AU604972B2 - Melt-spinning process - Google Patents

Melt-spinning process Download PDF

Info

Publication number
AU604972B2
AU604972B2 AU22908/88A AU2290888A AU604972B2 AU 604972 B2 AU604972 B2 AU 604972B2 AU 22908/88 A AU22908/88 A AU 22908/88A AU 2290888 A AU2290888 A AU 2290888A AU 604972 B2 AU604972 B2 AU 604972B2
Authority
AU
Australia
Prior art keywords
melt
copolymer
ethylene
polymer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU22908/88A
Other versions
AU2290888A (en
Inventor
Johan Marie Beyen
Houston Slade Brown
Ebel Klei
Paul Alfred Westbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26292795&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=AU604972(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GB878722967A external-priority patent/GB8722967D0/en
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of AU2290888A publication Critical patent/AU2290888A/en
Application granted granted Critical
Publication of AU604972B2 publication Critical patent/AU604972B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/30Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising olefins as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/96Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from other synthetic polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Polyethers (AREA)
  • Tires In General (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

U
Fm9 72 COMMONWEALTH OF AUSTRALIA PATENTS ACT 1952 COMPLETE SPECIFICATION S F Ref: 71451
(ORIGINAL)
FOR OFFICE USE: Class Int Class 4 00 e 0 o 0 60 a 0 0 ft O* 9 o 4 a e4 00 e 0* 0a Complete Specification Lodged: Accepted: Published: Priority: Related Art: This document contains. the amendments made 'under Section 49 and is correct for printing.
YWII~ L-iC: I Name and Address of Applicant: Shell Internationale Research Maatschappij B.V.
Carel van Bylandtlaan 2596 HR The Hague THE NETHERLANDS Spruson Ferguson, Patent Attorneys Level 33 St Martins Tower, 31 Market Street Sydney, New South Wales, 2000, Australia Address for Service: 00 00 0 00 0* 0 4 4 0 00 Complete Specification for the invention entitled: Melt-Spinning Process The following statement is a cull description of this invention, including the best method of performing it kl;own to me/us 5845/3 Ii -1- T 213 MELT-SPINNING PROCESS The invention relates to a process for producing thermoplastic polymer fibres by melt spinning, and to tyres comprising fibres thus spun.
Melt-spun thermoplastic fibres can be applied in the manufacture of car tyres and today large tonnage quantities are consumed in that market. Large volume o: polymers for this application are polyamides and polyesters, whereas polypropylene fibres can be employed as well. However, per tyre a fairly large T 10 quantity of fibre has to be used relative to the amount of elastomer. This is due to balance of properties of o the aforesaid polymers which balance is mainly governed :by the combination of tensile strength, flex-modulus and adhesion to rubber. In view thereof it is not t 15 possible to reduce the amount of fibre per tyre without paying the penalty of adversily affecting the quality of the tyre, thus making the tyre unsuitable for most of the market applications. Other thermoplastic fibres such as polyaramide (available under the trademarks KEVLAR or TWARON) or gel-spun high mol. weight polyethylene might be better suited in this respect, however, they are far too expensive to find their way in the tyre manufacturing industry.
The Applicants have found that another type of an olefinically unsaturated hydrocarbon and carbon monoxide, has a very promising potential for solving the problem of reducing the relative weight of fibre to be employed for tyre manufacturing.
Compared with polyamides, polyesters or polypropylene, melt-spun fibres made of the aforesaid
L-
SBR/as/257M 2 alternating copolymer type show an improved balance of combined tensile strength, flex modulus and adhesion to rubber, provided the melt-spinning and stretching of the fibre is implemented at certain critical temperature conditions.
The present invention is concerned with a process for the production of thermoplastic polymer fibres, characterized in that an alternating copolymer of carbon monoxide and an olefinically unsaturated r 10 compound, this polymer having an average molecular "weight of at least 2000, is melt-spun at a temperature of at least (T+20) K, and the fibre is subsequently stretched at a temperature of at most (T-10) K, in which T is the crystalline melting point of the polymer.
Preferably, the stretching is effected at a stretching ratio of at least 3:1, more preferably at least 7:1, and at most 15:1. Preferred stretching temperatures are those of at least 40 K below the crystalline melting point of the polymer and preferred melt-spinning temperatures are those of at least 40 K CV above the crystalline melting point of the polymer.
c- c The term "fibre" wherever used in this specification includes mono- and multifilaments in addition to fibres. The term "alternating" copolymer refers to those copolymers in which the CO-units in the macromolecules are in alternating arrangement in respect of the units derived from the olefin. Thus, in the macromolecular chains, each CO-unit is positioned next to a single unit of olefin, e.g. ethylene. The copolymer can be a true copolymer of carbon monoxide and one particular olefin, preferably ethylene or they can be copolymers of carbon monoxide and more than one olefin, e.g. ethylene and propylene. In the latter case ethylene is preferably employed' as the major olefin.
-3 The relevant alternating copolymers are known per se, for example from EP-A-121965, EP-A-213671, EP-A-229408 and US-A-3914391, likewise, their methods of preparation by catalytic copolymerization are known from these references. Suitable polymerization catalysts are based upon palladium/phosphine systems.
