AU619732C - Method of inhibiting interleukin-1 activity - Google Patents
Method of inhibiting interleukin-1 activityInfo
- Publication number
- AU619732C AU619732C AU11505/88A AU1150588A AU619732C AU 619732 C AU619732 C AU 619732C AU 11505/88 A AU11505/88 A AU 11505/88A AU 1150588 A AU1150588 A AU 1150588A AU 619732 C AU619732 C AU 619732C
- Authority
- AU
- Australia
- Prior art keywords
- group
- formula
- compounds
- acid
- stands
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 102000000589 Interleukin-1 Human genes 0.000 title claims description 40
- 108010002352 Interleukin-1 Proteins 0.000 title claims description 40
- 230000000694 effects Effects 0.000 title claims description 23
- 238000000034 method Methods 0.000 title claims description 18
- 230000002401 inhibitory effect Effects 0.000 title claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 70
- BYPFEZZEUUWMEJ-UHFFFAOYSA-N Pentoxifylline Chemical compound O=C1N(CCCCC(=O)C)C(=O)N(C)C2=C1N(C)C=N2 BYPFEZZEUUWMEJ-UHFFFAOYSA-N 0.000 claims description 13
- 229960001476 pentoxifylline Drugs 0.000 claims description 12
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 125000004432 carbon atom Chemical group C* 0.000 claims description 11
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 9
- 201000010099 disease Diseases 0.000 claims description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 241000124008 Mammalia Species 0.000 claims description 5
- 125000001931 aliphatic group Chemical group 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 5
- 125000004356 hydroxy functional group Chemical group O* 0.000 claims description 3
- 125000004043 oxo group Chemical group O=* 0.000 claims description 3
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- 230000001404 mediated effect Effects 0.000 claims description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical class O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 31
- -1 and the like Substances 0.000 description 28
- 210000003622 mature neutrocyte Anatomy 0.000 description 23
- 229940065721 systemic for obstructive airway disease xanthines Drugs 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 21
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 13
- 230000005764 inhibitory process Effects 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 11
- 239000002158 endotoxin Substances 0.000 description 10
- 229920006008 lipopolysaccharide Polymers 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 150000002576 ketones Chemical class 0.000 description 9
- 210000002433 mononuclear leukocyte Anatomy 0.000 description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 7
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical group CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 7
- 239000002168 alkylating agent Substances 0.000 description 7
- 229940100198 alkylating agent Drugs 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 239000003636 conditioned culture medium Substances 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 208000014674 injury Diseases 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- 150000003509 tertiary alcohols Chemical group 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 5
- 229960000583 acetic acid Drugs 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 239000000010 aprotic solvent Substances 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 238000005804 alkylation reaction Methods 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 150000002902 organometallic compounds Chemical class 0.000 description 4
- 238000005932 reductive alkylation reaction Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 150000003512 tertiary amines Chemical class 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical class CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 206010040070 Septic Shock Diseases 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 125000004849 alkoxymethyl group Chemical group 0.000 description 3
- 230000029936 alkylation Effects 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 230000035605 chemotaxis Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 125000005283 haloketone group Chemical group 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052987 metal hydride Inorganic materials 0.000 description 3
- 150000004681 metal hydrides Chemical class 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000012429 reaction media Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000003871 sulfonates Chemical class 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000304886 Bacilli Species 0.000 description 2
- 206010006895 Cachexia Diseases 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 241000709661 Enterovirus Species 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102100026018 Interleukin-1 receptor antagonist protein Human genes 0.000 description 2
- 101710144554 Interleukin-1 receptor antagonist protein Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000010471 Markovnikov's rule Methods 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 206010040047 Sepsis Diseases 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 150000001241 acetals Chemical class 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 150000001649 bromium compounds Chemical class 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000013043 chemical agent Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000002975 chemoattractant Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 230000007646 directional migration Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 238000007327 hydrogenolysis reaction Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 150000004694 iodide salts Chemical class 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 2
- 229910001623 magnesium bromide Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000006263 metalation reaction Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 125000005188 oxoalkyl group Chemical group 0.000 description 2
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 2
- 244000045947 parasite Species 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000003444 phase transfer catalyst Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000004714 phosphonium salts Chemical class 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 229940086542 triethylamine Drugs 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 150000003738 xylenes Chemical class 0.000 description 2
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 2
- SMYMJHWAQXWPDB-UHFFFAOYSA-M (2,4,5-trichlorophenoxy)acetate Chemical compound [O-]C(=O)COC1=CC(Cl)=C(Cl)C=C1Cl SMYMJHWAQXWPDB-UHFFFAOYSA-M 0.000 description 1
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical group CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- QVEMWYGBLHQEAK-UHFFFAOYSA-N 2-ethylbutanamide Chemical compound CCC(CC)C(N)=O QVEMWYGBLHQEAK-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 125000004800 4-bromophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Br 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 241000186046 Actinomyces Species 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 241001136792 Alle Species 0.000 description 1
- 241000415078 Anemone hepatica Species 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000335423 Blastomyces Species 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- 241001261624 Brevundimonas bacteroides Species 0.000 description 1
- 208000008889 California Encephalitis Diseases 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 206010072043 Central nervous system haemorrhage Diseases 0.000 description 1
- 241001185363 Chlamydiae Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000581444 Clinidae Species 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 241000223203 Coccidioides Species 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 208000009802 Colorado tick fever Diseases 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 241001337994 Cryptococcus <scale insect> Species 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 208000001490 Dengue Diseases 0.000 description 1
- 206010012310 Dengue fever Diseases 0.000 description 1
- BUDQDWGNQVEFAC-UHFFFAOYSA-N Dihydropyran Chemical compound C1COC=CC1 BUDQDWGNQVEFAC-UHFFFAOYSA-N 0.000 description 1
- AQZGPSLYZOOYQP-UHFFFAOYSA-N Diisoamyl ether Chemical compound CC(C)CCOCCC(C)C AQZGPSLYZOOYQP-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 208000006825 Eastern Equine Encephalomyelitis Diseases 0.000 description 1
- 201000005804 Eastern equine encephalitis Diseases 0.000 description 1
- 206010014584 Encephalitis california Diseases 0.000 description 1
- 206010014587 Encephalitis eastern equine Diseases 0.000 description 1
- 206010014611 Encephalitis venezuelan equine Diseases 0.000 description 1
- 206010014614 Encephalitis western equine Diseases 0.000 description 1
- 206010014824 Endotoxic shock Diseases 0.000 description 1
- 241000224431 Entamoeba Species 0.000 description 1
- 241000194033 Enterococcus Species 0.000 description 1
- 241001606147 Eurema mexicana Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000046011 Folsomia candida Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 206010018634 Gouty Arthritis Diseases 0.000 description 1
