AU5664300A - Object imaging system - Google Patents

Object imaging system Download PDF

Info

Publication number
AU5664300A
AU5664300A AU56643/00A AU5664300A AU5664300A AU 5664300 A AU5664300 A AU 5664300A AU 56643/00 A AU56643/00 A AU 56643/00A AU 5664300 A AU5664300 A AU 5664300A AU 5664300 A AU5664300 A AU 5664300A
Authority
AU
Australia
Prior art keywords
camera
backing member
image capture
open side
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU56643/00A
Other versions
AU779454B2 (en
Inventor
Kurt Malmstrom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RMS RESEARCH MANAGEMENT SYSTEMS Inc
Original Assignee
RMS Res Management Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPQ1543A external-priority patent/AUPQ154399A0/en
Application filed by RMS Res Management Systems Inc filed Critical RMS Res Management Systems Inc
Priority to AU56643/00A priority Critical patent/AU779454B2/en
Publication of AU5664300A publication Critical patent/AU5664300A/en
Application granted granted Critical
Publication of AU779454B2 publication Critical patent/AU779454B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Studio Devices (AREA)

Description

wU UI/U40UO PCT/AU00/00829 1 OBJECT IMAGING SYSTEM Field of the Invention This invention relates to object imaging systems, particularly systems for imaging a target object such as a meat carcase or other meat cut or meat portion for enabling data 5 capture and analysis. Background of the Invention There have been a number of systems proposed or developed for imaging of carcases or meat cuts or meat portions so that the image can be analysed for identifying parameters such as size and shape, colour and hence proportion of meat and/or fat. The analysis can be 10 used for automated processing or grading of the carcase or meat. It is known or proposed in these systems to provide some degree of control of the lighting of the target object during the image capture so that consistency and reliability of measurements and analyses can be improved. For example, in patent specification WO-95/21375, meat pieces on a conveyor move past an imaging station where images are 15 captured as the pieces pass beneath a hood in which illuminating lamps are provided to illuminate the meat pieces on the conveyor. A camera at the top of the hood faces downwardly to capture the images of the meat pieces. However, with this arrangement, there can be many secondary reflections within the hood which may lead to inconsistency between measurements or analysis of similar meat pieces. Also, the camera is arranged so 20 that there may be considerable variability in consistency of its performance. The lighting type and arrangement may not be optimal. Object of the Invention It is an object of the present invention to provide an object imaging system which can enable reliable repeated imaging of objects such as meat carcases so that measurements and 2 analyses of the measurements can be consistent when used in different environments or locations and consistent throughout periods of continual use. Summary of the Invention The object imaging system according to the present invention includes an imaging 5 station to which a target object is introduced, a camera provided at the imaging station for capturing an image of the target object, and lighting means for illuminating the target object during the capture of the image, wherein: the imaging station includes a backing member for providing a background for the target object when it is being imaged by the camera, and an image capture enclosure which has an open side facing towards the backing member and 10 spaced from the backing member so that the target object can be introduced into the space between the backing member and the open side of the image capture enclosure, the inside surfaces of the image capture enclosure being non-reflective, the camera being mounted in the image capture enclosure and facing towards the open side thereof and towards the backing member, and the lighting means being at least partially provided inside the image 15 capture enclosure and facing the open side thereof and towards the backing member so as to illuminate the target object when it is introduced. According to a first aspect of the invention the lighting means includes multiple light sources, some of the light sources being provided inside the image capture enclosure and located so as to face towards the open side thereof and some of the light sources being 20 provided outside the image capture enclosure but also being located so as to face towards the backing member so as to illuminate target objects introduced into the space between the backing member and the open side of the image capture enclosure, the light sources being located at points which define an imaginary concave surface with the concavity facing wU UI/U4O0Ub PCT/AU00/00829 3 towards and being generally focussed on a region where the target object is introduced for imaging. The backing member may be in the form of a screen having angled panels arranged so that specular reflections from the light sources towards the camera are minimised. The 5 panels are preferably non-reflective. Also preferably the inside surfaces of the enclosure are non-reflective. The preferred construction of the enclosure includes side walls, a back wall opposite the open side, a canopy which partially extends beyond the open side to partially cover