Use of other known ethylene/CO copolymers which do not display an alternating structure and which are produced using free radical catalysts, is not contemplated in this invention.
o o* Usually the copolymers have a molecular weight a between 1000 and 500,000.
SPreferably the copolymers should have an average molecular weight of at least 5000, more preferably at S 15 least 8000. Especially good results are obtained with those of molecular weight from 10,000 to 50,000.
The physical properties of the "polyketone" o* polymers will depend in part on the molecular weight of .a the polymer, whether the polymer is a copolymer or a 20 terpolymer and the relative proportion of the second hydrocarbon present in the case of terpolymers.
Typical melting points for such polymers are from about 175 OC to about 300 0 C, more typically from 180 °C to 280 °C.
S 25 Useful polymers for the novel fibres have limiting viscosity numbers (LVN) as measured by the method wherein the polymer is dissolved in metacresol at OC; using a standard capillary viscosity measuring device such as a Cannon-Ubbelohde viscometer, in the range of 0.5 to 10 LVN and more preferably 0.8 to 4 LVN and most preferably 0.8 to 2.5 LVN.
Melt-spinning and stretching of the fibre can be carried out with equipment that is currently available on the market.
;l d rn
M
;:i 4 The fibres produced with the process of this invention have a markedly improved ITS.IM product as compared with fibres produced from polyamides, polyester or polypropylene. In this product ITS represents the factor of improvement of tensile strength and IM represents the factor of improvement of modulus. The comparison is made whilst employing identical stretching ratios to typical fibre grades of the various thermoplastics.
The improvement is recorded relative to the same property determined with non-stretched, conventional compression moulded test specimina.
Particularly suitable thermoplastic polymers to be employed in the process of this invention are copolymers of ethylene and carbon monoxide, 0 and terpolymers of ethylene, propylene and carbon monoxide, preferably those in which the ethylene to propylene molar ratio in the polymer chains is at least 3:1. Other suitable terpolymers are terpolymers of ethylene 0, 15 and carbon monoxide with butene, pentene, hexene, heptene, octene, nonene, decene, dodecene, styrene, methyl acrylate, methylmethacrylate, 1 vinylacetate, undecenoic acid, undecenol, 6-chlorohexene, N-vinylpyrrolidone and diethylester of vinyl-phosphonic acid, provided the molar ratio of ethylene to other unsaturated monomer in the polymer O macromolecules is at least 3:1, preferably at least 8:1.
S" The fibres according to the invention are very suitable too for the preparation of polymer mats. Such mats, especially spun-bonded non-woven mats, may be used, for example, as the reinforcing layer in rolled roofing membranes prepared from modified bitumen. Such roofing membranes are ,5 superior to known polyester-reinforced roofings because the fibres show S higher mechanical strength and better adhesion to the bitumen. Another L useful application of these mats, particularly when woven into a fabric or mesh, lies in the preparation of a so-called geotextile. That is a permeable synthetic membrane specifically designed to be used as a construction material in civil engineering situations such as roads, drains, riverbanks, coastlines, embankments and so on. It appears that geotextiles made from the fibres according to the invention, suitably including a UV-stabiliser, have the required tensile strength, E-modulus, water permeability and soil tightness.
Example 1 Comparative tests were carried out with mer;-spinning of current commercial fibre grades of Nylon-6 polypropylene (PP) and with a fibre grade of an alternating copolymer of carbon monoxide, ethylene, and, nj-T based upon ethylene, 8 mol% of propylene ethylee- The polyamide had
A'C
i i~Y
I
I: i :1 il_ 5 a molecular weight of from 10,000 to 25,000, the polypropylene grade had a melt index of 20 dg/min and the copolymer had a molecular weight of 10,000 to 25,000 and a crystalline melting point of 493 K.
Nominal tensile strength and flex modulus were determined with conventional compression moulded test specimina and fibres were melt-spun and stretched at a 6:1 ratio. The stretch temperature for the alternating copolymer was 480 K and the melt-spinning temperature was 560 K.
The table below lists the testing results.
e a a 4* a S o o *05 o a0 o as 6 I as
A?,
j 0 a 4C4 C C o C C C C a Ca C C a CC C a a a a a 4 0 C CC C C C C C C C C ~sa .aC aa a a Table Tensile Strength, MPa Flex modulus, GPa Product Adhesion nominal stretched nominal stretched ITS.IM N-6 x 30 950 1 5.7 180.5 PP x 35 700 1.5 9.2 122.4 CE 50 1400 1.4 15.1 302.4 X for comparison 7 Adhesion of the fibres to styrene-butadiene elastomer was determined by testing methods current in the tyre manufacturing industry. The results are represented on a relative scale: means fair to good, stands for very good and is excellent.
Example 2 Copolymer of carbon monoxide, euliylene and propylene of the same batch as used in example 1, is melt-spun at a range of temperatures from 515 to 560 K, via a multi-hole spinneret, quenched with forced air at t a temperature of 30 0.5 C, and stretched 5 to
S
r «10-fold. The multi-filaments thus obtained are lightly twisted to yarns, after which 2 or 3 yarns are twined to a cord. These cords are woven to fabrics, which are dipped in adhesive. The fabrics are post-stretched and annealed, thus obtaining fabric cords, presenting attractive adhesion, tensile and flex properties rendering them suitable for use as tyre cords.