- 241000606790 Haemophilus Species 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 241000228402 Histoplasma Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000818522 Homo sapiens fMet-Leu-Phe receptor Proteins 0.000 description 1
- 201000009908 La Crosse encephalitis Diseases 0.000 description 1
- 241001440188 Lacera Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000222740 Leishmania braziliensis Species 0.000 description 1
- 241000222727 Leishmania donovani Species 0.000 description 1
- 241000222736 Leishmania tropica Species 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000012448 Lithium borohydride Substances 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 241000270362 Micrerethista fasciola Species 0.000 description 1
- 241000192041 Micrococcus Species 0.000 description 1
- 241000588621 Moraxella Species 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 241000204003 Mycoplasmatales Species 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 1
- 241000224016 Plasmodium Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000723764 Potato virus A Species 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 206010038687 Respiratory distress Diseases 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 241000242677 Schistosoma japonicum Species 0.000 description 1
- 241000242680 Schistosoma mansoni Species 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000193985 Streptococcus agalactiae Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 206010044248 Toxic shock syndrome Diseases 0.000 description 1
- 231100000650 Toxic shock syndrome Toxicity 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 241001404129 Trichoderma pseudocandidum Species 0.000 description 1
- 241000224526 Trichomonas Species 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 1
- 241001442397 Trypanosoma brucei rhodesiense Species 0.000 description 1
- 241000223109 Trypanosoma cruzi Species 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 241000700647 Variola virus Species 0.000 description 1
- 208000002687 Venezuelan Equine Encephalomyelitis Diseases 0.000 description 1
- 201000009145 Venezuelan equine encephalitis Diseases 0.000 description 1
- 241000607598 Vibrio Species 0.000 description 1
- 208000005466 Western Equine Encephalomyelitis Diseases 0.000 description 1
- 201000005806 Western equine encephalitis Diseases 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000003152 Yellow Fever Diseases 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 150000003797 alkaloid derivatives Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000004791 alkyl magnesium halides Chemical class 0.000 description 1
- 125000005278 alkyl sulfonyloxy group Chemical group 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- BNQRPLGZFADFGA-UHFFFAOYSA-N benzyl(triphenyl)phosphanium Chemical class C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)CC1=CC=CC=C1 BNQRPLGZFADFGA-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical class FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 229950005499 carbon tetrachloride Drugs 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- RLGQACBPNDBWTB-UHFFFAOYSA-N cetyltrimethylammonium ion Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)C RLGQACBPNDBWTB-UHFFFAOYSA-N 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- JEIJBKDXJPNHGD-UHFFFAOYSA-N chloroform;pyridine Chemical compound ClC(Cl)Cl.C1=CC=NC=C1 JEIJBKDXJPNHGD-UHFFFAOYSA-N 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000002817 coal dust Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000009519 contusion Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 206010061428 decreased appetite Diseases 0.000 description 1
- 208000025729 dengue disease Diseases 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 150000005195 diethylbenzenes Chemical class 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- FDPIMTJIUBPUKL-UHFFFAOYSA-N dimethylacetone Natural products CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 1
- SDIXRDNYIMOKSG-UHFFFAOYSA-L disodium methyl arsenate Chemical compound [Na+].[Na+].C[As]([O-])([O-])=O SDIXRDNYIMOKSG-UHFFFAOYSA-L 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 238000010931 ester hydrolysis Methods 0.000 description 1
- RWLDAJMGAVDXSH-UHFFFAOYSA-N ethane-1,1,2-tricarboxylic acid Chemical compound OC(=O)CC(C(O)=O)C(O)=O RWLDAJMGAVDXSH-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 102100021145 fMet-Leu-Phe receptor Human genes 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 208000011379 keloid formation Diseases 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 244000145841 kine Species 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- NSPJNIDYTSSIIY-UHFFFAOYSA-N methoxy(methoxymethoxy)methane Chemical compound COCOCOC NSPJNIDYTSSIIY-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- DVSDBMFJEQPWNO-UHFFFAOYSA-N methyllithium Chemical compound C[Li] DVSDBMFJEQPWNO-UHFFFAOYSA-N 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- GVYLCNUFSHDAAW-UHFFFAOYSA-N mirex Chemical compound ClC12C(Cl)(Cl)C3(Cl)C4(Cl)C1(Cl)C1(Cl)C2(Cl)C3(Cl)C4(Cl)C1(Cl)Cl GVYLCNUFSHDAAW-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- NAFSTSRULRIERK-UHFFFAOYSA-M monosodium urate Chemical compound [Na+].N1C([O-])=NC(=O)C2=C1NC(=O)N2 NAFSTSRULRIERK-UHFFFAOYSA-M 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical group CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 230000011242 neutrophil chemotaxis Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000001979 organolithium group Chemical group 0.000 description 1
- 238000010653 organometallic reaction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 238000003408 phase transfer catalysis Methods 0.000 description 1
- HCTVWSOKIJULET-LQDWTQKMSA-M phenoxymethylpenicillin potassium Chemical compound [K+].N([C@H]1[C@H]2SC([C@@H](N2C1=O)C([O-])=O)(C)C)C(=O)COC1=CC=CC=C1 HCTVWSOKIJULET-LQDWTQKMSA-M 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NHKJPPKXDNZFBJ-UHFFFAOYSA-N phenyllithium Chemical compound [Li]C1=CC=CC=C1 NHKJPPKXDNZFBJ-UHFFFAOYSA-N 0.000 description 1
- DJFBJKSMACBYBD-UHFFFAOYSA-N phosphane;hydrate Chemical class O.P DJFBJKSMACBYBD-UHFFFAOYSA-N 0.000 description 1
- 125000002270 phosphoric acid ester group Chemical group 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000005767 propoxymethyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])[#8]C([H])([H])* 0.000 description 1
- NQLVQOSNDJXLKG-UHFFFAOYSA-N prosulfocarb Chemical compound CCCN(CCC)C(=O)SCC1=CC=CC=C1 NQLVQOSNDJXLKG-UHFFFAOYSA-N 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006894 reductive elimination reaction Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 238000006798 ring closing metathesis reaction Methods 0.000 description 1
- 201000005404 rubella Diseases 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003458 sulfonic acid derivatives Chemical class 0.000 description 1
- 125000002130 sulfonic acid ester group Chemical group 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 1
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 229940102001 zinc bromide Drugs 0.000 description 1
Description
TITLE OF THE INVENTION
METHOD OF INHIBITING INTERLEUKIN-1 ACTIVITY BACKGROUND OF THE INVENTION Field of the Invention:
This invention pertains to the inhibition of interleukin-1 in humans and mammals. More specifically, it provides a method of inhibiting the activity of interleukin-1 to arrest or alle¬ viate certain disease and inflammation situations. Discussion of Background:
Interleukin-1 is a biological substance produced, in mam¬ mals by macrophages . The substance has been determined to effect a wide variety of cells and tissues, both in vitro and in vivo. Research has demonstrated interleukin-1 (IL-1) to be an important, and even critical, mediator in a wide variety of inflammatory states and diseases. The inhibition of IL-1, would be obviously of benefit in controlling, reducing and alleviating many of these conditions.
Detection of IL-1 activity, and its inhibition, can be relatively easily documented, through in vitro analysis of polymorphonuclear neutrophil behavior. Among other activities attributed to IL-1 is the promotion of leukocyte adherence and the inhibition of neutrophil chemotaxis, both directly contrib¬ uting to disease and inflammation syndromes .
Yet, despite the obvious desirability of IL-1 activity and the ease with which inhibition can be detected, in vitro, there is, to date, no known inhibitor of IL-1 acceptable for in vivo administration.
SUMMARY OF THE INVENTION It is one object of this invention to meet the above- identified needs of the prior art.
It is another object of this invention to provide a method of inhibiting IL-1 activity.
It is yet a further object of this invention to identify a class compounds which may be successfully employed in alleviating conditions caused by, or mediated by, IL-1. These and other objects made clear below are achieved by a class of compounds which includes pentoxifylline and related compounds,
SUBSTITUTE SHEET
which show, even at low concentrations, marked inhibition of known IL-1 activity, as demonstrated through easily verified in vitro tests, noted above.
