AU615125B2 - Roll ring, comprising cemented carbide and cast iron, and method for manufacture of the same. - Google Patents

Roll ring, comprising cemented carbide and cast iron, and method for manufacture of the same. Download PDF

Info

Publication number
AU615125B2
AU615125B2 AU45850/89A AU4585089A AU615125B2 AU 615125 B2 AU615125 B2 AU 615125B2 AU 45850/89 A AU45850/89 A AU 45850/89A AU 4585089 A AU4585089 A AU 4585089A AU 615125 B2 AU615125 B2 AU 615125B2
Authority
AU
Australia
Prior art keywords
cemented carbide
roll ring
ring
roll
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU45850/89A
Other versions
AU4585089A (en
Inventor
Jan-Erik Carlsson
Gert Sundstedt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik AB
Original Assignee
Sandvik AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik AB filed Critical Sandvik AB
Publication of AU4585089A publication Critical patent/AU4585089A/en
Application granted granted Critical
Publication of AU615125B2 publication Critical patent/AU615125B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • B21B27/035Rolls for bars, rods, rounds, tubes, wire or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron

Abstract

The present invention discloses a roll ring for hot and/or cold rolling. The rolling track comprises one or several cemented carbide rings, which are cast into a casing made by an iron alloy. The cast alloy comprisin'g a materially graphitic cast iron, which after the casting contains residual austenite. This residual austenite is at subsequent heat treatment or treatments partly or totally transformed under volume increase to mainly bainite with the aim of reducing or totally eliminating the differential shrinkage between the cast iron and the cemented carbide as a result from cooling after the casting.

Description

AUSTRALIA
PATENTS ACT 1952 Form COMPLETE SPECIFICATION
(ORIGINAL)
FOR OFFICE USE Short Title: Int. Cl: Application Number: Lodged: Complete Specification-Lodged: Accepted: Lapsed: Published: 0 Q* Priority: Related Arts o, TO BE COMPLETED BY APPLICANT Name of Applicant: SANDVIK AB Address of Applicant: S-811 81 SANDVIKEN,
SWEDEN
Actual Inventor: Address for Service: GRIFFIH HACK CO., 0. o 601 St. Kilda Road, Melbourne, Victoria 3004, Australia.
Complete Specification for the invention entitled: ROLL RING, COMPRISING CEMENTED CARBIDE AND CAST IRON, AND METHOD FOR MANUFACTURE OF THE SAME.
The following statement is a full description of this invention including the best method of performing it known to me:- Roll ring, comprising cemented carbide and cast iron, and method for manufacture of the same.
The present invention relates to casting one or several rings of cemented carbide into cast alloys based on iron, preferably cast iron. The resulting product is a composite roll ring, made in one piece only, with metallurgical bond between cemented carbide and S cast iron. Possible driving devices for transmitting of torque are located in the cast iron part.
eo S The use of roll rings of cemented carbide for hot or cold rolling has been hampered by the problem of tiransmitting the torque from *age the driving spindle to the carbide roll ring without causing serious tensile stresses. Cemented carbide belongs to the group brittle materials and has limited tensile strength with special goo* .1 notch sensitivity in inner corners, such as in keyway bottoms or other driving grooves, or at roots of driving lugs, made integral with the carbide ring. Methods based on such conventional joints have worked unsatisfactorily. Another method for the torque transmission is by means of frictional forces at the bore surface of the carbide ring. However, the radial force on this surface gives rise to tangential tensile stresses in the carbide ring with a maximum at its inner diameter. These tensile stresses are superimposed on other tensile stresses, generated when the roll is in use.
It is in and for itself known to cast a casing of an iron alloy onto a carbide ring for rolls used for hot and/or cold rolling (see for example the Swedish patent No. 7100170-5, publication number 371114) It is also known to shapa composite roll rings consisting of one working part of cemented carbide and a casing of a metal or a metal alloy, sintered to the carbide, where the two parts are metallurgically bonded to each other (see for example the US patent No.
3, 609, 849).
S
5 *5 0@ S 00
S
.IS S
S
i S S Si In the former case, during cooling from the casting temperature, the casing shrinks more than the carbide ring, giving rise to inwards directed forces on the carbide ring. These forces produce axially directed tensile stresses on the outer surface of the carbide ring, which are acting perpendicularly to micro cracks generated in the roll surface during rolling. Under the influence of these tensile stresses the micro cracks propagate in depth, which may cause roll breakage or need for excessive dressing amount, limiting the total rolling capacity of the roll.
In the latter case casing materials, either character!Ud- by low hardness and low yield strength or cemented carbide, being a brittle material, are used; neither particularly suitable in the necessary torque transmission couplings.
In principle any grade of cemented carbide can be used in roll rings according to the invention. However, the difference in linear thermal expansion of ductile iron and cemented carbide, the latter having the lower expansion, increases with reduced binding phase content in the cemented carbide. In rolls for hot rolling, cemented carbide grades with 15 or more percent by weight of binder phase, comprising cobalt, nickel and chromium in various combinations and amounts, have proved to be successful and are also used in composite roll rings according to the invention.
A composite roll ring is now in hand, where the detrimental tensile stresses have been eliminated or substantially reduced. This has been achieved by having cast the carbide into a materially graphitic cast iron with a composition adjusted to the carbon equivalent, Ceqv. in a way described in the Swedish patent No. 7601289-7, publication number 399911. The composition of the cast iron is also chosen with regard to optimal metallurgical bond to the carbide, tc its strength, toughness and hardness, all necessary for the ti'ansmission of the torque, and to its machinability. By addition of ferro-silicium-magnesium and/or nickel-magnesiumr the cast alloy gets a magnesium content of 0,02 -0,10, preferably 0,04-0,07 percent by weight. By inoculation with ferro-silicium the cast alloy gets a silicon content of 1,9-2,8, preferably 2,1-2,5 percent by weight. Thereby a ductile iron is obtained having dispersed spheroidal graphite. This ductile iron has a hardness-toughnessstrength which is well balanced to the application. In heat treated condition the Brinell hardness is 250-350. Further, the iron has been alloyed with austenite generating alloying elements such as nickel, molybdenum, manganese, and chromium, usually nickel in amounts of 3-10, preferably 4-8 percent by weight, and molybdenum in amounts of up to 3, preferably 0,1-1,5 p6.cent by weight, resulting in a certain amount of residual austenite viz. 5-30, preferably 10-25 or rather 15-20 percent by weight after the casting.
By heat treatment in one or several steps a suitable amount of residual austenite can under volume increase be transformed to bainite. This volume increase can be so adiusted that the differential shrinkage, taking place in the composite roll ring during cooling from the casting temperature, can be totally or partly eliminated. The method for this heat treatment is adjusted according to carbide grade, composition of the iron, and roll application. The heat treatment includes heating to and holding at a temperature of 800-1000 0 C, cooling to and holding at a temperature of 400-550 0 C and cooling to room temperature. The first mentioned temperature interval 800-1000 0 C results in increased toughness.
With an addition of alloying elements, characterised by usually nickel in amounts of 3-6, preferably 4-5 percent by weight and molybdenum in amounts between 0,5-1,5 percent by weight, the heat treatment can be made by heating to and holding at 500-650 0 C and cooling to room temperature.
The method of casting a carbide ring into cast iron follows mainly common casting technique. However, the demands on flawless metallurgical bond between cemented carbide and cast iron and on the required special properties of the cast iron call for accurate control of the casting technique, among others including the following clauses: Extreme over-temperature of the iron in the cradle.
Amount and flow controlled streaming of molten iron for timed heating and melting of a surface layer of the carbide ring, located in the sand mould.
Ignition of exothermal material kept in an ample space over the roll ring space in order to keep a certain extra amount of iron in Smolten state for after-filling of the roll ring space.
Inoculation in the cradle as well as in the mould.
g The ductile iron and the bond between the cemented carbide and the S ductile iron in the cast composite roll ring are checked by ultrasonic methods.
The present composite roll ring generally receives the torque via conventional key joints, splines, clutches or similar known torque transmitting joints, located in the considerably less notch sensitive iron part of the composite roll ring, from which the torque is carried over to the carbide ring via the metallurgical bond between *000** S the cemented carbide and the cast iron. Still, there are rolling mills that only allow of friction drive in the roll ring bore.
S In carbide roll rings the separating force is counteracted by radial force only from the spindle against the bore of the carbide roll ring. As the carbide has a Young's modulus of 2-3 times that of steel or cast iron, the separating force will elastically deform the material supporting the carbide roll ring in the bore, resulting in elastic deformation of the carbide ring and consequently in tangential tensile stresses in the carbide ring with maximum at the bore. In composite roll rings according to the invention the cast iron on both sides of the carbide ring will carry a part of the separating force, correspondingly reducing the tensile stresses.
The radial wall thickness of the carbide ring in composite roll rings according to the invention can be reduced due to the just discussed restrictions of the tensile stresses from the separating force. Furthermore, the torque transmission by conventional key joints or similar does not add to the tangential tensile stresses.
Also when driving by friction in the bore of composite roll rings, or when mounting with press fit between the composite roll ring and the spindle, the resulting tensile stress in the carbide ring is limited in relation to that of roll rings of solid carbide.
9S*S Compared to roll rings of solid carbide with keyways or lugs in the ring faces, the carbide rings in composite roll rings according to 0. the invention can be made more narrow by locating the driving devi-s in the cast iron part.
to Altogether the composite roll ring according to the invention is 2characterised by a carbide ring having smaller dimensions than roll rings of solid carbide, resulting in lower costs. Furthermore, the carbide ring has to be machined on the outer surface only, often by turning and then perferably of carbide grades containing 20 or more percent by weight of binder phase, and the machining of the bore, faces and driving devices is made in cast iron, being more easily machined than carbide, also resulting in lower costs.
o~oee
S
The grooves necessary for torque transmission can be made in the 0.oo bore or on the faces of the composite roll ring. One or several composite roll rings can be mounted on a roll body with journals in both ends, and which has parts fitting in the grooves of the composite roll ring, thereby transmitting the torque from the spindle either directly or via an intermediate sleeve. Some alternative designs are shown in figure 1 3.
FirJure 1 shows a roll design where the torque is transmitted from the spindle 1 via keys 2, fastened in the middle part 3 of the spindle and fitting in the keyways 4 of the composite roll ring, to tht. ductile iron part 5 of the composite roll ring and via the >jmetallurgical bond A to the carbide ring 6. The roll rings are fixed via the sleeve 7 by the nut 8 with a locking screw 9.
1 Figure 2 shows a roll design where the torque is transmitted from the spindle 1 via the key 2 to the sleeve 3, whose driving lugs 4 fitting in the grooves 5 transmit the torque to the ductile iron part 6 of the composite roll ring and via the metallurgical bond A Sfurther to the carbide ring 7. The relative axial position of the roll rings is determined by the sleeve 3 and is fixed via the sleeve 8 by the nut 9 with a locking screw Figure 3 shows a roll design where the torque is transmitted from e the spindle 1 via the key 2 in the keyway 3 to the ductile iron re6 S part 4 of the composite roll ring and via the metallurgical bond A further to the carbide ring 5. The roll rings are fixed via the *g0e sleeve 6 by the nut 7 with the locking screw 8.
oeoo Figure 4 shows a composite roll ring mounted on a free spindle end i.e. the roll spindle has no bearing on one side of the roll ring.
The torque is transmitted by friction in the bore of the roll ring, generated by the tapered sleeve 2 driven up the taper part of the S spindle 1, to the ductile iron part 3 of the composite roll ring and via the metallurgical bond A to the carbide ring 4.
Composite roll rings with carbide rings cast into ductile iron have 00 been tested in finishing and intermediate rod mills, mounted on o.e.
roll bodies with journals in both ends as well as on free spindle ends. They have also been tested as rolls for rolling reinforcement bars and tubes and as pinch rollers. Their performance has been in grcod agreement with the experience of carbide hot rolls gained since 1965. Carbide rings in the diameter range of 100-500 mm, preferably 200-450 mm, and the drive by driving devices in the ductile iron open up utilization also in bar xiills. Carbide rings with diameters up to 500 mm make possible utilization in cold rolling mills and in other roll applications.
;1 Example A sintered cmented carbide ring with 70 WC in a binder phase consisting of 13 Co, 15 Ni and 2 Cr was blasted to clean its surface from any adhering materials. The outer diameter of the ring was 340 mm, the inner diameter 270 mm and its width 85 mm. A ring of sand was formed around the carbide ring and it was then placed in a bottom flask of a mould with suitable shape and dimensions and provided with the necessary channels and an overflow box for the S: molten iron. A ring of an exothermic material was placed in the top flask of the mould and the two flasks were put together and firmly locked.
e*@ Molten iron with a temperature of 1550 0 C and with a composition in weight percent of 3,7 C, 2,3 Si, 0,3 Mn, 5,4 Ni, 0,2 Mo, 0,05 Mg, and balance Fe, was poured into the mould. In connection herewith inoculants of ferro-silicium-magnesium was added, included in the aforementioned analysis. The molten iron was poured into the mould in such an amount and at such a flow rate, that a suitable melting of the cemented carbide surface was obtained. When the iron had risen to the exothermic material, it started to burn adding heat to the iron. The mould cooled slowly to room temperature after which the roll was removed from the mould, excessive iron cut off and the roll cleaned. The quality of the bond and the absence of flaws in the iron was checed by ultrasonic methods.
The roll was then heat treated to transform retained austenite to bainite by heating to 900 0 C and keeping at that temperature for six hours then lowering the temperature to 450 0 C and keeping there for four hours before cooling to room temperature. Finally, the roll was machined by turning to final shape and dimension viz. inner diameter of the bore 255 mm and width 120 mm.

Claims (4)

1. A composite roll ring for use in hot and/or cjld rolling, the roll ring comprising one or more cemented carbide rings cast into a casing of an iron alloy, the iron alloy comprising 5-30 percent by weight austenite after casting which after heat treatment is at least partly transformed to bainite with a consequential volume increase to minimise the differential shrinkage between the iron alloy and the cemented carbide as a result of cooling the casting.
2. The roll ring defined in claim 1, wherein the austenite comprises 10-25 percent by weight.
3. The roll ring defined in claim 2, wherein the austenite comprises 15-20 percent by weight.
4. A method of heat treating the roll ring defined in any one of the preceding claims comprising: heating to and holding the cast iron alloy/cemented carbide roll ring at a temperature of 800-1000 0 C; cooling to and holding the cast iron S' alloy/cemented carbide roll ring at a temperature of 400-550C; and cooling the cast iron alloy/cemented carbide A roll ring to ambient temperature. DATED THIS 9TH DAY OF JULY 1991 SANDVIK AB By its Patent Attorneys: GRIFFITH HACK CO Fellows Institute to Patent SAttorneys of Australia ANTOY A%
AU45850/89A 1988-12-13 1989-12-04 Roll ring, comprising cemented carbide and cast iron, and method for manufacture of the same. Ceased AU615125B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8804503A SE464226B (en) 1988-12-13 1988-12-13 ROLLING RING, COMPOSITION OF HEAVY METAL AND MOLDING AND SET FOR MANUFACTURING THEREOF
SE8804503 1988-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU10635/92A Addition AU657296B2 (en) 1991-02-11 1992-02-04 A roll including a cemented carbide ring cast into a cast iron body

Publications (2)

Publication Number Publication Date
AU4585089A AU4585089A (en) 1990-06-21
AU615125B2 true AU615125B2 (en) 1991-09-19

Family

ID=20374218

Family Applications (1)

Application Number Title Priority Date Filing Date
AU45850/89A Ceased AU615125B2 (en) 1988-12-13 1989-12-04 Roll ring, comprising cemented carbide and cast iron, and method for manufacture of the same.

Country Status (12)

Country Link
EP (1) EP0374116B1 (en)
JP (1) JPH0699776B2 (en)
KR (1) KR960007504B1 (en)
AT (1) ATE91725T1 (en)
AU (1) AU615125B2 (en)
BR (1) BR8906357A (en)
CA (1) CA2005220C (en)
DD (1) DD296011A5 (en)
DE (1) DE68907702T2 (en)
ES (1) ES2042071T3 (en)
SE (1) SE464226B (en)
ZA (1) ZA899448B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU657296B2 (en) * 1991-02-11 1995-03-09 Sandvik Ab A roll including a cemented carbide ring cast into a cast iron body
GB9409322D0 (en) * 1994-05-10 1994-06-29 Keg Services Ltd Container
CN1050074C (en) * 1994-11-17 2000-03-08 宝山钢铁(集团)公司 Combined rollers for continuous rolling of alloyed nodular iron
SE504707C2 (en) * 1995-07-14 1997-04-07 Sandvik Ab Composite wall with cemented carbide and cast iron
CN1067443C (en) * 1998-10-15 2001-06-20 冶金工业部北京冶金设备研究院 Multi-element w-alloy cast iron roll collar and its making technology
EP2508670B1 (en) 2011-04-04 2013-08-21 Cellwood Machinery AB Refining disc or refining disc segment
PL2508262T3 (en) 2011-04-04 2014-05-30 Cellwood Machinery Ab Method of provision of a fuel
JOP20200150A1 (en) 2011-04-06 2017-06-16 Esco Group Llc Hardfaced wearpart using brazing and associated method and assembly for manufacturing
DE102014214640A1 (en) 2014-07-25 2016-01-28 Ford Global Technologies, Llc Method for producing a component from heat-treated cast iron

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860457A (en) * 1972-07-12 1975-01-14 Kymin Oy Kymmene Ab A ductile iron and method of making it
US4119459A (en) * 1976-02-05 1978-10-10 Sandvik Aktiebolag Composite body consisting of cemented carbide and cast alloy
EP0203050A1 (en) * 1985-05-22 1986-11-26 Ab Volvo A method for manufacturing austempered spheroidal graphite iron

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549430A (en) * 1967-11-14 1970-12-22 Int Nickel Co Bainitic ductile iron having high strength and toughness
US3609849A (en) * 1969-04-09 1971-10-05 Jan M Krol Forming rolls
SE371114B (en) * 1971-01-08 1974-11-11 Seco Tools Ab
JPS5767145A (en) * 1980-10-09 1982-04-23 Toshiba Tungaloy Co Ltd Superhard alloy for plastic working
JPS61176408A (en) * 1985-01-31 1986-08-08 Kubota Ltd Composite ring roll
JPH0627289B2 (en) * 1985-02-28 1994-04-13 株式会社クボタ Method for producing a strong paddy composite roll for the net part

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860457A (en) * 1972-07-12 1975-01-14 Kymin Oy Kymmene Ab A ductile iron and method of making it
US4119459A (en) * 1976-02-05 1978-10-10 Sandvik Aktiebolag Composite body consisting of cemented carbide and cast alloy
EP0203050A1 (en) * 1985-05-22 1986-11-26 Ab Volvo A method for manufacturing austempered spheroidal graphite iron

Also Published As

Publication number Publication date
CA2005220A1 (en) 1990-06-13
JPH0699776B2 (en) 1994-12-07
SE464226B (en) 1991-03-25
SE8804503L (en) 1990-06-14
DE68907702T2 (en) 1993-10-28
ES2042071T3 (en) 1993-12-01
DD296011A5 (en) 1991-11-21
AU4585089A (en) 1990-06-21
BR8906357A (en) 1990-08-21
DE68907702D1 (en) 1993-08-26
EP0374116A1 (en) 1990-06-20
KR960007504B1 (en) 1996-06-05
CA2005220C (en) 2000-03-14
EP0374116B1 (en) 1993-07-21
KR900010021A (en) 1990-07-06
ZA899448B (en) 1990-09-26
SE8804503D0 (en) 1988-12-13
ATE91725T1 (en) 1993-08-15
JPH02243736A (en) 1990-09-27

Similar Documents

Publication Publication Date Title
US5359772A (en) Method for manufacture of a roll ring comprising cemented carbide and cast iron
US5044056A (en) Roll ring comprising a ring of cemented carbide metallurgically bonded to a cast iron body
US5167067A (en) Method of making a roll with a composite roll ring of cemented carbide and cast iron
AU615125B2 (en) Roll ring, comprising cemented carbide and cast iron, and method for manufacture of the same.
JP2715223B2 (en) Roll outer layer material and composite roll
US5104458A (en) Method for manufacture of a roll ring comprising cemented carbide and cast iron
AU714031B2 (en) A composite roll of cemented carbide rings(s) and nodular graphitic iron
JPH06179947A (en) Composite roll made by centrifugal casting
NZ241549A (en) Foundry roll: cast in one piece with integral carbide rings.
US20120028772A1 (en) Roller comprising a drive shaft and a roller ring, as well as a method for assembling such a roller
US5248289A (en) Cast iron roll with one or more cemented carbide roll rings metallurgically bonded thereto
JP2700591B2 (en) Centrifugal casting composite roll
AU657296B2 (en) A roll including a cemented carbide ring cast into a cast iron body
JP2618309B2 (en) Centrifugal casting sleeve roll and its manufacturing method
JPH05311335A (en) Sleeve roll
JP2974226B2 (en) Centrifugal casting composite roll
JP3019240B2 (en) Centrifugal casting composite roll
JP2594865B2 (en) Centrifugal casting roll and manufacturing method thereof
JPS6018252B2 (en) Rolling roll with strong neck part
JPH06330228A (en) Production of sleeve roll mode by centrifugal casting
Everest Alloy Cast Irons in Automobile Construction
JPH05279787A (en) Roll outer shell material for rolling
JPH04333312A (en) Three-layer sleeve for roll for rolling h-shape steel

Legal Events

Date Code Title Description
MK14 Patent ceased section 143(a) (annual fees not paid) or expired