Claims (2)

  1. 8- T 213 AUS THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS: 1. A process for p17oducing thermoplastic polymer fibres by melt-spinning, characterized in that an alternating copolymer of an olefinically unsaturated compound and carbon monoxide, having a molecular weight of at least 2000, is melt-spun at a temperature of at least (T+20) K and the fibre is subsequently stretched 4O ef e44 o 4£ 44 t 4* C 4 C at a temperature of at most (T-10) K, in which T is the crystalline melting point of the polymer. 2. A process as claimed in claim 1, in which the 10 melt-spinning temperature is at least (T+40) K. 3. A process as claimed in claim 1 or 2, in which the stretching temperature is at most (T-25) K. 4. A process as claimed in any of claims 1 to 3, in which the stretching ratio is at least 3:1. A process as claimed in claim 4, in which the stretching ratio is at least 7:1. 6. A process as claimed in any of claims 1 to 5, in which the molecular weight of the polymer is at least
  2. 5000. 7. A process as claimed in claim 6 in which the molecular weight of the polymer is at least 8000. 8. A process as claimed in any of claims 1 to 7, in which the copolymer is an ethylene/CO copolymer. 9. A process as claimed in any of claims I to 7, in which the copolymer is an ethylene/propylene/CO terpolymer comprising at most 25% mol of propylene in respect of ethylene 6t :Tyre clr-Y hae'1 r A tyre comprisingAfibres characterized in that -theyhave been produced with a process as claimed in any of claims 1 to 9. ,-'~v~--svt~ttVtX~fl 2M I 9- 11. A process for producing thermoplastic polymer fibres by melt- spinning substantially as hereinbefore described with reference to an~y e -of-the Example 2- 12. The product of the process of any one of claims 1 to 9 or 11. DATED this SIXTH day of SEPTEMBER 1988 Shell Internationale Research Maatschappij B.V. Patent Attorneys for the Applicant SPRUSON FERGUSON ~O 1~ 04~ b to S o e 60 0 0 o ot o St 6 6 t~ ft 0 6 4~ II S 0 o SO ~5 S 6 0~? 54 A
AU22908/88A 1987-09-30 1988-09-28 Melt-spinning process Ceased AU604972B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB8722967 1987-09-30
GB878722967A GB8722967D0 (en) 1987-09-30 1987-09-30 Melt-spinning process
US17502488A 1988-03-30 1988-03-30
US175024 1993-12-29