The IL-1 inhibitors of the claimed invention are of the general formula I
wherein at least one of R 1 and R3 is either (a) a branched
hydroxyalkyl group of the formula (CH«) -C-CH- ,
OH with a tertiary alcohol function, m which R~ stands for an alkyl group with 1 to 3 carbon atoms and n stands for a whole number from 2 to 5, the other R 1 or R3 group that may option¬ ally be present stands for a hydrogen atom or an aliphatic hy-
5 drocarbon group R w th up to 6 carbon atoms, whose carbon chain may be interrupted by up to 2 oxygen atoms or may be sub¬ stituted with a hydroxy or oxo group, or (b) at least one of R
3 or R is an oxoallyl group of the formula
O R -C-(CH2) , wherein R is C -C8 alkyl, and p = 2, 3 or 4. The other R or R being defined as above; and R represents an alkyl group with 1 to 4 carbon atoms.
Exemplary within the general formula, and established as an effective IL-1 inhibitor, is the well known and commercially available pharmaceutical pentoxifylline. Although this com¬ pound has been used, for some time, as a pharmaceutical (clini¬ cal trials in 1971) it has not been reported effective as IL-1 inhibitor. It has been demonstrated in promoting directed
SUBSTITUTE SHEET
migration of leukocytes. Other, related compounds, identified by their respective values for R, - R_ are related below.
Because IL-1 has been implicated in such a wide variety of mammalian conditions, this invention has a similarly broad scope of application. Among the conditions that may be treated or alleviated by the inhibition of IL-1 are: sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, adult respiratory distress, fever and myalgias due to infection (i.e. influenza) , cachexia secondary to infection or malignancy, cachexia secondary to AIDS, rheumatory arthritis, gouty arthritis, osteoporosis, keloid formation, scar tissue formation, decreased appetite, Crohn' s disease, ulcerative colitis, fever due to central nervous system bleeding, glomerulonephritis , multiple sclerosis, Creutzfeld-Jacob dis¬ ease, adverse reactions to dialysis, etc. By reference to the specific cause of the disease condition, the more generic term "trauma" may be used. The term "trauma" refers broadly to cel¬ lular attack by foreign bodies and physical injury of cells. Included among foreign bodies are microorganisms, particulate matter, chemical agents, and the like. Included among physical injuries are, mechanical injuries such as abrasions, lacera¬ tions, contusions, wounds, and the like, thermal injuries such as those resulting from excessive heat or cold, electrical in¬ juries such as those caused by contact with sources of electri¬ cal potential, and radiation damage caused, for example, by prolonged, extensive exposure to infrared, ultraviolet or ionizing radiations .
Microorganisms comprise bacilli, fungi and yeast, .viruses parasites, and the like. Representative bacilli are: a. Actinomyces spp.; b. Bacteroides spp.; c. Corynebacterium spp.; d. Enterobacteriacea; e . Enterococcus ; f. Haemophilus spp.; g. Micrococcus spp.; h. Neissera spp.;
-_L-
i. Staphylococcus aureus; j. Streptococcus pneumoniae;
1. Clostridium spp. ; m. Streptococcus agalactiae; n. Bacillus spp.;
0. H. influenzae; p. Moraxella spp.; q. Mycobacteria spp. ; r. Pseutodomonas aeruginosa; s . Vibrio spp. ; and t. Mycoplasma. Representative fungi and yeast are: a. Microspurum; b. Blastomyces; c. Histoplasma; d. Aspergillus; e. Cryptococcus; f. Candida; g. Coccidioides; and h. Candida albicans.
Representative viruses are: a. Rhinovirus; b. Parainfluenza; c. Enterovirus; d. Influenza; e. Chlamydiae; f. Smallpox and vaccinia; g. Herpes simplex; h. Measles; i. Rubella; j. Arbovirus (Western, Eastern and Venezuelan equine encephalitis, and California encephalitis) ; k. Rabies;
1. Colorado tick fever; m. Yellow fever; n. Dengue;
SUBSTITUTE SHEE
0. Virus B (HB Ag) ; and p. Virus A (HAV) .
Representative parasites are: a. Trypanosoma cruzi; b. Entamoeba histolytiσa; c. Leishmania brasiliensis; d. Leishmania tropica; e. Leishmania donovani; f. Toxiplasma gondii; g. Plasmodium falσipraum; h. Trypanosoma rhodesiense; i . Lia lo ; j . Trichomonas hominis ; k. Schistosoma japonicum;
1. Schistosoma mansoni; and m. Fasciola hepatica.
Particulates include silica, asbestos, monosodium urate, cotton fibers, coal dust, beryllium, and the like.
Chemical agents include heavy metals such as lead, chro¬ mium, mercury, arsenic, and the like, organic solvents such as trichloroethylene, and the like, herbicides such as trichloro- phenoxyacetic acid and the like, and pesticides such as mirex and the like. In addition, inhibition of IL-1 will enhance phagocyte activity in stored blood and blood products . DESCRIPTION OF THE PREFERRED EMBODIMENTS
Inhibition of IL-1 activity can be achieved by the admin¬ istration of compounds of the formula I
to the host or patient to be treated. As noted, among these compounds is the commercially available pentoxifylline. A host
of other compounds within the general formula I have been iden¬ tified as demonstrating IL-1 inhibiting activity. Among these compounds are those identified by their R substituents set forth below.
Compound # R, R.
0 CH3-C-(CH2)4- -CH. -CH2-CH2- •CH,
OH CH3-C-(CH2)4- -CH, ■CH2-CH2-0-CH3
CH3
4 -CH2-0-(CH2)2-0-CH3 5 -H 6 -CH2-CH2-CH3
OH
-CH2-C ■CH,
OH
8 -CH2-C -(CH3)2 9 -CH2-CH3 -CH2-0-CH2-CH3
CH,
I 3
10 -CH, -(CH2.,)4.-Cj-CH,3
OH
11 CH2-0-CH2-CH3
When introduced into polymorphonuclear neutrophil (PMN) incuba¬ tions provided with IL-1, or incubated in lipopolysaccharide stimulated mononuclear leukocyte condition medium, the com¬ pounds of the claimed invention decreased PMN adherence, even at relatively low concentrations (0.1 of micrograms/ml) .
Similarly, the presence of the compounds of the claimed invention promoted directed migration of PMN, which migration is inhibited by the presence of IL-1. The demonstrated inhibi¬ tion of IL-1 by these compounds is, of course, suggestive of clinical effectiveness in the above-identified areas, and addi¬ tional conditions . Appropriate dosages will vary with the con¬ dition and individual .
Preparation of Compounds
As noted, among the compounds embraced in this invention is pentoxifylline (trental). Other compounds can be prepared according to the disclosure of U.S. Patent 3,737,433 and Belgium Patent 831,051 (where R 1/R3 are oxoallyl) . For the cases where at least one of R 1/R3 is a tertiary alcohol refer¬ ence may be had to the international application PCT-EP-86-00401, July 8, 1986 claiming German priority of July 8, 1985. This application addresses, as its invention, a vari¬ ety of embodiments of synthesis routes for the xanthines embraced in the current invention.
An example of one embodiment consists of a) reacting 3-alkylxanthines of Formula II
(ID in which the R 3 represents alkyl with up to 4 carbon atoms,
.4 with alkylating agents of Formula III X-(CH„) - C - CH in which X
OH stands for halogen, preferably chlorine, bromine, or iodine, or a sulfonic acid ester group or a phosphoric acid ester group
4 and R and n have the meanings mentioned above, to obtain com¬ pounds of Formula lb
R-
SUBSTITUTE SHEET
with a tertiary hydroxyalkyl group in the position of R and hydrogen in the position of R , and a. ) alkylating this with the same or different alkylating agent of Formula III to obtain compounds pursuant to the inven¬ tion of Formula Ic
with two identical or different tertiary hydroxyalkyl groups in the positions of R 1 and R3 , or a„) converting it with a compound of the Formula
5 R -X (IV), in which X has the meaning given in Formula III and
R 5 has the meani.ng i.ndi.cated above, into compounds of Formula
Id R'
in all cases preferably operating in the presence of basic media or using the xanthines in the form of their salts.