the space between the open side and the backing member, and a floor, all of these components 10 being internally non-reflective and being of a dark colour, whereby unwanted secondary reflections within the image capture enclosure can be minimised. The light sources which are external to the enclosure preferably include a bottom array of light sources to direct light generally upwardly onto the object, and the light sources which are located internally of the enclosure preferably include a top array of light sources 15 directing light generally downwardly onto the object. All of the internal light sources preferably project light out through the open side from positions in front of the camera which is located towards the back of the enclosure. The shape of the concavity in plan view may be generally parabolic or semi-circular. In the embodiment with light sources directing light upwardly and downwardly onto the 20 object, the shape of the concavity, with the bottom and top arrays of light sources included, may be of a generally hemispherical configuration. According to a second aspect of the invention, the object imaging system is characterised in that the camera has an associated camera housing completely enclosing the camera in a sealed environment inside the housing, the housing providing a viewing window 4 through which the camera is directed towards the open side of the image capture enclosure, the camera housing having an associated temperature control means operative to maintain a predetermined temperature or temperature range for the camera within the housing and thereby help enable consistent repeatable performance of the camera throughout a period of 5 continual use of the camera in capturing successive images of target objects. In the second aspect, the camera housing preferably completely encloses the camera in a sealed environment within the housing and means are provided associated with the housing to maintain a low humidity environment for the camera in spite of variable or high humidity in the ambient surroundings. 10 The temperature control means may include a heat sink thermally coupled to the camera for buffering and enabling temperature control at the camera. For example, there may be provided an active temperature adjuster which has an associated temperature sensing means, the temperature adjuster bring responsive to a sensed fall in temperature to provide heating and, conversely, being operative in response to sensing of rising temperature at the 15 camera to provide cooling. The active temperature adjuster may comprise a thermoelectric apparatus and associated current control circuitry. The present invention has been particularly developed as an object imaging system for use in abattiors and the like, wherein the object is a carcase of a slaughtered animal, the carcase being suspended from an overhead conveyor and conveyed thereon into and out of 20 the imaging station between the backing member and the open side of the image capture enclosure. Brief description of the drawings Possible and preferred features of the present invention will now be described with particular reference to the accompanying drawings. However it is to be understood that the 5 features illustrated in and described with reference to the drawings are not to be construed as limiting on the scope of the invention. In the drawings: Fig. 1 is a schematic side sectional view of an object imaging system according to the present invention and designed for imaging meat carcases, 5 Fig. 2 is a top plan view of the system of Fig. 1, Fig. 3 is an elevational view facing into the image capture enclosure of the system shown in Fig. 1, Fig. 4 is a rear perspective view of the backing member of the system illustrated in Fig. 1, and 10 Fig. 5 is a plan view of a camera housing useable in the present invention. Detailed description of the preferred embodiments It will be convenient to describe the invention further with reference to the embodiment in the drawings in which the target object to be imaged is a meat carcase. However, it is to be understood that other meat cuts or portions or other target objects can be 15 imaged according to the invention. The imaging system in the drawings is for imaging a carcase 10 which may be suspended by a hook 12 from an overhead conveyor of a conventional kind used in abattoirs or meat processing plants. As shown in Fig. 2, the carcase 10 can be moved to the imaging station along the path 11. Each successively presented carcase is in practice preferably 20 introduced in the same rotational orientation so as to present the same side of the carcase for each imaging operation. The carcase 10 is introduced to the imaging station which comprises a backing member 15 for providing a background. The backing member 15 is in the form of a screen having angled panels 16, 17 arranged so that specular reflections from the light sources vv" u uJ/Uqo I'CTIA UIUU/UU829 6 towards the camera 20 are minimised. The panels 16, 17 are preferably non-reflective and may be black powder coated metal panels. The imaging station also includes an image capture enclosure 21 having an open side 22 opening towards the backing member 15 so that the carcase 10 is located for the imaging 5 operation between the backing member 15 and the open side 22 of the enclosure 21. The inside surfaces of the enclosure 21 are also non-reflective, such as matt black