Publications (2)

Publication Number Publication Date
AU2290888A AU2290888A (en) 1989-04-06
AU604972B2 true AU604972B2 (en) 1991-01-03

Family

ID=26292795

Family Applications (1)

Application Number Title Priority Date Filing Date
AU22908/88A Ceased AU604972B2 (en) 1987-09-30 1988-09-28 Melt-spinning process

Country Status (8)

Country Link
EP (1) EP0310171B1 (en)
JP (1) JP2763779B2 (en)
KR (1) KR960000787B1 (en)
CN (1) CN1014155B (en)
AU (1) AU604972B2 (en)
BR (1) BR8805005A (en)
DE (1) DE3885996T2 (en)
ES (1) ES2047022T3 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8822349D0 (en) * 1988-09-22 1988-10-26 Shell Int Research Process for preparation of thermoplastic fibres
NL8901253A (en) * 1989-05-19 1990-12-17 Stamicarbon POLYMERIC FILAMENTS, TAPES AND FILMS WITH HIGH MODULUS, HIGH STRENGTH AND HIGH MELTING TEMPERATURE AND A METHOD FOR THE PRODUCTION THEREOF.
DE69115346T2 (en) * 1990-05-09 1996-07-18 Akzo Nobel Nv Process for the production of polyketone fibers
US5597389A (en) * 1993-02-19 1997-01-28 Shell Oil Company Dyeing of polyketone fiber
US5494998A (en) * 1994-11-14 1996-02-27 Akzo Nobel N.V. Polymerization of carbon monoxide and ethylene using catalyst containing non-coordinating, non-acidic anion
US5565546A (en) * 1995-05-05 1996-10-15 Akzo Nobel Nv Copolymer of carbon monoxide and ethylene containing ketal structures
UA67719C2 (en) * 1995-11-08 2004-07-15 Shell Int Research Deformable well filter and method for its installation
DE69914584T2 (en) 1998-02-12 2005-01-05 Acordis Industrial Fibers Bv METHOD FOR PRODUCING POLYETHONE FIBERS
JP3652116B2 (en) * 1998-05-28 2005-05-25 横浜ゴム株式会社 Pneumatic radial tire
AU5289999A (en) * 1998-08-11 2000-03-06 Acordis Industrial Fibers B.V. Fibres melt-spun from a thermoplastic alternating copolymer and a process for preparing such fibres
EP1111103A1 (en) * 1999-12-20 2001-06-27 Acordis Industrial Fibers BV Dipped cord made of melt spun filament yarns of an alternating copolymer and a process for manufacturing said cord
KR100532643B1 (en) 2001-02-27 2005-12-01 아사히 가세이 가부시키가이샤 Polyketone Fiber and Process for Producing the Same
JP2007283896A (en) 2006-04-17 2007-11-01 Bridgestone Corp Pneumatic tire
JP2008273264A (en) * 2007-04-25 2008-11-13 Bridgestone Corp Run flat tire
FR2974583B1 (en) 2011-04-28 2013-06-14 Michelin Soc Tech ARAMIDE-POLYCETONE COMPOSITE TEXTILE CABLE
CN108237899B (en) 2016-12-27 2020-02-21 比亚迪股份有限公司 Drive shaft locking device, power drive system and vehicle
DE202017002839U1 (en) 2017-05-30 2018-08-31 Perlon Nextrusion Monofil GmbH Polyketone fibers, their preparation and use
EP3727889B1 (en) 2017-12-22 2022-06-22 Compagnie Generale Des Etablissements Michelin Pneumatic tyre comprising an improved bracing ply
EP3727890B1 (en) 2017-12-22 2022-08-17 Compagnie Generale Des Etablissements Michelin Tyre comprising an improved hooping ply
US20210053307A1 (en) 2017-12-22 2021-02-25 Compagnie Generale Des Etablissements Michelin Method for producing a threadlike reinforcement element
EP4174624A4 (en) * 2021-08-26 2024-01-17 Elasto Lc Input device for computer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076911A (en) * 1975-11-05 1978-02-28 Union Oil Company Of California Ethylene-carbon monoxide copolymers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1506565A (en) * 1974-03-05 1978-04-05 Nat Res Dev Production of polyethylene filaments
JPS57191322A (en) * 1981-05-11 1982-11-25 Toray Ind Inc Aromatic polyether ketone fiber and its preparation
EP0121965B1 (en) * 1983-04-06 1989-12-27 Shell Internationale Researchmaatschappij B.V. Process for the preparation of polyketones
US4747988A (en) * 1985-05-10 1988-05-31 Hoechst Celanese Corporation Process of making an aromatic polyetherketone fiber product
IN166314B (en) * 1985-08-29 1990-04-07 Shell Int Research
IN169268B (en) * 1985-12-23 1991-09-21 Shell Int Research

