AU5044100A - Method of sterilizing - Google Patents
Method of sterilizing Download PDFInfo
- Publication number
- AU5044100A AU5044100A AU50441/00A AU5044100A AU5044100A AU 5044100 A AU5044100 A AU 5044100A AU 50441/00 A AU50441/00 A AU 50441/00A AU 5044100 A AU5044100 A AU 5044100A AU 5044100 A AU5044100 A AU 5044100A
- Authority
- AU
- Australia
- Prior art keywords
- prpsc
- protein
- disease
- branched
- prion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/002—Dendritic macromolecules
- C08G83/003—Dendrimers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N33/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
- A01N33/02—Amines; Quaternary ammonium compounds
- A01N33/04—Nitrogen directly attached to aliphatic or cycloaliphatic carbon atoms
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/44—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L3/00—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
- A23L3/34—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
- A23L3/3454—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
- A23L3/3463—Organic compounds; Microorganisms; Enzymes
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L3/00—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
- A23L3/34—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
- A23L3/3454—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
- A23L3/358—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/785—Polymers containing nitrogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/0005—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
- A61L2/0082—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using chemical substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/0005—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
- A61L2/0082—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using chemical substances
- A61L2/0088—Liquid substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
- A61L2/18—Liquid substances or solutions comprising solids or dissolved gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/005—Dendritic macromolecules
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Nutrition Science (AREA)
- Plant Pathology (AREA)
- Oncology (AREA)
- Dentistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Molecular Biology (AREA)
- Agronomy & Crop Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Communicable Diseases (AREA)
- Microbiology (AREA)
- Inorganic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Fodder In General (AREA)
Description
WO 00/72851 PCT/USOO/14353 METHOD OF STERILIZING GOVERNMENT SUPPORT This work was supported, in part, by grants from the National Institutes of Health NS 14069, 5 AG08967, AG02132, AG10770 and K08 NS02048-02. The government may have certain rights in this work. FIELD OF THE INVENTION The present invention relates generally to methods of sterilizing materials and particularly to 10 a method of inactivating infectious prions. BACKGROUND OF THE INVENTION There are large numbers of known methods of sterilizing materials. Many methods involve heating a material to a temperature at which pathogens are killed or inactivated. Other methods 15 involve exposing the material to compounds which kill or inactivate pathogens which are contacted by the compounds. Still other methods involve irradiating a material with a sufficient amount of a particular type of radiation for a period of time sufficient to inactivate, disrupt or kill pathogens in the material. These methods are generally directed toward killing bacteria and inactivating viruses present in or on the material. Although sterilization methods may be quite affective in killing 20 bacteria or inactivating viruses, they do not generally inactivate pathogenic proteins such as prions which can be responsible for a number of fatal diseases. There are a considerable number of diseases associated with a conformationally altered protein. For example, Alzheimer's disease is associated with APP, As peptide, al-antichymotrypin, tau and non-Ap component. Many of these diseases are neurological diseases. However, type II 25 Diabetes is associated with Amylin and Multiple myeloma-plasma cell dyscrasias is associated with IgGL-chain. The relationship between the disease onset and the transition from the normal protein to the conformationally altered protein has been examined very closely in some instances such as with the association between prion diseases and PrPSc.
WO 00/72851 PCT/USOO/14353 Prion diseases are a group of fatal neurodegenerative disorders that can occur in hereditary, sporadic, and infectious forms (Prusiner, S.B. Scrapie prions. Annu. Rev. Microbiol. 43, 345-374 (1989)). These illnesses occur in humans and a variety of other animals (Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363-13383 (1998)). Prions are infectious proteins. The normal, 5 cellular form of the prion protein (PrP) designated PrPC contains three a- helices and has little p sheet; in contrast, the protein of the prions denoted PrPSc is rich in p-sheet structure. The accumulation of PrPS in the central nervous system (CNS) precedes neurologic dysfunction accompanied by neuronal vacuolation and astrocytic gliosis. The spectrum of human prion diseases includes kuru (Gajdusek, D.C., Gibbs, C.J., Jr. & 10 Alpers, M. Experimental transmission of a kuru-like syndrome to chimpanzees. Nature 209, 794 796 (1966)), Creutzfeldt-Jakob disease (CJD) (Gibbs, C.J., Jr., et al. Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science 161, 388-389 (1968)), Gerstmann-Straussler-Scheinker disease (GSS) and fatal familial insomnia (FFI) (Goldfarb, L.G., et al. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by 15 a DNA polymorphism. Science 258, 806-808 (1992); Medori, R., et al. Fatal familial insomnia: a second kindred with mutation of prion protein gene at codon 178. Neurology 42, 669-670 (1992)), and a new form of human prion disease, new variant CJD (nvCJD), which has emerged in Great Britain and France (Will, R.G. , et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921-925 (1996); Cousens, S.N., Vynnycky, E., Zeidler, M., Will, R.G. & Smith, P.G. 20 Predicting the CJD epidemic in humans. Nature 385, 197-198 (1997); Will, R.G., et al. Deaths from variant Creutzfeldt-Jakob disease. Lancet 353, 979 (1999)). Several lines of evidence have suggested a link between the nvCJD outbreak and a preceding epidemic of bovine spongiform encephalopathy (BSE) (Will, R.G. , et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921-925 (1996); Bruce, M.E., et al. Transmissions to mice indicate that 'new variant' 25 CJD is caused by the BSE agent. Nature 389, 498-501 (1997); Hill, A.F., et al. The same prion strain causes vCJD and BSE. Nature 389, 448-450 (1997); Lasm6zas, C.I., et al. BSE transmission to macaques. Nature 381, 743-744 (1996)). Although it is too early to predict the number of nvCJD cases that might eventually arise in Great Britain and elsewhere (Cousens, S.N., Vynnycky, E., Zeidler, M., Will, R.G. & Smith, P.G. Predicting the CJD epidemic in humans. 30 Nature 385, 197-198 (1997)), it is clear that effective therapeutics for prion diseases are urgently needed. Unfortunately, although a number of compounds including amphotericins, sulfated polyanions, Congo red dye, and anthracycline antibiotics have been reported as prospective therapeutic agents (Ingrosso, L., Ladogana, A. & Pocchiari, M. Congo red prolongs the incubation period in scrapie-infected hamsters. J. Virol. 69, 506-508 (1995); Tagliavini, F., et al. -2- WO 00/72851 PCTUSOO/14353 Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science 276, 1119-1122 (1997); Masullo, C., Macchi, G., Xi, Y.G. & Pocchiari, M. Failure to ameliorate Creutzfeldt-Jakob disease with amphotenici B therapy. J. Infect. Dis. 165, 784-785 (1992); Ladogana, A., et al. Sulphate polyanions prolong the incubation period of scrapie-infected hamsters. 5 J. Gen. Virol. 73, 661-665 (1992)), all have demonstrated only modest potential to impede prion propagation, and none have been shown to effect the removal of pre-existing prions from an infected host. The PrP gene of mammals expresses a protein which can be the soluble, non-disease form PrPC or be converted to the insoluble, disease form PrPSc. PrPc is encoded by a single-copy host 10 gene [Basler, Oesch et al. (1986) Cell 46:417-428] and when PrPC is expressed it is generally found on the outer surface of neurons. Many lines of evidence indicate that prion diseases result from the transformation of the normal form of prion protein (PrPc) into the abnormal form (PrPs"). There is no detectable difference in the amino acid sequence of the two forms. However, PrPsc when compared with PrPC has a conformation with higher p-sheet and lower a-helix content (Pan, Baldwin 15 et al. (1993) Proc Natl Acad Sci USA 90:10962-10966; Safar, Roller et al. (1993) JBiol Chem 268:20276-20284). The presence of the abnormal PrPSc form in the brains of infected humans or animals is the only disease-specific diagnostic marker of prion diseases. PrPSc plays a key role in both transmission and pathogenesis of prion diseases (spongiform encephalopathies) and it is a critical factor in neuronal degeneration (Prusiner (1997) The Molecular 20 and Genetic Basis of Neurological Disease, 2nd Edition: 103-143). The most common prion diseases in animals are scrapie of sheep and goats and bovine spongiform encephalopathy (BSE) of cattle (Wilesmith and Wells (1991) Curr Top Microbiol Immunol 172:21-38). Four prion diseases of humans have been identified: (1) kuru, (2) Creutzfeldt-Jakob Disease (CID), (3) Gerstmann-Straussler-Scheinker Disease (GS S), and (4) fatal familial insomnia (FFI) [Gajdusek 25 (1977) Science 197:943-960; Medori, Tritschler et al. (1992) NEngl JMed 326:444-449]. Initially, the presentation of the inherited human prion diseases posed a conundrum which has since been explained by the cellular genetic origin of PrP. The assembly and misassembly of normally soluble proteins into conformationally altered proteins is thought to be a causative process in a variety of other diseases. Structural conformational 30 changes are required for the conversion of a normally soluble and functional protein into a defined, insoluble state. Examples of such insoluble protein include: As peptide in amyloid plaques of Alzheimer's disease and cerebral amyloid angiopathy (CAA); a-synuclein deposits in Lewy bodies of Parkinson's disease, tau in neurofibrillary tangles in frontal temporal dementia and Pick's disease; superoxide dismutase in amyotrophic lateral sclerosis; huntingtin in Huntington's disease; and prions -3- WO 00/72851 PCT/USO0/14353 in Creutzfeldt-Jakob disease (CJD): (for reviews, see Glenner et al. (1989) J. Neurol. Sci. 94:1 28; Haan et al. (1990) Clin. Neurol. Neurosurg. 92(4):305-3 10). Often these highly insoluble proteins form aggregates composed of nonbranching fibrils with the common characteristic of a p-pleated sheet conformation. In the CNS, amyloid can be present in 5 cerebral and meningeal blood vessels (cerebrovascular deposits) and in brain parenchyma (plaques). Neuropathological studies in human and animal models indicate that cells proximal to amyloid deposits are disturbed in their normal functions (Mandybur (1989) Acta Neuropathol. 78:329-331; Kawai et al. (1993) Brain Res. 623:142-6; Martin et al. (1994) Am. J Pathol. 145:1348-1381; Kalaria et al. (1995) Neuroreport 6:477-80; Masliah et al. (1996) J. Neurosci. 16:5795-5811). 10 Other studies additionally indicate that amyloid fibrils may actually initiate neurodegeneration (Lendon et al. (1997) J. Am. Med. Assoc. 277:825-31; Yankner (1996) Nat. Med. 2:850-2; Selkoe (1996) J. Biol. Chem. 271:18295-8; Hardy (1997) Trends Neurosci. 20:154-9). In both AD and CAA, the main amyloid component is the amyloid P protein (AP). The AP peptide, which is generated from the amyloid P precursor protein (APP) by two putative 15 secretases, is present at low levels in the normal CNS and blood. Two major variants, AP 1.40 and Apl.