powder coated stainless steel sheet. The enclosure 21 includes side walls 23, 24, a back wall 25 opposite the open side 22, a canopy 26 which partially extends beyond the open side 22 to partially cover the space between the open side 22 and the backing member 15, and a floor 27 - all of 10 these components being internally non-reflective and preferably being black or at least very dark. With this arrangement, the unwanted secondary reflections within the image capture enclosure 21 can be minimised. The camera 20 is located within the image capture enclosure 21 and faces the open side 22, i.e. towards the backing member 15. The imaging station also includes lighting 15 means 30 which is at least partially provided inside the enclosure 21 but facing towards the open side 22 so as to illuminate the carcase 10. The lighting means 30 in the illustrated embodiment comprises multiple light sources 31 such as quartz halogen lamps arranged to direct light from multiple directions onto the carcase 10. Some of the light sources are external to the enclosure 21 as shown at 32, 33, 34, the last of these being a bottom array of 20 light sources to direct light generally upwardly onto the carcase 10. Other ones of the light sources are located internally of the enclosure 21 as shown at 35, 36, 37, the last of these comprising a top array of light sources directing light generally downwardly onto the carcase. The light sources 32, 33, 35, 36 are vertical arrays of lamps 31 mounted on suitable WU UI/U40UD PCT/AUUU/UUZ29 7 supports. All of the internal light sources project light out through the open side 22 from positions in front of the camera 20 which is located towards the back 25 of the enclosure 21. As best seen in Fig. 2. the light sources are arranged in a concave surface configuration 38 with the concavity facing generally towards the carcase 10 and preferably 5 with the carcase 10 being located generally at the center or focus of the concavity. The shape of the concavity 38 in the plan view may be generally parabolic, semi-circular or, with the bottom and top arrays 34, 37 included, may be in a generally hemispherical configuration. With this arrangement of light sources, there can be provided a high ratio of controlled light to ambient light to thereby provide controlled colour temperature and 10 intensity of light over the field of view of the camera and to provide optimal edge contrast for imaged carcases. If desired, cooling means may be provided for the light sources 31 such as by providing air conveying hoses or the like extending around past the individual lamps, the cooling system including a fan or blower to circulate cooling air over the light sources. 15 The camera 20 as shown in Fig. 5 is mounted within a camera housing 40 which completely encloses the camera in a sealed environment within the housing, and means 42, such as air conditioner means, are provided to enable maintenance of a low humidity environment for the camera in spite of variable and possibly very high humidity in the ambient surroundings such as in an abattoir. The housing 40 provides a viewing window 41 20 through which the camera faces towards the open side 22 of the enclosure 21. Temperature control means 45 is associated with the camera 20 and/or with the housing 40 and is operative to maintain a predetermined temperature or temperature range for the camera within the housing. In the illustrated embodiment, the temperature control means 45 can comprise a heat sink 46 thermally coupled to the camera 20 for buffering and enabling 8 temperature control. For actively controlling the temperature of the camera through the heat sink 46, there is provided an active temperature adjuster 47 which can have associated temperature sensing means 48. The temperature adjuster 47 is responsive to a sensed fall in temperature to provide heating and, conversely, is operative in response to sensing of rising 5 temperature at the camera to provide cooling. The active temperature adjuster 47 may comprise, for example, a thermoelectric apparatus such as a Peltier device 49 and associated current control circuitry 50. Alternatively, or in addition, there may be provided fluid conduits through the camera housing 40, such as cooling or heating water conduits through which heated or cooled water can be circulated to maintain the predetermined temperature or 10 temperature range of the camera. The performance of a colour camera such as a CCD colour video camera can be sensitive to changes in the temperature at which it is operating and therefore for consistent and repeatable image capture operations between different sites and over periods of continual use, the temperature control provided for the camera in the preferred embodiment of the invention significantly improves the performance of the 15 system. It will be seen that the object imaging system of the present invention as herein described and illustrated can enhance system accuracy and site to site consistency and reliability. The imaging station construction and configuration provides an environment to enable accurate repeatable positioning and illumination of target objects and image capture. 20 The influence of extraneous light sources such as light sources within an abattoir or external sun light can be minimal. The imaging station components are robust and can be easily cleaned using conventional abattoir cleaning equipment.

