AU6243400A - Rainwater collection and storage system - Google Patents

Rainwater collection and storage system Download PDF

Info

Publication number
AU6243400A
AU6243400A AU62434/00A AU6243400A AU6243400A AU 6243400 A AU6243400 A AU 6243400A AU 62434/00 A AU62434/00 A AU 62434/00A AU 6243400 A AU6243400 A AU 6243400A AU 6243400 A AU6243400 A AU 6243400A
Authority
AU
Australia
Prior art keywords
water
roof
insert member
tanks
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU62434/00A
Other versions
AU770297B2 (en
Inventor
Gary M Alcorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPQ3149A external-priority patent/AUPQ314999A0/en
Application filed by Individual filed Critical Individual
Priority to AU62434/00A priority Critical patent/AU770297B2/en
Publication of AU6243400A publication Critical patent/AU6243400A/en
Application granted granted Critical
Publication of AU770297B2 publication Critical patent/AU770297B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/108Rainwater harvesting

Description

AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name of Applicant: Actual Inventor: Address for Service: GARY M ALCORN GARY M ALCORN CULLEN CO., Patent Trade Mark Attorneys, 239 George Street, Brisbane, QId. 4000, Australia.
RAINWATER COLLECTION STORAGE SYSTEM Invention Title:
AND
Details of Associated Provisional Applications: Nos. PQ3149 29.09.99 The following statement is a full description of this invention, including the best method of performing it known to me: RAINWATER COLLECTION AND STORAGE SYSTEM TECHNICAL FIELD This invention relates to a rainwater collection and storage system which, in an embodiment, is a gutterless rainwater harvesting and storage system which allows a controlled percentage of roof run-off to access, via designed slots in steel roof sheeting and a manifold collection system, a series of narrow section (200 to 250mm wide tanks), which in new building construction can replace conventional solid external walls. The slots in the roof sheeting can be dimensioned and shaped to allow optimum water entry while excluding leaves and other organic debris BACKGROUND ART Water tanks to store roof water are extremely well-known. It is well-known to provide a steel or plastic and generally cylindrical water tank 15 next to a house with the gutters of the house being connected to the water tank inlet via a down pipe. It is known to have mesh screens or similar devices to keep leaves, twigs, and the like from entering the rainwater tank.
S.These large cylindrical tanks are usually placed next to the house and on a support platform.
20 It is also known to have mini tanks (typically formed from plastic) o• positioned against a house wall and under the roof eaves. The mini tank can hold between 200 to 1000 litres of water and, as is common, has a lower tap.
Again, a mesh screen and the like can be used to keep leaves and twigs from entering the mini tank. The mini tank is attached to the roof gutter via a down pipe.
One disadvantage with these existing tanks is that they collect water from the roof gutter. The roof gutter is usually clogged with leaves, twigs, dirt, dust and rotting material, and the sieves and screens are not able to remove anything other than that larger twigs and leaves. This means that water in the tank can still contain appreciable undesired residue. This can be alleviated by regular and thorough cleaning of the roof gutters, but this is a job which is not popular with most home owners, inter alia for safety reasons.
In rural and bush environments, gutters can be a fire hazard through leaf build-up and it is not uncommon for houses in these areas to not have gutters and instead to allow water to fall straight off the edge of the roof.
Another disadvantage with gutters is that leaf build-up in the gutters can cause flooding of the eaves through over topping. However, gutterless systems would prevent water from being collected for conventional cylindrical tanks or mini tanks.
Another disadvantage with conventional water tanks is that they are unsightly and are often in the way. While the mini tanks attempt to minimise this disadvantage, these tanks are still quite visible and noticeably bulge from a house wall.
Conventional water tanks are used only to collect and store water for drinking or irrigation purposes. To date, there has been no attempt utilise the potential heat exchange properties of the water stored within the 15 tank. If the tanks are placed in the sun, the water will slowly warm up and in theory can provide a good source of heat during the cooler periods at night.
However, conventional tank designs do not take advantage of this property.
"The present invention is directed to a rainwater collection and storage system which can collect and store rainwater without requiring the 20 roof gutter. The invention is also directed to a climate management system e* for a building which uses a series of water tanks.
It is an object of the invention to provide a rainwater collection and storage system which may overcome the abovementioned disadvantages or provide the public with a useful or commercial choice.
SUMMARY OF THE INVENTION In one form, the invention resides in a rainwater collection and storage system to collect and store roof water, the system comprising water collection slots extending through roof sheets and spaced from the edge of the roof, a manifold or other type of collection means below the roof sheets to collect the water from at least some of the slots, and at least one tank wall to store the collected water, the at least one tank wall having a narrow section to approximately a wall thickness, and typically extending from a ground floor to adjacent the roof.