42 , are produced by alternative carboxy-terminal truncation of APP (Selkoe et al.(1988) Proc. Nati. Acad. Sci. USA 85:7341-7345; Selkoe, (1993) Trends Neurosci 16:403-409). AP A 2 is the more fibrillogenic and more abundant of the two peptides in amyloid deposits of both AD and CAA. In addition to the amyloid deposits in AD cases described above, most AD cases are 20 also associated with amyloid deposition in the vascular walls (Hardy (1997), supra; Haan et al. (1990), supra; Terry et al., supra; Vinters (1987), supra; Itoh et al. (1993), supra; Yamada et al. (1993), supra; Greenberg et al. (1993), supra; Levy et al. (1990), supra). These vascular lesions are the hallmark of CAA, which can exist in the absence of AD. Human transthyretin (TTR) is a normal plasma protein composed of four identical, 25 predominantly p-sheet structured units, and serves as a transporter of hormone thyroxin. Abnormal self assembly of TTR into amyloid fibrils causes two forms of human diseases, namely senile systemic amyloidosis (SSA) and familial amyloid polyneuropathy (FAP) (Kelly (1996) Curr Opin Strut Biol 6(1):11-7). The cause of amyloid formation in FAP are point mutations in the TTR gene; the cause of SSA is unknown. The clinical diagnosis is established histologically by detecting 30 deposits of amyloid in situ in bioptic material. To date, little is known about the mechanism of TTR conversion into amyloid in vivo. However, several laboratories have demonstrated that amyloid conversion may be simulated in vitro by partial denaturation of normal human TTR [McCutchen, Colon et al. (1993) Biochemistry 32(45):12119-27; McCutchen and Kelly (1993) Biochem Biophys Res Commun 197(2) 415-21]. 35 The mechanism of conformational transition involves monomeric conformational intermediate which -4- WO 00/72851 PCT/USOO/14353 polymerizes into linear p-sheet structured amyloid fibrils [Lai, Colon et al. (1996) Biochemistry 35(20):6470-82]. The process can be mitigated by binding with stabilizing molecules such as thyroxin or triiodophenol (Miroy, Lai et al. (1996) Proc Natl Acad Sci USA 93(26):15051-6). The precise mechanisms by which neuritic plaques are formed and the relationship of plaque 5 formation to the disease-associated neurodegenerative processes are not well-defined. The amyloid fibrils in the brains of Alzheimer's and prion disease patients are known to result in the inflammatory activation of certain cells. For example, primary microglial cultures and the THP-1 monocytic cell line are stimulated by fibrillar p-amyloid and prion peptides to activate identical tyrosine kinase-dependent inflammatory signal transduction cascades. The signaling response elicited by 10 p-amyloid and prion fibrils leads to the production of neurotoxic products, which are in part responsible for the neurodegenerative . C.K. Combs et al, JNeurosci 19:928-39 (1999). Although research efforts relating to conformationally altered proteins are advancing efforts to sterilize materials to avoid infections with such proteins are not keeping pace. The present invention offers a means of sterilizing materials which contain conformationally altered proteins such 15 as prions. BRIEF DESCRIPTION OF THE DRAWING Figure 1 is a schematic drawing of a dendrimer molecule showing the defined "generations" of homodisperse structure created using a repetitive divergent growth technique. The specific 20 diagram is of PAMAM, generation 2.0 (ethylene diamine core). SUMMARY OF THE INVENTION A method is disclosed whereby any type of object can be sterilized by combining normal sterilization procedures with the use of a polycationic dendrimer which is capable of rendering a 25 conformationally altered protein such as a prion non-infectious. The method is particularly useful in sterilizing medical devices such as surgical instruments and catheters which have been used and brought into contact with blood or brain tissue. Objects sterilized via the method are also part of the invention and include capsules which are made from geletin extracted from cattle which cattle may be infected with prions, i.e. have undiagnosed BSE known as "mad cow disease." The polycationic 30 dendrimers can be combined with conventional antibacterial and antiviral agents in aqueous or alcohol solutions to produce disinfecting agents or surgical scrubs. Branched polycations for use in the invention include, but are not limited to, polypropylene imine, polyethyleneimine (PEI) poly(4'-aza-4'-methylheptamethylene D-glucaramide), polyamidoamines and suitable fragments and/or variants of these compounds. -5- WO 00/72851 PCT/USOO/14353 An aspect of the invention is a method of treating objects with a composition characterized by its ability to render proteins associated with diseases non-infectious. An advantage of the invention is that proteins such as prions can be rendered non-infectious without the need for extreme conditions such as exposure to heat over long periods of time, e.g. 1-10 5 hours at 100'-200'C. A feature of the invention is that compositions can be useful while containing only very low concentrations of polycationic dendrimers, e.g. 1% to 0.001%. Another aspect of the invention is that capsules made with bovine gelatin can be certified prion free. 10 Another aspect of the invention is that drugs produced from cell cultures treated with polycationic dendrimers can be certified prion free. Still another aspect of the invention is that medical devices being reused after exposure to blood or brain tissue can be certified prion free. Still another aspect of the invention is that hospitals, operating rooms and the devices and 15 equipment within them can be certified prion free by contacting them with polycationic dendrimers at standard temperatures and pressures. A pharmaceutical composition for the treatment of insoluble protein deposit formation in an animal, said composition comprising a therapeutically effective amount of a branched polycation; and a pharmaceutically acceptable excipient. In one embodiment, the branched polycation is a branched polymer, and wherein at least one branch is 20 positively charged, and the branched polymer may have multiple charged branches. The branches may have the same chemical structure, or the branches may vary in structure within a single molecule. Examples of polymers that may be used in such a pharmaceutical composition include polypropylene imine, polyethyleneimine (PEI) poly(4'-aza-4'-methylheptamethylene D-glucaramide), polyamidoamines and pharmaceutically effective variants or fragments thereof. In 25 one embodiment of the pharmaceutical composition, the composition also contains a second therapeutic agent, such as an analgesic agent, an antimicrobial agent, anti-inflammatory agent, an antioncogenic agent, an antiviral agent, and the like. The present invention also provides a method of enhancing clearance of a disease related conformation of a protein from cells by contacting cells with a branched polycation for a time 30 sufficient to enhance the rate of clearance of a disease related conformation of a protein from the cells. This branched polycation can be administered in vivo or ex vivo to a subject including a human, cow, sheep, deer, dog, cat, goat, chicken and turkey. Examples of such disease related proteins include PrPS", APP, AP peptide, a- 1 -antichymotrypsin. The method is thus useful for subjects suffering from disorders such as bovine spongiform encephalopathy, -6- WO 00/72851 PCTUSOO/14353 Creutzfeldt-Jacob Disease, fatal familial insomnia, GSS for Gerstmann-Straussler-Scheinker Disease, kuru, scrapie, Alzheimer's Disease, Frontal temporal dementia, Huntington's disease, ALS, Pick's disease, Parkinson's disease, Diabetes Type II, multiple myeloma, familial amyloidotic polyneuropathy, medullary carcinoma of thyroid, chronic renal failure, congestive heart failure, 5 senile cardiac and systemic amyloidosis, chronic inflammation, atherosclerosis, and familial amyloidosis. The branched polycation can be administered to a subject in an amount non-toxic to the subject, for example a dosage of 0.001 mg to 1 mg/kg body weight per day. The polycation may be administered in a single dosage form, or it may be repeatedly administered to the subject. The branched polycation may also be administered prophylactically to prevent the formation of the 10 disease conformation of these proteins. The invention also provides a food composition for the preventing insoluble protein deposit formation in an animal, where the food contains a therapeutically effective amount of a branched cation which enhances clearance of conformationally altered protein. The food can be any food product, including solid foods such as meat (e.g., beef or lamb) and liquid foods such as vinegar, oil, 15 and condiments such as steak sauce and ketchup. The branched polycation is allowed to contact the food prior to ingestion for a time sufficient to allow clearance of the conformationally altered proteins. The present invention also provides a method of preventing a farm animal from acquiring a disease associated with a conformationally altered protein by feeding the animals animal feed 20 containing a branched polycation. The feed containing the branched polycation may be synthetically produced, and fed directly to the animals, or the branched polycation may be introduced to a natural food source, e.g., the animal feed is grass and the branched polycation is sprayed on the grass or introduced to the grass through a plant fertilizer. One aspect of this embodiment of the invention is a method of preventing disease caused by ingestion of contaminated food products by feeding animals 25 foods containing branched polycations. The present invention also provides a method of enhancing clearance of a disease related conformation of a protein from a meat food product by contacting the meat with a compound which enhances clearance of a conformationally altered protein at a pH of 5 or less for a time sufficient to allow for destruction of conformationally altered protein. 30 An advantage of the invention is that conformationally altered protein such as prions can be rendered non-infectious with a method which need only consist of applying a polycationic dendrimer preferably held at a pH of 5.0 or less. Another aspect of the invention is soaps, surgical scrubs, detergents and the like with polycationic dendrimers therein. -7- WO 00/72851 PCT/USOO/14353 An advantage of the invention is that compositions containing polycationic dendrimers can be used to inactivate prions which might be present on surgical instruments, knives and/or other tools or equipment used by butchers, particularly those used in the butchering of cows or other animals which might be infected with prions. 5 A feature of the invention is that compositions of the invention can be effective in activating prions when the polycationic dendrimers are present in very low concentrations, e.g. 1% to 0.001% or less. These and other aspects, advantages, and features of the invention will become apparent to those persons skilled in the art upon reading the details of the compounds, and assay method more 10 fully described below. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Before the present methods, objects and compositions are described, it is to be understood that this invention is not limited to the particular steps, devices or components described and, as 15 such, may of course vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. 20 Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The publications discussed herein are provided solely for their disclosure prior to the filing 25 date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed. 30 DEFINITIONS The term "detergent" is used to mean any substance that reduces the surface tension of water. The detergent may be a surface active agent which concentrates at oil-water interfaces, exerts emulsifying action and thereby aids in removing soils e.g. common sodium soaps of fatty acids. A detergent may be anionic, cationic, or monionic depending on their mode of chemical action. 