SUBSTITUTE S
Another form of embodiment b) consists of substituting 1,3-dialkylated xanthines of Formula V
in the 7-position, preferably in the presence of basic media or in the form of their salts, by one-step reaction with a com¬ pound of Formula III, to obtain compounds of Formula Id.
Another form of embodiment c) consists of first reacting the 3-alkylxanthines of Formula II, likewise 'preferably in the presence of basic media or in the form of their salts, with a compound of the Formula R -X (IVa) with the formation of 3, 7-disubstituted xanthines of Formula VI
m which R 15 has the meani.ng mentioned for R5 or stands for benzyl or diphenylm thyl, and then substituting them in the
1-position, again preferably in the presence of basic media or in the form of their salts, with a compound of Formula III, with compounds of Formula Ie
being obtained, and converting the compounds of Formula Ie in which R represents a benzyl or diphenylmethyl group or an alkoxymethyl or alkoxyalkoxymethyl group, under reducing or hydrolytic conditions, into compounds pursuant to the invention of Formula If
that are subsequently reacted again, if desired, with a com¬ pound of Formula III or IV to obtain compounds pursuant to the invention of Formula Ic or Ie .
Another form of embodiment d) consists of reducing com¬ pounds of Formula Id or Ie pursuant to the invention in which R 5 or R15 stands for an oxoalkyl group, with conventional re¬ ducing agents for the keto group to obtain the corresponding hydroxyalkylated xanthines pursuant to the invention.
The 3-alkyl- or 1 , 3-dialkylxanthines of Formula II or V used here as starting materials and the "alkylating agents" of Formulas III, IV, and IVa are known for the most part or can be prepared readily by methods disclosed in the literature. Thus, the tertiary alcohols of Formula III, for example, can be obtained by organometallic synthesis by reacting the sterically unhindered haloketones of the formula Hal-(CH_) -CO-CH, (Vila) , in a so-called synthetic reaction with reductive alkylation of
4 the carbonyl group, with alkylmetal compounds R -M, especially of magnesium, zinc, or lithium, for example in the form of alkylmagnesium halides R -MgHal (Grignard compounds) or of the
4 alkyllithium compounds R -Li under the usual conditions ( for example, see Houben-Weyl, Vol. Vl/l a, Part 2 (1980), pp.
928-40, especially pp. 1021 ff. and 1104-1112). In the same way, a reaction of the haloketones with the formula
Hal-(CH«) -CO-R (Vllb) with methylmagnesium halides or methyllithium likewise leads to the target.
The hydroxyketones corresponding to the formulas Vila and Vllb can also be converted smoothly into diols with the alkylmetal compounds in the usual way, either directly or with temporary masking of the hydroxy group, for example by acetal formation with 5, 6-dihydro-4H-pyran (for example, see Houben- Weyl, Vol. Vl/l a, Part 2 (1980), pp. 1113-1124), from which compounds of Formula III are formed by selective esterification of the terminal primary hydroxyl groups with sulfonyl or phos¬ phoric halides or anhydrides, advantageously in the presence of basic media.
Other possibilities for the synthesis of the tertiary alcohol derivatives of Formula III consist of the mono etallation of ύ -chloro-1-bromoalkanes to obtain ώ'-chloroalkylmetal compounds, (Houben-Weyl, Vol. XIIl/2 a (1973), pp. 102 and 319) and their subsequent reaction with the ketones R*-CO-CH3, with the extent of byproduct formation from the alkanolates formed as intermediates because of their ten¬ dency toward ring closure with the elimination of metal salt being minimized by appropriate temperature control, or of using ώJ-halo-1-alkanols as starting materials, which are metallated in the usual way, preferably in the form of the tetrahydropyranyl-(2) ether or after alkanolate formation of the hydroxy group (MO-(CH„) -Hal) with any desired alkylmetal compound (for example, see Houben-Weyl, Vol. XIIl/2 a (1973, p. 113), then reacting them with the ketones R'-CO-CH_ to obtain the diols mentioned in the preceding paragraph (Houben- Weyl, Vol. Vl/l a, Part 2 (1980), p. 1029), and subsequently selectively esterifying the primary hydroxy group with suitable sulfonic or phosphoric acid derivatives.
SUBSTITUTESHEET
A convenient access to compounds of Formula III in which R 4 represents a methyl group is also available through the re¬ action of ^J-haloalkanoic acid alkyl esters (Hal-(CH-) -COO- alkyl) with two equivalents of a methylmetal compound, with the ester reacting through the ketone to produce the tertiary alco¬ hol with the introduction of two methyl groups (Houben-Weyl, Vol. Vl/l a, Part 2 (1980), pp. 1171-1174). In the same way, ^-hydroxycarboxylic acid esters can be converted into diols with methylmetal compounds with or without protection of the hydroxy group, for example in the form of tetrahydropyranyl- (2 ) or methoxymethyl ether, or optionally in the form of the lactones as cyclic esters (for example, see Houben-Weyl, Vol. Vl/l a, part 2 (1980), pp. 1174-1179), from which active alkylating agents of Formula III can in turn be obtained by se¬ lective esterification of the primary hydroxyl group with sulfonic or phosphoric halides or anhydrides.
Suitable compounds of Formula III that can be prepared by the methods described above are thus the [ (<->-l )-hydroxy-(ω-l)- methyl]butyl , -pentyl, -hexyl , and -heptyl, the [ (ω-2 )-hydroxy- (<---2 )-methyl]pentyl , -hexyl, -heptyl, and -octyl, and the [ (<_-3 )-hydroxy-(ω-3 )-methyl]hexyl, -heptyl, -octyl, and -nonyl chlorides, bromides, iodides, sulfonates, and phosphates .
Among the compounds of Formula .R -X (IV) or R -X (IVa)
5 suitable for the introduction of R into the 1- or 7-posιtιon and of R into the 7-position of the xanthine skeleton, the alkoxymethyl and alkoxyalkoxymethyl derivatives occupy a spe¬ cial position as their halides can indeed be used successfully as reactants but toxicological problems can arise, at least in large-scale use. For this reason, the use of the corresponding sulfonates is preferred in this special case, which are readily available, for example, by reacting mixed anhydrides of aliphatic carboxylic acids and aliphatic or aromatic sulfonic acids (M. H. Karger et al . , J. Org . Chem. _36_ (1971), pp. 528-531) with the formaldehyde dialkyl acetals or dialkoxyalkyl acetals in a smooth and nearly quantitative reac¬ tion (M. H. Karger et al . , J. Amer. Chem. Soc . 91_ (1969), pp. 5663/5665:
SUBSTITUTE SHEET
In this equation, R represents an aliphatic group such as methyl, ethyl, or trifluoromethyl, or an aromatic group, for example, phenyl, 4-tolyl, or 4-bromophenyl, but preferably g methyl or 4-tolyl, and R represents an alkyl or alkoxyalkyl group falling under the defi .ni.tion of R5 or R15
The reaction can be carried out either in the substance or in an anhydrous aprotic solvent inert to the reactants at tem¬ peratures between -20° and +40°C, preferably between 0° and 20°C. No intermediate isolation of the highly reactive sulfonates, which are sensitive to hydrolysis and thermally labile, is necessary; they are preferably used immediately as crude products for the substitution on the nitrogen of the xanthines, with the usual addition of a basic condensing agent being unnecessary.
The reaction of the mono- or disubstituted xanthine deriv¬ atives, lb, If, II, V, and VI with the alkylating agent in¬ volved of Formula III or IV or IVa is ordinarily done in a distributing agent or solvent inert to the reactants . Practi¬ cal representatives are especially dipolar, aprotic solvents, for example formamide, dimethylformamaide, di ethylacetamide, N-methylpyrrolidone, tetramethylurea, hexamethyl-phosphoric triamide, dimethyl sulfoxide, acetone, or butanone; however, alcohols such as methanol, ethylene glycol, and their mono- or dialkyl ethers with the alkyl group having 1 to 4 carbon atoms but both together having a maximum of 5 carbon atoms, ethanol, propanol, isopropanol, and- the various butanols; hydrocarbons such as benzene, toluene, or xylenes; halogenated hydrocarbons such as dichloromethane or chloroform; pyridine, and mixtures of the solvents mentioned or their mixtures with water can also be used.
The "alkylation reactions" are suitably carried out in the presence of a basic condensing agent. Examples of materials
suitable for this are alkali metal or alkaline earth hydroxides, carbonates, hydrides, alcoholates, and organic bases, such as trialkylamines (for example, triethyl- or tributylamine) , quaternary ammonium or phosphonium hydroxides and crosslinked resins with fixed, optionally substituted ammo¬ nium or phosphonium salts. The mono- and disubstituted xanthine derivatives can also be alkylated either in the pres¬ ence of the aforementioned inorganic condensing agents or in the form of their alkali metal or alkaline earth salts with the assistance of so-called phase transfer catalysts, for example tertiary amines, quaternary ammonium or phosphonium salts, or crown ethers, preferably in a 2-phase system under the condi¬ tions of phase transfer catalysis. Among the suitable phase transfer catalysts that are generally commercially available are tetra(C.-C.) lkyl- and metyltrimethylammonium and -phosphonium salts, methyl-, myristyl-, phenyl-, and benzyltri ( C. -C4)alkyl- and cetyltrimethylammonium as well as ( C- -C, „)alkyl- and benzyltriphenylphosphonium salts, with the compounds that have the larger and more symmetrically struc¬ tured cation generally proving to be the more effective.
The introduction of the groups la, R , and R • by the pro¬ cedures described above is generally carried out at a reaction temperature between 0°C and the boiling point of the particular reaction medium used, preferably between 20° and 130°, option¬ ally at elevated or reduced pressure, for which the reaction time can amount to less than 1 hour or up to several hours. The reaction of the 3-alkylxanthines II to produce the compounds pursuant to the invention of Formla Ic requires the introduction of two tertiary hydroxyalkyl groups . Either iden¬ tical or different substituents can be linked to the xanthine skeleton in succession, or two identical hydroxyalkyl groups can be linked without isolation of intermediates in a single- pot reaction.
The reductive cleavage of the benzyl and diphenylmethyl group from compounds of Formula Ie with the formation of the xanthine atom in the 7-position, is carried out under standard conditions that were developed especially in the framework of
the protective group technique in alkaloid and peptide syntheses and can thus be assumed to be widely known. Besides the chemical reduction, particularly of the benzyl compounds with sodium in liquid ammonia (Houben-Weyl, Vol. Xl/l (1957), pp. 974-975), the elimination of the two aforementioned aralkyl groups by catalytic hydrogenolysis using a precious metal cata¬ lyst is also especially practical (Houben-Weyl, Vol. Xl/l (1957), pp. 968-971 and Vol. IV/l c, Part I (1980), pp. 400-404). A lower alcohol is ordinarly used here as the reaction medium (optionally with the addition of formic acid or ammonia) , or an aprotic solvent such as dimethyl ormamide or particularly glacial acetic acid; however, their mixtures with water can also be used. Especially suitable hydrogenation cat¬ alysts are palladium black and palladium on activated charcoal or barium sulfate, while other precious metals such as plati¬ num, rhodium, and ruthenium frequently give rise to side reac¬ tions because of competitive ring hydrogenation and are there¬ fore only conditionally usable. The hydrogenolysis is preferably carried out at temperatures between 20βC and 100°C and at atmospheric pressure, or preferably slight excess pres¬ sure up to approximately 10 bar, with reaction times of a few minutes to several hours generally being needed.
The 1, 3, 7-trisubstituted xanthines of Formula Ie that have an alkoxymethyl or alkoxyalkσxymethyl group in the position of R represent 0,N-acetals. Consequently, their substituents in the 7-position can be split off under the usual conditions of acid hydrolysis (cf. Houben-Weyl, Vol. Vl/l b (1984), pp. 741-745), with the 7H compounds of Formula I f likewise being formed. Examples of preferred groups that can be elimi¬ nated hydrolytically are the methoxy, ethoxy, and propoxymethyl groups as well as the methoxyethoxy- and ethoxyethoxymethyl groups . The reaction is advantageously carried out with heat¬ ing in dilute mineral acids such as hydrochloric or sulfuric acid, optionally with the addition of glacial acetic acid, dioxane, tetrahydrofuran, or a lower alcohol as a solution pro¬ moter. Also useful are perchloric acid or organic acids such as trifloroacetic, formic, and acetic acid, in combination with
SUBSTITUTESHEET
catalytic amounts of mineral acids. The alkoxyalkoxymethyl compounds in particular can also be cleaved by using Lewis acids such as zinc bromide and titanium tetrachloride in anhydrous medium, preferably in dichloromethane or chloroform, with the 7-bromomethyl or 7-bromozinc derivatives formed as in¬ termediates hydrolyzing spontaneously during the aqueous workup. In the cleavage in mineral acid solution, the reaction temperature must be chosen so that no significant dehydration of the tertiary hydroxyalkyl group in the 1-position occurs; it should therefore be below 100°C as a rule.
The reduction of the xanthines of Formulas Id and Ie with
C 1 c an oxoalkyl group in the position of R or R 3 to the corre¬ sponding hydroxyalkyl compounds can indeed take place in prin¬ ciple either with base metals or by catalytic hydrogenation, but the method of choice consists of the reaction occurring under the very mild conditions and in high yields with simple metal hydrides (MHn) , complex metal hydrides (M1[M2Hn]m), or organometallic hydrides (Houben-Weyl, Vol. IV/1 d (1981), pp. 267-282, and Vol. VI/1 b (1984), pp. 141-155).- Of the numerous complex metal hydrides that can be used for the reduc¬ tion of ketones, the most frequently used reagents might be mentioned, for example, lithium alanate, lithium borohydride, and especially sodium borohydride, that is easier to handle because of its lower reactivity and above all permits working in alcoholic, alcoholic aqueous, and pure aqueous solutions or suspensions. In addition to the otherwise customary inert sol¬ vents such as ethers (for example, diethyl ether, tetrahydrofuran, 1, 2-dimethoxyethane) , hydrocarbons and pyridine, nitriles such as acetonitrile can also be used as the reaction medium. The hydrogenation, which is suitably carried out at temperatures between 0°C and the boiling point of the particular solvent, but preferably at room temperature, gener¬ ally occurs rapidly and is complete within several minutes to a few hours.
The teritary hydroxyalkylxanthines of Forumula I can also be prepared by reacting substituted xanthines of Formula VIII
e) contain two identical or different groups of the for¬ mula -(CH2)n-C0- _3 (IXa) or -(CH2)n-CO-R4 (IXb), or only one substituent of the formula IXa or IXb, and hydrogen or the group R5 or R15 in the positions of R9 and R , with
(C1-C3)alkyl- or methylmetal compounds with reductive "alkylation" of the carbonyl groups to obtain the xanthines pursuant to the invention of Formulas lb to If, or f) metallating xanthines of Formula VIII that have two identical or different groups of the formula -(CH2)n~Hal (X), with Hal preferably standing for chlorine or bromine, or only one such group and hydrogen or the substituent R5 or R15 in the other position, in the terminal position, and then reacting them with the ketones of the formula R4-CO-CH3 (XI) with reductive alkylation of the carbonyl group to obtain the xanthines of Formulas lb to If pursuant to the invention, or g) converting xanthines of Formula VIII with the group -(CH2)n_COO-(Cι-C.)alkyl (XII) in the positions of R9 and/or
R ° and optionally hydrogen or the group R^ or R1^ in the other position, by means of two equivalents of a methylmetal compound per alkoxycarbonyl group, into xanthines of Formulas lb to If in which R4 stands for methyl, or h) converting xanthines of Formula VIII having two identi¬ cal or different groups of the formula
-(CH2) CH=CHR4 (XIII) n-1 CH3 or only one such group and hydrogen or the group R^ or R1^ in q in the positions of R^ and R u, in which the group XIII can
contain the C=C double bond also in position-isomeric arrange¬ ments on the branched carbon atom, for example, as -C=CH2, by acid-catalyzed hydration obeying the Markownikoff Rule, into the xanthines of Formulas lb to If pursuant to the invention, and If desired, then converting the tertiary hydroxyalkyl- xanthines of Formulas lb' and If obtained pursuant to the invention by methods e) to h) that have a hydrogen atom in the 1- or 7-position, optionally in the presence of basic media or in the form of their salts, with the alkylating agents of Formula III or IV or IVa, into the trisubstituted compounds of Formulas Ic or Id or Ie, in which R , R , R , R1 , and n in the formulas above have the meanings indicated above.
The 3-alkylated mono- or dioxoalkyl- (Villa), -(ω- haloalkyl) (VHIb), -(w-alkoxycarbonylalkyl)- (villc), and -alkenylxanthines (Vllld) needed for this as starting materials are either known or can be prepared readily, for example, from the 3-alkyl-xanthines II and the sulfonyloxy- or haloketones Vila' and Vllb, <-- -haloalkylsulfonates, or 1,<y-dihaloalkanes (cf., for example: V. B. Kalcheva et al., Journal fur prakt. Chemie 327 (1985) pp. 165-168), *J -sulfonyloxy-or ^-halo- carboxylic acid alkyl esters or sulfonyloxy or haloalkenes cor¬ responding to Formula XIII under the reaction conditions previ¬ ously described in detail for the alkylation of mono- and disubstituted xanthines with the compounds of Formulas III and IV.
In the organometallic reactions of the xanthines Villa and q -i n
VIlie functionalized in the R and R groups, the procedure is the same in principle as described for the preparation of the tertiary alcohols of Formula III used as alkylating agents. Thus, the reductive alkylation of the ketones Villa and of the esters VIIIc can take place, for example, with alk lpotassium, -sodium, -lithium, -magnesium, -zinc, -cadmium, -aluminum, and -tin compounds. The recently recommended alkyltitanium and -zirconium compounds (D. Seebach et al., Agnew. Chem. 3__ (1983), pp. 12-26) can also be used. However, since the alkylmetal compounds of sodium and potassium have a tendency toward side reactions because of their high reactivity and
those of zinc and cadmium are relatively sluggish, the alkyllithium and -magnesium (Grignard) compounds are ordinarily preferred.
The strong nucleophilic organometallic compounds are very sensitive to hydrolysis and oxidation. Their safe handling therefore requires working in anhydrous medium, optionally under an inert gas atmosphere. The usual solvents or distributing agents are primarily those that are suitable also for the preparation of the alkylmetal compounds. Practical examples are especially ethers with one or more ether oxygen atoms, for example diethyl, dipropyl, dibutyl, or diisoamyl ether, 1,2-dimethoxyethane, tetrahydrofuran, dioxane, tetrahydropyran, furan, and anisole, and aliphatic or aromatic hydrocarbons such as petroleum ether, cyclohexane, benzene, toluene, xylenes, diethylbenzenes, and tetrahydronaphthalene; however, tertiary amines such as triethylamine, or dipolar aprotic solvents such as hexamethylphosphoric triamide, as well as mixtures of the solvents mentioned can also be used success¬ fully. The reaction of the carbonyl compounds Villa and VIlie with the Grignard compounds with the formula R -MgHal can also beneficially be carried out by placing the organometallic com¬ pound in an ether and adding the ketone or the ester dropwise as a solution in dichloromethane or 1,2-dichloroethane. An addition of magnesium bromide is frequently recommended, which is able to increase the nucleophilicity of the organometallic compound because of its participation in the complex cyclic transition state.
The ketone or ester and the organometallic compound are generally combined at temperatures between -20°C and 100°C, preferably between 0°C and 60°, or at room temperature without external cooling, with the alkylmetal compound ordinarily being used in slight excess. The reaction is then ordinarily com¬ pleted by brief heating under reflux, for which times of sever¬ al minutes to a few hours are generally adequate. The alkanolate formed is preferably decomposed with aqueous ammo¬ nium chloride solution or dilute acetic acid.
Metallic magnesium and lithium are primarily suitable for the metallation of the ω-haloalkylxanthines Vlllb. On the other hand, the replacement of the halogen atom with lithium, which is also possible using organolithium reagents, generally 1-butyl-, 2-butyl-, t-butyl-, or phenyllithium, plays a subor¬ dinate role. However, use is made especially of the Grignard compounds, advantageously preparing them in the ethers, hydro¬ carbons, tertiary amines, or aprotic solvents listed as partic¬ ularly suitable for the reaction of the xanthines Villa and VIIIc with alkylmetal compounds, at temperatures between 25° and 125°C, preferably below 100°C. If the metallation reaction is carried out in hydrocarbons, then the addition of an ether such as tetrahydrofuran, or a tertiary amine such as triethyl- amine in stoichiometric amount frequently proves useful. The use of catalysts such as butanol, aluminum chloride, silicon tetrachloride, tetrachloromethane, and aluminum or magnesium alcoholates may also be helpful. In the halogen-metal exchange the chlorides ordinarily react more slowly than the correspond¬ ing bromides and iodides, but as a rule they provide better yields of organometallic compound. To accelerate the. beginning of the reaction, the addition of some magnesium bromide, some grains of iodine, or several drops of bromine, tetrachloro¬ methane, or methyl iodide with slight heating is frequently recommended. The Grignard compounds obtained are normally not isolated, but are reacted immediately with the ketones of Formula XI under the reaction conditions described for the reductive alkylation of the xanthines Villa and VIIIc.
The addition of water to the C=C double bond of the alkenylxanthines Vllld with the structural element of Formula XIII, in which the hydroxy group adds to the carbon atom with the fewer hydrogens to form tertiary alcohols according to the Markownikoff Rule, ordinarily occurs in aque¬ ous solution or suspension in the presence of strong acids such as sulfuric, nitric, or phosphoric acid. Hydrogen halides and sulfonic acids such as trifluoromethanesulfonic acid, acid exchange resins, boron trifluoride complexes, or oxalic acid can also be used as catalysts. However, it is preferred to
operate in sulfuric acid, with an acid concentration of 50 to 65% and temperatures of 0° to 10°C being sufficient as a rule. However, lower or higher acid concentration and/or reaction temperatures can sometimes also be used. In any case, the re¬ action temperatures should be kept as low as possible since the reverse dehydration to the olefin can be disturbingly signifi¬ cant above approximately 60°C.
The addition of a solvent inert to acids such as 1,4- dioxane, benzene, or toluene sometimes also provides benefits. Since esters can form as intermediates in the acid-catalyzed hydration, particularly when using the high acid concentra¬ tions, it is recommended to treat the reaction batch with a large amount of water with brief heating after the action of the acid for the purpose of ester hydrolysis, or to process the mixture in the alkaline range.
The experimental conditions for the optional conversion of the 1- and 7H-compounds lb or If pursuant to the invention into the trisubstituted xanthines of Formulas Ic or Id or Ie by N- alkylation with the compounds III or IV of IVa have already been described above in detail.
Depending on the chain length of the alkyl group R- (at least C2) and/or the structure of a substituent R (for exam¬ ple, 2-hydroxypropyl) , the tertiary hydroxyalklyxanthines of Formula I can have one or two asymmetric carbon atoms and can thus be present in stereoisomeric forms. This invention there¬ fore concerns both the pure stereoisomeric compounds and their mixtures. Examples of Inhibition
To demonstrate the effectiveness of the claimed invention, compounds of the general formula I were tested to demonstrate inhibition of the activity of both in vitro-generated human IL- 1 and purified human IL-1. Though a variety of compounds within the general formula I have been demonstrated to effec¬ tively inhibit the activities of IL-1, including the preferred compounds set forth above, they will exemplified below, with regard to the performance of pentoxifylline as a particularly preferred form of the invention.
SUBSTITUTE SHEET
Purified human IL-1 was obtained from Cistron Technology, Pinebrook, New Jersey. As is known, the production of IL-1 from macrophages or circulating monocytes can be stimulated by the presence of bacterial lipolycacchrides. Stites et al., Basic and Clinical Immunology, page 87 (1984). Accordingly, in vitro-generated IL-1 was obtained through the incubation of mononuclear leukocytes. Mononuclear leukocytes (3 x 10°/ml) from ficoll-hypaque separation were incubated in a medium 199 (M199) containing 10% fresh autologous serum with or without lipolycacchrides 5ng/ml or with or without supernatant from C. albicans culture for 18 hours at 37°C (10% CO2) in LAB-TEK Flaskettes (Miles Inc., Naperville, Illinois). The suspension was centrifuged (150g x 10 minutes) and the supernatant fil¬ tered (0.45 micron 4) and frozen (-70°C).
As reported below, not only is the adherence of polymorphonuclear neutrophil (PMN) caused by IL-1 inhibited by the compounds of general formula I, but the inhibition of nor¬ mal chemotaxis of PMN caused by IL-1 was also reduced by the presence of the compounds of the general formula I . PMN chemotaxis was assayed under agarose by the method of. Nelson, Quie and Simmons. Neutrophils were placed in the center well
— "7 of a triplet and the chemoattractant (FMLP 10 M) was placed in one outer well and M199 was placed in the opposite well. Fol¬ lowing 2 hour incubation at 37°C the plates were fixed and stained and the zones of migration measured. The direced mi¬ gration was the distance in mm that the leading front of PMN moved toward the chemoattractant.
Quantitative demonstration of the inhibition of the effects of IL-1 on a) the adherence of PMN and b) chemotaxis of PMN is set forth below.
A. The effect of LPS stimulated mononuclear leukocyte conditioned medium on PMN adherence: How pentoxifylline modulates this effect
Purified PMN (5 x 10 /ml) were incubated 30 minutes at 37°C in M199, "NONE", LPS (lng/ml), "LPS", mononuclear leukocyte conditioned medium, "CONT KINES", or in LPS stimu¬ lated mononuclear leukocyte conditioned medium, "LPS KINES".
One ml was pipetted onto the top of a nylon fiber column and incubated at 37°C for 30 minutes. The PMN in the effluent sam¬ ples were counted and the percent adherence of PMN on the col¬ umn determined.
Pentoxifylline (50 miccrograms/ml) decreased PMN adherence under all four experimental conditions. (Figure A.)
B. The effect of IL-1 and LPS stimulated mononuclear leukocyte conditioned medium on PMN adherence: How pentoxifylline modulates this effect
Two tenths ml of purified PMN (1 x 10 /ml) was incubated 30 minutes at 37°C in M199, "control", or M199 containing IL-1 (800U/ml), "IL-1", or in LPS stimulated mononuclear leukocyte conditioned medium, "LPS KINE" , with or without pentoxifylline (0.1 or 50 micrograms/ml).
Following incubation the samples were diluted to a final concentration of 5 x 10°/ml with M199 (2% serum) . One ml was placed onto the top of a nylon fiber column and incubated at 37°C for 30 minutes. The PMN in the effluent samples were counted and the percent adherence of PMN on the nylon column calculated.
Both pentoxifylline 0.1 and 50 micrograms/ml decreased PMN nylon adherence under the three experimental conditions. (Fig¬ ure B. )
C. Effect of LPS stimulated mononuclear leukocyte conditioned medium on PMN directed migration: Modulation of this effect by pentoxifylline
Pure PMN (5 x 10°/ml) were incubated for 30 minutes at 37°C with or without pentoxifylline (0.1 or 50 micrograms/ml) in M199 2% serum, "NO ADD", M199 2% serum containing LPS (lng/ml), "LPS", mononuclear leukocyte conditioned M199 2% serum, "CONT KINE", or LPS stimulated mononuclear leukocyte conditioned M199 2% serum, "LPS KINE". The PMN were concen¬ trated 10 fold prior to application in the' under agarose chemotaxis assay.
Pentoxif lline (50 and 0.1 micrograms/ml) increased directed migration inhibited by "LPS KINE". (Figure C. )
D. Effect of C. albicans stimulated mononuclear leukocyte conditioned medium on PMN directed migration: Modulation of this effect by pentoxifylline
Pure PMN (5 x 10 /ml) were incubated for 30 minutes at 37°C with or without pentoxifylline (0.1 or 50 micrograms/ml) in M199 5% serum, "NO ADD", M199 5% serum containing supernatant from C_ albicans culture, "C.ALB", mononuclear leukocyte conditioned M199 5% serum, "CONT KINE", or C. albicans stimulated mononuclear leukocyte conditioned M199 5% serum, "C. ALB KINE". The PMN were concentrated 10 fold prior to application in the under agarose chemotaxis assay.
Pentoxif lline (50 micrograms/ml) increased directed mi¬ gration inhibited by "C. ALB KINE" and "CONT KINE".' (Figure D.)
E. Effect of interleukin-1 on PMN directed migration: Modulation of this effect by pentoxifylline
Pure PMN (5 x 10°/ml). were incubated for 30 minutes at 37°C with or without pentoxif lline (0.1 or 50 micrograms/ml) in minimum essential medium (MEM) or MEM containing IL-1 at 0 to 80 Units/ml. The PMN were concentrated 10 fold prior to application in the under agarose chemotaxis assay.
Pentoxif lline (0.1 or 50 micrograms/ml) increased directed migration inhibited by interleukin-1. (Figure E.)
While dosage values will vary with the specific disease condition to be alleviated, good results are achieved when the xanthines of Formula I are administered to a subject requiring such treatment as an effective oral, parenteral or intravenous dose or from 0.10 to 25.0 mg/kg of body weight per day. A par¬ ticularly preferred effective amount is about 1.0 mg/kg of body weight per day. In general, daily dosages will vary from 10-1000 mg, preferably 100-600 mg per day. It is to be under¬ stood, however, that for any particular subject, specific dos¬ age regimens should be adjusted to the individual need and the professional judgment of the person administering or su¬ pervising the administration of the aforesaid compound. It is to be further understood that the dosages set forth herein are
exemplary only and they do not, to any extent, limit the scope or practice of the invention.
Effective amounts of the xanthines may be administered to a subject by any one of various methods, for example, orally as in capsule or tablets, or parenterally in the form of sterile solutions. The xanthines, while effective themselves, may be formulated and administered in the form of their pharmaceuti¬ cally acceptable addition salts for purposes of stability, con¬ venience of crystallization, increased solubility and the like.
Preferred pharmaceutically acceptable addition salts in¬ clude salts of mineral acids, for example, hydrochloric acid, sulfuric acid, nitric acid and the like, salts of monobasic carboxylic acids such as, for example, acetic acid, propionic acid and the like, salts of dibasic carboxylic acids such as, for example, maleic acid, fumaric acid, oxalic acid and the like, and salts of tribasic carboxylic acids such as, for exam¬ ple, carboxysuccinic acid, citric acid and the like.
The xanthines may be administered orally, for example, with an inert diluent or with an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the aforesaid compounds may be incorporated with excipients and used in the form of tablets, troches, capsules, elixirs, suspensions, syr¬ ups, wafers, chewing gums and the like. These preparations should contain at least 0.5% of active compound, but may be varied depending upon the particular form. The amount of xanthine in such a compositions is such that a suitable dosage will be obtained. Preferred compositions and preparations according to the present invention are prepared so that an oral dosage unit form contain between 1.0-300 mgs of active com¬ pound.
The tablets, pills, capsules, troches and the like may contain the following ingredients: a binder such as micro- crystalline cellulose, gum tragacanth or gelatin; and excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, corn starch and the like; a lubricant such as magnesium stearate or Sterotes; a glidant such as
colloidal silicon dioxide; and a sweetening agent such as sucrose or saccharin or flavoring agent such as peppermint, methyl salicylate, or orange flavoring may be added. When the dosage unit form is a capsule, it may contain, in addition to material of the above type, a liquid carrier such as a fatty oil. Other dosage unit forms may contain other various mate¬ rials which modify the physical form of the dosage unit, for example, as coatings. Thus tablets or pills may be coated with sugar, shellac, or other enteric coating agents. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors. Materials used in preparing these various compo¬ sitions should be pharmaceutically pure and non-toxic in the amounts used.
For the purposes of parenteral therapeutic administration, the xanthines may be incorporated into a solution or suspen¬ sion. These preparations should contain at least 0.1% of the aforesaid compound, but may be varied between 0.5% and about 50% of the weight thereof. The amount of active compound in such compositions is such that a suitable dosage will- be obtained. Preferred compositions and preparations according to the present invention are prepared so that a parenteral dosage unit contains between 0.5 to 100 mgs of the active compound.
The solutions or suspensions may also include the follow¬ ing components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid,* buffers such as ace¬ tates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the
SUBSTITUTE SHEET
appended claims, the invention may be practiced otherwise than as specifically described herein.
Claims (5)
1. A method of inhibiting interleukin-1 activity in a mammal comprising administering thereto an amount of at least one compound of general formula I
wherein at least one of Ri and R3 is either a) a branched hydroxyalkyl group of the formula
R4 (CH2)n - C - CH3, OH
in which R stands for an alkyl group with 1 to 3 carbon atoms and n stands for a whole number from 2 to 5, the other R or RJ group that may optionally be present stands for a hydrogen atom or an aliphatic hydrocarbon group RJ with up to 6 carbon atoms, whose carbon chain may be interrupted by up to 2 oxygen atoms or may be substituted with a hydroxy or oxo group, or b) an oxoallyl group of the formula
0 Rb - C - (CH2)p wherein R is C1-C6 and p is 2, 3 or 4, the remaining R1 or R3 being as defined above, and Rώ is an -alkyl group C1-C4, which amount is effective in inhibiting interleukin-1 activity.
2. A method of Claim 1, wherein said mammal is a human.
3. A method of Claim 1, wherein said compound is pentoxifylline.
4. A method of alleviating a disease condition in a mam¬ mal mediated by interleukin-1, which comprises administering an amount of a compound of the general formula I
wherein at least one of Ri and R3 is either a) a branched hydroxyalkyl group of the formula
R4 (CH2 ) n - - CH3, OH in which R stands for an alkyl group with 1 to 3 carbon atoms and n stands for a whole number from 2 to 5, the other R1 or R3 group that may optionally be present stands for a hydrogen atom or an aliphatic hydrocarbon group R5 with up to 6 carbon atoms, whose carbon chain may be interrupted by up to 2 oxygen atoms or may be substituted with a hydroxy or oxo group,
0 Rb - C - (CH2)p wherein R° is C1-C6 and p is 2, 3 or 4, the remaining R1 or R3 being as defined as above and Rώ is an alkyl group C1-C4, which amount is effective in inhibiting interleukin-1 activity to said mammal effective to inhibit interleukin-1 such that the disease condition is alleviated.
5. A method of Claim 4, wherein said mammal is a human.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94790586A | 1986-12-31 | 1986-12-31 | |
US947905 | 1986-12-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU12918/92A Division AU637542C (en) | 1986-12-31 | 1992-03-16 | Method of inhibiting activity of leukocyte derived cytokines |
Publications (3)
Publication Number | Publication Date |
---|---|
AU1150588A AU1150588A (en) | 1988-07-27 |
AU619732B2 AU619732B2 (en) | 1992-02-06 |
AU619732C true AU619732C (en) | 1995-03-02 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1988004928A1 (en) | Method of inhibiting interleukin-1 activity | |
US5096906A (en) | Method of inhibiting the activity of leukocyte derived cytokines | |
US5272153A (en) | Method of inhibiting the activity of leukocyte derived cytokines | |
EP0011609B2 (en) | Xanthine derivatives and pharmaceutical preparations containing these derivatives for use in the treatment of chronic obstructive airway disease and cardiac disease | |
JPS63239294A (en) | Novel adenosine derivative and medicinal composition containing said compound as active ingredient | |
EP0550570A1 (en) | Xanthine derivatives | |
EP0641344A1 (en) | 8-substituted anthines as phosphodiesterase inhibitors | |
IL35658A (en) | 2,6-diamino-9-(beta-d-arabinofuranosyl)-purine,its preparation and use in pharmacy | |
EP0490181A1 (en) | Use of xanthines for preparation of a medicament having immunosuppressing activity | |
WO1991007178A1 (en) | Pyrimidone derivatives and analogs in the treatment of asthma or certain skin disorders | |
AU619732C (en) | Method of inhibiting interleukin-1 activity | |
EP0484785B1 (en) | Use of xanthines for the preparation of a medicament effective for inhibiting the replication of human retroviruses | |
US5196430A (en) | Method of inhibiting the activity of leukocyte derived cytokines | |
US5658918A (en) | Purine-2,8-diones and pharmaceutically acceptable salts thereof | |
US4085214A (en) | Stable pro-drug forms of theophylline | |
US5196429A (en) | Method of inhibiting the activity of leukocyte derived cytokines | |
JP4192250B2 (en) | Medicine for treatment and prevention of respiratory diseases | |
EP0070477A1 (en) | Novel ester of 6-((hexahydro-1H-azepin-1-yl)methyleneamino)penicillanic acid, process for its production, and its use as antibacterial agent | |
EP0822817B1 (en) | Use of (r)-penciclovir triphosphate for the manufacture of a medicament for the treatment of viral diseases | |
JPH06279287A (en) | Cancer metastasis inhibitor | |
JPH06279445A (en) | Cancer metastasis suppressor | |
JPS61277687A (en) | Novel prine derivative, manufacture and medicine composition | |
JPH07206686A (en) | Agent for prevention and treatment of infectious disease |