o °art as set forth above.
20 Accordingly, the present invention provides a '0Jo reverse installed type variable damping force shock absorber for an automotive suspension system comprising: an inner cylinder filled with a working fluid; °:0o0 and outer cylinder coaxially housing therein said 25 inner cylinder and connected to a vehicular body for vertical movement according to vertical motion of the vehicle body, said outer cylinder defining a space Sbetween said inner cylinder, a reservoir chamber and a communication chamber located within said outer cylinder and said space forming an annular chamber which is separate from said communication chamber, said inner and outer cylinders being arranged to permit relative movement of said inner cylinder relative to said outer cylinder in response to bounding and rebounding mode vibration transmitted between said vehicular body and a vehicular wheel; i, 3100.8-1/426/30.01.92 r -3a piston disposed within the interior space of said inner cylinder for defining therein first and second fluid chambers, said piston being connected to a suspension member rotatably supporting said vehicular wheel via a piston rod for vertical movement with said vehicular wheel; a first fluid path means for fluid flow from said first fluid chamber to said second fluid chamber in response to bounding mode vibration, said first fluid path means incorporating a first damping force generating valve means for restricting fluid flow from said first fluid chamber to said second fluid chamber in order to generate damping force resisting against said bounding mode vibration; a second fluid path means for fluid flow from said second fluid chamber to said reservoir chamber across 1 o said annular chamber and said communication chamber in response to rebounding mode vibration, said second fluid path means incorporating a second damping force geneQrting valve means for restricting fluid flow thereacross for generating damping force resisting against the rebounding mode vibration; and a third fluid path means for fluid flow from said 0 0o reservoir chamber to said first fluid chamber in response o0 25 to the rebounding mode vibration for compensating for 00° 0 excessive drop of fluid pressure in said first fluid 0,00 chamber, said third fluid path means incorporating a o C 000 third valve means active independently of said damping °force generating valve and permitting one-way flow from 0 30 said reservoir chamber to said first fluid chamber.
The first and second flow restriction means may be operative for providing different damping characteristics for bounding ar rebounding mode relative motions of the vehicular boc and the vehicular wheel. Each of the first and second flow restriction means may be switchable between harder damping mode and softer damping mode so that harder damping characteristics is obtained for H-O 9 8-H/426/30.01.92 OT.49 -r 4 bounding mode relative motion when damping characteristics for rebounding mode motion is set in softer characteristics and vis-a-vis. The flow restriction means are so cooperated as to further establish softer damping characteristics both for bounding and rebounding mode relative motions of the vehicular body and the vehicular wheel.
BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be understood more fully from the detailed description given herebelow and from the accompanying drawings of the preferred embodiments of the invention, which, however, should not be taken to limit the invention to the specific embodiment or embodiments, but are for explanation and understanding only.
In the drawings: Fig. 1 is a section of the preferred embodiment of a reverse installation type shock absorber embodying the o o invention; Fig. 2 is an enlarged section of the major part of 0 the first embodiment of the shock absorber of Fig. 1, in 000 0 which is shown a piston and a bottom valve employed in the first embodiment of the shock absorber; 0 25o Fig. 3 is an enlarged section of the major part of 25 the first embodiment of the shock absorber, in which is shown a top valve employed on the first embodiment of the shock absorber of Fig. 2; 0 0 Fig. 4 is a further enlarged section taken along line IV IV of Fig. 3; Fig. 5 is also further enlarged section taken along line V V of Fig. 3; Fig. 6 is a diagrammatical illustration showing a fluid path formed in the preferred embodiment of the shock absorber; A i2008o-H/426/30.01.92 L i I. i Fig. 7 is a diagrammatical illustration showing a modified fluid path to be applicable for the preferred embodiment of the shock absorber of Fig. 2; Fig. 8 is a section showing a modified construction of the top valve to be employed for establishing the fluid flow path of Fig. 7; Fig. 9 is a section showing another embodiment of a top valve assembly to be employed in the preferred embodiment of the variable damping force shock absorber embodying to the invention; Pir;. 10 to 12 are cross section respectively taken along X X, XI XI and XII XII of Fig. 9; Figs. 13 and 14 are chart showing damLing characteristics relative to the bounding and rebounding motions at various mode in the shock absorber employing the top valve of Fig. 9; Fig. 15 is a section showing a modification of the S' top valve assembly of Fig. 9; Fig. 16 to 18 are cross section respectively taken 20 along X X, XI XI and XII XII showing modification *of the top valve assembly of Fig. 9; Figs. 19, 20 and 21 are chart showing damping characteristics relative to the bounding and rebounding motions at various mode in the shock absorber employing 25 the top valve of Fig. 9; Figs. 22 to 24 are cross section respectively taken o' along X X, XI XI and XII XII showing another modification of the top valve assembly of Fig. 9; and Figs. 25 and 29 are charts showing damping characteristics relative to the bounding and rebounding motions at various mode in the shock absorber employing the top valve of Fig. 9.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings, particularly to Fig.
1, a shock absorber is designed for reverse installation by connecting the lower end of a piston rod 22 to a 42630.01.92 1 8- 426/30.01.92 6 knuckle spindle 10 and the top end of an outer tube 24 to a vehicular body (not shown). The shock absorber includes a cylinder tube 26 which is generally formed into upper and lower end opened cylindrical configuration. A 0 4 0 0 0 0 0 00 4 008 0 o o 4 0 4 0 a 0 6) a a a o
BO
6) C( 21008-H/426/30.01.92 1 7 r 7 bottom fitting guide assembly 30 is fitted onto the .ttom end opening of the cylinder tube 26. On the other hand, a top valve assembly 40 is fitted onto the top end opening of the cylinder tube 26. The cylinder tube 26 thus formed is filled with a working fluid and is coaxially disposed in the interior space of the outer tube 24. On the other hand, the outer tube 24 is coaxially arranged with a strut tube 28.
A piston assembly 50 is thrustingly and slidingly disposed within the interior space of the cylinder tube 26 for separating into an upper fluid chamber 262 and a lower fluid chamber 264. The piston assembly 50 is rigidly fitted onto the upper end of the piston rod 22 for movement therewith according to movement of the knuckle spindle relative to the vehicular body. The piston rod 22 extends downwardly through the bottom valve assembly 30 and connected to the knuckle spindle, On the other hand, the top valve assembly 40 is connected to the lower end of a cylindrical support 60 which is, i-n turn, rigidly connected to an actuator casing 62. With the shown construction, the cylinder tube 26 with the top valve assembly 40 and the bottom fitting guide assembly 30 are movable with the outer tube 24 according to vertical movement of the vehiculer body relative to the knuckle spindle 10. In order to assist thrusting movement of the outer tube 24 relative to the strut tube 28 which is fixed to the knuckle spindle upper and lower plane bearings 202 and 204 are provided between the inner periphery of the strut tube 28 and the outer tube 24.
As can be seen from Fig. 1, the top valve assembly and the bottom fitting guide assembly 30 have seal rings 402 and 302 which establish sealing contact with the inner periphery of the outer tube 24 for defining therein enclosed spaces. An annular lower reservoir chamber 266 is defined between the cylinder tube 26 and the outer cylinder 24.
I S 7 i y y t e rff
L/
I~I~ ~IIC~a~~t 8 Both axial ends of the lower fluid reservoir chamber 266 are sealingly closed by the seal rings 402 and 302. On the other hand, an upper fluid reservoir chamber 268ij def ined above the upper end of the cylinder tube 26. The upper fluid reservoir chamber 268 is separated from the lower fluid reservoir chamber 266 by the upper seal ring 402. As can be seen, the upper fluid reservoir chamber 268 defines non-separated liquidous fluid chamber 2682 and gaseous fluid chamber 2684 which encloses a pressure medium gas, such as air. Since the pressure medium gas in the gaseous fluid chamber 2684 is enclosed therein, the upper fluid reservoir chamber 268 may have pressure accumulating capacity.
As will be discussed later, the lower fluid reservoir chamber 266 is in fluid communication with the lower fluid chamber 264 via a fluid path defined through the bottom valve assembly 30, Similarly, the upper fluid reservoir chamber 268 is in fluid communication with the upper fluid chamber 262 via a fluid" path defined through the top valve assembly 40. The fluid path in the top valve assembly 40 is variable of flow restriction magnitude for the fluid flow t-hr-e.At-hrouh by means of a rotary valve 404 which is drivingly connected to an electrically operable actuator 64 housed within the actuator housing 62 via an actuator rod 66 extending through the cylindrical support On the other hand, the upper and lower fluid chambers 262 and 264 are in fluid communication with the other via a fluid path defined through the piston assembly As seen from Fig. 1, the strut tube 28 is fixed to the knuckle spindle 10. An end fitting 282 with a bumper rubber 284 is secured onto the bottom end of the strut tube 28. The lower end of the piston rod 22 is rigidly connected to the end fitting 282 by means of a fastening nut 222.
As shown jin Fig. 2, the bottom fi tting guide assembly 30 generally comprises an essentially disc shaped
J
9 seal ring 30 defining a center opening 304 therethrough, which center opening receives the piston rod 22. A seal assembly 306 having an essentially ring shaped retainer 308 and an elastic seal ring 310 are fitted to the lower end of the seal ring 302. The seal ring 310 sealingly contacts with the outer periphery of the piston rod 22 for establishing liquid tight seal. For completing liquid tight seal at the seal ring 310, a pressure reduction seal 312 is provided on the inner periphery of the center opening 304.
The bottom fitting guide assembly 30 is also provided with a.
stopper rubber 314 for protecting the seal ring 302 from col liding wi th the piston assembly 50 during piston rebounding stroke.
The seal ring 302 of the bottom fitting guide assembly 30 is formed with a fluid path groove 316. The fluid path groove 316 opens to the lower fluid chamber 264 at one end and to the annular lower fluid reservoir chamber o 266 at the other end. Therefore, the lower fluid chamber 264 and the lower fluid reservoir chamber 266 are in fluid communication via the fluid path groove 316, The path area of the fluid path groove 316 is set small enough to restrict I flu d flow ther through and thus to serve as a fixed +orifice.
On the other hand, the piston assembly 50 includes a piston body 502, upper and lower disc valves 504 and 506, washers 508 and 510, and stopper rings 512 and 514. The components listed hereabove are assembled on the upper end of the piston rod 22 and fastened thereon by means of a fastening nut 516.
The piston body 502 defines axially extending fluid path openings 518 and 520 which are oriented at rad'ially offset positions to each other. The fluid path opening 518 oriented at radially inner position will be hereafter referred to as "inner fluid path opening" and the ,4 4" .j 10 other will be hereafter referred to as "outer fluid path opening The inner fluid path opening 518 opens to inner annular grooves 522 and 524 respectively defined on the upper and lower surfaces of the piston body 502. On the other hand, the lower end of the outer fluid path opening 520 opens to an outer annular groove 526 defined on the lower surface of the piston body. On the other hand, the upper end of the outer fluid path opening 520 directly opens to the upper fluid chamber 262.
The upper disc valve 504 is designed to be C te.- on c resiliently seated o:.to inner a-nd--o-u-t-r. lands 528 and 530.
The upper disc valve 504 is designed for :esilient deformation depending upon the pressure difference between the upper fluid chamber 262 and the inner annular groove 522 for forming a variable path area orifice for permitting fluid flow from the lower fluid chamber 264 to the upper fluid chamber 262. On the other hand, the lower disc valve 506 is designed to be resiliently seated onto lands 532, 534 and 536 for resilient deformation depending upon the pressure difference between the outer annular groove 526 and the lower fluid chamber 264 for forming variable path area orifice between the valve seat surface of the land 536 and the mating surface of the lower disc valve 5 1 The lower disc valve 506 is formed of a through opening (not clearly shown) for permitting the working fluid in the lower fluid chamber 264 to flow into the inner annular groove 524 during piston rebounding stroke for establishing fluid flow from the lower fluid chamber 264 to the upper fluid chamber 262.