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076911A (en) * 1975-11-05 1978-02-28 Union Oil Company Of California Ethylene-carbon monoxide copolymers

Also Published As

Publication number Publication date
DE3885996T2 (en) 1994-04-07
EP0310171A3 (en) 1990-01-10
EP0310171A2 (en) 1989-04-05
CN1014155B (en) 1991-10-02
KR890005313A (en) 1989-05-13
BR8805005A (en) 1989-05-02
AU2290888A (en) 1989-04-06
ES2047022T3 (en) 1994-02-16
JPH01124617A (en) 1989-05-17
DE3885996D1 (en) 1994-01-13
CN1034767A (en) 1989-08-16
KR960000787B1 (en) 1996-01-12
JP2763779B2 (en) 1998-06-11
EP0310171B1 (en) 1993-12-01

Similar Documents

Publication Publication Date Title
AU604972B2 (en) Melt-spinning process
CA1287424C (en) Blend of polyethylene and polypropylene
AU636485B2 (en) Polyketone fibres and a process for making same
US7015303B1 (en) Polyketone solution
US5582913A (en) Polyester/polyamide composite fiber
CN102939410B (en) Artificial turf yarn
EP1452630A1 (en) Polypropylene fibres
CN101087905A (en) Fibres having elastic properties
JPH08509530A (en) Elastic fibers, fabrics and products made from them
Epstein et al. Spinning of Polyamides from Sulfuric Acid Solution: Polymer Solubility and Coagulation Mechanisms
EP1694889B1 (en) Fibres made from copolymers of propylene and hexene-1
US4113794A (en) Copolymer of blocks of random poly(dioxa-amide) and polyamide
US5618480A (en) Process of making multifilament yarn, monofilament or film of polyethylene naphthalate
CN117512807A (en) Polyethylene fiber
CA1090033A (en) Single step preparation of block copolymer of polyamides
CA1300330C (en) Melt-spinning process
US7056581B2 (en) High-strength thin sheath fibers
CA2325951A1 (en) Dipped cord made of melt spun filament yarns of an alternating copolymer and a process for manufacturing said cord
US3649603A (en) Ternary copolyamides from sebacic acid hexamethylene diamine and xylylene diamines
US6495075B1 (en) Process for preparing polyketone fibres
KR100225886B1 (en) The manufacture method of a high sensitivity polypropylene fiber for carpet
KR19980017269A (en) Method for producing polypropylene fiber for carpet
JPH1060760A (en) Thermoplastic fluororesin fiber fabric and short fiber