AU4438602A - New epothilone derivatives, process for their production, and their pharmaceutical use - Google Patents

New epothilone derivatives, process for their production, and their pharmaceutical use Download PDF

Info

Publication number
AU4438602A
AU4438602A AU44386/02A AU4438602A AU4438602A AU 4438602 A AU4438602 A AU 4438602A AU 44386/02 A AU44386/02 A AU 44386/02A AU 4438602 A AU4438602 A AU 4438602A AU 4438602 A AU4438602 A AU 4438602A
Authority
AU
Australia
Prior art keywords
methyl
ethenyl
dihydroxy
general formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU44386/02A
Inventor
Name Given No
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Pharma AG
Original Assignee
Schering AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering AG filed Critical Schering AG
Priority to AU44386/02A priority Critical patent/AU4438602A/en
Publication of AU4438602A publication Critical patent/AU4438602A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

Our Ref:7710130 P/00/011 Regulation 3:2
AUSTRALIA
Patents Act 1990
ORIGINAL
COMPLETE SPECIFICATION STANDARD PATENT Applicant(s): Schering Aktiengesellschaft Mullerstrasse 178 D-13342 Berlin Germany Address for Service: Invention Title: DAVIES COLLISON CAVE Patent Trade Mark Attorneys Level 10, 10 Barrack Street SYDNEY NSW 2000 New epothilone derivatives, process for their production, and their pharmaceutical use The following statement is a full description of this invention, including the best method of performing it known to me:- 5020 New Epothilone Derivatives, Process for their Production, and their Pharmaceutical Use H6fle et al. describe the cytotoxic action of the natural products epothilone A (R hydrogen) and epothilone B (R methyl) N 1 O H I 0 OH 0 Epothilone A (R Epothilone B (R CH 3 in, Angew. Chem. [Applied Chem.], 1996, 108, 1671-1673.
Because of their in-vitro selectivity for breast cell lines and intestinal cell lines and their significantly higher activity against P-glycoprotein-forming multiresistant tumor lines in comparison to taxol as well as their physical properties that are superior to those of taxol, a water solubility that is higher by a factor of 30, this novel structural class is S especially advantageous for the development of a pharmaceutical agent for treating malignant tumors.
The natural products are not sufficiently stable either chemically or metabolically for the development of pharmaceutical agents. To eliminate these drawbacks, modifications to the natural product are necessary. Such modifications are possible only with a total-synthesis approach and require synthesis strategies that make possible a broad modification of the natural product. The purpose of the structural changes is also to increase the therapeutic range. This can be done by improving the selectivity of the action and/or reducing undesirable toxic side-effects and/or increasing active strength.
The total synthesis of epothilone A is described by Schinzer et al. in Chem. Eur. J. 1996, 2, No. 11, 1477-1482 and in Angew.
Chem. 1997, 109, No. 5, pp. 543-544).
Epothilone derivatives were already described by Hbfle et al. in WO 97/19086. These derivatives were produced starting from natural epothilone A or B.
SAnother synthesis of epothilone and epothilone derivatives was described by Nicolaou et al. in Angew. Chem. 1997, 109, No.
1/2, pp. 170-172. The synthesis of epothilone A and B and several epothilone analogues was described in Nature, Vol. 387, 1997, pp. 268-272; and the synthesis of epothilone A and its derivatives was described in J. Am. Chem. Soc., Vol. 119, No. 34, 1997, pp. 7960-7973 as well as the synthesis of epothilone A and B and several epothilone analogues in J. Am. Chem. Soc., Vol.
119, No. 34, 1997, pp. 7974-7991 also by Nicolaou et al.
Nicolaou et al. also describe in Angew. Chem. 1997, 109, No.
19, pp. 2181-2187 the production of epothilone A analogues using combinative solid-phase synthesis. Several epothilone
B
analogues are also described there.
The object of this invention consists in making available new epothilone derivatives, which are both chemically and metabolically stable enough for the development of pharmaceutical agents and which are superior to natural derivatives in terms of their therapeutic range, their selectivity of action and/or undesirable toxic side-effects and/or their active strength.
This invention describes the new epothilone derivatives of general formula
I,
R7 R R s R7R R R 3 R Ri4b
OH
R2aR Y OH Z t in which I,
R
1 Rb are the same or different and mean hydrogen, CI-Clo alkyl, aryl, C,-C 2 0 aralkyl, or together a group with m 2, 3, 4 or R2a, R 2b are the same or different and mean hydrogen,
CI-CI
0 alkyl, aryl, C 7
-C
20 aralkyl or together a -(CH 2 group with n 2, 3, 4 or 5, whereby, if stands for
-CH
2 or Y stands for an oxygen atom, R'2/RZb cannot be hydrogen/methyl,
R
3 means hydrogen, C,-c 1 o alkyl, aryl, C 7 ,-c 2 aralkyl,
R
4 a, R 4 b are the same or different and mean 'hydrogen,
C,-CI
0 alkyl, aryl, C,-C 20 aralkyl or together a -(CH 2 )p group with p 2, 3, 4 or HO OH HO H HC-CH, HC=CH C=C CCH -C C-C HC-CH I I I I H H H H D-E means a group
R
5 _means hydrogen,
C,-C
1 0 alkyl, aryl, C 7
-C
2 0 aralkyl,
R
6
R
7 each mean a hydrogen atom, together an additional bond or an oxygen atom,
R
8 means hydrogen,
C,-C
20 alkyl, aryl, C 7
-C
20 aralkyl, which can all be substituted, X means an oxygen atom, two alkoxy groups OR 23 a C -C0 alkylene-a,b-dioxy group, which can be straight-ciain or branched, H/OR 9 or a grouping CR 10
R
11 whereby R stands for a C,-C 20 alkyl radical,
SR
9 stands for hydrogen or a protective group PGX,
R
10
R
11 are the same or different and stand for hydrogen, a C,-C 20 alkyl, aryl, C 7
-C
20 aralkyl radical or R 10 and R 11 together with the methylene carbon atom together stand for a 5- to 7-membered carbocyclic ring, Y means an oxygen atom or two hydrogen atoms, Z means an oxygen atom or H/OR 2 whereby
R
12 means hydrogen or a protective group PG 2 The production of the new epothilone derivatives is based on the linkage of three partial fragments A, B and C. The interfaces are as indicated in general formula I'.
A means a C1-C6 fragment (epothilone numbering system) of general formula R' R b Rb' R
O
A,
in which
R
la Rb', R 2a and R 2 b' have the meanings already mentioned for R1 a Rib, R 2a and R 2 b, and
R
1 3 means CH 2
OR
13 a, CH 2 -Hal, CHO, CO2R1 3 b, COHal,
SR
14 means hydrogen, OR 14a Hal, OSO2R 14
R
1 3 a, R 14 a mean hydrogen, SO2-alkyl, S0 2 -aryl, SO 2 -aralkyl or together a -(CH 2 group or together a CRi 5 aR 1 5 b group,
R
13 b, R 14 b mean hydrogen,
C,-C
2 0 alkyl, aryl, C 7
-C
20 aralkyl, R 5 a, R 5 b are the same or different and mean hydrogen, C -C 0 alkyl, aryl, C 7
-C
20 aralkyl or together a -(CH 2 )q group, Hal means halogen, o means 2 to 4, q means 3 to 6, 3 including all stereoisomers as well as their mixtures, and free hydroxyl groups in R 13 and R 14 can be etherified or esterified, free carbonyl groups can be ketalized in A and R 13 converted into an enol ether or reduced, and free acid groups in A can be converted into their salts with bases.
B stands for a C7-C12 fragment (epothilone numbering system)
I
of general formula R R RT W w
B
in which
R
3
R
4a
R
4 b' and R 5 have the meanings already mentioned for
R
3
R
4 8
R
4 b and R 5 V means an oxygen atom, two alkoxy groups OR! 7 a alkylene-a,b-dioxy group, which can be straight-chain or branched or H/OR 1 6 W means an oxygen atom, two alkoxy groups OR 19 a C2-C,, alkylene-a,b-dioxy group, which can be straight-chain or branched or H/OR' 8
R
16
R
18 independently of one another, mean hydrogen or a protective group PG 1
R
17
R
19 independently of one another, mean C 1
-C
20 alkyl.
C stands for a C13-C16 fragment (epothilone numbering system) of general formula in which
R
8 has the meaning already mentioned in general formula I for R 8 and R 7 0 means a hydrogen atom,
R
20 means a hydrogen atom or a protective group
PG
2
R
21 means a hydroxy group, halogen, a protected hydroxy group
OPG
3 a phosphonium halide radical PPh 3 HalY (Phphenyl; Hal Cl, Br, a Phosphonate radical P(O) (OQ) 2 (Q =CI-C 10 alkyl or phenyl) or a phosphijne oxide radical P(O)Ph. (Ph phenyl), U means an oxygen atom, two alkoxy groups OR23, a C-j alkylene-x,rbdioxy group, which can be straight-chain or branched,
H/OR
9 or a grouping
CR
1
)R
11 -whereby
R
23 stands f or a C 1
-C
20 alkyl radical, R9 stands for hydrogen or a protective group
PG
3
R
10
R
11 are the same or different and stand for hydrogen, a C 1
-C
20 alkyl, aryl,
C
7
-C
20 aralkyl radical or R 10 and R 11 together with the methylene carbon atom together stand for a 5- to 7-membered carbocyclic ring.
As alkyl groups R18 Rlb R 2 a R 2 b, R 3
R
4
R
5 Ra I R 9 Rio R 1 1 R R 12 R1 3 b, R1 4 b Ri5a, Rl 5 b R 17 and R23, straight-chajn or branchedchain alkyl groups with 1-20 carbon atoms can be considered, such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, isopentyl, neopentyl, heptyl, hexyl, and decyl.
Alkyl groups Rla RIb R 2 aI R 2 b, R 3 R4,
R
8
R
9 R1 0
R
11
R
12 1 R 1 3 b R 1 4 b R 15 a Rl 5 b R 17 and R 23 can be perf .luorinated or substituted by 1-5 halogen atoms, hydroxy groups, C 1 -c 4 alkoxy groups, C.-C,2 aryl groups (which can be substituted by 1-3 halogen atoms).
As aryl radicals
R
1 a, Rib, R 2 a, Rb, R 3
R
4
R
5 R, R 9
R
10 O R 11
R
12 R1 3 b, R1 4 b, Rl 5 a and R1 5 b, substituted and unsubstituted carbocyclic or heterocyclic radicals with one or more heteroatoms, such as, phenyl, naphthyl, furyl, thienyl, pyridyl, pyrazolyl, pyrimidinyl, oxazolyl, pyridazinyl, pyrazinyl, quinolyl, thiazolyl, which can be substituted in one or more places by halogen, OH, O-alkyl,
CO
2 H, C0 2 -alkyl,
-NH
2
-NO
2
-N
3 -CN, C 1
-C
2 0 alkyl, C 1
-C
20 acyl, C 1
-C
2 acyloxy groups, are suitable. Heteroatoms in the heteroaryl radicals can be oxidized; thus, for example, the thiazole ring can be present in the form of N-oxide.
The aralkyl groups in R a, Rib, R 2 a RZb, R 3
R
4
R
5
R
8
R
9
R
10
R
12
R
3 b, R1 4 b, R5isa and R 15 b can contain in the ring up to 14 C atoms, preferably 6 to 10, and in the alkyl chain 1 to 8, preferably 1 to 4 atoms. As aralkyl radicals, for example, benzyl, phenylethyl, naphthylmethyl, naphthylethyl, furylmethyl, thienylethyl, and pyridinylpropyl are suitable. The rings can be substituted in one or more places by halogen, OH, O-alkyl,
CO
2
H,
C0 2 -alkyl, -NO 2
-N
3 -CN, C 1
-C
20 alkyl, C,-C 2 0 acyl, C 1
-C
20 acyloxy groups.
The alkoxy groups that are contained in X in general formula I are in each case to contain 1 to 20 carbon atoms, whereby methoxy, ethoxy, propoxy, isopropoxy and t-butyloxy groups are preferred.
As representatives of protective groups PG, alkyl- and/or aryl-substituted silyl, C,-C 20 alkyl, C 4
-C
7 cycloalkyl, which in addition in the ring can contain an oxygen atom, aryl, C,-C 20 aralkyl, C,-C 2 0 acyl and aroyl can be mentioned.
As alkyl, silyl and acyl radicals for protective groups PG, the radicals that are known to one skilled in the art are suitable. Preferred are alkyl or silyl radicals that can be easily cleaved from the corresponding alkyl and silyl ethers, such as, for example, methoxymethyl, methoxyethyl, ethoxyethyl, tetrahydropyranyl, tetrahydrofuranyl, trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, tribenzylsilyl, triisopropylsilyl, benzyl, para-nitrobenzyl, para-methoxybenzyl radicals as well as alkylsulfonyl and arylsulfonyl radicals. As acyl radicals, formyl, acetyl, propionyl, isopropionyl, pivalyl, butyryl or benzoyl, which can be substituted with amino and/or hydroxy groups, are suitable.
Acyl groups PGx or PGZ in R 9 and R 12 can contain 1 to carbon atoms, whereby formyl, acetyl, propionyl, isopropionyl and pivalyl groups are preferred.
Index m in the alkylene group that is formed from R 1 a and Rlb preferably stands for 2, 3 or 4.
The C 2
-C
1 alkylene-a,S-dioxy group that is possible for X is preferably an ethyleneketal or neopentylketal group.
The substituents can be selected in the compounds of general formula I in such a way that Y, Z, R 1a Rib, R 2 a and R 2 b all can have the meanings that are indicated in general formula I, and the remainder of the molecule is identical to naturally occurring epothilone A or B, or
R
3
R
4 a, R 4b D-E, R 5
R
6 and R 7 all can have the meanings that are indicated in general formula I, and the remainder of the molecule is identical to naturally occurring epothilone A or B, or
R
6
R
7
R
8 and X all can have the meanings that are indicated in general formula I, and the remainder of the molecule is 3 identical to naturally occurring epothilone A or B, or SY, R 1 a, R 1 b, R 2 a, R 2b
R
3
R
4 a, R 4 b, D-E, R 5
R
6 and R 7 all can have the meanings that are indicated in general formula I, and the remainder of the molecule is identical to naturally occurring epothilone A or B, or Y, Z, R l a, Rib, R 2 a, R 2 b, R 6
R
7
R
8 and X all can have the meanings that are indicated in general formula I, and the remainder of the molecule is identical to naturally occurring epothilone A or B, or
R
3
R
4 a, R 4 b, D-E, R 5
R
6
R
7
R
8 and X all can have the meanings that are indicated in general formula'I, and the remainder of the molecule is identical to naturally occurring epothilone A or B.
The compounds that are mentioned below are preferred according to the invention: (4S,7R,8S,9S,13(Z),16S(E))-4,8-Dihydroxy-7-ethyl-16-(lmethyl-2=(2-methyl-4-thiazolyl)ethenyl)-l-oxa-5,5,9,13tetramethyl-cyclohexadec-13-ene-2,6-dione, and (4S,7R,BS,9S, 13E, 16S(E) 4 ,B8-dihydroxy-7-ethy-16(1-methy..
2 -(2-methyl-4-thiazolyl) ethenyl) -1-oxa-5, S,9,13-tetramethylcyclohexadec-13-ene-2, 6-dione (1Set3Sl-4-thSaz10R,)1eSenyS, 10R-thyl-B, 8,12, 1-tetramethyl-2 (2-methyl-4-thiazolyl) ethenyl) -10-ethyl-B, 8,12, 16-tetramethyl- S4, 17-dioxabicyclo [14.1.0] heptadecane-5, 9-diane -n (2-methyl-4-thiazoyl) ethenyl) -10-ethyl-, 8, 12, 16-tetramethyl- 4, 17-dioxabicyclo[14 0]heptadecane-5, 9-dianead (2-methyl-4-thiazolyl) ethenyl) -1-ethyl-8, 8, 12, 16-tetramethyl- 4, 17-dioxabicyclo [14.1.0] heptadecane-.5, 9-dianean 2-methyl-4-thiazolyl) ethenyl) -1-oxy-, 5,9,1 tetramethycy1oheixaec3-ene2,6.dihetdan -,-in 2- (2-methyl-4-thiazolyl) ethenyl) -1-oxa-5, 5, 9,13 -tetramethylcyclohexadec-13-ene-2, 6-dianean (2-methyl-4-thiazolyl) ethenyl) -l0-ethyl-8 ,8,12, 16-tetramethyl- 4,17-dioxabicyclo[14 .1.0]heptadecane-5, 9-diane, and (2-methyl-4-thiazolyl) ethenyl) -1O-ethyl-8,8,12, 16-tetramethyl- 4, 17-diaxabicyclo[ 14.1. 0]heptadecane-5, 9-diane (2-methyl-4-thiazolyl) ethenyl) -10-ethyl-8,8,12,16-tetramethyl- 4, 17-dioxabicyclo( 14.1. 0]heptadecane-5, 9-diane, and (1R, 3S 7?S,10S, 11R, 12S, 16S) 11-dihydroxy-3- (1-.methyl.2- (2-methyl-4-thiazolyl) ethenyl) -10-ethyl-B, 8,12, 16-tetramethyl- 4 1 7 -dioxabicycla(14.1.0]heptadecane-5,9-diane (4S, 7R, 8S, 9S, 13(Z) ,16S )-4,8-Dihydroxy.5,5,7,9,1 3 pentalnethyl-16- (3 -pyridyl) ethenyl) -1-oxa-cyclohexadec-13-ene- 2,6-dione, and (4S,7R,8S,9S,13E,16S(E))-4,8-dihydrxy-;5,7,,1 3 pertamethyl-16- ((3-pyridyl) ethenyl) -1-axa-cyclohexadec-13-ene- 2,6-diane pentamethyl-3 (3 -pyr idyl) ethenyl) 17 dioxabicyclo[14 0]heptadecane-5, 9-diane, and pentamethyl-3- ((3-pyridyl) ethenyl) -4,17diaxabicycla (14.1.0 ]heptadecane-5, 9-diane (4S,7R,BS,9S,13(Z) 16S(E) )-4,8-Dihydroxy-5, 5 7 9 ,1 3 pentamethyl-16- (4-pyridyl) ethenyl) -1-oxa-cyclohexadec-13-ele- 2,6-diane, and (4S,7R,SS,9S, 13E, 16S(E)) -4,8-dihydraxy-5, 5 7 9 ,3pentamethyl-16- (4-pyridyl) ethenyl) -1-oxa-cyclohexadec-'13-ene- 2,6-diane (lS,3S(E) ,7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8, 10,12,16pentamethyl-3- ((4-pyridyl) ethenyl) -4,17- S diaxabicyclo( 14.1. 0]heptadecale-5,9-difle, and (1S, 3S ,7S, 10R, 1S, 12S, 16S) 11-dihydraxy-8,B8,10,l12, 1 6 pentamethyl-3-( (4-pyridyl) ethenyl) -4,17diaxabicyclo[14 .1.0O]heptadecane-5,9-difle (4S,7R,8S,9S,13(E or Z) ,16S(E))-4,8-Dihydraxy-16-(1-methYl- 2- (2-methyl-4-thiazolyl) ethenyl) -1-oxa-7-phenyl-5, 5,9,13tetramethyl-cyclohexadec13 -ene-2, 6-diane (1(S or R) ,3S(E) ,7S,1OR,11S,12S,16R)-7,11-Dihydroxy-3-(1methy1-2-(2-methy1-4-thiazoly1)ethenyl) -1O-phenyl-8 ,8,12, 16tetramethyl-4, 17-dioxabicyclo( 14.1. 0]heptadecane-5, 9-diane (1(R or S),3S(E),7S,1OR,11S,12S,16S)-7,11-Dihydroxy-3-(1methyl-2- (2-methyl-4-thiazolyl) ethenyl) -10-phenyl-8, 8,12,16tetramethyl-4, 17-diaxabicyclo [14.1.0] heptadecane-5, 9-diane (4S,7R,85,9S,13(E or Z) ,16S(E))-7-Benzyl-4,8-dihydroxy-16.
(1-methyl-2- (2-methyl-4-thiazolyl)ethenyl) -1-oxa-5, 5,9,13tetramethyl-cyclohexadec-13-ene-2, 6-dione (1(S or R),3S(E),7S,10R,11S,12S,16R)-1-Benzyl-7,11dihydroxy-3- (1-methyl-2- (2-methyl-4-thiazolyl) ethenyl) 8, 12, 16tetramethyl-4, 17-dioxabicyclo [14. 1.0) heptadecane-5, 9-diane (1(R or S),3S(E),7S,10R,11S,12S,16S)-1O-Benzy1-7,11- Sdihydroxy-3-(l-methyl-2-(2-methyl-4-thiazolyl) ethe nyl) 8,8, 10, 12,16-tetramethyl-4, 17-dioxabicyclo[14 1. O~heptadecane- 9-dione (4S,7R,8S,9S,13(E or Z) ,16S(E) )-4,8-Dihydroxy-16-(1-methyl- 2- (2-methyl-4-thiazolyl) ethenyl) -1-oxa-5, 5,7, 13-tetramethyl-9trifluoromethyl-cyclohexadec-13-ene-2, 6-diane (1(S or R),3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy3(..
S methyl-2- (2-methyl-4-thiazolyl) ethenyl) -8,8,10, 16-tetramethyl-12trifluoromethyl-4, 17-dioxabicyclo[14.1. O]heptadecane-5, 9-diane (1(R or S),3S(E),7S,1OR,11S,12S,16S)-7,11-Dihydroxy-3-(l.
methyl-2-(2-methyl-4-thiazolyl) ethenyl) 10, 16-tetramethyl-12trifluoromethyl-4, 17-dioxabicyclo (14.1.0] heptadecane-5, 9-diane (4S,7R,8S,9S,11E/Z,13(E or Z),16S(E))-4,B-Dihydroxy-16-(1methyl-2-(2-methyl-4-thiazolyl) ethenyl) -1-oxa-5, 5,7,9,13pentamethyl-cyclahexadec-li, 13-diene-2, 6-diane (1(S or R),3S(E),7S,1OR,11S,12S,14E/Z,16R)-7,11-Dihydroxy-3- (1-methyl-2- (2-methyl-4-thiazolyl)etheiyl) -8,8,10,12,16pentamethyl 17 -d ioxabicyc lo 14. 1. 0 )heptadec- 14 -ene-5, 9-dione (1(R or S),3S(E),7S,1OR,11S,12S,14E/Z,16S)-7,11-Dihydroxy-3pent amethyl1-4,f 17 -d ioxabi cyc lo(C 14. 1. 0) heptadec- 14 -ene-5, 9-dijone (4S,7R,8S,9S,13(E or Z) ,16S(E) )-4,8-Dihydroxy-16-(1-methyl- 2- (2-methyl-4-thiazolyl) ethenyl) -1-oxa-5, 5,7,9, 13-pentamethylcyclohexadec-13-ene-11-ine-2, 6-diane (1(S or R),3S(E),7S,1OR,11S,12S,16R)-7,11-Dihydroxy-3-(1methyl-2-(2-methyl-4-thiazolyl)ethenyl) 10,12, 16-pentamethyl- 4, 17-dioxabicyclo [14.1.0] heptadec-14-ine-5, 9-diane (1(R or S),3S(E),7S,1OR,11S,12S,16S)-7,11-Dihydroxy-3-(1methyl-2- (2-methyl-4-thiazolyl) ethenyl) -8,8,10,12, 16-pentamethyl- 4, 17-dioxabicyclo [14.1.0] heptadec-14-ine-5, 9-diane (4S,7R,8S,9s,13(E or Z) ,16S(E) )-4,8-Dihydroxy-16-(1-nethyl- 2- (2-metjiyl-4-thiazolyl) ethenyl) -1-oxa-5, 5,7, 9-tetramethyl-13trifluoromethyl-cyclohexadec-13-ene-2, 6-diane (iCS or R),3S(E),7S,1R,11S,12S,16R)-7,11-hydrox y3(..
methyl-2-(2-methyl-4-thiazolyl) ethenyl) 10, 12-tetramethyl-16trif luoromethyl-4, 17-dioxabicyclo(14. 1. O~heptadeca-5, 9-dione, (1 (R or S) ,3S 7S, R, 11S, 1S16S)7, 11Dihraxy3- methyl-2- (2-methyl-4-thiazolyl) etheriyl) 8,10, 12-tetramethy-1-16trif luoromethyl-4, 17-dioxabicyclo[(14. 1. 0 ]heptadeca-5, 9-dione (4S,7R,BS,9S,13(E or Z) ,16S(E) )-4,8-Dihydroxy-16-(1-methyl- S2- (2-methyl-4-thiazolyl) ethenyl) -1-oxa-13-pentaf luoroethyl- 5,5,7.,9-tetramethyl-cyclohexadec-13-ene-2, 6-diane (1(S or R),3S(E),7S,OR,11S,12S,16R)-7,11-Dihydr... 3(l.
methyl-2- (2-methyl-4-thiazolyl) ethenyl) -16-pentaf luoroethyl- 8,8,10, 12-tetramethyl-4, 17-dioxabicyclo [14. 1.0] heptadeca-5, 9diane (1CR or S),3S(E),7S,OR,11S,12S,6S)-11-hydrox y methyl-2- (2-methyl-4-thiazolyl) ethenyl)- -6-pentafluoroethyl- 8,8,10, 12-tetramethyl-4, 17-dioxabicyclo(14. 1.0]heptadeca-5,9dione (4S,7R,8S,9S,13(E or Z) ,16S(E))-4,8-Dihydroxy-16-(-methyl.
2 -(2-methyl-4-thiazolyl)ethenyl)--oxa.5, 3-trimethylene)- 7,9, l3-trimethyl-cyclohexadec-13-ene-2,6-diane (1(S or R),3S(E),7S,OR,11S,12S,16R)-7,11-(Dihydroxy 3 (l.
methyl-i- (2'-methyl-4-thiazolyl) ethenyl) 3-trimethylene) 10,12, 16-trimethyl-4, 17-dioxabicyclo[ 14.1. O]heptadeca-5, 9-diane (1(R or S),3S(E),7S,OR,11S,12S,16S)-7,11-Dihydroxy3(l.
methyl-2- (2-methyl-4-thiazolyl) ethenyl) 3-trimethylene) 10,12, 16-trimethyl-4, 17-dioxabicyclo (14.1.0] heptadeca-5, 9-diane (4S,7R,8S,9S,11E/Z,13(E or Z),.16S(E))-4,8-Dihydroxy-13ethyl-16- (1-methyl-2- (2-methyl-4-thiazolyl) ethenyl) -1-oxa- N5,5,7, 9-tetramethyl-cyclohexadec-11, 13-diene-2, 6-diane (1(S or R) ,3S(E),7S,10R,11S,12S,14E/Z,16R)-7,11-Dihydrox...
16-ethyl-3- (1-methyl-2- (2-methyl-4-thiazolyl) ethenyl) 8,10, 12tetramethyl-4, 17-dioxabicyclo(C14. 1. 0] heptadec-14-ene-5,g9-dione (1(R or S) ,3S(E),7S,1OR,11S,12S,14E/Z,16S)-7,11-Dihydroxy- 16-ethyl-3- (1-methyl-2- (2-methyl-4-thiazolyl) ethenyl) 8, 10, 12tetramethyl-4, 17-dioxabicyclo (14. 1. 0 ]heptadec-14-ene-S, 9-diane (4S,7R,8S,9S,11E/Z,13(E or Z),16S(E))-4,8-Dihydroxy-16-(lmethyl-2- (2-methyl-4-thiazolyl) ethenyl) -1-oxa-13-propyl-5, 5,7,9tetramethyl-cyclohexadec-11, 13-diene-2 ,6-diane (1(S or R) 3 S(E),7S,10R,11S,12S,14E/Z,16R),11 Dihydroxy 3 (1-methyl-2- (2-methyl-4-thiazolyl) ethenyl) -16-propyl-8, 8,10,12tetramethyl-4, 17-dioxabicyclo[ 14.1. O]heptadec-14-ene-5, 9-diane (1(R or S), 3 S(E),7S,1R,11S,12S,14E/Z,16S)7,1..Dihydroxy-.
3 (l-methyl-2- (2-methyl-4-thiazolyl~ethyl).16...prpy..,8l, 1 0,12.
tetramethyl-4, 17-dioxabicyclo C 14. 1. O]heptadec-14-ene-5, 9-diane (4S,7R,8S,9S,13(E. or Z) ,16S(E))-4,8-Dihydroxy-16-(lmethyl.
2- (2-pyridyl) ethenyl) -1-oxa-5, 5,7,9, 13-pentamethyl-cyclohexaec.
13-ene-2, 6-diane (1 (S or R) 3S 7S,OR, 11S, 12S, 16R) 11-hDroxydrox3.(1- Smethyl-2- (2-pyridyl) ethenyl) 10,12, 16-pentamethyl-4, 17dioxabicyclo(14.1. 0]heptadecane-5,9-dione (1(R or S),3S(E),7S,1R,11S,12S,16S)7,11-hDroW...3(l.
methyl -2 (2 -pyridyl) ethenyl) 8, 10, 12, 16 -pent amethyl-4, 17 dioxabicyclo[ 14.1. 0]heptadecane-5,9-dione (4S,7R,8S,9S,13(E or Z) ,16S(E))-4,8-Dihydroxy-16-(1-methyl.
2- (4-pyridyl) etheriyl) -1-oxa-5,5,7,9, 13-pentamethyl-cyclohexade..
13-ene-2, 6-diane or R),3S(E) 7 S,1OR,11S,12S,16R)-7,11-Dihydroxy3.(.
methyl-2- (4-pyridyl) ethenyl) -8,8,10,12, 16-pentamethyl-4, 17dioxabicyclo[ 14.1. 0]heptadecane-5,9-diane (1(R or S), 3 S(E),7S,OR,11S,12S6s)),11...Didrox y3(.
methyl-2- (4-pyridyl) ethenyl) 10,12, 16-pentamethyl-4, 17dioxabicyclo [14.1.0] heptadecane-5, 9-diane (4S, 7R, 8S, 9S, 13 (E or Z) ,16S 8-Dihydroxy-16- (l-methyl- 2- (2-methyl-4-thiazolyl) ethenyl) 13-pentamethylcyclohexadec-13 -en-6-one (1(S or R),3S(E),7S,10R,l1S,12S,16R)-7,11-Dihydroxy-3-(lmethyl-2- (2-methyl-4-thiazolyl) ethenyl) -8,8,10,12, 16-pentaziethyl- 4, 17-dioxabicyclo[ 14.1. Ojheptadec-9-one (1(R or S),3S(E),7S,loR,llS,12S,16S)-7,11-Dihydroxy-3-(1methyl-2- (2-methyl-4-thiazolyl) ethenyl) -8,8,10,12, 16-pentamethyl- 4, 17-dioxabicyclo[ 14.1. O]heptadec-9-one Representation of Partial Fragments A: It is known that the compound of the following formula 00 0 can be used to synthesize the C1-C6 fragment (epothilone numbering system) of epothilone A (Schinzer et al., Chem. Eur. J.
1996, 2, No. 11, pp. 1477-1482; Schinzer et al., Angew. Chem., 1997, 109, No. 5, pp. 543-544).
This way of synthesizing has the drawback that at 10.5% its total yield is very low, that the necessary introduction of the chirality at C-atom 3 requires the synthesis of an expensive, chemically unstable chiral adjuvant that is to be used in equimolar quantities and cannot be recovered, and that at approximately 80% the optical induction that is achieved is incomplete.
For a synthesis that can be used on an industrial scale, however, high yields and high optical purity are required. In Angew. Chem. 1997, 109, Nos. 1/2, pp. 170-172, a description is given by Nicolaou et al. of the synthesis of a (C1-C6) component with a carboxyl group at C-1 that can be used for the synthesis of epothilone or epothilone derivatives OTBS 0 (TBS tert-butyldimethylsilyl). The stereochemistry at C3 is controlled by the reaction with the Brown reagent allylisopinocamphenylborane (+)-Ipc 2 B(allyl) that must be inserted into the reaction in an equimolar fashion and that cannot be recovered.
Likewise, the use of this component to synthesize epothilone A and B and some epothilone analogues is described by Nicolaou et al. in Nature, Vol. 387, 1997, pp. 268-272, to synthesize epothilone A and its derivatives in J. Am. Chem. Soc., Vol. 119, No. 34, 1997, pp. 7960-7973, and to synthesize epothilone A and B and some epothilone analogues in J. Am. Chem. Soc., Vol. 119, No.
34, 1997, pp. 7974-7991.
In Angew. Chem. 1997, 109, No. 19, pp. 2181-2187, Nicolaou et al. also describe the production of epothilone A analogues by means of combinatorial solid-phase synthesis. This same citation also mentions epothilone B analogues. The following compounds are used as C1-C6 components: OH OH OH 0 OP. 0 0 OP 0 O OP 0 P =TBS For a synthesis that can be used on an industrial scale, it is advantageous for the synthesis to be carried out without expensive chiral auxiliaries.
The object was therefore to find an appropriate synthesis that provides high yields, produces the desired product at high optical purity, and does not require expensive chiral auxiliaries.
In addition, the new synthesis should make it possible to vary substituents widely in this component and thus, ultimately, in the resulting epothilone derivatives.
The partial fragments (synthesis components) of general formula A can be easily produced as starting products from a) a pantolactone of general formula IIa
HO.
HO~ o II a 0 in which
R
1 Rb' in each case stand for a methyl group, or b) a malonic acid dialkyl ester of general formula XXVIII
SXXVIII
Ajkyl-0,C CO,-Alkyl in which Ria', Rib' have the meaning that is indicated in general formula A, and alkyls, independently of one another, mean a Ci-C 20 alkyl, C 3
-C
1 cycloalkyl or C4-C20 alkylcycloalkyl radical.
Partial fragments A, in which R 1 a'=Rlb'=methyl, can be efficiently produced from inexpensive pantolactone with an optical purity of >98%.
The synthesis is described in diagram 1 below in the example of D-(-)-pantolactone. From L-(+)-pantolactone are obtained the corresponding enantiomeric compounds ent-A-1I to ent-A-XIV in A- II to A-XIV, and from racemic DL-pantolactone are obtained the corresponding racemic compounds rac-A-II to rac-A-XIV: Diagram 1.
Rla'Rib'
HO.
0 A-11 Ria Rib a pe.' 0 A-1ll Ra'R 1 b'
HO
A-IV
OPG
4
A-V
'N
I,
Rila Rib' d* OPG 5
OPG
4 A-Vt Ra'
R
1 b' h( %)KPG5 R 15.a/<RI 5b
A-IX
Ria'Rib
R
2 a' R 2b' o 0 HO P15b
A-XII
e OPG 5
A-VII
f 0OPG OH OH A-Vill Ra'
R
1 b' k0 0 0 R 15 2
.A-XI
m r_
OH
0 0 R 15ARi5b
A-X
Rla'Rlb'R 2 a' (YY~ R 2b
R
1 5a/ 15b
A-XIII
n Ria!Rlb'
R
2 a' R2b' R15/ R
A-XIV
*:only if R 2 a' or R 2 b' in A-XIII is equal to hydrogen Step a (A-II A-Ill): The free hydroxy group of pantolactone (A-II) is protected according to the methods that are known to one skilled in the art. As protective group PG4, the protective groups that are known to one skilled in the art, such as, methoxymethyl, methoxyethyl, ethoxyethyl, tetrahydropyranyl, tetrahydrofuranyl, trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl, tertbutyldiphenylsilyl, tribenzylsilyl, triisopropylsilyl, benzyl, para-nitrobenzyl, para-methoxybenzyl, formyl, acetyl, propionyl, isopropionyl, pivalyl, butyryl or benzoyl radicals, are suitable.
A survey is found in, "Protective Groups in Organic Synthesis" Theodora W. Green, John Wiley and Sons).
Preferred are those protective groups that can be cleaved Sunder acidic reaction conditions, such as, methoxymethyl, hj tetrahydropyranyl, tetrahydrofuranyl, and trimethylsilyl radicals.
Especially preferred is the tetrahydropyranyl radical.
Step b (A-III A-IV): Protected lactone A-III is reduced to lactol A-IV. As a reducing agent, aluminum hydrides that are modified in their reactivity, such as, diisobutylaluminum hydride, are suitable. The reaction is carried out in an inert solvent such as, toluene, preferably at low temperatures.
Step c (A-IV A-V): Lactol A-IV is opened up to form hydroxyolefin A-V while expanding by one C atom. For this purpose, the methods that are known to one skilled in the art, such as, olefination according to Tebbe, the Wittig or Wittig/Horner reaction, the addition of an organometallic compound with dehydration, are suitable. Preferred is the Wittig reaction with use of methyltriarylphosphonium halides such as, e.g., methyltriphenylphosphonium bromide with strong bases, such as, n-butyllithium, potassium-tert-butanolate, sodium ethanolate, sodium hexamethyldisilazane; as a base, nbutyllithium is preferred.
Step d (A-V A-VI): The free hydroxy group in A-V is protected according to the methods that are known to one skilled in the art. As protective S group PG 5 the protective groups that are known to one skilled in the art, as were already mentioned above for PG 4 in step a (A-II A-III), are suitable.
Preferred are those protective groups that can be cleaved under the action of fluoride, such as, the trimethylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, tribenzylsilyl, triisopropylsilyl radical.
Especially preferred is the tert-butyldimethylsilyl, the C triisopropylsilyl and the tert-butyldiphenylsilyl radical.
Step e (A-VI A-VII): Water is added to the double bond in A-VI in an anti- Markovnikov orientation. For this purpose, the processes that are known to one skilled in the art, such as, reaction with boranes, their subsequent oxidation to the corresponding boric acid esters and their saponification are suitable. As boranes, the borane-tetrahydrofuran complex, the borane-dimethyl sulfide complex, 9-borabicyclo[3.3.1]nonane in an inert solvent such as, for example, tetrahydrofuran or diethyl ether, are preferred. As oxidizing agents, preferably hydrogen peroxide is used; for saponification of the boron esters, preferably alkali hydroxides, such as, sodium hydroxide, are used.
Step f (A-VI A-VII): Protective group PG 4 that is introduced under step a) is now cleaved according to the processes that are known to one skilled j in the art. If this is a protective group that can be cleaved acidically, then cleavage can be accomplished with dilute mineral acids in aqueous-alcoholic solutions and with the aid of catalytic quantities of acids, such as, paratoluenesulfonic acid, para-toluenesulfonic acid-pyridinium salt, camphorsulfonic acid in alcoholic solutions, preferably in ethanol or isopropanol.
Step g (A-VII A-IX): Common protection of the two alcohol functions of the monoprotected 1,3-diol in A-VII is possible under acid catalysis by direct ketalization with a carbonyl compound of general formula Ra-CO-R 1 5 b or by reketalization with a ketal of general formulas R1 5 a-C (OC 2 H) 2
-R
5 b, R15a-C (OC 2
H
4 2
-R
15 b R 5 a-C (OCH 2 C (C 3 2
CH
2 0) -R 15 b, in which in each case R 15 a and R 1 5 b have the above-indicated meanings.
As acids, the acids already mentioned under step f) are suitable; the use of para-toluenesulfonic acid optionally with the addition of copper(II) or cobalt(II) salts, such as, copper(II) sulfate, is preferred.
Step h (A-VIII
A-IX):
Protection of the two alcohol functions of 1,3-diol in A- VIII is possible under acid catalysis by direct ketalization with a carbonyl compound of general formula R'5a-CO-R 1 5 b, or by reketalization with a ketal of general formulas RlSa-C(OC 2
H)
2 RISa-C (OC 2
H
4 2
-R
15b R15a-C (OCH 2 C (CH) 2
CH
2 0) -R15b in which in each case S R 15 and R 1 5 b have the above-indicated meanings. Reketalization N preferably with 2,2-dimethoxypropane is preferred. As acids, the acids already mentioned under step f) are suitable, and the use of camphorsulfonic acid is preferred.
Step i (A-IX
A-X):
Protective group PG 5 introduced under step d) is now cleaved according to the process that is known to one skilled in the art.
This is a silyl ether, thus suitable for the cleavage are the reaction with fluorides, such as, for example, tetrabutylammonium fluoride, hydrogen fluoride-pyridine complex, potassium fluoride or the use of dilute mineral acids, the use of catalytic quantities of acids, such as, para-toluenesulfonic acid, para-toluenesulfonic acid-pyridinium salt, camphorsulfonic acid in alcoholic solutions, preferably in ethanol or isopropanol.
Step k (A-X A-XI): The oxidation of the primary alcohol in A-X to aldehyde is carried out according to the methods that are known to one skilled in the art. For example, oxidation with pyridinium chlorochromate, pyridinium dichromate, chromium trioxide-pyridine complex, oxidation according to Swern or related methods, erg., with use of oxalyl chloride in dimethyl sulfoxide, the use of Dess-Martin periodinane, the use of nitrogen oxides, such as, N-methyl-morpholino-N-oxide in the presence of suitable catalysts, such as, tetrapropylammonium perruthenate in inert solvents, can be mentioned. Preferred is the oxidation according to Swern, as well as with N-methyl-morpholino-N-oxide using tetrapropylammonium perruthenate.
Step 1 (A-XI A-XII): The reaction of aldehydes A-XI to alcohols of formula
A-XII
is carried out with organometallic compounds of general formula
M-CHR'RZ
b in which M stands for an alkali metal, preferably lithium or a divalent metal MX, in which X represents a halogen, and radicals R2a' and R 2 b' in each case have the above-mentioned meanings. As a divalent metal, magnesium and zinc are preferred; as halogen X, chlorine, bromine and iodine are preferred.
Step m (A-XII A-XIII): Oxidation of the secondary alcohol in A-XII to ketone
A-XIII
is carried out according to the conditions that are mentioned under step Oxidation with N-methyl-morpholino-N-oxide with use of tetrapropylammonium perruthenate is preferred.
Step n (A-XIII A-XIV): If R 2 a' in A-XIII is equal to hydrogen, the possibility exists of introducing for this purpose a second radical R 2 a'; which has the above-mentioned meanings, excluding hydrogen. For this purpose, ketone in A-XIII is introduced into the enolate with use of strong bases, such as, lithium S diisopropylamide, and reacted with a compound of general formula S X-RZ a in which X represents a halogen. As halogen X, chlorine, bromine and iodine are preferred.
The previously described path can also be used to synthesize C1-C6-epothilone components, which on C-l contain a carboxylic acid or their esters (R1 3
=CO
2
R
1 3 b in A).
The synthesis of component A-XXII is described in Diagram 2 below in the example of intermediate stage A-V that is derived from D-(-)-pantolactone. The corresponding enantiomer compounds ent-A-V to ent-A-XXVII in A-V to A-XXVII are obtained from L- pantolactone, and the corresponding racemic compounds rac-A-V to rac-A-XXVII are obtained from racemic DL-pantolactone:- Diagram 2 A N 0p0 4
A-XV
r RIb' R 2 a S R2b'
PG
6 OD OPG 4
H
A-XVIII
Ria'Rib'
R
2 a' q R 2b* 0p0 4
OH
A-XVI
Rla'Rlb' R 2 a' R 2b' OH OP GOH
A-XVII
R18'R~' R~a'Rla'Rlb* R 2 a' y~R 2b' R 1 2 f 2b' PG6O OPG 4 0r' OHt OP 4 A-XIX
AXX
A-XVII u Rla'Rlb'
R
2 a' w R 2b'- 0 OPG 4 0O A-XX v
A-XXI
0) 13b Rla'Rlb' R 2 8' R OP R 2b' O PG 4 0
A-XXII
Rla'Rlb 0 OPG 4
A-XXIII
aa 13b RIa'RIb' R 0y 4PG
A-XXVI
13b Rla'Rlb' 13b Rla'Rlb' RY RQ0OPG5 z )I R y H 0 OP 4 0 P 4 A-XXIV
A-XXV
ab 13b Rla*Rl'Ra R 0~ R 2b' ac A-XXII 0O0PG 4
OH
A-XXVII
Step o (A-V A-XV): Oxidation of the primary alcohol in A-V to aldehyde A-XV is carried out according to the conditions that are mentioned under step The oxidation process according to Swern is preferred.
Step p (A-XV A-XVI): The reaction of aldehydes A-XV to alcohols of formula A-XVI is carried out with organometallic compounds of general formula M-CHR2a'R 2 b in which M stands for an alkali metal, preferably S lithium or a divalent metal MX, in which X represents a halogen, and radicals R 2 1' and Ra 2 in each case have the above-mentioned meanings. As a divalent metal, magnesium and zinc are preferred; as halogen X, chlorine, bromine and iodine are preferred.
Step q (A-XVI A-XVII): Water is added to the double bond in A-XVI in an anti- Markovnikov orientation. For this purpose, the processes that are described under e) are suitable.
Step r (A-XVII A-XVIII): The free hydroxy group in A-XVII is protected according to the methods that are known to one skilled in the art. As protective group PG 6 the protective groups that are known to one skilled in the art, as were already mentioned above for PG 4 in step a (A-II A-III), are suitable.
Preferred are those protective groups that can be cleaved under basic or hydrogenolytic reaction conditions, such as, e.g., benzyl, para-nitrobenzyl, acetyl, propionyl, butyryl, benzoyl radicals. Especially preferred is the benzoyl radical.
Step s (A-XVIII A-XIX): Oxidation of the secondary alcohol in A-XVII to ketone A-XIX is carried out according to the conditions that are mentioned under step Preferred is oxidation with N-methyl-morpholino- N-oxide with use of tetrapropylammonium perruthenate.
Step t (A-XIX A-XX): Protective group PG 6 in XIX is now selectively cleaved.
This is a hydrogenolytically cleavable protective group, thus it is preferably hydrogenated in the presence of palladium or platinum catalysts in inert solvents, such as, for example, ethyl acetate or ethanol. This is a basically cleavable protective group, thus, saponification with carbonates in alcoholic solution, such as, potassium carbinonate in methanol, saponification with aqueous solutions of alkali hydroxides, such as, lithium hydroxide or sodium hydroxide, are preferably used while employing organic, water-miscible solvents, such as, methanol, ethanol, tetrahydrofuran or dioxane.
Step u (A-XVII A-XXI): Oxidation of alcohols in A-XVII to ketoaldehyde A-XXI is carried out according to the conditions that are mentioned under step Preferred is oxidation with N-methyl-morpholino-N-oxide with use of tetrapropylammonium perruthenate and the method according to Swern.
Step v (A-XX A-XXI): Oxidation of primary alcohol in A-XX to ketoaldehyde
A-XXI
is carried out according to the conditions that are mentioned under step Preferred is oxidation with N-methyl-morpholino- N-oxide with use of tetrapropylammonium perruthenate.
S Step w (A-XXI A-XXII): Oxidation of the aldehyde in A-XXI to carboxylic acid A-XXII
(R
1 3 b hydrogen) is carried out according to the methods that are known to one skilled in the art. For example, the oxidation according to Jones, oxidation with potassium permanganate, for example in an aqueous system that consists of tert-butanol and sodium dihydrogen phosphate, oxidation with sodium chlorite in aqueous tert-butanol optionally in the presence of a chlorine trap, such as, 2-methyl-2-butene, can be mentioned.
Oxidation of the aldehyde in A-XXI to ester A-XXII, in which R1 3 b has the above-mentioned meanings and is unequal to hydrogen, can be carried out, for example, with pyridinium dichromate and the desired alcohol HO-R 1 3 b in an inert solvent, such as, e.g., dimethylformamide.
Step x (A-VII A-XXIII): Oxidation of the primary alcohol in A-VII to aldehyde A- XXIII is carried out according to the conditions that are mentioned under step Preferred is oxidation with N-methylmorpholino-N-oxide with use of tetrapropylammonium perruthenate as well as the method according to Swern.
Step y (A-XXIII A-XXIV): Oxidation of aldehyde A-XXIII to carboxylic acid or its' esters A-XXIV is carried out according to the conditions already described under w).
Step z (A-XXIV A-XXV): Protective group PG 5 introduced under step d) is cleaved as described under step i.
Step aa (A-XXV A-XXVI): Oxidation of the primary alcohol in A-XXV to aldehyde A-XXVI is carried out according to the conditions that are mentioned under step Preferred is oxidation with N-methyl-morpholino- N-oxide with use of tetrabutylammonium perruthenate as well as the method according to Swern.
Step ab (A-XXVI A-XXVII): The reaction of aldehyde A-XXVI to alcohols of formula A- XXVII is carried out according to the conditions that are mentioned under step 1).
Step ac (A-XXVII -A-XXII): oxidation of the secondary alcohol in A-XXVII to ketone A- XXII is carried out according to the conditions that are mentioned under step Preferred is oxidation with N-methylmorpholino-N-oxide with use of tetrapropylammonium perruthenate.
The compounds of f ormula A, in which RIa' and R Ib' all ca-n have the meanings that are indicated in general formula A can also be produced from inexpensive or readily available malonic acid dialkyl esters in an efficient way with high optical purity.
The synthesis is described in diagram 3 below: Diagram 3 AlkyI-0 2 C C0 2 -AikyI
A-XXVIII
Ri R 1W ad HO OH
A-XXIX
ae 7 HO OPG 7
A-)=X
af )I RIB Rib* O OPG 7
A-XXXI
ag c G O R la R 1b, ag~ OH OGIo PG 7 r
A-XXXII
a4 HO R R* 0 OOPG
T
A-XXXIII
jj>a, R HO OH OPG 7 A-Vill bzw. ent-A-ViII A-VIII or ent-A-VIII Step ad (A-XXVIII A-XXIX): Correspondingly substituted malonic acid ester derivatives A-XXVIII, which are either commercially available or can be produced according to the processes that are known to one skilled in the art from malonic acids or their alkyl esters, are reduced to diols A-XXIX. For this purpose, the reducing agents that-are known to one skilled in the art, such as, e.g., diisobutylaluminum hydride, and complex metal hydrides, such as, lithium aluminum hydride, are suitable.
Step ae (A-XXIX A-XXX): A free hydroxyl group in A-XXIX is selectively protected according to the methods that are known to one skilled in the art. As protective group PG', the protective groups that are known to one skilled in the art, as were already mentioned above for PG 4 in step a (A-II A-III), are suitable.
Preferred are silicon-containing protective groups.
SStep af (A-XXX A-XXXI): Oxidation of the remaining, primary hydroxyl group in A-XXX to aldehyde A-XXXI is carried out according to the conditions that are mentioned under step k).
Preferred is oxidation with N-methyl-morpholino-N-oxide with use of tetrapropylammonium perruthenate, the use of pyridinium chlorochromate, pyridinium dichromate as well as the method according-to Swern.
Step ag £A-XXXI A-XXXII): Aldehydes A-XXXI are reacted with an ester of acetic acid chG'OC(O)CH 3 in which chG 1 means a chiral auxiliary group, in terms of an aldol reaction. Compounds chG'OC(O)CH 3 are used in optically pure form in the aldol reaction. The type of chiral auxiliary group determines whether the aldol reaction proceeds with high diastereoselectivity or yields a diastereomer mixture that can be separated with physical methods. A survey on 1 comparable diastereoselective aldol reactions is found in Angew.
Chem. 99 (1987), 24-37. As chiral auxiliary groups chG'-OH, for example, optically pure 2-phenyl-cyclohexanol, pulegol, 2hydroxy-l,2,2-triphenylethanol, and 8-phenylmenthol are suitable.
Step ah (A-XXXII A-XXXIII): Diastereomer-pure compounds A-XXXII can then be converted according to the process that is known to one skilled in the art by saponification of the ester unit with simultaneous release of reusable chiral auxiliary component chG 1 -OH into enantiomer-pure compounds of type A-XXXIII or ent-A-XXXIII. For saponification, carbonates in alcoholic solution, such as, potassium carbonate in methanol, aqueous solutions of alkali hydroxides, such as, lithium hydroxide or sodium hydroxide with use of organic, water-miscible solvents, such as, methanol, ethanol, tetrahydrofuran or dioxane, are suitable.
Step ai (A-XXXII A-VIII): As an alternative to step ah, the chiral auxiliary group can also be removed reductively. In this way, the enantiomer-pure compounds of type A-VIII or ent-A-VIII are obtained. The reduction can be carried out according to the processes that are known to one skilled in the art. As a reducing agent, e.g., diisobutylaluminum hydride and complex metal hydrides, such as, lithium aluminum hydride, are suitable.
Compounds A-VIII or ent-A-VIII can be converted as e previously described into compounds of type A-XIII or ent-A-XIII.
Correspondingly, compounds of type A-XXXIII or ent-A-XXXIII can be converted into compounds of type A-XXII or ent-A-XXII according to the processes described above.
As an alternative to the above-described method, the sequence can also be carried out without using chiral auxiliary group chG 1 In this way, racemic mixtures of compounds of type rac-A-VIII or rac-A-XXXIII are then obtained via the corresponding, racemic precursors. These mixtures can in turn be S separated according to the processes for racemate cleavage, e.g., chromatography on chiral columns, known to one skilled in the art. The continuation of synthesis can also be carried out with racemic mixtures, however.
This invention thus also relates to a process for the production of the compounds of general formula A, which is characterized in that a) a pantolactone of general formula IIa or b) a malonic acid dialkyl ester of general formula XXVIII is used as a starting product.
In addition, this invention thus relates to the new C1-C6epothilone components of general formula A'
A',
N
in which
R
2 means CHgOR 2 a, CHO, COgR2b COX, R2 8
R
2b mean hydrogen, C 1
-C
2 0 alkyl, aryl, C 7
-C
20 aralkyl,
R
3 means hydrogen, OR 3a X, OSO 2
R
3 b,
R
3 a means hydrogen or together with R 2a a -(CH 2 )n group or a
CR
6 aR 6 b group,
R
3 b means alkyl, aryl, X means halogen, n means 2 to 4,
R
6 a
R
6 b are the same or different and mean C,-C alkyl, C 6
-C
0 aryl or together a -(CH 2 o group, o means 3 to 6,
R
6a additionally can assume the meaning of hydrogen,
R
4 8, R 4 b are the same or different and mean hydrogen,
C
1
-CI.
alkyl, C 7
-C
20 aralkyl or together a -(CH 2 )m group, m means 2 to
R
5 a, R 5 b are the same or different and mean hydrogen, Ci-CI 0 alkyl, C 7
-C
20 aralkyl or together a -(CH 2 p group, p means 2 to
R
5 means hydrogen, including all stereoisomers and mixtures thereof, and free hydroxyl groups can be etherified or esterified in R 2 and R 3 free carbonyl groups can be ketalized in A and R 2 converted into an enol ether or reduced, and free acid groups in A can be converted into their salts with bases, excluding the compounds 2 0 0 OH OH
OH
o P O 0 OP O P TBS It has also been found that synthesis components of general formula A"
R
4 R4b
H
R
3 0 in which
R
3 means OR 3 a and
R
3 means hydrogen or a protective group PG
R
4 a, R 4 b are the same or different and mean hydrogen,
C
1 -Co 1 -alkyl, Cy-C 20 -aralkyl, or together a -(CH 2 )m group, m means Rsa, R 5 b are the same or different and mean hydrogen,
C
1 -Co 1 -alkyl, C 7
-C
20 -aralkyl, or together a -(CH)p group, p means including all stereoisomers and mixtures thereof, and free carbonyl groups can be ketalized in I, can be produced readily by reaction of a compound of general formula II 01 2 3N'*" in which X is a chlorine or bromine atom, and the 2 -oxazolidinone ring has either a (4R,5S) or a (4S,5R) conformation, with a compound of general formula III
R
4 a R 4 b H
S---R
5 i. :i RSb o o
III
in which
R
4b are the same or different and mean hydrogen, CI-Co 1 -alkyl, C,-Cz 2 -aralkyl, or together a -(CH 2 )m group, m means
R
5
R
5 b are the same or different and mean hydrogen, CI-Clo-alkyl,
C,-C
20 -aralkyl, or together a p group, p means into a compound of general formula IV
O
O N O OH O R4a R4b in which the 2-oxazolidinone ring (4R,5S) and the 3'-carbon atom have an R conformation, or the 2-oxazolidinone ring (4S,5R) and the 3'-carbon atom have an S conformation, S as well as after the 3'-hydroxy group in IV is protected by a protective group PG, by cleaving the oxazolidinone radical and optionally cleaving protective group PG.
The reaction of a compound of general formula II with a compound of general formula III is accomplished after the compound of general formula II is converted into a metallenolate by insertion of a metal or metal salt into the carbon-halogen bond of the compound of general formula II.
The metals or metal salts that are used generally include all metals or metal salts that are known to one skilled in the art that are suitable for a Reformatzky reaction (see,
A.
FUrstner, Synthesis 1989, pp. 571-590).
According to the invention, chromium(II) chloride is preferably used.
Upon cleavage, the oxazolidinone ring is recovered from the compounds of general formula IV almost quantitatively and without loss of optical activity.
Alkyl groups R 4 a, R 4 b, R 5a and R 5 b are straight-chain or branched-chain alkyl groups with 1 to a maximum of 10 carbon atoms, such as, for example methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, isopentyl, neopentyl, heptyl, hexyl, and decyl.
Alkyl groups R 4 a, R 4 b, R 5a and R 5 b may be perfluorinated or substituted by 1-5 halogen atoms, hydroxy groups,
C,-C
4 alkoxy groups, and C-C 1 2 aryl groups (which can be substituted by 1-3 halogen atoms).
SThe aralkyl groups in R 4
R
4 b, R5a and R 5 b can contain up to 14 C atoms, preferably 6-10, in the ring and 1-8, preferably 1-4 atoms in the alkyl chain. The aralkyl radicals that can be considered include, for example, benzyl, phenylethyl, naphthylmethyl, naphthylethyl, furylmethyl, thienylethyl, and pyridylpropyl. The rings can be substituted in one to three places by halogen, OH, 0-alkyl,
NH
2
CO
2 H, CO,-alkyl,
-NO
2
-N
3 -CN, C 1 -C,-alkyl,
C,-C
20 -acyl, and C -C 2 -acyloxy groups.
Protective groups PG that can be considered include all radicals that are known to one skilled in the art as such protective groups. Preference is given in this case to silylcontaining protective groups, such as, for example the trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, tribenzylsilyl, and triisopropylsilyl radicals.
A summary of protective groups is given in, e.g., "Protective Groups in Organic Synthesis" by Theodora W. Green, John Wiley and Sons).
Halogen means fluorine, chlorine, bromine, and iodine.
The compounds of general formula II that are required for the process according to the invention can be obtained by acetylation of (4R,5S)- or (4S,5R)-4-methyl-5-phenyl-2oxazolidinone with bromine or chlorine acetyl chloride in the presence of a strong base, such as, for example n-butyllithium.
The stereochemistry of the hydroxy group in position 3 is controlled later by the selection of the chiral auxiliary.
The compounds of general formula III that pre required for the process according to the invention can be obtained commercially or can easily be manufactured.
To the extent that the compounds of general formula III are not available commercially, they can be manufactured using, for example, the methods that are indicated in Figures 1 and 2.
Figure. The starting material is (substituted) malonic ester.
R 4 R 4 b EtO 2 C
CO
2 Et siehe Fu~note 1 R 8 R 4 HO OH partieller Schutz R 4 a R 4 b PGO
OH
Oxidatiort siehe Fuflnote 2 R 4 a -R 4 b R~aCH 2 Li PGO 0oder PGO 0
R
5 aCH 2 MgX R 4 R 4 b O H
PGO
Oxidation R 4 8 R 4 b 0
PGO
ggf. Einf~hrung von R5b: 1) Base 2) R 5 b-HaI R 4 R 4 b .0 Oxidation R 4a R 4 b
PGO
R~b R s Schutzgruppenabspaltung R4a R4b 0 R 5 R s X=Halogen, PG=Schutzgruppe R 5b
RU
[KEY to Fig. 1:] siehe FuBnote see footnote partieller Schutz partial protection Oxidation oxidation oder or ggf. EinfUhrung von R 5b optionally, introduction of R 5b Schutzgruppenabspaltung protective group cleavage PG=Schutzgruppe protective group 1) In this regard see starting product C, in which R 4 a+R 4 b trimethylene 2) These 1,3-propanediols are available commercially to some extent and can then be incorporated into the synthesis at this point.
Figure 2-
R
4 b HNR6R7
CHO
Fufnote 2 siehe Fufnote 1
NR
6 R? R 5 a(CH 2
)COCI
R
4
R
4 b 0 A ggf Einfuhrung von [KEY to Fig. 2] siehe FuBnote see footnote ggf. Einfihrung von R 5 b optionally, introduction of R 5 b 1) These starting compounds are available commercially or can be obtained according to the methods that are known to one skilled in the art.
2) Secondary amine: preferably piperidine or morpholine or
R
6 and R-mean, independently of one another, a straight-chain or branched C 1
-C
6 alkyl group.