35 Detergents include linear alkyl sulfonates (LAS) often aided by "builders." A LAS is preferably an -8- WO 00/72851 PCTIUSOO/14353 alkyl benzene sulfonate ABS which is readily decomposed by microorganisms (biodegradable). The LAS is generally a straight chain alkyl comprising 10 to 30 carbon atoms. The detergent may be in a liquid or a solid form. The term "conformationally altered protein" is used here to describe any protein which has a 5 three dimensional conformation associated with a disease. The conformationally altered protein may cause the disease, be a factor in a symptom of the disease or appear as a result of other factors. The conformationally altered protein appears in another conformation which has the same amino acid sequence. In general, the conformationally altered protein formed is "constricted" in conformation as compared to the other "relaxed" conformation which is not associated with disease. The following is 10 a non-limiting list of diseases with associated proteins which assemble two or more different conformations wherein at least one conformation is an example of a conformationally altered protein. Disease Insoluble Proteins Alzheimer's Disease APP, As peptide, al-antichymotrypsin, 15 tau, non-Ap component, presenillin 1, presenillin 2 apoE Prion diseases, Creutzfeldt Jakob 20 disease, scrapie and bovine spongiform encephalopathy PrPSc ALS SOD and neurofilament Pick's disease Pick body 25 Parkinson's disease a-synuclein in Lewy bodies Frontotemporal dementia tau in fibrils Diabetes Type II Amylin Multiple myelomaplasma cell dyscrasias IgGL-chain 30 Familial amyloidotic polyneuropathy Transthyretin Medullary carcinoma 35 of thyroid Procalcitonin Chronic renal failure 2 -- microglobulin Congestive heart failure Atrial natriuretic factor Senile cardiac and systemic amyloidosis Transthyretin 40 Chronic inflammation Serum amyloid A -9- WO 00/72851 PCTUSOO/14353 Atherosclerosis ApoAl Familial amyloidosis Gelsolin Huntington's disease Huntingtin 5 The term"acid" is used to describe any compound or group of compounds which has one or more characteristics of (a) sour taste; (b) turns litmus dye red; (c) reacts with certain metals to form a salt; (d) reacts with certain bases or alkalines to form a salt. An acid comprises hydrogen and in water undergoes ionization so that H 3 0' ions are formed - also written as H* and referred to as hydromium ions or simply hydrogen ions. Weak acids such as acetic acid or carbonic acid may be 10 used as may strong acids such as hydrochloric acid, nitric acid and sulfuric acid. In compositions of the invention the acid is preferably present in a concentration so as to obtain a pH of 5 or less, more preferably 4 or less and still more preferably 3.5 ± 1. The terms "sterilizing", "making sterile" and the like are used here to mean rendering something non-infectious or rendering something incapable of causing a disease. Specifically, it 15 refers to rendering a protein non-infectious or incapable of causing a disease or the symptoms of a disease. Still more specifically, it refers to rendering a conformationally altered protein (e.g. PrPSc known as prions) incapable of causing a disease or the symptoms of a disease. By "effective dose" or "amount effective" is meant an amount of a compound sufficient to provide the desired sterilizing result. This will vary depending on factors such as the type of object 20 or material being sterilized and the amount or concentration of infectious proteins which might be present. Polycations of the invention or more specifically polycationic dendrimer compounds of the invention could be mixed with a material in an amount in a range 1 to 500 yg of dendrimer per ml or mg of material being sterilized. The concentration is sufficient if the resulting composition is effective in decreasing the infectivity of conformationally altered proteins such that the treated 25 material over time would not result in infection. Because (1) some materials will have higher concentrations of altered protein than others (2) some materials are contacted more frequently than others and (3) individual proteins have different degrees of infectivity the effective dose or concentration range needed to sterilize can vary considerably. It is also pointed out that the dose needed to treat an amount of material may vary somewhat based on the pH the treatment is carried 30 out at and the amount of time the compound is maintained in contact with the material at the desired low pH (e.g., 5.0 or less) level. The term "LD 50 " as used herein is the dose of an active substance that will result in 50 percent lethality in all treated experimental animals. Although this usually refers to invasive administration, such as oral, parenteral, and the like, it may also apply to toxicity using less invasive 35 methods of administration, such as topical applications of the active substance. -10- WO 00/72851 PCT/USOO/14353 The term "amine-terminated" includes primary, secondary and tertiary amines. The terms "PrP protein", "PrP" and like are used interchangeably herein and shall mean both the infectious particle form PrPS'c known to cause diseases (spongiform encephalopathies) in humans and animals and the noninfectious form PrPC which, under appropriate conditions is converted to the 5 infectious PrPsc form. The terms "prion", "prion protein", "PrPs protein" and the like are used interchangeably herein to refer to the infectious PrPSc form of a PrP protein, and is a contraction of the words "protein" and "infection." Particles are comprised largely, if not exclusively, of PrPS molecules encoded by a PrP gene. Prions are distinct from bacteria, viruses and viroids. Known prions infect 10 animals to cause scrapie, a transmissible, degenerative disease of the nervous system of sheep and goats, as well as bovine spongiform encephalopathy (BSE), or "mad cow disease", and feline spongiform encephalopathy of cats. Four prion diseases known to affect humans are (1) kuru, (2) Creutzfeldt-Jakob Disease (CJD), (3) Gerstmann-Straussler-Scheinker Disease (GSS), and (4) fatal familial insomnia (FFI). As used herein "prion" includes all forms of prions causing all or any of 15 these diseases or others in any animals used - and in particular in humans and domesticated farm animals. The term "PrP gene" is used herein to describe genetic material which expresses proteins including known polymorphisms and pathogenic mutations. The term "PrP gene" refers generally to any gene of any species which encodes any form of a prion protein. Some commonly known PrP 20 sequences are described in Gabriel et al., Proc. Nati. Acad Sci. USA 89:9097-9101 (1992) and U.S. Patent No. 5,565,186, incorporated herein by reference to disclose and describe such sequences. The PrP gene can be from any animal, including the "host" and "test" animals described herein and any and all polymorphisms and mutations thereof, it being recognized that the terms include other such PrP genes that are yet to be discovered. The protein expressed by such a gene can assume either a 25 PrPC (non-disease) or PrPS' (disease) form. The terms "standardized prion preparation", "prion preparations, "preparation" and the like are used interchangeably herein to describe a composition (e.g., brain homogenate) obtained from the brain tissue of mammals which exhibits signs of prion disease: the mammal may (1) include a transgene as described herein; (2) have and ablated endogenous prion protein gene; (3) have a high 30 number of prion protein gene from a genetically diverse species; and/or (4) be a hybrid with an ablated endogenous prion protein gene and a prion protein gene from a genetically diverse species. Different combinations of 1-4 are possible, e.g., 1 and 2. The mammals from which standardized prion preparations are obtained exhibit clinical signs of CNS dysfunction as a result of inoculation with prions and/or due to developing the disease of their genetically modified make up, e.g., high 35 copy number of prion protein genes. Standardized prion preparations and methods of making such -11- WO 00/72851 PCT/US00/14353 are described and disclosed in U.S. Patent 5,908,969 issued June 1, 1999 and application serial no. 09/199,523 filed November 25, 1998 both of which are incorporated herein by reference in their entirety to disclose and describe standardized prion preparations. The term "Alzheimer's disease" (abbreviated herein as "AD") as used herein refers to a 5 condition associated with formation of neuritic plaques comprising amyloid P protein, primarily in the hippocampus and cerebral cortex, as well as impairment in both learning and memory. "AD" as used herein is meant to encompass both AD as well as AD-type pathologies. The term "AD-type pathology" as used herein refers to a combination of CNS alterations including, but not limited to, formation of neuritic plaques containing amyloid P protein in the 10 hippocampus and cerebral cortex. Such AD-type pathologies can include, but are not necessarily limited to, disorders associated with aberrant expression and/or deposition of APP, overexpression of APP, expression of aberrant APP gene products, and other phenomena associated with AD. Exemplary AD-type pathologies include, but are not necessarily limited to, AD-type pathologies associated with Down's syndrome that is associated with overexpression of 15 APP. The term "phenomenon associated with Alzheimer's disease" as used herein refers to a structural, molecular, or functional event associated with AD, particularly such an event that is readily assessable in an animal model. Such events include, but are not limited to, amyloid deposition, neuropathological developments, learning and memory deficits, and other AD 20 associated characteristics. The term "cerebral amyloid angiopathy" (abbreviated herein as CAA) as used herein refers to a condition associated with formation of amyloid deposition within cerebral vessels which can be complicated by cerebral parenchymal hemorrhage. CAA is also associated with increased risk of stroke as well as development of cerebellar and subarachnoid hemorrhages 25 (Vinters (1987) Stroke 18:311-324; Haan et al. (1994) Dementia 5:210-213; Itoh et al. (1993) J. Neurol. Sci. 116:135-414). CAA can also be associated with dementia prior to onset of hemorrhages. The vascular amyloid deposits associated with CAA can exist in the absence of AD, but are more frequently associated with AD. The term "phenomenon associated with cerebral amyloid angiopathy" as used herein 30 refers to a molecular, structural, or functional event associated with CAA, particularly such an event that is readily assessable in an animal model. Such events include, but are not limited to, amyloid deposition, cerebral parenchymal hemorrhage, and other CAA-associated characteristics. The term "P-amyloid deposit" as used herein refers to a deposit in the brain composed of AP as well as other substances. 35 -12- WO 00/72851 PCT/USOO/14353 Abbreviations used herein include: CNS for central nervous system; BSE for bovine spongiform encephalopathy; CJD for Creutzfeldt-Jakob Disease; 5 FFI for fatal familial insomnia; GSS for Gerstmann-Straussler-Scheinker Disease; AD for Alzheimer's disease; CAA for cerebral amyloid angiopathy; Hu for human; 10 HuPrP for human prion protein; Mo for mouse; MoPrP for mouse prion protein; SHa for a Syrian hamster; SHaPrP for a Syrian hamster prion protein; 15 PAMAM for polyamidoanmide dendrimers PEI for polyethyleneimine PPI for polypropyleneimine PrPsc for the scrapie isoform of the prion protein; PrPc for the cellular contained common, normal isoform of the prion protein; 20 PrP 27-30 or PrPsc 27-30 for the treatment or protease resistant form of PrPsC; MoPrPSC for the scrapie isoform of the mouse prion protein; N2a for an established neuroblastoma cell line used in the present studies; ScN2a for a chronically scrapie-infected neuroblastoma cell line; ALS for amyotrophic lateral sclerosis; 25 HD for Huntington's disease; FTD for frontotemporal dementia; SOD for superoxide dismutase GENERAL ASPECTS OF THE INVENTION 30 The invention comprises compositions of compounds found to be effective in rendering conformationally altered proteins non-infective. The compositions are preferably low pH solutions comprised of a non-toxic weak acid such as acetic acid having dissolved therein a branched polycation. Preferred compositions of the invention are in the form of aqueous or alcohol solutions which are comprised of a branched polycation, an antibacterial, an antifungal and an antiviral 35 compound. The compositions are coated on, mixed with, injected into or otherwise brought into -13- WO 00/72851 PCTUSOO/14353 contact with a material to be sterilized. The composition is applied in a manner so that the branched polycation is maintained at a low pH (e.g. 5 or less and preferably 3.5 ± 1) in an amount of 1 gg or more polycation per ml or mg of material to be sterilized. The composition is maintained in the desired pH range at normal temperature (e.g., 15 *C to 30 C) for a sufficient period of time (e.g. 1 5 hour to 1 week) to cause conformationally altered protein present on or in the material to be destroyed (e.g. hydrolyzed) or rendered non-infective. Preferred compositions of the invention are useful in cleaning and sterilizing and may be comprised of a polycationic dendrimers, a detergent, and an acid proving a pH of about 3.5 ±1. 10 DENDRIMER COMPOUNDS WHICH CLEAR PRIONS Dendrimers are branched compounds also known as "starburst" or "star" polymers due to a characteristic star-like structure (see Figure 1). Dendrimers of the invention are polymers with structures built from AB, monomers, with n>2, and preferably n=2 or 3. Such dendrimers are highly branched and have three distinct structural features: 1) a core, 2) multiple peripheral 15 end-groups, and 3) branching units that link the two. Dendrimers may be cationic (full generation dendrimers) or anionic (half generation dendrimers). For a review on the general synthesis, physical properties, and applications of dendrimers, see, e.g., Tomalia et. al, Angew. Chem. Int. Ed. Engl., 29:138-175, (1990); Y. Kim and C. Zimmerman, Curr Opin Chem Biol, 2:733-7421 (1997). 20 In a preferred embodiment, sterilizing compositions of the invention comprise a cationic dendrimer preferably dissolved in a low pH solvent such as acetic acid. Examples of suitable dendrimers are disclosed in U.S. Pat. Nos. 4,507,466, 4,558,120, 4,568,737, 4,587,329, 4,631,337, 4,694,064, 4,713,975, 4,737,550, 4,871,779, and 4,857,599 to D. A. Tomalia, et al., which are hereby incorporated by reference to disclose and describe such compounds. 25 Dendrimers typically have tertiary amines which have a pKa of 5.7. The dendrimers can optionally be chemically or heat treated to remove some of the tertiary amines. Other suitable cations include polypropylene imine, polyethyleneimine (PEI), which has tertiary amines with a pKa of 5.9, and poly(4'-aza-4'-methylheptamethylene D-glucaramide), which has tertiary amines with a pKa of 6.0. The cationic dendrimer is preferably dissolved in the low pH solvent such as 30 vinegar in a concentration of 0.0001% or more, preferably 0.01% or more and more preferably about 1%. Preferably, the dendrimers for use in the invention are polyamidoamines (hereinafter "PAMAM"). PAMAM dendrimers are particularly biocompatible, since polyamidoamine groups resemble peptide bonds of proteins. -14- WO 00/72851 PCT/USOO/14353 Dendrimers are prepared in tiers called generations (see generations 0, 1 and 2 in Figure 1) and therefore have specific molecular weights. The full generation PAMAM dendrimers have amine terminal groups, and are cationic, whereas the half generation dendrimers are carboxyl terminated. Full generation PAMAM dendrimers are thus preferred for use in the present 5 invention. PAMAM dendrimers may be prepared having different molecular weights and have specific values as described in Table 1 below for generations 0 through 10. TABLE A LIST OF PAMAM DENDRIMERS AND THEIR 10 MOLECULAR WEIGHTS (Ethylene Diamine core, amine terminated), GENERATION TERMINAL GROUPS MOL, WT. g/mole 0 4 517 1 8 1430 15 2 216 3256 3 32 6909 4 64 14,215 5 128 28,795 6 256 58,048 20 7 512 116,493 8 1024 233,383 9 2048 467,162 10 4096 934,720 25 As shown in Table A, the number of terminal amine groups for PAMAM dendrimers generations 0 through 10 range from 4 to 4,096, with molecular weights of from 517 to 934,720. PAMAM dendrimers are available commercially from Aldrich or Dendritech. Polyethyleneimine or polypropylene dendrimers or quaternized forms of amine-terminated dendrimers may be prepared as described by Tomalia et. al, Angew, Chem. Int. Ed. Engl., 29:138-175 (1990) 30 incorporated by reference to describe and disclose methods of making dendrimers. STERILIZING COMPOSITIONS Examples provided here show that highly-branched polycations, e.g. dendrimer compounds, affect the extent and distribution of PrPS protein deposits in scrapie-infected cells. 