Claims (13)

1. An object imaging system including an imaging station to which a target object 10 is introduced, a camera 20 provided at the imaging station for capturing an image of the target object, and lighting means 30 for illuminating the target object 10 during the capture of the 5 image, wherein: the imaging station includes a backing member 15 for providing a background for the target object 10 when it is being imaged by the camera 20, and an image capture enclosure 21 which has an open side 22 facing towards the backing member 15 and spaced from the backing member so that the target object 10 can be introduced into the space between the 10 backing member and the open side 22 of the image capture enclosure 21, the inside surfaces of the image capture enclosure 21 being non-reflective, the camera 20 being mounted in the image capture enclosure 21 and facing towards the open side 22 thereof and towards the backing member 15, and the lighting means 30 being at least partially provided inside the image capture enclosure 21 15 and facing the open side 22 thereof and towards the backing member 15 so as to illuminate the target object 10 when it is introduced, the object imaging system being characterised in that: the lighting means 30 includes multiple light sources 31, some of the light sources 35, 36, 37 being provided inside the image capture enclosure 21 and located so as to face towards 20 the open side 22 thereof and some of the light sources 32, 33, 34 being provided outside the image capture enclosure but also being located so as to face towards the backing member 15 so as to illuminate target objects 10 introduced into the space between the backing member and the open side 22 of the image capture enclosure 21, the light sources 31 being located at 10 points which define an imaginary concave surface 38 with the concavity facing towards and being generally focussed on a region where the target object 10 is introduced for imaging.
2. An object imaging system as claimed in claim 1 wherein the backing member 15 is in the form of a screen having angled panels 16, 17 arranged so that specular reflections from 5 the light sources 31 towards the camera 20 are minimised.
3. An object imaging system as claimed in claim 2 wherein the panels 16, 17 are non-reflective.
4. An object imaging system as claimed in any one of claims 1 to 3 wherein the enclosure 21 includes side walls 23, 24, a back wall 25 opposite the open side 22, a canopy 10 26 which partially extends beyond the open side 22 to partially cover the space between the open side 22 and the backing member 15, and a floor 27, all of these components being internally non-reflective and being of a dark colour, whereby unwanted secondary reflections within the image capture enclosure 21 are minimised.
5. An object imaging system as claimed in any one of claims 1 to 4 wherein the light 15 sources 32, 33, 34 which are external to the enclosure 21 include a bottom array of light sources 34 to direct light generally upwardly onto the object 10, and the light sources 35, 36, 37 which are located internally of the enclosure 21 include a top array of light sources 37 directing light generally downwardly onto the object.
6. An object imaging system as claimed in any one of claims 1 to 5 wherein all of the 20 internal light sources 35, 36, 37 project light out through the open side 22 from positions in front of the camera 20 which is located towards the back 25 of the enclosure 21.
7. An object imaging system as claimed in any one of claims 1 to 6 wherein the shape of the concavity 38 in plan view is generally parabolic or semi-circular. VV %f UIIUUU I V.- A / IItUUUIVVO'&7 11
8. An object imaging system as claimed in claim 5 wherein the shape of the concavity 38, with the bottom and top arrays of light sources 34, 37 included, is of a generally hemispherical configuration.
9. An object imaging system including an imaging station to which a target object 10 is 5 introduced, a camera 20 provided at the imaging station for capturing an image of the target object, and lighting means 30 for illuminating the target object 10 during the capture of the image, wherein: the imaging station includes a backing member 15 for providing a background for the target object 10 when it is being imaged by the camera 20, and an image capture enclosure 21 10 which has an open side 22 facing towards the backing member 15 and spaced from the backing member so that the target object 10 can be introduced into the space between the backing member and the open side 22 of the image capture enclosure 21, the inside surfaces of the image capture enclosure 21 being non-reflective, the camera 20 being mounted in the image capture enclosure 21 and facing towards the open 15 side 22 thereof and towards the backing member 15, and the lighting means 30 being at least partially provided inside the image capture enclosure 21 and facing the open side 22 thereof and towards the backing member 15 so as to illuminate the target object 10 when it is introduced, the object imaging system being characterised in that: 20 the camera 20 has an associated camera housing 40 completely enclosing the camera in a sealed environment inside the housing, the housing 40 providing a viewing window 41 through which the camera is directed towards the open side 22 of the image capture enclosure 21, the camera housing 40 having an associated temperature control means 45 operative to maintain a predetermined temperature or temperature range for the camera 20 VVl UUUU r % IFIl U UUUOLY 12 within the housing 40 and thereby help enable consistent repeatable performance of the camera throughout a period of continual use of the camera in capturing successive images of target objects 10.
10. An object imaging system as claimed in claim 9 wherein the camera housing 40 5 completely encloses the camera 20 in a sealed environment within the housing 40 and means 42 are provided associated with the housing 40 to maintain a low humidity environment for the camera 20 in spite of variable or high humidity in the ambient surroundings.
11. An object imaging system as claimed in claim 9 or 10 wherein the temperature control 10 means 45 includes a heat sink 46 thermally coupled to the camera 20 for buffering and enabling temperature control at the camera. 12 An object imaging system as claimed in claim 11 wherein there is provided an active temperature adjuster 47 which has an associated temperature sensing means 48, the temperature adjuster 47 bring responsive to a sensed fall in temperature to provide heating 15 and, conversely, being operative in response to sensing of rising temperature at the camera 20 to provide cooling.
13. An object imaging system as claimed in claim 12 wherein the active temperature adjuster 47 comprises a thermoelectric apparatus 49 and associated current control circuitry
50. 20 14. An object imaging system as claimed in any one of claims 1 to 13 wherein the object 10 is a carcase of a slaughtered animal, the carcase being suspended from an overhead conveyor 12 and conveyed thereon into and out of the imaging station between the backing member 15 and the open side 22 of the image capture enclosure 21.
AU56643/00A 1999-07-09 2000-07-10 Object imaging system Ceased AU779454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU56643/00A AU779454B2 (en) 1999-07-09 2000-07-10 Object imaging system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AUPQ1543A AUPQ154399A0 (en) 1999-07-09 1999-07-09 Object imaging system
AUPQ1543 1999-07-09
AU56643/00A AU779454B2 (en) 1999-07-09 2000-07-10 Object imaging system
PCT/AU2000/000829 WO2001004606A1 (en) 1999-07-09 2000-07-10 Object imaging system

Publications (2)

Publication Number Publication Date
AU5664300A true AU5664300A (en) 2001-01-30
AU779454B2 AU779454B2 (en) 2005-01-27

Family

ID=25631406

Family Applications (1)

Application Number Title Priority Date Filing Date
AU56643/00A Ceased AU779454B2 (en) 1999-07-09 2000-07-10 Object imaging system

Country Status (1)

Country Link
AU (1) AU779454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102823633A (en) * 2011-06-15 2012-12-19 梅恩食品加工技术有限公司 Method and apparatus for processing slaughtered poultry

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414576A (en) * 1981-09-25 1983-11-08 Vicon Industries, Inc. Housing assembly for electrical apparatus
DK676487A (en) * 1987-12-22 1989-06-23 Slagteriernes Forskningsinst PROCEDURE FOR DETERMINING QUALITY CHARACTERISTICS OF INDIVIDUAL CREATURE GENERATOR AND PLANT FOR USE IN DETERMINING THE PROPERTIES
DK172095B1 (en) * 1995-03-01 1997-10-20 Slagteriernes Forskningsinst Method of determining the quality characteristics of individual carcasses and applying the method of automatic classification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102823633A (en) * 2011-06-15 2012-12-19 梅恩食品加工技术有限公司 Method and apparatus for processing slaughtered poultry
CN102823633B (en) * 2011-06-15 2015-04-08 梅恩食品加工技术有限公司 Method and apparatus for processing slaughtered poultry

Also Published As

Publication number Publication date
AU779454B2 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
CN111279792A (en) Monitoring system and food preparation system
US9322716B2 (en) Component measuring apparatus and moving body
US6643455B1 (en) Object imaging system
US20220050093A1 (en) Inspection system for use in monitoring plants in plant growth areas
US20080151052A1 (en) Infrared illuminator with variable beam angle
EP3830550B1 (en) Device for optically analyzing food products
CA2283063A1 (en) Calibration of imaging systems
TWI600860B (en) Air conditioners, air conditioners and control methods
CN106973258B (en) Pathological section information rapid acquisition device
KR101778561B1 (en) Pollution detect and inform apparatus of camera, and control method thereof
JP2010522539A (en) Method and apparatus for candling avian eggs via a thermal camera
EP2956004A1 (en) A method and an apparatus for imaging arthropods
JPH085563A (en) Indirect illumination polygonal photographic unit employed in camera sorter for massive vegetables and fruits
US11026445B2 (en) Bean roasting apparatus
AU779454B2 (en) Object imaging system
CN108939316A (en) Patient monitoring system
EP3870009A1 (en) Heating cooker including three dimensional measuring device
US20200182610A1 (en) Heating cooker including three dimensional measuring device
US10323983B1 (en) Lamp for illumination food products along a line
JP6393110B2 (en) Air conditioner
EP0730146A2 (en) Method for the determination of quality properties of individual carcasses, lamp for the illumination of a carcass and use of the method and lamp
TWI646904B (en) Bean roasting apparatus
KR102541977B1 (en) System for inspecting surface of food tray
US20240310053A1 (en) Heating cooker
US20240102920A1 (en) Food analysis apparatus