As can be appreciated from the discussion hereabove, the inner fluid path opening 518 serves for establishing fluid path for fluid flow from the lower fluid chamber 264 to the upper fluid chamber 262. Therefore, the upper disc valve 50,4 thus serves for generating damping force against the piston rebounding motion. Similarly, the /Ty I IIII~---g-P 11 outer fluid path opening 520 serves for establishing fluid communication from the upper fluid chamber 262 to the lower fluid chamber 264 in piston bounding stroke. Therefore, the lower disc valve 506 serves for generating damping force for piston bounding stroke. Both of the variable path area orifices defined by the upper and low-r disc valves and the associated lands a--e--p-e-v-i-0edpiston stroke dependency in varying the fluid flow restriction magnitude and thus vary damping characteristics. In general, the variation of damping force is proportional to square of the piston stroke.
As shown in Fig. 3, the top valve assembly generally comprises upper and lower valve bodies 406 and 408, a retainer 410, a washer 412, a first damping valve 414, a first check valve 416, a washer 418, a retainer 420, a washer 422, a second damping valve 424, a second check valve 426, a washer 428 and a retainer 430. The components listed hereabove are assembled to the lower end portion of the cylindrical support 60 and rigidly secured thereonto by means of a fastening nut 432. The upper and lower valve bodies 406 and 408 are assembled to each other for defining tneerrY'G<2\ c O r -i cco.tc~-1 \r\ therein an internall.chamber 434.
The upper valve body 406 is formed with an annular groove 436 defined between lands 438 and 440 on the upper surface thereof, and inner and outer annular grooves 442 and 444 defined between lands 446, 448 and 450 on the lower surface of the upper valve body 406. Ao inner axially extending opening 452 extends between the annular grooves 436 and 442 for fluid communication therewith. A first skewed opening 454 has upper end directly opening to the upper fluid reservoir chamber 268 and the lower end opening to the outer annular groove 444. Similarly, the lower valve body 408 is formed, wi th an annular groove 458 defined between lands 460 and 462 on the upper surface thereof, and 1 12 inner and outer annular grooves 464 and 466 defined between lands 468, 470 and 472 on the lower surface of the lower valve body 408 An inner axially extending opening 474 extends between the annular grooves 458 and 464 for fluid communication therewith. A second skewed opening 476 has upper end directly opening to the upper fluid reservoir chamber 268 and the lower end opening to the outer annular groove 466. A third-skewed opening 478 is formed through the lower valve body 408, which has upper end directly opening to the internal chamber 434 and the lower fluid reservoir chamber 266.
The first damping valves 414 is provided for mating with the upper surface of the upper valve body 406 and seated on the planer upper surfaces of the lands 438 and 440 for forming variable orifice therewith. The first check valve 416 is provided in opposition with the lower surface of the upper valve bc ly for resiliently seating on the lower planer surfaces of the lands 446; 448 and 450. The first "check valve 416 is formed with a through opening 4162 for establishing fluid communication between the inner annular groove 442 and the internal chamber 434. The first check 6° °o valve 416 has a spring coefficient much smaller than that of the first damping valve 414 so that the first check 66 o valve may merely serv- for establishing one-way fluid flow from the upper fluid reservoir 268 to the internal chamber 434 of the top valve assembly 40. The second damping valves.
o" Sr 424 is provided for mating with the upper surface of the oo,6 valve body 408 and seated on the planer upper surfaces of the lands 460 and 462 for forming variable orifice therewith. The second check valve 426 is provided in opposition with the- lower surface of the lower valve body for' resiliently seating on the lower planer surfaces of the lands 468, 470 and ,472. The second check valve 429 is formed with a through opening 4262 for establishing fluid o *i c~ 2 13 4 0
C''
4 k ot 4 4444o 04 C C BiO 4 0 4e rd 4 I 44 t 44 communication between the inner annular groove 464 and the upperfluid chamber 262. The second check valve 426 has a spring coefficient much smaller than that of the second damping valve 424 so that the second check valve may merely serve for establishing one-way fluid flow from the upper fluid reservoir 268 to the upper fluid chamber 262.
On the other hand, the cylindrical support defines an axially opening 68. The rotary valve 404 is rotatably disposed within the lower end portion of the axially extending opening 68. The rotary valve 404 is formed into essentially cylindrical configuration with a closed top, at which the rotary valve is rigidly connected to the lower end of the actuation rod 66. An internal space 480 of the rotary valve 404 communicates with the upper fluid chamber 262 via the lower end portion of the axially extending opening 68. The rotary valve 404 are formed with two pairs of radially extending openings 482 and 484 which are oriented to axially offset posftions to each other. The upper pair of the radially extending openings 482 are oriented at higher elevation than the upper end of the top valve assembly 40. At the axial position corresponding to that of the upper pair of radially extending openings 482, a radial path opening 602 is formed through the peripheral wall of the cylindrical support 60. The outer end of the radial path opening 602 opens into the liquidous fluid chamber 2682 of the upper fluid reservoir chamber 268.
Similarly, the lower pair of the radially extending openings 484 are oriented at lower elevation than the upper end of the top valve assembly 40. At the axial pos i t ion corresponding to that of the lower pair of radially extending openings 484, a radial path opening 604 is formed through the peripheral wall of the cylindrical support The radial path opening 604 is in fluid communication with an axially extending groove 486 which is, in turn, in fluid r i 1
L
14 communication with the annular groove 436 of the upper valve body 406. Therefore, the outer end of the radial path opening 604 is in fluid communication wi ti: the annular groove 436.
Thrust bushings 488 and 490 are provided at both axial ends of the rotary valve 404 for facilitating smooth rotation of thereof. Above the upper thrust bushing 488, a seal ring 492 is provided for establishing liquid tight seal.
As shown in Figs. 4 and 5, the pairs of the radially extending openings 482 and 484 are provided symmetrically with respect to the center axis. Therefore, according to the angular position of the rotary valve 404, the radially extending openings 482 and 484 are selectively aligned and off-aligned with the radial path openings 602 and 604 for establishing and blocking fluid communication o o therethrough. Typically, the rotary valve 404 is driven for 900 so as to place the axes of the radially extending openings 482 and 484 in alignment with the axes of the radial path openings 602 and 604 at a SOFT mode position for 0 permitting fluid flow therethrough and in perpendicular to the axes of the radial path openings at a HARD mode position for blocking fluid communication therethrough.
o The operation of the aforementioned shock absorber in each of bounding mode and rebounding mode of vibration will be discussed herebelow in order to facilitate better understanding of the shown embodiment. In order to simplify the discussion, reference is made to Fig. 6, in which is explanatorily illustrated schematic diagram showing fluid flow path to be established in the shown shock absorber.
BOUNDING STROKE In the bounding stroke, the piston assembly shifts upwardly relative to the cylinder tube 26 or the outer tube 24 with the cylinder tube 26 shifts downwardly 15 relative to the piston assembly 50. During this bounding mode motion, the volume of the upper fluid chamber 262 is compressed and the volume of the lower fluid chamber 264 is expanded. Therefore, pressure balance between the lower fluid chamber 264 and the lower fluid reservoir chamber 266 is destroyed to generate fluid flow from the lower fluid reservoir chamber to the lower fluid chamber as shown by arrow BI. The fluid flow rate from the lower fluid reservoir chamber 266 to the lower fluid chamber 264 is restricted by the limited fluid path area in the fluid path groove 316. At the same time, the fluid pressure balance between the upper and lower fluid chambers 262 and 264 is also destroyed to cause fluid flow from the upper fluid chamber to the lower fluid chamber across the piston assembly 50. The higher pressure working fluid in the upper fluid chamber 262 flows the outer annular groove 526 via the outer fluid path opening 520. The fluid pressure in the annular groove 526 causes deformation of the lower disc valve 506 for forming the variable path area orifice to permit the fluid flow therethrough, as shown by arrow B2 of Fig. 6. At the same time, the increased fluid pressure in the upper fluid chamber 262 flows into the internal tanmber-- 480 of the rotary valve 404 via the axial opening 68 of the cylindrical support 60. If the rotary valve 404 is placed at the angular position as illustrated, the limited flow rate of fluid flow is perritted to flow into the upper fluid reservoir 268 via the radially extending opening 482 and the radial path opening 602, as shown by arrow B3 in Fig. 6.
Further more, the fluid pressure entering into the annular groove 458 via the communication opening 4262, the inner annular groove 464 and the axially extending opening 474, acts on the second damping valve 424 for causing deformation to form the variable path area orifice for fluid flow therethrough. Then, the pressurized fluid flowing into ~0 4 1-i 16the internal chamber 434 through the variable path are orifice formed by deformation of the second damping valve 424 flow into the lower fluid reservoir chamber 266 via the third skewed opening 478, as shown by arrow B4. In addition, a part of pressurised working fluid in the upper fluid chamber 262 flows into the internal chamber 434 via the radially extending lower opening 484, the radial path opening 604, the axial groove 486, the annular groove 436, the axially extending opening 452, and the communication opening 4162 in that order, as shown by an arrow REBOUNDING STROKE In the rebounding motion, the piston assembly shifts downwardly relative to the cylinder tube 26, or in the alternative, the outer tube 24 with the cylinder tube 26 shifts upwardly relative to the piston assembly, wi th causing compression of volume in the lower fluid chamber 264. In this case, the higher pressure working fluid in the o4 lower fluid chamber 264 flows into -the lower fluid reservoir chamber 266 via the fluid path groove 316, as shown by arrow R1 in Fig. 6. At the same time, the higher pressure working f Ir fluid flows into the annular groove 522 via the inner annular groove 524 and the inner fluid path opening 518.
The pressurized fluid in the annular groove 522 is active on the upper disc valve 504 for causing deformation thereof to form the variable path area orifice for fluid flow there through, as shown by arrow R2. On the other hand, the fluid pressure in the upper fluid chamber 262 decreases according to expansion of the volume thereof. As a result, the pressure balance between the upper and lower fluid chambers 268 and 266 and the upper fluid chamber 262 is destroyed. Therefore, the working fluid in the upper fluid reservoir chamber 268 flows into the upper fluid chamber 262 via the radial path opening 602, the radially extending opening 482, the internal space 480 and the axial opening 4 ,PIr I II 1 9 1 I 17 68, as shown by arrow R3. Furthermore, the working fluid in the lower fluid reservoir chamber 266 flows into the internal chamber 434 via thp third skewed path 478. Then, the fluid in the internal chamber 434 flows into the internal space 480 via the communication opening 4162, the annular groove 442, the axial opening 452, the annular groove 436, the axial groove 486, the radial path opening 604 and the radially extending opening 484, as shown by arrow R4. Furtnermore, the pressurized fluid in the internal chamber 434 is active on the first damping valve 414 to cause deformation for forming the flid path as illustrated by arrow As will be appreciated herefrom, the first and second damping valves 414 and 424 serve as principle element for generating damping force in response to bounding and rebounding mode of vibration. Namely, the first damping valve 414 in the route R5 is active for generating damping force during rebounding mode of Vibration. On the other hand, the second damping valve 424 in the route B4 is active f'r bounding stroke of vibration. Therefore, the damping characteristics of the first and second damping valves 414 and 424 are variable depending on the angular position of the rotary valve 404. Namely, when the rotary valve 404 is placed in an angular posi tion for aligning the radially oo extending openings 482 and 484 with the radial path openings 602 and 604, magnitude of damping force to be generated by o the first and second damping valves 414 and 424 becomes small for providing softer damping characteristics. In.
contrast to this, when the rotary valve 404 is placed in an angular position for off-aligning the radially extending openings 482 and 484 with the radial path openings 602 and t 604, magnitude of damping force to be generated by the first and second damping valves 414 and 424 becomes much greater for providing harder damping characteristics.
first fluid path incorporating first and second damping L -L 18 o 0 00 I As can be seen herefrom, in either mode of vibrations, fluid communication between the upper fluid chamber 262 and the upper and lower fluid reservoir chambers 268 and 266 is' established. With the shown construction, HARE mode and' SOFT mode damping characteristics as illustrated by the solid ine in Fig. 7. Variation magnitude of damping force between the HARD and SOFT modes becomes much greater than that in the prior art as illustrated by the broken line in Fig. 7.
Fig. 8 is a modifi 'ation of the foregoing embodiment of the shock abs jrber. In the shown modification,'the rotary valve 4040 in the former embodiment has been replaced with a thrusting valve 4040' for axial movement along the axis of the axial opening 68 of the cylindrical support 6G.
Figs. 9, 10, 11 and 12 show another embodiment of the top valve assembly to be employed in the shown embodiment of the shock absorber according to the invention.
The shown embodiment will be discussed utilizing the common reference numerals for the components essentially common to the former embodiments.
The shown embodiment is typically differentiated from the embodiment shown in Fig. 3 in the rotary valve construction. Namely, in the shown embodiment, the lower end of the rotary valve 4040 is sealingly closed by an end fitting 4042. In Fig. 9, reference numeral 682 designates an annular fluid passage provided for fluid communication between the raidally extending openings 482 and the radial path openings 602. Therefore, direct fluid communication between the internal space 480 of the rotary valve 4040 and the upper fluid chamber 262 via the axial opening 68 of the cylindrical support 60 is blocked. In place of this, another pair of radially extending openings 494 are formed through the rotary valve 404. The radially extending openings 494 are oriented at lower elevation than the radially extending opening 484. The radially extending opening 494 is designed to selectively establish and block i 1 1
I
19 fluid comriunication between the internal space 480 and a radial path openings 606 formed through the cylindrical support 60. The radial path opening 606 are in fluid communication with the annular groove 458 formed on the upper surface of the lower valve body 408, via an axially extending grooves 496.
With the shown embodiment of the top valve assembly, the radially extending openings 494 and the radial path opening 606 cooperate to form another fixed orifice as aligned to each other. In the shown embodiment, the radially extending openings 494 are provided with angular offset from the annular orientation of the radially extending openings 482 and 484 as shown in Figs. 10, 11 and 12.
o In the shown embodiment, the radially extending o no openings 484 and 494 are aligned in alternative fashion so o..n that when one of the pairs of openings 484 and 494 are aligned with the corresponding radial path openings 604 and 606, the other pair are placed off-alignment from the 00 So, corresponding radial path openings. In the show embodiment, the angular offset of the radially extending openings 494 with respect to the radially extending opening 484 is set at approximately 45° Wi th the shown embodiment, HARD and SOFT mode selection becomes alternative as illustrated by Figs. 13 and 14.
Similar adjustment of the damping modes can be down by the thrusting valve 4040', as shown in Fig. 15. In case of the thrusting valve 4040' of Fig. 15, it becomes possible to vary flow restriction magnitude by adjusting overlapping magnitude between the radially extending openings 482, 4842,4844 and 4942,4944 and the radial path openings 602, 604 and 606.
Though th foregoing embodiments are directed to two way mode, i.e. HARD and SOFT modes, adjustments of the ?vY _C 20 damping characteristics of the shock absorber, it may be possible to provide capability of more than two modes.
Namely, in the example of Figs.16, 17 and 18, respective two pairs of radially extending openings 4842, 4844 and 4942 and 4944 are provided. Respective pairs of radially extending openings 4844 and 4944 are provided) angular shift from the radially extending orifices 4842 and 4942 in a magnitude of With the shown arrangement of the radially extending openings of Figs.16, 17 and 18, three way variable damping characteristics as shown in Figs. 20 and 21 can be obtained. On the other hand, in the example of Figs. 22, 23 and 24, respective three pairs of radially extending openings 4822, 4824, 4826, 4842, 4844, 4846 and 4942, 4944, 4946 are provided. In the shown construction, the pairs of radially extending openings 4822 4824 and 4826 are respectively aligned on radial axes a 7 and Similarly, the radially extending openings 4842, 4844 and 4846 are respectively aligned on radial axes a f and 6 0 o s Also, the radially extending openings 4942, 4944 and 4946 are respectively aligned on radial axes a p and The .i radial axes a P f 6 and E are respectively provided angular shift for 36° Wi th the shown arrangement of radially extending openings of Figs. 22, 23 and 24, five way Sdifferent damping modes can be established as shown in Figs.
26, 27, 28 and 29. Namely, in the shown position in Figs. 22, 23 and 24, the radially extending openings 4822, 4842 and 4942 are aligned on the axis a The damping characteristics of Fig. 25 is obtained. Similarly, at respective angular positions aligning the ralially extending openings 4822, 4842 and 4942 on respective of axes 3 and Y The radial axes a 9 y 5 and e the damping characteristics respectively illustrated in Figs. 26, 27, 28 and 29 can be obtained.
hi
C__
21 While the present invention has been discussed in terms of the preferred embodiments for practically implementing the invention, the invention can be embodies in various fashions. Therefore, the invention should be appreciated to include all possible embodiments and modifications thereof which are embodied without departing from the principal of the invention as set out in the appended c'l aims.
*0 0 0£ S a s 9i 1

Claims (4)

1. A reverse installed tie variable damping force shock absorber for an automotive suspension system comprising: an inner cylinder filled with a working fluid; and outer cylinder coaxially housing therein said inner cylinder and connected to a vehicular body for vertical movement according to vertical motion of the vehicle body, said outer cylinder defining a space between said inner cylinder, a reservoir chamber and a communication chamber located within said outer cylinder and said space forming an annular chamber which is separate from said communication chamber, said inner and outer cylinders being arranged to permit relative movement of said inner cylinder relative to said outer cylinder in response to bounding and rebounding mode vibration transmitted between said vehicular body and a vehicular wheel; 9 a piston disposed within the interior space of said 9 99 inner cylinder for defining therein first and second fluid chambers, said piston being connected to a suspension member rotatably supporting said vehicular wheel via a piston rod for vertical movement with said 0 A 0 vehicular wheel; A° 25 a first fluid path means for fluid flow from said A Ao A first fluid chamber to said second fluid chamber in response to bounding mode vibration, said first fluid .A 4 path means incorporating a first damping force generating valve means for restricting fluid flow from said first fluid chamber to said second fluid chamber in order to generate damping force resisting against said bounding mode vibration; a second fluid path means for fluid flow from said secohd fluid chamber to said reservoir chamber across said annular chamber and said communication chamber in response to rebounding mode vibration, said second fluid 7 /0
42630.1.9 23 path means incorporating a second damping force generating valve means for restricting fluid flow thereacross for generating damping force resisting against the rebounding mode vibration; and a third fluid path means for fluid flow from said reservoir chamber to said first fluid chamber in response to the rebounding mode vibration for compensating for excessive drop of fluid pressure in said first fluid chamber, said third fluid path means incorporating a third valve means active independently of said damping force generating valve and permitting one-way flow from said reservoir chamber to said first fluid chamber.
2. A reverse installed type variable damping force shock absorber for an automotive suspension system comprising: an innei cylinder filled with a working fluid; an outer cylinder coaxially housing therein said inner cylinder and connected to a vehicular body for vertical movement according to vertical motion o2 the vehicle body, said outer cylinder defining a space Sbetween said inner cylinder, a reservoir chamber and a o communication chamber located within said outer cylinder, said space forming an annular chamber which is separate o from said communication chamber, said inner and outer cylinder being arranged to permit relative movement of said inner cylinder relative thereto in response to bounding F'Id rebounding mode vibration transmitted between said vehicular body and a vehicular wheel; a piston disposed within the interior space of said inner cylinder for defining therein first and second fluid chambers, said piston being connected to a 1 suspension member rotatably supporting said vehicular wheel via a piston rod for vertical movement with said vehicular wheel; a first fluid path means for fluid flow from said first fluid chamber to said second fluid chamber in q 164i \21@O'-H426/3O.01AQZ A 'ro 24 response to bounding mode vibration, said first fluid path means incorporating a first damping force generating valve means for restricting fluid flow from said first fluid chamber to said second fluid chamber in order to generate damping force resisting against said bounding mode vibration; a second fluid path means for fluid flow from said so.cond fluid chamber to said reservoir chamber across sa.'d annular chamber and said communication chamber in response to rebounding mode vibration, said second fluid path means incorporating a second damping force generating valve means for restricting fluid flow thereacross for generating damping force resisting against the rebounding mode vibration; a third fluid path means for fluid flow from said reservoir chamber to said first fluid chamber in response to the rebounding mode vibration for compensating for excessive drop of fluid pressure in said fluid chamber, said third fluid path means incorporating a third valve S 20 means active independently of said second damping force 4 generating valve and permitting one-way flow from said reservoir chamber to said first fluid chamber; and o a fourth fluid path means for fluid flow from said annular chamber to said second fluid chamber in response to the bounding mode vibration for compensating excessive o pressure drop in said second fluid chamber, said fourth fluid path means incorporating a fourth valve means independent of said first damping force generating valve for permitting one-day flow of the working fluid from said annular chamber to said second fluid chamber.
3. A reverse installed type variable damping force shock absorber for an automotive suspension system comprising: an inner cylinder filled with a working fluid; an outer cylinder coaxially housing therein said inner cylinder and connected to a vehicular body for 2 426 30 .0 1 92 vertical movement according to vertical motion of the vehicle body, said outer cylinder defining a space between said inner cylinder, a reservoir chamber and a communication chamber being located within said outer cylinder with the communication chamber extending into said space and being separate from said reservoir chamber; a piston disposed within the interior space of said inner cylinder for defining therein first and second fluid chambers, said piston being connected to a suspension member rotatably supporting a vehicular wheel via a piston rod for vertical movement with said vehicular wheel; a first fluid path means for establishing fluid communication between said first fluid chamber and said second fluid chamber via said communicacion chamber, said first fluid path means active in response to bounding mode relative displacement between said vehicular body and said vehicular wheel for permitting fluid flow from 20 said first fluid chamber to said second fluid chamber; a second fluid path means, define independently of S said first fluid path, for establishing fluid communication between said second fluid chamber and said reservoir chamber via said communication chamber, said 25 second fluid path means active in response to rebounding mode relative displacement between said vehicular body o >and said vehicular wheel for permitting fluid flow from said second fluid chamber to said reservoir chamber; a first damping force generating means disposed in 30 said first path for generating damping force against bounding mode rela. re displacement between said ,i vehicular body and saic vehicular wheel, which damping i force is variable depend, ng upon magnitude of bounding stroke in essentially linear variation characteristics; a second damping force generating means disposed in said second fluid path means for generating damping force against rebounding mode relative displacement between aj 008-H/426/30.01.92 I~ 26 said vehicle body and said vehicular wheel, which damping force is variable depending upon magnitude of rebounding stroke in essentially linear variation characteristics; and a pressure drop compensation path means active during said rebounding mode of relative displacement for permitting flow of working fluid from said fluid reservoir chamber to said first chamber for compensating for excess drop of the fluid pressure in said first chamber.
4. A reverse installed type variable damping force shock absorber for an automotive suspension system comprising: an inner cylinder filled with a working fluid; an outer cylinder coaxially housing therein said inner cylinder and connected to a vehicular body for A vertical movement according to vertical motion of the vehicle body, said outer cylinder defining a space between said inner cylinder, a reservoir chamber and a communication chamber being located within said outer o cylinder with the communication chamber extending into said space and being separate from said reservoir chamber; A "°oa piston disposed within the interior space of said 0 25 inner cylinder for defining therein upper and lower fluid o chambers, said piston being connected to a suspension member rotatably supporting a vehicular wheel via a Apiston rod for vertical movement with said vehicular "A wheel; a base member mounted on the top of said inner cylinder and separating the interior space of said inner cylinder and said reservoir chamber; a first fluid path arranged to communicate said upper chamber with said fluid reservoir chamber, said first fluid path incorporating first and second damping valves arranged in series; OA i *0i 0 3./ -208-H1426/30.O1 .92 r I I 27 a second fluid path arranged to communicate a portion oi said first fluid path positioned between said first and second damping valves to said fluid reservoir ji chamber; a third fluid path arranged to communicate said portion of said first fluid path with said upper chamber by-passing said first damping valve; a fourth fluid path arranged to communicate said reservoir chamber with said upper fluid chamber via a first check valve; a fifth fluid path arranged to communicate said reservoir chamber with said lower chamber via a second check valve; and a variable orifice means disposed within said third fluid path., A reverse installed type variable damping force shock absorber for an automotive suspension system comprising: 0o,' an inner cylinder filled with a working fluid; an outer cylinder coaxially housing therein said 0o° inner cylinder and connected to a vehicular body for vertical movement according to vertical motion of the vehicle body, said outer cylinder defining a space oO: 25 between said inner cylinder, a reservoir chamber and a j 25 communication chamber being located within said outer o 0 cylinder with the communication chamber extending into said space and being separate from said reservoir chamber; a piston disposed within the interior space of said 30 inner cylinder for defining therein upper and lower fluid chambers, said piston being connected to a suspension member rotatably supporting a vehicular wheel via a piston rod for vertical movement with said vehicular wheel; Ci A 008 4Y426/30.01.92 7_r' r t28 a base member mounted on the top of said cylinder and separating the interior space of said inner cylinder and said reservoir chamber; p a first fluid path arranged to communicate said upper chamber with said fluid reservoir chamber, said first fluid path incorporating first and second damping valves arranged in series; a second fluid path arranged to communicate a portion of said first fluid path positioned between said first and second damping valves to said fluid reservoir chamber; a third fluid path arranged to communicate said portion of said first fluid path to said upper chamber by-pascing said first damping valve; a fourth fluid path arranged in parallel to said first and second damping valves to communicate said upper fluid chamber with said fluid reservoir chamber; o a fifth fluid path arranged to communicate said 0.0 reservoir chamber and said upper fluid chamber via a 0 o 20 first check valve; S a sixth fluid path arranged to communicate said reservoir chamber and said lower chamber via a second check valve; and a first variable orifice means including a first 25 orifice disposed within said third fluid path; and So a second variable orifice means including a second orifice disposed within said fourth fluid path. 6. A shock absorber as claimed in claim 5, wherein said first and second variable orifice means are operative for providing different damping characteristics for bounding Sand rebounding mode relative motions of said vehicular body and said vehicular wheel. 7. A shock absorber as claimed in either claim 5 or 6 wherein each of said first and second variable orifice means is switchable between harder damping mode and %C i ,VN\ *2(o08-H42630.o1.92 0 L. I 29 softer damping mode so that harder damping characteristics is obtained for bounding mode relative motion when damping characteristics for rebounding mode K motion is set in softer characteristics and vis-a-vis. 8. A shock absorber as claimed in any one of claims 3 to 7 wherein said first and second variable orifice means are so cooperated as to further establish softer damping characteristics both for bounding and rebounding mode relative motions of said vehicular body and said vehicular wheel. 9. A reverse installed type variable damping force shock absorber for an automotive suspension system comprising: an inner cylinder filled with a working fluid; an outer cylinder coaxially housing therein said inner cylinder and connected to a vehicular body for o •vertical movement according to vertical motion of the ,~at 20 vehicle body, said outer cylinder defining a space between said inner cylinder, a reservoir chamber and a I' 20 communication chamber being located within said outer cylinder with the communication chamber extending into *'.said space and being separate from said reservoir chamber; a piston disposed within the interior space of said inner cylinder for defining therein upper and lower fluid chambers, said piston being connected to a suspension a a member rotatably supporting a vehicular wheel via a a o: piston rod for vertical movement with said vehicular I wheel; a base member mounted on the top of said inner cylinder and separating the interior space of said inner cylinder and said reservoir chamber; a first fluid path arranged to communicate said upper chamber with said fluid reservoir chamber, said L H/426/30.01.92 30 first fluid path incorporating first and second damping valves arranged in series; a second fluid path arranged to communicate a portion of said first fluid path positioned between said first and second damping valves with said fluid reservoir chamber; a third fluid path arranged to communicate said portion of said first fluid path with said upper chamber by-passing said first damping valve; a fourth fluid path arranged in parallel to said first and second damping valves to communicate said upper fluid chamber with said fluid reservoir chamber; a fifth fluid path arranged to communicate said reservoir chamber with said upper fluid chamber via a first check valve; a sixth fluid path arranged to com municate said reservoir chamber with said lower chamber via a second check valve; and a first variable orifice means including a first orifice disposed within said third fluid path; and o0: a second variable orifice means disposed within said S0, fourth fluid path, and including a second orifice located adjacent said fluid reservoir chamber and a third orifice located adjacent said upper fluid chamber. 10. A reverse installed type variable damping force shock absorber for an automotive suspension system comprising: an inner cylinder filled with a working fluid; an outer cylinder coaxially housing therein said inner cylinder and connected to a vehicular body for Svertical movement according to vertical motion of the vehicle body, said outer cylinder defining a space between said inner cylinder, a reservoir chamber and a communication chamber being located within said outer cylinder with the communication chamber extending into 4 -1 21008--J426/30,01.92 ,j 31 31 said space and being separate from said reservoir chamber; a piston disposed within the interior space of said inner cylinder for defining therein upper and lower fluid U 5 chambers, said piston being connected to a suspension member rotatably supporting a vehicular wheel via a piston rod for vertical movement with said vehicular wheel; a base member mounted on the top of said inner cylinder and separating the interior space of said inner cylinder and said reservoir chamber; a first fluid path arranged to communicate said upper chamber with said fluid reservoir chamber, said 0..0 first fluid path incorporating first and second damping 00 15 valves arranged in series; a second fluid path arranged to communicate a portion of said first fluid path positioned between said first and second damping valves to said fluid reservoir chamber; a third fluid path arranged to communicate said o 0 portion of said first fluid path with said upper chamber by-passing said first damping valve; ,a fourth fluid path arranged in parallel to said *first and second damping valves to communicate said upper fluid chamber with said fluid reservoir chamber; a fifth fluid path arranged to communicate said reservoir chamber with said upper fluid chamber via a first check valve; a sixth fluid path arranged to communicate said reservoir chamber and said lower chamber via a second check valve; and a first variable orifice means including a first orifice disposed within said third fluid path; and a second variable orifice means including a second orifice disposed within said fourth fluid path; wherein said first and second variable orifice means being operable between a soft mode in which both of said nT 0 1008-H/426/30.01.92 'U _I 32 m os o=o o 0 e 0 0 fl0 9 ua 0 0 0 0 4 *-3 0 o a mo 0 o a 0 0 4 o ma *0 00 «o s o a 00 4 t b a (P 1( t first and second orifices are open, a rebounding hard mode in which said first orifice is open and said second orifice restricts fluid flow, and a bounding hard mode in which said first orifice restricts fluid flow and said second orifice is open. 11. A reverse installed type variable damping force shock absorber substantially as herein described with reference to the accompanying drawings. DATED this 3rd day of February 1992 ATSUGI UNISIA CORPORATION By their Patent Attorneys GRIFFITH HACK CO 08 30.01.92 21008- 4 30.01.92 e
AU59067/90A 1989-07-17 1990-07-17 Reverse installation type variable damping force shock absorber variable of damping characteristics both for bounding and rebounding stroke motions Ceased AU624729B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1-183911 1989-07-17
JP1-183910 1989-07-17
JP18391089A JP2804792B2 (en) 1989-07-17 1989-07-17 Variable damping force type hydraulic shock absorber
JP18391189A JPH0351548A (en) 1989-07-17 1989-07-17 Damping force varying type hydraulic buffer