By analogy with previously described methods, for instance those cited on page 2 of this application (Schinzer et al., Chem.
Eur. J. 1996, 2, No. 11, pp. 1477-1482; Angew. Chem., 1997, 109, No. 5, pp. 543-544; Nicolaou et al.; Angew. Chem. 1997, 109, Nos.
1/2, pp. 170-172; Nature, Vol. 387, 1997, pp. 268-272; J. Am.
Chem. Soc., Vol. 119, No. 34, 1997, pp. 7960-7973; J. Am. Chem.
Soc., Vol. 119, No. 34, 1997, pp. 7974-7991; Ahgew. Chem. 1997, 109, No. 19, pp. 2181-2187), the components of general formula I that are produced according to this invention can be used for the synthesis of epothilone A and B, as well as in the C,-C 6 section of the epothilone framework that corresponds to modified epothilone derivatives.
The variability of the substituents that was required at the beginning of this document is thus achieved with the compounds of general formula I.
A major advantage of the process according to the invention also lies in the fact that the chiral auxiliary (4R,5S)- or 4 S,5R)-4-methyl-5-phenyl-2-oxazolidinone that is used is easy to recover after it is cleaved from the protective compound of general formula IV and can be reinserted into the synthesis process without loss of optical induction.
The components that are obtained in these ways, as well as their enantiomers or mixtures of these enantiomers, are suitable for aldo-condensation with an epothilone component that at C-7 (epothilone numbering system) carries a carbonyl function, as is the case with the above-mentioned total syntheses of epothilone
A
and epothilone
B.
Components A, their enantiomers or mixtures of these enantiorners are also suitable for esterification with an epothilone component which at C-15 (epothilone numbering system) carries a hydroxy function, as is the case with the above-mentioned total syntheses of epothilone A and epothilone.
B.
Representation of Partial Fragments
B:
Diagram 4
R
4 a*R 4 b' -O-A EI OHm PS E ""OPGh;" O w ElIPG8 0 B-Il B-Ill B-IV TB-VII chG 2
-H:
B-VI
B-Via
AN
B-VIb
AN-
B-VIc B-VIcI 0 chG 2 4a'
B-V
d R 4 a 'R 4 b' a~ 0l E-OPG 8 8-VIIIB-IX f R 4 aBR4W PGP DE 'OPG
O
B-X
g R 4 a' R 4 b* h R 4 a R 4 b' B-XI
B-XII
B-IIR
4 aR 4 b' RV M
B-XV
R
4 aR 4 b' R 5 1 k R 4 a R 4 W R 6 B-XIII
B-XIV
R 4 a' R 4 b' R 5 1 Ro a R) k P B-XVI B-XVII Step a (B-II B-III): A hydroxyl group in B-II is protected according to the methods that are known to one skilled in the art. As protective group PG 8 the protective groups that are known to one skilled in the art, as were already mentioned above for PG 4 in step a (A-II A-III), are suitable.
Preferred are silicon-containing protective groups, which can be cleaved under acid reaction conditions or use of fluoride, such as, trimethylsilyl, triethylsilyl, tertbutyldimethylsilyl, tert-butyldiphenylsilyl, tribenzylsilyl and triisopropylsilyl radicals.
Especially preferred is the tert-butyldimethylsilyl radical.
Step b (B-III B-IV): The free hydroxyl group in B-III is converted into a leaving group LG according to the methods that are known to one skilled in the art. As leaving group LG, for example, halogens such as, bromine or iodine or alkyl- or aryl sulfonates, which are produced from the corresponding sulfonic acid halides or sulfonic acid anhydrides according to the methods that are known to one skilled in the art, are suitable.
As leaving group LG, the trifluoromethanesulfonate is preferred.
Step c (B-IV B-VII): Compound B-IV is alkylated with the enolate of a carbonyl compound of general formula B-V, in which chG 2 can be a single alkoxy group or else a chiral auxiliary group according to the methods that are known to one skilled in the art. The enolate is produced by action of stronger bases, such as, lithium diisopropylamide, lithium hexamethyldisilazane at low temperatures. As chiral auxiliary group chG 2 -H chiral alcohols that can be produced in an optically pure and inexpensive manner, such as, pulegol, 2 -phenylcyclohexanol, 2-hydroxy-1,2,2-triphenylethanol, 8-phenylmenthol or compounds that contain reactive NH-groups that can be produced in an optically pure and inexpensive manner, such as, amines, Samino acids, lactams or oxazolidinones, are suitable. Preferred are oxazolidinones; especially preferred are the compounds of formulas B-VIa to B-VId. The absolute stereochemistry on the acarbonylcarbon of the compound of general formula B-VII is set by the selection of the respective antipodes. In this way, the compounds of general formulas B-VII to B-XVII or their respective enantiomers ent-B-VII to ent-B-XVII can be obtained in an enantiomer-pure manner. If an achiral alcohol, such as, e.g., ethanol, is used as chG 2 -H the racemic compounds rac-B- VII to rac-B-XVII are obtained.
Step d (B-VII
B-VIII):
If group chG 2 represents one of the chiral auxiliary groups that are mentioned under step c, the latter is recovered by reesterification of B-VII in an alkyl ester of general formula B- VIII. The-reesterification is carried out according to the methods that are known to one skilled in the art. Preferred is reesterification with simple alcohols, such as, methanol or ethanol -in the presence of corresponding titanium(IV) alcoholates.
Step e (B-VIII
B-IX):
The ester in B-VIII is reduced to alcohol B-IX. As a reducing agent, the reducing agents that are known to one skilled in the art, such as, aluminum hydrides, such as, e.g., lithium aluminum hydride or diisobutylaluminum hydride, are S suitable. The reaction is carried out in an inert solvent, such as, diethyl ether, tetrahydrofuran, toluene.
Step e' (B-VII
B-IX):
As an alternative to steps d) and the carbonyl group in B-VII can be reduced immediately to the alcohols of general formula B-IX according to the conditions that are mentioned under step Here, the chiral auxiliary component chG 2 -H can also be recovered.
Step f (B-IX B-X): The free hydroxyl group in B-IX is protected according to the methods that are known to one skilled in the art. As protective group PG 9 the protective groups that are known to one skilled in the art, as were already mentioned above for PG 4 in step a (A-II A-III), are suitable.
Preferred are those protective groups that can be cleaved under acidic reaction conditions, such as, the methoxymethyl, tetrahydropyranyl, tetrahydrofuranyl, and trimethylsilyl radical.
Especially preferred is the tetrahydropyranyl radical.
Step g (B-X B-XI): Protective group PG 8 which is introduced under step is now cleaved according to the processes that are known to one skilled in the art. If this is a silyl ether, then the reaction with fluorides, such as, for example, tetrabutylammonium fluoride, the hydrogen fluoride-pyridine complex, potassium fluoride or the use of dilute mineral acids, the use of catalytic quantities of acids, such as, para-toluenesulfonic acid, para-toluenesulfonic acid-pyridinium salt, camphorsulfonic acid in alcoholic solutions, preferably in ethanol or isopropanol, are suitable for the cleavage.
Step h (B-XI B-XII): Oxidation of the primary alcohol in B-XI to the aldehyde of general formula B-XII is carried out according to the processes that are known to one skilled in the art. For example, oxidation with pyridinium chlorochromate, pyridinium dichromate, chromium trioxide-pyridine complex, oxidation according to Swern or related methods, with use of oxalyl chloride in dimethyl sulfoxide, the use of Dess-Martin periodinane, the use of nitrogen oxides, such as, N-methyl-morpholino-N-oxide in the presence of suitable catalysts, such as, e.g., tetrapropylammonium perruthenate in inert solvents, can be mentioned. Preferred is the oxidation according to Swern, as well as with N-methyl-morpholino-N-oxide with use of tetrapropylammonium perruthenate.
Step i (B-XII B-XIII): The reaction of aldehyde B-XII to alcohols of general formula B-XIII is carried out according to the methods that are known to one skilled in the art with organometallic compounds of general formula M-R 5 in which M stands for an alkali metal, preferably lithium or a divalent metal MX, in which X represents a halogen and radical R 5 has the above-mentioned meaning. As a divalent metal, magnesium and zinc are preferred; as halogen X, chlorine, bromine and iodine are preferred.
Step k (B-XIII B-XIV): Oxidation of alcohol B-XIII to the ketone of general formula B-XIV is carried out according to the processes that are mentioned under Preferred is oxidation with N-methylmorpholino-N-oxide with use of tetrapropylammonium perruthenate.
Step 1 (B-XIII B-XV): The hydroxyl group in B-XIII can be provided according to the processes that are mentioned under a) with a protective group
PG
10 Preferred are silicon-containing protective groups, which can be cleaved under acidic reaction conditions or use of fluoride,-such as, the trimethylsilyl, triethylsilyl, tertbutyldimethylsilyl, tert-butyldiphenylsilyl, tribenzylsilyl, triisoprqpylsilyl radical. Especially preferred is the tertbutyldiphenylsilyl radical.
Step m (B-XV B-XVI): Protective group PG 9 which is introduced under step is cleaved according to the processes that are described under step g).
Step n (B-XVI B-XVII): Oxidation of alcohol B-XVI to the aldehyde of general formula B-XVII is carried out according to the processes that are mentioned under Preferred is oxidation according to Swern.
As an alternative, the compounds of general formula B-XIII can be produced with the method that is described in Diagram Diagram
R
4 a S4a' R 4 b' R4b OAky 0 ArHr11 R4b-A OAIky P a Ra4b q 4 a -yX -XVll B-XIX B-XX
B-XXI
RS-CHO r B-XIII
B-XXII
B-XXI
Step o (B-XVIII B-XIX): Starting from ethyl acetate derivatives, which can be obtained inexpensively, of general formula B-XVIII, in which R 4 and Rb' have the above-mentioned meanings, the ester enolate is produced by action of strong bases, such as, lithium diisopropylamide, lithium hexamethyldisilazane at lowtemperatures and reacted with 3-halogen-l-propine, preferably 3bromo-l-propine to compounds of general formula B-XIX.
Step p (B-XIX B-XX): The reduction of ester B-XIX to alcohol B-XX is carried out according to the methods that are described under step e), preferably with use of diisobutylaluminum hydride.
Step q (B-XX B-XXI): The hydroxyl group in B-XX can be provided according to the conditions that are mentioned under a) with a protective group PG". Preferred are silicon-containing protective groups, which can be cleaved under acidic reaction conditions or use of fluoride, such as, the trimethylsilyl, triethylsilyl, tertbutyldimethylsilyl, tert-butyldiphenylsilyl, tribenzylsilyltriisopropylsilyl radical. Especially preferred is the tertbutyldimethylsilyl radical.
Step r (B-XXI B-XIII): Acetylene B-XXI can be deprotonated according to the processes that are known to one skilled in the art, and the acetylide that is obtained can be reacted with carbonyl compounds of general formula B-XXII, in which R 5 has the above-mentioned meaning, to an alcohol of general formula XIII. For deprotonation, alkyl alkali compounds, such as, e.g., butyllithium or other strong bases, such as, alkali hexamethyldisilazane or lithium diisopropylamide, are suitable.
Preferred is n-butyllithium.
In the process that is described in Diagram 5, first the racemic compounds rac-B-XIII are obtained. Optionally, steps rac-B-XIX or rac-B-XX that are passed through according to Diagram 6 offer the possibility for chemical racemate cleavage and thus also access to enantiomer-pure compounds B-XX or ent-B- XX, if R 4a is not identical to R 4 b'.
Diagram 6 B-XIXa u
R
4 a' R 4 b' crac-hG 4 B-XX ent-B-XX
O
B-XXa Step s (rac-B-XIX B-XIXa): Racemic compound rac-B-XIX can be reesterified with a chiral alcohol chG 3 -OH that can be obtained in an optically pure manner according to the methods that are known to one skilled in the art, for example the process that is mentioned under step to a mixture of diastereomeric ester B-XIXa and separated with simple, chromatographic methods. As chiral alcohols, for example, pulegol, 2-phenylcyclohexanol, 2-hydroxy-l,2,2triphenylethanol, 8-phenylmethanol are suitable.
Step t (B-XIXa B-XX and ent-B-XX): Diastereomer-pure esters B-XIXa can be reduced in each case to alcohols B-XX or ent-B-XX according to the process that is described under step e, whereby auxiliary component chG 3 -OH that is described under step s can be recovered.
Step u (rac-B-XX B-XXa): Racemic compound rac-B-XX can be reacted with a chiral acid chG 4
-CO
2 H that can be obtained in an optically pure manner, its esters, anhydride or acid halide, according to the methods that are known to one skilled in the art, to a mixture of the diastereomer ester XXa and separated with simple chromatographic methods. As chiral acids, for example, malic acid, tartaric acid or their derivatives are suitable.
Step v (B-XXa B-XX and ent-B-XX): Diastereomer-pure esters B-XXa can be reduced in each case to alcohols B-XX or ent-B-XX according to the process that is described under step e, or saponified according to the methods that are known to one skilled in the art, whereby in the lastmentioned case, auxiliary component chG 4 -CO H that is described under step u can be recovered.
Representation of Partial Fragments C: It is known that the compound of formula O 1 3 OTBDMS OBenzyl (TBDMS stands for a tert-butyldimethylsilyl radical) can be used for the synthesis of the C13-C16 fragment (epothilone numbering system) of epothilone A (Schinzer et al. Chem. Eur. J. 1996, 2, No. 1, 1477-1482). The synthesis that is described by Schinzer et al. introduces the required chirality via a kinetic racemate cleavage according to Sharpless. A necessary chromatographic separation, an inadequate enantiomer excess and a small overall yield disqualify this method for an industrial synthesis, which requires high yields and high optical purity of the synthesis products.
It is further known that the above-mentioned synthesis component can be converted with the phosphonate of formula
N
)OEt OP OEt by Wittig reaction into a compound of formula
J]OTBDMS
OBenzyl which can then be used for the introduction .of the C13-C20 fragment for epothilone synthesis.
Partial fragments of formula C can be produced from malic acid, which can be obtained in an inexpensive, reasonably-priced manner, in an efficient way with high optical purity 99.5%).
The synthesis is described in Diagram 7 below in the example of L-(-)-malic acid Starting from D(+)-malic acid (ent-Cthe corresponding enantiomeric compounds (ent-C-II to ent-C- XI) are obtained, and starting from racemic malic acid (rac-C-I), the corresponding racemic compounds (rac-C-II to rac-C-XI) are obtained).
Diagram 7 OH0 HOOC)N,-COOH 0:
OH
c-I c-11 OPG 12 C-I11
C
9 HO~K)
C
OPG
12 c-Iv OPPG 13 c-vt12 6PG 1 2 c-v e O 0PG 1 3 f OPG 12 C-VI: P=H C-VI" :P PGvI" g Rr 1 0P 12 0-vil h OPG 12 c-tx U Hal 0P 12 c-x k
R
u~~~sPPh 3 Halr 6PG 12
C-XI
0 Step a (malic acid C-1I C-II): L-(-)-Malic acid is converted into hydroxylactone
C-II
accordin-g to a process that is known in the literature (Liebigs Ann. Chem. 1993, 1273-1278).
Step b (C-II C-III): The -free hydroxy group in compound C-II is protected according to the methods that are known to one skilled in the art. As protective group PG 1 the protective groups that are known to one skilled in the art, as were already mentioned above for PG 4 in step a (A-II A-III), are suitable.
Preferred are those protective groups that can be cleaved under the action of fluoride, but are stable under weakly acid reaction conditions, such as, the tert-butyldiphenylsilyl, tert-butyldimethylsilyl or triisopropylsilyl radical.
Especially preferred are the tert-butyldiphenylsilyl radical and the tert-butyldimethylsilyl radical.
Step c (C-III C-IV): Lactone C-III is reduced to lactol C-IV according to the methods that are known to one skilled in the art. As reducing agents, aluminum hydrides that are modified in their reactivity, such as, diisobutylaluminum hydride, are suitable. The Sreaction is carried out in an inert solvent, such as, e.g., toluene, preferably at low temperatures (-20 to -100 0
C).
Step d (C-IV C-V): The reaction of lactol C-IV to compounds of formula C-V is carried out with organometallic compounds of general formula M-
R
8 in which M stands for an alkali metal, preferably lithium, or a divalent metal MX, in which X represents a halogen, and R 8 has the above-mentioned meanings. As a divalent metal, magnesium and zinc are preferred, and as halogen X, chlorine, bromine and iodine are preferred.
Step e (C-V C-VI): The primary hydroxyl group in compound C-V is protected in a selective manner relative to the secondary hydroxyl group according to the methods that are known to one skilled in the art.
The secondary hydroxy group is optionally then protected Salso according to the methods that are familiar to one skilled in the art.
As protective groups PG 13 and PGv l the protective groups that are known to one skilled in the art, as were already mentioned above for PG 4 in step a (A-II A-III), are suitable.
Preferred are those protective groups that can be cleaved under weakly acidic reaction conditions in a selective manner in the presence of protective group PG10, which is introduced from component A into the synthesis of the compounds of general S formula I, such as, the trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl radical.
Especially preferred is the tert-butyldimethylsilyl radical.
Step f (C-VI C-VII): Oxidation of the secondary alcohol in C-VI to ketone C-VII is carried out according to the methods that are known to one skilled in the art. For example, oxidation with pyridinium chlorochromate, pyridinium dichromate, chromium trioxide-pyridine complex, oxidation according to Swern or related methods, e.g., with use of oxalyl chloride in dimethyl sulfoxide, the use of Dess-Martin periodinane, the use of nitrogen oxides, such as, N-methyl-morpholino-N-oxide in the presence of suitable catalysts, such as, tetrapropylammonium perruthenate in inert solvents, can be mentioned. Preferred is oxidation according to Swern.
Step g (C-VII C-VIII): SFor compounds in which U is equal to CR0O'Rll', this grouping is established according to the processes that are known to one skilled in the art. For this purpose, methods such as, the Wittig or Wittig/Horner reaction, the addition of an organometallic compound MCHR10'R1.' with dehydration, are suitable. Preferred is the Wittig and Wittig/Horner reaction with use of phosphonium halides of type CR1O'R11'P(Ph) 3Hal' or phosphonates of type CR10'Rll'P(O)(Oalkyl)2 with Ph equal to phenyl, R10', R11' and halogen in the already mentioned conditions with strong bases, such as, n-butyllithium, potassium-tert-butanolate, sodium ethanolate, sodium hexamethyldisilazane; n-butyllithium is preferred as a base.
For compounds in which U represents two alkoxy groups OR 2 or a C 2 -CI, alkylene-a,6-dioxy group, the ketone is ketalized under acid catalysis according to the methods that are known to one skilled in the art, for example, with use of an alcohol HOR 23 or a C 2
-C
1 alkylene-a,S-diol.
Step h (C-VIII C-IX): Protective group PG 13 that is introduced under e is now selectively cleaved in the presence of PG 12 according to the processes that are known to one skilled in the art. If this a protective group that can be cleaved acidically, then cleavage is carried out preferably under weakly acidic conditions, such .s, by reaction with dilute organic acids in inert solvent.
Preferred is acetic acid.
Step i (C-IX C-X): The free primary hydroxyl group is optionally converted into a halide according to the processes that are known to one skilled in the art. Preferred halides are chlorine, but especially bromine and iodine. The substitution of the hydroxyl group for a bromine can be carried out using, triphenylphosphine/ tetrabromomethane, but also according to any other process that is known to one skilled in the art. The establishment of an iodine atom can be done from the bromide by substitution, e.g., according to Finkelstein with sodium iodide in acetone. Direct conversion of the hydroxyl group into iodide is also possible, with use of elementary iodine, imidazole and triphenylphosphine in dichloromethane.
If U ultimately is to stand for H/OR 9 with R 9 in the meaning of a hydrogen atom, the conversion of the primary hydroxy group into a halogen atom is performed in the stage of compound C-VI' according to selective reaction of the primary hydroxy group.
Step k (C-X C-XI): If the linkage of the C13-C16 unit with the 12-position of the epothilone radical or of the epothilone fragments, a C7-C12 unit, is to be carried out by Wittig reaction, as described in, Nature Vol. 387, 268-272 (1997), the triphenyl-phosphonium-halides (R 21 P(Ph)3+Hal"), alkyl or aryl phosphonates (R 2 1
P(O)(OQ)
2 or phosphine oxides (R 21 P(O)Ph 2 of type C-XI are produced starting from halides C-X according to the processes that are known to one skilled in the art. In this Scase, Ph means phenyl; Hal stands for F, Cl, Br or I, and Q is a
C,-C
1 alkyl or phenyl radical.
For the production of phosphonium salts, the reaction of the corresponding halides with triphenylphosphine in solvents such as toluene or benzene is suitable.
The production of phosphonates can be carried out, by reaction of halides C-X with a metallized dialkylphosphite. The metallization is usually carried out with strong bases, such as, butyllithium.
e The production of the phosphine oxides can be carried out, by reaction of halides C-X with metallized diphenylphosphine and subsequent oxidation. For metallization, strong bases such as butyllithium are also suitable. The subsequent oxidation to phosphine oxide can then be carried out with, dilute aqueous hydrogen peroxide solution.
It has been found that, surprisingly enough, compounds of formula CL can be produced from enantiomer-pure malic acid, which can be obtained in an inexpensive, reasonably-priced manner, in an efficient way with high optical purity although basically the possibility for complete or partial racemization would exist in the described process according to the invention.
As mentioned above, the known process supplies those compounds in which R' is a methyl group, R 2 is a tertbutyldimethylsilyl or benzyl radical, R 3 is an O-tertbutyldimethylsilyl radical and X is an oxygen atom or a (2methylthiazol-4-yl)methylene radical, only in an optical purity of about SIn addition, the chemical yields of the process according to the invention are considerably higher than the yields that are indicated in the processes that are described by Schinzer et al.
For example, the yield of dimethylethyl)silyl]oxy]-3-[[(1,1dimethylethyl)diphenylsilyl]oxy]-2-pentanone, produced according to the process of the invention and starting from L-(-)-malic acid with 26.5% is almost twice as high as the yield that is indicated by Schinzer et al. in the production of (3S)-3- S benzyloxy-5-[[dimethyl(1, -dimethylethyl)silyl]oxy]-2-pentanone (14.35%; Chem. Eur. J. 1996, 2, No. 11, 1477-1482) or achieved in the production of (3S)-3-[[dimethyl(1,1-dimethylethyl)silyl]oxy]- 5-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-2-pentanone (20.58%; Angew. Chem. 1997, 109, No. 5, 543-544).
This comparison is based on the yields that are indicated in the above-mentioned bibliographic references, whereby as already mentioned above it is to be taken into consideration that the compounds that are obtained according to the known processes do not accumulate in an enantiomer-pure manner, such that the actual yield of the enantiomer-pure compound i question is lower, and an additional purification step in this or a later process stage is necessary for obtaining an enantiomer-pure compound.
Moreover, the process according to the invention makes possible a very wide variation of substituents in this C13-C16 component.
This invention thus relates to a process for the production of the compounds of general formula which is characterized in that L-(-)-malic acid, D(+)-malic acid or racemic malic acid is used as a starting product.
Optically pure or L-(-)-malic acid is preferably used.
The invention also relates to the intermediate compounds of general formulas V, VI and VI' (combined below as VI") that occur in the process
R'
RsO 5 K- OPG2" OPG' VI" in which
PG
1 and R 5 have the meaning that is indicated in general formula C' and
PG
2 stands for a hydrogen atom or a protective group PG 2 These compounds are produced according to the invention in that an organometal compound of general formula R Y in which R' has the meaning that is indicated in general formula and Y stands for an alkali metal atom or MZ, whereby M is a divalent metal atom and Z is a halogen atom, :o a compound of general Formula IV is added t
PHOG
PG'
in which
PG
1 has the meaning that is indicated in general Formula C, while the lactol ring is opened.
Lithium is preferred as an alkali atom.
In the case of MZ, magnesium and zinc are preferred for the divalent metal atom; as a halogen atom, primarily chlorine, bromine and iodine are considered.
In addition, this invention relates to the new C13-C16 epothilone components of general formula C in which
R
1
R
2
R
3 1X 13R C,
OR
2 means hydrogen, CI-C 20 alkyl, aryl, C 7
-C
20 aralkyl, which can all be substituted, means hydrogen or a protective group PG 1 means a hydroxy group, halogen, a protected hydroxy group OPG 2 a phosphonium halide radical PPh*Hal" (Ph _phenyl; Hal F, Cl, Br, a phosphonate radical
P(O)(OQ)
2
(Q=C
1
-C
10 alkyl or phenyl) or a phosphine oxide radical P(O)Ph 2 (Ph phenyl), X means an oxygen atom, two alkoxy groups OR 4 a alkylene-a,b-dioxy group, which can be straight-chain or branched, H/OR 5 or a grouping CR 6
R
7 whereby.
R
4 stands for a C 1 -Cg 2 alkyl radical,
R
5 stands for hydrogen or a protective group PG 3
R
6
R
7 are the same or different and stand for hydrogen, a CI-C 20 alkyl, aryl, C 7
-C
20 aralkyl radical or R 6 and R 7 together with the methylene carbon atom together stand for a 5- to 7-membered carbocyclic ring, whereby not simultaneously R can be a methyl group, R 2 can be a tertbutyldimethylsilyl or benzyl radical, R 3 can be an O-tert-butyldimethylsilyl radical and X can be a (2-methylthiazol-4-yl)methylene radical or R 1 can be a methyl group, R 2 can be a tertbutyldimethylsilyl radical, R 3 can be a triphenylphosphonium iodide radical and X can be a (2-methylthiazol-4-yl)methylene radical.
The first disclaimer excludes those compounds that were already produced by Schinzer et al. according to a process different-from the process according to the invention (Chem. Eur.
J. 1996, 2, No. 11, 1477-1482 and Angew. Chem. 1997, 109, No. 543-544).
The second disclaimer takes into consideration the (5E,3S)- [3-[[(1,l-dimethylethyl)-dimethylsilyl]oxy]-4-methyl-5-(2methylthiazol-4-yl)-pent-4-en-l-yl]-triphenylphosphonium iodide that is mentioned by K. C. Nicolaou et al. in Nature, Vol. 3187, 1997, 268-272.
For the more detailed explanation of substituents R 1
R
4
R
6
R
7
PG
1
PG
2 and PG 3 that occur in the compounds of general formula C, the statements that are made above for the substituents of general formula C' hold true.
According to the invention, those compounds of general formula C are preferred, in which R stands for a hydrogen atom, an optionally substituted
C
1
-C
4 alkyl radical, a phenyl radical that is optionally substituted with 1 to 3 radicals, selected from the group of substituents halogen, free hydroxy group or protected hydroxy group OPG 4
C
1
-C
4 alkyl, azido, nitro, nitrile and amino (NH 2 and/or X stands for an oxygen atom, and/or.
the aryl radical that stands for R 6 and/or R 7 stands for a phenyl radical that is optionally substituted with 1 to 3 radicals, selected from the group of substituents halogen, free hydroxy group or protected hydroxy group
OPG
5
CO
2 H, C0 2 -alkyl, C 1
-C
4 alkyl, azido, nitro, nitrile, amino or for a 5- or 6-membered Jheteroaryl radical that is optionally substituted with 1 to 2 C,-C 4 alkyl radicals, especially for a substituent that is selected from the group 3-furanyl; 4-pyridinyl; thiazolyl; 4- and 5-imidazolyl radical, which optionally is substituted by 1 or 2 CI-C 4 alkyl radicals, and/or
PG
1
PG
2 and PG 3 are selected from the group of substituents methoxymethyl, methoxyethyl, ethoxyethyl, tetrahydropyranyl, tetrahydrofuranyl, trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl, tertbutyldiphenylsilyl, tribenzylsilyl, triisopropylsilyl, benzyl, para-nitrobenzyl, para-methoxybenzyl, acetyl, propionyl, butyryl and benzoyl radicals, in particular PG 1 is a tert-butyldiphenylsilyl, tertbutyldimethylsilyl or triisopropylsilyl radical, and in particular PG 2 is a tert-butyldimethylsilyl, acetyl, benzoyl, benzyl, tetrahydropyranyl radical.
As protective groups PG 4 and PG 5 all protective groups that are indicated above for PG 1
PG
2 and PG 3 are suitable.
Representation of partial fragments ABC and their cyclization to
I:
Partial fragments of general formula AB R
S
AB,
in which R l Rib', R 2 a Rb', R 3
R
4 a, R 4 b, R 5 R, R 14 D, E, V and Z have the meanings already mentioned, and PG 14 represents a hydrogen atom or a protective group PG, are obtained from previously described fragments A and B according to the process that is shown in Diagram 8.
Diagram 8 R 1 R R 2 b R 0
A
V DA E
R'
w
B
a b Step a (A B AB) Compound B, in which W has the meaning of an oxygen atom and optionally present additional carbonyl groups are protected, is alkylated with the enolate of a carbonyl compound of general formula A. The enolate is produced by action of strong bases, such as, lithium diisopropylamide, lithium hexamethyldisilazane, at low temperatures.
Partial fragments of general formula ABC
,R
3
'OPG
1 4
ABC,
in which Ra'' RIb, R b RZb', R 3
R
4 a, R 4 b, R 5
R
6
R
7
R
13
R
14
D,
E, U and Z have the already mentioned meanings, are obtained from previously described fragments AB and C according to the process that is shown in Diagram 9.
Diagram 9
-OPG"
R r OR 20
R
2 b
ABC
Step b (AB C ABC): Compound C, in which R 21 has the meaning of a Wittig salt, and optionally present additional carbonyl groups are protected, is deprotonated by a suitable base, such as, nbutyllithium, lithium diisopropyl amide, potassium tertbutanolatC, sodium or lithium-hexamethyldisilazide and reacted with a compound AB, in which V has the meaning of an oxygen atom.
Step c (ABC 1): Compounds ABC, in which R 13 represents a carboxylic acid CO 2
H
and R 20 represents a hydrogen atom, are reacted according to the methods that are known to one skilled in the art for the formation of large macrolides to compounds of formula I, in which Y has the meaning of an oxygen atom. Preferred is the method that is described in "Reagents for Organic Synthesis, Vol. 16, p.
353" with use of 2,4,6-trichlorobenzoic acid chloride and suitable bases, such as, triethylamine, 4dimethylaminopyridine, sodium hydride.
Step d (ABC i): Compounds ABC, in which R 13 represents a group CH 2 OH and R 20 represents a hydrogen atom, can be reacted preferably with use of triphenylphosphine and azodiesters, such as, for example, azodicarboxylic acid diethyl ester, to compounds of formula I, in which Y has the meaning of two hydrogen atoms.
Compounds ABC, in which R 13 represents a group CH 2
OSO
2 alkyl or CH 2 0SO 2 aryl or CH 2 0SO 2 aralkyl and R 20 represents a hydrogen atom, can be cyclized to compounds of formula I, in which Y has the meaning of two hydrogen atoms, after deprotonation with suitable bases, such as, for example, sodium hydride, nbutyllithium, 4-dimethylaminopyridine, HUnig base, alkylhexamethyldisilazanes.
The flexible functionalization of described components A, B, and C also ensures a linkage sequence that deviates from the above-described process and that leads to components ABC. These processes are listed in the following table: Possible Linkages Linkage Methods a Prerequisites to e A B A B a: Aldol (see Z W oxygen Diagram 8) B C B C b: Wittig U oxygen and R 21 (analogously to Wittig salt or Diagram 9) phosphine oxide or e: McMurry phosphonate U V oxygen A C A C c: Esterification R 13 CO2R 3 b or 2,4,6- COHal and trichlorobenzoyl R 20 hydrogen chloride/4- R 13
CH
2 OH and R 20 dimethylamino- hydrogen or SO 2 pyridine) alkyl or SO 2 -aryl d: etherification or SO 2 -aralkyl Mitsunobu) According to these processes, components A, B and C, as indicated in Diagram 10, can be linked: Diagram a A+B
A-B+C
c oder d A+C
C-A+B
0 b oder e c oder d a b oder e Soder d c oder d c oder d A-B-C C-B-A b oder e CAB b oder e
C-A-B
B-C-A
I,
I,
b oder e B+C
C-B+A
C-B-A
A-C-B
c oder d a [oder or] Free hydroxyl groups in I, A, B, C, AB, ABC can be further functionally modified by etherification or esterification, free carbonyl groups by ketalization, enol ether formation or reduction.
The invention relates to all stereoisomers of these compounds and also their mixtures.
Biological Actions and Applications of the New Derivatives: The new compounds of formula I are valuable pharmaceutical agents. They interact with tubulin by stabilizing microtubuli that are formed and are thus able to influence the cell-splitting in a phase-specific manner. This relates mainly to quick-growing, neoplastic cells, whose growth is largely unaffected by intercellular regulating mechanisms. Active ingredients of this type are in principle suitable for treating malignant tumors. As applications, there can be mentioned, for example, the treatment 7 of ovarian, stomach, colon, adeno-, breast, lung, head and neck carcinomas, malignant melanoma, acute lymphocytic and myelocytic leukemia. The compounds according to the invention are suitable owing to their properties basically for anti-angiogenesis therapy as well as for treatment of chronic inflammatory diseases, such as, for example, psoriasis or arthritis. To avoid uncontrolled proliferation of cells and for better compatibility of medical implants, they can basically be applied or introduced into the polymer materials that are used for this purpose. The compounds Saccording to the invention can be used alone or to achieve additive or synergistic actions in combination with other principles and classes of substances that can be used in tumor therapy.
As examples, there can be mentioned the combination with 0 Platinum complexes, such as, cis-platinum, carboplatinum, 0 intercalating substances, from the class of anthracyclines, such as, doxorubicin or from the class of anthrapyrazoles, such as, Cl-941, O substances that interact with tubulin, from the class of vinca-alkaloids, such as, vincristine, vinblastine or from the class of taxanes, such as,taxol, taxotere or from the class of macrolides, such as, rhizoxin or other compounds, such as, colchicine, combretastatin A-4, O DNA topoisomerase inhibitors, such as, e.g., camptothecin, etoposide, topotecan, teniposide, 0 folate- or pyrimidine-antimetabolites, such as, e.g., lometrexol, gemcitubin, O DNA-alkylating compounds, such as, adozelesin, dystamycin A, O inhibitors of growth factors of PDGF, EGF, TGFb, EGF), such as, somatostatin, suramin, bombesin antagonists, O inhibitors of protein tyrosine kinases or protein kinases A or C, such as, erbstatin, genistein, staurosporine, ilmofosine, 8-C1-cAMP, 0 antihormones from the class of antigestagens, such as, mifepristone, onapristone or from the class of antiestrogens, such as, tamoxifen or from the class of antiandrogens, such as, cyproterone acetate, 0 metastases-inhibiting compounds, from the class of eicosanoids, such as, PGl 2 PGE,, 6-oxo-PGE, as well as their more stable derivatives iloprost, cicaprost, misoprostol), 0 inhibitory, oncogenic RAS proteins, which influence the mitotic signal transduction, such as, for example,inhibitors of the farnesyl-protein-transferase, 0 natural or synthetically produced antibodies, which are directed against factors or their receptors, which e promote tumor growth, such as, for example, the erbB2 antibodies.
The invention also relates to pharmaceutical agents that are based on pharmaceutically compatible compounds, compounds of general formula I that are nontoxic in the doses used, optionally together with commonly used adjuvants and vehicles.
According to methods of galenicals that are known in the art, the compounds according to the invention can be processed into pharmaceutical preparations for enteral, percutaneous, parenteral or local administration. They can be administered in the form of tablets, coated tablets, gel capsules, granulates, suppositories, implants, injectable, sterile, aqueous or oily solutions, suspensions or emulsions, ointments, creams and gels.
In this case, the active ingredient or ingredients can be mixed with the adjuvants that are commonly used in galenicals, such as, gum arabic, talc, starch, mannitol, methyl cellulose, lactose, surfactants such as Tweens or Myrj, magnesium stearate, aqueous or non-aqueous vehicles, paraffin derivatives, cleaning agents, dispersing agents, emulsifiers, preservatives and flavoring substances for taste correction ethereal oils).
The invention thus also relates to pharmaceutical compositions, which as active ingredients contain at least one compound according to the invention. A dosage unit containsabout 0.1-100 mg of active ingredient(s). In humans, the dosage of the compounds according to the invention is approximately 0.1- 1000 mg per day.
The examples below are used for a more detailed explanation of the invention, without intending that it be limited to these examples: Production of the Components of General Formula A from Pantolactone or from Malonic Acid Dialkyl Esters: Example 1 (38) -1-Oxa-2-oxo-3- (tetrahydropyran-2 (RS) -yloxy) -4,4-dimethylcyclopentane The solution of 74.1 g (569 mmol) of D-(-)-pantolactone in 1 1 of anhydrous dichloromethane is mixed with 102 ml of 3,4dihydro-2H-pyran, 2 g of p-toluenesulfonic acid-pyridinium salt under an atmosphere of dry argon, and it is stirred for 16 hours at 23 0 C. _It is poured into a saturated sodium bicarbonate solution, the organic phase is separated and dried on sodium sulfate. After filtration and removal of the solvent, the residue is chromatographed on about 5 kg of fine silica gel with a mixture of n-hexane and ethyl acetate. 119.6 g (558 mmol, 98%) of the title compound is isolated as a colorless oil.
'H-NMR (CDC1 3 6 1.13 1.22 1.46-1.91 (6H), 3.50-3.61 3.86 3.92 4.01 4.16 5.16 (1H) ppm.
Example 2 (2RS,38)-1-Oxa-2-hydroxy-3-(tetrahydropyran-2(RS)-yloxy)-4,4dimethyl-cyclopentane The solution of 117.5 g (548 mmol) of the compound, presented according to Example 1, in 2.4 1 of anhydrous toluene is cooled under an atmosphere of dry argon to -70 0 C, mixed within 1 hour with 540 ml of a 1.2 molar solution of diisobutylaluminum hydride in toluene, and it is stirred for 3 more hours at -70 0
C.
It is allowed to heat to -20 0 C, mixed with saturated ammonium chloride solution, water, and the precipitated aluminum salts are separated by filtration on Celite. The filtrate is washed with water and saturated sodium chloride solution and dried on magnesium sulfate. After filtration and removal of the solvent, 111.4 g (515 mmol, 94%) of the title compound is isolated as a colorless oil, which is further reacted without purification.
IR(CHC13): 3480, 3013, 2950, 2874, 1262, 1133, 1074, 1026 and 808 cm'.
Example 3 (3S)-2,2-Dimethyl-3-(tetrahydropyran-2(R)-yloxy)-pent-4-en-l-ol and (3S)-2,2-dimethyl-3-(tetrahydropyran-2(S)-yloxy)-pent-4-en-1ol The suspension of 295 g of methyl-triphenylphosphonium bromide in 2.5 1 of anhydrous tetrahydrofuran is mixed under an atmosphere of dry argon at -60 0 C with 313 ml of a 2.4 molar Ssolution of n-butyllithium in n-hexane, allowed to heat to 23 0
C,
stirred for one more hour and cooled to 0 C. It is mixed with the solution of 66.2 g (306 mmol) of the compound, presented according to Example 2, in 250 ml of tetrahydrofuran, allowed to heat to 23 0 C and stirred for 18 hours. It is poured into a saturated sodium bicarbonate solution, extracted several times with dichloromethane, and the combined organic extracts are dried on sodium sulfate. After filtration and removal of the solvent, the residue is chromatographed on about 5 1 of fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 36.5 g (170 mmol, 56%) of the nonpolar THP-isomers of the title compound, 14.4 g (67.3 mmol, 22%) of the polar THPisomers of the title compound, as well as 7.2 g (33.3 mmol; 11%) of the starting material are isolated in each case as a colorless oil.
'H-NMR (CDC1 3 nonpolar isomer: 6 0.78 (3H) 0.92 (3H), 1.41-1.58 1.63-1.87 3.18 3.41 3.48 (1H), 3.68 3.94 4.00 4.43 5.19 5.27 (1H), 5.75 (1H) ppm.
'H-NMR (CDC13), polar isomer: 6 0.83 0.93 (3H), 1.42-1.87 2.76 3.30 3.45 3.58 3.83 3.89 4.65 5.12-5.27 5.92 (1H) ppm.
Example 4 (38)-1-(tert-Butyldiphenylsilyloxy)-2,2-dimethyl-pentane-3- (tetrahydropyran-2-yloxy)-pent-4-ene The solution of 59.3 g (277 mmol) of the THP-isomer-mixture, presented according to Example 3, in 1000 ml of anhydrous dimethylformamide is mixed under an atmosphere of dry argon with 28 g of imidazole, 85 ml of tert-butyldiphenylchlorosilane and stirred for 16 hours at 23 0 C. It is poured into water, extracted several times with dichloromethane, the combined organic extracts are washed with water and dried on sodium sulfate. After filtration and removal of the solvent, the residue is chromatographed on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 106.7 g (236 mmol, of the title compound is isolated as a colorless oil.
1 H-NMR (CDC13): 6 0.89 0.99 1.08 1.34- 1.82 3.40 3.51 3.76 4.02 4.67 (1H), 5.18 5.23 5.68 7.30-7.48 7.60-7.73 (4H) ppm.
Example (38)-l-(tert-Butyldiphenylsilyloxy)-2,2-dimethyl-3- The solution of 3.09 g (6.83 mmol) of the compound, presented according to Example 4, in 82 ml of tetrahydrofuran is mixed with 13.1 ml of a 1 molar solution of borane in tetrahydrofuran under an atmosphere of dry argon at 23 0 C, and it is allowed to react for 1 hour. Then, while being cooled with ice, it is mixed with 16.4 ml of a 5% sodium hydroxide solution as well as 8.2 ml of a 30% hydrogen peroxide solution, and it is stirred for another 30 minutes. It is poured into water, extracted several times with ethyl acetate, the combined organic extracts are washed with water, saturated bodium chloride solution and dried on magnesium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 1.78 g (3.78 mmol, of the title compound is isolated as a chromatographically separable mixture of the two THP-epimeres, as well as 0.44 g 14 mmol, 17%) of the title compound of Example 6 in each case as a colorless oil.
1 H-NMR (CDCl 3 nonpolar THP-isomer: 6 0. 80 (3H) 0. 88 1.10 1.18-1.80 3.27 3.39 3.48 (MH), 3.64 3.83 3.90-4.08 4.49 7.31-7.50 (6H), 7.58-7.73 (4H) ppm.
1 H-NMR (CDCl 1 polar THP-isomer: 6 0. 89 (3H) 0. 98 (3H) 1.08 1.36-1.60 1.62-1.79 1.88 2.03 (lH), 3.37 3.50 3.57 3.6-2-3.83 4.70 7.30- S7.48 7.61-7.73 (4H) ppm.
Example 6 (38) C tert-D~utyldiphenylsilyloxy) -2,2 -dimethyl-pentane-3, Analogously to Example 5, the solution of 570 mg 55 mmol) of the compound that is presented according to Example 12 is reacted, and after working-up and purification, 410 mg (1.06 mmol, 68%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.82 0.93 (3H) 1.08 (9H) 1.56- 91.79 (2H1), 3.11 3.50 3.78-3.92 4.02 7.3.4- 7.51 7.61-7.71 (4H) ppm.
Example 7, variant I 4(S) -(2-Methyl-i- (tert-butyldiphenylsilyloxy) -prop-2-yl]-2,2dimethyl- dioxane The solution of 100 mg (0.212 mmol) of the compounds, presented-according to Example 5, in 2.6 ml of anhydrous acetone is mixed with 78.9 mg of copper(II) sulfate, a spatula tip full of p-toluenesulfonic acid-monohydrate under an atmosphere of dry argon, and it is stirred for 16 hours at 23 0 C. It is mixed with saturated sodium bicarbonate solution, extracted several times with diethyl ether, washed with saturated sodium chloride solution and dried on sodium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 24 mg (56 gmol, 27%) of the title compound is isolated as a colorless oil.
IH-NMR (CDC1 3 6 0.83 0.89 1.07 1.30 1.36 1.44 1.71 3.24 3.62 3.86 3.91-4.03 7.31-7.48 7.61-7.74 (4H) ppm.
Variant II Analogously to Example 7, 320 mg (0.88 mmol) of the compound that is presented according to Example 6 is reacted; variant 1, and after working-up and purification, 234 mg (0.548 mmol, 62%) of the title compound is isolated.
Variant III The solution of 5.60 g (14.5 mmol) of the compound, presented according to Example 6, in 250 ml of anhydrous dichloromethane, is mixed with 10 ml of 2,2-dimethoxypropane, 145 mg of camphor-10-sulfonic acid under an atmosphere of dry argon, and it is stirred for 6 hours at 23 0 C. It is mixed with triethylamine, diluted with ethyl acetate, washed with saturated sodium bicarbonate solution and dried on sodium sulfate. After filtration and removal of the solvent, the residue is chromatographed on fine silica gel with a mixture of n-hexane and ethyl acetate. 5.52 g (12.9 mmol, 89%) of the title compound is isolated as a colorless oil.
Example 8 (48)-4-(2-Methyl-l-hydroxy-prop-2-yl)-2,2-dimethyl-[1,3]dioxane The solution of 5.6 g (13.1 mmol) of the compound, presented according to Example 7, in 75 ml of anhydrous tetrahydrofuran is Smixed with 39 ml of a 1 molar solution of tetrabutylammonium fluoride in tetrahydrofuran under an atmosphere of dry argon, and it is heated for 16 hours to 50 0 C. It is mixed with saturated sodium bicarbonate solution, extracted several times with ethyl acetate, washed with saturated sodium chloride solution and dried on sodium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 2.43 g (12.9 mmol, 99%) of the title compound is isolated as a colorless oil.
'H-NMR (CDC13): 6 0.87 0.90 1.35 1.37 1.43 1.77 2.93 3.36 3.53 3.79 3.87 3.96 (1H) ppm.
Example 9 (4S)-4-(2-Methyl-l-oxo-prop-2-yl)-2,2-dimethyl-[1,3]dioxane The solution of 0.13 ml of oxalyl chloride in 5.7 ml of anhydrous dichloromethane is cooled under an atmosphere of dry argon to -70 0 C, mixed with 0.21 ml of dimethyl sulfoxide, the solution of 200 mg (1.06 mmol) of the compound, presented according to Example 8, in 5.7 ml of anhydrous dichloromethane, and it is stirred for 0.5 hour. Then, it is mixed with 0.65 ml of triethylamine, allowed to react for 1 hour at -30 0 C and mixed with n-hexane and saturated sodium bicarbonate solution. The organic phase is separated, the aqueous phase is extracted once more with n-hexane, the combined organic extracts are washed with water and dried on magnesium sulfate. The residue that is obtained after filtration and removal of the solvent is further reacted without purification.
Example (48)-4-(2-methyl-3 (RS)-hydroxy-pent-2-yl)-2,2-dimethyl- [1,3]dioxane The solution of 900 mg (4.83 mmol) of the compound, presented according to Example 9, in 14 ml of anhydrous diethyl ether is mixed with 2.42 ml of a 2.4 molar solution of S ethylmagnesium bromide in diethyl ether under an atmosphere of dry argon at 0°C, allowed to heat to 23 0 C and stirred for 16 hours. It is mixed with saturated ammonium chloride solution, the organic phase is separated and dried on sodium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 321 mg (1.48-mmol, 31%) of the nonpolar 3R- or 3S-epimeres of the title compound, 542 mg (2.51 mmol, 52%) of the polar 3S- or 3Repimeres of the title compound and 77 mg of the title compound that is described in Example 8 are isolated in each case as a colorless oil.
1 H-NMR (CDC13) nonpolar isomer: 6 0.86 0.89 (3H), 1.03 1.25-1.37 1.37 1.46 1.49 1.84 3.35 3.55 3.81-4.02 (3H) ppm.
'H-NMR (CDCl3) polar isomer: 6 0.72 0.91 0.99 1.25-1.44 1.38 1.43-1.60 1.49 1.76 3.39 3.63 3.79-4.03 (3H) ppm.
Example 11 (4S)-4-(2-Methyl-3-oxo-pent-2-yl)-2,2-dimethyl-[1,3]dioxane The solution of 850 mg (3.93 mmol) of a mixture of the compound, presented according to Example 10, in 63 ml of anhydrous dichloromethane is mixed with molecular sieve (4A, about 80 spheres), 690 mg of n-methylmorpholino-N-oxide, and mg of tetrapropylammonium perruthenate, and it is stirred for 16 hours at 23 0 C under an atmosphere of dry argon. It is concentrated by evaporation, and the crude product that is obtained is purified by chromatography on about 200 ml of fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 728 mg (3.39 mmol, 86%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 1.00 1.07 1.11 1.31 1.32 1.41 1.62 2.52 3.86 3.97 4.05 (1H) ppm.
Example 12 (tert-Butyldiphenylsilyloxy)-2,2-dimethyl-3-hydroxy-pent- 4-ene The solution of 106.7 g (236 mmol) of the compound, presented according to Example 4, in 1.5 1 of anhydrous ethanol is mixed with 5.9 g of pyridinium-p-toluenesulfonate under an atmosphere of dry argon, and it is heated for 6 hours to 50 0
C.
After removal of the solvent, the residue is chromatographed on fine silica gel with a mixture of n-hexane and ethyl acetate.
0 82.6 g (224 mmol, 95%) of the title compound is isolated as a colorless oil, in which in addition about 5 g of ethoxytetrahydropyran is contained.
'H-NMR (CDC1 3 of an analytic sample: 6 0.89 1.08 3.45 3.49 3.58 4.09 5.21 5.33 5.93 7.34-7.51 7.63-7.73 (4H) ppm.
Example 13 (48)-4-((2RS)-3-Methyl-2-hydroxy-prop-3-yl)-2,2-dimethyl- S [1,3]dioxane Analogously to Example 10, 450 mg (2.42 mmol) of the compound that is presented according to Example 9 is reacted with use of methylmagnesium bromide. After working-up and purification, 431 mg (2.13 mmol, 88%) of a chromatographically separable mixture of the epimeric title compounds is isolated as a colorless oil.
92 Example 14 (4S)-4-(3-Methyl-2-oxo-prop-3-yl)-2,2-dimethyl-[1,3]dioxane 420 mg (2.08 mmol) of the compound that is presented according to Example 13 is reacted analogously to Example 11.
After working-up and purification, 388 mg (1.94 nmol, 93%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl,): 6 1.08 1.12 1.33 1.35 1.42 1.63 2.17 3.87 3.98 4.04 (1H) ppm.
Example (4S)-4-((3RS)-2-Methyl-3-hydroxy-hex-2-yl)-2,2-dimethyl- [1,3]dioxane Analogously to Example 10, 450 mg (2.42 mmol) of the compound that is presented according to Example 9 is reacted with use of n-propylmagnesium bromide. After working-up and purification, a total of 244 mg (1.06 mmol, 44%) of a separable mixture of epimeric title compounds as well as 191 mg of the Stitle compound that is described in Example 8 are isolated in each case as a colorless oil.
'H-NMR (CDCl 3 nonpolar isomer: 6 0.87 0.89 (3H), 0.94 1.25-1.52 1.38 1.45 1.66 1.85 3.46 3.80-4.02 (4H) ppm.
'H-NMR (CDCl 3 polar isomer: 6 0.73 0.92 0.95 1.19-1.84 1.37 1.49 3.49 3.60 (1H), 3.80-4.03-(3H) ppm.
Example 16 (4S) C2-Methyl-3-oxo-heX-2-yl) -2,2-dimethyl-( 1, 3]dioxane 230 mg (1.00 mmol) of the compounds presented according-to Example 15 are reacted analogously to Example 11. After workingup and purification, 185 mg (0.81 mmol, 81%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 =0.88 1.04 1.12 1.22- 1.37 1.31 1.40 1.48-1.71 2.46 3.83 3.96 4.04 (1H) ppm.
Example 17 (4R) C2-Hethyl-3-oxo-pent2.yl) -2 2-dimethyl- [1,3J -dioxane Starting from L-(+)-pantolactone, the title compound is produced analogously to the processes that are described in Examples 1 to 9 and 12 via the respective enantiomer intermediate stages.
1 H-NMR (CDC1 3 6 1. 00 1. 07 (3H) 1. 12 (3H) 1. 24- 1.37 1.31 1.40 1.61 2.50 3.84 (1H), 3.95 4.03 ppm.
Example 18 C3-Methyl-2-oxo-prop-3.yl) -2,2-dimethyl-[1, 3]d'ioxane Starting from L-(+)-pantolactone, the title compound is produced analogously to the processes that are described in Examples 1 to 9 and 12 to 14 via the respective enantiomer intermediate stages.
1 H-NMR (CDC1 3 6 1.07 1.12 L.30-1.39 (1H), 1.33 1.43 1.62 2.17 3.86 3.96 (1H), 4.03 (1H) ppm.
Example 19 (4R)-4-(2-Methyl-3-oxo-hex-2-yl)-2,2-dimethyl-[1,3]dioxane Starting from L-(+)-pantolactone, the title compound is produced analogously to the processes that are described in Examples 1 to 9, 12, 15 and 16 via the respective enantiomer Sintermediate stages.