35 The presence of dendrimers in a low pH environment and at relatively low, non-cytotoxic levels results in a significant reduction in detectable PrP S' in cells and brain homogenates. Thus, the present invention encompasses compositions for reducing, inhibiting, or otherwise mitigating the degree of infectivity of a protein. A composition of the invention is comprised of any compound -15- WO 00/72851 PCTUSOO/14353 capable of destroying conformationally altered proteins when in a low pH environment, (e.g. a polycationic dendrimer) in solution, suspension or mixture. STERILIZING FORMULATIONS 5 Sterilizing compositions of the invention preferably contain highly branched polycations, e.g. polycationic dendrimer, in a concentration from 0.0001 to 10% of the formulation. The following methods and excipients are merely exemplary and are in no way limiting. In addition to including the compound such as a highly branched cationic compound in the formulation it is important to maintain that compound in a low pH environment. Any number 10 of known acids or mixtures of acids could be used with the invention. Non-limiting examples of commercially available products which could be supplemented with the cationic compounds are described below. In these formulations the percentage amount of each ingredient can vary. In general a solvent ingredient (e.g. water or alcohol) is present in amounts of 40% to 100% and the last listed ingredient is present in a range of 0.5% to 5%. The other ingredients are present 15 in an amount in a range of 1 % to 60% and more generally 5% to 20%. In each case the polycationic compounds of the invention are added in amounts of about 0.01% to 5% and preferably 0.1 % to 2% and more preferably about 1 %. The amount added is an amount needed to obtain the desired effect. 20 FORMULATION 1 Component wt % acid 90-99.99 polycationic dendrimer 0.01 - 10 25 FORMULATION 2 Component wt % water 10-99 acid 1-20 polycationic dendrimer 0.01 - 10 30 FORMULATION 3 Component wt % water 10-98 acid 1-20 35 detergent 1 - 20 polycationic dendrimer 0.01 - 5 -16- WO 00/72851 PCT/USOO/14353 FORMULATION 4 Component wt % water 10-98 acetic acid 1-20 5 linear alkyl sulfonate 1 - 20 polycationic dendrimer 0.01 - 5 FORMULATION 5 Component wt % 10 water 1-98 alcohol 0 - 98 acid 1-20 detergent 1 - 20 polycationic dendrimer 0.1 - 5 15 FORMULATION 6 Component wt % water 1 -99 acid 1-20 20 antibacterial 0.1 -5 detergent 1 - 20 polycationic dendrimer 0.1 - 5 FORMULATION 7 25 Component wt % water 3 - 98.889 antimicrobial active agent 0.001- 5 anionic surfactant 1 - 80 protein donating agent 0.1 - 12 30 polycationic dendrimer 0.01 - 5 FORMULATION 8 Component wt % Polycationic Dendrimer 0.5 35 Ethanol 74.0 Benzalkonium chloride 0.2 CAE 0.02 Glycerine 1.0 Chain silicone 0.5 40 Triglyceride 0.5 Lactic acid 10.0 Purified water 13.28 -17- WO 00/72851 PCT/US0O/14353 FORMULATION 9 Component wt % Polycatiomic Dendrimer 1.0 Ethanol 75.0 5 Benzalkonium chloride 0.2 CAE 0.02 Glycerine 1.0 Cyclic silicone 0.2 Triglyceride 0.3 10 Acetic Acid 20.0 Puified water 2.28 FORMULATION 10 Component wt % 15 Polycationic Dendrimer 0.25 Ethanol 74.0 Chlorhexedine gluconate 0.75 Benzalkonium chloride 0.2 CAE 0.02 20 Glycerine 2.0 Chain silicone 0.2 Cyclic silicone 0.2 Triglyceride 0.3 Acetic Acid 20.0 25 Purified water 2.08 FORMULATION 11 Component wt % Polycationic Dendrimer 0.1 30 Ethanol 75.0 Chlorhexedine gluconate 0.9 Benzalkonium chloride 0.2 CAE 0.02 Glycerine 1.0 35 Chain silicone 0.5 Cyclic silicone 0.5 Triglyceride 0.3 Lactic acid 14.0 Purified water 7.98 40 -18- WO 00/72851 PCTJUSOO/14353 FORMULATION 12 Component wt % Polycationic Dendrimer 0.01 Ethanol 75.0 5 Benzalkonium chloride 0.2 CAE 0.02 Glycerine 2.0 Chain silicone 0.99 Cyclic silicone 2.0 10 Triglyceride 3.0 Lactic acid 9 Purified water 7.78 FORMULATION 13 15 Component wt % Polycationic Dendrimer I Ethanol 75.0 Chlorhexedine gluconate 0.2 Benzalkonium chloride 0.2 20 CAE 0.02 Glycerine 0.8 Chain silicone 0.2 Cyclic silicone 0.2 Triglyceride .38 25 Acetic acid 10 Purified water 12 FORMULATION 14 Component wt % 30 Polycationic Dendrimer 0.001 Ethanol 75.99 Chlorhexedine gluconate 0.2 CAE 0.02 Glycerine 1.0 35 Chain silicone 0.2 Triglyceride 0.3 Lactic acid 14 Purified water 8.28 40 -19- WO 00/72851 PCT/USOO/14353 FORMULATION 15 Component wt % Polycationic Dendrimer 1 Ethanol 75.0 5 Benzalkonium chloride 0.2 CAE 0.02 1, 3-butylene glycol 1.0 Metylphenyl polysiloxane 0.2 Isopropyl myristate (IPM) 0.3 10 Purified water 22.28 By using the disclosure provided here and other information such as taught in U.S. Patents 5,767,054; 6,007,831; 5,830,488; 5,968,539; 5,416,075; 5,296,158; and patents and publications cited therein those skilled in the art can produce countless other formulations of the 15 invention. Further, such formulations can be used as described in such publications and can be packaged in any suitable container or dispenser device, e.g. taught in 5,992,698. Formulations of the invention used with a cell culture have the advantage that they are non-toxic. For example, parenteral administration of a solution of the formulations of the invention is preferably nontoxic at a dosage of 0.1 mg/mouse, which is an LD 50 of less than one 20 at 40 mg/Kg. Various nutrient formulations and/or injectable formulations of the type known to those skilled in the art can be used to prepare formulations for treating cell cultures. Those skilled in the art will understand that in some situations it may be desirable to further reduce the pH environment to obtain the desired results. This can be accomplished by adding any desired acid. If desired, the pH can be raised to a normal level after treatment is complete, i.e. after a 25 sufficient amount of any conformationally altered protein present are destroyed. Compounds effective in sterilizing compositions containing conformationally altered proteins are determined via a cell culture assay and an organ homogenate assay each of which is described below in detail. 30 ScN2a CELL BASED ASSAY Efforts were made to optimize the transfection of ScN2a cells with pSPOX expression plasmids (Scott, M.R., K6hler, R., Foster, D. & Prusiner, S.B. Chimeric prion protein expression in cultured cells and transgenic mice. Protein Sci. 1, 986-997 (1992)). In connection with those effects an evaluation was made of a transfection protocol that used SuperFect reagent (QIAGEN@). It was 35 found that epitope-tagged (MHM2) PrPSc (Scott, M.R., Kbhler, R., Foster, D. & Prusiner, S.B. Chimeric prion protein expression in cultured cells and transgenic mice. Protein Sci. 1, 986-997 -20- WO 00/72851 PCT/USOO/14353 (1992)) could not be detected in ScN2a cells following SuperFect-mediated transfection, whereas MIHM2 PrPsc was efficiently formed when a cationic liposome method for DNA delivery was used. Close scrutiny revealed that, prior to protease digestion, SuperFect-transfected samples expressed MHM2 bands, which are not seen in the background pattern of an untransfected sample. The 3F4 5 monoclonal antibody does not react with MoPrP but does exhibit high background staining on Western blots of mouse ScN2a cells. Increased immunostaining in the 20-30 kDa region was observed compared to the non-transfected sample. These observations led us to conclude that MHM2 PrP was successfully expressed using SuperFect transfection reagent, but that conversion of MHM2 PrPc to protease-resistant MHM2 PrPsc was inhibited by SuperFect. 10 To investigate this apparent inhibition, a Western blot was reprobed with R073 polyclonal antiserum to detect endogenous MoPrPsc, the presence of which is diagnostic for prion infection in ScN2a cells (Butler, D.A., et al. Scrapie-infected murine neuroblastoma cells produce protease resistant prion proteins. J Virol. 62, 1558-1564 (1988)). Surprisingly, it was found that the SuperFect-treated ScN2a cells no longer contained detectable quantities of MoPrPSc - also confirmed 15 in Western blots. To investigate the mechanism by which SuperFect reduced the level of pre-existing PrPsc in chronically infected ScN2a cells, measurements were made of endogenous PrPsc in ScN2a cells exposed to various concentrations of SuperFect in the absence of plasmid DNA. The results showed that treatment with SuperFect (a branched polycation) caused the disappearance of PrPSc from ScN2a cells in a dose-dependent manner. The concentration of SuperFect required to eliminate 20 >95% of pre-existing PrPS" with a three hour exposure was found to be about 150 pig/ml. Duration of treatment also influenced the ability of SuperFect to remove PrPsc from ScN2a cells: exposure to 150 pg/ml SuperFect for 10 min did not affect PrPSc levels, whereas 7.5 tg/ml SuperFect eliminated all detectable PrPSc with a t/ 2 = 8 h. SuperFect is a mixture of branched polyamines derived from heat-induced degradation of a 25 PAMAM dendrimer (Tang, M.X., Redemann, C.T. & Szoka, F.C.J. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem. 7, 703-714 (1996)). Knowing this structure the ability of several other branched and unbranched polymers to eliminate PrPc from ScN2a cells (Table 1). The branched polymers investigated include various preparations of PEI, as well as intact PAMAM and PPI dendrimers. Dendrimers are manufactured by a repetitive divergent 30 growth technique, allowing the synthesis of successive, well-defined "generations" of homodisperse structures (Figure 1). The potency of both PAMAM and PPI dendrimers in eliminating PrPsc from ScN2a cells increased as the generation level increased. The most potent compounds with respect to eliminating PrPS" were PAMAM generation 4.0 and PPI generation 4.0, whereas PAMAM -21- WO 00/72851 PCT/USOO/14353 generation 1.0 showed very little ability to eliminate PrPsc (Table 1). Similarly, a high MW fraction of PEI was more potent than low MW PEI. From the foregoing data, it is clear that for all three branched polyamines tested, increasing molecular size corresponded to an increased potency for eliminating PrPSc . To determine whether 5 this trend was directly attributable to increased surface density of amino groups on the larger molecules, PAMAM-OH generation 4.0 was tested. This is a dendrimer that resembles PAMAM generation 4.0 except that hydroxyls replace amino groups on its surface. Unlike PAMAM generation 4.0, PAMAM-OH generation 4.0 did not cause a reduction of PrPs'c levels even at the highest concentration tested (10 mg/ml), establishing that the amino groups are required for the 10 elimination of PrPSc by PAMAM (Table 1). In an effort to assess the contribution of the branched architecture to the clearing ability of polyamines for PrPSc, the linear molecules poly-(L)lysine and linear PEI were also tested. Both of these linear compounds were less potent than a preparation of branched PEI with similar average molecular weight (Table 1), establishing that a branched molecular architecture optimizes the ability 15 of polyamines to eliminate PrPSc, presumably because the branched structures achieve a higher density of surface amino groups. Kinetics of PrPSc elimination by polyamines. The preceding results demonstrate the potent ability of branched polyamines to clear PrPSc 20 from ScN2a cells within a few hours of treatment. The utility of these compounds to act as therapeutics for treatment of prion disease was tested by determining whether they were cytotoxic for ScN2a cells, using as criteria cell growth, morphology, and viability as measured by trypan blue staining. None of the compounds was cytotoxic to ScN2a cells after exposure for one week at concentrations up to 7.5 pg/ml. To determine whether branched polyamines can cure ScN2a cells of 25 scrapie infection without affecting cell viability, the kinetics of prion clearance was examined in the presence of a non-cytotoxic concentration (7.5 pg/ml) of three different branched polyamines. ScN2a cells were exposed to SuperFect, PEI, or PAMAM generation 4.0 for varying periods of time. The kinetics of PrPsc elimination were assessed by Western blotting. All three compounds caused a substantial reduction in PrPc levels after 8-16 h of treatment, and of the three compounds, PEI 30 appeared to remove PrPsc most quickly, with a t%= 4 h. Curing neuroblastoma cells of scrapie infection. The above results show that it is possible to reverse the accumulation of PrPS" in ScN2a cells under non-cytotoxic conditions. It was also found that extended exposure to even lower levels -22- WO 00/72851 PCT/USOO/14353 of the branched polyamines (1.5 yg/ml) was sufficient to eliminate PrPS'. Based on these findings, this protocol was used to determine whether the severe reduction in PrPsc levels following exposure to branched polyamines would persist after removal of the compounds. Following the exposure of ScN2a cells to a 1.5 yg/ml SuperFect for 1 week, PrPsc was reduced to <1% of the baseline level, 5 but then increased back to -5% of the baseline level after 3 additional weeks in culture in the absence of polyamine. In contrast, following exposure to 1.5 ig/ml of either PEI or PAMAM generation 4.0 for 1 week, PrPSc was completely eliminated and did not return even after 3 weeks in culture without polyamines. A more intensive course of treatment with 1.8 pg/ml SuperFect for 9 d also cured ScN2a cells of scrapie infection fully, manifested by the absence of PrPS' 1 month after removal of 10 SuperFect. Evidence for polyamines acting within an acidic compartment. The above results showed the potent activity of branched polyamines in rapidly clearing scrapie prions from cultured ScN2a cells. Based on these results the mechanism by which these 15 compounds act was investigated. All of the compounds which effect removal of PrPSc from ScN2a cells are known to traffic through endosomes (Boussif, 0., et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethyleneimine. Proc. Nati. A cad. Sci. U.S.A. 92, 7297-7301 (1995); Haensler, J. & Szoka, F.C.J. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 4, 3 72-379 (1993)). Since PrPc 20 is converted into PrPsc in caveolae-like domains (CLDs) or rafts (Gorodinsky, A. & Harris, D.A. Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. J Cell Biol. 129, 619-627 (1995); Taraboulos, A., et al. Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibits formation of the scrapie isoform. J. Cell Biol. 129, 121-132 (1995); Vey, M., et al. Subcellular colocalization of 25 the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc. Nati. Acad. Sci. USA 93, 14945-14949 (1996); Kaneko, K., et al. COOH-terminal sequence of the cellular prion protein directs subcellular trafficking and controls conversion into the scrapie isoform. Proc. Natl. Acad. Sci. USA 94, 2333-233 8 (1997)) and is then internalized through the endocytic pathway (Caughey, B., Raymond, G.J., Ernst, D. & Race, R.E. N-terminal truncation of the scrapie 30 associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J. Virol. 65, 65 97-6603 (1991); Borchelt, D.R., Taraboulos, A. & Prusiner, S.B. Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J. Biol. Chem. 267, 16188-16199 (1992)), it was deduced that polyamines act upon PrPS'c in endosomes or lysosomes. This deduction was investigated by determining the effect of pretreatment with the -23- WO 00/72851 PCT/USOO/14353 lysosomotropic agents chloroquine and NH 4 C1 on the ability of polyamines to eliminate PrPSC. These lysosomotropic agents alkalize endosomes and have no effect on PrPSC levels when administered to ScN2a cells (Taraboulos, A., Raeber, A.J., Borchelt, D.R., Serban, D. & Prusiner, S.B. Synthesis and trafficking of prion proteins in cultured cells. Mol. Biol. Cell 3, 851-863 (1992)). Experimental 5 results obtained shows that 100 yM chloroquine, but not 30 yM NH 4 Cl, blocked the ability of PEI to eliminate PrPSC. Similar results were obtained with SuperFect and PAMAM, generation 4.0. Although the failure of NH 4 C1 to affect PrPSc levels is not easily explained, the ability of chloroquine to attenuate the ability of branched polyamines to remove PrPsc is consistent with the notion that these agents act in endosomes or lysosomes. 10 ORGAN HOMOGENATE ASSAY The above results with cell cultures prompted investigating the possibility that in an acidic environment branched polyamines, either by indirectly interacting with PrPSc or with another cellular component, could cause PrPS" to become susceptible to hydrolases present in the 15 endosome/lysozome. An in vitro degradation assay was developed to evaluate the effect of pH on the ability of polyamines to render PrPSc sensitive to protease. Crude homogenates of scrapie-infected mouse brain were exposed to a broad range of pH values in the presence or absence of SuperFect and then treated with proteinase K prior to Western blotting. Whereas PrPsc remained resistant to protease hydrolysis throughout the pH range (3.6-9.6) in the absence of Superfect, addition of the 20 branched polyamine at pH 4.0 or below caused PrPSc to become almost completely degraded by protease. Polyamine addition showed a dramatic effect on clearance in vitro which was optimized at pH 4 or less. These results show that polyamines act on PrPsc in an acidic compartment. To establish that the in vitro degradation assay is a valid approximation of the mechanism by which 25 branched polyamines enhance the clearance of PrPSc from cultured cells, a structure activity analysis was performed with several of the compounds tested in culture cells. An excellent correlation was found between the clearance of PrPsc in cultured ScN2a cells (Table 1) and the ability to render PrPSc susceptible to protease at acidic pH in vitro. Notably, PAMAM-OH generation 4.0 failed to render PrPSC susceptible to protease, whereas PAMAM generation 4.0 and PPI, generation 4.0 30 exhibited an even stronger activity than Superfect in vitro, as expected from their observed potency in cultured ScN2a cells (Table 1). -24- WO 00/72851 PCTUSOO/14353 MECHANISM OF ACTION The results discussed here show that certain branched polyamines cause the rapid elimination of PrPSc from ScN2a cells in a dose- and time-dependent manner. These compounds demonstrate a potent ability to remove prions from cultured cells at concentrations that are 5 completely non-cytotoxic. The cells may be maintained indefinitely in culture in the presence of therapeutic levels of branched polyamines. Furthermore, when ScN2a cells were exposed to these compounds for - 1 week, PrPSC was reduced to undetectable levels and remained so for at least one month after removal of the polyamine. Clarification of the exact mechanism of PrPSc elimination by branched polyamines is an 10 important objective. Although a number of possible scenarios exist, several possibilities may be excluded already. One possibility that was eliminated was that polyamines act by induction of chaperones such as heat shock proteins that mediate prion protein refolding because the above results show that it was possible to reproduce the phenomenon in vitro. Furthermore polyamines seem to offer advantages over other putative therapeutics that would seek to promote refolding: at very high 15 concentrations, dimethyl sulfoxide (DMSO) and glycerol act as direct "chemical chaperones" and inhibit the formation of new PrPsc (Tatzelt, J., Prusiner, S.B. & Welch, W.J. Chemical chaperones interfere with the formation of scrapie prion protein. EAMBO J 15, 6363-6373 (1996)), but these compounds cannot reduce pre-existing PrPSc levels. Furthermore, polyamines inhibit PrPsc formation at much lower concentrations than these agents. The ability of polyamines to effect the rapid 20 clearance of PrPSc also contrasts with the activity of other potential prion therapeutics. Sulfated polyanions may inhibit PrPsc accumulation in ScN2a cells by directly binding to PrPc (Gabizon, R., Meiner, Z., Halimi, M. & Ben-Sasson, S.A. Heparin-like molecules bind differentially to prion proteins and change their intracellular metabolic fate. J Cell. Physiol. 157, (1993); Caughey, B., Brown, K., Raymond, G.J., Katzenstein, G.E. & Thresher, W. Binding of the protease-sensitive 25 form of PrP (prion protein) to sulfated glycosaminoglycan and Congo red. J. Virol. 68, 2135-2141 (1994)), but because branched polyamines are able to clear pre-existing PrPSC, their mechanism of action cannot simply involve binding to PrPC and inhibiting de novo synthesis. Another possible mechanism which can be excluded is endosomal rupture. The branched polyamines which were effective in clearing PrPsc from ScN2a cells in our experiments, PEI, 30 SuperFect and PAMAM, are also potent lysosomotropic, osmotic agents which can swell in acidic environments and rupture endosomes (Boussif, 0., et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethyleneimine. Proc. Natl. Acad. Sci. US.A. 92, 7297-7301 (1995); Haensler, J. & Szoka, F.C.J. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 4, 372-379 (1993)). This might -25- WO 00/72851 PCT/USOO/14353 suggest that branched polvamines clear PrPS' from ScN2a cells by rupturing endosomes and exposing PrPS' to cytosolic degradation processes. However, it is known that the lysosomotropic, endosome-rupturing agents NH 4 Cl, chloroquine, and monensin do not interfere with the formation of PrPSc in ScN2a cells (Taraboulos, A., Raeber, A.J., Borchelt, D.R., Serban, D. & Prusiner, S.B. 5 Synthesis and trafficking of prion proteins in cultured cells. Mol. Biol. Cell 3, 851-863 (1992)). Furthermore, the results also show that chloroquine interferes with the ability of branched polyamines to clear PrPSC and that polyamines can clear PrPsc in vitro at acidic pH in the absence of cell membranes. Together, these observations rule out endosome rupture as the mechanism by which branched polyanines remove PrPSC. 10 Without committing to any particular mechanism of action it appears likely that branched polyamines require the acidic environment of intact endosomes or lyzosomes to destroy PrPSC. The structure-activity profile of polymers tested reveals that the most active compounds possess densely packed, regularly-spaced amino groups, suggesting that these compounds may bind to a ligand which has periodically-spaced negative charges. Several scenarios remain possible. (1) Branched 15 polyamines may bind directly to PrPS' arranged as an amyloid with exposed negatively-charged moieties and induce a conformational change under acidic conditions. (2) Treatment of PrP 27-30 with acid decreases turbidity and increases a-helical content, suggesting that such conditions might dissociate PrPs into monomers (Safar, J., Roller, P.P., Gajdusek, D.C. & Gibbs, C.J., Jr. Scrapie amyloid (prion) protein has the conformational characteristics of an aggregated molten globule 20 folding intermediate). It is therefore possible that polyamines bind to an equilibrium unfolding intermediate of PrPSc present under acidic conditions. (3) Alternatively, polyamines might sequester a cryptic, negatively charged component bound to PrPSc that is essential for protease resistance, but which is only released when PrPSC undergoes an acid-induced conformational change. Such a component might act as a chaperone for PrPSc inside endosomes or lysosomes. (4) Finally, another 25 possibility is that polyamines activate an endosomal or lysosomal factor which can induce a conformational change in PrPSc. Clearly, more work will be required to determine the precise mechanism by which branched polyamines destroy PrPSc. GENERAL APPLICABILITY OF ASSAY 30 The in vitro assay described here is generally applicable in the search for compounds that effectively clear conformationally altered proteins present in food thereby preventing a number of degenerative diseases, where the accumulation of proteins seems to mediate the pathogenesis of these illnesses. By simulating lysosomes, where proteases hydrolyze proteins under acidic conditions, the -26- WO 00/72851 PCT/USOO/14353 in vitro brain homogenate assay is able to rapidly evaluate the efficacy of a variety of polyamines to induce degradation of PrPs. The in vitro assay which used scrapie infected brain homogenate to test for compounds which clear PrPSc could be modified to assay for compounds which would clear any conformationally 5 altered protein. The assay is carried out by homogenizing the organ or tissue where the conformationally altered protein is present in the highest concentration. The pH of the homogenate is then reduced to less than 5.0 and preferably 4.0 or less. For example pancreatic tissue can be homogenized to produce an assay to test for compounds which clear amylin which is associated with type II Diabetes. Homogenized kidney could be used to test for compounds which clear p2 10 microglobulin and homogenized heart or vascular tissue used to test for compounds which clear atrial natriuretic factor. Those skilled in the art will recognize other organs and tissue types which can be homogenized to test for other compounds which clear other conformationally altered proteins. Besides using the in vitro assay to screen for potential drugs, the compounds found via the assay such as branched polyamines provide a new tool for exploring the conversion of a protein to 15 conformationally altered protein, e.g. PrPC into PrPsc. The mechanism by which branched polyamines render PrPSC susceptible to proteolysis, remains to be established. Whether the interaction of branched polyamines with PrPS'c is reversible is unknown. In addition, we do not know whether branched polyamines are able to solubilize PrPSC without irreversibly denaturing the protein. Whatever the mechanism by which branched polyamines interact with PrPsc, it is likely to be 20 different from that found with chaotropes as well as denaturing detergents and solvents (Prusiner, S.B., Groth, D., Serban, A., Stahl, N. & Gabizon, R. Attempts to restore scrapie prion infectivity after exposure to protein denaturants. Proc. Natl. Acad. Sci. USA 90, 2793-2797 (1993)). Using the assays described and disclosed here certain specific branched polyamines have been found which mediate the clearance of PrPS from cultured cells under non-cytotoxic conditions. 25 These compounds offer the intriguing possibility of being added to a wide range of low pH food products to neutralize conformational altered proteins present. Since the compounds found act by stimulating normal cellular pathways of protein degradation to destroy PrPS", this class of compounds would also likely be of value in the treatment of other degenerative and hereditary disorders where abnormally folded, wild-type or mutant proteins accumulate. Such an approach 30 may find merit in developing an effective therapeutics for one or more of the common, degenerative illnesses including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, adult onset diabetes mellitus and the amyloidoses (Beyreuther, K. & Masters, C.L. Serpents on the road to dementia and death. Accumulating evidence from several studies points to the normal function of presenilin 1 and suggests how the mutant protein contributes -27- WO 00/72851 PCT/US00/14353 to deposition of amyloid plaques in Alzheimer's disease. Nature Medicine 3, 723-725 (1997); Masters, C.L. & Beyreuther, K. Alzheimer's disease. BMJ316, 446-448 (1998); Selkoe, D.J. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends in Cell Biol. 8, 447-453 (1998); Selkoe, D.J. Translating cell biology into therapeutic advances in 5 Alzheimer's disease. Nature 399, A23-31 (1999); Wong, P.C., et al. An adverse property of a familial ALS-linked SOD 1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105-1116 (1995); Spillantini, M.G., Crowther, R.A., Jakes, R., Hasegawa, M. & Goedert, M. a-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc. Natl. A cad. Sci. USA 95, 6469-6473 10 (1998); Hutton, M., et al. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702-705 (1998); Stone, M.J. Amyloidosis: a final common pathway for protein deposition in tissues. Blood 75 , 531-545 (1990)). Whether branched polyamines might also prove efficacious in a variety of inherited disorders where the accumulation of abnormal proteins is a hallmark of the illness remains to be established; these genetic maladies 15 include heritable forms of prion disease, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Pick's disease and amyloidosis, as well as the triplet repeat diseases including Huntington's disease, spinal cerebellar ataxias and myotonic dystrophy (Fu, Y.-H., et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256-1259 (1992); Group, T.H.s.D.C.R. A novel gene containing a trinucleotide repeat that is 20 expanded and unstable on Huntington's disease chromosomes. Cell 72, 971-983 (1993)). Compounds identified via assays of the invention such as branched polyamines will find utility in preventing or delaying the onset of these genetic diseases where carriers can often be identified decades in advance of detectable neurologic or systemic dysfunction. The invention is based on the discovery that several dendritic polycations, including the 25 starburst dendrimers Superfect T M (QIAGEN@, Valencia, CA), polyamidoamide (PAMAM), and the hyperbranched polycation polyethyleneimine (PEI), were surprisingly found to eliminate PrPS' from cultured scrapie-infected neuroblastoma cells. These highly-branched, polycationic compounds provide a novel class of therapeutic agents to combat prion diseases and other degenerative disease including the amyloidoses. The removal of PrPSC is dependent on both the concentration of dendritic 30 polymer and length of exposure. Dendritic polymers were able to clear PrPsc at concentrations which were not cytotoxic. Repeated exposures to heat-degraded starburst PAMAM dendrimer or PEI caused a dramatic reduction in PrP' levels which persisted for a month even after removal of the compound. Dendritic polycations did not appear to destroy purified PrPSc in vitro, and therefore may act through a generalized mechanism. Dendritic polycations represent a class of compounds which -28- WO 00/72851 PCT/USOO/14353 can be used as therapeutic agents in pnion diseases and other disorders involving insoluble protein deposits, such as the amyloidoses. EXAMPLES 5 The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the present invention, and are not intended to limit the scope of what the inventors regard as their invention nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g. amounts, temperature, etc.) but some 10 experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric. METHODS AND MATERIALS 15 Chemicals. High molecular weight PEI was purchased from Fluka. DOTAP cationic lipid was purchased from Boehringer Mannheim and SuperFect transfection reagent was purchased from QIAGEN@. All other compounds were purchased from Sigma-Aldrich. All test compounds were dissolved in water at stock concentration of 3 mg/ml and filtered through a Millipore 0.22 m m filter. 20 Cultured cells. Stock cultures of ScN2a cells were maintained in MEM with 10% FBS, 10% Glutamax (Gibco BRL), 100 U penicillin, and 100 mg/ml streptomycin (supplemented DME). Immediately prior to addition of test compounds, the dishes were washed twice with fresh supplemented DME media. After exposure to test compounds, dishes were drained of media and cells were harvested by lysis in 0.25-1 ml 20 mM Tris pH 8.0 containing 100 mM NaCl, 0.5% 25 NP-40, and 0.5% sodium deoxycholate to obtain a total protein concentration of 1 mg/mi measured by the BCA assay. Nuclei were removed from the lysate by centrifugation at 2000 rpm for 5 min. For samples not treated with proteinase K, 40 pl of whole lysate (representing 40 yg total protein) was mixed with an equal volume of 2x SDS reducing sample buffer. For proteinase K digestion, 20 jzg/ml proteinase K (Boehringer Mannheim) (total protein:enzyme ratio = 50:1) was added, and the 30 sample was incubated for 1 h at 37*C. Proteolytic digestion was terminated by the addition of Pefabloc to a final concentration of 5 mM. One ml samples were centrifuged at 100,000 x g for 1 h at 4*C, the supernatants were discarded, and the pellets were resuspended in 80 pl of reducing SDS sample buffer for SDS-PAGE. -29- WO 00/72851 PCT/USOO/14353 Brain homogenates. Brain homogenates from RML scrapie-affected CD-1 mice (10% (w/v) in sterile water) were prepared by repeated extrusion through syringe needles of successively smaller size, from 18 to 22 gauge. Nuclei and debris were removed by centrifugation at 1000 x g for 5 min. The bicinchnoninic acid (BCA) protein assay (Pierce) was used to determine protein 5 concentration. Homogenates were adjusted to 1 mg/ml protein in 1% NP-40. For reactions, 0.5 ml homogenate was incubated with 25 ml 1.0 M buffer (sodium acetate for pH 3-6 and Tris acetate for pH 7-10) plus or minus 10 ml of polyamine stock solution (3 mg/ml) for 2 h at 37 C with constant shaking. The final pH value of each sample was measured directly with a calibrated pH electrode (Radiometer Copenhagen). Following incubation, each sample was neutralized with an equal volume 10 0.2 M HEPES pH 7.5 containing 0.3 M NaCl and 4% Sarkosyl. Proteinase K was added to achieve a final concentration of 20 pg/mI, and samples were incubated for 1 h at 37*C. Proteolytic digestion was terminated by the addition of Pefabloc to a final concentration of 5 yZM. Ten pl of digested brain homogenate was mixed with equal volume 2x SDS sample buffer and analyzed by SDS-PAGE followed by Western blotting. 15 Western blotting. Following electrophoresis, Western blotting was performed as previously described (Scott, M., et al. Transgenic mice expressing hamster prion protein produce species specific scrapie infectivity and amyloid plaques. Cell 59, 847-857 (1989)). Samples were boiled for 5 min and cleared by centrifugation for 1 min at 14,000 rpm in aBeckman ultrafuge. SDS-PAGE 20 was carried out in 1.5 mm, 12% polyacrylamide gels(Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T-4. Nature 227, 680-685 (1970)). Membranes were blocked with 5% non-fat milk protein in PBST (calcium- and magnesium-free PBS plus 0.1% Tween 20) for 1 h at room temperature. Blocked membranes were incubated with primary R073 polyclonal antibody (to detect MoPrP) (Serban, D., Taraboulos, A., DeArmond, S.J. & Prusiner, 25 S.B. Rapid detection of Creutzfeldt-Jakob disease and scrapie prion proteins. Neurology 40, 110 117 (1990)) or 3F4 monoclonal antibody (to detect MHM2 PrP) (Kascsak, R.J., et al. Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins. J Virol. 61, 3688-3693 (1987)) at 1:5000 dilution in PBST overnight at 4*C. Following incubation with primary antibody, membranes were washed 3 x 10 mm in PBST, incubated with horseradish peroxidase-labeled 30 secondary antibody (Amersham Life Sciences) diluted 1:5000 in PBST for 30 to 60 min at 4'C and washed again for 3 x 10 min in PBST. After chemiluminescent development with ECL reagent (Amersham) for I min, blots were sealed in plastic covers and exposed to ECL Hypermax film (Amersham). Films were processed automatically in a Konica film processor. -30- WO 00/72851 PCTUSOO/14353 EXAMPLE 1A Branched polyamines inhibit formation of nascent PrPSc and induce clearance of pre-existing PrPsc Western blots were probed with 3F4 monoclonal antibody which recognizes newly expressed 5 MHM2 PrP. ScN2a cells were exposed to SuperFect for 3 h and harvested 3 d after removal of SuperFect. Gells were run on both undigested, control sample and a sample subjected to limited proteolysis. The samples were run in separate lanes 1-6 with a control and limited proteolysis sample for each of the 6 lanes as follows: Lane 1: DOTAP-mediated transfection. Lane 2: 30 pg/ml SuperFect, 5 pig pSPOX MHM2. Lane 3: 75 pg/ml SuperFect, 5 pg pSPOX MHM2. Lane 4: 150 10 ptg/ml SuperFect, 5 pg pSOX MHM2. Lane 5: 150 yg/ml SuperFect, 10 Ig pSPOX MHM2. Lane 6: No addition of either transfection reagent or DNA. Forty yl of undigested brain homogenate was used in these studies while those samples subjected to limited digestion with proteinase K were concentrated 25-fold prior to SDS-PAGE. One ml of the digest were centrifuged at 100,000 x g for 1 h at 4*C and the pellets suspended in 80 A of SDS sample buffer prior to SDS-PAGE followed by 15 Western blotting. Apparent molecular weights based on migration of protein standards are 34.2, 28.3, and 19.9 kDa. All of the control lanes 1-6 show multiple bands as expected. However, of the samples subjected to limited proteolytic only lane 1 shows bands. Unexpectedly, all of the partially digested sample lanes 2-5 show no bands and as expected no bands in the partially digested lane 6. These 20 results show the effect of using SuperFect in clearing PrPSc. EXAMPLE lB The blot described above was stripped of antibody, exposed to labeled R073 and redeveloped. The antibody 3F4 used in Example 1 binds to PrPc but not to PrPSc. However, R073 25 binds to PrPS" and PrPC. Lanes 1, 2 and 3 show decreasing amounts of PrPsc and lanes 4 and 5 show no detectable PrPSc. EXAMPLE 2A Gels were run on undigested controls 1-4 and as above, samples subjected to limited 30 proteolysis. The lanes were as follows: Lane 1: No SuperFect. Lane 2: 30 pg/ml SuperFect. Lane 3: 75 pg/ml SuperFect. Lane 4: 150 ig/ml SuperFect. ScN2a cells were exposed to SuperFect for 3 h and harvested 3 d after removal of SuperFect. Apparent molecular weights based on migration of protein standards are 33.9, 28.8, and 20.5 kDa. In that each sample was tested after the same -31- WO 00/72851 PCT/USOO/14353 time period the results show the dose-dependent effect of SuperFect on PrPSc removal. Lanes 1, 2 and 3 show decreasing amounts of PrPSC and lane 4 shows no detectable PrPSc. EXAMPLE 2B 5 To determine the time-dependent effect of SuperFect three different panels with four lanes each were prepared and run as follows: ScN2a cells were exposed to 7.5 pg/ml: SuperFect (lanes 1-4), PEI (average molecular weight -60,000)(lanes 5-8), or PAMAM, generation 4.0 (lanes 9-12). Time of exposure times for each polyanine: 0 hours (lanes 1, 5, and 9), 4 hours (lanes 2, 6, and 10), 8 hours (lanes 3, 7, and 11), 16 hours (lanes 4, 8, and 12). All samples were subjected to limited 10 proteolysis to measure PrPSC. Apparent molecular weights based on migration of protein standards are 38, 26, and 15 kDa. Lanes of each of the three panels show decreasing amounts of PrPSc. EXAMPLE 3 In this example four panels A,B, C and D were created with panels having three double 15 (control and test) lanes each. ScN2a cells were exposed to 1.5 yg/ml: (A) SuperFect, (B) PEI (average molecular weight -60,000), (C) PAMAM, generation 4.0, or (D) no addition. Cells were harvested: Lane 1, before addition; Lane 2, immediately following 1 week continuous exposure to test compounds; and Lane 3, three weeks after removal of test compounds. Minus (-) symbol denotes undigested, control sample and plus (+) symbol designates sample subjected to limited 20 proteolysis. Apparent molecular weights based on migration of protein standards are 33.9, 28.8, and 20.5 kDa. Test lanes 3 in panel A showed slight PrPSc after three weeks and test lanes 3 in panels B and C showed no detectable PrPsc whereas PrPs' was present in all lanes in panel D. EXAMPLE 4A 25 Four separate gels were run to demonstrate the effect of adding chloroquine would have on PrPS" levels. The lanes 1 control and 3 where chloroquine was added show clear bands for PrPsc whereas lanes 2 and 4 with no chloroquine show barely detectable amounts of PrPS". The four lanes were prepared as follows: ScN2a cells were treated Lane 1: Control media. Lane 2: 7.5 [yg/ml PEI (average molecular weight -60,000). Lane 3: PEI plus 100 yuM chloroquine. Lane 4: PEI plus 30 30 yM NH 4 C1. Chloroquine and NH 4 C1 were added 1 h prior to addition of PEI. Cells were harvested 16 hours after addition of PEI. All samples shown were subjected to limited proteolysis to measure PrPsc. Apparent molecular weights based on migration of protein standards are 38, 26, and 15 kDa. -32- WO 00/72851 PCT/USOO/14353 EXAMPLE 4B Eight lanes with SuperFect (+SF) and eight lanes without SuperFect (-SF) were prepared. Lanes 1-8 of each group had an adjusted pH of 3.6,, 4, 5, 6, 7, 8, 9 and 9.6. In vitro mixture of crude mouse brain homogenates with SuperFect under a range of pH conditions was performed as 5 described in methods (measured final pH of each sample denoted above the lanes). Addition of 60 pg/ml SuperFect denoted as "+SF" and control with no addition as "-SF". All samples shown were subjected to limited proteolysis to measure PrPsc. Apparent molecular weights based on migration of protein standards are 30 and 27 kDa. All lanes of the -SF group showed PrPSc present. Lanes 3-8 of the +SF group showed PrPSC. However, lanes 1 and 2 with respective pH levels of 3.6 and 4.0 10 showed very slight detectable PrPsc. The results show that the ability of a blanched polycation such as SuperFect to clear PrPSc is pH dependent. EXAMPLE 5 Sixteen different lanes were prepared as described. Lanes 1 and 2 were control lanes and 15 each of lanes 3-16 contained a different compound as tested in Table 1. The test compounds were all polyamines. Thus, the results show removal of PrPc from brain homogenate in vitro by various polyamines. Samples were incubated with polyamines at pH 3.6 and processed as described in Methods. Each polyamine was tested at 60 pg/ml concentration. Lanes 1 and 2: control. Lane 3: poly-(L)lysine. Lane 4: PAMAM, generation 0.0. Lane 5: PAMAM, generation 1.0. Lane 6: 20 PAMAM, generation 2.0. Lane 7: PAMAM, generation 3.0. Lane 8: PAMAM, generation 4.0. Lane 9: PAMAM-OHl, generation 4.0. Lane 10: PPI, generation 2.0. Lane 11: PPI, generation 4.0. Lane 12: linear PEI. Lane 13: high MW PEI. Lane 14: low MW PEI. Lane 15: average MW PEI. Lane 16: SuperFect. All samples shown were subjected to limited proteolysis to measure PrPSc. Apparent molecular weights based on migration of protein standards are 30 and 27 kDa.Table 1. 25 Removal of PrPsc by polymer compounds. IC 5 0 = approximate concentration of polymer required to reduce PrPSC to 50% of control levels in ScN2a cells after exposure for 16 hours. All compounds were tested at 5 different concentrations. PrPS'c levels were measured by densitometry of Western blot signals. -33- WO 00/72851 PCTUSOO/14353 TABLE 1 (Note that Table 1 includes information on the characteristics of compounds used but that the list does not correspond directly to lanes 1-16) 5 Molecular Primary NH 2