In another form, the invention resides in a climate management system for a building which comprises a plurality of water tanks spaced about the building and either forming part of the external walls, or in front of the external walls, the water tanks being of narrow section to approximate a wall thickness, the tanks being interconnected by pipe work, pump means to pump water between the tanks, and temperature sensing means to sense the water temperature in the tanks, whereby water can be pumped between tanks to provide climate control to the building.
The rainwater collection and storage system collects water via slots extending through the roof sheeting and therefore does not require a :**gutter. This can provide cleaner and more hygienic water. The system can used on roofs which are gutterless, for instance of houses in wooded areas where bush fires are a risk.
15 The roof sheets are typically metal profiled roof sheets as the collection slots are fairly easily punched or otherwise formed in the sheets.
The collection slots are positioned to intercept the water running along at least some portion of the roof. It is envisaged that the slots can extend across the entire roof width, or along discrete portions or zones of the roof.
20 The collection slots are spaced from the edge of the roof. This may be in order to collect clean water, it being appreciated that at the edge of the roof there can be leaf, twig and other debris build-up. If the roof is supported by a wall, it is preferred that the slots are positioned to be substantially outside the wall for reasons which will be described in greater detail below.
A number of collection slots may be provided and the size and shape of the collection slots can vary depending inter alia on the profile of the roof, and the typical seasonal rainfall in the region. The collection slots may be configured such that in heavy downpours, excess water simply bridges the slot gaps and runs off the edge of the roof. In low rainfall areas, more collection slots may be provided to catch as much water as possible. The shape and size of the slots is preferably such to allow optimum water entry while excluding leaves, twigs, gum nuts and the like.
In a preferred embodiment of the invention, the collection slots are located in roof insert members and the insert members may be mounted in receiver slots formed in the roof. Typically, the insert members are s removably mounted in the receiver slots. An advantage of providing removable insert members is that the density, size and the like of the collection slots may easily be changed if desired by interchanging insert members having collection slots of different sizes etc. Insert members can also be replaced if damaged or irreversibly blocked by a twig or the like. This may be more cost effective than replacing a roof section. Insert members may also be interchanged to optimize rain water collection during dry or wet :i seasons. The profile (for instance corrugations) provides ridges and valleys Swith the valleys concentrating the water running off the roof sheets.
.sis The roof insert member can be made from metal or ultra-violet stabilised plastics and comprises a shape consistent with the receiver slot in the roof sheeting surface. The insert member typically has first or upper end and a second or lower end, and in use the first end is located upstream from the second end relative to the normal direction of rainwater flow across the roof. Both ends of the roof insert members typically have a discrete shape so o 20 that they may be inserted in one direction only.
Typically, the upper end of the insert member contains a mouthlike slot which, in use, houses an edge of the roof sheeting receiver slot and positively locates the nose or upper end of the insert member. On the lower surface of the insert member at the lower or tail end of the insert member may be located a small tab depending therefrom. This tab typically includes a grippable portion to assist in manual removal of the insert member and may also act as a roofwater flow brake to assist flow capture by the insert member.
The lower surface of the insert member typically firmly or snuggly fits in the roof receiver slot. However, the insert members upper surface is typically dimensioned to be slightly larger than the receiver slot thus providing a substantially watertight fit and a support function around the margin of the insert member. Typically, the insert member has a lip extending along at least part of the upper surface and in use this lip overlaps the edge of the roofing sheet receiver slot On the lower surface of the insert member at the bottom, or downstream, end is typically located a vertical deflector tab or fin which can direct any roofwater running on the lower side of the insert member down into the collection means. Part of this vertical defector fin may also contain an integral lever clip which positively locates the insert member in the receiver slot of the roof sheeting. Typically such a clip would be able to be compressed by thumb or finger pressure to enable the insert member to be unlocked, removed and replaced by another insert member suited to updated rainfall forecast trends.
By providing a number of interchangeable insert members containing varying numbers and patterns of collection slots it is possible to provide suitable capacity to accept varying expected rainfall events S .i 15 determined by the geographical location and the seasonal characteristics of various localities. Such information is now provided by long range climate forecast units sponsored by government. Based on these climate forecasts a house owner can easily replace the insert member with another set more suitably calibrated to the expected rainfall outlook.