'H-NMR (CDC1 3 6 0.88 1.04 1.12 1.22- 1.37 1.31 1.41 1.48-1.72 2.47 3.84 3.96 4.05 (1H) ppm.
Example (2S,4S)-2-(2-Cyanophenyl)-4-[2-methyl-l-(tertbutyldiphenylsilyloxy)-prop-2-yl] dioxane The solution of 1.00 g (2.59 mmol) of the compound, presented according to Example 6, in 50 ml of benzene is mixed with 850 mg of 2-cyanobenzaldehyde, a spatula tip full of ptoluenesulfonic acid-monohydrate, and it is refluxed for 16 hours in a water separator under an atmosphere of dry argon. It is mixed with 0.5 ml of triethylamine, diluted with ethyl acetate, washed with saturated sodium bicarbonate solution and dried on sodium sulfate. After filtration and removal of the solvent, the residue is chromatographed on fine silica gel with a mixture of n-hexane and ethyl acetate. 1.22 g (2.44 mmol, 94%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.99 1.05 1.47 1.98 3.34 3.63 3.96-4.09 4.31 5.75 (Mi), 7.17 7.24-7.51 7.51-7.74 (7H) ppm.
Example 21.
48)-2- (2-Cyanophenyl) (2-methyl-1-hydroxy-prop-2 -yl) [1,3]dioxane Analogously to Example 8, 1.22 g (2.44 mmol) of the compound that is presented according to Example 20 is reacted, and after working-up and purification, 593 mg (2.27 mmol, 93%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.89 0.97 1.51 (1Hl), 2.01 2.42 3.31 3.72 3.97 4.02 4.39 5.78 7.46 7.63 7.69 7.75 (1H) ppm.
Example 22 2 S,4S)-2-C2-Cyanophenyl)-4-(2-methyl--oxoprop2y)..[l 3 d joxane Analogously to Example 9, 570 mg (2.18 mmol) of the compound that is presented according to Example 21 is reacted, and after working-up, 780 mg of the title compound is isolated as a yellow oil, which is further reacted without purification.
Example 23 (2S,4S) (2-Cyanophenyl) -4-C (3RS) -2-methyl-3-hydroxypent2.yl) [l,3]-dioxans Analogously to Example 10, 780 mg (max. 2.18 mmol) of the crude product that is presented according to Example 22 is reacted, and after working-up and purification, 468 mg (1.62mmol, 74%) of the epimeric title compounds is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0. 81-1. 09 (9H) 1 .22-1.43 1.43- 1.70 (2H) 2.04 (1H) 2.35 (0.55H), 2.89 (0.45H) 3.41-3.59 (1H), 3.89-4.13 4.36 5.78 (0.45H), 5.81 (0.65H), 7.45 (1H), 7.54-7.78 (3H) ppm.
Example 24 (28,48) (2-Cyanophenyl) (2-methyl-3-oxo-pent-2.yl) 3jdioxane Analogously to Example 11, 463 mg (1.60 mmol) of the compound that is presented according to Example 23 is reacte d, and after working-up and purification, 420 mg (1.46 mmol, 91%) of the title compound is isolated as a colo rldss oil.
1 H-NMR (CDCl 3 6 1. 00 (3H) 1. 19 (3H) 1. 24 (3H) 1.4 9 1.92 2.56 4.3 4.16 4.32 5.78 7.44 (1H) 7.60 7.64-7.72 (2H) ppm.
Example C4S,2S) -4 2-Methyl-l- (tert-butyldiphenylsilyloxy) -prop-2-yl] -2phenyl-[1, 3]dioxane Analogously to Example 20, 1.00 g (2.59 mmol) of the compound, presented according to Example 6, in 50 ml of toluene is reacted with use of benzaldehyde, and after working-up and purification, 1.2 g (2.53 mmol, 98%) of the title compound is isolated as a colorless oil.
IH-NMR (CDCl 3 6 0.93 1.00 1.07 1.43 1.92 3.30 3.72 3.95 4.00 4.30 5.5 3 7.18 7.29-7.49 7.61 7.67 (2H) ppm.
Example 26 (48, 28) C 2-Methyl-l-hydroxy-prop-2 -yl) -2-phenyl- 1,31] dioxane Analogously to Example 8, 1.20 g (2.53 mmol) of the compound that is presented according to Example 25 is reacted, and after working-up and purification, 518 mg (2.19 mmol, 87%) of the title compound is isolated as a colorless oil.
IH-NMR (CDCl 3 8 0.98 1.49 Z.00 2.49 3.46 (1H) 3.62 3.81 3.98 4.33 (1H) 5.51 7.30-7.41 7.41-7.51 (2H) ppm.
Example 27 (2,S--2Mty--x-rp--l--hnl[r]ixn Analogously to Example 9, 500 mg (2.12 mmol) of the compound that is presented according to Example 26 is reacted, and after working-up, 715 mg of the title compound is isolated as a yellow oil, whic h is further reacted without purification.
Example 28 (2B,48) -4-C (3RS) -2-Methyl-3-hydroxy-pent2.yl) -2-phenyl- [1,3Jdioxane Analogously to Example 10, 715 mg (max. 2.12 mmol) of the crude product that is presented according to Example 27 is reacted, and after working-up and purification, 440 mg (1.66 qmmol, 79%) of the epimeric title compounds is isolated as a colorless oil.
IH-NMR (CDCl 3 6 0.80-1.10 1.23-1.42 1.42- 1.70 1.90-2.16 2.92 (0.6 3.07 3.40-3.53 3.86 3.98 4.32 5.49 5.55 (0.6H), 7.28-7.40 7.40-7.51 (2H) ppm.
Example 29 2
S,
4 B)-4-(2-Methy-3oxopent2y).2-.phenyl..[1,3]dioxane An alogously to Example 11, 435 mg 91.65 mol) of the compound that is presented according to Example 28 is reacted, and after working-up and purification, 410 mg (1.56 mmol, 95%) of the title compound is isolated as a colorless oil.
IH-NMR (CDCl 3 6 1.02 1.17 1.23 1.44 1.84 2.58 3.97 4.06 4.30 5.50 7.28-7.49 (5H) ppm.
Example (4S) -4-[2-HMethyl-1- (tert-butyldipbenylsilyloxy) -prop-2-yl] -2,2pentaMethylene-[1, 31dioxane Analogously to Example 20, 1.00 g (2.59 mmol) of the compound, presented according to Example 6, in 50 mol of toluene is reacted with use of cyclohexanone, and after working-up and purification, 1.09 g (2.34 mmol, 90%) of the titl~e compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 0. 84 89 (3H) D. 97-1. 10 (10H) 1.20-1.64 1.71 2.13 3.33 3.56 3.81 3.89 3.99 7.32-7.49 7.60-7.74 (4H) ppm.
Example 31.
(4S) (2-Methyl-l-hydroxy-prop-2-yl) -2 ,2-pentametbylene- 3]dioxarte Analogously to Example 8, 1.09 g (2.34 mmol) of the compound that is presented according to Example 30 is reacted, and after working-up and purification, 470 mg (2.06 mmol, 88%) of the title compound is isolated as a colorless oil.
IH-NMR (CDCl 3 6 0.88 0.94 1.24-1.71 1.81 2.18 3.09 3.39 3.60 3.80 (111), 3.87 4.02 (lH) ppm.
Example 32 (2-Methyl-l-oxo-prop-2-yl) 2 ,2-pentamethylene-[1,3]dioxane Analogously to Example 9, 450 mg (1.97 mmol) of the compound that is presented according to Example 31 is reacted, and after 100 working-up, 678 mg of the title compound is isolated as a yellow oil, which is further reacted without purification.
Example 33 (4S)-4-(2-Methyl-3-hydroxy-pent-2-yl)-2,2-pentamethylene- [1,3]dioxane Analogously to Example 10, 678 mg (max. 1.97 mmol) of the crude product that is presented according to Example 32 is reacted, and after working-up and purification, 391 mg (1.54 mmol, 77%) of the epimeric title compounds is isolated as a colorless- oil.
1 H-NMR (CDC13): 6 0.70-1.08 1.23-1.98 (13H), 2.01- 2.13 3.37-3.50 3.61 3.80-4.06 (3.5H) ppm.
Example 34 (4S)-(2-Methyl-3-oxo-pent-2-yl)-2,2-pentamethyleme-[1,3]dioxane Analogously to Example 11, 386 mg (1.51 mmol) of the compound that is presented according to Example 33 is reacted, and after working-up and purification, 376 mg (1.48 mmol, 98%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDC13): 6 1.01 1.09 1.17 1.22- 1.38 1.40-1.72 2.15 (1H),.2.57 3.81 3.92- 4.07 (2H) ppm.
101 Example (48) (2_-Methyl-i- (tert-butyldiphenylsilyloxy) -prop-2-yl] tetramethylene- (1,31 dioxane Analogously to Example 20, 1.00 g (2.59 mmol) of the compound, presented according to Example 6, in 50 ml of toluene is reacted with use of cyclopentanone, and af ter working-up and purification, 997 mg (2.20 mmol, 85%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.84 0.88 0.99-1.10 (10H1), 1.30 1.50-1.99 3.23 3.60 3.80-3.98 (3H), 7.31-7.49 (6H1), 7.61-7.73 (4H) ppm.
Example 36 (48) (2-ilethyl-1-hydroxy-prop-2.yl) 2-tetramethylene- (1,3]dioxane Analogously to Example 8, 997 mg (2.20 mmcl) of the compound that is presented according to Example 35 is reacted, and after working-up and purification, 415 mg (1.94 mmcl, 88%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 0.90 1.36 1.53-2.02 (9H), 2.93 (1H) 3.39 3.55 3.70 3.87 (1H) 3.96 (1H) ppm.
Example 37 (48) (2-Methyl-1-oxo-prop-2-yl) -2 ,2-tetramethylene- 3Jdioxane Analogously to Example 9, 400 mg (1.87 mmol) of the compound that is presented according to Example 36 is reacted, and after 102 working-up, 611 mg of the title compound is isolated as a yellow oil, which is further reacted without purification.
Example 38 (4S)-4-(2-Methyl-3-hydroxy-pent-2-yl)-2,2-tetramethylene- [1,3]dioxane Analogously to Example 10, 611 mg (max. 1.87 mmol) of the compound that is presented according to Example 37 is reacted, and after working-up and purification, 353 mg (1.46 mol, 78%) of i the epimeric title compounds is isolated as a colorless oil.
'H-NMR (CDC1 3 6 0.71-1.09 1.20-1.44 1.44- 1.78 1.78-2.02 3.32-3.44 3.51-3.60 3.76 3.80-4.02 (2H) ppm.
Example 39 (4S)-4-(2-Methyl-3-oxo-pent-2-yl)-2,2-tetramethylene-[l13]dioxane Analogously to Example 11, 348 mg (1.44 mmol) of the compound that is presented according to Example 38 is reacted, Sand after working-up and purification, 332 mg (1.38 mmol, 96%) of the title compound is isolated as a colorless oil.
'H-NMR (CDC13): 6 1.00 1.07 1.17 1.31 1.50-2.00 2.52 3.84 3.88-3.99 (2H) ppm.
Example 1,1-Cyclobutanedimethanol 170 ml of a 1.2 molar solution of diisobutylaluminium hydride is added in drops to a solution of 20 g (99.9 mmol) of 103 1,1-cyclobutanedicarboxylic acid diethyl ester in 200 ml of absolute tetrahydrofuran at 0 C. It is allowed to stir for one more hour at. 0C, and then 30 ml of water is added. It is filtered on Celite. The filtrate is dried with sodium sulfate and concentrated by evaporation in a vacuum. The crude product that is obtained (9.9 g, 85.2 mmol, 85%) is used without purification in the next step.
Example 41 1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutanemethanol A solution of 9.9 g (85 mmol) of the compound, presented according to Example 40, in 100 ml of absolute tetrahydrofuran is added to a suspension of 3.4 g of sodium hydride (60% in oil) in ml of absolute tetrahydrofuran at 0°C. It is allowed to stir for 30 more minutes, and then a solution of 12.8 g of tertbutyldimethylsilyl chloride in 50 ml of tetrahydrofuran is added.
It is allowed to stir for one more hour at 25 0 C, and then the reaction mixture is poured onto saturated aqueous sodium bicarbonate solution. It is extracted with ethyl acetate. The organic phase is washed with saturated sodium chloride solution and dried on sodium sulfate. After the solvent is drawn off in a vacuum, the crude product that is obtained is purified by column chromatography on silica gel with a mixture of hexane/ethyl acetate. 13.5 g (58.6 mmol, 69%) of the title compound is obtained, 104 'H-NMR (CDC1 3 6 0.04 0.90 1.70-2.00 (6H), 3.70 (4H) ppm.
Example 42 1- [[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutanecarbaldehyde 8 ml of oxalyl chloride is dissolved in 100 ml of dichloromethane. It is cooled to -78 0 C, and 13 ml of dimethyl sulfoxide is added. It is allowed to stir for 3 more minutes, Sand then a solution of 13.5 g (58.6 mmol) of the compound, presented according to Example 41, in 80 ml of dichloromethane is added. After another 15 minutes of stirring time, 58 ml of triethylamine is added in drops. Then, it is allowed to heat to 0 C. Then, the reaction mixture is poured onto saturated sodium bicarbonate solution. It is extracted with dichloromethane, the organic phase is washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. After chromatography of the crude product on silica gel with a mixture of hexane/ethyl acetate, 7.7 g (33.7 mmol, 58%) of the title compound is obtained.
'H-NMR (CDC1 3 6 9.70 s 3.83 S 2.20-2.30 m 1.85-2.00 m 0.90 s 0.03 s (6H) ppm.
105 Example 43 [IR-[la(R*)2B]]-2-Phenylcyclohexyl 3-[1-[[[dimethyl(1,1dimethylethyl)silyl]oxy]methyl]cyclobutyl]-3-hydroxypropanoate and [1R-[la(S*)2B]]-2-phenylcyclohexyl 3-[1-[[[dimethyl(1,1dimethylethyl)silyl]oxy]methyl]cyclobutyl]-3-hydroxypropanoate
(B)
Lithium diisopropylamide is produced in absolute tetrahydrofuran from 7.2 ml of diisopropylamine and butyllithium (32 ml of a 1.6 molar solution in hexane). Then, a solution of 11.2 g (lR-trans)-2-phenylcyclohexyl acetate in 100 ml of absolute tetrahydrofuran is added at -78°C, and it is allowed to stir for 30 more minutes at this temperature. Then, a solution of 7.7 g (33.7 mmol) of the compound, presented according to Example 42, in 50 ml of tetrahydrofuran is added. It is allowed to stir for 1.5 more hours at -78 0 C, and then the reaction mixture is poured onto saturated aqueous ammonium chloride solution. It is extracted with ethyl acetate, the organic phase Sis washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum.
After column chromatography of the crude product on silica gel with a mixture of hexane/ethyl acetate, 6.34 g (14.2 mmol, 42%) of title compound A and 4.22 g (9.4 mmol, 28%) of title compound B are obtained.
'H-NMR (CDCl 3 of A: 6 0.04 0.98 2.69 (1H), 3.08 3.60 3.67 3.78-3.84 4.97 7.15- 7.30 (5H) ppm.
106 'H-NMR (CDC13) of B: 6 0.03 0.90 2.68 (1H), 2.80 3.56 3.68-3.72 4.99 7.18-7.30 m ppm.
Example 44 Dimethyl(1,ldimethylethyl)silyl]oxy]methyl]cyclobutyl]-1,3-propanediol 4 ml of a 1.2 molar solution of diisobutylaluminum hydride in toluene is added in drops to a solution of 1 g (2.24 mmol) of compound A, presented according to Example 43, in 10 ml of absolute toluene at 0 C. It is allowed to stir for 1.5 more hours at 0 C, and then 5 ml of water is added. It is filtered on Celite. The filtrate is dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography of the crude product on silica gel with a mixture of hexane/ethyl acetate, 370 mg (1.35 mmol, 60%) of the title compound is obtained.
'H-NMR (CDC13): 6 0.05 0.90 1.55-1.60 (2H), 1.80 1.90 2.10 3.75 3.85-3.95 (4H) ppm.
Example (S)-2,2-Dimethyl-4-[(-[[[dimethyl(1,1dimethylethyl)silyl]oxy]methyl]cyclobutyl]-1,3-dioxane 370 mg (1.35 mmol) of the compound that is presented according to Example 44 is dissolved in 10 ml of acetone. A spatula tip full of p-toluenesulfonic acid is added, and it is allowed to stir for 2 more hours at 25 0 C. Then, the reaction 107 mixture is poured onto saturated sodium bicarbonate solution. It is extracted with ethyl acetate, the organic phase is washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography on silica gel with a mixture of hexane/ethyl acetate, 338 mg (1.07 mmol, 79%) of the title compound is obtained.
1 H-NMR (CDC1 3 6 0.03 0.88 1.38 1.42 1.50-1.80 2.00 3.52 3.62 3.85-4.00 S (3H) ppm.
Example 46 (R)-1-[1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutyl]-1,3-propanediol Analogously to Example 44, 700 mg (1.57 mmol) of compound B that is presented according to Example 43 is reacted, and after working-up and purification, 250 mg (0.91 mmol, 58%) of the title compound is isolated.
The coverage of the 1H-NMR spectrum is identical to that Sdescribed in Example 44.
Example 47 (R)-2,2-Dimethyl-4-[ -[[[dimethyl(1,1dimethylethyl)silyl[oxy]methyl]cyclobutyl]-1,3-dioxane Analogously to Example 45, 250 mg (0.91 mmol) of the compound that is presented according to Example 46 is reacted, 108 and after working-up and purification, 228 mg (0.72 mmol, 60%) of the title compound is isolated.
The coverage of the 1H-NMR spectrum is identical to that described in Example Example 48 l-[l-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutyl]- 1,3-propanediol Analogously to Example 44, 500 g (1.12 mmol) of a mixture of 4 compounds A and B that are produced according to Example 43 is reacted, and after working-up and purification, 190 mg (0.69 mmol, 62%) of the title compound is isolated.
The coverage of the 'H-NMR spectrum is identical to that described in Example 44.
Example 49 2,2-Dimethyl-4-[--[[[dimethyl(l,1dimethylethyl)silyl]oxy]methyl]cyclobutyl]-1,3-dioxane Analogously to Example 45, 190 mg (0.69 mmol) of the compound that is produced according to Example 48 is reacted, and after working-up and purification, 171 mg (0.54 mmol, 79%) of the title compound is isolated.
The coverage of the 'H-NMR spectrum is identical to that described in Example 109 Example [1R-[la(3S*),2B]]-2-Phenylcyclohexyl 3-[1-[[[dimethyl(l,ldimethylethyl)silyl]oxy]methyl]cyclobutyl]-3-[ (tetrahydro-2Hpyran-2-yl) oxy]propanoate Analogously to Example 1, 460 mg (1.03 mmol) of the compound that is presented according to Example 43 is reacted, and after working-up and purification, 398 mg (0.75 mmol, 73%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDC1 3 6 0.01 0.89 1.24-1.97 (19H), S 2.15-2.27 2.66 3.12 3.50 3.58 3.98 4.52 4.87 7.09-7.27 (5H) ppm.
Example 51 (S)-3-[1-[[[Dimethyl(1,1dimethylethyl)silyl]oxy]methyl]cyclobutyl]-3-[(tetrahydro-2Hpyran-2-yl) oxy]propanoic acid 420 mg (3.75 mmol) of potassium tert-butylate is suspended in 5 ml of diethyl ether. 16 sl of water is added, and it is allowed to stir for 5 more minutes. Then, a solution of 398 mg (0.75 mmol) of the compound, presented according to Example in 5 ml of diethyl ether is added. It is allowed to stir for 3 more hours. Then, the reaction solution is diluted with water and neutralized with 10% hydrochloric acid. It is extracted with dichloromethane, the organic phase is washed with saturated aqueous sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. Column chromatography 110 of the crude product on silica gel with a mixture of hexane/ ethyl acetate yields 112 mg (0.3 mmol).
1 H-NMR (CDC1 3 6 0.01 0.90 1.30-2.25 3.12 3.50 3.58 3.98 4.45 (1H) ppm.
After the silyl protective group is cleaved.by oxidation, the reaction product can be converted into aldehyde analogously to Example 9, brought to reaction with an organometallic compound such as, XMgCHRR 5 for example with ethylmagnesium bromide, analogously to Example 10, and converted by subsequent oxidation of the alcohol mixture that is obtained to compounds according to claim 1 analogously to Example 11.
If the starting material 1,1-cyclobutanedicarboxylic acid diethyl ester is replaced in Example 40 by other 2-substituted or 2,2-disubstituted malonic ester derivatives, for example the following compounds can be produced analogously to Examples 9, and 40-51: ill R~a RO R5a
-(OH
2 2 H CH 3 H CH2-CH 3
-(OH
2 2 H. (CH2)2-CH 3
-(OH
2 2 H CH 2
C
6
H
-(OH
2 2 H (CH 2 2 S0C6H5 -(H22-CH 3
OH
3
H
3 CH2-CH 3
!-(CH
2 3 H CH 3 H CH 2
-CH
3 H (OH )2-OH3 (OH2)3- H CH2-C 6
H
-(OH
2 3 H (OH 2 2 S06H5.
-(OH
2 3 CH CH3
-(OH
2 3 CH CH2-CH 3
-(OH
2 4 H OH 3 CH2-CH 3 (CH9)9-CH 3 H CH2-C 6
H
112
-(OH
2 4 H (CH 2 2 CH3H
-(OH
2 4
CH
3 CH -C -CH24 CH 3
CH
2
H
2
-CH
3 CHH CH CH H H2 (H2)-H 3 H3 C2CH
CH
3
CH
3 H .(CH 2 2
-C~
-CH
3
OH
2 H OCH 3
OH
3
H
CH
2
-CH
3
OH
2 H CH- 3 CH3
CH
2
-CH
3
OH
2 H (0H2)-H 3
H
3
CH
2
-CH
3
OH
2 H (CH 2 6 H3
CH
3 0H 2 -0H 3
OH
2 H
(OH
2
)-H
OH
3
OH-H
3
OH
2 H
OCH
3
OH
3
OH
3
OH
2 H
-CH
3
OH
3
OH
3
OH
2 H (0H 2
)-H
3
CH
3
OH
2 -H320H
OH
3
OH
2 H
(OH
2 2
-CH
113 Example 52 (38) -4 4-Dimethyl-S-oxo-3- (tetrahydropyran-2 -yloxy) -pent-I-.ee Analogously to Example 9, 5.0 g (23.3 nunol) of the compound that is presented according to Example 3 is reacted, and after working-up, 6.1 g of the title compound is isolated as a colorless oil,-which is further reacted without purification, Example 53 (351 5RS) 4-Dimethyl-5-hydroxy-3- Ctetrahydropyran-2-yloxy) -hept- -en.
'Analogously to Example 10, 6.1 g (max. 23.3 mmol) of the crude product that is presented according to Example 52 is reacted, and after working-up and purification, 1.59 g (6.56 mmol, 28%) of the nonpolar diastereomer and 1.67 g (6.89 mmol, of the polar diastereomer are isolated in each case as a colorless oil.
'H-NMR (CDC 3 nonpolar isomer: 6 0.79 0.84 (3H), 1.03 1.23-1.62 1.62-1.88 3.41-3.58 3.88- .4.01 4.08 4.47 5.20 5.29 5.78 (1H) ppm.
'H-NMR (CDCl 3 polar isomer: 8 0.78 0.93 1.01 (311), 1.38 1.47-1.85 3.39-3.57 3.90 (1H1), 4.04 (1H1), 4.62 (111), 5.21 5.32 (111), 5.69 (M1) ppm.
114 Example 54 (38,58)-4,4-Dimethyl-3-(tetrahydropyran-2-yloxy)-heptane-l,5-diol and/or (38,58)-4,4-dimethyl-3-(tetrahydropyran-2-yloxy)-heptane- Analogously to Example 5, 1.59 g (6.56 mmol) of the nonpolar alcohol that is presented according to Example 53 is reactedr and after working-up, 1.14 g (4.38 mmol, 67%) of the title compound is isolated as a colorless oil.
'H-NMR (CDC1 3 6 0.78 1.01 1.28 1.36- 1.64 1.64-1.93 3.41-3.55 3.61-3.82 387 3.99 4.28 4.56 (1H) ppm.
Example (38,5R or 58)-1-Benzoyloxy-4,4-dimethyl-3-(tetrahydropyran-2- The solution of 1.04 g (3.99 mmol) of the compound, presented according to Example 54, in 20 ml of anhydrous pyridine is mixed under an atmosphere of dry argon with 476 1l of benzoyl Schloride, and it is stirred for 16 hours at 23 0 C. It is poured into a saturated sodium bicarbonate solution, extracted with dichloromethane and dried on sodium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on about 300 ml of fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 785 mg (2.15 mmol, 54%) of the title compound is isolated as a colorlessoil as well as 352 mg of starting material.
115 'H-NMR (CDC1 3 6 0.83 1.04 1.31 1.38- 1.58 1.74-1.99 2.12 3.40 3.52 3.90- 4.03 4.28-4.56 7.45 7.58 8.05 (2H) ppm.
Example 56 (3S) -1-Benzoyloxy-4,4-dimethyl-3- (tetrahydropyran-2-yloxy) Analogously to Example 11, 780 mg (2.14 mmol) of the compound that is presented according to Example 55 is reacted, and after working-up and purification, 641 mg (1.77 mmol, 83%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDC1 3 6 1.02 1.11 1.23 1.40- 1.56 1.65-1.87 1.93 2.59 3.36 3.80 4.13 4.32 4.45 4.53 7.45 7.58 8.05 (2H) ppm.
Example 57 (38) -1-Hydroxy-4,4-dimethyl-3- (tetrahydropyran-2-yloxy) e one The solution of 636 mg (1.75 mmol) of the compound, presented according to Example 56, in 25 ml of methanol is mixed with 738 mg of potassium carbonate and stirred for 2 hours at 23 0 C. It is mixed with dichloromethane, filtered off, washed with water, and the organic phase is dried on sodium sulfate.
The residue that is obtained after filtration and removal of the solvent is purified by chromatography on about 100 ml of fine silica gel with a gradient system that consists of n-hexane and 116 ethyl acetate. 311 mg (1.20 mmol, 69%) of the title compound is isolated-as a colorless oil.
'H-NMR (CDCl 3 6 0. 98 (3H) 1. 07 (3H) 1. 18 (3H) 1. 44- 1.90 (10H), 2.00 3.50-3.68 3.74 3.83-4.06 (2H), 4.79 (1H) ppm.
117 Production of the Components of General Formula A" with the 2- Oxazolidinone Auxiliary Group Starting Products A) 2.2-Dimethvl-3-oxopentanal Aa) 4-(2-Methvlprop-l-envl)morpholine 43.6 g of morpholine is placed in a 250 ml round-bottom three-neck flask. While being cooled in an ice bath, 46 ml of isobutylaldehyde is added in drops at a temperature of 5 0 C over a period of 20 minutes. In this case, a sharp rise in temperature was noted (a strongly exothermic reaction). Once the addition process had been completed, the feedstock is refluxed via a water separator for a period of four hours. The volume of the water separator is filled with isobutylaldehyde. 7.5 ml of H 2 0 is separated. Once the reaction has taken place, the reaction mixture is distilled in a vacuum.
Oil bath temperature: 85 0 -90 0
C
Main fraction m 58.37 g 82.03% Boiling point: 59 0 C at 11 mbar 9 Yield: 58.37 g 82.03% Aa).
A) 2.
2 -Dimethyl-3-oxopentanal The solution of 77.14 g of propionic acid chloride in 200 ml of ether p.a. is placed in a 1000 ml round-bottom three-neck flask. While being cooled in an ice bath, a solution of 117.73 g of the compound obtained under Aa) in 200 ml of ether p.A. is added in drops within 30 minutes at a reaction temperature of 118 6°C. Precipitation, a white precipitate appears. Once the addition process is completed, the feedstock is boiled for hours under reflux and then stirred overnight at room temperature. The white precipitate that is produced, which is sensitive to moisture, is suctioned off, washed with ether, and dried in the oil pump.
Crude product: m 65.26 g of hydrochloride Post-precipitation can be observed in the filtrate.
Crude product m 35.49 g, total: m 100.75 g.
The 100.75 g of hydrochloride is dissolved in 150 ml of H 2 0.
Then, the aqueous phase is adjusted to pH 0 5 overall with NaHCO 3 and then extracted four times with 150 ml of ether in each case.
The organic phase is washed once with brine and then dried on Na 2
SO
4 The ether is distilled off at normal pressure, and the residue is distilled in a vacuum on a small Vigreux column (6 plates).
Main fraction: m 29.65 g 27.75% Boiling point: 62 0 C at 15 mbar Yield: 29.65 g 27.75% A) B) 2.2-Dimethvl-3-oxo-butanal Execution analogous to A).
Feedstock: 58.37 g 413.36 mmol of Aa), M 141.21 g/mol 100 ml of diethyl ether p.A.
32.45 g 413.38 mmol of acetyl chloride, M 0 78.5 g/mol 1.104 g/ml 119 100 ml of diethyl ether p.A. is stirred over the weekend at room temperature.
Crude product m 72.07 g of hydrochloride For working-up see Ab) Oil bath temperature: 75 0 C to 80 0
C
Main fraction: m 18.75 g 39.74% Boiling point: 50°C at 11 mbar Yield m 18.7 g 39.6% B) C) 1-(1-Oxopropyl)cyclobutanecarbaldehyde Ca) 1.l-Cvclobutanedimethanol 170 ml of a 1.2 molar solution of diisobutylaluminum hydride is added in drops to a solution of 20 g (100 mmol) of 1,1cyclobutanedicarboxylic acid diethyl ester in 200 ml of absolute tetrahydrofuran at 0 0 C. It is allowed to stir for one more hour at 0OC, and then 30 ml of water is added. It is filtered on Celite. The filtrate is dried with sodium sulfate and concentrated by evaporation in a vacuum. The crude product that is obtained (9.9 g) is used without purification in the next step.
Cb) l-rrrDimethyl(1.ldimethylethyl)silylloxvlmethvllcvclobutanemethanol A solution of 9.9 g of Ca) (85 mmol) in 100 ml of absolute tetrahydrofuran is added to a suspension of 3.4 g of sodium hydride C60% in oil, 85 mmol)) in 35 ml of absolute tetrahydrofuran at G0C. It is allowed to stir for 30 more 120 minutes, and then a solution of 12.8 g of tert-butyldimethylsilyl chloride (85 mmol) in 50 ml of tetrahydrofuran is added. It is allowed to stir for one more hour at 25 0 C, and then the reaction mixture is poured onto saturated aqueous sodium bicarbonate solution. It is extracted with ethyl acetate. The organic phase is washed with saturated sodium chloride solution and dried on sodium sulfate. After the solvent is drawn off in a vacuum, the crude product that is obtained is purified by column chromatography on silica gel with a mixture of hexane/ethyl acetate. 13.5 g of the title compound is obtained.
1H-NMR (CDC13): 6 0.04 0.90 1.70-2.00 (6H), 3.70 (4H) ppm.
Cc) 1-rrrDimethvl(1.1dimethylethyl)silvlloxvlmethvllcyclobutanecarbaldehyd 8 ml of oxalyl chloride is dissolved in 100 ml of dichloromethane. It is cooled to -78 0 C, and 13 ml of dimethyl sulfoxide is added. It is allowed to stir for 3 more minutes, Sand then a solution of 13.5 g of Cb) (58.6 mmol) in 80 ml of dichloromethane is added. After 15 more minutes of stirring time, 58 ml of triethylamine is added in drops. Then, it is allowed to heat to 0OC. Then, the reaction mixture is poured onto saturated sodium bicarbonate solution. It is extracted with dichloromethane, the organic phase is washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. After chromatography of 121 the crude product on silica gel with a mixture of hexane/ethyl acetate, 7.7 g of the title compound is obtained.
1 H-NMR (CDC13): 6 0.03 0.90 1.85-2.00 (4H), 2.20-2.30 3.83 9.70 (1H) ppm.
Cd) l-rr Dimethvl(1l.l-dimethylethvl)silvlloxvImethyll-aethylcyclobutanemethanol A solution of 7.7 g (33.7 mmol) of the compound, described under Cc), in 80 ml of tetrahydrofuran is added in drops at OOC to 20 ml of a 2 molar solution of ethylmagnesium chloride mmol) in-tetrahydrofuran. It is allowed to stir for 30 more minutes at 0"C, and then the reaction mixture is poured onto saturated ammonium chloride solution. It is extracted with ethyl acetate. The organic phase is washed with saturated sodium chloride solution and dried on sodium sulfate. After the solvent is drawn off, the crude product that is obtained is purified by column chromatography on silica gel. 7.93 g of the title compound is obtained.
'H-NMR
(CDC
3 6 0.09 s 0.90 s 1.05 (3H), 1.30-1.50 1.70-1.90 2.09 3.19 3.46 (1H), 3.72 3.85 (1H) ppm.
Ce) 1-1-r rrDimethyl l. -dimethvlethl) siivyl ox methyl cvclobut-l-vyll-1-ropanon 6 ml (85.7 mmol) of dimethyl sulfoxide is added to 3.76 ml (43.8 mmol) of oxalyl chloride in 80 ml of dichloromethane at 122 -78 0 C. It is allowed to stir for 3 more minutes, and then a solution of 7.93 g (30.7 mmol) of the compound, described under Cd), in 80 ml of dichloromethane is added. it is stirred for more minutes at -78 0 C. Then, a mixture of 19 ml (136 mmol) of triethylamine and 40 ml of dichloromethane is added in drops. It is allowed to heat to -25 0 C and stirred at this temperature for more minutes. Then, the reaction mixture is poured onto saturated ice-cooled sodium bicarbonate solution. It is extracted with dichloromethane. The organic phase is washed with saturated sodium chloride solution and dried on sodium sulfate.
After the solvent is drawn off, the crude product that is obtained is filtered on silica gel. 7.87 g (100%) of the title compound is obtained.
'H-NMR (CDC1 3 6 0.05 0.88 1.04 1.82- 1.95 2.33-2.47 2.45-2.54 3.81 (2H) ppm.
Cf) l-rl-(Hydroxymethvl)cyclobut-1-yll-l-propanone 7.87 g (30.7 mmol) of the compound that is described under Ce) is dissolved in 100 ml of tetrahydrofuran. 15 ml of a 1 molar solution of tetrabutylammonium fluoride is added, and it is allowed to stir for 12 more hours at 25"C. Then, the reaction mixture is poured onto saturated sodium bicarbonate solution. It is extracted with ethyl acetate. The organic phase is washed with saturated sodium chloride solution and dried on sodium sulfate. After the solvent is drawn off, the crude product that is obtained is purified by column chromatography on silica gel.
3.19 g of the title compound is obtained.
123 'H-NMR (CDC1l): 6 1.07 1.86-2.08 2.32-2.40 2.55-2.65 3.88 (2H) ppm.
C) 1-l1-Oxopropvl cvclobutanecarbaldehyde Analogously to Example Ce), 3.14 g (100%) of the title compound is obtained by oxidation from 3.19 g (22.4 mmol) of the compound that is described under Cf).
1 H-NMR (CDC1 3 6 1.07 1.85-2.00 2.40-2.53 9.70 (1H) ppm.
Example 1: (R)-4,4-Dimethvl-3-r3- rdimethyl 1-dimethylethy) oxo-heptanoic acid 0.17 ml of a 30% hydrogen peroxide solution is added at 0°C to a solution of 190 mg of the silyl ether, produced under Example Ic), in 2.5 ml of a mixture of tetrahydrofuran and water at a 4:1 ratio. After 5 minutes of stirring, a solution of 15.8 mg of lithium hydroxide in 0.83 ml of water is then added, and the reaction mixture is stirred for 3 hours at 25 0 C. Then, it is mixed with a solution of 208 mg of sodium sulfite in 1.24 ml of water and extracted with 10 ml of methylene chloride. The aqueous phase is set at pH 1 with 5N hydrochloric acid and extracted three times with 10 ml of ethyl acetate each. After drying on sodium sulfate and filtration, it is concentrated by evaporation in a vacuum. In addition, the above-mentioned methylene chloride phase is washed with 5N hydrochloric acid, and then this aqueous phase is extracted three times with 10 ml of 124 ethyl acetate each. After drying on sodium sulfate and filtration, it is concentrated by evaporation in a vacuum, and an additional amount of crude product is obtained. The combined residues that are thus obtained are purified by chromatography on silica gel. In addition to 70 mg of (4R,5S)-4-methyl-5phenyloxazolidin-2-one, 93 mg of the title compound is obtained with hexane/0-50% ethyl acetate as a colorless oil. +15.50 (CHCl3) 'H-NMR (CDC1 3 d 0.03-0.08 0.86 1.01 (3H), S 1.10 1.15 2.35 2.4-2.7 4.48 (1H) ppm.
la) (4R.5S)-3-(Bromoacetvl)-4-methvl-5-phenvloxazolidin-2-one 117 ml of a 1.6 molar solution of butyllithium in hexane is added to a solution of 30.1 g of (4R,5S)-4-methyl-5phenyloxazolidin-2-one in 500 ml of tetrahydrofuran within minutes at -70 0 C under nitrogen. Then, a solution of 26.8 g of bromoacetyl chloride in 250 ml of tetrahydrofuran is added in drops in such a way that the temperature does not exceed -65 0
C.
After 1.75 hours of stirring at -70 0 C, a saturated ammonium chloride solution is added, followed by 60 ml of a saturated sodium bicarbonate solution, and it is allowed to come to After the phases are separated, the aqueous phase is extracted twice with 100 ml of ether each. The combined organic phases are washed with semiconcentrated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum after filtration. The residue that is thus obtained is purified by 125 chromatography on silica gel. With hexane/0-50% ether, 34.8 g of the title compound is obtained as a colorless oil.
iH-NMR (CDC1 3 6 0.95 4.57 4.80 5.76 7.2 7.5 (5H) ppm.
ib) r4R-r3(R) .4a.5 al-3-r4.4-Dimethvl-1.5-dioxo-3hydroxvheptvll-4-methvl-5-phenvl-oxazolidin-2-one 218 mg of lithium iodide is added to a suspension of 5.0 g of anhydrous chromium(II) chloride in 60 ml of tetrahydrofuran under argon. Then, a mixture of 2.09 g of the 2,2-dimethyl-3oxo-pentanol that is known in the literature (see under "Starting Products" Ab) and 5.34 g of the above-produced bromine compound in 10 ml of tetrahydrofuran are added. After 2 hours of reaction time, it is mixed with 30 ml of saturated sodium chloride solution and stirred for 15 minutes. The aqueous phase is extracted three times with 200 ml of ether each. The combined organic phases are washed with semiconcentrated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum after filtration. The residue that is thus obtained is purified by chromatography on silica gel. With hexane/0-30% ethyl acetate, 1.55 g of the title compound is obtained as a colorless oil.
'H-NMR (CDC13): 6 0.92 1.06 1.18 1.23 2.58 3.07 3.28 4.35 4.79 5.70 7.2-7.5 (5H) ppm.
126 1c) r .4R-r3(Rl 4a.503...r44.-Dimethl.3..rdimethl(I.1 Rhenyloxazolidin-2 -one 150 mng of 2,6-lutidine is added to a solution of 347 mg of the above-produced alcohol in 3 ml of methylene chloride under argon at -70 0 C. After 5 minutes of stirring, 344 mg of tertbutyldimethylsilyltrifluoroinethane sulfonate is added, and it is stirred for another 45 minutes at -70 0 C. It is nixed with 1 ml S of saturated sod ium chloride solution and allowed to come to 0 C. Then, it is diluted with ether, and the organic phase is washed with saturated sodium chloride solution. After drying on sodium sulfate and filtration, it is concentrated by evaporation in a vacuum. The residue that is thus obtained is purified by chromatography on silica gel. With hexane/0-30% 'ethyl acetate, 192 mg of the title compound is obtained as a colorless crystalline compound with a melting point of 111-112 0
C.
IH-NMR (CDCl 3 6 0.01-0.12 0.86 0.90 (3H), 1.00 1.13 1.17 2.56 3.05 4.65-4.80 5.68 7.2-7.5 (5H) ppm.
Example 2 4-Dimethvl-3-rF3-F Fdimethvl (1.1-dimethylethyl) silyll1oxyl oxo-hentanoic acid The compound is produced analogously to Example 1. As a starting product, (4S, 5R) 4 -methyl-5-phenyloxazojl...i...
0 fl is used. The coverage of NMR is identical to Example 1. [aI1D= 15.70 (CHC1 3 127 2a) (4S.5R) (Bromoacetyl) 4 -methyl -5-henyoxazol idin.2-one Production is carried out analogously to Example 1a) starting from (4 S, 5R) 4 -methyl-5-phenyloxazo id in.2.-one. The coverage of NMR is identical to 1a).
Example 3 oxopropyl) cyclobut-1-vll~Rcyanoic acid 1.49 g of the title compound and 941 mg of recovered (4S, 5R) 4 -methyl-5-phenyloxazoidin2..one are obtained analogously to Example 1 from 2.79 g (5.9 mmol) of the compound that is described under 3b). The title compound and the recovered chiral auxiliary can be separated by chromatography (analogously to Example 1) or else fractionated crystallization and then optionally purified by chromatography.
1 H-NMR (CDCl 3 6 0. 09 (3H) 0. 19 (3H) 0. 90 (9H) 1. 08 1.70-2.00 2.20-2.40 2.47 2.50-2.70 (2H), 4.45 (MH) ppm.
oxopropyl) cyclobut-l1-yl I ropvll 4 -methvl-5-phenv loxazo idin2.-one Analogously to Example 1b) 3. 0 g of the title compound is obtained as a colorless oil from 3.14 g (22.4 mmol) of the compound that is described under C) 9.7 g (78. 8 nunol) of anhydrous chromium(II) chloride, 9.69 g (32.5 mmol) of 2a) and 300 mg (2.2 mmo.) of anhydrous lithium iodide in tetrahydrofuran after column chromatography on silica gel.
128 1 H-NMR (CDC1 3 0.93 (3H1), 1. 10 (311), -1.80-2.03 (2H), 2.10-2.21 (1H1), 2.26-2.35 (3H) 2.54-2.70 (211), 3.03-3.08 (2H), 3.34 4.39 4.74-4.85 (1H1), 5.69 7.27-7.34 (2H), 7.36-7.49 (311) ppm.
3bi r4s-r3(R*).4a.5otll-3-.rrDimethv1(l.1dimethylethvl)si lx---xo3r-loo~ovi)vlbtl vllproRVll 4 -methl-5-henloxazolidin2..one Analogously to Example 1c), 2.79 g of the title compound is obtained from 3.0 g (8.35 mmol) of the compound that is de scribed under Example 3a), tert-butyldimethylsilyl.
trifluoromethane sulfonate and 2,6-lutidine after recrystallization from diisopropyl ether.
'H-NMR (CDCJ.
3 6 0.10 (311), 0.21 0.92 0.95 1.10 1.70-1.92 2.02-2.16 2.20-2.40 (3H), 2.50-2.72 2.98-3.10 4.63-4.75 5.69 7.28- 7.35 7.36-7.48 (311) ppm.
Q Example 4 oxopropvl) cvclobut-1-vl ipropanoic acid The compound is produced analogously to Exanple As a starting product, (4R, 5S) 3 -(bromoacetyl) phenyloxazolidin-2-one is used.
The coverage of the NMR spectrum is identical to Example 3.
129 The stereochemistry in 3 -position can be controlled by the selection of the stereochemistry at C4 and C5 of the chiral auxiliary 4-methyl-5-phenyl-2-oxazolidone.
The structure of intermediate product lb) was confirmed by an x-ray structural analysis.
Examples of the Production of Component
C
Example I (S)-Dihydro-3-hydroxy-2(3H)-furanone i 10 g of L-(-)-malic acid is stirred in 45 ml of trifluoroacetic acid anhydride for 2 hours at 25 0 C. Then, it is concentrated by evaporation in a vacuum, 7 ml of methanol is added to the residue, and it is allowed to stir for 12 more hours. Then, it is concentrated by evaporation in a vacuum. The residue that is obtained is dissolved in 150 ml of absolute tetrahydrofuran. It is cooled to 0°C, and 150 ml of boranetetrahydrofuran complex is added and allowed to stir for hours at OOC. Then, 150 ml of methanol is added. It is allowed to stir for one more hour at room temperature and then concentrated by evaporation in a vacuum. The crude product that is obtained is dissolved in 80 ml of toluene. 5 g of Dowex( R (activated, acidic) is added and refluxed for one hour. Then, Dowex(R) is filtered off, and the filtrate is concentrated by evaporation in a vacuum. The crude product that is obtained (7.61 g, 99.9%) is used without purification in the next step.
130 Example 2 -Dihydro-3-[[(, 1-dimetyethyl) diphenylsilyl ]oxy]-2 (3H)furanone 24 ml of tert-butyldiphenylsilyl chloride is added to a solution of 7.61 g of the substance that is described under Example 1 and 10 g of imidazole in 100 ml of N,Ndimethylformamide. It is allowed to stir for two more hours at 0 C, and then the reaction mixture is poured onto ice-cold saturated sodium bicarbonate solution. It is extracted with ethyl acetate, the organic phase is washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography of the crude product on silica gel with a mixture of hexane/ethyl acetate, 13.4 g of the title compound is obtained.
1 H-NMR (CDC1 3 6 7.72 7.70 7.40-7.50 (6H), 4.30-4.42 4.01 2.10-2.30 1.11 (9H) ppm.
Example 3 (2RS, -Dimethylethyl) diphenylsilyl]oxy]tetrahydro-2furanol ml of a 1 molar solution of diisobutylaluminum hydride in hexane is added at -78 0 C to a solution of 13.4 g of the substance, described under Example 2, in 150 ml of absolute tetrahydrofuran. It is stirred for 45 more minutes at -78 0 C and then quenched with water. It is extracted with ethyl acetate, the organic phase is washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation 131 in a vacuum. 13.46 g of the title compound, which is used without purification in the next step, is obtained.
Example 4 (2RS,3S)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-l,4pentanediol A solution of 13.46 g of the substance, described under Example 3, in 150 ml of absolute tetrahydrofuran is added in drops to 20 ml of a 3 molar solution of methylmagnesium chloride in tetrahydrofuran at 0 C. It is allowed to stir for one more hour at 0 C and then poured onto saturated aqueous ammonium chloride solution. It is extracted with ethyl acetate, the organic phase is washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography of the crude product on silica gel with a mixture of hexane/ethyl acetate, 11.42 g of the title compound is obtained.
1 H-NMR (CDC1 3 6 7.65-7.75 7.40-7.55 5.20 S 4.30 3.70 1.80 1.05 (9H) ppm.
Example (2RS,38)-5-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1dimethylethyl)diphenylsilyl]oxy]-2-pentanol 4.9 g of tert-butyldimethylsilyl chloride is added to a solution of 11.42 g of the substance that is described under Example lac, and 3.25 g of 1H-imidazole in 120 ml of N,Ndimethylformamide. It is allowed to stir for 2 more hours at 132 andthen the reaction mixture is poured onto ice-cold, saturated sodium bicarbonate solution. It is extracted with ethyl acetate, the organic phase is washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography of the crude product on silica gel with a mixture of hexane/ethyl acetate, 10.64 g of the title compound is obtained.
'H-NMR (CDC13): 6 7.60-7.70 7.30-7.45 3.70- 3.80 3.40 3.00 1.80 1.60 1.05-1.12 (12H), 0.82 0.02 (6H) ppm.
Example 6 (3S)-5-[[Dimethyl(l,1-dimethylethyl)silyl]oxy]-3-[[(1,1dimethylethyl)diphenylsilyl]oxy]-2-pentanone 13 ml of dimethyl sulfoxide is added to 7.37 ml of oxalyl chloride in 80 ml of dichloromethane at -78 0 C. It is allowed to stir for 3 more minutes, and then 10.46 g of the substance, described under Example 5, in 100 ml of dichloromethane, is added. After another 15 minutes of stirring time, 52 ml of triethylamine is added in drops. Then, it is allowed to heat to 0 C. Then, the reaction mixture is poured onto saturated sodium bicarbonate solution. It is extracted with dichloromethane, the organic phase is washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography of the crude product on silica gel with a mixture of hexane/ethyl acetate, 9.3 g (26.5% 133 relative to the malic acid that is used) of the title compound is obtained.
'H-NMR (CDCl 3 8 7.60-7.70 (4H) 7.32-7.50 (6H) 4.25 3.72 3.58 2.05 1.90 1.75 1.13 0.89 0.01 (6H) ppm.
Example 7 -Dihydro-3-hydroxy-.
2 (3H) -furanone g of D-(+)-malic acid is reacted analogously to Example 1. 7.26 g of the title compound is obtained. The coverage of the H-NMR spectrum is identical to 1.
Example a (R)-Dihydro-3.[ l-dimethylethyl)diphenylsilyloxy].
2 (3H) furanone Analogously to Example 2, 12.9 g of the title compound is obtained from 7.26 g of the substance that is described under Example 7. The coverage of the lH-NMR spectrum is identical to @2.
Example 9 (2RS, 3R)-3- l-Dimethylethy)diphenylsilyl]oxy]tthydro furanol Analogously to Example 12.95 g of the title compound is obtained from 12.9 g of the substance that is described under Example 8 The coverage of the 1 H-N~MR spectrum is identical to 3.
134 Example j~ (2RS,3R)-3-[[(1,l-Dimethylethyl)diphenylsilyl]oxy]-1,4pentanediol Analogously to Example 4, 11 g of the title compound is obtained from 12.95 g of the substance that is described under Example 9. The coverage of the 'H-NMR spectrum is identical to 4.
Example 11 (2RS,3R)-5-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1dimethylethyl)diphenylsilyl]oxy]-2-pentanol Analogously to Example 5, 10.11 g of the title compound is obtained from 11 g of the substance that is described under Example 10. The coverage of the 'H-NMR spectrum is identical to Example 12 (R)-5-[[Dimethyl(l,1-dimethylethyl)silyl]oxy]-3-[[(1,1dimethylethyl)diphenylsilyl]oxy]- 2 -pentanone Analogously to Example 6, 8.85 g of the title compound is obtained from 10.11 g of the substance that is described under Example 11. The coverage of the 'H-NMR spectrum is identical to 6.
135 Example 13 (3RS)-Dihydro-3-hydroxy-2(3H)-furanone g of racemic malic acid is reacted analogously to Example 1. 3.68 g of the title compound is obtained. The coverage of the 'H-NMR spectrum is identical to 1.
Example 14 (3RS)-Dihydro-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-2(3H)furanone Analogously to Example 2, 6.5 g of the title compound is obtained from 3.68 g of the substance that is described under Example 13. The coverage of the 'H-NMR spectrum is identical to 2.
Example (2RS,3RS)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]tetrahydro-2furanol Analogously to Example 3, 6.51 g of the title compound is obtained from 6.5 g of the substance that is described under Example 14. The coverage of the 'H-NMR spectrum is identical to Example 16 2
RS,
3 RS)-3-[[(l,l-Dimethylethyl)diphenylsilyl]oxy]-1,4pentanediol Analogously to Example 4, 5.5 g of the title compound is obtained from 6.51 g of the substance that is described under 136 Example 15. The coverage of the 1 H-NMR spectrum is identical to 4.
Example 17 (2RS,3RS)-5-[ (Dimethyl(l, l-diethylethyl)silyljoxyj-3-( (Ill1dimethylethyl) diphenylsilyl] oxy] -2-pentanol.
Analogously to Example 5, 5.05 g of the title compound is obtained from 5.5 g of the substance that is described under Example 16. The coverage of the 1 H-NMR spectrum is identical to Example 18 dimethylethyl) diphenylsilyl] oxy] -2-pentanone Analogously to Example 6, 4.3 g of the title compound is obtained from 5.05 g of the substance that is described under Example 17. The coverage of the 'H-NMR spectrum is identical to 6.
Example 19 (E,35)-1-[[Dimethyl(1,1-dimethyletyl)silyl]oy].
3 dimethylethyl) diphenylsilylloxy] -4-methyl-S- (2-methylthiazol-4yl) -pent-4-ene The solution of 6.82 g of diethyl(2-methylthiazol-4yl)methanephosphonate in 300 ml of anhydrous tetrahydrofuran is cooled under an atmosphere of dry argon to mixed with 16.2 137 ml of a 1. 6 molar solution of n-butyllithium in n-hexane, allowed to heat to 23 0 C and stirred for 2 hours. Then, it is cooled to -78°C, the solution of 6.44 g (13.68 mmol) of the compound, presented according to Example 6, in 150 ml of tetrahydrofuran is added in drops, allowed to heat to 23 0 C and stirred for 16 hours.
It is poured into saturated ammonium chloride solution, extracted several times with ethyl acetate, the combined organic extracts are washed with saturated sodium chloride solution and dried on sodium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 6.46 g (11.4 mmol, 83%; yield relative to the malic acid that is used: 22%) of the title compound is isolated as a colorless oil.
'H-NMR (CDC1 3 6 -0.04 0.83 1.10 1.79 1.90 1.97 2.51 3.51 4.38 6.22 6.74 7.23-7.47 7.63 7.70 (2H) ppm.
Example (E,3S)-3-[[(,I-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2methylthiazol-4-yl)-pent-4-en-l-ol The solution of 4.79 g (8.46 mmol) of the compound, presented according to Example 19, in 48 ml of tetrahydrofuran is mixed with 48 ml of a 65:35:10 mixture of glacial acetic acid/water/tetrahydrofuran, and it is stirred for 2.5 days at 23 0 C. It-is poured into saturated sodium carbonate solution, extracted several times with ethyl acetate, the combined organic 138 extracts are washed with saturated sodium chloride solution and dried on sodium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 3.42 g (7.57 mmol, of the title compound is isolated as a colorless oil.
'H-NMR (CDC13): 6 1.10 1.53 1.81 1.96 2.71 3.59 4.41 6.38 6.78 (1H), 7.26-7.49 7.65 7.72 (2H) ppm.
Example 21 1-dimethylethyl)diphenylsilyl]oxy]-4methyl-5-(2-methylthiazol-4-yl)-pent-4-ene The solution of 378 mg (0.84 mmol) of the compound, presented according to Example 20, in 9 ml of dichloromethane is mixed at 0 C under an atmosphere of dry argon with 90 Al of pyridine, 439 mg of triphenylphosphine, and 556 mg of tetrabromomethane, and it is stirred for 1 hour at 0 C. The Ssolution is chromatographed on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 362 mg (0.70 mmol, 84%) of the title compound is isolated as a colorless oil.
IH-NMR (CDC1 3 6 1.09 1.95 2.01-2.23 (2H), 2.71 3.15-3.35 4.35 6.30 6.79 7.25- 7.49 7.63 7.69 (2H) ppm.
139 Example 322 CE#3S)-I-Iodo-3-[ (1,1-dimethylethyl)diphenylsilyl]oxy]-4-methyl- (2-methylthiazol-4-y1) -pent-4-ene The solution of 8.41 g of triphenyiphosphine in 120 ml of dichioromethane is mixed at 23 0 C under an atmosphere of dry argon with 2.19 g of imidazole and 8.14 g of iodine, the solution of 12.2 g (27.0 mmol) of the compound, presented according to Example 20, in 30 ml of dichloromethane is added2 in drops and stirred for 0.5 hour. The solution is chromatographed on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 12.15 g (21.6 mmbl, 80%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 1.08 1.96 2.10 2.70 2.87-3.08 4.24 6.32 (1H) 6.79 (1H) 7.28-7.48 7.60-7.72 (4H) ppm.
Example 23 1,1-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5- (2- O methylthia.zo0l1- 4-yl) -pent- 4-en- 1-yI] -tr iphenylphosphonium iodide The suspension of 12.55 g (22.3 mmol) of the compound that is presented according to Example 22, 85 g of triphenylphosphine and 11.6 ml of N-ethyldiisopropylamine is stirred under an atmosphere of dry argon for 16 hours at 80 0 C. After cooling, it is mixed with diethyl ether, filtered, and the residue is rewashed several times with diethyl ether and recrystallized from ethyl acetate. 15.7 g (19.1 mmoi, 74%) of the title compound is isolated as a crystalline solid.
140 'H-NMR (CDCl 3 6 1.07 1.68-1.92 1.98 (MH), 2.70 2.93 3.30 4.53 6.62 7.03 (1H), 7.23-7.47 7.48-7.72 (16H), 7.73-7.85 (3H) ppm.
Example 24 (E,3R)-1-((Dinethyl(1,1-dimethyethy)silyoxy] 3 dimethylethyl) diphenylsilyl ]oxy] -4-nethyl-5- (2-methylthjazol-4yl) -pent-4-ene Analogously to Example 19, 8.56,g of the title S compound is obtained from 8.85 g of the compound that is described under Example 12. The coverage of I H-NMR is identical to 19.
Example (E,3R) l-Dimethylethyl)diphensiylsoxy]..4...methylS..( 2 methylthiazol-4-yl) -pent-4-en-1-ol Analogously to Example 20, 6.25 g of the title compound is obtained from 8.56 g of the compound that is Sdescribed under Example 24. The coverage of 1 H-NMR is identical to Example 26 3R) -l-Iodo-3-([C(1, l-dimethylethyl)diphenylsilyloxy]4-methyl.
(2-methylthiazol-4-yl) -pent-4-ene Analogously to Example 22, 6.22 g of the title compound is obtained from 6.25 g of the compound that is 141 described under Example 25. The coverage of the 1 H-NMR spectrum is identical to 22.
Example 27 (1,l-Dimethylethyl)-diphenylsilyl~oxy]-4-methyl-5- (2-methylthiazol-4-yl) -pent-4-en-l-yl]-triphenylphosphoniumiodide Analogously to Example 23, 7.36 g of the title compound is obtained from 6.22 g of the compound that is described under Example 26. The coverage of the 1 H-NMR spectrum is identical to 23.
Example 28 (E,3RS)-l-[(Dimethyl(1,l-dimethylethyl)silyl]oxy]-3-[(l(,1dimethylethyl)diphenylsilyl~oxy)-4-methyl-5-(2-methylthiazol-4yl) -pent-4-ene Analogously to Example 19, 4.52 g of the title compound is obtained from 4.3 g of the compound that is described under Example 18. The coverage of the 1 H-NMR spectrum is identical to 19.
Example 29 (l,l-Dimethylethyl)diphenylsilyl]oxy)-4-methyl-5-(2methylthiazol -4-yl) -pent-4-en-l-ol Analogously to Example 20, 3.16 g of the title compound is obtained from 4.52 g of the compound that is 142 describe4- under Example 28. The coverage of the 1 H-NMR spectrum is identical to Example (E,3RS)-l-Iodo-3-[ (,l-dimethylethyl)diphenylsilyl]oxy]-4- (2-methylthiazol-4-yl) -pent-4-ene Analogously. to Example 22, 3.34 g of the title compound is obtained from 3.16 g of the compound that is described under Example 25. The coverage of the 'H-NMR spectrum is identical to 22.
Example 31 (1,l-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5- (2-methylthiazol-4-yl) -pent-4-en-l-yl] -triphenyiphosphonium iodide Analogously to Example 23, 4.35 g of the title compound is obtained from 3.34 g of the compound that is described under Example 26. The coverage of the 1 H-NMR spectrum is identical to 23.