Publications (2)

Publication Number Publication Date
AU5906790A AU5906790A (en) 1991-03-07
AU624729B2 true AU624729B2 (en) 1992-06-18

Family

ID=26502171

Family Applications (1)

Application Number Title Priority Date Filing Date
AU59067/90A Ceased AU624729B2 (en) 1989-07-17 1990-07-17 Reverse installation type variable damping force shock absorber variable of damping characteristics both for bounding and rebounding stroke motions

Country Status (2)

Country Link
AU (1) AU624729B2 (en)
GB (1) GB2234572B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918293B2 (en) * 1990-05-28 1999-07-12 株式会社ユニシアジェックス Variable damping force type shock absorber
DE4216433C2 (en) * 1991-05-17 1998-03-12 Atsugi Unisia Corp Method for controlling a shock absorber with variable damping characteristics and motor vehicle with a correspondingly controlled shock absorber
US5307907A (en) * 1991-06-11 1994-05-03 Atsugi Unisia Corporation Hydraulic damper
US5207301A (en) * 1991-08-22 1993-05-04 General Motors Corporation Active suspension actuator with real time damping

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU567411B2 (en) * 1985-03-22 1987-11-19 Toyota Jidosha Kabushiki Kaisha Hydraulic buffer
AU588310B2 (en) * 1978-06-12 1989-09-14 Hydra-Gym Athletics Inc. Exercising device with double acting hydraulic cylinder
AU593755B2 (en) * 1983-11-09 1990-02-15 Liquid Spring Investors, Ltd. Fluid suspension spring and dampener for a vehicle suspension system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2287627A1 (en) * 1974-10-11 1976-05-07 Sirven Jacques VEHICLE SUSPENSION HYDRAULIC SHOCK ABSORBER
FR2618507B1 (en) * 1987-07-21 1993-12-03 Sirven Jacques HYDRAULIC SHOCK ABSORBER PROVIDED WITH MEANS FOR VARYING THE OPERATING CHARACTERISTICS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU588310B2 (en) * 1978-06-12 1989-09-14 Hydra-Gym Athletics Inc. Exercising device with double acting hydraulic cylinder
AU593755B2 (en) * 1983-11-09 1990-02-15 Liquid Spring Investors, Ltd. Fluid suspension spring and dampener for a vehicle suspension system
AU567411B2 (en) * 1985-03-22 1987-11-19 Toyota Jidosha Kabushiki Kaisha Hydraulic buffer

Also Published As

Publication number Publication date
GB2234572B (en) 1993-06-30
AU5906790A (en) 1991-03-07
GB9015748D0 (en) 1990-09-05
GB2234572A (en) 1991-02-06

Similar Documents

Publication Publication Date Title
US5158161A (en) Reverse installation type variable damping force shock absorber variable of damping characteristics both for bounding and rebounding stroke motions
US4905799A (en) Shock absorber
US5277283A (en) Variable damping-characteristics shock absorber with adjustable orifice construction variable of fluid flow restriction depending upon fluid pressure difference
AU611010B2 (en) Shock absorber with variable damping characteristics depending upon stroke speed
US5293971A (en) Shock absorber with damping valve structure having wide range variable damping characteristics
US4535877A (en) Hydraulic damper of adjustable damping force type
AU613242B2 (en) Hydraulic shock absorber with pre-loaded valve for linear variation characteristics of damping force
US6371262B1 (en) Damping force control type hydraulic shock absorber
US5649692A (en) Vibration damper and pneumatic suspension system
US5992585A (en) Acceleration sensitive damping for automotive dampers
KR860001691B1 (en) Hydraulic damper
EP0305382A1 (en) Method and apparatus for absorbing mechanical shock.
US5226512A (en) Variable damping force shock absorber with variable orifice for adjusting damping characteristics
US5193655A (en) Variable damping force shock absorber with feature of linear and wide range damping force variation depending upon piston stroke speed
US6253889B1 (en) Acceleration sensitive shock absorber
AU624729B2 (en) Reverse installation type variable damping force shock absorber variable of damping characteristics both for bounding and rebounding stroke motions
EP0193851B1 (en) Construction of control valve for air suspension
GB2231385A (en) &#34;Shock absorber&#34;
US6676115B2 (en) Spring system
US4653735A (en) Suspension for vehicle
JPH07269628A (en) Damper
AU614873B2 (en) Variable damping-characteristics shock absorber with adjustable orifice construction variable of fluid flow restriction depending upon fluid pressure difference
CA2021332C (en) Reverse installation type variable damping force shock absorber variable of damping characteristics both for bounding and rebounding stroke motions
JPH08121524A (en) Shock absorber
EP0336758A2 (en) Shock absorber with variable damping characteristics depending upon stroke speed

Legal Events

Date Code Title Description
MK14 Patent ceased section 143(a) (annual fees not paid) or expired