20 Underneath the roofing sheets and below the collection slots is a collection means, typically in the form of a moulded box chamber. The box chamber which can be made from plastic collects the roofwater from at least some of the collection slots. If a width of roof is provided with an array of insert members, each box chamber located between the roof rafters may discharge into a manifold provided to collect the water passing through all the insert members and to pass the water into at least one tank wall.
The manifold can be in the form of a pipe underneath the box chambers to collect the water. A number of separate manifolds may be provided each collecting water from a zone or array of insert members and passing the water into the same or different tank wall modules.
The manifold may be connected to one or several box chambers which have a wider upper area immediately below the insert members and a lower narrower pipe area which connects with the manifold. A mesh or sieve can extend through the box chamber and between the insert members and the chamber neck to remove any debris which may pass through the insert member strainer surface.
On leaving the manifold and entering the tank wall unit, the initial contaminated roofwater containing dust and other organic matter typically flows into an integral and separate tank column located inside the tank wall module. Once this inner tank column is filled all other roof water flows into the main storage volume of the tank wall. The first flush water discharges through a dump valve at the base of the inner tank to waste.
The tank wall is typically of a metal and/or plastic construction, :o and can replace conventional solid external walls. The section of the tank wall can be typical of an external wall which can be between 200 to 250mm wide.
The tank wall can extend from adjacent a ground floor to adjacent the roof. It 15 is preferred that the tank wall is generally inside the line of the slots in the roof sheets. The tank wall can have a height of between 200 to 300cm and a S" length which allows it to be positioned between load bearing posts or columns ooo* which support the roof structure. If the load bearing posts or columns are between 2 to 3m apart, the tank wall can have a length which enables it to fit between, behind or in front of the posts or columns.
The tank wall can be manufactured from steel such as coated S:corrugated steel with flat steel or moulded plastic ends, plastic such as food grade polyethylene, fibreglass or other materials.
The building can have an array of tank walls positioned between posts or columns and taking into account windows or doors.-- The tank walls can act as an efficient insulator against extremes of heat or cold, can provide a water supply for fire fighting, gardens, pools, or consumption.
If desired, the tank wall can be positioned below a window, and in this arrangement, the tank wall does not extend adjacent the roof but instead extends to below the bottom of the window. A suitable pipe can extend from the manifold to the tank wall.
The tank walls can provide a climate management system. For instance, the tank walls can be spaced about the walls of a house to absorb heat from a western wall in summer or a northern wall in winter (in the southern hemisphere). The tank walls can be interconnected by pipe work and a pump can be provided to pump water between the tanks. For instance, cooler water from the east side of the house can be pumped to a west facing tank to cool the west facing side of the house. In winter, warmer water can be distributed around the house from the north facing tank. A temperature sensing means can be provided to sense the water temperature in the tanks.
As well as providing a supply of water and climate control, the lo wall tanks also have good acoustic absorbing ability to reduce the noise levels from outside.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view of a roofing sheet showing an of receiver slots and an insert member.
Figure 2 is a side section view of an embodiment of the invention.
Figure 3 is a front view of an embodiment of the invention.
DESCRIPTION OF THE PREFERRED EMODIMENT Referring initially to Figure 2, there is shown a side section view of a rainwater collection and storage system. In Figure 2, there is illustrated a roof 1 containing metal corrugated roofing sheets 2 which, in the conventional manner, are attached to roof battens 3, the roof battens being nailed or otherwise attached to roof rafters 4. In the embodiment, the lowermost edge of roof 1 does not have a gutter and excess water merely flows over the edge. The front of the roof rafter has a fascia body 6 as is known.
Spaced from edge 5 and punched through roofing sheets 2 is an array of receiver slots 7 which are better illustrated in Figure 1. The receiver slots 7 extend across each of the suitable valleys in the corrugated roof sheets 2. These receiver slots 7 accept insert members 8 which are formed to match the particular roof profile.
The insert member 8 is more clearly illustrated in Figure 1. The insert member 8 is curved to match the curvature of the valley of the corrugated roof sheet 2. The insert member 8 has an upper or nose end 9 which in use is located at the upstream end of the normal flow of rainwater on the roof. The front or nose end 9 of the insert member 8 is rounded contains a mouth-like slot 10 between the upper 11 and lower surfaces 12. This slot receives an edge of the roof sheeting and positively locates the front or nose 9 of the insert member 8. At the lower or tail end 13 of the insert member 8 on the upper surface is a small upstanding tab 14 which assists manual removal of the insert member and acts as a roofwater flow brake to assist roofwater capture into the insert member. The tab 14 is inclined at an obtuse angle to the upper surface of the insert member.
The lower surface 12 of the insert member is a close fit in the roof receiver slot 7 and the upper surface 11 is dimensioned to be slightly larger than the receiver slot thus providing a watertight fit and a margin support function for the insert member 8. On the lower surface 12 at the 15 lower or tail end is a vertical deflector fin 19 which directs any roofwater running on the lower side 12 of the insert member down into a chamber 14 (illustrated in Figure Part of this vertical deflector fin 19 also contains an integral lever clip 20 which positively locates the insert member 8 in the receiver slot 10 of the roof sheeting 2. This clip is compressed by thumb or 20 finger pressure to enable the insert member to be unlocked, removed and replaced by another insert member having collection sl6ts more suited to updated rainfall forecast trends.
The insert member 8 has a plurality of circular water collection slots 17. The size, shape and number of slots 17 in the insert member 8 can be varied to suit the particular rainfall zone.
Underneath the receiver slots 7 is a box chamber 24 (better illustrated in Figure The box chamber 24 can be formed of plastics or metal and has an upper wider body which is provided with a lower seal (which could be a peripheral seal) which seals against the bottom of the roofing sheets to ensure that all the water passing through the slots passes into the box chamber. If the roofing sheets are corrugated, seal 25 is also corrugated to provide an effective seal.
An angled mesh panel or screen 26 is provided in box chamber 24 and below slots insert members 8. Screen 26 collects any debris that may pass through slots 17. Screen 26 slopes downwardly and a small opening or flap 27 is provided on a lower side of box chamber 24 and above screen 26.
The flap 27 can be opened to clear any debris on screen 26. The flap may be of a free hinging type which will open when debris-containing water passes through slots 17 with the water passing through screen 26 and the debris being pushed under the combined influences of water and gravity against flap 27 which can then hinge open to discharge the debris. Box chamber 24 has a narrower base portion 28 which comprises an inlet to a manifold 29. It can be seen that the manifold inlet 29 is offset from the inlet to the box chamber :i 24. In this way, light is prevented from entering the manifold. Avoiding light o entry into the water storage area can minimize or avoid algal growth in the stored water.
15 The box chamber 24 is elongate and collects water from water extending through the slots in adjacent valleys on the corrugated roof sheeting. In Figure 3, this is illustrated. In this figure, two box chambers 24 lol.
are illustrated each having a manifold inlet 28 with each box chamber collecting roof water between the roof rafters 4. This of course can vary to 20 suit.
The box chambers 24 are connected to a series of manifolds 29 which deliver the roofwater to a first-flush unit 30. Each flush unit 30 is contained within a tank wall module 31. One of the first -flush units 30 is constructed inside each tank wall unit 31 during manufacture. This arrangement collects the initial flow of possible dirt or mud-containing water and diverts or discharges it though a dump valve (not illustrated) at the base of tank wall module 31. After that, additional water passes into tank wall module 31. Tank wall module 31 is made from steel or plastic or other suitable material and in the embodiment is not load supporting. The tank wall extends from the floor slab 32 to underneath the roof rafter 4. The height of the tank wall will depend upon the distance between the floor slab 32 and the roof but is typically between 2 to 3m. The length of the tank wall can also vary and can be between 0.5 to 3m, or more, depending on the spacing between the posts or columns which support the roof. The thickness of the tank wall approximates the thickness of the column or post supporting the roof, and as this thickness is about 200 to 250mm, the tank thickness is also between 200 to 250mm, giving it a narrow section.
The tank wall is supported on the floor slab 32 via two rails 33.
Referring to Figure 3, the tank wall module 31 is positioned between two vertical posts 35 and is located between, behind or in front of the posts which support the roof structure. The tank wall module 31 is a free standing wall but in the embodiment, is a non-load bearing structure. For this reason, upper support beams 34 are provided to support the roof rafters. As 0i.0 the tank wall module 31 is non-load bearing the tank wall module may be removed relatively easily.
In a retrofit situation, the tank wall can be located outside and 15 adjacent the existing timber or brick external wall.
The tank wall can function as an efficient insulator against the extremes of heat and cold, can provide a water supply for fire fighting, garden use, pools, or other household uses, and can provide a low cost water storage to reduce treated water consumption.
A number of tank walls 24 can be provided around the house.
The water in the tanks can be pumped between tanks to transfer warm and cold water to desired areas for heating and cooling purposes. For instance, roof mounted photo voltaic cell panels, a simple software package, small 24v pumps with thermostatic sensors, interconnecting pipes and solenoid valves can be used to pump water between the tanks. Throughout this specification, the word "comprise" or variations thereof such as "comprises" or "comprising" will be understood to imply the inclusion of a stated element or integer or group of integers but not the exclusion of any other element or integer or group of elements or integers.
It should be appreciated that various other changes and modifications can be made to the embodiment described without departing from the spirit and scope of the invention.

Claims (20)

1. A rainwater collection and storage system to collect and store roof water, the system comprising water collection slots extending through roof sheets and spaced from the edge of the roof, of collection means below the roof sheets to collect the water from at least some of the slots, and at least one tank wall to store the collected water, the at least one tank wall having a narrow section to approximately a wall thickness, and typically extending from a ground floor to adjacent the roof.
2. The system of claim 1 which includes at least one roof insert member mounted in a complimentary receiver slot in the roof sheet and at least some of the collection slots are located in the at least one roof insert member.
3. The system of claim 2, wherein the at least one insert member is removably mounted in a respective receiver slot. 15
4. The system of claim 2 or claim 3, wherein each roof insert member has an upper surface upon which rain water can flow, a lower surface, first and second ends, the first end being located upstream of the second end relative to the direction of rain water flow across the roof, the first and second ends having discrete shapes such that the insert member can only be mounted in the receiving slot in one direction only.
The system of claim 4, wherein the first end of the insert member has a slot for receiving an edge of the roof sheet.
6. The system of claim 4 or claim 5, wherein the second end has an upstanding tab for obstructing the flow of water across the upper surface.
7. The system of claim any one of claims 4 to 6, wherein the insert member has a tab depending from the second end for directing water running along the lower surface into the collector.
8. The system of claim any one of claims 2 to 7, wherein the roof is corrugated, each roof insert member is located in a valley of the corrugation and the insert member is curved to conform to the curvature of the valley.
9. The system of claim 8, wherein the upper surface of the insert member has a lip which abuts the edge of the receive slot so as to form a water seal.
The system of any one of claims 1 to 9, wherein the collector includes a collection chamber having an inlet and an outlet and a filter hingedly mounted within the chamber.
11. The system of claim 10, wherein the outlet is offset from the inlet.
12. Th system of claim 10 or claim 11, wherein the outlet is connected to a manifold.
13. The system of any one of claims 1 to 12 which includes a first flush tank which is filled before water flows to the tank wall and water in the flush tank is discharged to waste. :I
14. A rainwater collection and storage system substantially as o hereinbefore described with reference to figures 2 and 3.
15. A climate management system for a building which comprises .i e 15 the system of claim any one of claims 1 to 14 and a plurality of wall tanks spaced about the building and either forming part of the external walls, or in front of the external walls, the wall tanks being interconnected by pipe work, pump means to pump water between the tanks, and temperature sensing means to sense the water temperature in the tanks, whereby water can be *e pumped between tanks to provide climate control to the building.
16. A building having the system of any one of claims 1 to 14 and at least two wall tanks located in or adjacent external walls of the building.
17. A building having the climate management system of claim
18. A climate management system for a building which comprises a plurality of water tanks spaced about the building and either-forming part of the external walls, or in front of the external walls, the water tanks being of narrow section to approximate a wall thickness, the tanks being interconnected by pipe work, pump means to pump water between the tanks, and temperature sensing means to sense the water temperature in the tanks, whereby water can be pumped between tanks to provide climate control to the building.
19. A roof insert member for use in the system of any one of claims claim 1 to 14, the insert member having a first end, a second end, an upper surface upon which rain water can flow and a lower surface, the insert member having at least one water collection slot, an engaging slot at the first end for engaging an edge of a receiving slot in a roof sheet.
20. A roof insert member, substantially as hereinbefore described with reference to Figure 1.
AU62434/00A 1999-09-29 2000-09-29 Rainwater collection and storage system Ceased AU770297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU62434/00A AU770297B2 (en) 1999-09-29 2000-09-29 Rainwater collection and storage system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPQ3149 1999-09-29
AUPQ3149A AUPQ314999A0 (en) 1999-09-29 1999-09-29 Rainwater collection and storage system
AU62434/00A AU770297B2 (en) 1999-09-29 2000-09-29 Rainwater collection and storage system