IC
50 (ng/m1) Compound Weight groups PAMAM generation 0.0 517 4 >10,000 PAMAM generation 1.0 1,430 8 >10,000 10 PAMAM generation 2.0 3,256 16 2,000 PAMAM generation 3.0 6,909 32 400 PAMAM generation 4.0 14,215 64 80 PAMAM-OH generation 4.0 14,279 0 >10,000 PPI generation 2.0 773 8 2,000 15 PPI generation 4.0 3,514 32 80 Low MW PEI -25,000 2,000 Average MW PEI -60,000 400 High MW PEI -800,000 80 Linear PEI -60,000 2,000 20 poly-(L)1ysme -60,000 >500 10,000 SuperFect 400 Lanes 7, 8, 11 and 13 showed the best results, i.e. best ability to clear PrPSc under these conditions. Specifically, PAMAM generation 4.0 in lane 8 showed the best ability to clear PrPsc 25 under these conditions whereas PAMAM-OH generation 4.0 showed almost no detectable ability to clear PrPsc and was comparable to the control. EXAMPLE 6 Transfection of PrPsc Expressing Cells with Dendrimer Compounds 30 Cells of neuronal origin expressing PrPSc were examined for the ability of compounds to suppress PrPSC formation. Transfection Studies Stock cultures of N2a and ScN2a cells were maintained in MEM with 10% FBS, 10% 35 Glutamax (Gibco BRL), 100 U penicillin, and 100 yg/ml streptomycin. Cells from a single confluent 100 mm dish were trypsinized and split into 10 separate 60 mm dishes containing DME plus 10% FBS, 10% Glutamax, 100 U penicillin, and 100 yg/ml streptomycin (supplemented DME) one day prior to transfection. Immediately prior to transfection, the dishes were washed twice with 4 ml supplemented DME media and then drained. -34- WO 00/72851 PCT/USOO/14353 For DOTAP-mediated transfection, 15 jig pSPOX MIHM2 was resuspended in 150 yl sterile Hepes Buffered Saline (HBS) on the day of transfection. The DNA solution was then mixed with an equal volume of 333 pg/ml DOTAP (Boehringer Mannheim) in HBS in Falcon 2059 tubes and incubated at room temperature for 10 minutes to allow formation of DNA/lipid complexes. 5 Supplemented DME (2.5 ml) was added to the mixture, and this was then pipetted onto drained cell monolayers. The following day, the medium containing DNA/lipid was removed and replaced with fresh supplemented DME. Cells were harvested three days later. For SuperfectTM-mediated transfections/exposures, SuperfectTM with or without DNA was added to 1 ml supplemented DME in a Falcon 2059 tube to achieve the specific concentrations 10 needed for each experiment. This mixture was pipetted up and down twice and then onto drained cell monolayers. After exposure for the indicated times, the medium containing SuperfectTM was removed and replaced with fresh supplemented DME. Cells were harvested at specified times after removal of SuperfectTM. Exposures to PPI (DAB-Am-8, Polypropylenimine octaamine Dendrimer, Generation 2.0 15 Aldrich 46,072-9), Intact PAMAM (Starburst (PAMAM)Dendrimer, Generation 4. Aldrich 41,244-9), PEI (Sigma), poly-(L)lysine (Sigma), and poly-(D) lysine (Sigma) were performed as described above for Superfect T M . Isolation of Protein from Treated Cells 20 Cells were harvested by lysis in 1.2 ml of 20 mM Tris pH 8.0 containing 100 mM NaCl, 0.5% NP-40, and 0.5% sodium deoxycholate. Nuclei were removed from the lysate by centrifugation at 2000 rpm for 5 min. This lysate typically had a protein concentration of 0.5 mg/ml measured by the BCA assay. For samples not treated with proteinase K, 40 il of whole lysate (representing 20 pg total protein) was mixed with 40 pl of 2x SDS sample buffer. For proteinase K 25 digestion, 1 ml of lysate was incubated with 20 pg/ml proteinase K (total protein:enzyme ratio = 25:1) for 1 hr at 37*C. Proteolytic digestion was terminated by the addition of 8 pl of 0.5M PMSF in absolute ethanol. Samples were then centrifuged for 75 min in a Beckman TLA-45 rotor at 100,000 x g at 4*C. The pellet was resuspended by repeated pipetting in 80 pl of IX SDS sample buffer. The entire sample (representing 0.5 mg total protein before digestion) was loaded for 30 SDS-PAGE. -35- WO 00/72851 PCT/USOO/14353 Western Blot Analysis Immunoreactive PrP bands from the DOTAP-mediated transfection were detected before and after digestion with proteinase K with monoclonal antibody 3F4. The construct used to express PrPsc in the ScN2a cells is MHM2 a chimeric construct that differs from wild-type (wt) MoPrP at 5 positions 108 and 111 (Scott et al., (1992) Protein Sci. 1:986-997). Substitution at these positions with the corresponding residues (109 and 112 respectively) from the Syrian hamster (SHa) PrP sequence creates an epitope for 3F4 (Kascsak et al., (1987) J. Virol. 61:3688-3693), which does not recognize endogenous wt MoPrP in ScN2a cells and hence facilitates specific detection of the transgene by Western blot. 10 Following electrophoresis, Western blotting was performed as previously described (Scott et al., (1989) Cell 59:847-857). Samples were boiled for 5 minutes and cleared by centrifugation for 1 minute at 14,000 rpm in a Beckman ultrafuge. SDS-PAGE was carried out in 1.5 mm, 12% polyacrylamide gels (Laemmli (1970) Nature 227:661-665). Membranes were blocked with 5% nonfat milk protein in PBST (calcium- and magnesium-free PBS plus 0.1% Tween 20) for 1 hour at 15 room temperature. Blocked membranes were incubated with primary R073 polyclonal or 3F4 monoclonal antibody at a 1:5000 dilution in PBST overnight at 4 *C. Following incubation with primary antibody, membranes were washed 3 x 10 minutes in PBST, incubated with horseradish peroxidase-labeled secondary antibody (Amersham Life Sciences) diluted 1:5000 in PBST for 25 minutes at room temperature and washed again for 3x 10 minutes in 20 PBST. After chemiluminescent development with ECL reagent (Amersham) for 1 minute, blots were sealed in plastic covers and exposed to ECL Hypermax film (Amersham). Films were processed automatically in a Konica film processor. In contrast to DOTAP-transfected cells, ScN2a cells transfected with varying concentrations of SuperfectTM and DNA did not appear to contain protease-resistant MHM2. Close scrutiny 25 revealed that, prior to protease digestion, SuperfectTM-transfected samples express MHM2 bands which are not seen in the background pattern of the control sample. These observations indicate that MHM2 PrP was successfully expressed using SuperfectTM transfection reagent, but conversion of MHM2 PrPC to protease-resistant MIHM2 PrPsc was inhibited by SuperfectTM. To examine whether SuperfectTM had affected levels of preexisting PrPSc in ScN2a cells, the 30 Western blot probed with 3F4 antibody was reprobed with polyclonal antibody R073, which is able to recognize endogenous MoPrP. Remarkably, SuperfectTm caused the disappearance of preexisting MoPrPS from ScN2a cells in a dose-dependent manner. After treatment with SuperfectTM, PrPsc could not be detected in the nuclear fraction, pellet, supernatant, or media. The concentration of SuperfectTm required to fully remove preexisting PrPSc with a three hour exposure was 300 pg/ml, -36- WO 00/72851 PCT/USOO/1 4353 whereas 30 pg/ml was sufficient to interfere with the formation of new MHM2 PrPsc within the same time frame. Length of exposure dramatically influenced the ability of SuperfectTM to remove PrPsc from ScN2a cells. Whereas a 3 hour exposure to 150 ptg/ml SuperfectTM significantly lowered PrPsc levels 5 in ScN2a cells, exposure for 10 mn to the same dose of SuperfectTM did not affect PrPS' levels. When ScN2a cells were exposed to 2 pg/ml SuperfectTM continuously for 1 week, PrPsc disappeared completely. The conditions tested did not appear to be toxic for the cells. Neither 150 ptg/ml Superfect T M for 3 hrs nor 2 pg/mI SuperfectTM continuously for 1 week caused any obvious changes in cell 10 morphology, viability, or growth as judged by phase contrast microscopy. EXAMPLE 7 Elimination of PrPSc by repeated exposures to SuperfectTM The duration in the reduction in PrPSc levels after exposure to SuperfectTM was examined, 15 and it was shown that this reduction could persist for extended periods after removal of SuperfectTM. Following the exposure of ScN2a cells to a single dose of 150 pg/ml SuperfectTM for 3 hrs, PrPsc levels remained low for one week, but returned to near baseline levels after 3 weeks in culture without SuperfectTm In contrast, when ScN2a cells were exposed to 4 separate doses of SuperfectTM over the 20 course of 16 days, very little PrPsc could be detected 4 weeks after the final exposure to SuperfectTM. This result offers hope that prolonged exposure to SuperfectTM may lead to long term cure of scrapie infection in cultured cells. EXAMPLE 8 25 SuperfectTM does not destroy PrPsc directly The dendrimer Superfect T M was used to determine if it could exert a similar inhibitory effect on PrPSc in either crude brain homogenates or purified PrP 27-30 rods. Brain homogenates from normal and scrapie-affected Syrian hamsters (10% (w/v) in sterile PBS) were prepared by repeated extrusion through syringe needles of successively smaller size, from 18 to 30 22 gauge. Nuclei and debris were removed by centrifugation at 1000 x g for 10 min. The bicinchnoninic acid (BCA) protein assay (Pierce) was used to determine protein concentration. Homogenates were adjusted to 10 mg/ml protein with PBS and 50 pl was added to 450 Il of lysis buffer containing 100 mM NaCl, 1 mM EDTA, 0.55% sodium deoxycholate, 0.55% Triton X-100, and 50 mM Tris-HC1 pH 7.5. This mixture was then incubated with 0-300 ptg/ml SuperfectTM for 3 -37- WO 00/72851 PCT/USOO/1 4353 hrs at 37 'C and then centrifuged for 10 mm at 14,000 rpm in a Beckman Ultrafuge. The pellet was resuspended in 450 pl lysis buffer without SuperfectTM. Proteinase K (Boehringer Mannheim) was added to achieve a final concentration of 20 pLg/ml, and thus the ratio of total protein/enzyme was 50:1. Samples were incubated for 1 h at 37 'C. Proteolytic digestion was terminated by the addition 5 of 8 pl of 0.5 M PMSF in ethanol. Samples were then centrifuged for 75 mmi in a Beckman TLA-45 rotor at 100,000 x g at 4 'C. Undigested samples (10 ptl) were mixed with an equal volume of 2x SDS sample buffer. For digested samples, the pellet was resuspended by repeated pipetting in 100 pl 1x SDS sample buffer. Twenty il (equivalent to 100 pLg of total protein prior to proteinase K digestion) of each sample was loaded for SDS-PAGE. 10 PrP 27-30 rods were purified from scrapie-affected Syrian hamster brains and previously described (Prusiner et al., (1983) Cell 35:349-358). Purified rods (3.5 pg/mil) were incubated with or without 900 pg/ml SuperfectTM in 100 I supplemented DME. After 16 hrs at 37 *C, the suspension was centrifuged at 100,000 x g at 4 *C. The pellet was resuspended in 500 pl of buffer containing 1 mg/mi BSA, 100 mM NaCl, 1 mM EDTA, 0.55% sodium deoxycholate, 0.55% Triton 15 X-100, and 50 mM Tris-HCl pH 7.5. Proteinase K was added to achieve a final concentration of 20 pg/ml. Samples were incubated for 1 h at 37 *C. Proteolytic digestion was terminated by the addition of 8 pl of 0.5 M Pefabloc (Boehringer Mannheim). Samples were then centrifuged for 75 min at 100,000 x g at 4 'C. Undigested samples (50 pl) were mixed with an equal volume of 2x SDS sample buffer. For digested samples, the pellet was resuspended by repeated pipetting in 100 p1 1x 20 SDS sample buffer. Forty pil of each sample was loaded for SDS-PAGE. When SuperfectTM was mixed with either crude homogenates of scrapie-affected Syrian hamsters or with purified Syrian hamster PrP 27-30, there was no significant change in the level of proteinase K-resistant PrPSc. These results suggest that the removal of PrPSC from ScN2a cells by SuperfectTM depends on the presence of intact cellular machinery. 25 EXAMPLE 9 Clearance of PrPSc levels by other dendritic polycations The SuperfectTM compound is a high molecular weight component of heat-degraded PAMAM Starburst dendrimers, which is a cationic, highly-branched, monodisperse polymers (Tang 30 et al., (1996) Bioconjugate Chem. 7:703-714). To identify other potentially useful anti-prion therapeutic agents, we screened three other dendritic polycations and two linear cationic polymers for their ability to clear PrPsc from ScN2a cells. Among the dendritic macromolecules tested, polyetheleneimine (PEI) was the most potent, removing the majority of PrPsc from ScN2a cells after 3 hrs when used at a concentration of 10 pg/ml. Intact PAMAM displayed a potency comparable to -38- WO 00/72851 PCT/USOO/14353 SuperfectTM, removing approximately half of the detectable PrPSc when used at a concentration of 50 ptg/ml. In contrast, the dendrimer polypropyleneimine (PPI), poly-(L)1ysine, and the linear polycation poly-(D)1ysine failed to reduce PrPsc levels at concentrations between 10-50 pig/ml. These results demonstrate that a branched polymeric architecture is required to clear PrPSc. 5 Furthermore, exposure of ScN2a cells to either PEI or intact PAMAM for one week at a concentration of 1.5 yg/ml completely removes PrPSc, effectively curing the cells of scrapie infection. While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and 10 equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto. -39-
Claims (10)
1. A method of sterilizing an object, comprising the steps of: 5 contacting the object with a composition of a branched polycation at a pH of 5.0 or less; and allowing the composition to remain in contact with the object for a period of time sufficient to render a conformationally altered protein non-infectious.