Example 32 (E,3S)-l-[(Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-pyridyl)-pent-4ene Analogously to Example 19, 2 g (4.23 mmol) of the compound that is-presented according -to Example 6 is reacted with use of diethyl (2-pyridyl) methanephosphonate, and after working-up and 143 purification, 2 g (3.68 mmol, 87%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 -0.06 0.80 1.09 1.81 (1H) 1.90 2.00 (3H) 3.53 (2H) 4.40 (1H) 6.22 (1H) 6.99 7.06 7.25-7.45 7.58 7.65-7.77 8.58 (1H) ppm.
Example 33 (1,l-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2pyridyl) -pent-4-en-l-ol Analogously to Example 20, 2 g (3.68 mmol) of the compound that is produced under Example 32 is reacted with a,65:35:10 mixture of glacial acetic acid/water/tetrahydrofuran. After working-up, 1.38 g (3.20 mmol, 87%) of the title compou nd is obtained.
'H-NMR (CDC1 3 6 1.12 1.85 2.00 3.62 4.5 6.44 7.03 7.08 7.25-7.48 (6H), 7.59 7.65-7.77 8.58 (1H) ppm.
Example 34
O
(Z,3S) Dimethyl 1-dimethylethyl) silyljoxy]-3-( dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(3-pyridyl) -pent-4ene and (E,3S)-l-([dimethyl(1,1-dimethylethyl)silyl]oxy]-3- L-dimethylethyl) diphenylsilyl]oxy] -4-methyl-5- (3-pyridyl) pent-4-ene (B) Analogously to Example 19, 4.8 g (10.2 mmol) of the compound that is presented according to Example 6 is reacted with use of 144 diethyl(3-pyridyl)methanephosphonate, and after working-up and purification, 448 mg (0.82 mmol, of title compound A and g (6.41 mmol, 63%) of title compound B are isolated in each case as a colorless oil.
'H-NMR (CDCl 3 of A: 6 06 (6H) 0. 81 (9 1.01 (9H), 1.75 1.97 3.48 4.83 6.11 6.97 4.1H), 7.11-7.30 7.30-7.39 7.39-7.50, 8.08 8.33 (1H) ppm.
IH-NMR (ODC1 3 of B: 6 0.85 1.11 (9H), 1.78 1.83 1.97 3.58 4.42 6.03 (1H), 7.21 7.28-7.50 7.62-7.75 8.29 (111), 8.41 (1H) ppm.
Example ,1-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(3pyridyl) -pent-4-en-1-ol Analogously to Example 20, 3.5 g (6.41 mmol) of the compound that is produced under Example 34B is reacted with a 65:35:10 mixture of glacial acetic acid/water/tetrahydrofuran. After purification, 2.1 g (4.86 mmol, 76%) is obtained.
'H-NMR (CDC1 3 6 1.12 1.75 1.88 3.65 4.45 6.25 7.21 7.28-7.50 7.60-7.75 8.30 8.44 (1H) ppm.
145 Example 3-6 Analogously to Example 22, 1.98 g of the title i compound is obtained from 2.1 g of the compound that is described under Example 'H-NMR (CDCl 3 6 1.11 1.78 2.17 3.03 4.29 6.19 7.22 7.30-7.50 7.63-7.75 8.32 (lH),-8.44 (1H) ppm.
Example 37 Analogously to Example 23, 2.35 g of the title compound is obtained from 1.98 g of the compound that is described under Example 36.
'H-NMR (C1 3 8 1.08 1.80 3.27 .3.56 (1H) 4.66 (1H) 6.52 (1H) 7.25-7.90 (27H) 8.35 (1H) 8.46 (1H) ppm.
Example 38 (Z,3S)-l-[[Dimethyl(1,l-dimethylethyl)silyl~oxy]-3-[(l(,1dimethylethyl) diphenylsilyl ]oxy] -4-methyl-5- (4-pyridyl) -pent-4ene and (E,3S)-l-[[dimethyl(l,l-dimethylethyl)silyl~oxy]-3- [[(l,l-dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(4-pyridyl)pent-4-ene (B) Analogously to Example 19, 4.59 g (9.75 mmol) of the compound that is produced according to Example 6 is reacted with use of diethyl(4-pyridyl)methanephosphonate, and after working-up and purification, 605 mg (1.11 mmol, 11%) of title compound A and 146 4.34 g (7.95 mmol, 82%) of title compound B are isolated in each case as a colorless oil.
IH-NMR (CDC1 3 of A: 6 -0.05 0.82 1.02 (9H), 1.78 1.96 3.48 4.92 6.08 6.73 (2H), 7.20-7.30 7.32-7.40 7.41-7.49 8.30 (2H) ppm.
1 H-NMR (CDC13) of B: 6 -0.04 0.80 1.08 (9H), 1.78 1.91 3.55 4.39 6.02 6.93 (2H), 7.26-7.48 7.60-7.72 8.50 (2H) ppm.
Example 39 (E,3S)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(4pyridyl)-pent-4-en-1-ol Analogously to Example 20, 4.34 g (7.95 mmol) of the compound that is produced under Example 38B is reacted with a 65:35:10 mixture of glacial acetic acid/water/tetrahydrofuran.
After purification, 2.92 g (6.76 mmol, 85%) of the title compound is obtained.
'H-NMR (CDC1 3 6 1.12 1.78 1.87 3.65 4.42 6.26 6.97 7.26-7.48 7.60-7.72 8.52 (2H) ppm.
Example Analogously to Example 22, 2.82 g of the title compound is obtained from 2.92 g (6.76 mmol) of the compound that is described under Example 39.
'H-NMR (CDCl 3 6 1.08 1.78 2.15 3.00 4.26 6.17 6.95 7.30-7.50 7.60-7 8.50 (2H) ppm.
Example 41 Analogously to Example 23, 3.27 g (4.06 mmol, 78%) of the title compound is obtained from 2.82 g (5.21 mmol) of the compound that is described under Example 1 H-NMR (CDC1 3 6 1.09 (6H),*1.82 3.15 3.50 (lH) 4. 65 (lH) 6. 53 (1H) 7. 05 (2H) 7. 25-7.48 (6H) 7. 50-7.70 (4H) 8.50 (2H) ppm.
148 Production of the Evothilone Derivatives of General Formula I: Example 1.
(4S,7R,8S,95,13(Z) ,16S(E) )-4,B-Dihydroxy-7-ethyl-16-C1-methyl 2- (2-methyl-4-thiazolyl) ethenyl) -1-oxa-5, 5,9, 13-tetramethylcyclohexadee-13-ene-2, 6-dione Example la -l-Oxa-2-oxo-3- Ctetrahydropyran-2 (RS) -yloxy) 4-dimethylcyclopentane The solution of 74.1 g (569 mmol) of D-(-)-pantolactone in 1 1 of'anhydrous dichloromethane is mixed with 102 ml of 3,4dihydro-2H-pyran and 2 g of p-toluenesulfonic acid-pyridinium salt under an atmosphere of dry argon, and it is stirred for 16 hours at 23 0 C. It is poured into a saturated sodium bicarbonate solution, and the organic phase* is separated and dried on sodium sulfate. After filtration and removal of the solvent, the residue is chromatographed on about 5 kg of fine silica gel with a mixture of n-hexane and ethyl acetate. 119.6 g (558 mmol, 98%) Q of the title compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 1.13 1.22 (3H),,1.46-1.91 (6H), 3.50-3.61 (111), 3.86 3.92 4.01 4.16 5.16 (1H) ppm.
149 Example lb (2RS,3S)-l-Oxa-2-hydroxy-3-(tetrahydropyran-2(RS)-yloxy)-4,4dimethyl-cyclopentane The solution of 117.5 g (548 mmol) of the compound, presented according to Example la, in 2.4 1 of anhydrous toluene is cooled under an atmosphere of dry argon to -70 0 C, mixed within 1 hour with 540 ml of a 1.2 molar solution of diisobutyl aluminum hydride in toluene, and it is stirred for another 3 hours at 0 C. It is allowed to heat to -20 0 C, mixed with saturated ammonium chloride solution and water, and the precipitated aluminum salts are separated by filtration on Celite. The filtrate is washed with water and saturated sodium chloride solution and dried on magnesium sulfate. After filtration and removal of the solvent, 111.4 g (515 mmol, 94%) of the title compound is isolated as a colorless oil, which is further reacted without purification.
IR(CHC1 3 3480, 3013, 2950, 2874, 1262, 1133, 1074, 1026 and 808 cm 1 Example lc (3S)-2,2-Dimethyl-3-(tetrahydropyran-2(R)-yloxy)-pent-4-en-l-ol and (3S)-2,2-dimethyl-3-(tetrahydropyran-2(S)-yloxy)-pent-4-en-lol The suspension of 295 g of methyl-triphenylphosphonium bromide in 2.5 1 of anhydrous tetrahydrofuran is mixed under an atmosphere of dry argon at -60 0 C with 313 ml of a 2.4 molar solution of n-butyllithium in n-hexane, allowed to heat to 230C, 150 stirred for one more hour and cooled to 0°C. It is mixed with the solution of 66.2 g (306 mmol) of the compound, presented according to Example lb, in 250 ml of tetrahydrofuran, allowed to heat to 23 0 C and stirred for 18 hours. It is poured into a saturated sodium bicarbonate solution, extracted several times with dichloromethane, and the combined organic extracts are dried on sodium sulfate. After filtration and removal of the solvent, the residue is chromatographed on about 5 1 of fine silica gel with a gradient system that consists of n-hexane and ethyl S acetate. 36.5 g (170 mmol, 56%) of the nonpolar THP-isomer of the title compound, 14.4 g (67.3 mmol, 22%) of the polar THPisomer of the title compound, and 7.2 g (33.3 mmol; 11%) of the starting material are isolated in each case as a colorless oil.
'H-NMR (CDC1 3 nonpolar isomer: 6 0.78 0.92 (3H), 1.41-1.58 1.63-1.87 3.18 3.41 3.48 (1H), 3.68 3.94 4.00 4.43 5.19 5.27 (1H), 5.75 (1H) ppm.
1 H-NMR (CDC13), polar isomer: 6 0.83 0.93 (3H), 1.42-1.87 2.76 3.30 3.45 3.58 3.83 3.89 4.65 5.12-5.27 5.42 (1H) ppm.
Example Id (3S)-1-(tert-Butyldiphenylsilyloxy)-2,2-dimethyl-pentane-3- (tetrahydropyran-2-yloxy)-pent-4-ene The solution of 59.3 g (277 mmol) of the THP-isomer mixture, presented according to Example lc, in 1000 ml of anhydrous dimethylformamide is mixed under an atmosphere of dry argon with 151 28 g of imidazole, 85 ml of tert-butyldiphenylchlorosilane, and it is stirred for 16 hours at 23 0 C. It is poured into water,t extracted several times with dichloromethane, the combined organic extracts are washed with water and dried on sodium sulfate. After filtration and removal of the solvent, the residue is chromatographed on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 106.7 g (236 mmol, 85%) of the title compound is isolated as a colorless oil.
'H-NMR (CDC1 3 6 0.89 0.99 1.08 1.34- 0 1.82 3.40 3.51 3.76 4.02 4.67 (1H), 5.18 5.23 5.68 7.30-7.48 7.60-7.73 (4H) ppm.
Example le (3S)-1-(tert-Butyldiphenylsilyloxy)-2,2-dimethyl-3- The solution of 3.09 g (6.83 mmol) of the compound, presented according to Example ld, in 82 ml of tetrahydrofuran is mixed with 13.1 ml of a 1 molar solution of borane in tetrahydrofuran under an atmosphere of dry argon at 23 0 C, and it is allowed to react for 1 hour. Then, while being cooled with ice, it is mixed with 16.4 ml of a 5% sodium hydroxide solution as well as 8.2 ml of a 30% hydrogen peroxide solution, and it is stirred for another 30 minutes. It is poured into water, extracted several times with ethyl acetate, the combined organic extracts- are washed with water and saturated sodium chloride solution and dried on magnesium sulfate. The residue that is 152 obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 1.78 g (3.78 mmol, of the title compound is isolated as a chromatographically separable mixture of the two THP-epimeres, as well as 0.44 g (1.14 mmol, 17%) of the title compound of Example 6 in each case as a colorless oil.
'H-NMR (CDC1 3 nonpolar THP-isomer: 6 0.80 0.88 1.10 1.18-1.80 3.27 3.39 3.48 (1H), 3.64 3.83 3.90-4.08 4.49 7.31-7.50 (6H), 7.58-7.73 (4H) ppm.
'H-NMR (CDCl 3 polar THP-isomer: 6 0.89 0.98 (3H), 1.08 1.36-1.60 1.62-1.79 1.88 2.03 (1H), 3.37 3.50 3.57 3.62-3.83 4.70 7.30- 7.48 7.61-7.73 (4H) ppm.
Example If (3S)-l-(tert-Butyldiphenylsilyloxy)-2,2-dimethyl-3-hydroxy-pent- 4-ene The solution of 106.7 g (236 mmol) of the compound, presented according to Example ld, in 1.5 1 of anhydrous ethanol is mixed with 5.9 g of pyridinium-p-toluenesulfonate under an atmosphere of dry argon, and it is heated for 6 hours to 500C.
After removal of the solvent, the residue is chromatographed on fine silica gel with a mixture of n-hexane and ethyl acetate.
82.6 g (224 mmol, 95%) of the title compound is isolated as a 153 colorless oil, in which in addition about 5 g of ethoxytetrahydropyran is contained.
'H-NMR (CDC13) of an analytic sample: 6 0.89 1.08 3.45 3.49 3.58 4.09 5.21 5.33 5.93 7.34-7.51 7.63-7.73 (4H) ppm.
Example ig (3S)-1-(tert-Butyldiphenylsilyloxy)-2,2-dimethyl-pentane-3,5-diol Analogously to Example le, the solution of 570 mg (1.55 mmol) of the compound that is presented according to Example If is reacted, and after working-up and purification, 410 mg (1.06 mmol, 68%) of the title compound is isolated as a colorless oil.
'H-NMR (CDC1 3 6 0.82 0.93 1.08 1.56- 1.79 3.11 3.50 3.78-3.92 4.02 7.34- 7.51 7.61-7.71 (4H) ppm.
Example lh 4(S)-[2-Methyl-l-(tert-butyldiphenylsilyloxy)-prop-2-yl]-2,2dimethyl-[1,3]dioxane The solution of 100 mg (0.212 mmol) of th6 compounds, presented according to Example le, in 2.6 ml of anhydrous acetone is mixed with 78.9 mg of copper(II) sulfate, a spatula tip full of p-toluenesulfonic acid-monohydrate under an atmosphere of dry argon, and it is stirred for 16 hours at 23 0 C. It is mixed with saturated sodium bicarbonate solution, extracted several times with diethyl ether, washed with saturated sodium chloride solution and dried on sodium sulfate. The residue that is 154 obtainedafter filtration and removal of the solvent is purified by chromatography on fine silica gel with a gradient system tat consists of n-hexane and ethyl acetate. 24 mg (56 mol, 27%) of the title compound is isolated as a colorless oil.
'H-NMR (CDC1 3 6 0.83 0.89 1.07 1.30 1.36 1.44 1.71 3.24 3.62 (1H),-3.86 3.91-4.03 7.31-7.48 7.61-7.74 (4H) ppm.
S Variant II Analogously to Example lh, 320 mg (0.88 mmol) of the compound that is presented according to Example lg is reacted; variant 1, and after working-up and purification, 234 mg (0.548 mmol, 62%) of the title compound is isolated.
Variant III The solution of 5.60 g (14.5 mmol) of the compound, presented according to Example Ig, in 250 ml of anhydrous dichloromethane, is mixed with 10 ml of 2,2-dimethoxypropane and 0 145 mg of camphor-10-sulfonic acid under an atmosphere of dry argon, and it is stirred for 6 hours at 23 0 C. It is mixed with triethylamine, diluted with ethyl acetate, washed with saturated sodium bicarbonate solution and dried on sodium sulfate. After filtration and removal of the solvent, the residue is chromatographed on fine silica gel with a mixture of n-hexane and ethyl acetate. 5.52 g (12.9 mmol, 89%) of the title compound is isolated as a colorless oil.
155 Example li (4S)-4-(2-Methyl-l-hydroxy-prop-2-yl)-2,2-dimethyl-[1,3]dioxate The solution of 5.6 g (13.1 mmol) of the compound, presented according to Example Ih, in 75 ml of anhydrous tetrahydrofuran is mixed with 39 ml of a 1 molar solution of tetrabutylammonium fluoride in tetrahydrofuran under an atmosphere of dry argon- and it is heated for 16 hours to 50 0 C. It is mixed with saturated sodium bicarbonate solution, extracted several times with ethyl acetate, washed with saturated sodium chloride solution and dried on sodium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 2.43 g (12.9 mmol, 99%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.87 0.90 1.35 1.37 1.43 1.77 2.93 3.36 3.53 3.79 3.87 3.96 (1H) ppm.
O Example 1k (4S)-4-(2-Methyl-l-oxo-prop-2-yl)-2,2-dimethyl-[1,3]dioxane The solution of 0.13 ml of oxalyl chloride in 5.7 ml of anhydrous dichloromethane is cooled under an atmosphere of dry argon to -70°C, mixed with 0.21 ml of dimethyl sulfoxide, the solution of 200 mg (1.06 mmol) of the compound, presented according to Example li, in 5.7 ml of anhydrous dichloromethane, and it is stirred for 0.5 hour. Then, it is mixed with 0.65 ml of triethylamine, allowed to react for 1 hour at -30 0 C and mixed 156 with n-hexane and saturated sodium bicarbonate solution. The organic phase is separated, the aqueous phase is extracted once more with n-hexane, the combined organic extracts are washed with water and dried on magnesium sulfate. The residue that is obtained after filtration and removal of the solvent is further reacted without purification.
Example 11 (4S)-4-((3RS)-2-Methyl-3-hydroxy-hex-2-yl)-2,2-dimethyl- [1,3]dioxane The solution of 450 mg (2.42 mmol) of the compound, presented according to Example 1k, in 7 ml of anhydrous diethyl ether is mixed with 1.21 ml of a 2.4 molar solution of propylmagnesium bromide in diethyl ether under an atmosphere of dry argon at 0 C, allowed to heat to 23 0 C and stirred for 16 hours. It is mixed with saturated ammonium chloride solution, the organic phase is separated and dried on sodium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel with a gradient system that consists of n-hexane'and ethyl acetate. 244 mg (1.06 mmol, 44%) of the chromatographically separable 3R- and 3S-epimeres of the title compound as well as 191 mg of the title compound that is described in Example li are isolated in each case as a colorless oil.
IH-NMR (CDC13) nonpolar isomer: 6 0.87 0.89 (3H), 0.94 1.25-1.52 1.38 1.45 1.66 1.85 3.46 3.80-4.02 (4H) ppm.
157 'H-NMR (CDC1 3 polar isomer: 6 0.73 0.92 0.95 1.19-1.84 1.37 1.49 3.49 3.60 3.80-4.03 (3H) ppm.
Example Im (4S)-4-(2-Methyl-3-oxo-hex-2-yl)-2,2-dimethyl-[1,3]dioxane The solution of 207 mg (0.90 mmol) of a mixture of the compound, presented according to Example 11, in 18 ml of 9 anhydrous dichloromethane is mixed with molecular sieve (4A, about 20 spheres), 176 mg of N-methylmorpholino-N-oxide and 18 mg of tetrapropylammonium perruthenate, and it is stirred for 16 hours at 23 0 C under an atmosphere of dry argon. It is concentrated by evaporation, and the crude product that is obtained is purified by chromatography on about 100 ml of fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 185 mg (0.81 mmol, 90%) of the title compound is isolated as a colorless oil.
'H-NMR (CDC1 3 6 0.88 1.04 1.12 1.22- 0 1.37 1.31 1.40 1.48-1.71 2.46 3.83 3.96 4.04 (1H) ppm.
Example in 4-Tert-butyldimethylsilyloxy-but-2-in-l-ol A solution of 175 g of tert-butyldimethylsilyl chloride in 100 ml of a 1:1 mixture of hexane and dimethylformamide is slowly added in drops to a solution of 100 g of 2-butin-l-ol and 158 g of imidazole in 300 ml of dimethylformamide at 0°C under 158 nitrogen, and it is stirred for 2 hours at OOC and for 16 hours at 22 0 C. The reaction mixture is diluted with 2.5 1 of ethery washed once with water, once with 5% sulfuric acid, once with water, once with saturated sodium bicarbonate solution and washed neutral with semi-saturated sodium chloride solution. After drying on sodium sulfate and filtration, it is concentrated by evaporation in a vacuum. The residue that is thus obtained is purified by chromatography on silica gel. 74.3 g of the title compound is obtained with hexane/0-40% ether as a colorless oil.
IR (film): 3357, 2929, 2858, 1472, 1362, 1255, 1132, 1083, 1015, 83-7, 778 cm 1 Example (4R,5S,2'S)-4-Methyl-5-phenyl-3-[1-oxo-2-methyl-6-(tertbutyldimethylsilyloxy)-hex-4-in-l-yl]-2-oxazolidinone 11.3 ml of lutidine is added to 21 g of a solution of silyl ether, produced according to Example In, in 125 ml of toluene under nitrogen. Then, it is cooled to -40 0 C, and 17.7 ml of trifluoromethanesulfonic acid anhydride is added in drops at this temperature. Then, it is diluted with 100 ml 6f hexane and stirred for 10 minutes. Under nitrogen via a reversing frit, this solution is added to a solution that was produced from 17.8 g of hexamethyldisilazane in 140 ml of tetrahydrofuran with 73.5 ml of a 1.6 M solution of butyllithium in hexane at -60 0 C more minutes of stirring time) and 23.3 g of (4R,5S)-4-methyl-5phenyl-3-propionyl-2-oxazolidinone in 62 ml of tetrahydrofuran more minutes of stirring time). It is allowed to stir for 159 one more hour at -60 0 C, then mixed with 6 ml of acetic acid in ml of tetrahydrofuran, and the reaction mixture is allowed to* heat to 22 0 C. It is added to 80 ml of water and extracted three times with ether. The combined organic phases are washed twice with saturated sodium chloride solution and dried on sodium sulfate. After filtration, it is concentrated by evaporation in a vacuum. The residue that is thus obtained is purified by chromatography on silica gel. With hexane/0-20% ether, 16.0 g of the title compound is obtained as a colorless oil.
S'H-NMR (CDC1 3 6 0.10 0.90 0.92 1.28 2.A7 2.61 3.96 4.26 4.78 5.68 7.31 7.3-7.5 (3H) ppm.
Example ip (2S)-2-Methyl-6-(tert-butyldimethylsilyloxy)-4-hexinoic acid ethyl ester ml of titanium(IV)ethylate is added to a solution of 39.3 g of the alkylating product, produced according to Example S lo, in 120 ml of ethanol under nitrogen, and it is refluxed for 4 hours. The reaction mixture is concentrated by evaporation in a vacuum, and the residue is dissolved in 100 ml of ethyl acetate.
3 ml of water is added, stirred for 20 minutes, precipitate is suctioned out, and it is rewashed well with ethyl acetate. The filtrate is concentrated by evaporation, mixed with 200 ml of hexane, and precipitate is filtered out. The precipitate is washed well with hexane. The filtrate is concentrated by evaporation in a vacuum, and the residue that is thus obtained is 160 purified by chromatography on silica gel. With hexane/0-20% ether, 25.4 g of the title compound is obtained as a colorleq~ oil.
'H-NMR (CD 2 Cl 2 6 0.10 0.90 1.2-1.3 (6H), 2.37 2.54 2.60 4.12 4.27 (2H) ppm.
Example lq (2S)-2-Methyl-6-(tert-butyldimethylsilyloxy)-hexanoic acid ethyl ester A solution of 10.5 g of the ester, produced according to Example in 200 ml of ethyl acetate is mixed with 1 g of palladium on carbon, and it is stirred for 3 hours at 22 0 C in a hydrogen atmosphere. Then, catalyst is filtered out, it is rewashed well with ethyl acetate, and the filtrate is concentrated by evaporation in a vacuum. The residue that is thus obtained is purified by chromatography on silica gel. With hexane/0-10% ether, 9.95 g of the title compound is obtained as a colorless oil.
'H-NMR (CD 2 C1 2 6 0.01 0.84 1.07 1.18 1.2-1.7 2.38 3.57 4.05 ppm.
Example ir (2S)-2-Methyl-6-(tert-butyldimethylsilyloxy)-hexan-1-ol 63 ml of a 1.2 M solution of diisobutylaluminum hydride in toluene is added to a solution of 9.94 g of the ester, produced according to Example lq, in 130 ml of toluene at -40 0 C under nitrogen, and it is stirred for 1 hour at this temperature.
161 Then, 15 ml of isopropanol is carefully added, and after minutes, 30 ml of water is added, allowed to come to 22 0 C, and it is stirred at this temperature for 2 hours. Precipitate is filtered out, it is rewashed well with ethyl acetate, and the filtrate is concentrated by evaporation in a vacuum. The residue that is thus obtained is purified by chromatography on silica gel. With hexane/0-30% ether, 7.9 g of the title compound is obtained as a colorless oil. [a]o -8.10 (c 0.97, CHCl 3 1 H-NMR (CDC1 3 6 0.07 0.89 0.91 1.7 3.48 3.52 (2H) ppm.
Example is (28)-2-Methyl-6-(tert-butyldimethylsilyloxy)-1-(tetrahydro-2Hpyran-2-yloxy)-hexane 3.52 ml of dihydropyran, followed by 49 mg of ptoluenesulfonic acid-monohydrate, is added to 6.4 g of the alcohol, produced according to Example Ir, in 26 ml of methylene chloride at 0 C under argon. After 1.5 hours of stirring at 0°C, it is mixed with 10 ml of saturated sodium bicarbonate solution and diluted with ether. The organic phase is washed twice with semi-saturated sodium chloride solution and dried on sodium sulfate. After filtration, it is concentrated by evaporation in a vacuum, and the residue that is thus obtained is purified by chromatography on silica gel. With hexane/0-5% ether, 4.75 g of the title compound is obtained as a colorless oil.
162 'H-NMR (CDC1 3 6 0.05 0.89 0.92 1.9 (13H), 3.19 3.50 3.55-3.65 4.87 4a57 (1H) ppm.
Example it (5S)-5-Methyl-6-(tetrahydro-2H-pyran-2-yloxy)-hexan-l-ol 13.5 g of tetrabutylammonium fluoride trihydrate is added to a solution of 4.7 g of the THP-ether, produced according to Example Is, in 170 ml of tetrahydrofuran, under nitrogen, and it is stirred for 3 hours. Then, the reaction mixture is diluted with 800-ml of ether, and it is washed three times each with ml of semi-saturated sodium chloride solution and dried on sodium sulfate. After filtration, it is concentrated by evaporation in a vacuum, and the residue that is thus obtained is purified by chromatography on silica gel. With hexane/0-50% ethyl acetate, 2.88 g of the title compound is obtained as a colorless oil.
'H-NMR (CD 2 Cl 2 6 0.90/0.92 1.1-1.9 (13H), 3.18 3.40-3.65 3.82 4.53 (1H) ppm.
Example lu (5S)-5-Methyl-6-(tetrahydro-2H-pyran-2-yloxy)-hexanal 1.9 ml of dimethyl sulfoxide, dissolved in 7 ml of methylene chloride, is carefully added in drops to 1.08 ml of oxalyl chloride, dissolved in 10 ml of methylene chloride, under nitrogen at -70 0 C, and it is stirred for 10 minutes at this temperature. Then, a solution of 2.0 g of the alcohol, produced according to Example it, in 7 ml of methylene chloride is added 163 in drops, and it is stirred for 2 hours between -60 0 C and -70 0
C.
Then, 3.86 ml of triethylamine is added, and after 1 hour of stirring at -60 0 C, the reaction mixture is added to 30 ml of water. After phase separation, the aqueous phase is extracted twice with 30 ml of methylene chloride each. The combined organic phases are washed three times with saturated sodium chloride solution. After drying on sodium sulfate and filtration, it is concentrated by evaporation in a vacuum. 1.99 S g of the aldehyde, which is used without further purification, is obtained.
Example lv (2RS,6S)-6-Methyl-7-(tetrahydro-2H-pyran-2-yloxy)-heptan-2-ol 6.16 ml of a 3 M methylmagnesium bromide solution in ether is slowly added in drops to a solution of 1.98 g of the aldehyde, produced according to Example lu, in 30 ml of ether under nitrogen at 0 C. After 60 minutes, it is slowly poured onto ml of ice-cold saturated ammonium chloride solution and extracted S three times with ether. The combined organic phases are washed once with water, and twice with saturated sodidm chloride solution and dried on sodium sulfate. After filtration, it is concentrated by evaporation in a vacuum, and the residue that is thus obtained is purified by chromatography on silica gel. With hexane/0-60% ether, 1.57 g of the title compound is obtained as a colorless oil.
'H-NMR (CD 2 Cl 2 6 0.90/0.93 1.15 1.0-1.9 (13H), 3.18 3.4-3.6 3.7-3.9 4.53 (1H) ppm.
164 Example 1w (2S,6RS)-2-Methyl-6-(tert-butyl-diphenylsilyloxy)-1-(tetrahy.ro- 2H-pyran-2-yloxy)-heptane 2.13 ml of tert-butyldiphenylsilyl chloride is added to a solution of 1.57 g of alcohol, produced according to Example lv, and 1.11 g of imidazole in 20 ml of dimethylformamide at 0°Cunder nitrogen, and it is stirred for 15 minutes at 0°C and for 16 hours at 220C. The reaction mixture is diluted with 200 ml of ether, washed once with water, once with 10% sulfuric acid, once with saturated sodium bicarbonate solution and washed neutral with saturated sodium chloride solution. After drying on sodium sulfate and filtration, it is concentrated by evaporation in a vacuum. The residue that is thus obtained is purified by chromatography on silica gel. With hexane/0-10% ether, 2.87 g of the title compound is obtained as a colorless oil.
'H-NMR (CDC1 3 6 0.87/0.89 1.04 0.9-1.9 (16H), 3.15 3.4-3.6 3.8-3.9 4.56 7.3-7.5 7.69 (4H) ppm.
Example lx (2S,6RS)-2-Methyl-6-(tert-butyl-diphenylsilyloxy)-heptan-l-ol 131 mg of pyridinium-p-toluenesulfonate is added to a solution of 2.3 g of silyl ether, produced according to Example 1w, in 100 ml of ethanol, and it is stirred for 4 hours at 40 0
C.
Then, it is concentrated by evaporation in a vacuum, and the residue_that is thus obtained is purified by chromatography on 165 silica gel. With hexane/20% ether, 1.68 g of the title compound is obtained as a colorless oil.
Example ly (2S,6RS)-2-Methyl-6-(tert-butyl-diphenylsilyloxy)-heptanal Analogously to Example lu, 2.13 g of the alcohol that is presented under Example Ix is oxidized, and after working-up and chromatographic purification, 2.10 g of the title compound is isolated as a colorless oil.
1 H-NMR (CDC1 3 6 1.00-1.12 (15H), 1.18-1.63 2.22 3.83 7.32-7.47 7.61-7.72 9.54 (1H) ppm.
Example lz (S)-Dihydro-3-hydroxy-2(3H)-furanone g of L-(-)-malic acid is stirred in 45 ml of trifluoroacetic acid anhydride for 2 hours at 25 0 C. Then, it is concentrated by evaporation in a vacuum, 7 ml of methanol is added to the residue and allowed to stir for 12 more hours.
Then, it is concentrated by evaporation in a vacuum. The residue that is obtained is dissolved in 150 ml of absolute tetrahydrofuran. It is cooled to 0 C, and 150 ml of boranetetrahydrofuran complex is added and allowed to stir for hours at 0 C. Then, 150 ml of methanol is added. It is allowed to stir for one more hour at room temperature and then concentrated by evaporation in a vacuum. The crude product that is obtained is dissolved in 80 ml of toluene. 5 g of Dowex### (activated, acidic) is added and refluxed for one hour. Then, 166 Dowex### is filtered off, and the filtrate is concentrated by evaporation in a vacuum. The crude product that is obtained (7.61 g) is used without purification in the next step.
Example laa (S)-Dihydro-3-[[(1,l-dimethylethyl)diphenylsilyl]oxy]-2(3H)furanone 24 ml of tert-butyldiphenylsilyl chloride is added to a solution of 7.61 g of the substance that is described under Example iz and 10 g of imidazole in 100 ml of N,Ndimethylformamide. It is allowed to stir for two more hours at 0 C, and then the reaction mixture is poured onto ice-cold saturated sodium bicarbonate solution. It is extracted with ethyl acetate, the organic phase is washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography of the crude product on silica gel with a mixture of hexane/ethyl acetate, 13.4 g of the title compound is obtained.
'H-NMR (CDC1 3 6 7.72 7.70 7.40-7.50 (6H), 4.30-4.42 4.01 2.10-2.30 1.11 (9H) ppm.
Example lab (2RS,3S)-3-[[(l,l-Dimethylethyl)diphenylsilyl]oxy]tetrahydro-2furanol ml of a 1 molar solution of diisobutylaluminum hydride in hexane is added at -78 0 C to a solution of 13.4 g of the substance, described under Example laa, in 150 ml of absolute 167 tetrahydrofuran. It is stirred for 45 more minutes at -78 0 C and then quenched with water. It is extracted with ethyl acetates the organic phase is washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. 13.46 g of the title compound, which is used without purification in the next step, is obtained.
Example lac (2RS,3S)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-l,4pentanediol A selution of 13.46 g of the substance, described under Example lab, in 150 ml of absolute tetrahydrofuran is added in drops to 20 ml of a 3 molar solution of methylmagnesium chloride in tetrahydrofuran at 0 C. It is allowed to stir for one more hour at 0 C and then poured onto saturated aqueous ammonium chloride solution. It is extracted with ethyl acetate, the organic phase is washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography of the crude product on silica gel with a mixture of hexane/ethyl acetate, 11.42 g of the title compound is obtained.
'H-NMR (CDC1 3 6 7.65-7.75 7.40-7.55 5.20 4.30 3.70 1.80 1.05 (9H) ppm.
168 Example lad (2RS,38)-5-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1dimethylethyl)diphenylsilyl]oxy]-2-pentanol 4.9 g of tert-butyldimethylsilyl chloride is added to a solution of 11.42 g of the substance that is described under Example lac, and 3.25 g of 1H-imidazole in 120 ml of N,Ndimethylformamide. It is allowed to stir for 2 more hours at 0 C, and then the reaction mixture is poured onto ice-cold, saturated sodium bicarbonate solution. It is extracted with ethyl acetate, the organic phase is washed with saturated sodium chloride_solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography of the crude product on silica gel with a mixture of hexane/ethyl acetate, 10.64 g of the title compound is obtained.
'H-NMR (CDC 3 6 7.60-7.70 7.30-7.45 3.70- 3.80 3.40 3.00 1.80 1.60 1.05-1.12 (12H), 0.82 0.02 (6H) ppm.
Example lae (3S)-5-[[Dimethyl(1,l-dimethylethyl)silyl]oxy]-3-[[(1,1dimethylethyl)diphenylsilyl]oxy]-2-pentanone 13 ml of dimethyl sulfoxide is added to 7.37 ml of oxalyl chloride in 80 ml of dichloromethane at -78 0 C. It is allowed to stir for 3 more minutes, and then 10.46 g of the substance, described under Example lad, in 100 ml of dichloromethane, is added. After another 15 minutes of stirring time, 52 ml of triethylamine is added in drops. Then, it is allowed to heat to 169 0 0 C. Then, the reaction mixture is poured onto saturated sodium bicarbonate solution. It is extracted with dichloromethane, fhe organic phase is washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography of the crude product on silica gel with a mixture of hexane/ethyl acetate, 9.3 g of the title compound is obtained.
1 H-NMR (CDC1 3 6 7.60-7.70 7.32-7.50 4.25 3.72 3.58 2.05 1.90 1.75 1.13 0.89 0.01 (6H) ppm.
Example laf (E,3S)-l-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2-methylthiazol-4yl)-pent-4-ene The solution of 6.82 g of diethyl(2-methylthiazol-4yl)methanephosphonate in 300 ml of anhydrous tetrahydrofuran is cooled under an atmosphere of dry argon to -5 0 C, mixed with 16.2 ml of a 1.6 molar solution of n-butyllithium in n-hexane, allowed to heat to 23 0 C and stirred for 2 hours. Then," it is cooled to -78 0 C, the solution of 6.44 g (13.68 mmol) of the compound, presented according to Example lae, in 150 ml of tetrahydrofuran is added in drops, allowed to heat to 23 0 C and stirred for 16 hours. It is poured into saturated ammonium chloride solution, extracted several times with ethyl acetate, the combined organic extracts- are washed with saturated sodium chloride solution and dried on sodium sulfate. The residue that is obtained after 170 filtration and-removal of the solvent is purified by chromatography on fine silica gel with a gradient system thatq consists of n-hexane and ethyl acetate. 6.46 g (11.4 mmol, 83%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDC1 3 6 -0.04 0.83 1.10 1.79 1.90 1.97 2.51 3.51 4.38 (1H),-6.22 6.74 7.23-7.47 7.63 7.70 (2H) ppm.
Example lag (E,38)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2methylthiazol-4-yl)-pent-4-en-l-ol The solution of 4.79 g (8.46 mmol) of the compound, presented according to Example laf, in 48 ml of tetrahydrofuran is mixed with 48 ml of a 65:35:10 mixture of glacial acetic acid/water/tetrahydrofuran and stirred for 2.5 days at 23 0 C. It is poured into saturated sodium carbonate solution, extracted several times with ethyl acetate, the combined organic extracts are washed with saturated sodium chloride solution and dried on sodium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 3.42 g (7.57 mmol, 90%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 1.10 1.53 1.81 1.96 2.71 3.59 4.41 6.38 6.78 (1H), 7.26-7.49 7.65 7.72 (2H) ppm.
Example lah (E,3S)-1-Iodo-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-4-metiyl- 5-(2-methylthiazol-4-yl)-pent-4-ene The solution of 8.41 g of triphenylphosphine in 120 ml of dichloromethane is mixed at 23 0 C under an atmosphere of dry argon with 2.19 g of imidazole, 8.14 g of iodine, the solution of 12.2 g (27.0 mmol) of the compound, presented according to Example lag, in 30 ml of dichloromethane is added in drops and stirred for 0.5 hour. The solution is chromatographed on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate.- 12.15 g (21.6 mmol, 80%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 1.08 1.96 2.10 2.70 2.87-3.08 4.24 6.32 6.79 7.28-7.48 7.60-7.72 (4H) ppm.
Example lai (5E,3S)-[3-[[(1,l-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(2methylthiazol-4-yl)-pent-4-en-l-yl]-triphenylphosphonium iodide The suspension of 12.55 g (22.3 mmol) of the compound that is presented according to Example lah, 85 g of triphenylphosphine and 11.6 ml of N-ethyldiisopropylamine is stirred under an atmosphere of dry argon for 16 hours at 80 0 C. After cooling, it is mixed with diethyl ether, filtered, and the residue is rewashed several times with diethyl ether and recrystallized from ethyl acetate. 15.7 g (19.1 mmol, 74%) of the title compound is isolated as a crystalline solid.
172 'H-NMR (CDC1 3 6 1.07 1.68-1.92 1.98 (3H), 2.70 2.93 3.30 4.53 6.62 7.03 7.23-7.47 7.48-7.72 (16H), 7.73-7.85 (3H) ppm.
Example lak (4S(4R,5S,6S,10RS))-4-(2,6-Dimethyl-10-[[(1,1dimethylethyl)diphenylsilyl]oxy]-4-ethyl-5-hydroxy-3-oxo-undec-2yl)-2,2-dimethyl-[1,3]dioxane and (4S(4S,5R,6S,10RS))-4-(2,6-dimethyl-10-[[(1,1dimethylethyl)diphenylsilyl]oxy]-4-ethyl-5-hydroxy-3-oxo-undec-2yl)-2,2-dimethyl-[1,3]dioxane (B) The solution of 1.96 ml of diisopropylamine in 44 ml of anhydrous tetrahydrofuran is cooled under an atmosphere of dry argon to -30 0 C, mixed with 6.28 ml of a 2.4 molar solution of nbutyllithium in n-hexane and stirred for 15 more minutes. At -78°C, the solution of 3.08 g (13.47 mmol) of the compound, presented according to Example lm, in 44 mi of tetrahydrofuran is added in drops, and it is allowed to react for 1 hour. Then, it S is mixed with the solution of 5.77 g (15.1 mmol) of the compound, presented according to Example ly, in 44 ml of 'tetrahydrofuran and poured after 45 minutes into saturated ammonium chloride solution. It is diluted with water, extracted several times with ethyl acetate, the combined organic extracts are washed with saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography on silica gel with a gradient system that consists of n-hexane and ethyl acetate, in addition to 13% starting 173 material, 4.03 g (5.92 mmcl, 44%) of title compound A and 1.58 g (2.32 mmol, 17%) of a diastereomer B are obtained.
1 H-NMR (CDCl 3 of A: 8 0.79 (3H) 0.85 0.90-1.1o' (16H), 1.19-1.79 (10H), 1.26 1.32 1.38 2.79 3.18 3.42 3.78-3.92 3.98 4.17 (MH), 7.30-7.46 7.62-7.72 (4H) ppm.
IH-NMR (CDCl 3 of B: 6 0.83 0.91 0.94-1.12 (16H), 1.19 1.15-1.80 (10H), 1.31 1.41 2.54 3.18 3.47 3.78-3.91 3.97 4.14 (1H), 7.31-7.47 7.62-7.73 (4H) ppm.
Example lal (4B(4R,SS,6S,IORS))-4-(2,6-Dimethyl-1O-[[(1,1dimethylethyl) diphenylsilyl]oxy] -4-ethyl-3-oxo-5- (tetrahydropyran-2-yloxy) -undec-2-yl) -2,2-dimethyl-[l,3]dioxane Analogously to Example la, the solution of 4.02 g (6.58 mmcl) of the compound that is presented according to Example lak is reacted, and after working-up and purification, 4.26 g (6.13 mmol, 93%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.67-1.97 (47H), 3.02-f3.12 3.38 3.48-4.04 4.18+4.26 4.42+4.50 7.30-7.46 7.61-7.72 (4H) ppm.
174 Example lam C4S(4R,SS.,6S,1ORS) )-4-(2,6-Dimethyl-4-ethyl-1O-hydroxy-3-oxo.#- (tetrahydropyran-2-yloxy) -undec-2-yl) 2-dimethyl-[l, 3]dioxane Analogously to Example ii, the solution of 4.26 g (6.13 mmol) of the compound that is presented according to Example lal is reacted, and after working-up and purification, 2.38 g (5T21 mmol, 85%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.78+0.84 0.92-1.10 1.13- 1.98 (29H), 2.43 3.06+3.18 (11H), 3.42 3.60-4.04 4.21+4.28 4.42+4.54 (1H) ppm.
Example lan (4S (4R, 5, 6S) lO-Dioxo-2, 6-dimethyl-4-ethyl-5- (tetrahydropyran-2-yloxy) -undec-2-yl) 2-dimethyl- 3]dioxane Analogously to Example im, the solution of 2.49 g (5.45 mmol) of the compound that is presented according to Example lam is reacted, and after working-up and purification, 2.24 g (4.93 mmol, 90%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.78+0.86 0.90-1.37 (15H), 1.37- 1.95 (15H), 2.13 2.42 3.07+3 .18 (i1H), 3.42 (MH), 3.60-4.04 4.22+4.27 4.41+4.53 (MH) ppm.
175 Example lao (4S(4R,5S,68,10E/Z,13S,14E))-4-(13-[[(1,1- Dimethylethyl)dimethylsilyl]oxy]-4-ethyl-15-(2-methyl-4thiazolyl)-3-oxo-5-(tetrahydropyran-2-yloxy)-2,6,10,14tetramethyl-pentadeca-10,14-dien-2-yl)-2,2-dimethyl-[1,3]dioxane The suspension of 4.92 g (5.97 mmol) of the compound (5E,3S)-[3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-4-methyl-5-(2methyl-thiazol-4-yl)-pent-4-en-l-yl]-triphenylphosphonium iodide, presented analogously to Example lai, in 14 ml of anhydrous S tetrahydrofuran is mixed at 0°C under an atmosphere of dry argon with 5.96 ml of a 1 M solution of sodium-bis-(trimethylsilyl)amide in tetrahydrofuran and allowed to heat to 23 0 C. The solution of 877 mg (1.93 mmol) of the compound, presented according to Example lan, in 14 ml of tetrahydrofuran is added in drops to the red solution, allowed to stir for 2 hours, poured onto saturated ammonium chloride solution and extracted several times with ethyl acetate. The combined organic extracts are dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography on silica gel with a Sgradient system that consists of n-hexane'and ethyl acetate, in addition to 29% starting material, 732 mg (0.98 mmol, 51%) of the title compound is obtained.
'H-NMR (CDC1 3 6 0.01 0.05 0.79 0.81- 1.02 0.90 1.04-1.38 (11H), 1.38-2.08 (19H), 1.60 2.01 2.16-2.34 2.72 3.06 3.17 (1H), 3.42 3.68 3.80-4.03 4.03-4.32 4.46+4.54 5.13 6.45 6.92 (1H) ppm.
176 Example lap (3S,6R,7S,8S,12E/Z,15B,16E)-6-Ethyl-17-(2-methyl-4-thiazolyl)eoxo-4, 4,8,12, 16-pentamethyl-heptadeca-12, 16-diene-1, 3,7,15tetraol and C3B,6R,7S,SB,12E/Z,15S,16E)-15-[[(1,1ldimethylethyl)dimethylsilyl]oxy]-6-ethyl-17-(2-methyl-4thiazolyl) -5-oxo-4,4,8,12, 16-pentamethyl-heptadeca-12,16-diene- 1,3,7-triol (B) Analogously to Example if, the solution of 732 mg (0.98 mmol) of the compound that is presented according to Example lao is reacted, and after working-up and purification, 98 mg (0.19 mmol, 20%) of title compound A and 380 mg (0.61 mmol, 62%) of title compound B are isolated in each case as a colorless oil.
'H-NMR (CDCl 3 of A: 6 0.79-0.95 0.98-1.19 (4H), 1.21-1.86 (15H), 1.92-2.17 2.33 2.74 2.87-3.23 3.31-3.50 3.65-3.92 4.05-4.20 5.10-5.25 6.53 6.96 (1H) ppm.
1 H-NMR (CDC1 3 of B: 6 0.01+0.05 0.80-0.96 1.01-1.17 1.20-1.68 1.68-1.90 (10H), 1.90-2.16 2.25 2.73+2.77 2.91 3.19 3.42 3.61 3.79-3.93 3.99-4.19 5.10+5.20 6.42 (1H), 6.94 (1H) ppm.
177 Example laq (38,6R,7S,8S,12E/Z,15S,16E)-6-Ethyl-17-(2-methyl-4-thiazolyl)- 4,4,8,12,16-pentamethyl-1,3,7,15-tetrakis-[[dimethyl(1,1dimethylethyl)silyl]oxy]-heptadeca-12,16-dien-5-one The solution of 520 mg (about 0.86 mmol) of a mixture of compounds A and B, presented according to Example lap, in of anhydrous dichloromethane is cooled under an atmosphere of dry argon to -78 0 C, mixed with 2.6 ml of 2,6-lutidine and 2.57 ml of trifluoromethanesulfonic acid-tert-butyldimethylsilyl ester and stirred for 16 hours. It is poured into saturated sodium bicarbonate solution and extracted several times with dichloromethane. The combined organic extracts are dried on sodium sulfate and concentrated by evaporation in a vacuum.
After column chromatography on silica gel with a gradient system that consists of n-hexane and ethyl acetate, 1.14 g (max. 0.86 mmol, max. 100%) of the title compound, which also contains silanol, is isolated.
'H-NMR (CDC13) of an analytically purified sample: 'H-NMR (CDCl 3 6 -0.04-0.11 (24H), 0.78-0.96 (42H), 1.13 1.20 1.02-1.65 1.58+1.68 1.72 1.88-2.07 (2H), 2.00 2.23 2.71 3.01 3.52-3.73 3.82 3.91 4.09 5.13 6.45 6.91 (1H) ppm.
178 Example lar dimethylethyl) silyl]oxy]-l-hydroxy-17- (2-methyl-4-thiazolyl) 4,4,8,12, 16-pentamethyl-heptadeca-12, 16-dien-5-one The solution of 1.14 g (max. 0.86 mmol) of the compound, presented according to Example laq, in a mixture of 8 ml of dichioromethane and 8 ml of methanol is mixed at 0 0 C under an atmosphere of dry argon with 204 mg of camphor-lO-sulfonic acid, allowed to heat to 23 0 C and stirred 'for 1.5 more hours. it is mixed with triethylamine, poured into a saturated sodium bicarbonate solution and extracted several times with dichioromethane. The combined organic extracts are dried on sodium sulfate and concentrated by evaporation in a vacuum.
After column chromatography on fine silica gel with a gradient system that consists of n-hexane and ethyl acetate, 618 mg (0.78 mmol, 90%) of the title compound is isolated.
'H-NMR (CDC 3 6 -0.02-0.13 (18H), 0.77-0.98 (33H), 1.01-1.80 (10H), 1.08 1.19 1.55+1.66 1.74-2.05 2.00 2.25 2.70 3.00 3.68 3.85 4.08 5.14 6.44 6.90 (l1t) ppm.
Example las (3S,6R,7S,8S,12E/Z,15S,16E)-6-Ethyl-3,7,15-tris-[[dimethyl(1,1dimethylethyl)silyl]oxy]-4,4,8,12,16-pentamethyl-17-(2-methyl-4thiazolyl) -5-oxo-heptadeca-12, 16-dienal Ana-logously to Example 1k, 510 mg (0.64 mmol) of the compound that is presented according to Example lar is reacted, 179 and after working-up, 545 mg (max. 0.64 mmol) of the title compound is isolated as a crude product, which is further reacted without purification.
Example lat (3S,6R,7S,85,12E/Z,15S,16E)-6-Ethyl-3,7,15-tris-[[dimethyl(1,1dimethylethyl) silyl]oxy]-4,4,8,12, 16-pentamethyl-17-(2-methyl-4thiazolyl) -5-oxo -heptadeca-12, 16-dienoic acid The solution of 545 mg (max. 0.64 mmol) of the compound, presented according to Example las, in 15 ml of acetone is cooled to 30 0 C, mixed with 460 gl of a standardized, 8N chromosulfuric acid solution and stirred for 1 hour. It is poured into a mixture of water and diethyl ether, the organic phase is washed with saturated sodium chloride solution and dried on sodium sulfate. After filtration and removal of the solvent, 410 mg (0.47 mmol, 74% relative to the educt in Example las) of the title compounds, which can be chromatographically separated, is isolated as a pale yellow oil.
1 H-NMR (CDCl 3 of the Z-isomer: 6 -0.02-0.15 (18H), 0.80- 0.95 (33H), 1.03-22 1H,11 (3H) 1. 18 1. 69 (3H) 1.96 2.35 2.54 2.71 3.03 3.81 (1H), 4.16 4.41 5.20 (1H1), 6.53 6.94 (1H) ppm.
1 H-NMR (CDCl 3 of the E-isomer: 6 -0.03-0.16 (18H), 0.79- 0.95 (33H), 0.99-2.06 (10H), 1.17 1.19 1.57 (MH), 1.97 2.26 2.32 2.61 2.70 3.09 (1H), 3.85 4.09 4.36 5.12 6.48 6.94 (1H) ppm.
180 Example Jau (3S,6R, 7,8S,12E/Z,158,16E)-3,7-Bis-[[dimethyl(1,1dimethylethyl)silyl]oxy]-15-hydroxy-6-ethyl-17-(2-methyl-4thiazolyl)-5-oxo-4,4,8,12,16-pentamethyl-heptadeca-12,16-dienoic acid Variant I: The solution of 310 mg (0.36 mmol) of the acid, presented according to Example lat, in 30 ml of anhydrous tetrahydrofuran, is mixed under an atmosphere of dry argon with 500 pl of a hydrogen-fluoride-pyridine complex and 7.1 ml of a 1.1 M solution of tetrabutylammonium fluoride in tetrahydrofuran, and it is stirred for 3 days at 50°C. It is poured into a saturated ammonium chloride solution, extracted several times with ethyl acetate, the combined organic extracts are washed with saturated sodium chloride solution and dried on sodium sulfate. After filtration and removal of the solvent, the residue is purified by chromatography on about 200 ml of fine silica gel with a gradient system that consists of dichloromethane and methanol. 125 mg (max. 0.24 mmol, max. which also contains tetrabutylammonium salts, is isolated.
Variant II: Analogously to Example It, 32 mg (37 gmol) of the acid that is presented according to Example lat is reacted, and after working-up and purification, 16 mg (31 gmol, 83%) of the title compound is isolated as a colorless oil.
181 1 H-NMR (ODC1 3 of 0.99 (2411), 1.02-1.67 1.97 2.01 2.71 (3H) 2.81 (1H) 5.19 6.69 (1H), 'H-NMR (CDC1 3 of 0.95 (24H), 1.00-1.63 1.89-2.06 (2H), 2.79 3.02 6.56 6.92 the Z-isomer: S 0.01-0.14 (12H), 0.80- 1.18 1.19 1.70 (1H),'t1.73 2.14 2.27-2.40 2.53 (1H), 3.01 3.82 4.17 4.48 (1H), 6.95 (1H) ppm.
the E-isomer: 6 -0.02-0.11 (12H), (r.73- 1.12 1.17 1.60 1.71 2.00 2.22-2.39 2.53 2.69 3.79 4.15 4.34 5.15 (1H) ppm.
Example law (4S,7R,BS,9S,13E/Z,16S(E))-4,8-Bis-[[dimethyl(1,1dimethylethyl) silyl]oxy]-7-ethyl-16-(l-methyl-2- (2-methyl-4thiazolyl) ethenyl) -l-oxa-5, 5,9, 13-tetramethyl-cyclohexadec-13ene-2, 6-dione The solution of 55 mg (73 g~mol) of the compound, presented according to Example lau, in 0.8 ml of anhydrous tetrahydrofuran is mixed with 46 Al of triethylamine and 44 gl of 2,4,6trichlorobenzoyl chloride under an atmosphere 6f dry argon, and it is stirred for 20 minutes. It is diluted with 20 ml of tetrahydrofuran, mixed with 68 mg of 4-dimethylaminopyridine and stirred for 30 minutes at 230C. It is concentrated by evaporation, taken up in a little dichloromethane and purified by chromatography on 100 ml of fine silica gel with a gradient system that consists of n-hexane and ethyl acetate. 49 mg jimol, 89%) of the title compound is isolated as a colorless oil.
182 1 H-NMR (CDCl 3 of the Z-isomer: 6 12 (3H) 0. 08 (3H), 0.10 0.13 0.73 0.79-1.78 0.85 (9H1), Q#.93 0.99 1.10 1.18 1.67 (3H1), 1.88 (1H1), 2.05 2.09 2.45 (1H1), 2.54-2.74 2.69 2.77 (1H1), 3.08 4.00 4.56 5.16 6.56 6.95 (1H1) ppm.
1 H-NMR (CDC1 3 of the E-isomer: 6 0.02-0.16 (12H1), 0.78- 1.00 (24H), 1.09 1.14-1.93 (8H1), 1.20 1.59 (3H), 2. 09-2. 21 (1M) 2. 13 (3H) 2. 39 (1H1), 2. 4 3-2. 64 (3H) 2. 70 (3H) 2.98 3.95 4.40 5.21 (1H1), 5.29 (1H1), 6.51 (MH), 6.92 (111)- ppm.
Example I.
methyl-4-thiazolyl) ethenyl) -l-oxa-5, 5,9, 13-tetramethylcyclohexadec-13-ene-2, 6-dione and (4S, 7R, 8S, 9S, 13E, 16S CE) 8-dihydroxy-7-ethyl-16- (l-methyl-2- (2methyl-4-thiazolyl) ethenyl) -l-oxa-5,5,9, 13-tetramethylcyclohexadec-13-ene-2, 6-dione (B) The solution of 48 mg (64 gmol) of the coifpound, presented according to Example law, in 3 ml of anhydrous dichioromethane, is mixed at -20 0 C under an atmosphere of dry argon with 220 Al of an approximately 20% trifluoroacetic acid, and it is stirred for 1 hour. It is poured into a saturated sodium bicarbonate solution, extracted with dichloromethane, and the organic phase is dried-on sodium sulfate. After filtration and removal of the solvent, the residue is purified by repeated chromatography on 183 analytical thin-layer plates. As a mobile solvent, a mixture of n-hexane and ethyl acetate is used; as an eluant, ethyl acetate is used. 13 mg (25 Mmol, 39%) of title compound A and 12 mg (23 .mol, 36%) of title compound B are isolated in each case as a colorless oil.
'H-NMR (CDCl 3 of A: 6 0.89 1.04 1.09 (3HJ, 1.19-1.94 (811), 1.33 1.70 2.07 2.15-2.33 (211), 2.38 2.44-2.74 2.70 3.23 3.62 (1H1), 3.72 4.24 5.12 (1H1), 5.22 (111), 6.57 6.95 (1H) ppm.
'H-NMR (CDCl 3 of B: 6 0.84 1.01 1.29 (3H), 1.38-2.0-0 1.61 2.07 2.20 2.22-2.50 (31), 2.58 2.70 3.37 (1H1), 3.73 (111), 4.02 (1H1), 4.12 (1H), 4.41 5.05 5.38 6.57 (111), 6.99 (1H) ppm.
Example 2 (lS,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxv-3-(l-methyl-2-(2methvl-4-thiazolyl) ethenyl) -10-ethyl-a88,12. 16-tetramethyl-4, 17dioxabicyclorl4. 1.01hei~tadecane-5,9-dione and (lR,3S(E),7S.10R,11S,12S,16S)-7,11-dihvdroxy-3-(l-methyl-2-(2dioxabicyclorl4.1.Olheptadecane-5,9-dione (B) The solution of 10 mg (19 Mmol) of compound A, presented according to Example 1, in 1 ml of dichloromethane is mixed under an atmosphere of dry argon at -10 0 C with 10 mg of an approximately 80% meta-chloroperbenzoic acid, and it is stirred f or 4 hours at 0 0 C. It is poured into a saturated sodium bicarbonate solution, extracted with dichloromethane, and the 184 organic phase is dried on sodium sulfate. After filtration and removal of the solvent, the residue is purified by repeated chromatography on analytic thin-layer plates. As a mobile solvent, mixtures of n-hexane and ethyl acetate as well as dichloromethane and methanol are used; as an eluant, ethyl acetate is used. 4.5 mg (8.4 gmol, 44%) of title compound A-and 1 mg (1.9 gimol, 10%) of title compound B are used as colorless foams.
1 H-NMR (CDCl 3 of A: 6 0.86 1. 00 (3H) 1. 05 (3H) 1.28 1.33-2.12 (10H), 1.38 2.11 2.41 2.57 2.7-0 2.77-2.85 3.38 3.49 3.67 (1H), 4.27 4.56 5.46 6.57 6.97 (1H) ppm.
'H-NMR (CDCl 3 of B: 6 0.85 0.95 1.03 (MH), 1.22-1.73 (10H), 1.30 1.38 2.08 2.61 (3H), 2.41-2.59 2.71 2.91 2.99 3.24 3.43 3.96 4.30 5.60 6.60 6.98 (1H) ppm.
Example 3 (lR.3S(E).7S,10R,11S,12S16R)-7,11-Dihdroxy-3(-methyl-2-(2dioxabicyclorl4. 1. Olheptadecane-5,9-dione and methvl-4-thiazolyl) ethenvi) -10-ethyl-B. 8.*12,.16-tetramethVl-4,*17dioxabicyclorl4.1.olhetadecane5,9-d.ione
(B)
Analogously to Example 2, 10 mg (19 jimol) of compound B that is presen~ted according to Example 1 is reacted, and after 185 working-up and purification, 6 mg (11 jAmol, 59%) of a mixture of the two-title compounds is isolated as a colorless foam.
'H-NMR (CDC1 3 of A or B: 6 0.86 0.96 1.03 1.06-2.08 (11H), 1.28 1.38 2.09 2.46-2.59 2.70 2.87 3.02 3.33 3.79 4.22 4.34 5.49 6.65 7.00 (lH) ppm.- 'H-NMR (CDC1 3 of B or A: 6 0.86 0.96 1.09 1.21-1.94 1.25 1.37 2.03 2.09 (3H), 2.50-2.61 2.71 2.87 2.94 3.28 3.67 3.72 4.27 5.46 6.59 6.97 (1H) ppm.
Example 4 (4S,7S,BR,95,-13,165E))-48-Dihydroxy-7-ethyl-16-(l-methyl-2-(2methyl-4-thiazolyl) ethenyl) -l-oxa-5, 5,9, 13-tetramethylcyclohexadec-13-ene-2, 6-dione and (4S,7S,8R,9S,13E,16S(E))-4,8-dihydroxy-7-ethyl-16-(l-methyl-2-(2methyl-4-thiazolyl) ethenyl) -l-oxa-5, 5,9, 13-tetramethylcyclohexadec-13-ene-2, 6-dione (B) Diastereomeric compound B that is produced according to Example lak is reacted analogously to Examples'~1al to law and 1 to title compounds A and B.
186 Example methyl-4-thiazolyl) ethenyl) -1O-ethyl-8,8,12, 16-tetramethyl-4, 17dioxabicyclo[14. 1.0]heptadecane-5,9-dione and ,7S,IOB,11R,125,16S)-7,11-dihydroxy-3-(l-methyl-2-(2methyl-4-thiazolyl) ethenyl) -l0-ethyl-8,8, 12,16-tetramethyl-4 717dioxabicyclo[14.1.0]heptadecane-5,9-dione Analogously to Example 2, Compound A that is produced according to Example 4 is reacted to separable title compounds A and B.
Example 6 (1S,3S(E),7S,1OS,11R,12S,16R)-7,11-Dihydroxy-3-(l-methyl-2-(2methyl-4-thiazolyl) ethenyl) -l0-ethyl-8,8,12,16-tetramethyl-4, 17dioxabicyclo(14. 1. O]heptadecane-5, 9-dione and (1R,3S(E),7S,1OS,llR,12S,16S)-7,11-dihydroxy-3-(l-methyl-2-(2methyl-4-thiazolyl) ethenyl) -10-ethyl-B, 8, 12, 16-tetramethyl-4, 17dioxabicyclo(14.l. 0]heptadecane-5, 9-dione Compound B that is produced according to Example 4 is reacted analogously to Example 2 in a mixture d~f title compounds.
187 Example 2- (4S,7R,SS,9S,13(Z) ,16S(E))-4,8-Dihydroxy-5,5,7,9,13-pentamethv!1- 16-C (3-pyridyl) ethenyl)-l-oxa-cyclohexadec-13-ene-2, 6-dione (A) and (4S,7R,SS,9S,13E,16S(E) )-4,8-dihydroxy-5,5,7,9,13pentamethyl-16-(C(3-pyridyl) ethenyl) -1-oxa-cyclohexadec-13-ene- 2,6-dione (B) Example 7a (Z,3S)-1-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-3-[[(1,1dimethylethyl)diphenylsilyl]oxy]-4-methyl-5-(3-pyridyl) -pent-4ene and (E,3S)-1-((dimethyl(1,1-dimethylethyl)silyl]oxy]-3- [((1,1-dimethylethyl)diphenylsilyl~oxy]-4-methyl-5-C3-pyridyl)pent-4-ene (B) Analogously to Example laf, 4.8 g (10.2 mmol) of the compound that is presented according to Example lae is reacted with use of diethyl(3-pyridyl)methanephosphonate, and after working-up and purification, 448 mg (0.82 mmol, of title compound A and 3.5 g (6.41 mmol, 63%) of title compound B are isolated in each case as a colorless oil.
1 H-NMR (CDCl 3 of A: 6 06 (6H) 0. 81 (9H) 1. 01 (9H) 1.75 1.97 3.48 4.83 6.11 6.97 (1H), 7.11-7.30 7.30-7.39 7.39-7.50 8.08 8.33 (1H) ppm.
'H-NMR (CDCl 3 of B: 6 -0.01 0.85 1.11 (9H), 1.78 1.83 1.97 3.58 4.42 6.03 (MH), 7.21 7.28-7.50 7.62-7.75 8.29 8.41 (1H) ppm.
188 Example -7b (E,3B) (,l-Dimethylethyl)diphenylsilyl]oxy]-4-methyl-S-(bpyridyl) -pent-4-en-l-ol Analogously to Example lag, 3.5 g (6.41 mmol) of the compound that is produced under Example 7aB is reacted with a 65:35:10 mixture of glacial acetic acid/water/tetrahydrofuran.
After purification, 2.1 g (4.86 mmol, 76%) is obtained.
1 H-NMR (CDCl 3 6 1.12 1.75 1.88 3.65 (2PH), 4.45 6.25 7.21 7.28-7.50 7.60-7.75 8.30 8.44 (1M) ppm.
Example 7c (E,3S)-l-Iodo-3-[[(1(,l-Dimethylethyl)diphenylsilyl]oxy]-4-methyl- (3-pyridyl) -pent-4-ene- Analogously to Example lah, 1.98 g (3.66 mmcl, 75%) of the title compound is obtained from 2.1 g (4.86 mmcl) of the compound that is described under Example 7b.
1 H-NMR (CDCl 3 6 =1.11 1.78 2.17 (211), 3.03 4.29 6.19 (1H1), 7.22 7.30-7.50 7.63-7.75 8.32 8.44 (1H) ppm.
Example 7d (l,l-Dimethylethyl)diphenylsilyljoxy]-4-methyl-5-(3pyridyl) -pent-4-en-l-yl] -triphgenylphosphonium iodide Analogously to Example lai, 2.35 g (2.93 mmcl, 80%) of the title c~mnpound is obtained from 1.98 g (3.66 mmcl) of the compound that is described under Example 7c.
189 IH-Nt4R (CDC1 3 1.08 1.80 3.27 3.56 4.6.6 6.52 7.25-7.90 (27H), 8.35 8.46 (lH) ppm.
Example 7e (4S(4R,5S,6S,IOE/Z,13S,14E))-4-(13-[[(1,1- Dimethylethyl) diphenylsilyl] oxy] 6,10, 14-pentamethyl-1s-(C3pyridyl) -3-oxo-5- (tetrahydropyran-2-yloxy) -pentadeca-1o, 14-dien- 2-yl)-2,2-dimethyl-[1,3]dioxane Analogously to Example lao, 800 mg (1.76 mmol) of the compound (4S(4R,5S,6S) )-4-(3,10-dioxo-2,4,6-trimethyl-5- (tetrahydropyran-2-yloxy) -undec-2-yl) 2-dimethyl- [1,31 dioxane that is produ ced analogously to Examples 11 (reaction with ethylmagnesium bromide) to lan is reacted with 4.24 g (5.28 mmol) of the compound that is described under Example 7d, and 5.44 ml of a 1 M solution of sodium-bis-(trimethylsilyl)-amide in tetrahydrofuran. 684 mg (0.79 mmol, 45%) of the title compound is obtained.
1 H-NMR (CDC1 3 6 0.86-0.98 9.98-1.94 (45H), 2.20- 2.42 3.22 3.42 3.58-4.02 4.08-4.22 (211), 4.46 4.52 5.00 6.03 (1H1), 7.19 7.24-7..47 7.60-7.73 (411), 8.28+8.40 (2H) ppm.
190 Example 7f (3S,6R,7B,8S,l2E/Z,155,16E)-15-[[(1,1- Dimethylethyl) diphenylsilyl] oxy] -414#,6,8,12, 16-hexamethyl-17- (3pyridyl) -5-oxo-heptadeca-12, 16-diene-1, 3,7-trial Analogously to Example lap, 542 mg (0.73 mmol, 92%) of the title compound is obtained from 684 mg (0.79 mmol) of thecompound that is- described under Example 7e.
Example 7g (3S,6R,7S,BS,l2E/Z,15S,16E)-15-[[(1,1-Dimethylethyl)diph enykailyl]oxy]-4,4,6,8,12,16-hexamethyl-17-(3-pyridyl)-1,3,7tris-[([dimethyl 1-dimethylethyl) silyl] oxy] -heptadeca-12, 16- Analogously to Example laq, 995 mg 4max. 0.73 mmol, max.
100%) of thie title compound, which is contaminated with silanol, is obtained from 542 mg (0.73 mmol) of the compound that is described under Example 7f.
Example 7h (1,1-dimethylethyl)diphenyls ilyl] oxy] -l-hydroxy-4,4,6,8, 12, 16-hexamethyl-17- (3pyridyl) -heptadeca-12, 16-dien-5-one Analogously to Example lar, 604 mg (0.62 mmol, 85%) of the title compound is obtained from 995 mg (max. 0.73 mmol) of the compound- that is described under Example 7g.
191 Example '7i (3S,6R,7S,SS,12E/Z,ISS 16E)-3,7-Bis-[[dimethyl(1,1dimethylethyl) silyl]oxy]-15-( dimethylethyl)diphenylsilyl]oxy]-4,4,68,12,16-hexamethyl 17( 3 pyridyl) -5-oxo-heptadeca-12, 16-dienoic acid Analogously to Examples las and lat, 550 mg (0.56 mmol, of the title compound is obtained from 604 mg (0.62 mmol) of the compound that is described under Example 7h.
Example 7k 3 B,6R,7S,8S,12E/Z,IS,16E)-4,4,6,,12,16-Hexamethyl 17(3pyridyl) -5-oxo-3,7, 15-trihydroxy-heptadeca-12, 16-dienoic acid Analogously to Example lau, 269 mg (0.49 mmol, 88%) of the title compound is obtained from 550 mg (0.56 mmol) of the compound that is described under Example 7i.
Example 71 (3S,6R,SS,12E/Z,15S,16E)-3,7-Bis[[dimethyl(1,1- O dimethylethyl)silyl~oxy]-4,4,6,8,12,16-hexamethyl-15-hydroxy-17- (3-pyridyl) -5-oxy-heptadeca-12.,16-dienoic acid Analogously to Example lay, 127 mg (0.17 mmol, 35%) of the title compound is obtained from 269 mg (0.49 mmol) of the compound that is described under Example 7k.
192 Alternative Production of 71 over 7n to 7r: Example 7n (4S(4R,SS,6S,1OE/Z,13S,14E))-4-(13-Hydroxy-2,4,6,1O,14pentamethyl-1s- (3-pyridinyl) -3-oxo-5- (tetrahydropyran-2-yloxy) pentadeca-1o, L4-dien-2-yl) 2-dimethyl- dioxane Analogously to Example ii, 486 mg (0.81 mmol, 95%) of thie title compound is obtained from 710 mg (0.85 mmol) of the compound that is described under 7e.
'H-NMR (CDCl 3 0.90-1.00 1.05-1.90 (36H1), 2.38 (2H1), 3. 27 (1H) 3.46 (1H) 3. 63 3. 80-4. 00 (411), 4. 10-4. 20 (2H1) 4.46 47T55 5.15 6.49 7.24 7.57 (1H1), 8.47 (1H1), 8.54 (lH) ppm.
Example 7o (3S,6R,7S,SS,12E/Z,15S,16E)-4,4,6,8,12,16-Hexamethyl-17-(3pyridyl) 3,7, 15-tetra-hydroxy-heptadeca-12,16-dien-5-one Analogously to Example If, 335 mg (0.71 mmcl, 87%) of the title compound is obtained from 486 mg (0.81 mmol) of the compound that is described under 7n.
1 H-NMR (CDCl 3 0.82 0.86 (311), 1.08 1.10 (31), 1.13 (311), 1.22 (311), 1.68 1.72 (311), 1.90 2.40 (211), 3.30 3.35-3.48 3.85-3.96 4.17 (111), 4.20 (111), 5.05 (1H1), 6.50 (111), 7.25 7.61 8.45 8.53 (1H1)
PPM.-
193 Example ?p (3B,6R 7S,SS,12E/Z,15S,16E)-3,7,15-Tris-[[dimethyl(1,1.dimethylethyl) silyl] oxy] -1-hydroxy-4, 4,6,8,12, 16-hexamethyl-17- (3-pyridyl) -heptadeca-12, 16-dien-5-one Analogously to Example laq, 730 mg (max. 0.71 mmol, max.
100%) of the title compound, which is contaminated with silajil, is obtained from. 335 mg (0.71 mmol) of the compound that is described under 7o.
IH-NMR (CDCl 3 6 0.05-1.16 (24H), 0.85-0.97 (39H), 1.02 1.04 1.07 1.22 1.60 1.70 1.83 2.29 3.1-3 3.05-3.80 3.76 3.89 4.11 (lH), 5.13 6.46 7.23 7.54 8.42 8.50 (1H) ppm.
Example 7q (3S,6R,7S,SS,12E/Z,15S,16E)-3,7,15-Tris-[[dimethyl(1,1dimethylethyl) silyl] oxy] -l-hydroxy-4, 4,6,8,12, 16-hexamethyl-17- (3-pyridyl) -heptadeca-12, 16-dien-5-one Analogously to Example lar, 441 mg (0.54 mmcl, 76%) of the title compound is obtained from 730 mg (max. 0.71 mmcl) of the compound that is described under 7p.
1 H-NMR (CDC1 3 6 0.05-0.18 (18H), 0.90-1.10 (30H), 1.11 1.25 1..62 1.70 1.82 2.38 3.13 (1H1), 3.63 3.81 4.05-4.15 5.17 6.38 (1H), 7.22 7.53 8.45 8.52 (1H) ppm.
194 Example 7r (3B,6R,7S,8S,12E/Z,15S,16E)-3,7,15-Tris-[[dimethyl(1,1dimethylethyl)silyljoxy]-4,4,6,8,12,16-hexamethyl-17-(3-pyridyl).
5-oxo-heptadeca-12, 16-dienoic acid Analogously to Examples las and lat, 316 mg (0.38 mmol, of the title compound is obtained from 441 mg (0.38 mmol) of-the compound that is described under 7q.
'H-NMR '(CDCl 3 6 0.00-0.18 (18H), 0.90-1.00 (30H), 1.12 1.13 1.14 (311), 1.19 .1.62 1.70 1.79 1.80 (3H1), 3.18 3.75 3.80 4.19 4.44 4.48 (1H), 5.12 5,.14 6.32 6-35 (111), 7.30 7.60 7.62 (1H1), 8.38 8.40 (1H1), 8.58 ppm.
Example 71 (3S,6R,8S,12E/Z,15S,16E)-3,7-Bis[[dimethyl(1,1dimethylethyl)silyl]oxy]-4,4,6,8,12,16-hexamethyl-15-hydroxy-17- (3-pyridyl) -5-oxy-heptadeca-12, 16-dienoic acid Analogously to Example li, 295 mg (max. 0.38 mmol, max.
100%) of the title compound is obtained from 316 mg (0.38 mmol) of the compound that is described under 7r.
H-NMR (CDCl 3 6 0.00-0.18 (1211), 0.88-1.00 (21H), 1.10 1.15 1.18 1.63 1.70 (311), 1.84 1.86 (311), 2.30-2.50 3.10 (1H1), 3.75 3.78 (1H1), 4.20 4.25 (1H1), 4.45 5.14 (111), 6.49 7.33 7.68 8.41 (MH), 8.60 (lH) ppm.
195 Example_7m 4 S,7R,Bs,13E/2,16is(E))-4,8-eis.[[dimethyl(1,1dimethylethyl)silyl]oxy]-4,4,6,8,12,16hexamethyl. 1 6 prydiyl)ethenyl) -oxa-yclohexadec-13-ene-2,6-dione Analogously to Example law, 104 mg (0.14 mmol, 85%) of the title compound is obtained from 127 mg (0.17 mmol) of the compound that is described under Example 71.
1 H-NMR (CDCl 3 6 -0.05-0.13 (12H), 0.82-1.00 (21H), 1.12 1.15 1.23 1.60 1.69 1.90 1.92 (3H), 2.40-2.60 3.02 3.88 3.90 4.10 4.48 5,07 5.14 5.18 5.25 6.47 6.50 7.25 7.55 7.60 8.45 8.50 8.53 (1H) ppm.
Example 7 4
S,
7 RBS,9S,13Z,16S(E))-4,8-Dihydroxy,5,7,9,13.pentamethyl..6.
((3-pyridyl)ethenyl)-1-oxa-cyclohexadec-13-ene-2,6-dione and 4
S,
7 R,BS,9S,13E,16S(E))-4,8-dihydroxy- 55,7,9,13.pentamethyl.16.
((3-pyridyl)ethenyl) -1-oxa-cyclohexadec-13-ene-2,6-dione
(B)
Analogously to Example 1, 24 mg (48 gmol, 34%) of title compound A and 25 mg (50 gmol, 36%) of title c 6 mpound B are obtained from 104 mg (0.14 mmol) of the compound that is described under Example 7m.
H-NMR (CDCl 3 Compound A: 6 1.03 1.10 1.21 1.32 1.62 1.92 2.18-2.80 3.14 (1H), 3.73 4.16 5.17 5.29.(1H), 6.51 7.25 (1H), 7.58 (HLU 8.47 8.53 (1H) ppm.
196 Compound A: 6 1.00 1.05 1.16 1.30 (MH), 1.63 1.91 2.18-2.65 3.22 3.65 4t.20 5.11 5.43 6.49 7.27 7.59 8.49 8.52 (1H) ppm.
Example 8 (lS,3S(E),7SIOR.11S,12S.16R)-7,11-Dihvdrox-8810,12.16- Rentamethyl-3-( (3-Dvridvl)ethenyl) -4.17dioxabicyclorl4. 1.olheDtadecane-5.9-dione and (lS.3S(E).7S,10R.11S,12S.16S)-7,11-dihydroxy-8,8,10,12.16- Rentametllvl-3-( (3-pvridyl)ethenyl) -4.17dioxabicyclor 14.1. Olheptadecane-5,9-dione (BY and (lS,3S(E).7B.*10R,11S,12B.16R)-7,11-dihydroxv-8,8.l0,12,16- Rentamethyl-3-(( 3-N-oxvpvridvl) ethenvi) 17dioxabicyclorl4.1.olhe~tadecane-5,9-dione and (lS,3S(E),7SIOR,11S,12S,16S)-7,11-dihvdroxv-8,,10,12,16- Dentamethyl-3- ((3-N-oxypvridyl) ethenvi) 17dioxabicyclor 14 .1.o01heDtadecane-5. 9-dione (D) Analogously to Example 2, 7.4 mg (14 jgmol, 46%) of title compound A, 1.6 mg (3 gmcl, 10%) of title compound B, 2.4 mg of title compound C and 0.9 mg (4.4 mmol, 15%) of title compound D (1.7 mg, are obtained from 15 mg (30 Amol) of the compound that is described under Example 7.
1 H-NMR (CDCl 3 Compound C: 6 1.03 1.10 1.17 1.28 1.22 (3H), 1.91 (31T), 2.40-2.63 2.79 3.33 3.68 3.77 197 4.12 5.46 6.46 7.18 7.25 8.11 8.-18 (MH) ppm.
Compound D: 6 0.97 1.10 1.13 1.28 1.40 (MH), 1.95 2.50 3.12 1H), 3.34 3.80 4.08 (MH), 4.16 5.69 6.47 7.17 7.26 8.11 11H), 8.18 (1H) ppm.
Example 9 (4S,7R,8S,9S,l3(Z),16S(E))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl- 16-C (4-pyridyl) ethenyl) -1-oxa-cyclohexadec-13-ene-2, 6-dione (A) and (4S,7R,SS,9S,13E,16S(E) )-4,8-dihydroxy-5,5,7,9,13pentamethyl-16-(C(4-pyridyl) ethenyl) -l-oxa-cyclohexadec-13-ene- 2,6-dione (B) Example 9a (4S(4R,SS,6S,1OE/Z,13S,14E))-4-(13-[[(1,1- Dimethylethyl)diphenylsilyl~oxy]-2,4,6,10,.14-pentamethyl-15-(4pyridyl) -3-oxo-5- (tetrahydropyran-2-yloxy) -pentadeca-1O, 14-dien- 2-yl)-2,2-dimethyl-[1,3Jdioxane Analogously to Example 7e, 2.08 g (4.70 mmol) of the compound (4S(4R,5S,6S) )-4-(3,l0-dioxo-2,4,6-trimethyl-5- (tetrahydropyran-2-yloxy) -undec-2-yl) 2-dimethyl- dioxane that is produced analogously to Examples 11i (reaction with ethylmagnesium bromide) to lan is reacted with 11.4 g (14.2 mmol) of LI(1,1-dimethylethyl) diphenylsilyl~oxy]-4-methyl- 5-(4-pyridyl) -pent-4-en-1-ylII-triphenylphosphonium iodide, which 198 has been produced analogously to Examples 7a to 7d using diethy 1(4-pyridyl)methanephosphonate. After working-up andIt purification, 2.10 g (2.5 mmol, 53%) of the title compound is' isolated.
1 H-NMR (CDCl 3 6 0.81-1.95 (49H), 2.20-2.42 3.23 3.42 (lH) 3.58-4.02 (3H) 4.06-4.21 (2H) 4.46+4.52 (IH), 4.99 6.03 6.94 7.22-7.48 7.59-7.73 (4H), 8.49 (2H) ppm.
SExample 9b (4S(4R,SS,6B,IOE/Z,13S,14E))-4-(13-Hydroxy-2,4,6,1O,14pentamethyl-is- (4-pyridyl) -3-oxo-5- (tetrahydropyran-2-yloxy) pentadeca-1O,14-dien-2-yl)-2,2-dimethyl-[1,3]dioxane Analogously to Example ii, 550 mg (9.91 mmol, 98%) of the title compound is obtained from 780 mg (0.93 mmol) of the compound that is described under Example 9a.
'H-NMR (CDC1 3 6 0.80-1.85 (33H), 1.91 1.94-2.11 2.36 3.27 3.43 3.61-4.01 4.08-4.21 4.46+4.54 5.16 6.48 7.18 8.55 (2H).
ppm.
O
Example 9c (3S,6R,7S,BS,12E/Z,15S,16E)-4,4,6,8,12,16-Hexamethyl-17-(4pyridyl) 15-tetra-hydroxy-heptadeca-12, 16-dien-5-one Analogously to Example 1f, 340 mg (0.71 mmmol, 71%) of the title cQn~pound is obtained from 600-mg (1.00 mmol) of the 199 compound that is described under Example 9b with use of ptoluenesulfonic acid.
IH-NMR (CDC1 3 6 0.82 1.06 1.12 1.2 1.73 0.90-1.83 1.91 1.95-2.13 2.30- 2.47 3.19-3.35 3.42 3.81-3.97 4.04 (1H), 4.19 5.18 6.46 7.18 8.52 (2H) ppm.
Example 9d (3S,6R,7S,8S,12E/Z,15S,16E)-3,7,15-Tris-[[dimethyl(1,1dimethylethyl) silyl]oxy]-l-hydroxy-4,4, 6,8, 12, 16-hexamethyl-17- (4-pyrid-yl) -heptadeca-12, 16-dien-5-one Analogously to Example laq, 435 mg (0.47 mmol, 74%) of the title compound is obtained from 300 mg (0.63 mmol) of the compound that is described under Example 4 9c.
1 H-NMR (CDCl 3 6 -0.01-0.14 (24H), 0.82-0.97 (37H), 1.02 (3H) 1. 04 (3H) 1. 21 (3H) 0. 98-1.70 (12H) 1. 87 (3H) 1. 90-2.03 2.25 3.13 3.51-3.71 3.76 3.88 (MH), 4.03-4.14 5.13 6.34 7.13 8.52 (2H) ppm.
Example 9e (3S,6R,7S,SS,12E/Z,15S,16E)-3,7,15-Tris-[[dimethyl(1,1dimethylethyl)silyl]oxy]-l-hydroxy-4,4,6,8,12,16-hexamethyl-17- (4-pyridyl) -heptadeca-12, 16-dien-5-one Analogously to Example lar, 339 mg (0.41 mmol, 94%) of the title compound is obtained from 410 mg (0.44 mmol) of the compoun&dthat is described under Example 9d.
200 'H-NMR (CDC1 3 -0 .01-0.14 (18H), 0.80-0.95 (31H), 0.97-1.70 (7H),:1.06 1.21 1.59+1.69 1.87(H) 1.90-2.06 2.26 3.12 3.65 3.80 4.09 5.14 6.36 7.13 8.53 (2H) ppm.
Example 9f dimethylethyl) Bilyl]oxyj-4,4,6,B,12,16-hexamethyl-17-(4-pyridyl)- S-oxo-heptadeca-12, 16-dienoic acid Analogously to Examples las and lat, 204 mg (0.25 mmol, 72%) of the title compound is obtained from 280 mg (0.34 mmol) of the compound that is described under Example 9e.
IH-NMR (CDCl 3 6 0.00 -0.14 (18H), 0.78-0.98 (30H), 1.06 1.08 1.24 1.05-1.55 1.60+1.69 1.87 1.98 2.20-2.37 2.10-3.10 2.51 3.14 3.79 4.11 4.40 5.13 6.36 7.17 8.53 (2H) ppm.
Example 9g (3S,6R,SS,12E/Z,15S,16E)-3,7-Bis[[dimethyl(1,1.
dimethylethyl) silyl]oxy]-4,4, 6,8,12, 16-hexamethyl-15-hydroxy-17- (4-pyridyl) -S-oxy-hep tadeca-12, 16-dienoic acid Analogously to Example lay, 132 mg (0.18 mmol, 77%) of the title compound is obtained from 198 mg (0.24 mmol) of the compound that is described under Example 9f.
'H--NMR (CDCl 3 6 0.00-0.15 (12H), 0.85-1.00 (18H), 1.10- 1.18 1.20-1.28 1.62 1.73 2.05 2.20-2.50 201 (4H) 2.TJ5 (1H) 3.15 (1H) 3.79 (1H) 4.18 (1H) 4.42 5. 18 6.50 7.15-7.25 8.50-8.60 (2H) ppm.1 Example 9h (4S,7R,SS,13E/Z,16SCE))-4,8-Bis-[(dimethyl(l,ldimethylethyl)silyl]oxy]-4,4,6,8,12,16-hexamethyl-16-((4pyridyl) ethenyl) i-oxa-cyclohexadec-13-ene-2, 6-d'ione Analogously to Example law, 98 mg (0.14 mmol, 76%) of the title compound is obtained from 130 mg (0.18 mmol) of the compound that is described under Example 9g.
Example 9 (4S,7R,BS,9S,13Z,16S(E))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16- ((4-pyridyl)ethenyl) -l-oxa-cyclohexade c-13-ene-2, 6-dione and (4S,7R,BS,9S,13E,16S(E))-4,8-dihydroxy-5,5,7,9,13-pentamethyl-16- ((4-pyridyl) ethenyl) -l-oxa-cyclohexadec-13-ene-2, 6-dione (B) Analogously to Example 1, 24 mg (49 gtmol, 35%) of title O compound A and 21 mg (43 p.mol, 31%) of title compound B are obtained from 98 mg (0.14 mmol) of the compound that is described under Example 9h.
202 Example (1S,3S (E),7S,10R,11S,12B,16R)-7,11-Dhydroxy..,8,10,12,16-
I
pentamethyl-3-(C(4-pyridyl) ethenyl) 17dioxabicyclo[14.1.0]heptadecane-5,g-dione and (lS,3SCE),7S,10R,11S,12S,16S)-7,11-dihydroxy.8,8,10,12,16pentamethyl-3- ((4-pyridyl) ethenyl) 17dioxabicyclo[14...0]heptadecane-5, 9-dione (B) Analogously to Example 2, 11 mg (22 jun01, 59%) of title compound A is obtained from 18 mg (37 jun01) of compound A that is described under Example 9, or 9 mg (18 Amol, 58%) of title compound-B is obtained from 15 mg (31 Mmcl) of compound B.
Example 11 (lS.36(E) .7S,10R,11S.12S,16R) -7,11-Dihvdxoxy-3-(l-methyl-2-(3-Noxido-2-methy1-4-thiazolyl) ethenyl) -l0-ethvl-8,8. 12. 16tetramethvl-4. 17-dioxabicyclor 14. 1.01 heptadecane-5,*9-dione Analogously to Example 2, 10 mg (19 gmcl) of compound A that is presented according to Example 2 is reacted at 23 0 C, and after working-up and purification, 3.5 mg (6.5 pmol, 34%) of the title compound is isolated as a colorless oil.
'H-NI4R (CDC1 3 6 0.90 1.03 1.07 1.10- 2.03 1.31 1.43 2.03 2.09 2.19-2.26 (211), 2.52 (1H1), 2.61 2.68-2.81 (211), 3.34 3.65 (1H), 4.59 5.39 6.61 6.81 7.08 (1H1) ppm.
203 Example 2 (4S.7R,8B.9S.13Z,16S(E))-4,8-Dihvdroxy-7-benzyl-16-(l-methvl-I- (2-methyl-4-thiazolyl) ethenvi) 13-tetramethvlcyclohexadec-13-ene-2,.6-dione Example 12a (4S)-4-(C(3RS) -2-Methyl-3-hydroxy-5-phenyl-pent-2-yl) -2,2dimethyl- 3]dioxane Analogously to Example 11, 2.97 g (15.9 mmol) of the compound that is presented according to Example 1k is reacted with use of phenethylmagnesium bromide, and after working-up and purification, 3.27 g (11.2 mmol, 70%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 0. 72+0. 88 (3H),a0. 89+0. 93 (3H) 1. 33 1.39+1.42 1.47+1.50 1.58-1.93 2.61 (1H), 3.00 3.48-3.60 (111), 3.72-4.03 7.13-7.35 (5H) ppm.
Example 12b (4S)-4-(2-Methyl-3-oxo-5-phenyl-pent-2-yl).-2,2-dimethyl- [1,3]dioxane Analogously to Example 1m, 2.71 g (9.3 mmol) of the compound that is presented according to Example 12a is reacted, and after working-up and purification, 2.35 g (8.1 mmol, 87%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 1.03 1.12 1.28 1.31 1.38 1.60 2.77-2.92 3.83 3.93 (1H), 4.02 7.12-7.22 7.22-7.32 (2H) ppm.
204 Example 1-2c (4S(4R,5SS,6B,1ORS))-4-(2,6-Dimethyl-lo-[[(1,1dimethylethyl) diphenylsilyl]oxy] -4-berizyl-5-hydroxy-3-oxo-undec- 2-yl) -2,2-dimethyl-[1,3]dioxane and (4SC4B,5R,6S,1ORS))-4-(2,6-dimethyl-1O-[(1,1dimethylethyl)diphenylsilyl]oxy] -4-benzyl-5-hydroxy-3-oxo-undec- 2-yl)-2,2-dimethyl-[1,3]dioxane (B) Analogously to Example lak, 2.34 g (8.06 inmol) of the S compound that is presented according to Example 12b is reacted, and after working-up and purification, 2.91 g (4.32 mmol, 54%) of title compound A and 1.72 g (2.55 mmol, 32%) of title compound B are isolated in each case as a colorless oil.
IH-NMR (CDCl 3 of A: 0.38 0.83-1.82 (31H), 2.66- 3.02 3.47 3.58 3.74-3.44 7.05-7.28 7.31-7.46 7.61-7.72 (4H) ppm.
'H-NMR (CDC1 3 of B: 6 0.78 0.82-1.66 (21H), 0.98 1.29 1.36 2.78 2.94 3.05 3.44 3.54 3.72-3.91 7.04-7.29 7.31-7.48 (6H), 7.63-7.75 (5H) ppm.
Example 12d (4S(4R,SS,6S,IORS))-4-(2,6-Dimethyl-1O-[[(lldimethylethyl) diphenylsilyl] oxy] -4-benzyl-3-oxo-5- (tetrahydropyran-2-yloxy) -undec-2-yl) 2-dimethyl-[1, 3]dioxane Analogously to Example la, 2.90 g (4.4 mmol) of compound A that is presented according to Example 12c is reacted, and after 205 working-.up and purification, 3.18 g (4.2 mmol, 95%) of the title compound-is isolated as a colorless oil.
Example 12e (4S(4R,SS,6S,lORS) )-4-(2,6-Dimethyl-4-benzyl-1O-hydroxy-3-oxo-5- (tetrahydropyran-2-yloxy) -undoc-2-yl) -2 ,2-dimethyl- dioxane Analogously to Example ii, 3.18 g (4.20 mmol) of the compound that is presented according to Example 12d is reacted, and after working-up and purification, 1.39 g (2.68 mmol, 64%) of the title compound is isolated as a colorless oil.
1 H-Th4R (CDCl 3 6 0.28+0.47+0.49 0.92-1.14 (7H), 1.14-1.95 (24H), 2.79+2.99-3.13 3.34-4.27 4.45+4.56 7.05-7.29 (5H) ppm.
Example 12f (4S(4R,5S,6S) )-4-(2,6-Dimethyl-4-benzyl-3,10-dioxo-5- (tetrahydropyran-2-yloxy) -undec-2-yl) -2 ,2-dimethyl-[1, 3]dioxane Analogously to Example lm, 1.39 g (2.68 mmol) of the compound that is presented according to Example l2e is reacted, and after working-up and purification, 1.18 g (2.28 mmol, 85%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.26+0.47 0.96-1.11 (7H), 1.27+1.31 1.39+1.41 1.20-1.90 (12H), 2.15 2.45 (2H1), 2.79+2.97-3.12 3.36-4.07 (6H1), 4.15+4.21 (1H1), 4.43+4.54 (111), 7.08-7.28 (5H1) ppm.
206 Example 12g (4S(4R,SS,6S,10E/Z,13S,14E))-4-(13-[[(1,1- Dimethylethyl)diphenylsilyl]oxy]-4-benzyl-15-(2-methyl-4thiazolyl) -3-oxo-5- Ctetrahydropyran-2-yloxy) 10, 14- 14-dien-2-yl) -2,2-dimethyl-[1,3]dioxane Analogously to Example lao, 477 mg (923 jAmol) of the compound that is .presented according to Example 12f is reacted with use of n-butyllithium as a base, and after working-up and purification, 367 mg (393 gmol, 43%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 0.23+0.46 0.92-1.10 (19H), 1.10- 1.92 (22H), 1.99 2.13-2.40 2.70 (311), 2.80+2.94-3.14 3.35-4.25 4.47+4.53 (1H1), 4.98 6.22 6.77 7.07-7.24 7.25-7.45 7.60-7.73 (4H) ppm.
Example 12h (4S(4R,SS,6S,10E/Z,13S,14E) )-4-(4-Benzyl-13-hydroxy-15-(2-methyl- 4-thiazolyl) -3-oxo-5- (tetrahydropyran-2-yloxy) -2,6,10, 14- 14-dien-2-yl) -2,2-dimethyl-[1,3]dioxane Analogously to Example li, 548 mg (586 Am 6 l) of the compound that is presented according to Example 12g is reacted, and after working-up and purification, 330 mg (474 Amol, 81%) of the title compound is isolated as a colorless oil.
IH-NMR (CDC1 3 6 0.25+0.46 (311), 0.92-1.10 1.10- 1.90 (13H), 1.28+1.32 1.39+1.41 (311), 1.68+1.74 (311), 1.99- 2.13 2.06 2.36 (211), 2.71 2.81+3.00-3.14 (211), 207 3.37-4.26 4.48+4.57 5.20 6.58 6.94 (MH), 7.08-7.26 (5H) ppm.
Example 12i 3S, 6R, 7S,85, 12E/Z, ISS, 16E) -6-Benzyl-17- (2-methyl-4-thiazolyl) oxo-4,4,8,12,16-pentamethyl-heptadeca-12,16-diene-1,3,7,15tetraol Analogously to Example 1f, 330 mg (474 gmol) of the compound that is presented according to Example 12h is reacted, and after working-up and purification, 224 mg (392 gmol, 83%) of the title compound~is isolated as a colorless oil.
'H-NMR (CDC1.): 6 0.40 0.93-1.04 1.08-1.87 1.63+1.71 (3H),I 1.92-2.11 2.33 2.67-3.06,(3H), 2.72 3.11 3.23-3.50 3.54 3.65-3.92 (3H), 4.13 5.18 6.53 6.94 7.06-7.29 (5H) ppm.
Example 12k (3S, 6R, 7S,85, 12E/Z, 15S, 16E) -6-Benzyl-17- (2-methyl-4-thiazolyl) 4,4,8,12,16-pentamethyl-1,3,7,15-tetrakis-[(dimethyl(1,1dimethylethyl) silyl]oxy]-heptadeca-12, 16-dien-s-one Analogously to Example laq, 224 mg (392 gmol) of the compound that is presented according to Example 12i is reacted, and after working-up and purification, 323 mg (314 g.mol, 80%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 -0.03-0.12 (24H), 0.79-1.73 (53H), 1.61+1.69 1.91-2.07 (21f), 2.00 2.26 2.71 (3H), 208 2.86 2.98 3.33-3.55 3.66 3.80 4.10 5.17 6.47 6.91 7.06-7.29 ppm.
Example 121 (3S,6R,7S,SS,12E/Z,15S,16E)-6-Benzyl-l-hydroxy-17-(2-methyl-4dimethylethyl) silyl]oxy]-heptadeca-12, 16-dien-5-one Analogously to Example lar, 432 mg (420 gmol) of the compound that is presented according to Example 12 is reacted, and after working-up and purification, 264 mg (289 jgmol, 69%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 -0.03-0.12 (18H), 0.53 0.78-1.40 (41H), 1.62+1-.71 1.42-1.81 2.00 1.92-2.10 (2H), 2.27 2.70 2.852 3.30 3.40 3.70 3.81 4.11 5.17 6.46 6.91 7.11-7.30 (5H) ppm.
Example 12m (3S,6R,7S,S,12E/Z,1S,16E)-6-Benzyl-3,7,15-tris-[[dimethyl(1,1dimethylethy)sily1]oxy]-4,4,B,12,16-pentamethyl-17-(2-methy1-4thiazolyl) -5-oxo-heptadeca-12, 16-dienoic acid Analogously to Example 1k, 264 mg (289 gmol) of the compound that is presented according to Example 121 is reacted, and after working-up, 255 mg (279 g~mol, 97%) of the title compound is isolated as a colorless oil, which is further reacted without purification.
209 Example 12n 6R, 7SB, 8,12Z,155, 16E) -6-Benzyl-17- (2-methyl-4-thiazolyl) oxo-4, 4,8,12, 16-pentamethyl-3, 7, 15-tris-E( dimethyl (1,1dimethylethyl) silyl]oxy]-heptadeca-12, 16-dienoic acid and 6R, 7S,85, 12E, 155, 16E) -6-benzyl-17- (2-methyl-4-thiazolyl) oxo-4,4,8,12,16-pentamethyl-3,7,15-tris-[[dimethyl(1,1dimethylethyl) silyl]oxy]-heptadeca-12, 16-dienoic acid (B) Analogously to Example lat, 255 mg (279 Amol) of the compound that is presented according to Example 12m is reacted, and after working-up and purification, 61 mg (66 jAmol, 24%) of title compound A is isolated as a colorless-solid, and 54 mg (58 Amol, 21%) of title compound B is isolated as a colorless oil.
IH-NMR (CDCl 3 of A: 6 -0.07-0.18 (18H), 0.60 0.78 0.82 0.89 0.92 1.07 1.72 1.95 0.74-2.33 (12H), 2.69 2.91 3.03 3.41 3.62 4.20 4.30 5.23 6.72 6.96 7.05-7.29 (5H) ppm.
'H-NMR (CDCl 3 of B: 6 -0.08-0.14 (18H), 0.72 '0.82 0.85 0.90 0.93 0.98 1.60 (3H), 0.65-2.08 1.96 2.12 2.29 (2H)I, 2.71 2.92 3.47 3.69 4.09 4.21 5.12 6.49 6.95 7.06-7.30 (5H) ppm.
210 Example 120 6R, 70,85, 12 2-158, 16E) -6-Benzytl-15-hydroxy-17- C2-methy1-4-, thiazolyl)-5-oxo-4,4,B,12,16-pentamethyl-3,7-bis-( Cdimethyl(1,1dimethylethyl) silyljoxy]-heptadeca-12, 16-dienoic acid Analogously to Example ii, 61 mg (66 gmol) of compound A that is presented according to Example 12n is reacted at 23 0
C,
and after working-up a nd purification, 33 mg (41 Amol, 61%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDC1 3 6 -0.11 -0.08-0.05 0.80 (9H), 0.88 0.91 0.94 0.99 1.72 1.98 (3H), 0.77 -2.2.2 (12H) 2.69 (3H) 2.70-2.91 (2H) 3.39 (1H) 3.62 4.18 4.33 4.43-5.73 5.13 6.68 6.91 7.05-7.-26 (5H) ppm.
Example 12p- (4S,7R,SS,9S,13Z,16S(E))-4,8-Bis-[[dimethyl(1,1dimethylethyl) silyl]oxy]-7-benzyl-16- (l-methyl-2- (2-methyl-4thiazolyl)ethenyl) -l-oxa-5,5,9, 13-tetramethyl-cyclohexadec-13ene-2, 6-diane Analogously to Example law, 33 mg (40 AmoI) of the compound that is presented according to Example 12o is reacted, and after working-up and purific ation, 17 mg (21 gmcl, 53%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDC1 3 6 -0.06 0.00 0.07 0.09 0.98 (3H4), 1.71 2.10 0.70-2.48 (34H), 2.63 2_-71 2.81 3.23 3.76 4.17 5.13 6.56 6.95 7.06-7.32 (5H) ppm.
211 Example 12 (4S,7R,SS,9S,13Z,16S(E) )-4,8-Dihydroxy-7-benzyl-16-(1-methyl -2- (2-methyl-4-thiazolyl)ethenyl)-l-oxa-5,5#9,13-tetramethylcyclohexadec-13-ene-2,6-dione Analogously to Example 1, 12.2 mg (9.7 Amol) of the compound that is presented according to Example 12p is reacted, and after working-up and purification, 5.0 mg (8.8 Amol, 91%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.61 0.-83 1.11 1.22- 2.00 (5H) 1.71 (3H) 2.05 (3H) 2.19-2.49 (5H) 2.61 (1H) 2.66 2.89 3.03 3.59 3.67 4.21 5.10 5.24 6.53 6.92 7.07-7.31 (5H) ppm.
Example 13 (4S,7R.S.9S,13E,16S(E) )-4,8-Dihydroxv-7-benzvl-16-(l-methvl-2- (2-methvl-4-thiazolyl) ethenvi) -l-oxa-5, 5'9, 13-tetramethylcyclohexadec-13-ene-2. 6-dione Q Example 13a (3S, 6R, 7S, SB,12E, ISS, 16E) -6-Benzyl-15-hydroxy-17- ((2-methyl-4thiazolyl) -5-oxo-4, 4,8,12, 16-pentamethyl-3, 7-bis-[[ dimethyl (1,1dimethylethyl) silyl]oxy]-heptadeca-12, 16-dienoic acid Analogously to Example li, 47 mg (51 jAmol) of compound B that is presented according to Example 12n is reacted at 23 0
C,
and after working-up and purification, 22 mg (27 Amol, 53%) of the title compound is isolated as a colorless oil.
212 1 H-NMR (CDCl 3 -0.08 -0.03-0.09 0.82 (9H), 0.89 (12H), 0.97 1.64 2.02 0.78-2.10 2.27-2.46 2.70 2.82 2.92-3.34 3.42 (1lH), 3. 67 (1H) 4. 19 (1H) 4.32 5. 28 (1H) 6. 63 (1H) 6. 92 7.02-7.27 (5H) ppm.
Example 13b (4S,7R,BS,9S,13E,16S(E ))-4,8-Bis-E(dimethyl(1,1dimethylethyl) silyl]oxy]-7-benzyl-16-(l-methyl-2-(2-methyl-4thiazolyl) ethenyl) -l-oxa-5,5,9, 13-tetramethyl-cyclohexadec-13ene-2, 6-4 ione Analogously to Example law, 22 mg (27 Lgmol) of the compound that is presented according to Example 13a is reacted, and after working-up and purification, 12 %g (15 jAmol, 56%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 -0.04 0.06 0.12 0.80 0.88 0.90 0.96 1.08 1.64 (3H), 0.74-1.72 1.80-2.27 2.09 2.33 2.53-2.82 2.70 2.96 3.20 3.74 4.15 (M1), 5.19-5.32 6.47 6.90 7.07-7.3f (5H) ppm.
Example 13 (4S,7R,8S,9S,13E,16S(E))-4,8-Dihydroxy-7-benzyl-16-(l-methyl-2- (2-methyl-4-thiazolyl)ethenyl) -1-oxa-5, 5,9, 13-tetramethylcyclohexadec-13-ene-2, 6-dione Ana-logously to Example 1, 12 mg (15 gmol) of the compound that is presented according to Example 13b is reacted, and after 213 working-up and purification, 6.0 mg (11 Amol, 69%) of the title compound.is isolated as a colorless oil.
'H-NMR (ODd1 3 6 0.69 0.72 0.89 1.08 1.38-1.69 1.61 1.90-2.12 2.02 2.19 2.25-2.44 2.54 2.69 2.79 2.99 (MH), 3.73 4.25,-4.39 4.66 5.03 5.34 6.52 6.97 (lH),_7.04-7.29 (5H) ppm.
O Example 14 (lS,3S(E) .7S.10R,11S.12B.16R)-lO-Benzvl-7,11-dihydroxv-3-(1methyl-2--(2-methyl-4-thiazolvl) ethenvi) *12. 16-tetramethyl- 4. 17-dioxabicyclorl4 .1.Olheptadecane-5,9-dione and (lR,3S(E) .7S,10R,11S.12S.16S)-lo-benzyl-7,11-dihvdroxv-3-(lmethvl-2- (2-methyl-4-thiazolvl) ethenyl) 16-tetramethyl- 4,17-dioxabicyclorl4.1.olheptadecane-5,9-dione (B) The solution of 4.0 mg (7.0 Amol) of the compound, presented according to Example 12, in 0.1 ml of acetonitrile is mixed with 38 gl of a 1 M solution of sodium ethylenediamine tetraacetate, O cooled to 000, and mixed with 67 gl of 1, 1, 1-trif luoroacetone as well as a mixture of 21 mg of oxone and 4.5 mg ~of sodium bicarbonate. It is allowed to react for 5 hours, poured onto sodium thiosulfate solution and extracted several times with ethyl acetate. The combined organic extracts are washed with saturated sodium chloride solution, and the residue that is obtained after filtration and removal of the solvent is purified by chromatography on an analytic thin-layer plate. As a mobile solvent, a mixture of n-hexane and ethyl acetate is used. 2.2 mg 214 (3.8 gsmol, 54%) of title compound A and 0.3 mg (0.5 .mol, of title compound B are isolated in each case as a colorless oiJ4.
1 H-NMR (CDCl 3 of A: 6 0.67 0.80 1.07 (3H), 1.29 1.35-2.06 2.09 2.33 2.49 2.68 2.72-2.85 3.04 3.40 3.62 3.77 (1H), 4.22 4.51 5.47 6.51 6.95 7.06-17.30 ppm.
1 H-NMR (CDCl 3 of B: 6 0.68 0.76 0.86 (1H), 1.07 1.23-2.13 1.30 (3H 2.08 2.30-2.49 (2H), )2.70 2.87-3.11 3.28 3.57 3.93 4.21 4.54-5.73 5.58 6.58 6.97 7.07-7.31 ppm.
Example (lS,3S(E) .7S,10R,11S,12S,16S)-10-Benzyl-7,11-dihydroxy-3-(lmethyl-2- (2-methyl-4-thiazolvl) ethenyl) 12.16-tetramethyl- 4,17-dioxabicyclorl4.1.olheptadecane-5,9-dione and (lR.3S(E) .7S,1OR,11S.12S.16R)-1O-benzyl-7,11-dihydroxy-3-(1- 0 methyl-2-(2-methyl-4-thiazolyl) ethenyl) -8.8.12. 16-tetramethyl- 4,17-dioxabicyclorl4.1.Olheptadecane-5,9-dione Analogously to Example 14, 3.1 mg (5.4 Amol) of the compound that is presented according to Example 13 is reacted, and after working-up and purification, 0.7 mg (1.2 gmol, 22%) of title compound A or B and 0.6 mg (1.0 gLmol, 19%) of title compound B or A are isolated as colorless oils.
IH-NMR (CDCl 3 of A or B: 6 0.76 0.88 1.02 1.24 1.30 1.38-1.78 1.92-2.13 2.07 215 2..A4 2.70 2.78-2.87 (2H) 3.04 (1H) 3.60 (1H), 3.71-3.80. 4.01 (1H) 4.28 (1H) 5.45 (1H) 6.62 (1H) 6.99 7.11-7.31 (5H) ppm.
1 H-NMR (CDCl 3 of B or A: 6 0.70 0.76 1.06 1.19-1.64 1.22 1.80 1.90-2.12 2.07 2.46 2.69 2.79 2.92 3.08 -3.32 3.57 3.62 3.71 4.12 (lIi), 5.42 6.54 6.96 7.06-7.31 (5H) ppm.
Example 16 (4S.7S,8tk.gS.133Ai6S(Efl-4.B-Dihvdroxy-7-benzyl-16-(l-methyl-2- (2-methvl-4-thiazolyl) ethenyi) -1-oxa-5,5,9 .13-tetramethylcvclohexadec-13-ene-2. 6-diane Example 16a (4S(4S,5R,6B.,lORS))-4-(2,6-Dimethyl-lo-[[(1,1dimethylethyl) diphenylsilyl]oxy] -4-benzyl-3-oxo-5- (tetrahydropyran-2-yloxy) -undec-2-yl) -2,2-dimethyl-[1, 3]dioxane Analogously to Example la, 1.71 g (2.59 mmol) of compound B that is presented according to Example 12c is reacted, and after working-up and purification, 1.51 g (1.99 mmol, 77%) of the title compound is isolated as a colorless oil.
Example 16b (4S(4S,5R,6S,1ORS) )-4-(2,6-Dimethyl-4-benzyl-10-hydroxy-3-oxo-5- (tetrahydropyran-2-yloxy) -undec-2-yl) -2 ,2-dimethyl-[1, 3JdioxanB AnadTogously to Example li, 1.51 g (1.99 mmol) of the compound that is presented according to Example 16a is reacted, 216 and after working-up and purification, 855 mg (1.65 mmol, 83%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 0.88+0.92 0.92-1.95 (32H), 2.82- 3.10 3.32-3.59 3.71-3.98 4.43-4.59 7.11- 7.31 (5H) ppm.
Example 16c (4S(4S,SR,6S) )-4-(2,6-Dimethyl-4-benzyl-3,10-dioxo-5- (tetrahydropyran-2-yloxy) -undec-2-yl) -2 ,2-dimethyl-(l, 3]dioxane Analogously to Example im, 850 mg (1.64 mmol) of the compound-that is presented according to Example 16b is reacted, and after working-up and purification, 741 mg (1.43 mmol, 88%) of the title compound is isolated as a colorless oil.- 'H-NMR (CDCl 3 8 0.84+0.90 0.95+1.05 0.97 1.8-1.88 (19H). 2.15 2.42 2.79-3.08 3.31- 3.57 3.69-3.96 4.43+4.52 7.10-7.29 (5H) ppm.
Example 16d S (4S(4B,5R,6S,10E/Z,13S,14E))-4-(13-[[(1,1- Dimethylethyl)diphenylsilyl]oxy]-4-benzyl-15- (i-methy1-4thiazolyl) -3-oxo-5- (tetrahydropyran-2-yloxy) -2,6,10,14tetramethyl-pentadeca-1o, 14-dien-2-yl) -2,2-dimethyl-[1,3]dioxane Analogously to Example lao, 737 mg (1.43 mmol) of the compound that is presented according to Example 16c is reacted with use of n-butyllithium as a base, and after working-up and purification, 491 mg (525 gmol, 43-7%) of the title compound is isolated as a colorless oil.
217 Example L6e (4S(45,SR,6S,1OE/Z,13S,14E))-4-(4-Benzyl-13-hydroxy-15-(2-metIkyl- 4-thiazolyl) -3-oxo-5- (tetrahydropyran-2-yloxy) -2,6,10, 14tetramethyl-pentadeca-10,14-diei-2-yl) -2,2-dimethyl-(1,3]dioxane Analogously to Example ii, 1.09 g (1.17 mmol) of the compound that is presented according to Example 16d is reacted, and after working-up and purification, 677 mg (973 A&mol, 83%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 0.78-2.12 (31H), 1.67+1.73 2.06 2.36 2.71 2.81-3.08 3.30-3.52 3.69- 3.96 (511), 4.14 (1H) 4.43+4.51 (1H) 5.20 (1H) 6.57 (1H) 6.95 7.08-7.30 (5H) ppm.
Example 16f (3S, 6S,7R,8S, 12E/Z, 15S, 16E) -6-Berizyl-17- (2-methyl-4-thiazolyl) oxo-4, 4,8, 12, 16-pentamethyl-heptadeca-12, 16-diene-1, 3,7, tetrao 1 Analogously to Example 1f, 675 mg (970 gLmol) of the compound that is presented according to Example 16e is reacted, and after working-up and purification, 495 mg (866 pmol, 89%) of the title compound is isolated as a colorless oil.
IH-NMR (CDCl 3 6 0.73-0.86 0.96-1.10 1.21- 1.79 1.67+1.76 1.98-2.17 2.28-2.50 2.70 2.85 2.97 3.09 3.40-3.87 4.16 (1H), 5.27 6.51+6.57 6.94 7.07-7.30 (5H) ppm.
218 Example 16g (3S,6S,7R,8S,12E/Z,ISS,16E)-6-Benzyl-17-(2-methyl-4-thiazolyli 4,4,8,12,16-pentamethyl-1,3,7,15-tetrakis-[[dimethylcl,1dimethylethyl) silyl]oxy]-heptadeca-12, 16-dien-5-one Analogously to Example laq, 337 mg (589 A.mol) of the compound that is presented according to Example 16f is reacted, and after working-up and purification, 444 mg (432 jAmol, 73%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 -0.08-0.13 (24H), 0.42 0.79-1.03 (42H), 1.11-1.73 1.60+1.67 1.90-2.08 2.26 (2H), 2.71 2.91 3.22 3.50-3.72 3.85 4.09 5.16 6.46 6.91 7.07-7.27 (5H) ppm.
Example 16h (3S, 6S, 7R,88, 12E/Z, iSS, 16E) -6-Benzyl-l-hydroxy-17- (2-methyl-4thiazolyl) 12, 16-pentamethyl-3, 7, 15-tris-[( dimethyl 1dimethylethyl) silyl] oxy] -heptadeca-12, 16-dien-5-one Analogously to Example lar, 444 mg (432 jsmol) of the O compound that is presented according to Example 16g is reacted, and after working-up and purification, 272 mg (1297 Amol, 69%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 -0.07-0.18 (18H), 0.48 0.79-1.72 1.61+1.68 1.81 1.90-2.09 2.26 2.70 2.86-3.04 3.23 3.59 3.70 3.91 (MH), 4.10 5.16 6.44 6.91 7.08-7.29 (5H) ppm.
219 Example 16i (3S,6S,7R,8S,12E/Z,15S,16E)-6-Benzy1-3,7,15-tris-[[dimethyl(I Idimethylethyl) silyl]oXy]-4,4,8, 12,16-pentamethyl-17-(2-methyi--4thiazolyl) -5-oxo-heptadeca-12, 16-dienoic acid Analogously to Example 1k, 272 mg (297 Amol) of the compound that is presented according to Example 16h is reacted, and after working-up, 264 mg (289 jAmol, 97%) of the title compound is isolated as a colorless oil, which is further reacted without purification.
Example 16k (3S,6S,7R,8S,12Z,15S,16E)-6-Benzyl-17-(2-methyl-4-thiazolyl)-5oxo-4, 4,8,12 ,16-pentamethyl-3, 7, 15-tris-[([dimethyl (1,1dimethylethyl) silyl]oxy]-heptadeca-12, 16-dienoic acid and (3S, 6S, 7R,8S, 12E, 15S, 16E) -6-benzyl-17- (2-methyl-4-thiazolyl) OXO-4, 4,8, 12, 16-pentamethyl-3, 7, 15-tris-[[ dimethyl 1dimethylethyl)silyl]oxyJ-heptadeca-l2,16-dienoic acid (B) Analogously to Example lat, 264 mg (289 gmol) of the compound that is presented according to Example 16i is reacted, and after working-up and purification, 87'mg (9A4 Mmol, 32%) of title compound A and 67 mg (73 Amnol, 25%) of title compound B are isolated in each case as a colorless oil.
1 H-NMR (CDCl 3 of A: 6 -0.09 -0.02-0.13 (15H), 0.69 0.80-1.48 (32H), 1.03 1.63-1.79 1.68 2.00 1.91-2.09 2.12-2.33 2.72 2.77-3.20 (6H), 3.31 3.70 4.10 4.43 5.16 6.47 (1H), 6.91 7.08-7.29 (5H) ppm.
220 'H-NMR (CDC1) 'of B: 6 10 (3H) 03-0.17 (15H) 0.-68 (311), 0. 80-1.50 (33H) 1. 02 (3H) 1. 61 (311), 1. 71 (2H) 1. 88f.j.07 (2H1), 2.00 2.11-2.6.8 (4H) 2.71 2.86 3.30 (1H), 3.69 3.75-4.08 4.11 (1H1), 4.43 (1H1), 5.16 6.47 (1H1), 6.91 7.08-7.30 (5H) ppm.
Example 161 (3S,6S,7R,BS,12Z,158,16B)-6-Benzyl-15-hydroxy-17-(2-methyl-4thiazolyl) -5-oxo-4, 4,8,12, 16-pentamethyl-3, 7-bis-[[ dimethyl (1,1dimethylethyl) silyljoxy]-heptadeca-12, 16-dienoic acid Anailogously .to Example ii, 87 mg (94 Jhmol) of compound A that is presented according to Example 16k is reacted at 23 0
C,
and after working-up arnd purification, 76 mg (93. jmol, 99%) of the title compound is isolated as a colorless oil.
'H-NMR -(CDCl 3 6 -0.03-0.13 (12H), 0.52 0.78-1.80 (2811), 1.73 1.91-2.17 2.00 2.21 2.34 (211), 2.69-3.01 2.73 3.19 3.31 3.74 (1H), 4.13 4.28-5.68 4.36 5.18 6.62 6.97 (111), 7.08-7.31 (5H) ppm.
Example 16m (4S,7S,SR,9S,133,16SCE))-4,8-Bis-[(dimethyl(1,1dimethylethyl) silyl]oxy]-7-benzyl-16- (1-methyl-2-(2-methyl-4thiazolyl) ethenyl) -l-oxa-5, 5,9, 13-tetramethyl-cyclohexadec-13ene-2, 6-dione Analogously to Example law, 76 mg (93 Igmol) of the compound that is presented according to Example 161 is reacted, and after 221 working-up and purification, 68 mg (85 g~mol, 92%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDC1 3 6 -0.02 0.01 0.16 0.30 0.54 0.64 0.85 0.97 0.99 (3H), 0.80-1.75 1.69 1.89 1.98-2.31 2.13 (MH), 2.37 2.52 2.70 2.72 3.10 3.46 11H), 3.96 4.05 5.10 5.15 6.48 7.02 (1H), 7.09-7.31 (5H) ppm.
Example 16 (4S,75,8 R,9S,13Z,16S(E) )-4,8-Dihydroxy-7-benzyl-16-(l-methyl-2- (2-methyl-4-thiazolyl) ethenyl) -l-oxa-5, 5,9, 13-tetramethylcyclohexadec-_13-ene-2, 6-dione Analogously to Example 1, 10 mg (13 gmol) of the compound that is presented according to Example 12p is reacted, and after working-up and purification, 6.3 mig (11 Amol, 89%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.47 0.84 0.97 1.04 1.22-1.70 1.76 1.94 1.93 2.22-2.49 2.61-2.77 2.71 2.83 2.90 3.02 (1H), 3.08 3.59 3.62 4.18 5.19 5.53 (1H), 6.50 6.96 7.08-7.31 (5H) ppm.
222 Example 17 (4S,7S.BSR,9S.13E,16S(E) )-4,8-Dihvdroxy-7-benzyl-16-(1-Methlg- (2-methyl-4-thiazolvl) ethenvi) -1-oxa-5. 5.9. 13-tetramethvlcvclohexadec-13-ene-2.6-dione Example 17a (3S, 65,7R, SB,12E., 155, 16E) -6-Benzyl-15-hydroxy-17- (2-methyl-4thiazolyl)-5-oxo-4,4,8,12,16-pentamethyl-3,7-bis-( [dimethyl(1,1dimethylethyl) silyl]oxy] -heptadeca-12, 16-dienoic acid Analogously to Example ii, 67 mg (72 gmol) of compound B that is -presented according to Example 16k is reacted at 23 0
C,
and after working-up and purification, 57 mg (70 gmol, 97%) of the title compound is isolated as a colorless oil.
IH-NMR (CDCl 3 :6 -0.06-0.13 (12H) 0.47 (3H) 0.77-1.76 (28H), 1.64 1.90-2.07 2.00 2.28 2.39 2.66-2.89 2.73 2.91-3.05 3.19 3.29 3.76 4.20 4.36 5.16 6.58 6.94 7.07-7.31 (5H) ppm.
Example 17b (4S,7S,8R,9S,13E,16S(E))-4,8-Bis-[[dimethyl(1,1dimethylethyl) silyl]oxy]-7-benzyl-16- (l-methyl-2-(2-methyl-4thiazolyl) ethenyl) -l-oxa-5, 5,9, 13-tetramethyl-cyclohexadec-13ene-2, 6-diane Analogously to Example law, 57 mg (70 g.mol) of the compound that is-presented according to Example 17a is reacted, and after 223 working-up and purification, 32 mg (40 Amol, 57%) of the title compound is isolated as a colorless solid.
'H-NMR (CDCl 3 6 0.07 0.23 0.53 0.72 0.88 0.93 0.98 1.08-1.30 1.39 (1H), 1.48-1.86 1.61 2.10 2.07-2.27 2.31-2.58 2.63-2.78 2.71 3.08 3.41 3.82 (1H), 4.19 5.08 5.15 6.51 7.02 (111), 7.08-7.30 ppm.
Example 17 (4S,7S,BR,96,13E,16S(E) )-4,8-Dihydroxy-7-benzyl-16-(l-methyl-2- (2-methyl-4-thiazolyl)ethenyl) -l-oxa-5,5,9, 13-tetramethylcyclohexadec-13-ene-2, 6-dione Analogously to Example 1, 32 mg (40 Amol) of the compound that is presented according to Example 17b is reacted, and after working-up and purification, 16.6 mg (29 ptmol, 73%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl1 3 6 0.35 0.91 0.93 1.61 0.83-1.72 1.94-2.20 2.09 2.32 2.46 2.51 2.69 2.90-3.02 3.43 3.55-3.68 4.23 5.11 5.43 6.47 6.92 (1H), 7.07-7.31 (5H1) ppm.
224 Example 18 methyl-2-(2-methvl-4-thiazolvl) ethenyl) -8,.12,16-tetramethyl- 4 ,17-dioxabicyclorl4.1.Olheptadecane-5,9-dione and methyl-2- (2-methyl-4-thiazolvl) ethenyl) 16-tetramethyl- 4,17-dioxabicyclorl4.1.olheptaecane-5,9-..dione
(B)
Analogously to Example 14, 1.4 mg (2.5 gmol) of the compound that is presented according to Example 16 is reacted, and after q working-up and purification, 0.3 mg (0.5 gmol, 21%) of title compounds A and B is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.27 0.98 (311), 1.08 1.23 1.15-2.46 (10H), 2.19 2.71 2.82 2.91 (111), 2.95 3.10 3.47 3.95 (1H1), 4.12 (111), 4.42 4.70-5.30 5.60 (1H1), 6.65 7.00 7.12-7.32 ppm.
Example 19 (lS,3S(E) .7S,1OS,11R,12S,16S)-1O-Benzvl-7,11-dihydroxy-3-(lmethvl-2- (2-methyl-4-thiazolyl) ethenyl) 16-tetramethyl- 4,17-dioxabicyclorl4.1.Olheptadecane-5.9-dione and methv1-2-(2-methy1-4-thiazolvl)etheny)-8,81216tetramethl.
4,17-dioxabicyclorl4.1.olheptadecane-5,9-dione
(B)
Analogously to Example 14, 7.4 mg (13 gmol) of the compound that is presented according to Example 17 is reacted, and after working-up and purification, 1 .9 mg (3.3 jgmol, 25%) of title 225 compound A and 1.7 mg (2.9 Amol, 22%) of title compound B are isolated in each case as a colorless oil.
'H-NMR (CDC1 3 of A: 6 0.40 0.89 0.97 (3H1), 1.08-1.77 1.22 1.90-2.07 2.08 2.38 (1H), 2.57 2.70.(3H), 2.83 2.92-3.06 3.19 3.54 3.77 4.19 5.53 6.52 6.97 7.08-7.31 (5H) ppm.
H-NMR..(CDC1 3 of B: 0.17 0.89 1.00 (MH), 1.21-1.97 1.28 2.06 2.10 2.27-2.44 (3H), 2.71 2.90 2.99-3.11 3.36 3.96 4.20 4.,29 5.77 6.57 6.98 7.08-7.31 ppm.
Example (4S,7R,8S.9S,13(Z) .16S(E))-4.8-Dihvdroxv-16-(l-methyl-2-(2- Pyridvl) ethenyl) -1-oxa-5,5,7.9, 13-pentamethyl-cyclohexadec-13ene-2,.6-dione Example pyridyl) -pent-4-en-1-yl] -triphenyiphosphonium iodide Analogously to Examples 7a to 7d, the title compound is obtained as a crystalline solid with use of diethyl(2pyridyl) methanephosphonate.
'H-NMR (CDC1 3 6 1.08 1.70-1.95 1.99 (MH), 3.00 3.31 4.59 6.68 7.10 7.18-7.46 7.50-7.74 (18H), 7.74-7.87 8.57 (1H) ppm.
226 Example (4S(4R,SS.,6S,10E/Z,13S,14E))-4-(13-[(1,1.
Dimethylethyl)diphenylsilyl]oxy] -15- (2-pyridyl) (tetrahydropyran-2-yloxy) -2,4,6,10, 14-pentamethyl-pentadeca- 1O, 14 -dien-2-yl)-2,2-dimethyl-[1,3]dioxane Analogously to Example lao, 2.9 g (6.58 mmol) of thecompound 4 S(4R,5S,6S ))-4-(3,l0-dioxo-2,4,6-trimethyl5- (tetrahydropyran-2-yloxy) -undec-2-yl) 2-dimethyl-[ 1,3 )dioxane that is produced analogously to Examples 11 (reaction with ethylmagnesium bromide) to lan is reacted with 8.0 g (9.95 mmol) of the compound that is described under Example 20a and 7.54 ml of a 1.6 M solution of n-butyllithium in n-hexane. In addition to starting material, 1.71 g (2.0 mmol, 31%) of the title compound is obtained.
IH-NMR (CDCl 3 6 =0.84-0.98 0.99-1.97 (42H), 2.01' 2.29 3.22 3.41 3.58-4.01 4.07-4.22 4.47+4.51 5.01 6.24 7.07 7.22-7.46 7.52-7.75 8.57 (1H) ppm.
Example (4S(4R,5S,6S,lOE/Z,13S,14E))-4-(13-Hydroxy-15-(2-pyridyl) 3oxo- (tetrahydropyran-2-yloxy) -2,4,6,10, 14-pentamethyl-pentadeca- 1O,14-dien-2-yl)-2,2-dimethyl-[1,3]dioxane Analogously to Example li, 1.76 g (2.11 mmol) of the compound that is presented ac~ording to Example 20b is reacted, and after working-up and purification, 1.17 g (1.95 mmol, 93%) of the title compound is isolated as a colorless oil.
227 1 H-NMR (CDC1 3 0.88-2.13 (37H), 2.09 2.39 (2H), 3.26 3.44 3.75-4.02 4.08-4.22 4.48+4 5.21 6.60 7.10 7.25 7.64 (lH),-8.60 (lH) ppm.
Example (33,.6R,7S,SS,12E/Z,15S,16E)-1,3,7,15-Tetrahydroxy-4,4,6,8,12,16hexamethyl-17- (2-pyridyl) -heptadeca-12, 16-dien-5-one Analogously to Example 1f, 1.17 g (1.95 mmcl) of the compound that is presented according to Example 20c is reacted with use of p-toluenesulfonic acid-monohydrate, and after working-up and purification, 852 mg (1.79 mmol, 92%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl9: 6 0.83+0.88 1. 06 (3H) 1. 12 (3H) 1.22 1.63+1.72 0.98-1.82 1.96-2.21 2.07 2.39 2.90-3.80 3.28 3.32-3.48 3.89 4.06 4.18 5.20 6.'59 7.11 7.28 7.64 8.59 (1H) ppm.
Example (3S,6R,7S,8S,12E/Z,15S,16E)-l,3,7,15-Tetrakis-[[dimethyl(.,1dimethylethyl)silyl]oxy]-4,4,6,8,12,16-hexamethyl-17-(2-pyridyl)heptadeca-12, 16-dieri-5-one Analogously to Example laq, 847 mg (1.78 mmcl) of the compound that is presented according to Example 20d is reacted, and after working-up and purification, 1.32 g (1.42 mmcl, 80%) of the title compound is isolated as a colorless oil.
228 1 H-NMR (CDC1 3 6 =-0.02-0.13 (24H), 0.80-0.97 (39H), 1.02 -0 4 1.21 1.59+1.68 1.08-1.70 1.89- 2.08 2.06 2.28 3.13 3.52-3.74 3.77 3.89 4.11 5.18 6.48 7.08 7.21 7.62 8.60 (1H) ppm.
Example 3
S,
6 R,7S,8S,12E/Z,15S,16E)-3,7,15-Tris-.[[dimethyl(1,1dimethylethyl) silyl]oxy]-4, 4,6,8,12, 16-hexamethyl-l-hydroxy-17- (2-pyridyl) -heptadeca-12, 16-dien-5-one Ana-logously to Example lar, 1.32 g (1.42 mmol) of the compound that is presented according to Example 20e is reacted, and after working-up and purification, 1.06 g (1.29 mmol, 91%) of the title compound is isolated'as a colorless oil.
1 H-NMR (CDCl 3 6 0.00-0.13 (18H), 0.80-0.97 (30H), 1.06 1.00-1.63 1.21 1.58+1.68 1.89-2.08 (3H), 2.04 2.28 3.12 3.63 3.79 4.02-4.16 5.18 6.48 7.08 7.21 7.61 8.60 (lH) ppm.
Example (3S,6R,7S,8S,12E/Z,15S,16E)-3,7,15-Tris-[[dimethyl(1,1dimethylethyl)silyl]oxy]-4,4,6,,12,16-hexamethyl 7..(2-pyridyl).
5-oxo-heptadeca-12, 16-dienal Analogously to Example 1k, 1.14 g (1.39 mmol) of the compound that is presented according to Example 20f is reacted, and after working-up, 1.10 g (1.35 mmol, 97%) of the title 229 compound is isolated as a colorless oil, which is further reacted without-purification.
Example (3S,6R,7S,SS,12E,2.5S,16E)-3.7,15-Tris-[[dimethyl(1,1dimethylethyl)silylloxy]-4,4,6,8,12,16-hexamethyl-17-(2-pyradyl)- 5-oxo-heptadeca-12,16-dienoic acid and (3S,6R,7S,SS,12Z,15S,16E)-3,7,15-tris-([dimethyl(1,1dimethylethyl)silyl]oxy]-4,4,6,8,12,16-hexamethyl-17-(2-pyridyl)- 5-oxo-heptadeca-12, 16-dienoic acid (B) Analogously to Example lat, 1.10 g (1.35 mmol) of the.
compound that is presented according to Example 20g is reacted, and after wo-rking-up and purification, 467 mg (0.56 mmol, 42%) of title compound B and 374 mg (0.45 mmcl, 33%) of title compound A are isolated in each case as a colorless oil.
1 H-NMR (ODC1 3 of A: 6 0.00-0.19 (18H), 0.85 0.90 (27H), 1.01-1.50 1.07 1.15 1.21 1.57 1.81-2.08 1.96 2.24-2.41 2.60 3.18 3.83 4.13 4.38 5.13 6.50 7.16 7.36 7.71 8.61 (1H) ppm.
1 H-NMR (CDCl 3 of B: 6 -0.02-0.17 (18H), 0.80-0.98 1.00-1.59 1.05 1.13 1.18 1.69 1.81- 1.98 1.91 2.10-2.40 2.49 3.10 3.79 4.15 4.42 5.21 6.63 7.17 7.31 7.70 8.58 (1Hi) ppm.
230 Example dimethylethyl)silyl~oxy]-4,4,6,8,12,16-hexamethyl hydroxy.7 (2-pyridyl) -5-oxo-heptadeca-12, 16-dienoic acid Analogously to Example ii, 405 mg (0.49 mmol) of compound B that is presented according to Example 20h is reacted, and after working-up and purification, 338 mg (0.47 mmol, 96%) of the title compound is-isolated as a colorless oil..
1 H-NMR (CDCl 3 6 0.00-0.15'(12H), 0.80-0.99 (21H), 1.02- 1.60 1.07 1.14 1.19 1.72 1.90-2.08 1_99 2.17 2.31 2.3-8 2.49 (1H), 3.00-4.00 3.12 3.81 4.19 4.43 5.24 6.73 7.18. 7.32 7.71 8.60 (MH) ppm.
Example (4S,7R,8S,9S,13(Z),16S(E))-4,8-Bis-[[dimethyl(1,1dimethylethyl)silyl]oxy-16-(-methyl-2-(2-pyridyl)ethenyl)-l-..
5,7,9, 13-pentamethyl-cyclohexadec-13-ene-2, 6-dione Analogously to Example law, 287 mg (0.40 mmol) of the compound that is presented according to Example 20i is reacted, and after working-up and purification, 144 mg (0.21 mmol, 51%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDC1 3 6 -0.09 0.01-0.18 0.79-1.32 0.85 0.94 0.98 1.10 1.14 1.20 1.46-1.82 1.69 2.03-2.21 2.15 2.49 2.62-2.88 3.03 3.90 4.05 5.02 (MH), 231 5.19 6.58 7.11 7.27 7.65 8.61 (1H) ppm.
Example (4S,7R,8S,9S,13(Z) ,16B(E))-4,8-Dihydroxy-16-(l-methyl-2-(2pyridyl) ethenyl) -l-oxa-5, 5,7,9, 13-pentamethyl-cyclohexadec-.3ene-2, 6-dione Analogously to Example 1, 144 mg (206 junol) of the compound that is presented according to Example 20j is reacted, and after working-up and purification, 90 mg (191 Amcl, 93%) of the title compound is isolated as a colorless oil.
IH-NMR (CDC1 3 6 1.02 1.08 1.20 1.24- 1.43 1,38 1.67 1.60-1.98 2.06 2.23 2.31 2.45 2.64 3.11-3.27 3.73 (MH), 4.41 (lH) 4.50-4.77 5.09-5.23.(2H), 6.62 7.14 (1H), 7.31 (1H) 7.69 8.52 (1H) ppm.
Example 21 (lS,3S CE) .7S,1OR,11S,12S.16R)-7,11-Dihvdroxv-3-(l-methyl-2-(2pyridyl) ethenvl) 16-Rentamethvl-4. 17,,Pdioxabicyclo[14.1.Olheytadecane-5,9-dione and (lR,3S(E),7S,10R,11S,12S,16S)-7,11-dihydroxv-3-(l-methvl-2-(2pyridyi) ethenvi) -8,8,10. 12. 16-pentamethvl-4. 17dioxabicyclorl4.1. Olheptadecane-5,9-dione and (4S,7R.S.9S,13(Z),16B(E))-4,8-dihvdroxv-16-(l-methyl-2-(2-Noxvpyridyl) ethenyl) -1-oxa-5, 5,7,9, 13-pentamethyl-cyclohexAdec-13ene-2.6-dione and 232 (1S,3S(E),78,10R.11S,12S,16R) -7,11-dihydroxy-3-(1-methyl-2-( 2
-N-
oxpyvridvl)ethenvl)-8,8,10,12,16-pentamethyl-4,17dioxabicvclorl4.1.OlheDtadecane-5,9-dione and (1R.
3 S(E),7S,10R,11S.12S,16S)-7.11-dihydroxy-3-(1-methy1-2-(2-Noxypyridyl)ethenyl)-8,8,10.12,16-pentamethyl-4.17dioxabicyclor14.1.01heptadecane-5,9-dione
(E)
Analogously to Example 14, 40 mg (84 gmol) of the compound that is presented according to Example 20 is reacted, and after working-up and purification, 8.5 mg (17 .mol, 21%) of title compound A, 2.0 mg (4 Mmol, of title compound B, 2.9 mg (6 gmol, of title compound C, 12.6 mg (25 mol, 30%) of title compound D, and 2.5 mg (5 gmol, of title compound E are isolated.
H-NMR (CDC13) of A: 6 1.00 1.08 1.16 (3H), 1.21-1.98 1.29 1.38 2.07 2.19 2.30 2.53 2.81 2.89 3.29 3.76 4.37 5.40 6.53 7.16 7.29 7.70 8.53 (1H) ppm.
1 H-NMR .(CDC1 3 of B: 6 0.94 1.03 1.11 (3H), 1.28 1.38 1.00-1.95 2.14 2.08-2.20 (1H), 2.41 2.49 2.83 3.09 3.33 3.95 (1H), 4.06 4.17 5.70 6.64 7.12 7.25 (1H), 7.67 8.59 (1H) ppm.
'H-NMR (CDC13) of C: 6 1.01 1.04 1.20 (3H), 1.43 1.68 1.12-1.93 2.02-2.64 2.13 (3H), 3.22 3.38 3.69 4.56 5.11 5.18 (1H), 233 6.28 (1H) 7. 03 (1H) 7. 21 (1H) 7. 37 (1H) 7. 48 (1H) 8. 29 (1H)
PPM.-
'H-NMR (CDCL 3 of D: 6 =1.01 1.06 1.18 (3H1), 1.30 1.46 1.13-1.89 2.14 2.09-2.30 (2H), 2.52 2.78 3.17 3.29 3.71 4.54 (1H), .37 6.24 6.96 7.22 7.37 7.42-(1H), 8.28 (1H) ppm.
'H-NMR (CDC1 3 of E: 6 0.96 1.06 1.10 (3H), 1.29 1.43 1.22-1.77 1.78-2.18 2.11 (3H), 2.35-2.52 2.96 3.31 3.43 3.91 4.49 (1H1), 5,42 5.49 7.02 7.19 7.33 7.45 8.28 (1H) ppm.
Example 22 (4S,7R,8S,9S,13(EL,16S(E))-4,8-Dihvdroxv-16-(l-methyl-2-(2pyridvi) ethenyi) -1-oxa-5,*5,7 13-pentamethvl-cvclohexadec-13ene-2. 6-dione Example 22a (3S,6R,7S,SS,12E,15S,16E)-3,7-Bis-[(dimethyl(1,ldimethylethyl) silyl] oxy)-4,4, 6,8,12, 16-hexamethyl-15-hydroxy-17- (2-pyridyl) -5-oxo-heptadeca-12, 16-dienoic acid Analogously to Example li, 370 mg (444 Mmol) of compound A that is presented according to Example 20h is reacted, and after working up and purification, 309 mg (430 jgmo1, 97%) of the title compound is isolated as a colorless oil.
234 Example 22b (4S,7R SS-,9S,13(E),1.6S(E))-4,8-Bis-[[dimethyl(1,1dimethylethyl) silyl]oxy] -16- (1-methyl-2- (2-pyridyl) ethenyl) -i- 5,7,9, 13-pentamethyl-cyclohexadec-13-ene-2, 6-dione Analogously to Example law, 309 g (430 Amol) of the compound that is presented according to Example 22a is reacted, and after working up and p urification, 233 mg (333 Amol, 77%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 0.02-0.-17 .(12H) 0.88 (18H) 0.93 (3H) 1.09 1.12 1.16-1.37 1.19 1.45-1.64 (3H), 1.59 (3H1), 1.93 2.08-2.21 2.18 2.50 2.54- 2.70 3.07 (111), 3.90 4.51 5.20 5.30 (111), 6.58 7.10 7.19 7.63 8.60 (1H) ppm.
Example 22 (4B,7R,8S,9S,13(E),16S(E))-4,8-Dihydroxy-16-(l-methyl-2-(2pyridyl) ethenyl) -1-oxa-5, 5,7,9, 13-pentamethyl-cyclohexadec-13ene-2, 6-dione 9 Analogously to Example 1, 228 mg (326 Amol) of the compound that is presented according to Example 22b is treacted, and after working-up and purification, 131 mg (278 Amol, 85%) of the title compound is isolated as a colorless oil 'H-NMR (CDCl 3 6 0.98 1.07 1.17 1.31 1.20-1.46 1.52-1.83 1.61 1.98 2.08 2.17 2.39 2.41-2.66 3.18-3.39 3.66 3,87 4.38 5.14 5.42 6.60 7.13 7.32 7.69 8.56 (lH) ppm.
235 Example 23 (IR,3 (E),7S.0R,11,12S.6R)-711-Dhydroy-3-(-methl-2yridvl)ethenyl)-88.10 12.16-pentamethyl-4,17dioxabicvclorl4.1.Olpentadecane-5,9-dione and (18.38 E).78,10R.11S.12S,16S)-7.11-dihydroxy-3-(l-methyl-2-(2pyridyl)ethenyl)-8,8.10.12,16-yentamethyl-4,17dioxabicvclorl4. 1.Olheptadecane-5.9-dione (B) (1R,38(E) .7SOR.11S.12S.16R)-7 11-dihvdroxy-3-(.1-methvl-2-(2-Noxidopyridvl)ethenvl)-8,810.12.16-pentamethvl-4.17dioxabicclorl4.1.Olheptadecane-5,9-dione and (1S,3S(E),7SIOR,11S.12S,16S)-7.11-dihvdro'x-3-(l-methvl-2-(2-Noxidopvridvl)ethenvl)-8.8.10.12.16-pentamethvl-4 17dioxabicclofl 4.1.Olheptadecane-59-dione (D) Analogously to Example 14, 50 mg (106 .mol) of the compound that is presented according to Example 20 is reacted, and after working-up and purification, 5.3 mg (11 gmol, 10%) of title compound A (or 4.4 mg (9 Amol, of title compound B (or 9.6 mg (10 Amol, of title compound C (or and 11.1 mg (11 Amol, 11%) of title compound D (or.C) are isolated.
'H-NMR (CDCl 3 of A or B: 6 0.94 ^1.04 1.13 1.28 1.39 2.11 1.01-2.15 2.44 (1H), 2.58 2.74 2.91 3.31 3.73 4.21 (1H), 4.30 5.53 6.53 7.13 7.30 7.67 (lH), 8.57 (1H) ppm.
1 H-NMR (CDCl 3 of B or A: 0.93 1.09 1.14 1.28 1.37 1.22-2.16 2.09 2.46 (1H), 2.57 2.96 3.08 3.26 3.72 3.89 (1H), 236 4.37 5.47 6.62 7.13 7.28 7.68 (1H), 3.57 ppm.
1 H-NMR (CDCL 3 of C or D: 6 0.93 1.06 1.1 .9 1.21 1.44 1.15-2.01 (811), 2.10 2.12-2.26 (211), 2.49 2.89 (1H1), 3.26 (lH) 3.48 (1H) 3.67 (1H) 4.63 5.45 5.76 7.09 (1H1), 7.21 7.36 (1H)7- 7.45 (1H1), 8.29 (1H) ppm.
'H-NMR (CDC1 3 of D or C: 6 0.96 1.06 1.15 1.24 1.43 1.02-2.19 2.08 2.23 (MH), 2.56 (1H1), 2.96 3.29 (111), 3.68 4.53 5.60-5.72 7.--1O (1H1), 7.21 7.37 (1H1), 7.52 (1H1), 8.29 (1HI Dam.
Example 24- 7R S 9B 13(Z ,165 E))-48-Dih droxy-7-ethyl-16-(l-methvl-2- (2-Rvridvl) ethenvl) -1-oxa-5 13-tetramethvl-cvclohexadec-13ene-2,6-dione Example 24h, Variant 1 6R, 75, 5, 12E/Z, 155, 16E) -6-Ethyl-i, 3,7, ([dimethyl 1-dimethylethyl) silyl]oxy] 12,6-pentamethy.- 17- (2-pyridyl) -heptadeca-12, 16-dien-5-one O Example 24a/I (2S) -2-Methyl-i- (tetrahydropyran-2-yloxy) -heptan-6-one Analogously to Example 1m, 9.0 g (39.1 mmol) of the compound that is presented according td Example 1v is reacted, and after workingz-up a nd purification, 8.05 g (35.3 mmol, 90%) of the title compound is isolated as a colorless oil.
237 1 H-NMR (CDCL 3 6 0.93 1.12 1.32-1.89 2.14 2.42 3.19 3.45-3.63 3.84 #.56 (1H) ppm.
Example 24b/I (2S,6E/Z,9S,1OE)-9-[[(,l-Dimethylethyl)diphenylsilyl]oxy]-.l-(2pyridyl) -1-(tetrahydropyran-2-yloxy) lO-trimethyl-undeca- 6, lO-diene Analogously to Example 7ao or*20b, 1.89 g (8.28 mmol) of the compound that is presented according to Example 24a/I is reacted with 10-0 g (12.4 mmol) of the compound that is presented according to Example 20a with use of n-butyllithium as a base, and after working-up and purification, 1.98 g (3.2 mmol, 38%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.81-0.92.(3H), 1.08 1.18-1.92 (16H), 2.02 2.19-2.42 3.02-3.62 3.83 4.20 4.55 5.00 6.24 6-.98-7.10 7.22-7.46 7.57 7.62-7.75 8.58 (1H) ppm.
Example 24c/I (2S, 6E/Z, 98, lE) -11- (2-Pyridyl) -1-(tetrahydropyran-2-yloxy) 2,6, lO-trimethyl-undeca-6, 1O-dien-9-ol Analogously to Example ii, 1.98 g (3.2 mmol) of the compound that is presented according to Example 24b/I is reacted, and after working-up and purification, 1.16 g (3.0 mmol, 94%) of the title compound is isolated as a colorless oil.
238 1 H-NMR (CDCL 3 0.87-1.00 1.12 1.32-1.95 (11H)i 1.67+1.73 1.98-2.18 2.10 2.40 3.08-3.28 3.42-3.65 3.84 4.19 4.55 (1H), 5.19 6.59 7.10 7.24 7.63 8.60 (1H) pm.
Example 24d/I pyridyl) -1-(tetrahydropyran-2-yloxy) lO-trimethyl-undeca- S 6,10-diene Analogously to Example in, 1.15 g (2.97 mmol) of the compound that is presented according to Example 24c/I is reacted, and after working-up and purification, 1.43 g (2.85 mmol, 96%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.03 0.08 0.81-0.98 (12H) 1.11 1.28-2.10 (12H), 1.60+1.69 2.06 2.28 (2H), 3.07-3.27 3.42-3.63 3.85 4.12 4.56 (1H), 5.18 6.48 7.08 7.22 7.62 8.60 (1H) ppm.
Example 24e/I pyridyl) 1O-trimethyl-undeca-6, lO-dien-l-ol Analogously to Example 1f, 1.43 g (2.85 mmol) of the compound that is presented according to Example 24d/I is reacted with use of p-toluenesulfoni& acid-monohydrate at 23 0 C, and after 239 working-up and purification, 1.11 g (2.66 mmol, 93%) of the title compo und is isolated as a colorless oil.
IH-NMR (CDCl 3 6 0.03 0.08 0.82-0.96 (2) 0.97-1.71 1.59+1.69 1.90-2.14 2.04 2.30 3.35-3.56 4.13 5.13+5.21 6.48 7.10 (lH) 7.25 7.63 8.58 (1H) ppm.
Example 24f/I (2S,6E/Z,9S,l OE)-9-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-11-(2pyridyl) -2,6,1O-trimethyl-undeca-6, lO-dienal Analogously to Example 1k, 1.01 g (2.42 mmol) of the compound that is presented according to Example 24e/I is reacted, and after working-up and purification, 921 mg (2.22 mmol, 92%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl9): 0.03 0.08 0.92 (9H), 1.05+1.09 1.22-1.75 1.60+1.68 1.95-2.11 (2H), 2.07 2.23-2.38 4.12 5.19 6.48 7.08 7.22 7.63 8.60 9.57+9.61 (1H) ppm*.
240 Example _24g/I 3
S,
6 R,7B,8S,12E/Z,15S,16E)-6-Ethyl7-hydroxy-.1,315-tris- 1 [(dimethyl 1-dimethylethyl) Silyl]Oxy] -4,4,8,12, 16-pentamet hyl- 17- (2-pyridyl) -heptadeca-12, 16-dien-5-one and ((dimethyl 1-dimethylethyl) silyl]oxy] -4,4,8,12, 16-pentamefhyl- 17- (2-pyridyl) -heptadeca-12,16-dien-5-one
(B)
Analogously to Example lak, 1.0 g (2.41 mmol) of the compound that is presented according to Example 24f/I is reacted with 1.16 g (2.78 mmol) of the compound that is presented accordinig to Example 1m, and after working-up and purification, 972 mg (1.17 mmol, 48%) of title compound A and 178 mg (0.21 mmol, of-title compound B are isolated in each case as a colorless oil.
1 H-NMR (CDCl 3 of A: 6 0.00-0.14 (18H), 0.80-0.95 (33H), 1.00-1.81 1.11 1.17 1.60+1.68 1.90-2.11 2.04 2.29 3.03 3.18 3.32 (1H), 3.54-3.77 3.99 4.12 5.18 6.48 7.09 7.23 7.62 8.60 (1H) ppm.
IH-NMR (CDCl 3 of B: 6 02-0.14 (l8Hf,. 0. 83-1.01 (33H) 1.02-1.80 1.10 1.16 1.62+1.70 1.92-2.10 2.06 2.30 3.02 3.15 3.42 (1H), 3.53-3.74 4.02 4.12 5.19 6.49 7.09 7.23 7.63 8.60 (lH) ppm.
241 Example 24h/I (38, 6R, 78, 8, 12E/Z, 158, 16E) -6-Ethyl-i, 3,7, ([dimethyl 1-dimethylethyl) silyl] oxy] 12, 16-pentamethyl- 17- (2-pyridyl) -heptadeca-12, 16-dien-5-one Analogously to Example laq, 972 mg (1.17 mmcl) of compound A that is presented according to Example 24g/I is reacted, and afte k working-up and purification, 1.02 g (1.08 mmol, 92%) of the title compound is isolated as a colorless oil.
'H-NMR (CDCl 3 6 0. 00-0. 12 (24H) 0. 78-0. 97 (42H) 1. 00- 80 1.03 0.21 1.60+1.68 1.90-2.10 (2H), 2.05 2.28 3.02 3.52-3.73 3.82 3.91 4.11 5.19 6.49 7.08 7..22 7.61 8.60 (iH) ppm.
Example 24h, Variant II (3S, 6R, 7S, 8, 12E/Z, iSS, 16E) -6-Ethyl-i, 3,7, [[dimethyl 1-dimethylethyl) silyl] oxy] -4,4,8,12, 16-pentamethyl- 17- (2-pyridyl) -heptadeca-i2, 16-dien-5-one Example 24a/II (4S(4R,SS,6S,iOE/Z,i3S,14E))-4-(13-[[(1,1- Dimethylethyl) diphenylsilyl]oxy] -4-ethyl-15- (2-pyridyl) (tetrahydropyran-2-yloxy) 10, 14-tetramethyl-pentadeca-lO, 14dien-2-yl)-2,2-dimethyl-[1,3]dioxane Analogously to Example lao or 20b, 724 mg (1.59 mmcl) of the compound that is presented according to Example lan is reacted with 1.93 g (2.40 mmcl) of the compound that is presented 242 according to Example 20a with use of n-butyllithium as a base, and after working-up and purification, 478 mg (0.56 mmol, 35#) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0.72-1.96 (48H), 2.01 2.16-2.41 3.03+3.13 3.41 3.59-4.04 4.12-4.32 (2H), 4.43+4.52 5.01 6.23 6.97-7.10 7.21-l.46 7.58 7.62-7.74 8.57 (1H) ppm.
Example 24b/II S (4B(4R,5S,6S,IOE/Z,13S,14E))-4-(4-Ethyl-13-hydroxy-15-(2pyridy1)--3-oxo-5- (tetrahydropyran-2-yloxy) -2,6,10, 14-tetramethylpentadeca-1O,14-dien-2-yl) -2,2-dimethyl-[1,3]dioxane Analogously to Example li, 660 mg (0.77 mmol). of the compound that is presented according to Example 24a/II is reacted, and after working-up and purification, 475 mg (0.77 mmol, 100%) of the title compound is isolated as a colorless oil.
IH-NMR (CDCl 3 S 0. 72-2. 12 (39H),r 2. 09 (3H) 2 .39 (2H) 3.07+3.17 3.42 3.62-4.32 4.43+4.54 5.20 6.61 7.10 7.25 7.63 8.60 (1H) ppm.
Example 24c/II (3S,6R,7S,8S,12E/Z,15S,16E)-6-Ethyl-1,3,7,15-tetrahydroxy- 4,4,8,12, 16-pentamethyl-17- (2-pyridyl) -heptadeca- 12, 16 -dien-5 -one Analogously to Example 1f, 472 mg (0.77 mmol) of the compound that is presented according to Example 24b/II is reacted with use of p-toluenesulfonic acid-monohydrate at 23 0 C, and after 243 working-up and purification, 348 mg (0.71 mmol, 92%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 0.75-0.92 1.07 1.11-2.47 (13H), 1.26 1.63 1.72 2.04+2.05 2.96 3.18 3.41+3.48 3.86 4.04-4.23 (2H), .18+5.23 6.57 7.12 7.29 7.67 (lH),_8.59 (lH)"ppm.
Example 24h/II (3S,6R,7S,8S,12E/Z,15S,16E)-6-Ethyl-1,3,7,15-tetrakis- [(dimethyl 1-dimethylethyl) silyl] oxy] -4,4,8,12,1 6-pentamethyl- 17- (2-pyridyl) -heptadeca-12, 16-dien-5-one Analogously to Example laq, 343 mg (0.70 mmol) of the.
compound that is presented according to Example 24c/II is reacted, and after working-up and purification, 497 mg (0.52 mmol, 75%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 coverage is identical to that described under Example 24h/I.
Example 24i (3S,6R,7S,8S,12E/Z,15S,16E)-6-Ethyl-3,7,15-tris-[(dimethyl(1,1dimethylethyl) silyl] -oxy] 12, 16-pentamethyl-1-hydroxy-17- (2-pyridyl) -heptadeca-12, 16-dien-5-one Analogously to Example lar, 1.71 g (1.81 mmol) of the compound that is presented according to Example 24h/I or Example 24h/II is reacted, and after-working-up and purification, 1.38 g 244 (1.66 mmol, 97%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 =0.00-0.15 (18H), 0.80-0.98 (33H), 1 .02- 2.10 (11H), 1.09 1.21 1.59+1.68 2.05 2.29 3.01 3.69 3.84 4.02-4.19 5.18 (1H), 6.48 7.09 7.22 7.62 8.59 (1H) ppm. Example 24k dimethiethyl) silyl] oxy] 12, 16-pentamethyl-17- (2-pyridyl) oxo-heptadeca-12, 16-dienal Analogously to Example 1k, 1.38 g (1.66 mmol) of the compound that is presented according to Example 24i is reacted, and after working-up and purification, 1.34 g (1.61 mmol, 97%) of the title compound is isolated as a colorless oil.
'H-NMR (CDC 3 6 0.01-0.13 (18H), 0.78-0.97 (35H), 1.09 3H), 1.13-1.79 1.21 1.60+1.68 1.91-2.10 (2H), 2.05 2.28 2.40 2.57 3.02 3.82 (1H), 4.12 4.48 5.18 6.48 7.08 (111), 7.22 (1H), 7.62 8.60 9.79 (1H) ppm.
245 Example 241 dimethylethyl)silyl]oxy]-4,4,8,12,16-pentamethyl-17-(2-pyridyfl)- 5-oxo-heptadeca-12, 16-dienoic acid and (3S,6R,7B,SS,12Z,ISB,16E)-6-ethyl-3,7,15-tris-[[dimethylcl,1dimethylethyl) silyl] oxy] -4,4,8,12, 16-pentamethyl-17- (2-pyridyl) 12, 16-dienoic acid (B) Analogously to Example lat, 1.34 g (1.61 mmol) of the compound that is presented According to Example 24k is reacted, and after working-up and purification, 433 mg (0.51 mmol, 32%) of title cqppound A and 662 mg (0.78 mmcl, 49%) of title compound B are isolated in each case as a colorless oil.
'H-NMR (CD'Cl 3 of A: 6 0.00-0.16 (18H), 0.78-0.93 0.98-1.71 1.12 1.21 1.56 1.80-2.07 (2H), 1.93 2.23-2.41 2.67 3.05 3.86 4.12 4.33 5.11 6.48 7.24 7.33 7.69 8.61 (1H) ppm.
1 H-NMR (CDCl 3 of B: 6 01-0. 17 0. 81-0. 96 (3 5H) 1.00-1.78 1.15 1.21 1.70 1.89 1.96 2.11-2.42 2.59 3.00 3.,82 4.17 (MH), 4.41 5.24 6.63 (1H1), 7.19 7.33 7.71 (MH), 8.64 (1H) ppm.
246 Example 24m (3S,6Rt,7S,SS,12Z,15S,16E)-3,7-Bis-( (dimethyl(1,1dimethylethyl) silyl]oxy]-6-ethyl-4, 4,8,12, 16-pentamethyl-is-' hydroxy-17- (2-pyridyl) -5-oxo-heptadeca-12, 16-dienoic acid Analogously to Example ii, 662 mg (0.78 mmol) of compound B that is presented according to Example 241 is reacted at 23 0
.C,
and after working-up, 680 mg of the title compound is isolated as a crude product, which is further reacted without purification.
Example 24n C4S,7R,8 S,9S,13CZ),16S(E))-4,8-Bis-[[dimethyl(1,1dimethylethyl) silylloxy] -16- (l-methyl-2- (2-pyridyl) ethenyl) -7- 5,9, 13-tetramethyl-cyclohexadec-13-ene-2, 6-dione Analogously to Example law, 680 mg (max. 0.78 mmol) of the compound that is presented according to Example 24m is reacted, and after working-up and purification, 287 mg (402 Amol, 52%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 -0.11 0.03-0.15 0.72 (3H), 0.80-1.78 (23H), 0.83 0.92 0.98 1.11 1.18 1.68 1.85 2.09 2:12 2.46 (MH), 2.55-2.82 3.05 4.01 4.03 4.99 5.16 6.54 7.08 7.23 7.61 8.58 (lH) ppm.
247 Example 24 (4S,7R,8 .S,9S,13(Z) ,168(E) )-4,8-Dihydroxy-7-ethyl-16-(l-meth 4 i-2- (2-pyridyl) ethenyl) -1-oxa-5, 5,9, 13-tetramethyl-cyclohexadec-l3ene-2, 6-dione Analogously to Example 1, 282 mg (395 Amol) of the compound that is presented according to Example 24n is reacted, and after working-up and purification, 115 mg (237 A.mol, 60%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDC1 3 6 0.89 1.04 1.09 1.22- 2.11 1.36 1.70 2.07 2.20-2.39 2.49 2.65 2.69 3.23 3.70 4.35 4.59 5.12 5.19 6.61 7.13 7.29 7.69 8.53 (iH) ppm.
Example (lS,3S(E),7S,10R.11S,12S,16R)-7,11-Dihvdroxv-lO-ethyl-3-(1methvl-2- (2-vvridyl) ethenyl) 12.16-te'traiuethvl-4. 17dioxabicyclorl4.1.Olheptadecane-5,9-dione and (lR,3S(E),7S,IOR,118.12S,16S)-7,11-dihydroxy-10-ethyl-3-(lmethy1-2-(2-pyridyl)ethenyl)-8,8,12,16-tetramethyl-4,17dioxabicyclorl4.1.Olheptadecane-5,9-dione and (4S,7R,8S,9S.13(2) .16S(E) )-4,8-dihvdroxy-9-ethyl-16-(l-methyl-2- (2-N-oxypyridvl) ethenyl) -1-oxa-5. 5,7. 13-tetramethyl-cyclohexadec- 13-ene-2,6-dione and (lS,3S(E) .7S,1OR,11S,12S,16R)-7,11-dihvdroxy-10-ethyl-3-(lmethyl-2- (2-N-oxvpvridvl) ethenyl) 16-tetramethyl-4. 17dioxabicyclorl4. 1. Olheptadecane-5,9-dione and 248 9 (1R,3S(E) .7S,1OR,11S,12S,16S)-7,11-dihydroxy-lO-ethyl-3-(1methyl-2- (2-N-oxypyridyl) ethenyl) 16-tetramethyl-4 .17dioxabicyclorl4.1.olhentadecane-5,9-dione (E) Analogously to Example 14, 50 mg (103 Amol) of the compound that is presented according to Example 24 is reacted, and after working-up and purification, 15.3 mg (30 jgmol, 30%) of title complound A, 2 mg (4 Amol, of title compound B, 2 mg (4 Mimol, of title compound C, 21 mg (42 gmol, 41%) of title compound D and 3.3 mg (7 Amcl, of title compound E are isolated in each case as a colorless solid.
1 H-NMR (CDC1 3 of A: 6 0.87 0.99 1.06 (3H), 1.21-2.0.3 (10H), 1.30 1.39 2.03 2.15 (1H1), 2.37 2.56 2.81 2.83 3.32 3.66 4.36 5.24 5.45 6.61 7.16 7.29 7.70 8.53 (1H) ppm.
'H-NMR (CDC1 3 of B: 6 0.85 0.95 1.04 (3H), 1.20-1.93 (10H), 1.30 1.38 2.08 (1H) 2.11 (MH), 2.42-2.61 2.95 2.98 3.22 3.63 3.93 (1H) 4. 33 (1H) 5. 59 (1H) 6. 66 (1H) 7. 13 (1H) 7. 28 (1H) 7.67 8.58 (1H) ppm.
'H-NMR (CDCl 3 of C: 6 0. 80-1.92 0. 92 (3H) 1.-03 1.08 1.44 1.70 2.08-2.64 2.12 (3H), 2.82 3.29 3 .67 (1H) 4. 53 (1H) 5. 09 (1H) 5. 17 (1H), 6.19 6.99 7.19 7.35 7.44 8.29 (1H) ppm.
'H-NMR (CDCl 3 of D: 6 =0.87 1.00 1.04 (3H), 1.09-2.03 (10H), 1.29 1.42 2.10 2.18-2.32 (2H), 249 2.53 2.67-2.82 3.31 3.62 4.52 5.41 (1H),-6.16 6.93 7.21 7.37 7.42 8.28 (1H) ppm.
1 H-NMR (CDC1 3 of E: S 0.83 0.94 1.08 (3H), 1.20-2.08 (11H), 1.29 1.45 2.12 2.39-2.56 (2H), 2.87 3.24 3.29 3.87 4.52 5.41 (1H), 5.56 7.03 7.19 7.34 7.46 8.29 (1H1) ppm.
Example 26 (4S,7R.BSS9S,l3 CE) .16S(E)l-4,8-Dihvdroxv-7-ethvl-16-(l-methvl-2- (2-Dyridvil) ethenyi) 13-tetramethyl-cvclohexadec-13ene-2. 6-dione Example 26a (3S,6R,7S,8S,12E,lSS,16E)-3,7-Bis-[[dimethyl(1,1dimethylethyl)silyl]oxy]-6-ethyl-4,4,8,12,16-pentamethyl-15hydroxy-17-(2-pyridyl) -5-oxo-heptadeca-12, 16-dienoic acid Analogously to Example ii, 433 mg (0.51 mmol) of compound A that. is presented according to Example 241 is 1%reacted, and after working-up, 447 mg of the title compound is isolated as a crude product, which is further reacted without purification.
250 Example 26b (4S,7R,8S,9S,13(E),16S(E))-4,8-BiS-[[dimethyl(1,1dimethylethyl)silyl]oxy]-7-ethyl-16-(l-methyl-2-(2pyridyl) ethenyl) -l-oxa-5, 5,9, 13-tetramethyl-cyclohexadec-13-ene- 2,6-dione Analogously to Example law, 447 mg (511 Amcl) of the compound that is presented according to Example 26a is reacted, and after working-up and purification, 264 mg (370 Mmcl, 72%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDC 3 6 0.06-0.15 (1211), 0.85 (311), 0.89 (911), 0.91 0.94 1.08-1.92 (11H), 1.12 1.21 (MH), 2.10-2.23 2.16 2.40 2.46-2.68 2.98 (111), 3.95 4.41 (1H1), 5.23 (1H1), 5.30 (1H1), 6.57 7.10 (1H1), 7.21 7.63 8.60 (111) ppm.
Example 26 (4S,7R,SS,9S,13(E) ,26S(E))-4,8-Dihydroxy-7-ethyl-16-(l-methyl-2- (2-pyridyl) ethenyl) -1-oxa-5, 5,9, 13-tetramethyl-cyclohexadec-13ene-2, 6-dione Analogously to Example 1, 260 mg (364 gmcl) of the compound that is presented according to Example 26b is reacted, and after working-up and purification, 121 mg (249 Mmol, 68%) of the title compound is isolated as a colorless oil.
1 H-NMR (CDCl 3 6 0. 83 (311), 0. 90 (11) 0. 98 (311), 1. 01 1.31 (311), 1.37-2.00 (711), 1.61 2.08 2.18 (111), 2.37-2.52 (3H1), 2.60 3.35 3.70 3.83-4.32 (211), 251 4.45 5.08 (1H1), 5.39 6 .58 7.13'(1H), 7.35 (1H), 7.68 8.53 (1H) ppm.
Example 27 (lR,3S(E) .7S,1OR,11S.12S,16R)-7.11-Dihydroxv-1O-ethvl-3-(lmethyl-2- (2-pvridyl) ethenyl) 12. 16-tetramethyl-4. 17dioxeabicyclorl4.1.olheptadecane-5.9-dione and (lS,3S(E) .7S,10R.118.12S,16S)-7,11-dihvdroxy-10-ethyl-3-(lmethyl-2- (2-pyridyl) ethenyi) *12. 16-tetramethvl-4,17dioxabicyclorl4.1.olheptadecane-5,9-dione (B) (lR,3S(E) .7SIORIIS,12S,16R)-7,11-dihydroxv-1O-ethyl-3-(lmethyl-2-(2-N-oxidOpvridvl) ethenyl) 16-tetramethyl-4. 17dioxabicyclor14. 1.olheptadecane-5,9-dione and (lS,3S(E) .7S,1OR,11S,12S,16S)-7,11-dihydroxv-10-ethvl-3-(1methvl-2-(2-N-oxidO~yridvl) ethenyl) 12,16-pentamethyl-4. 17dioxabicyclorl4.1.olhe~tadecane-5,9-dione (D) Analogously to Example 14, 59 mg (121 gmol) of the compound that is presented according to Example 26 is reacted, and after working-up and purification, 5 mg (10 Amol, of title compound A or B, 2 mg (4 gmol, of title compound B 0)or A, 14 mg (27 Mmol, 22%) of title compound C or D and 6.9 mg (13 jtmol, 11%) of title compound D or C are isolated in each case as a colorless solid.
1 H-NMR (CDCl 3 of A or B: 6 0.83 0.92 1.02 1.09-2.19 (12H), 1.27 1.37 2.11 2.43-2.61 2.88 3.31 3.78 4.26 4.33 5.48 6.64 7.12 7.30 7.67 8.57 (1H) ppm.
252 1 H-NMR (CDC1 3 of B' or A: 6 =0.86 0.93 1.09 1719-2. 19 (11H) 1. 27 1. 38 (3H) 2. 10 (3H) 2.50-2.63 2.87 2.98 3.28 3.71 3.88 4.31 5.48 6.62 7.13 7.28 7.67 8.85 (1H) ppm.
1 H-NMR (CDC1 3 of C or D: 0.84 0.91 1.0 6 1.11-2.08 (10H), 1.26 1.38 2.02 2.19 (1H) 2.37 (1H) 2.53 (1H) 2.92 (1H) 3.34 (1H) 3.56-3.72 (2H) 4.53 (1H) 5.05 (1H) 5. 60 (1H) 6.99 (1H) 7.21 (1H) 7.33 (1H), S7.45 8.28 (1H) ppm.
'H-NMR (ODC1 3 of D or C: 6 0.84 0.89 1.07 1.15-2.23 1.22 1.43 2.09 2.36 2.53 (1H) 2. 97 (1H) 3. 02 3. 32 (1H) 3. 58 (1H) 4. 58 5.44 5.58 (1H) 7. 06 (1H) 7. 21 (1H) 7. 36 (1H) 7.4 4 8.29 (1H) ppm.
Example 28 (4S,7R,8S,9S,13(Z),16S(E))-4,8-Dihydroxy-16-(l-methyl-2-(2- 9 methyl-4-thiazolyl) ethenyl) -l-oxa-7, 9,1 3-trimethyl-5, trimethylene-cyclohexadec-13-ene-2, 6-dione Example 28a 1, 1-Cyclobutanedimethanol 170 ml of a 1.2 molar solution of diisobutylaluminum hydride is added in drops to a solution of 20 g (99.9 mmol) of 1,1cyclobutanedicarboxylic acid diethyl ester in 200 ml of absolute tetrahydrofuran at 000. It is allowed to stir for one more hour 253 at 0 C, and then 30 ml of water is added. It is filtered on Celite. The filtrate is dried with sodium sulfate and concentrated by evaporation in a vacuum. The crude product that is obtained (9.9 g, 85.2 mmol, 85%) is used without purification in the next step.
Example 28b 1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutanemethanol A solution of 9.9 g (85 mmol) of the compound, presented according to Example 28a, in 100 ml of absolute tetrahydrofuran is added to a suspension of 3.4 g of sodium hydride (60% in oil) in 35 ml of absolute tetrahydrofuran at 0 C. It is allowed to stir for 30 more minutes, and then a solution of 12.8 g of tertbutyldimethylsilyl chloride in 50 ml of tetrahydrofuran is added.
It is allowed to stir for one more hour at 25 0 C, and then the reaction mixture is poured onto saturated aqueous sodium bicarbonate solution. It is extracted with ethyl acetate. The organic phase is washed with saturated sodium chloride solution and dried on sodium sulfate. After the solvent is drawn off in a vacuum, the crude product that is obtained is purified by column chromatography on silica gel with a mixture of hexane/ethyl acetate. 13.5 g (58.6 mmol, 69%) of the title compound is obtained.
'H-NMR (CDC1 3 6 0.04 0.90 1.70-2.00 (6H), 3.70 (4H) ppm 254 Example 28c 1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutanecarbaldehyde Analogously to Example 1k, after purification, 7.7 g (33.7 mmol, 58%) of the title compound is obtained from 13.5 g (58.6 mmol) of the compound that is described under 28b.
'H-NMR (CDC1 3 6 9.70 s 3.83 s 2.20-2.30 m 1.85-2.00 m 0.90 s 0.03 s (6H) ppm.
S Example 28d [lR-[lca(R*)2B]]-2-Phenylcyclohexyl 3-[1-[[[dimethyl(1,1dimethylethyl)silyl]oxy]methyl]cyclobutyl]-3-hydroxypropanoate and 2]]-2-phenylcyclohexyl 3-[1-[[[dimethyl(1,1dimethylethyl)silyl]oxy]methyl]cyclobutyl]-3-hydroxypropanoate
(B)
Lithium diisopropylamide in absolute tetrahydrofuran is produced from 7.2 ml of diisopropylamine and butyllithium (32 ml of a 1.6 molar solution in hexane). Then, a solution of 11.2 g (R-trans)-2-phenylcyclohexyl acetate in-100 il of absolute tetrahydrofuran is added at -78 0 C, and it is allowed to stir for more minutes at this temperature. Then, a solution of 7.7 g (33.7 mmol) of the compound, presented according to Example 28c, in 50 ml of tetrahydrofuran is added. It is allowed to stir for more hours at -78 0 C, and then the reaction mixture is poured onto saturated aqueous ammonium chloride solution. It is extracted with ethyl acetate, the organic phase is washed with 255 saturated sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography of the crude product on silica gel with a mixture of hexane/ethyl acetate, 6.34 g (14.2 mmol, 42%) of title compound A and 4.22 g (9.4 mmol, 28%) of title compound B are obtained.
'H-NMR (CDC 3 1) of A: 6 0.04 0.98 2.69 (1H), 3.08 3.60 3.67 3.78-3.84 4.97 7.15- 7.30 (5H) ppm.
'H-NMR (CDC1 3 of B: 6 0.03 0.90 2.68 (1H), 2.80 3.56 3.68-3.72 4.99 7.18-7.30 m ppm.
Example 28e (S)-1-[1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutyl]-1,3-propanediol 4 ml of a 1.2 molar solution of diisobutylaluminum hydride in toluene is added in drops to a solution of 1 g (2.24 mmol) of compound A, presented according to Example 28d, in 10 ml of absolute toluene at 0 C. It is allowed to stir for 1.5 more 0 hours at 0°C, and then 5 ml of water is added. It is filtered on Celite. The filtrate is dried on sodium sulfate and concentrated by evaporation in a vacuum. After column chromatography of the crude product on silica gel with a mixture of hexane/ethyl acetate, 370 mg (1.35 mmol, 60%) of the title compound is obtained.
256 1 H-NMR (CDCl 3 6 0.05 0.90 1.55-1.60 (2H), 1.80 1.90:(3H) 2.10 3.75 3.85-3.95 (4H).nnm.
Example 28f (S)-2,2-Dimethyl-4-(1-[[[dimethyl(1,1d imethylethyl) silyl]oxy]methyl]cyclobutyl]-l,3-dioxane Analogously to Example lh, after purification, 338 mg (1.07 mmol, 79%) of the title compound is obtained from 370 mg (1.35 mmol) of the compound that is described under 28e.
1 H-NMR (CDCl1 3 6 =0.03 0.88 1.38 1.42 1.50-1.80 2.00 3.52 3.62 3.85-4.00 (3H) ppm.- Example 28g 2-Dimethyl-l, 3-dioxan-;4-yl) cyclobutanemethaiol Analogously to li, 1.27 g (4.04 mmol) of the compound that is produced according to Example 28f is reacted with 6 ml of a 1 molar solution of tetrabutylammonium chloride in tetrahydrofuran.
After column chromatography, 794 mg of the title compound is obtained.
1 H-NMR (CDCl 3 6 1.38 1.'46 1.55-1.67 (2H), 1.75-2.05 2.97 3.62 3.84-4.10 (4H) ppm.
Example 28h 2-Dimethyl-l, 3-dioxan-4-yl) cyclobutanecarbaldehyde Analogously to Example 1k, 794 mg (3.97 mmol) of 28g is reacted, and 786 mg (100%) of the title compound is isolated as a 257 crude product, which is used without purification in the next step.
Example 28i (S)-l-(2,2-Dimethyl-1,3-dioxan-4-yl)-a-ethylcyclobutanemethanol Analogously to Example 11, 786 mg (3.97 mmol) of the compound that is described under 28h is reacted with a 2 molar solution of ethylmagnesium chloride in tetrahydrofuran. After purification, 835 mg of the title compound is obtained.
1 H-NMR (CDCI 3 6 1.05 1.38 1.49 1.60- 2.10 2.60 2.83 3.50 3.85-4.15 (3H) ppm.
-Ai*- Example 28k (S)-1-[1-(2,2-Dimethyl-1,3-dioxan-4-yl)cyclobutyl]propan-l-one Analogously to Example im, after purification, 689 mg (83%) of the title compound is obtained from 835 mg (3.67 mmol) of the compound that is described under 28i.
'H-NMR (CDC1 3 6 1.03 1.35 1.36 (3H) 1.45 1.55 1.65-1.90 2.02 2.14-2.30 2.33 2.45-2.60 3.80-4.00 4.10 (1H) ppm.
Example 281 (S)-1-[l-(1,3-Dihydroxypropyl)cyclobutyl]propan-l-one 680 mg (3 mmol) of the compound that is described under 28k is dissolved in 30 ml of tetrahydrofuran. 1 ml of water and mg of p-toluenesulfonic acid are added, and it is allowed to stir 258 for 30 more minutes at 50 0 C. After working-up and purification, 471 mg of the title compound is obtained.
IH-NMR (CDCl 3 S 1.05 1.10 1.53 1.65 (lH) 1. 80-2. 00 (3H) 2. 15 (1H) 2. 40-2. 70 (3H) 3. 35 (1H) 3. 3.88 4.10 (1H) ppm.
Example 28m 3-Bis( (dimethyl (1,1dimethylethyl) silyl]oxy]cyclobutyl) propan-l-one Analogously to Example laq, after purification, 709 mg (68%) of the title compound is obtained from 470 mg (2.54 mmol) of the compound that is described under 281.
1 H-NMR (CDCl 3 6 0.02 0.15 0.17 0.90 0.94 1.05 1.30-1.53 (2H)j 1.70-1.85 1.98 2.23 2.45-2.53 3.54 4.11 (1H) ppm.
Example 28n (2S,6E/Z,9S,lOE)-9-[((1,l-Dimethylethyl)diphenylsilyl]oxy]-ll-(2methylthiazol-4-yl) -1-(tetrahydropyran-2-yloxy) undeca-6, lO-diene Analogously to Example 24b/I, after purification, 3.01 g of the title compound is obtained from 2.24 g (9.84 mmol) of the compound that is described under 24 a/I, and 12.2 g (14.81 mmol) of the compound that is described under lai, with use of butyllithium as a base.
1 H-NMR (CDCl 3 65 0.86 1.04 1.55+1.60 (3H), 1.30 1.99 2.25 2.70 1.10-3.20 3.45- 259 3.60 3.86 4.14 4.54 4.97 6.22 (lH), 6.78 7.30-7.50 7.60-7.70 (4H) ppm.
Example 28o (2S, 6E/Z, 95, lE) -11- (2-Methylthiazolyl-4-yl) -1-(tetrahydropyran- 2 -yloxy) lO-trimethyl-undeca-6, iO-dien-9-ol Analogously to Example ii, after purification, 4.53 g (94%) of the title compound is obtained from 7.65 g (11.84 mmol) of the compound that is described under 28n.
1 H-NMR (CDCl 3 6 0.91 1.10 1.65+1.71 (MH), 2.04 2.39 2.70 3.12+3.21 3.50+3.58 (2H), 3.85 (lH),-4.14 4.55 5.15 6.56 6.93 (1H) ppm.
Example 28p (2S,6E/Z,9S,10E)-9-[[Dimethyl(1,1-dimethylethyl)silyl]oxy]-11-(2methylthiazol-4-yl) -1-(tetrahydropyran-2-.yloXy) lO-trimethylundeca-6, lo-diene Analogously to Example lad, after purification, 5.68 g (98%) of the title compound is obtained from 4:53 goof the compound that is described under 28o.
1 H-NMR (CDCl 3 5 0.00 0.03 0.90 (12H), 1.56+1.64 1.99 2.21 3.10+3.20 3.45-3.60 3.85 4.10 4.57 .5.12 6.45 6.90 (1H) ppm.
260 Example 28q (2S,6E/Z,9S,IOE)-9-((Dimethyl(1,1-dimethylethyl)silyl]oxy]-11-(2methylthiazol-4-1) lO-trimethyl-undeca-6, lO-dien-l-ol Analogously to Example if, after purification, 4.02 g (84%) of the title compound is obtained (2 hours of reaction time at 0 OC) from 5.68 g (10.88 mmol) of the compound that is described under 28p.
1 H-NMR (CDCl 3 6 0.00 0.05 0.90 (12H), 1.60+1.65 2.00 2.23 2.71 3.38-3.55 (2H), 4.10 5.09+5.14 6.45+6.48 6.91+6.93 (lH) ppm.
Example 28r- (2S,6E/Z,9S,1OE)-9-((Dimethyl(l,l-dimethylethyl)silyl]oxy]-11-(2methylthiazol-4-yl)-2, 6, lO-trimethyl-undeca-6, 1O-dien-l-al Analogously to Example 1k, after filtration on silica gel, 648 mg of the title compound is obtained from 667 mg mmol) of the compound that is described under 28q.
1 H-NMR (CDCl 3 0.01 0.06 0.90 (9H), 1.06+1.09 1.58+1.66 2.00 4.10 5.13 (MH), 6.46 6.91+6.93 (1H) ppm.
261 Example 28s (3S, 6R,f75,SS, X2Z, 15S, 16E) -7-Hydroxy-1, 3, 15-tris-( [dimethyl (1,1dimethylethyl) silyl]oxy] 12, 16-tetramethyl-4,4-trimethylene- 17 -methylthiazol-4-yl) -heptadeca- 12, 16-dien-5 -one and (3S, 6R, 78, SS,12E, 158, 16E) -7-hydroxy-1, 3, 15-tris-( [dimethyl (1,1dimethylethyl) silyl] oxy] -6,8,12, 16-tetramethyl-4, 4-trimethylene- 17-(g-methylthiazol-4-yl) -heptadeca-12, 16-dien-5-one (B) Analogously to Example lak, after purification, 352 mg (27%) of title compound A and 227 mg of title compound B are obtained from 709 mg (1.71 mmol) of the compound that is described under 28 m and 667 mg (1.52 mmol) of the compound that is described under 28r.
1 H-NMR (CDCl 3 of compound A: 6 0.00 0.04 (9H), 0.14 (3H) 0.16 0.80 (311), 0.88 (18H1), 0.91 1.03 1.68 2.00 2.20-2.40 2.72 (311), 3.25 (1H1), 3.44 (1H1), 3.58 4.10 5.13 (1H1), 6.42 (111), 6.93 (111) ppm.
'H-NMR (CDCl 3 of 0.08 (311), 0.15 (31), 1.05 1.60 3.25 3.45 (11), 6.91 (111) ppm.
compound B: 6 0.00 0.04 (611), 0.18 (3H1), 0.80 (311), 0.89 (1811), 0.92 (3H1), 2.00 2,20-2.40 2.70 (31), 3.60 .4.10 5.15 6.45 (111), 262 Example 28t* (3S,6R,7B,86,12Z,15S,16E)-1,3,7,15-Tetrakis-[[dimethyl(1,1dimethylethyl) silyl]oXy]-6,8, 12, 16-tetramethyl-4, 4-trimethyleine- 17- (2-methylthiazol-4-yl) -heptadeca-12, 16-dien-5-one Analogously to Example laq, 381 mg of the title compound is obtained from 352 mg (0.41 mmol) of compound A that is d'escribed under 28s.
'H-NMR (OD61 3 6 =0.00 0.02 0.04 0.07 0.09 0.13 0.16 0.90 (18H), 0.94 (18H), 0.95 1.09 1.68 2.20-2.40 83H), 2.71 3.10 (1H) 3.58 (2H) 3.78 (1H) 4. 10 (2H) 5. 13 (1H) 6.47 (1H) 6.90 (1H) ppm.
Example 28u (3S, 6R, 78, 88,12Z, 158, 16E) 15-Tris-[([dimethyl (1,1dimethylethyl)silyl]oxy]-1-hydroxy-6,8,12,16-tetramet hy-4,4trimethylene-17- (2-methylthiazol-4-yl) -heptadeca-12, 16-dien-5-one Analogously to Example lar, 289 mg of the title compound is obtained from 381 mg (0.39 mmol) of the compound that is described under 28t.
1 H-NMR (CDC1 3 6 0.01 0.05 0.08 0.11 0.16 0.18 0.90-1.00 (30H), 1.10 1.67 1.99 2.20-2.40 2.71 3.14 3.63 (2H), 3.82 4.09 5.12 6.46 6.92 (1H) ppm.
263 Example 28v (3S,6R,7BS,8S,12Z,15S,16E)-3,7,15-Tris-[[dimethyl(1,1dimethylethyl)silyl]oxy]-6,8,12,16-tetramethyl-4,4-trimethylene- 17-(2-methylthiazol-4-yl) -5-oxo-heptadeca-12, 16-dien-l-al Analogously to Example 1k, after filtration on silica gel, 284 mg (100%) of the title compound is obtained from 285 mg (0.34 mmol) of the compound that is described under 28u.
Example 28w (38, 6R,7S,8S, 12Z, 15S, 16E) 15-Tris-[ [dimethyl (1,1dimethylethyl) silyl]oxy] 12, 16-tetramethyl-4,4-trimethylene- 17-(2-methyithiazol-4-yl) -5-oxo-heptadeca-12, 16-dienoic acid Analogously to Example lat, after purification, 235 mg (81%) of the title compound is obtained from 284 mg (0.34 mmol) of the compound that is described under 28v.
'H-NMR (CDCl 3 6 0.00 0.02 0.04 0.09 0.14 (3H9, 0.19 (3H9, 0.87-0.96 (30H), 1.13 1.70 1.95 2.12-2.30 2.70 3.00 3.80 (lH), 4.13 4.49 5.18 6.63 6.93 (1H) ppm.
Example 28x (3S,6R,7S,BS,12Z,15S,16E)-3,7-Bis-((dimethyl)1,1dimethylethyl)silyl]oxy]-15-hydroxy-17-(2-methylthiazol-4-yl)- 6,8,12,16-tetraluethyl-4,4-trimethylen-5-oxo heptadeca-12,16dienoic acid Analogously to Example ii, 200 mg (100%) of the title compound, which is used without purification in the next step, is 264 obtained from 230 mg (0.27 mmol) of the compound that is describe- under 28w.
'H-NMR (CDCl 3 6 0.05 0.10 0.19 0.90 (18H1), 0.95 1.12 1.70 2.00 2.70 (3H), 3.00 (1H1), 3.84 (1H1), 4.15 4.49 (1H1), 5.15 (1H1), 6.67 (1H), 6.91 (M1) ppm.
Example 28y (4S,7R,8S,9S,13(Z),16S(E))-4,8-Bis-[[dimethyl(1,1dimethylethyl)silyl]oxy]-16-(l-methyl-2-(2-methylthiazol-4-yl)ethenyl) -1-oxa-7, 9, 13-trimethyl-5, 5-trimethylene-cyclohexadec-13ene-2, 6-dione Analogously to Example law, after working-up, 101 mg (52%) of the title compound is obtained from 200 mg (0.27 mmol) of the compound that is described under 28x.
'H-NMR (CDC1 3 6 -0.05 (311), 0.12 0.15 0.82 0.98 (9H1), 1.00 1.24 1.68 2.11 2.28 (111), 2.47 (1H1), 2.60-2.70 2.72 2.98 (1H1), 3.93 (1H1), 4.41 5.03 (1H1), 5.17 6.58 (1H1), 6.98 (1H1) ppm.
Example 28 (4S,7R,SS,9S, 13(Z), 168(E)) -4,8-Dihydroxy-16-(1-methyl-2- (2methyl-4-thiazolyl) ethenyl) 9, 13-trimethyl-5, trimethylene-cyclohexadec-13-ene-2, 6-dione Analogously to Example 1, 51 mng of the title compound is obtained from 101 mg (0.14 mmol) of the compound that is described under 28y.
265 1 H-NMR (CDC1 3 6 1.01 1.28 1.67 2.09 (3H) 2. 70 (3H) 3.-01 (1H) 3. 73 (1H) 4. 46 (1H) 5. 14 (1H) 19 6.60 6.96 (lH) ppm.
Example 29 (lS,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(l-methyl-2-(2methyl-4-thiazolyl) ethenyl) -10,12, 16-trimethyl-8, 8-trimethylene- 4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione and methyl-4-thiazolyl) ethenyl) -10,12, 16-trimethyl-8, 8-trimethylene- 4,17-dioxabicyclo(14.1.0]heptadecane-5,9-dione (B) Analogously to Example 14, 29 mg of title compound A and 7 mg of title compound B are obtained after separation from 47 mg (0.09 mmol) of the compound that is described under 28.
1 H-NMR (CDC1 3 of compound A: 6 1. 01 (3H) 1. 24 (3H), 1.28 2.09 2.72 2.78 3.05 3.72 (1H), 4.20 4.45 5.37 6.59 6.96 (1H) ppm.
'H-NMR (CDC1 3 of compound B: 65 0.94 1.20 (3H), 1.26 2.12 2.71 2.99 3.1 11 4.41 (111), 4.39 5.60 6.62 6.99 (1H) ppm.
Example (4S,7R,SS,9S,13(E),16S(E))-4,8-Dihydroxy-16-(l-methyl-2-(2methyl-4-thiazolyl) ethenyl) -1-oxa-7, 9, 13-trimethyl-5, trimethylene-cyclohexadec-13-ene-2,6-dione 266 Example (3S,6R,7S,8S,12E,156,16E)-1,3,7,15-Tetrakis-[[dimethyl(1,1dimethylethyl) silylloxy] -6,8,12 ,16-tetramethyl-4, 4-trimethylene- 17- (2-methylthiazol-4-yl) -heptadeca-12, 16-dien-5-one Analogously to Example laq, 230 mg of the title compound is obtained from 227 mg (0.27 mmol) of compound B that is described under 28s.
1 H-NMR (CDCl 3 6 0. 01 (3H) 0. 03 0. 04 (3H) 0. 06 0.08 0.11 0.15 0.17 0.87-0.98 (39H), 1.06 1.57 2.00 2.20-2.39 2.70 (3H) 3.09 (1M) 3.61 (2H) 3.78 (1H) 4. 10 (2H) 5. 14 (3H) 6.45 (lH) 6.91 ppm.
Example (3S,6R,7S,8SS,12E,15S,16E)-3,7,15-Tri-s-[[dimethyl(1,1dimethylethyl) silyl]oxy]-1-hydroxy-6, 8,12, 16-tetramethyl-4, 4trimethylene-17- (2-methylthiazol-4-yl) -heptadeca-12, 16-dien-5-one Analogously to Example lar, 170 mg of the title compound is obtained from 230 mg (0.24 mmol) of the compound that is described under 'H-NMR (CDCl 3 6 0. 01 (3H) 0. 06 (3H) 0. 08 (3H) 0. (311), 0.17 (311), 0.19 0.85-1.00 (30H1), 1.10 1.62 2.15-2.40 (311), 2..71 3.12 (111), 3.63 (211), 3.79 (1H), 4.09 (211), 5.13 6.42 6.90 (111) ppm.
267 Example (3S,6R,7S,88,12E,15S,16E)-3,7,15-Tris-[[dimethyl(1,1dimethylethyl) silyl]oXy]-6,8, 12, 16-tetramethyl-4,4-trimethylene- 17-(2-methylthiazol-.4-yl) -5-oxo-heptadeca-12, 16-dien-1-al Analogously to Example 1k, after filtration on silica gel, 170 mg (100%) of the title compound is obtained from 170 mg (0.20 mmol) of the compound that is described under Example (3S,6R,78,BS,12E,15S,16E)-3,7,15-Tris-[[dimethyl(1,1dimethylethyl) silyl] oxy] 12, 16-tetramethyl-4, 4trimethylene-17-(2-methylthiazol-4-yl).-5-oxo-heptadeCa-12, 16dienoic acid Analogously to Example lat, after purification, 144 mg (83%) of the title compound is obtained from 170 mg (0.20 mmol) of the compound that is described under 1 H-NMR (CDCl 3 6 0.01 0.05 0.06 0.09 0.15 0.20 0.85-1.00 (30H), 1.12 1.55 (3H) 1.97 (3H) 2.71 (3H) 3.09 3.82 (1H) 4.10 (1H) 4.41 5.11 6.46 6.95 (1H) ppm.
268 Example (3B,6R,i7S,8S,12E,15S, 16E)-3,7-Bis-[(dimethyl(1,1dimethylethyl) silyl]oxy]-15-hydroxy-17- (2-methylthiazol-4-yl) 6,8,12, 16-tetramethyl-4,4-trimethylen-5-oxo heptadeca-12,16dienoic acid Analogously to Example ii, 121 mg (100%) of the title compound, which is used without purification in the next step, is obtained from 140 mg.(0.16 mmol) of the compound that is described under 1 H-NMR (ODC1 3 6 0. 05 (3H) 0. 09 (6H) 0. 18 (3H) 0. 0.95 (18H), 0.98 1.11 1.61 2.00 2.69 (3H) 3. 02 3. 82 4. 15 (1H) 4. 40 (1H) 5. 15 (1H) 6. 54 6.91 (1H) ppm.
Example (4B,7R,8S,9S,13(E),16S(E))-4,8-Bis-[[dimethyl(1,1dimethylethyl)silyl]oxy]-16-(l-methyl-2-(2-methylthiazo.-4yl) ethenyl) -1-oxa-7, 9, 13-trimethyl-5, 13-ene-2,6-dione Analogously to Example law, after pu2rification, 55 mg (48%) of the title compound is obtained from 121 mg (0.16 mmol) of the compound that is described under 1 H-NMR (CDC1 3 6 0.01 0.09 0.15 0.92 (9H) 0. 96 (9H) 0. 98 (3H) 1. 26 (3H) 1. 50 (3H) 2. 19 (3H) 2.73 2.91 4.18 4.63 5.09 5.31 6.53 6.93 (1H) ppm.
269 Example (4S,7R,-S,9S,13(E),165(E))-4,8-Dihydroxy-16-(l-methyl-2-(2methyl-4-thiazolyl) ethenyl) -1-oxa-7,9, 13-trimethyl-5, trimethylene-cyclohexadec-13-ene-2, 6-dione Analogously to Example 1, 27 mg of the title compound is o btained from 55 mg (0.08 mmol) of the compound that is descr ibed under 'H-NMR (CDCl 3 6 1.03 1.23 1.55 2.07 2.72 3.04 3.32 3.51 3.70 4.46 5.06 5.49 6.59 7.02 (1H) ppm.
Examp~le 31 (lR,3S(E) ,7S,10R,IIS,12S,16R)-7,11-Dihydroxy-3-(l-methyl-2-(2methyl-4-thiazolyl) ethenyl) -10,12, 16-trimethyl-8,8-trimethylele- 4,17-dioxabicyclo[14.l.0]heptadecale-5,9-diofle and (lS,3S(E),7S,10R,11S,12S,16S)-7,11-dihydroxy-3-(1-methyl-2-(2methyl-4-thiazolyl) ethenyl) -10,12, 16-trimethyl-B,8-trimethylele- 4,17-dioxabicyclo(14.1.0]heptadecane-5,9-diofle
(B)
Analogously to Example 14, 10 mg of title compound A and 8 mg of title compound B are obtained after separation from 25 mg (0.05 mmol) of the compound that is described under IH-NMR (CDC1 3 of compound A: 6 1. 02 (3H) 1. 25 (3H), 1.27 (3H) 2.08 (3H) 2.71 (3H) 2.84 (1H) 3.13 (1H) 3.72 (1H), 4.93 5.51 6.68 7.04 (1H) ppm.
270 'H-NMR (CDC1 3 of compound B: 6 0. 98 (3H) 1. 27 (3H) 1. 28 (3H 2. 11 (3H) 2. 89 (1H) 3. 08 (1H) 3.7 0 (1H) 4. 48. (1H), 5.43 6.58 6.97 (1H) ppm.
Example 32 (4S,7R,8S,9S,13(Z) ,16S(E) )-4,8-Dihydroxy-9,13-dimethyl-7-ethyl- 16- (l-methyl-2- (2-methyl-4-thiazolyl) ethenyl) -l-oxa-5, trimethylene-cyclohexadec-13-ene-2, 6-dione Example 32a propylcyc lobutanemethano 1 Analogously to Example 11, after purification, 20.81 g (72%) of the title compound is obtained from 24.15 g (105.8 mmol) of the compound that is described under 28c.
1 H-NMR (CDCl1 3 6 0.09 (6H) 0.93 0.95 (3H) 1.36 (3H) 1.48-1.80 (3H) 1.87 (3H) 2.08 (1H) 3.18 (1H) 3.56 (lH) 3.72 3.86 (1H) ppm.
Example 32b [[Dimethyl 1-dimethylethyl) silyl]oxy]methyl]cyclobut-lyl] -1-butanone Analogously to Example 1k, after filtration on silica gel, 20.7 g (100%) of the title compound is obtained from 20.81 g (76.34 mmol) of the compound that is described under 32.a.
1 H-NMR (CDCl 3 0. 05 (6H) 0. 88 (9H) 0. 92 (311), 1. 59 1.75-1.95 2.23-2.34 2.43 3.81 (2H) ppm.
271 Example 32c 1-[1-(Hydroxymethyl)cyclobut-l-yl]-l-butanone Analogously to Example li, after purification, 11.57 g (97%) of the title compound is obtained from 20.7 g (76.34 mmol) of the compound that is described under 32b.
'H-NMR (CDC1 3 6 0.94 1.64 1.85-2.10 (4H), 2.29-2.43 2.53 3.87 (2H) ppm.
Example 32d q 1-(1-Oxobutyl)cyclobutanecarbaldehyde Analogously to Example 1k, after filtration on silica gel, 2.31 g (100%) of the title compound is obtained from 2.34 g mmol) of the compound that is described under 32c.
'H-NMR (CDCl 3 6 0.92 1.62 1.85-2.01 (4H), 2.38-2.55 9.69 (1H) ppm.
Example 32e (4S,5R)-3-(Bromoacetyl)-4-methyl-5-phenyloxazolidin-2-one 82 ml of a 2.5 molar solution of butyllithium in hexane is added to a solution of 33.06 g (186.6 mm6l) of (4S,5R)-4-methyl- 5-phenyloxazolidin-2-one in 500 ml of tetrahydrofuran within minutes at -70 0 C under argon. Then, a solution of 15.55 ml (187 mmol) of bromoacetyl chloride in 250 ml of tetrahydrofuran is added in drops in such a way that the internal temperature does not exceed -65 0 C. Then, it is stirred for one more hour at 0 C. Then, the reaction mixture is poured onto 50 ml of saturated aqueous ammonium chloride solution. 90 ml of saturated 272 aqueous sodium bicarbonate solution is then added, allowed to come to 250C, diluted with water and extracted with ethyl acetate. The organic phase is washed with saturated aqueous sodium chloride solution, dried on sodium sulfate and chromatographed on silica gel. 42.32 g of the title compound is obtained.
'H-NMR (CDC 3 6 0.95 4.57 4.80 5.76 7.2-7.5 (5H) ppm.
Example 32f ,4a,5a]]-3-[3-Hydroxy-l-oxo-3-[l-(l-oxobutyl)cyclobutl-yl]propylj -4-methyl-5-phenyloxazolidin-2-one 200 mg (1.5 mmol) of anhydrous lithium iodide is added to a suspension of 5 g (40.68 mmol) of anhydrous chromium(II) chloride in 60 ml of tetrahydrofuran under argon. Then, a mixture of 5 g (16.77 mmol) of the compound that is described under 32e and 2.31 g (15 mmol) of the compound that is described under 32d is added to 10 ml of tetrahydrofuran (exothermal reaction, the internal temperature should not exceed 350C). It is allowed to stir for one more hour at 25°C, and then 50 ml of -saturated aqueous sodium chloride solution is added with slight cooling. It is stirred for another 30 minutes at 250C. Then, it is extracted with ethyl acetate. The organic phase is washed with saturated aqueous sodium chloride solution, dried on sodium sulfate and chromatographed on silica gel. 3.89 g of the title compound is obtained.
273 'H-NMR (CDC1 3 6 0.90-0.99 1.58-1.73 1.79- 2. 05 2. 10-2. 69 (7H) 3. 00-3. 12 (2H) 3. 44 (1H) 4. 39 (1H), 4.78 5.70 (1H1), 7.27-7.33 7.35-7.48 (3H) ppm.
Example 32g 1-oxo-3-[1-(l-oxobutyl) cyclobut-1-yl]propyl]-4-methyl-5phenyloxazolidin-2 -one Analogously to Example laq, after purification, 3.94 g (76%) of the title compound is obtained from 3.89 g (10.42 mol) of the compound that is described under Example 32f.
1 H-NMR-(CDC 3 6 0.08 0.20 0.85-0.98 (15H1), 1.55-1.93 2.03 2.20-2.38 2.45-2.67 2.91- 3.13 (211), 4.62-4.75 5.67 7.29-7.47 (5H) ppm.
Example 32h -3-r3-F FDimethvl 1-dimethyl) silylloxyl-3-[1- (1oxopropvl) cvclobut-l-vllpropaioic acid 3.29 ml (32.3 mmol) of a 30% hydrogen peroxide solution (exothermal reaction, the internal tempeiatur% should not exceed is added to a solution of 3.94 g (8.08 mmol) of the compound, described under 32g, in 40 ml of a mixture of tetrahydrofuran and water at 0 0 C. It is allowed to stir for 5 more minutes at 0 0 C, and then a solution of 309 mg (32.3 mmol) of lithium hydroxide in 16 ml of water is added. Then, it is stirred for 3 more hours -at 0 0 C. Then, the reaction mixture is carefully poured onto ice-cold sodium thiosulfate solution.
274 It is stirred for 5 more minutes at 0 0 C and for 15 minutes at 0 C. 'Then, the tetrahydrofuran is drawn off in a vacuum, and the remaining solution is acidified with 5N hydrochloric acid to pH 1. It is extracted with dichloromethane. The organic phase is washed with saturated aqueous sodium chloride solution, dried on sodium sulfate and chromatographed on silica gel. 2.34 qL of the title compound and 1.04 g (4S,5R)-4-methyl-5phenyloxazolidin-2-one, which can be used again in Example 32e, is obtained.
1 H-NMR (CDCl 3 6 0.09 0.18 0.86-0.97 (12H), 1. 59 (2HJ 1. 56-1. 94 (3H) 2. 05-2 .36 (4H) 2.40-2. 57 (3H) 4 .44 (1H) ppm. Exam~le 32i (3S,6R,7S,8S,12Z,15S,i6E)-3,7,15-Tris-[[dimethyl(1,1dimethylethvl) silyll oxyl -6-ethyl-B .12. 16-trimethyl-4. 4trimethylene-17- (2-methylthiazol-4-Vl) -5-oxo-heptadeca-12. 16dienoic acid and (3S,6S,7R,8S,12E,15S,16E)-3,7,15-tris-II[dimethyl(1,1trimethylene-17-(2-methylthiazol-4-yl)-5-oxo-heptadeca-12,16dienoic acid and (3S. 6R, 7R. S, 12Z, 15S, 16E) 15-tris-rf[dimethyl (1,1dimethylethyllsilylloxy1-6-ethyl-8,12,16-trimethyl-4,4trimethvlene-17- (2-methylthiazol-4-yl) -5-oxo-heptadeca-12. 16dienoic acid and 275 (38,68,7R,88,12E,15S,16E)-3,7,15-tris-[[dimethyl(1,1dimethylethyl)silyl]oxy]-6-ethyl-8,12,16-trimethyl-4,4trimethylene-17-(2-methylthiazol-4-yl)-5-oxo-heptadeca-12,16dienoic acid (D) Analogously to Example lak, lithium diisopropylamide is produced from 842 pl (5.99 mmol) of diisopropylamine and 3.74 ml (5.9'9 mmol) of a 1.6 molar solution of butyllithium in hexane in ml of absolute tetrahydrofuran. A solution of 787 mg (2.4 mmol) of the compound, described under 32h, in 5 ml of absolute tetrahydrofuran is added to this solution at -78 0 C. It is stirred for one more hour at -40 0 C. Then, it is cooled again to -78°C, and a solution of 524 mg (1.2 mmol) of the compound, described under 28r, in 5 ml of absolute tetrahydrofuran is added. It is stirred for another hour at -78°C. Then, the reaction mixture is poured onto saturated aqueous ammonium chloride solution, 0.45 ml of glacial acetic acid is added and allowed to stir for one more hour. Then, it is extracted with ethyl acetate. The organic phase is washed with saturated aqueous sodium chloride solution, dried on sodium sulfate and concentrated by evaporation in a vacuum.- The crude product that is obtained (max. 920 mg is dissolved in 10 ml of dichloromethane and converted into the persilylated compound analogously to Example laq. The crude product that is thus obtained is dissolved in 30 ml of a 1:1 mixture of dichloromethane and methanol. 280 mg (1.2 mmol) of DLcamphorsulfonic acid is added at 0 C and allowed to stir for more hours at this temperature. Then, 2.5 ml of triethylamine is 276 added. Then, it is concentrated by evaporation in a vacuum. The residue-is taken up in dichloromethane. It is washed with IN hydrochloric acid and saturated aqueous sodium chloride solution.
It is dried on sodium sulfate and concentrated by evaporation in a vacuum. The crude product that is obtained is separated by repeated column chromatography on silica gel. Obtained are: 229 mg of compound A, 174 mg of compound B and 292 mg of a mixture of compounds C and D.
'H-NMR (CDC13) of compound A: 6 0.00 0.02 (3H), 9 0.04 0.08 0.13 0.18 0.85-0.99 (33H), 1.79 1.94 2.10-2.28 2.30-2.45 2.48 2.70 2.90 3.78 4.17 4.46 5.19 6.64 6.95 (1H) ppm.
1 H-NMR (CDC13) of compound B: 6 0.00 0.03 (3H), 0.06 0.07 0.14 0.19 0.78-0.98 (33H), 1.55 1.92 2.12-2.50 (10H), 2.69 2.72 3.00 3.88 4.08 4.41 5.10 6.48 6.94 (1H) ppm.
9 Example 32k (3S,6R,7S,8S,12Z,15S,16E)-3,7-Bis-[[dimethyl(1,1-dimethylethyl)silyl]oxy]-15-hydroxy-17-(2-metlththiazol-4-yl)-6-ethyl-8,12,16trimethyl-4,4-trimethylen-5-oxo heptadeca-12,16-dienoic acid Analogously to Example li, 200 mg (100%) of the title compound, which is used without purification in the next step, is obtained from 229 mg (0.26 mmol) of compound A that is described under 32i.
277 Example 321 (4S,7R,BB,9S,13(Z),16S(E))-4,8-Bis-[[dimethyl(1,1-dimethylethyl).
silyl]oxy] -16- (1-methyl-2- (2-methylthiazol-4-yl) ethenyl) -1-oxa-7ethyl-9, 13-trimethyl-5,5-trimethylene-cyclohexadec-13-ene-2, 6dione Analogously to Example law, after purification, 100 mg (51%) of the title compound is obtained from 200 mg (0.26 mmol) of the compound that is described under 32k.
1 H-NMR (CDCl9 65 0. 93 0. 11 (3H) 0. 16 (6H) 0. 83 (9H1), 0.88 0.96 1.02 1.68 2.12 (3H1), 2.30-2.70 (6H) 2.72 (3H1), 3.03 (1H1), 4.07 (1H) 4.43 (1H1), 5.01 5.17 6.58 6.98 (1H) ppm.
Example 32 (4S,7R,8S,9S,13(Z) ,16S(E) )-4,8-Dihydroxy-9,13-dimethyl-7-ethyl- 16- (1-methyl-2- (2-methyl-4-thiazolyl) ethenyl) -1-oxa-5, trimethylene-cyclohexadec-13-ene-2, 6-dione Analogously to Example 1, after purification, 63 mg of the title compound is obtained from 100 mg (0.13 mmol) of the compound that is described under 321.
1 H-NMR (CDCl 3 6 0.95 (311), 1.00 (3H1), 1.68 2.05 2.72 (3H1), 2.97 (111), 3.67 (1H1), 4.46 5.08 (1H1), 5.23 (1H1), 6.59 6.98 (111) ppm.
278 Example 33 (is, 36 (E),7S,0R, 118, 12S, 16R) 11-Dihydroxy-3- (l-methyl-2- (2- Methyl-4-thiazolyl) ethenyl) -12, 16-dimethyl-lO-ethyl-8,atrimethylene-4, 17-dioxabicyclo[14 O]heptadecane-5,9-dione
(A)
and (lR,3S(E) ,7S,10R,11S,12S,16S)-7,11-dihydroxy-3-(l-methyl-2- (2-methyl-4-thiazolyl) ethenyl) -12 ,16-dimethyl-1O-ethyl-8, 8trimiethylene-4, 17-dioxabicyclo[14 O]heptadecane-5,9-dione
(B)
Analogously to Example 14, 24 mg of title compound A and 6 mg of title compound B are obtained from 50 mg (0.10 mmol) of the compound that is described under 32.
'H-NMR (CDCl 3 of compound A: S 0.95 0.98 (MH), 1.30 (3H) 2.07 (3H) 2.71 2.76 3.03 3.69 (1H), 4.44 5 .40 6.58 6.97 (1H) ppm.
'H-NMR (CDCl 3 of compound B: S 0.92 0.95 (3H), 2.10 (3H) 2.71 (3H) 2.88 3.04 3.78 4.49 (1H), 5.53 6.64 6.99 (1H) ppm.
Example 34 4P (4S,7R,8S,9S,13(E) ,16S(E) )-4,8-Dihydroxy-9,13-dimethyl-7-ethyl- 16-(l-methyl-2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5trimethylene-cyclohexadec-13-ene-2, 6-dione 279 Example 34a dimethylethyl) silyijoxy] -l5-hydroxy-17- (2-methylthiazol-4-yl) -6ethyl-B, 12, 16-trimethyl-4, 4-trimethylen-5-oxo-heptadeca-12, 16dienoic acid Analogously to Example li, 151 mg (100%) of the title compound, which is used without purif ication in the next step, is obtained from 174 mg (0.20 mmol) of compound B that is described under Example 32i.
Example 34b C4S,7R,8S,9S,13(E),16S(E))-4,8-Bis-[[dimethyl(1,1dimethylethyl) silylloxy] -16- (l-methyl-2- (2-methylthiazol-4yl) ethenyl) -1-oxa-7-ethyl-9, 13-trimethyl-5, cyclohexadec-13-ene-2, 6-dione Analogously to Example law, after purification, 86 mg (58%) of the title compound is obtained from 151 mg (0.20 mmol) of the compound that is described under 34a.
1 H-NMR (CDCl 3 0.04 0.11 0.13 0.86 (3H1), 0.88 0.93 1.01 1.54 (311), 2.17 (311), 2.24-2.46 2.72 2.83 3.03 4.08 4.53 5.13 5.27 6.53 (1H1), 6.96 (MH) ppm.
280 Example -3-4 (4S,7R,8S,9S,l3 CE) ,16S(E) )-4,8-Dihydroxy-9,13-dimethyl-7-eth-#1- 16- (1-methyl-2- C2-methyl-4-thiazolyl) ethenyl) -l-oxa-5, trimethylene-cyclohexadec-13-ene-2, 6-dione Analogously to Example 1, 39 mg of the title compound is obtained from 86 mg (0.12 mmol) of the compound that is described under -34b.
IH-NMR (CDCl 3 6 0.93 1.06*(3H), 1.53 2.03 2.69 3.09 3.82 4.52 5.03 5.36 6.60 7.03 (1H) ppm.
Example (lR,3S(E) ,7S,1OR,11S,12S,16R)-7,11-Dihydroxy-3-(l-methyl-2-(2methyl-4-thiazolyl) ethenyl) -12, 16-dimethyl-1O-ethyl-8,8trimethylene-4, 17-dioxabicyclo(14. 1.O]heptadecane-5,9-dione (A) and (lS,3S(E) ,7S,1OR,11S,12S,16S)-7,11-dihydroxy-3-(1-methyl-2-(2methyl-4-thiazolyl) ethenyl) -12 ,16-dimethyl-1O-ethyl-8, 8trimethylene-4, 17-dioxabicyclo[14. 1.O]heptadecane-5,9-dione (B) Analogously to Example 14, 10 mg of title compound A and 8 mg of title compound B are obtained from 30 mg (0.06 mmol) of the compound that is described under Example 34.
'H-NMR (CDCl 3 of compound A: 6 0. 95 (3H) 1. 03 (3H) 1.23 2.08 2.71 2.84 3.16 3.82 (1H), 4.52 5.50 6.72 7.06 (1H) ppm.
281 'H-NMR (CDC1 3 of compound B: 6 0.93 0.98 (3H), 1.22 2.06 2.70 2.88 3.05 3.62 4.46 5.41 6.60 6.96 (1H) ppm.
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgement or any form of suggestion that the prior art forms part of the common general knowledge in Australia.
t

Claims (18)

1. Epothilone derivatives of general formula I, 8R 7 R 6 R 5 E RDR 0 R 3 x RIla R- R Ib OH R 2 aR2 Y OH Z in which1V, Ria, Rlb are the same or different and mean hydrogen, C 1 -C 10 alkyl, aryl,. C 7 -C 20 aralkyl, or together a -(CH 2 )M group with mn 2, 3, 4 or Rza, R 2 b are the same or different and mean hydrogen, C 1 -C 1 O alkyl, aryl, C 7 -C 20 aralkyl or together a -(CH 2 )n group with n 2, 3, 4 or 5, whereby, if stands for -CH 2 -CH 2 or Y stands for an oxygen atom, R 2 a/R 2 b cannot be hydrogen/methyl, R3 means hydrogen, C 1 -C 1 0 alkyl, aryl, C 7 1C 20 aralkyl, R 4 a, R 4 b are the same or different and mean hydrogen, C 1 -C 1 alkyl, aryl, C 7 -C 20 aralkyl or together a -(CH 2 P group with p 2, 3, 4 or HO OH HO H H C-CH 2 HC=CH I~ I' c- c- H H H H D-ER means a group R 5 means hydrogen, C 1 -C, 0 alkyl, aryl, C 7 -C 20 aralkyl, 283 R 6 R 7 each mean a hydrogen atom, together an additional bond or an oxygen atom, R 8 means hydrogen, Ci-C 20 alkyl, aryl, C 7 -C 20 aralkyl, which can all be substituted, X means an oxygen atom, two alkoxy groups OR 23 a C2-C10 alkylene-a,6-dioxy group, which can be straight-chain or branched, H/OR 9 or a grouping CR'R" 1 whereby R 23 stands for a Ci-C 20 alkyl radical, SR 9 stands for hydrogen or a protective group PGX, SR 1 R 11 are the same or different and stand for hydrogen, a C,-C 20 alkyl, aryl, C,-C 20 aralkyl radical or R 10 and R 11 together with the methylene carbon atom together stand for a 5- to 7-membered carbocyclic ring, Y means an oxygen atom or two hydrogen atoms, Z means an oxygen atom or H/OR 12 whereby SR 12 means hydrogen or a protective group PGz.
2. Epothilone derivatives of general formula I according to claim 1, in which Y, Z, R la R1b, R 2 a and R 2 b all can have the meanings that are indicated in general formula I, and the remainder of the molecule is identical to naturally occurring epothilone A or B.
3. Epothilone derivatives of general formula I according to claim 17 in which R 3 R 4a R 4 b, D-E, R 5 R 6 and R 7 all can have the meanings that are indicated in general formula I, and the 284 remainder of the molecule is identical to naturally occurring epothilone A or B.
4. Epothilone derivatives of general formula I according to claim 1, in which R 6 R 7 R 8 and X all can have the meanings that are indicated in general formula I, and the remainder of the molecule is identical to naturally occurring epothilone A or-B. Epothilone derivatives of general formula I according to claim 1, in which Y, Z, R l a, Rb, 2 R 2 Rb R 3 R 4 8, R 4 b, D-E, R 5 R 6 and R 7 all can have the meanings that are indicated in general formula I, and the remainder of the molecule is identical to naturally occurring epothilone A or B.
6. Epothilone derivatives of general formula I according to claim 1, in which Y, Z, R 1a Rib, R 2 a, R 2b R 6 R 7 R 8 and X all can have the meanings that are indicated in general formula I, and the remainder of the molecule is identical to naturally occurring epothilone A or B.
7. Epothilone derivatives of general formula I according to claim 1, in which R 3 R 4 a, R 4 b, D-E, R 5 R 6 R 7 R 8 and X all can have the meanings that are indicated in general formula I, and the remainder of the molecule is identical to naturally occurring epothilone A or B.
8. Compounds of general formula I, namely (4S,7R,8S,9S,13(Z),16S(E))-4,8-Dihydroxy-7-ethyl-16-(1- methyl-2-(2-methyl-4-thiazolyl)ethenyl)-l-oxa-5,5,9,13- tetramethyl-cyclohexadec-13-ene-2,6-dione, and 285 (4S2L.R,8S,9S, 13E, 16S(E) -4,8-dihydroxy-7 -ethyl -16-(1-methyl- 2-(2-rethyl-4-thiazolyl)ethenyl)-l-oxa-5,5,9,13-tetramethyl- cyclohexadec-13-ene-2, 6-dione (B) (2-methyl-4-thiazolyl) ethenyl) -10-ethyl-B, 8,12, 16-tetramethyl- 4, 17-dioxabicyclo[14. 1.0]heptadecane-5, 9-dione and (1R,3S(E),7S,10R,11S,12S,16s)-7,11-dihydroxy-3-(l-rnethyl-2- S (2-methyl-4-thiazolyl)ethenyl)-10-ethyl-8,8,12,16-tetramethyl- 4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione (lS,3-S(E) ,7S,1OR,11S,12S,16S)-7,11-Dihydroxy-3-(1-methyl-2- (2-methyl-4-thiazolyl) ethenyl) -10-ethyl-B, 8,12, 16-tetramethyl- 4,17-dioxabicyclo[14.1.0]heptadecane-5,9-dione and (lR,3S(E),7S,lOR,l1S,12S,16R)-7,ll-dihydroxy-3-(1-methyl-2- (2-methyl-4-thiazolyl) ethenyl) -10-ethyl-B,8,12, 16-tetramethyl- 4, 17-dioxabicyclo 114.1.0] heptadecane-5, 9-dione (4S,7S,8R,9S,13Z,16S(E))-4,8-Dihydroxy-7-ethyl-16-(l-methyl- 2- (2-methyl-4-thiazolyl) ethenyl) -1-oxa-5,5,9, 13-tetramnethyl- cyclohexadec-13-ene-2, 6-dione and (4S,7S,8R,9S,13E,16S(E))-4,8-dihydroxy-7-ethyl-16-(1-methyl- 2- (2-methyl-4-thiazolyl) ethenyl) -l-oxa-5, 5,9, 13-tetramethyl- cyclohexadec-13-ene-2, 6-dione (1S-,3S(E) ,7S,lOS,I1R,12S,16R)-7,ll-Dihydroxy-3-(1-methyl-2- (2-methyl-4-thiazolyl) ethenyl) -10-ethyl-B, 8,12, 16-tetramethyl- 286 4, 17-dioabicyclo[14. 1.0]heptadecane-5, 9-diane, and (2-methyl-4-thiazalyl) ethenyl) -10-ethyl-B, 8,12, 16-tetramethyl- 4, 17-dioxabicyclo [14.1.0] heptadecane-5, 9-diane (1S, 3S ,7S, 10S, 11R, 12S, 16R) -7,11-Dihydrxy-3- (1-methyl2- (2-methyl-4-thiazolyl)ethenyl.)-10-ethyl-8,8, 12, 16-tetramethyl- 4, 17-dioxabicycla[14. 1.0]heptadecane-5,9-dione, and (1R, 3S(E) 7S, OS, 11R, 12,16S) -7,11-dihydxy--...meyl..2 (2-methyl-4-thiazolyl) ethenyl) -10-ethyl-B, 8, 12, 16-tetramethyl- 4, 17-dioarabicyclo [14.1.0] heptadecane-5, 9-diane (4S,7R,8S,9S,13(Z),16S(E))-4,8-Dihydroxy-5,5,7,g,13- pentamethyl-16- (3-pyridyl) ethenyl) -1-oxa-cyclohexadec-13-ene- 2,6-diane, and (4S,7R,8S,9S,13E,16S(E))-4,8-dihydroxy-5,5,7,9,13- pentamethyl-16-( (3-pyridyl) ethenyl) -1-oxa-cyclohexadec-13-ene- 2,6-diane (1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16- pentamethyl-3- ((3-pyridyl) ethenyl) -4,17- dioxabicyclo[14.1. Q]heptadecane-5, 9-diane, and (1S,3S(E),7S,1OR,11S,12S,16S)-7,11-dihydroxy-8,8,1o,12,16- pentamethyl-3- ((3-pyridyl) ethenyl) -4,17- dioxabicycla[ 14.1. 0]heptadecan~p-5, 9-diane 287 (4S,7R,BS,9S,13(Z),16S(E))-4,8-Dihydroxy-5,5,7,9,13- pentam'ethyl-16- ((4-pyridyl) ethenyl) -1-oxa-cyclohexadec-13-ene- 2,6-dione, and (4S,7R,8S,9S,13E,16S(E))-4,8-dihydroxy-5,5,7,9,13- pentamethyl-16- ((4-pyridyl) ethenyl) -1-oxa-cyclohe xadec-13-ene- 2, 6-dione (1S,3S(E),7S,1OR,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16- pentamethyl-3- ((4-pyridyl) ethenyl) -4,17- dioxabicyclo[14. 1.O]heptadecane-5, 9-dione, and pentamethy1-a- ((4-pyridyl) ethenyl) 17- dioxabicyclo(14 0]heptadecane-5, 9-dione (4S,7R,8S,9S,13(E or Z),16S(E))-4,8-Dihydroxy-16-(1-methyl- 2- (2-methyl-4-thiazolyl) ethenyl) -1-oxa-7-phenyl-5, 5,9, 13- tetramethyl-cyclohexadec-13-ene-2, 6-dione (1(S or R),3S(E),7S,1OR,11S,12S,16R)-7,11-Dihydroxy-3-(1- tetramethyl-4, 17-dioxabicyclo [14.1.0] heptadecane-5, 9-dione (1(R or S),3S(E),7S,1OR,11S,12S,16S)-7,11-Dihydroxy-3-(1- xnethyl-2- (2-methyl-4-thiazolyl) ethenyl) -10-phenyl-8, 8,12,16- tetramethyl-4, 17-dioxabicyclo [14. 1.0] heptadecane-5, 9-dione 288 (4S,7R,8S,9S,13(E or Z) ,16S(E) )-7-Benzyl-4,8-dihydroxy-16- tetramethyl-cyclohexadec-13-ene-2, 6-dione (1(S or R),3S(E),7S,1OR,11S,12S,16R)-1-Beizyl-7,11- dihydroxy-3-(l-methyl-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,12,16- tetramethyl-4, 17-dioxabicyclo [14. 1. 0]heptadecane-5, 9-dione (1(R or S) ,3S(E),7S,1OR,11S,12S,16S)-10-Benzyl-7,11- dihydroxy-3-(l-methyl-2-(2-methyl-4-thiazolyl)ethenyl)- 8,8,1O,IZ2,16-tetramethyl-4,17-dioxabicyclorl4.1.O]heptadecane-
9-dione (4S,7R,8S,9S,13(E or Z),16S(E))-4,8-Dihydroxy-16-(1-methyl- 2-(2-methyl-4-thiazolyl) ethenyl) -1-oxa-5, 5,7, 13-tetramethyl-9- trifluoromethyl-cyclohexadec-13-ene-2, 6-dione (1(S or R),3S(E),7S,1OR,11S,12S,16R)-7,11-Dihydroxy-3-(1- 9 xethyl-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,16-tetramethyl-12- trifluoromethyl-4, 17-dioxabicyclo [14. 1.0] heptaaecane-5, 9-dione (1(R or S),3S(E),7S,1QR,11S,12S,16S)-7,11-Dihydroxy-3-(1- maethyl-2- (2-methyl-4-thiazolyl) ethenyl) -8,8,10, 16-tetramethyl-12- trifluoromethyl-4, 17-dioxabicyclo [14. 1.0] heptadecane-5, 9-dione 289 (4S,7R,8S,9S,11E/Z,13(E or Z),16S(E))-4,8-Dihydroxy-16-(1- methyl-2- (2-methyl-4-thiazolyl) ethenyl) -1-oxa-5,5,7,9, 13- pentamethyl-cyclohexadec-il, 13-diene-2, 6-dione (1(S or R) ,3S(E),7S,10R,11S,12S,14E/Z,16R)-7,11-Dihydroxy-3- (1-methyl-2- (2-methyl-4-thiazolyl) ethenyl) 10,12,16- pentamethyl-4, 17-dioxabicyclo[ 14.1. 0]heptadec-14-ene-5, 9-dione (1(R or S) ,3S(E),7S,1OR,11S,12S,14E/Z,16S)-7,11-Dihydroxy-3- 41(1-methyl-2- (2-methyl-4-thiazolyl) ethenyl) 10,12,16- pentametIky1-4, 17-dioxabicyclo[ 14. 1. 0]heptadec-14-ene-5, 9-dione (4S,7R,8S,9S,13(E or Z) ,16S(E))-4,8-Dihydroxy-16-(1-methyl- 2-(2-methyl-4-thiazolyl)ethenyl)-1-oxa-5,5,7,9,.13-pentamethyl- cyclohexadec-13-ene-11-ine-2, 6-dione (1(S or R),3S(E),7S,1OR,11S,12S,16R)-7,11-Dihydroxy-3-(1- methyl-2- (2-methyl-4-thiazolyl) ethenyl) -8,8,10,12, 16-pentamethyl- q 4,17-dioxabicyclo[14.1.0]heptadec-14-ine-5,9-dione (1(R or S),3S(E),7S,10R,11S,12S,16S)-7,11-Dihydroxy-3-(1- inethyl-2- (2-methyl-4-thiazolyl) ethenyl) -8,8,10,12, 16-pentamethyl- 4, 17-dioxabicyclo heptadec-14-ine-5, 9-dione (4S,7R,8S,9S,13(E or Z) ,16S(E))-4,8-Dihydroxy-16-(1-methyl- 2- (2-metjiyl-4-thiazolyl) ethenyl) -1-oxa-5, 5,7, 9-tetramethyl-13- trifluoromethyl-cyclohexadec-13-ene-2, 6-dione 290 R),3S(E),7S,1OR,11S,12S,16R)-7,11-Dihydroxy-3-(1- methyl-2- (2-methyl-4-thiazolyl) ethenyl) 10, 12-tetramethylW-16- trifluoromethyl-4, 17-dioxabicyclo [14. 1. 0)heptadeca-5, 9-dione (1(R or S),3S(E),7S,1.OR,11S,12S,16S)-7,11-Dihydroxy-3-(1- methyl-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12-tetramethyi-16- trifluoromethyl-4, 17-dioxabicyclo [14.1. 0] heptadeca-5, 9-dione (4S,7R,8S,9S,13(E or Z),16S(E))-4,8-Dihydroxy-16-(1-methyl- 9 2-(2-methyl-4-thiazolyl) ethenyl) -1-oxa-13-pentafluoroethyl- 5,5,7, 9-fetramethyl-cyclohexadec-13-ene-2 ;6-dione (1(S or -R),3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(1- methyl-2- (2-methyl-4-thiazolyl) ethenyl) -16-pentafluoroethyl- 8,8,10, 12-tetramethyl-4, 17-dioxabicyclo [14.1.0] heptadeca-5, 9- dione (1(R or S),3S(E),7S,1OR,11S,12S,16S)-7,11-Dihydroxy-3-(1- Q methyl-2-(2-methyl-4-thiazolyl)ethenyl)-16-pentafluoroethyl- 8,8,10, 12-tetraniethyl-4, 17-dioxabicyclo [14.1.0] heptadeca-5, 9- dione (4S,7R,8S,9S,13(E or Z) ,16S(E))-4,8-Dihydroxy-16-(1-methyl- 2-(2-methyl-4-thiazolyl) ethenyl) -1-oxa-5, 3-trimethylene) 7,9, 13-trilnethyl-cyclohexadec-13-ene-2 ,6-dione 291 (1(S or R),3S(E),7S,1OR,11S,12S,16R)-7,11-Dihydroxy-3-(l- methyl-2-.(2-me thyl-4-thiazolyl) ethenyl) 3-trimethylene 10,12, 16-trimethyl-4, 17-dioxabicyclo [14.1.0] heptadeca-5, 9-dione (1(R or S) ,3S(E),7S,1OR,11S,12S,16S)-7,11-Dihydroxy-3-(1- methyl-2- (2-methyl-4-thiazolyl) ethenyl) 3-trimethylene) 12, 16-trimethyl-4, 17-dioxabicyclo[ 14.1. 0]heptadeca-5,9-dione (4S,7R,8S,9S,11E/Z,13(E or Z),'16S(E))-4,8-Dihydroxy-13- 5,5,7, 9-tetramethy1-cyclohexadec-11,13-diene-2, 6-dione (1(S or R),3S(E),7S,1OR,11S,12S,14E/Z,16R)-7,11-Dihydroxy-
16-ethyl-3-(1-methyl-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12- tetramethyl-4, 17-dioxabicyclo[14.1. 0]heptadec-14-ene-5,9-dione (1(R or S),3S(E),7S,10R,11S,12S,14E/Z,16S)-7,11-Dihydroxy- 16-ethyl-3-(1-methyl-2-(2-methyl-4-thiazolyl)ethenyl)-8,8,10,12- q tetramethyl-4,17-dioxabicyclo[14.1.0]heptadec-14-ene-5,9-dione (4S,7R,8S,9S,11E/Z,13(E or Z),16S(E))-4,8-Dihydroxy-16-(1- methyl-2- (2-methyl-4-thiazolyl) ethenyl) -1-oxa-13-propyl-5,5,7,9- tetramethyl-cyclohexadec-1i, 13-diene-2 ,6-dione (1(S or R) ,3S(E),7S,1OR,I1S,12S,14E/Z,16R)-7,11-Dihydroxy-3- tetramethyl-4, 17-dioxabicyclo[ 14.1. 0)heptadec-14-ene-5 ,9-dione 292 S),3S(E),7S,1OR,11S,12S,14E/Z,16S)-7,11-Dihydroxy-3- (1-methyl-2- (2-methyl-4-thiazolyl) ethenyl) -16-propyl-8, 8,10, it- tetramethyl-4, 17-dioxabicyclo[14.1. 0]heptadec-14-ene-5,9-dione (4S,7R,8S,9S,13(E or Z) ,16S(E) )-4,8-Dihydroxy-16-(1-methyl- 2- (2-pyridyl) ethenyl) -1-oxa-5, 5,7,9, 13-pentamethyl-cyclohexadiec- 13-ene-2, 6-diane. (1(S or R) ,3S(E),7S,1OR,11S,12S,16R)-7,11-Dihydroxy-3-(1- methyl-2- (2-pyridyl) ethenyl) 10,12, 16-pentamethyl-4, 17- dioxabic-clo[14. Oheptadecane-5, 9-dione (1(R or S),3S(E),7S,1OR,11S,12S,16S)-7,11-Dihydroxy-3-(1- methyl-2-(2-pyridyl)ethenyl)-8,8,10 12,16-pentamethyl-4,17- dioxabicyclo [14. 1.0] heptadecane-5, 9-dione (4S,7R,8S,9S,13(E or Z) ,16S(E))-4,8-Dihydroxy-16-(1-nethyl- 2-(4-pyridyl)ethenyl)-1-oxa-5,5,7,9,13-pentamethyl-cyclohexadec- Q 13-ene-2, 6-diane (1(S or R),3S(E),7S,1OR,11S,12S,16R)-7,11-Dihydroxy-3-(1- xnethyl-2- (4-pyridyl) ethenyl) 10,12, 16-pentamethyl-4,17- dioxabicyclo [14. 1.0] heptadecane-5, 9-diane (1(R or S),3S(E),7S,1OR,11S,12S,16S)-7,11-DihydroxyT-3-(1- methyl-2- (4-pyridyl) ethenyl) -8 10, 12, 16-pentamethyl-4, 17- dioxabicyclo [14. 1.0) heptadecane-5, 9-diane 293 (4S,-7-R,8S,9S,13(E or Z) ,16S(E))-4,8-Dihydroxy-16-(l-methyl- 2-(2-xethyl-4-thiazolyl)ethenyl)-5,5,7,9,l3-pentamethyl- cyclohexadec-13 -en-6-one (1(S or R),3S(E),7S,10R,11S,12S,l6R)-7,ll-Dihydroxy-3-(.z- methyl-2- (2-methyl-4-thiazolyl) etheriyl) -8,8,10,12, 16-pentamethyl- 4, 17-dioxabicyclo [14. 1.0) heptadec-9-one (1(R or S) ,3S(E) ,7S,10R,11S,12S,.16S)-7,11-Dihydroxy-3-(.1- methyl-2-(2-methyl-4-thiazolyl) ethenyl) 10,l2,16-pentamethyl- 4,17-dioxabicyclo[14.1.0]heptadec-9-one. 9. Process for the production of epothilone derivatives of general formula I according to claim 1 R 8 R DIE RDR 4b 3 x ~R .R 4 a Ri1b OH 0Y OH Z R2R2 in which the substituents have the meanings that are indicated in general formula I, characterized in that 294 a fragment of general formula A R' RIb' R 2 b R 13 R 2 e R O A, in which R l R 1 R 2 a' and R 2 b' have the meanings already mentioned for R l a, RIb, R 2 a and R 2b R 13 means CH 2 OR 1 3 a, CH 2 -Hal, CHO, CO 2 R 1 3 b, COHal, R 1 4 means hydrogen, OR 14a Hal, OSO2R 14 b R 1 3 a, R 148 mean hydrogen, SO2-alkyl, SO 2 -aryl, SO2-aralkyl or together a -(CH 2 o group or together a CR 5 SaR 15 b group, R 13 b, R 1 4 b mean hydrogen, CI-C 20 alkyl, aryl, CI-C 20 aralkyl, R 15a R 15 b are the same or different and mean hydrogen, C 1 -Co alkyl, aryl, C 7 -C 20 aralkyl or together a -(CH 2 )q group, Hal means halogen, o means 2 to 4, q means 3 to 6, including all stereoisomers as well as their mixtures, and free hydroxyl groups in R 13 and R 14 can be etherified or esterified, free carbonyl groups can be ketalized in A and R 13 converted into an enol ether or reduced, and free acid groups in A can be converted into their salts with bases, is reacted with a fragment of general formula B R 5 R4 R 4 b SE R 3 v D W 295 in which R 3 R 4a R 4 b' and R 5 have the meanings already mentioned for R 3 R 4 a, R 4 b and R s and V means an oxygen atom, two alkoxy groups OR 17 a alkylene-a,&-dioxy group, which can be straight-chain or branched or H/OR 1 6 W means an oxygen atom, two alkoxy groups OR 19 a C2-C10 alkylene-a,&-dioxy group, which can be straight-chain or branched or H/OR 1 8 R 16 R 1 8 independently of one another, mean hydrogen or a protective group PG 1 R 1 7 R 19 independently of one another, mean C 1 -C 20 alkyl, to a partial fragment of general formula AB AB, in which Ria', R 1 R 2 a' R 2 b' R 3 R 4 a, R 4 b, R 5 R 13 R 14 D, E, V and Z have the meanings already mentioned, and PG 14 represents a hydrogen atom or a protective group PG, and this partial fragment AB is reacted with a fragment of 296 general formula C R R OR R 2 C in which R 8 has the meaning already mentioned in general formula I for R 8 and R 7 ,means a hydrogen atom, R 20 means a hydrogen atom or a protective group PG 2 R 21 means a hydroxy group, halogen, a protected hydroxy group OPG 3 a phosphonium halide radical PPh 3 +Hal" (Ph phenyl; Hal F, Cl, Br, a phosphonate radical P(O) (OQ) 2 (Q C,-C 0 alkyl or phenyl) or a phosphine oxide radical P(O)Ph 2 (Ph phenyl), U means an oxygen atom, two alkoxy groups OR 23 a alkylene-a,b-dioxy group, which can be straight-chain or branched, H/OR 9 or a grouping CR 10 I 1 whereby R 23 stands for a Ci-C 20 alkyl radical, R 9 stands for hydrogen or a protective group PG 3 R 10 R 1 are the same or different and stand for hydrogen, a C 1 20 alkyl, aryl, C 7 -C 20 aralkyl radical or R 10 and R 1 together with the methylene 297 carbon atoms together stand for a 5- to 7-membered carbocyclic ring, to a partial fragment of general formula ABC ABC, in which R l Rib', R 2 R 2 R 3 R 4 a, R 4 b, R 5 R 6 R 7 R 8 R 13 R 14 D, E, U and Z have the meanings already mentioned, and this partial fragment of general formula ABC is cyclized to an epothilone derivative of general formula I. Pharmaceutical preparations that contain at least one compound of general formula I according to claim 1, as well as a pharmaceutically compatible vehicle. 11. Use of the compounds of general formula I according to claim 1 for the production of pharmaceutical agents. 12. Process for the production of compounds of general 298 formula A 0 in which R 2 means CH20R 2 CHO, CO 2 R 2 b, COX, R 2a R 2 b mean hydrogen, CI-C 20 alkyl, aryl, C,-C 20 aralkyl, R 3 means hydrogen, OR 3 a, X, OSO 2 R 3 b, R 3 a means hydrogen or together with R 2 a a -(CH 2 )n group or a CR 6 aR 6 b group, R 3 b means Cl-C 4 alkyl, aryl, X means halogen, n means 2 to 4, R 6 a, R 6 b are the same or different and mean C,-C 8 alkyl, C -CI aryl or together a -(CH 2 o group, o means 3 to 6, R 6 a additionally can assume the meaning of hydrogen, R 4 a, R 4 b are the same or different and mean hydrogen, CI-C 1 0 alkyl, C,-C 20 aralkyl or together a -(tH 2 )m group, m means 2 to R 5 a, R 5 b are the same or different and mean hydrogen, CI-C 1 0 alkyl, C 7 -C 20 aralkyl or together a -(CH 2 p group, p means 2 to R 5 C means hydrogen, including all stereoisomers and mixtures thereof, and 299 free hydroxyl groups can be etherified or esterified in R 2 and R 3 free carbonyl groups can be ketalized in A and R 2 converted into an enol ether or reduced, and free acid groups in A can be converted into their salts with bases, wherein a) a pantolactone of general formula IIa or R4 R 4 b HOII a in which R 4 a and R 4 b in each case are methyl groups or b) a malonic acid dialkyl ester of general formula XXVIII 4a 4b SR" Alkyl-O 2 C CO-AlkyI XXVIII in which R 4 a, R 4 b, which have the meaning that is indicated in general formula A, and alkyl, independently of one another, mean a alkyl, C 3 -C 0 cycloalkyl or C 4 -C 2 0 alkylcycloalkyl radical, is used as a starting product. 13. Compounds of general formula A' Ra R 4 b R 5 c R R2 R5b a R3 O A, 300 in which R 2 means CHOR2a CHO, COR 2 b COX, R 2 a, R 2 b mean hydrogen, CI-C 20 alkyl, aryl, C 7 -C 20 aralkyl, R 3 means hydrogen, OR 3 a, X, OSO 2 R 3 b, R 3 a means hydrogen or together with R 2 8 a -(CH 2 n group or a CR6aR 6 b group, R 3 b means C,-C 4 alkyl, aryl, X means halogen, n means 2 to 4, R 6 8, R 6 b are the same or different and mean CI-C 8 alkyl, C 6 -Cio aryl or together a -(CH 2 o group,. o means 3 to 6, R 6a additionally can assume the meaning of hydrogen, R 4 a, R 4 b are the same or different and mean hydrogen, CI-C 10 alkyl, C 7 -C 20 aralkyl or together a -(CH 2 )m group, m means 2 to R 5a R 5 b are the same or different and mean hydrogen, C-CI, alkyl, C 7 -C 20 aralkyl or together a -(CH 2 )p group, p means 2 to R 5 c means hydrogen, including all stereoisomers and mixtures thereof, and free hydroxyl groups can be etherified or esterified in R 2 and R 3 free carbonyl groups can be ketalized in A and R 2 converted into an enol ether or reduced, and free acid groups in A can be converted into their salts with bases, 301 excluding the compounds 2 6 4 0 0 0 OH 0 OPO0 P =..ZBS 14. P rocess for the production of compounds of general formula All H0 2 C .4 1 in which R 3 means OR~a and R 3 8 means hydrogen or a protective group PG R 4 8 R Q are the same or different and m .ean hydrogen, -C-C 1 -alkyl, C 7 -0 2 0 -aralkyl, or together a -(CH 2 group, m means 302 R 5 b are the same or different and mean hydrogen, .C,-Co-alkyl, C 7 -C 20 -aralkyl, or together a -(CH 2 )p group, p means including all stereoisomers and mixtures thereof, and free carbonyl groups can be ketalized in A", wherein a compound of general formula II 0 o O 3 4 II in which X is a chlorine or bromine atom, and the 2-oxazolidinone ring has either a (4R,5S) or a (4S,5R) conformation, is reacted with a compound of general formula III R 4 a R 4 b H III R 5 b O O in which R 4 a, R 4 b are the same or different and mean hydrogen, C 1 -Clo-alkyl, C 7 -C 20 -aralkyl, or together a -(CH 2 )m group, m means 303 R 5a R 5b are the same or different and mean hydrogen, C,-Co-alkyl, C 7 -C 20 -aralkyl, or together a -(CH 2 p group, p means to a compound of general formula IV o 0 OH 0 0 'N "a R4a R4b R R R IV in which the 2-oxazolidinone ring (4R,5S) and the 3'-carbon atom have an R conformation, or the 2-oxazolidinone ring (4S,5R) and the 3'-carbon atom have an S conformation, the 3'-hydroxy group in IV is protected by a protective group PG, the oxazolidinone ring is cleaved, and protective group PG is optionally cleaved. Process according to claim 14, wherein the compound of general formula II is reacted in the presence of chromium(II) chloride with a compound of general formula III. 16. Process according to claim 14 or 15, wherein the cleaved oxazolidinone ring is recovered in an enantiomer-pure manner. 304
17. Compounds of general formula C in which R 1 means hydrogen, CI-C 20 alkyl, aryl, C7-C20 aralkyl, which can all be substituted, R 2 means hydrogen or a protective group PG 1 R 3 -means a hydroxy group, halogen, a protected hydroxy group OPG 2 a phosphonium halide radical PPh 3 *Hal" (Ph phenyl; Hal F, Cl, Br, a phosphonate radical P(O)(OQ) 2 (Q=C,-C 1 0 alkyl or phenyl) or a phosphine oxide radical P(O)Ph 2 (Ph phenyl), X means an oxygen atom, two alkoxy groups OR 4 a C2-C10 alkylene-a,b-dioxy group, which can be straight-chain or branched, H/OR 5 or a grouping CRR 7 whereby R 4 stands for a C 1 -C 20 alkyl radical", R 5 stands for hydrogen or a protective group PG 3 R 6 R 7 are the same or different and stand for hydrogen, a CI-C 20 alkyl, aryl, C 7 -C 20 aralkyl radical or R 6 and R 7 together with the methylene carbon atom together stand for a 5- to 7-membered carbocyclic ring, whereby not simultaneously 9 305 can be a methyl group, R 2 can be a tert- butyldimethylsilyl or benzyl radical, R 3 can b an O-tert-butyldimethylsilyl radical and X can be a (2-methylthiazol-4-yl)methylene radical or R 1 can be a methyl group, R 2 can be a tert- butyldimethylsilyl radical, R 3 can be a triphenylphosphonium iodide radical and X can be a (2-methylthiazol-4-yl)methylene radical. 3 18. Compounds of general formula C according to claim 17, wherein R 1 stands for a hydrogen atom, an optionally substituted C 1 -C 4 alkyl radical, a phenyl radical that is optionally substituted with 1 to 3 radicals, selected from the group of substituents halogen, free hydroxy group or protected hydroxy group OPG 4 C -C 4 alkyl, azido, nitro, nitrile, and amino (NH 2
19. Compounds of general formula C according to claim 17, wherein X stands for an oxygen atom. Compounds of general formula C according to claim 17, wherein the aryl radical that stands for R 6 and/or R 7 stands for 9 a phenyl radical that is optionally substituted with 1 to 3 radicals, selected from the group of substituents halogen, free hydroxy group or protect hydroxy group OPG 5 C,-C 4 alkyl, azido, nitro, nitrile, amino (NH 2 or for a 5- or 6-membered heteroaryl radical that is optionally substituted with 1 to 2 CI-C 4 alkyl radicals.
21. Compounds of general formula C according to claim wherein the aryl radical that stands for R 6 and/or R 7 is selected from the group 3-furanyl; 4-pyridinyl; 306 thiazolyl4 4- and 5-imdiazolyl radical, which optionally is substituted by l:or 2 C1-C 4 alkyl radicals.
22. Compounds of general formula C according to claim 17, wherein protective groups PGI, PG 2 and PG 3 are selected from the group of substituents methoxymethyl, methoxyethyl, ethoxyethyl, tetrahydropyranyl, tetrahydrofuranyl, trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, tribenzylsilyl, triisopropylsilyl, benzyl, para-nitrobenzyl, para-methoxybenzyl, formyl, acetyl, propionyl, isopropionyl, pivalyl, butyryl, or benzoyl radical.
23.- Compounds according to claim 18, wherein protective group PG4 is selected from the group of substituents methoxymethyl, methoxyethyl, ethoxyethyl, tetrahydropyranyl, tetrahydrofuranyl, trimethylsilyl, triethylsilyl, tert- butyldimethylsilyl, tert-butyldiphenylsilyl, tribenzylsilyl, triisopropylsilyl, benzyl, para-nitrobenzyl, para-methoxybenzyl, formyl, acetyl, propionyl, isopropionyl, pivalyl, butyryl or benzoyl radical.
24. Compounds according to claim 20, wherein protective 54 group PG 5 is selected from the group of substituents methoxymethyl, methoxyethyl, ethoxyethyl, tetrahydropyranyl, tetrahydrofuranyl, trimethylsilyl, triethylsilyl, tert- butyldimethylsilyl, tert-butyldiphenylsilyl, tribenzylsilyl, triisopropylsilyl, benzyl, para-nitrobenzyl, para-methoxybenzyl, formyl, acetyl, propionyl, isopropionyl, pivalyl, butyryl or benzoyl radical. 307 according to claim 22, wherein protective group PG 1 is a tert-butyldiphenylsilyl, tert-butyldimethylsilfl or triisopropylsilyl radical.
26. Compounds according to claim 22, wherein protective group PG 2 is a tert-butyldimethylsilyl, acetyl, benzoyl, benzyl or tetrahydropyranyl radical.
27. Process for the production of compounds of general formula C' in which R 1 means hydrogen, CI-C 20 alkyl, aryl, C7-C 20 aralkyl, which can all be substituted, R 2 means hydrogen or a protective group PG, R 3 means a hydroxy group, halogen, a protected hydroxy group OPG 2 a phosphonium halide radical PPh 3 Hal" (Ph phenyl; Hal F, Cl, Br, a phosphonate radical P(O) (OQ) 2 (Q=CI-Co alkyl or phenyl) or a phosphine oxide radical P(O)Ph 2 (Ph phenyl), X means an oxygen atom, two alkoxy groups OR 4 a C2-C10 alkylene-a,-dioxy group, which can be straight-chain or branched, H/OR 5 or a grouping CR 6 R 7 whereby R 4 stands for a CI-C 20 alkyl radical, R 5 stands for hydrogen or a protective group PG 3 308 R 6 R 7 are the same or different and stand for hydrogen, a C-C 20 alkyl, aryl, C 7 -C 20 aralkyl l radical or R 6 and R 7 together with the methylene carbon atom together stand for a 5- to 7-membered carbocyclic ring, wherein L-(-)-malic acid, D-(+)-malic acid or racemic malic acid is used as a starting product.
28. Process according to claim 27, wherein L-(-)-malic acid or D-(+)-malic acid is used. 2 29. Intermediate compounds of general formula VI" R' R 5 0s OPG 2 H OPG in which R 1 PG 1 and R 5 have the meaning that is indicated in general formula C, and PG 2 stands for a hydrogen atom or a protective group PG 2 Process for the production of the compounds of general S formula VI" according to claim 29, wherein an organometal compound of general formula R'Y in which R' has the meaning that is indicated in general formula and Y stands for an alkali metal atom or MZ, whereby M is a divalent metal atom and Z is a halogen atom, 309 is added to a compound of general Formula IV HO' PG' in which PG 1 has the meaning that is indicated in general Formula C, while the lactol ring is opened, and then optionally the primary hydroxy group is protected with a protective group PG 2 and optionally the secondary group is 3 protected with a protective group PG 3 DATED this 24th day of May, 2002 SCHERING AKTIENGESELLSCHAFT By its Patent Attorneys DAVIES COLLISON CAVE 9
AU44386/02A 1997-08-09 2002-05-24 New epothilone derivatives, process for their production, and their pharmaceutical use Abandoned AU4438602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU44386/02A AU4438602A (en) 1997-08-09 2002-05-24 New epothilone derivatives, process for their production, and their pharmaceutical use

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE19735575 1997-08-09
DE19735574 1997-08-09
DE19735578 1997-08-09
DE19748928 1997-10-24
DE19749717 1997-10-31
DE19751200 1997-11-13
DE19813821 1998-03-20
AU44386/02A AU4438602A (en) 1997-08-09 2002-05-24 New epothilone derivatives, process for their production, and their pharmaceutical use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU93409/98A Division AU9340998A (en) 1997-08-09 1998-08-10 New epothilone derivatives, method for producing same and their pharmaceutical use

Publications (1)

Publication Number Publication Date
AU4438602A true AU4438602A (en) 2002-07-11

Family

ID=3731565

Family Applications (1)

Application Number Title Priority Date Filing Date
AU44386/02A Abandoned AU4438602A (en) 1997-08-09 2002-05-24 New epothilone derivatives, process for their production, and their pharmaceutical use

Country Status (1)

Country Link
AU (1) AU4438602A (en)

Similar Documents

Publication Publication Date Title
US7407975B2 (en) Epothilone derivatives, method for producing same and their pharmaceutical use
US20060040990A1 (en) Epothilone derivatives, process for their production, and their pharmaceutical use
KR100718616B1 (en) 16-Halogen-Epothilone Derivatives, Method for producing them, and their Pharmaceutical Use
WO2000000485A1 (en) Epothilon derivatives, their preparation process, intermediate products and their pharmaceutical use
US20040058969A1 (en) Novel epothilone derivatives, method for the preparation thereof and their pharmaceutical use
PL210762B1 (en) 6-alkenyl-, 6-alkinyl- and 6-epoxy-epothilone derivatives, process for their production, and their use in pharmaceutical preparations
AU4438602A (en) New epothilone derivatives, process for their production, and their pharmaceutical use
DE19908767A1 (en) New stable, modified epothilone derivatives, are cell division regulators useful for treating malignant tumors, angiogenesis or chronic inflammatory disease
DE19751200A1 (en) New epothilone derivatives
DE19908765A1 (en) New, chemically and metabolically stable 16-halo or cyano-epothilone derivatives are cell division regulators useful e.g. for treating malignant tumors or chronic inflammatory disease
DE19830060A1 (en) New epothilone derivatives, used as mitosis regulators e.g. for treating malignant tumors, psoriasis or arthritis
AU2004200948A1 (en) Epothilon derivatives, method for the production and the use thereof as pharmaceuticals
DE19954230A1 (en) New, chemically and metabolically stable 16-halo or cyano-epothilone derivatives are cell division regulators useful e.g. for treating malignant tumors or chronic inflammatory disease
DE19923001A1 (en) New epothilone derivatives, used as mitosis regulators e.g. for treating malignant tumors, psoriasis or arthritis
DE19954229A1 (en) New epothilone derivatives, useful for treating malignant tumors such as ovarian, stomach, colon, breast and lung carcinoma, acute lymphocytic and myelocytic leukemia and chronic inflammatory diseases such as psoriasis
DE19907480A1 (en) New epothilone derivatives, useful for treating malignant tumors such as ovarian, stomach, colon, breast and lung carcinoma, acute lymphocytic and myelocytic leukemia and chronic inflammatory diseases such as psoriasis
Adityawarman Total Synthesis Of 8, 9-Dehydro-Epothilone C
AU2004200949A1 (en) 16-halogen-epothilone derivatives, method for producing them and their pharmaceutical use
DE19748928A1 (en) New epothilone derivatives