Publications (2)

Publication Number Publication Date
AU6243400A true AU6243400A (en) 2001-04-05
AU770297B2 AU770297B2 (en) 2004-02-19

Family

ID=25633583

Family Applications (1)

Application Number Title Priority Date Filing Date
AU62434/00A Ceased AU770297B2 (en) 1999-09-29 2000-09-29 Rainwater collection and storage system

Country Status (1)

Country Link
AU (1) AU770297B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007237249B1 (en) * 2007-10-16 2008-03-20 Dan Allen Roof water collection and delivery system
US7603823B2 (en) 2004-12-23 2009-10-20 Superwall Systems Pty. Ltd. Wall panel and wall panel system
AU2005203329B2 (en) * 2004-07-28 2011-10-27 Global Water Collectors Pty Ltd Catchment surface for collection of water precipitate
CN114521418A (en) * 2022-02-17 2022-05-24 海南省安心果业有限责任公司 Pitaya single-column cultivation frame and pitaya standardized cultivation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBR20100006A1 (en) * 2010-10-28 2012-04-29 Home And Professionals S R L WATER RESERVE BUILT IN MASONRY AND / OR DIVIDING WALLS IN GENERAL WITH A CAPACITY OF ABOUT LT.400 AND SIZE OF CM.192 X CM.143 X CM. 18 MADE IN PLASTIC MATERIAL FOR FOOD USE.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2291924A (en) * 1994-07-29 1996-02-07 Thomas Bernard Myland Roof tile reservoir
DE29611772U1 (en) * 1996-07-09 1996-09-19 Weber Hugo Metal roof tile
US6009672A (en) * 1996-09-10 2000-01-04 Kuhns; Richard L. Roof valley water collector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005203329B2 (en) * 2004-07-28 2011-10-27 Global Water Collectors Pty Ltd Catchment surface for collection of water precipitate
US7603823B2 (en) 2004-12-23 2009-10-20 Superwall Systems Pty. Ltd. Wall panel and wall panel system
AU2007237249B1 (en) * 2007-10-16 2008-03-20 Dan Allen Roof water collection and delivery system
CN114521418A (en) * 2022-02-17 2022-05-24 海南省安心果业有限责任公司 Pitaya single-column cultivation frame and pitaya standardized cultivation method
CN114521418B (en) * 2022-02-17 2023-12-29 海南省安心果业有限责任公司 Single-column cultivation frame and standardized cultivation method for dragon fruits

Also Published As

Publication number Publication date
AU770297B2 (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US6553723B1 (en) Rainwater collection and storage system
ES2224143T3 (en) PROCEDURE FOR CONSERVATION OF WATER AND DEVICE.
US5536406A (en) Drain filtering device
US6883760B2 (en) Rain gutter cover system
US5836344A (en) System for preventing and melting ice dams
US4608786A (en) Downspout for building gutters or the like
US20060191208A1 (en) Customizable drain guard
JP2012107451A (en) Rainwater storage structure and rainwater circulation system using the same
GB2344132A (en) Rainwater collection and supply
AU770297B2 (en) Rainwater collection and storage system
US20110308176A1 (en) Rooftop Cooling and Rainwater Retention Panel and System
US7278239B1 (en) Gutter protector and guttering incorporating same
US6805517B2 (en) Gutterless drainage system
WO2008068736A2 (en) Hidden roof gutter system
AU2005200441A1 (en) Water tank partitions
Zabeltitz Greenhouse construction in function of better climate control
CN208918145U (en) Plant pitched roof
JP2002371597A5 (en)
AU2006225316B2 (en) Structural Tank Wall
AT402750B (en) Tank systems for collecting rainwater
AU763777B2 (en) Gutter protector & guttering incorporating same
AU2005100313A4 (en) A new one-piece rainwater gutter profile which is not prone to blockage by tree debris
GB2508333A (en) Water storage shed
AU2005100626A4 (en) A leafguard/fascia/soffit device
AU722071B3 (en) Gutter protector and guttering incorporating same

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)