2. The method of claim 1, further comprising: 10 removing the composition from the object.
3. The method of claim 1, wherein the branched polycation is a polycationic dendrimer selected from the group consisting of polypropylene imine, polyethyleneimine (PEI) poly(4'-aza-4'-methylheptamethylene D-glucaramide), polyamidoamines and variants or fragments 15 thereof.
4. The method of claim 1, wherein the object is a cell culture.
5. The method of claim 1, wherein the object is a bovine product. 20
6. A composition, comprising: water in an amount of from 1% to 99.99% by weight; polycationic dendrimer in an amount of 0.001% to 10% by weight. 25
7. The composition of claim 6, wherein the composition is a pharmaceutical composition comprising a therapeutically effective amount of a branched polycation and a pharmaceutically acceptable excipient. 30
8. The composition of claim 6, further comprising a second compound selected from the group consisting of: a detergent, an antibacterial compound, an antiviral compound, and an antifungal compound. -40- WO 00/72851 PCT/USOO/14353
9. A capsule for oral administration of a compound, comprising: gelatin extracted from a cow; and a branched polycation. 5 10. A cell culture, comprising: cells genetically engineering to produce a pharmaceutical; cell nutrients; and a branched polycation.
10 -41-
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/322,903 US6214366B1 (en) | 1999-06-01 | 1999-06-01 | Clearance and inhibition of conformationally altered proteins |
US09/322903 | 1999-06-01 | ||
US09/406972 | 1999-09-28 | ||
US09/406,972 US6419916B1 (en) | 1999-06-01 | 1999-09-28 | Assay for compounds which affect conformationally altered proteins |
US09/447,456 US6331296B1 (en) | 1999-06-01 | 1999-11-22 | Food additives which affect conformationally altered proteins |
US09/447456 | 1999-11-22 | ||
US09/494,814 US6322802B1 (en) | 1999-06-01 | 2000-01-31 | Method of sterilizing |
US09/494814 | 2000-01-31 | ||
PCT/US2000/014353 WO2000072851A1 (en) | 1999-06-01 | 2000-05-24 | Method of sterilizing |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2004202594A Division AU2004202594A1 (en) | 1999-06-01 | 2004-06-11 | Method of sterilizing |
Publications (2)
Publication Number | Publication Date |
---|---|
AU5044100A true AU5044100A (en) | 2000-12-18 |
AU771547B2 AU771547B2 (en) | 2004-03-25 |
Family
ID=27502253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU50441/00A Ceased AU771547B2 (en) | 1999-06-01 | 2000-05-24 | Method of sterilizing |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP1187622A4 (en) |
JP (1) | JP2003500169A (en) |
KR (1) | KR20020006050A (en) |
AU (1) | AU771547B2 (en) |
BR (1) | BR0011055A (en) |
CA (1) | CA2375237A1 (en) |
IL (1) | IL146769A0 (en) |
MX (1) | MXPA01012357A (en) |
NZ (1) | NZ515607A (en) |
WO (1) | WO2000072851A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6322802B1 (en) | 1999-06-01 | 2001-11-27 | The Regents Of The University Of California | Method of sterilizing |
US6720355B2 (en) * | 1997-02-21 | 2004-04-13 | The Regents Of The University Of California | Sodium dodecyl sulfate compositions for inactivating prions |
US6719988B2 (en) | 1997-02-21 | 2004-04-13 | The Regents Of The University Of California | Antiseptic compositions for inactivating prions |
EP1251737B1 (en) * | 2000-01-31 | 2005-04-06 | The Regents of the University of California | Compositions treated to inactivate infectious proteins |
ES2387781T3 (en) * | 2001-10-05 | 2012-10-01 | Steris Inc. | In vitro evaluation procedure for priocidal treatments (anti-prions) |
RU2309410C2 (en) * | 2002-02-28 | 2007-10-27 | Майкроусенс Байофейдж Лимитед | Binding of pathological forms of prion proteins |
AU2003283205A1 (en) * | 2002-11-26 | 2004-06-18 | Danmarks Fodevare- Og Veterinaerforskning | Dendrimer conjugates for selective of protein aggregates |
BRPI0510093B8 (en) | 2004-04-20 | 2022-12-27 | Dendritic Nanotechnologies Inc | dendritic polymers |
US7985424B2 (en) | 2004-04-20 | 2011-07-26 | Dendritic Nanotechnologies Inc. | Dendritic polymers with enhanced amplification and interior functionality |
DE102004040119A1 (en) * | 2004-08-18 | 2006-04-27 | Heinrich-Heine-Universität Düsseldorf | Agent, useful for e.g. inactivating infectious prion and decontaminating device, instrument or appliance infected with prion, comprises a nano-particle |
US11806718B2 (en) | 2006-03-24 | 2023-11-07 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
EP2001990B1 (en) | 2006-03-24 | 2016-06-29 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using same |
US10900066B2 (en) | 2006-03-24 | 2021-01-26 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
EP2091647A2 (en) | 2006-11-14 | 2009-08-26 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US20080274929A1 (en) * | 2007-05-01 | 2008-11-06 | Whitekettle Wilson K | Method for removing microbes from surfaces |
US8324372B2 (en) * | 2007-07-13 | 2012-12-04 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US9186677B2 (en) | 2007-07-13 | 2015-11-17 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
ES2617599T3 (en) | 2011-04-15 | 2017-06-19 | Becton, Dickinson And Company | Real-time scanning microfluidic thermocycler and methods for synchronized thermocycling and optical scanning detection |
GB201405660D0 (en) * | 2014-03-28 | 2014-05-14 | Gama Healthcare Ltd | A liquid disinfecting composition |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4587329A (en) * | 1984-08-17 | 1986-05-06 | The Dow Chemical Company | Dense star polymers having two dimensional molecular diameter |
US5499979A (en) * | 1987-06-25 | 1996-03-19 | Alza Corporation | Delivery system comprising kinetic forces |
AT408191B (en) * | 1991-08-19 | 2001-09-25 | Haemosan Erzeugung Pharmazeuti | METHOD FOR INACTIVATING PRIONS |
GB9407812D0 (en) * | 1994-04-20 | 1994-06-15 | Nycomed Salutar Inc | Compounds |
US5514388A (en) * | 1994-08-31 | 1996-05-07 | Rohwer; Gary L. | Encapsulated lipid-containing feed |
US5919442A (en) * | 1995-08-11 | 1999-07-06 | Dendritech, Inc. | Hyper comb-branched polymer conjugates |
US5658574A (en) * | 1995-10-13 | 1997-08-19 | Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. | Cleansing compositions with dendrimers as mildness agents |
WO1997049774A2 (en) * | 1996-06-27 | 1997-12-31 | American Ink Jet Corporation | Waterfast pigmented ink jet inks |
FR2759582A1 (en) * | 1997-02-14 | 1998-08-21 | Oreal | DEODORANT COMPOSITION |
AUPP584398A0 (en) * | 1998-09-14 | 1998-10-08 | Starpharma Limited | Inhibition of toxic materials or substances |
-
2000
- 2000-05-24 WO PCT/US2000/014353 patent/WO2000072851A1/en not_active Application Discontinuation
- 2000-05-24 BR BR0011055-8A patent/BR0011055A/en not_active IP Right Cessation
- 2000-05-24 IL IL14676900A patent/IL146769A0/en unknown
- 2000-05-24 CA CA002375237A patent/CA2375237A1/en not_active Abandoned
- 2000-05-24 EP EP00932766A patent/EP1187622A4/en not_active Withdrawn
- 2000-05-24 JP JP2000620963A patent/JP2003500169A/en not_active Withdrawn
- 2000-05-24 AU AU50441/00A patent/AU771547B2/en not_active Ceased
- 2000-05-24 NZ NZ515607A patent/NZ515607A/en unknown
- 2000-05-24 MX MXPA01012357A patent/MXPA01012357A/en not_active Application Discontinuation
- 2000-05-24 KR KR1020017015483A patent/KR20020006050A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
EP1187622A1 (en) | 2002-03-20 |
CA2375237A1 (en) | 2000-12-07 |
AU771547B2 (en) | 2004-03-25 |
EP1187622A4 (en) | 2005-06-22 |
IL146769A0 (en) | 2002-07-25 |
JP2003500169A (en) | 2003-01-07 |
BR0011055A (en) | 2002-05-21 |
WO2000072851A1 (en) | 2000-12-07 |
KR20020006050A (en) | 2002-01-18 |
MXPA01012357A (en) | 2002-09-02 |
NZ515607A (en) | 2003-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6517855B2 (en) | Method of sterilizing | |
AU771547B2 (en) | Method of sterilizing | |
US6720355B2 (en) | Sodium dodecyl sulfate compositions for inactivating prions | |
EP1251737B1 (en) | Compositions treated to inactivate infectious proteins | |
US6214366B1 (en) | Clearance and inhibition of conformationally altered proteins | |
Zobeley et al. | Infectivity of scrapie prions bound to a stainless steel surface | |
Fernández-Borges et al. | Cofactors influence the biological properties of infectious recombinant prions | |
Tatzelt et al. | Chemical chaperones interfere with the formation of scrapie prion protein. | |
Das et al. | Prions: beyond a single protein | |
Heegaard et al. | Dendrimer effects on peptide and protein fibrillation | |
US6719988B2 (en) | Antiseptic compositions for inactivating prions | |
Glatzel et al. | The shifting biology of prions | |
Brown | Drug therapy in human and experimental transmissible spongiform encephalopathy | |
Chakraborty et al. | Prion disease: a deadly disease for protein misfolding | |
US6331296B1 (en) | Food additives which affect conformationally altered proteins | |
US6419916B1 (en) | Assay for compounds which affect conformationally altered proteins | |
EP1567195B1 (en) | Dendrimer conjugates for selective solubilisation of protein aggregates | |
AU2004202594A1 (en) | Method of sterilizing | |
Rossi et al. | Therapeutic approaches to prion diseases | |
Holec et al. | The role of prion strain diversity in the development of successful therapeutic treatments | |
Wisniewski et al. | Conformation as therapeutic target in the prionoses and other neurodegenerative conditions | |
Mabbott et al. | The transmissible spongiform encephalopathies: pathogenic mechanisms and strategies for therapeutic intervention | |
Choi et al. | CHAPTER VI: MANGANESE TREATMENT UPREGULATES PRION PROTEIN EXPRESSION, BUT DOES NOT FACILITATE PROTEINASE-K RESISTANT PRION PROTEIN CONVERSION IN MOUSE BRAIN SLICE CULTURES | |
Hussein et al. | A Review Article Prion Diseases:(I) The Etiology of Prion Diseases | |
Ficher et al. | The influence of surface functionality of poly (propylene imine) dendrimers on aggregation and propagation of scrapie prion protein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |