AU3940085A - Continuous molding apparatus and method - Google Patents

Continuous molding apparatus and method

Info

Publication number
AU3940085A
AU3940085A AU39400/85A AU3940085A AU3940085A AU 3940085 A AU3940085 A AU 3940085A AU 39400/85 A AU39400/85 A AU 39400/85A AU 3940085 A AU3940085 A AU 3940085A AU 3940085 A AU3940085 A AU 3940085A
Authority
AU
Australia
Prior art keywords
molding
rotary
temperature
continuous
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU39400/85A
Inventor
Anatoliy Popow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
POPOW A
Original Assignee
POPOW A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by POPOW A filed Critical POPOW A
Priority to AU39400/85A priority Critical patent/AU3940085A/en
Publication of AU3940085A publication Critical patent/AU3940085A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

CONTINUOUS MOLDING APPARATUS AND METHOD
BACKGROUND OF THE INVENTION
There are numerous well known techniques for the manufacture of molded products; however, where it may be desired for such products to be joined to one another such as an interconnected strip of plastic sealing gaskets which are joined such that they may be installed using continuous operational means, a two step process is required. First, an extruded sheet of material is produced, and then a secondary die cutting operation is performed to stamp out the selected gasket design. While the scrap from the secondary die cutting operation can be recovered and re-used in subsequent extrusion operations, this is very costly, time consuming and inefficient. Continuous molding profile techniques cannot be used alone for such a product since the processing techniques deal only with the cross-sectional shape or profile of the product to be produced. Injection molding is not possible since the molds must be opened and the product removed after each molding operation, thus making it impossible to produce an interconnected strip of molded products. Certain endless and rotary extrusion techniques have been employed for the manufacture of molded parts; however, such processes are limited in speed, product application, the variety of the product design that may be desired, and the capability to rapidly change product design configurations produced by the same general apparatus. Examples of such prior art endless and rotary extrusion processes and techniques axe shown in U.S. Patent Nos. 2, 964, 789; 3, 121, 913; and 4, 165. 960. There has been a long felt need in the continuous molding art for a high speed continuous scrapless molding technique that permits production of a wide range of products without sacrificing design considerations for the product to be produced. Such products may include an interconnected strip of gaskets, industrial seals, o-rings, filter materials and various other elongated structural and sheet-like molded products which can be continously produced either connected to or separate from one another during the molding operation as may be desired.
SUMMARY OF THE INVENTION
Accordingly, it is the priπary object of the present invention to provide a continuous high speed scrapless molding process and method which permits a wide range of products to be produced.
Another object of the present invention is to provide a low cost economical apparatus and method for the continuous high speed scrapless manufacture of molded products.
Still another object of the present invention is to provide a continuous high speed scrapless technique thst is simple, efficient, does not sacrifice design considerations for the products to be produced, and permits rapid change of design for molded parts to be produced from the same general apparatus.
These and other objects, advantages and potential product applications of the herein disclosed continuous molding apparatus and method will become apparent from the ensuing description.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is an isometric side view of the continuous molding apparatus which is constructed in accordance with the teachings of the present invention.
Fig. 2 is a perspective view of a roll of interconnected gaskets representative of one type of product that can be formed by the apparatus and method of the present invention.
Fig. 3 is a perspective view of a mechanical case and cover assembly showing one of the possible applications for products produced.
Fig. 4 is a side elevational section view of the molding head of the continuous molding apparatus.
Fig. 5 is a side elevational view, partially in section, of the components and elements of the continuous molding apparatus shown in Fig. 1.
DESCRIPTION OF THE PREFERRED EMBODMENTS
In the description that is to follow, the continuous molding apparatus and method is described in conjunction with the production of an interconnected strip of gaskets; however it is to be understood that many different types of molded products made from many different types of material can be produced by the herein disclosed continuous molding apparatus and method. The apparatus and method may also be applied to such product designs where a single-finished (not interconnected) product is desired.
In Fig. 1 of the drawings there is shown a continuous molding machine 10 including extruder 12, molding head 13 and a possible finished product handling system 14. The extruder component 12 may operate by any means or combination of devices for continuously feeding predetermined quantities material at any desired temperature or pressure that may be required by product design. The finished product handling system 14, if applicable, may operate by any means or combination of devices to continuously aid in handling and even assist in temperature control to provide subsequent curing of the finished product. Such temperature control and sychronized operation (with respect to the molding apparatus) of the finished product handling system 14 can be achieved by the systems control center 11 and means for a continuous flow of temperature changing medium through the finished product handling system 14. Temperature control of the raw material can be achieved by the combined operations of the systems control center 11 and temperature controlling elements contained in the nozzle 15 that connects the extruder component 12 to the molding head 13.
With the interconnected strip of gaskets 16 shown in Figs. 1 and 2 of the drawings, the preferred molding material is polymeric and such material would be deposited in the hopper 16, and fed in a molten or liquid condition through the nozzle 15 to the molding head 13. The selection of the particular type and general compound of molding material will, of course, vary to meet the demands of the product being molded. It is believed that thermoplastic and thernosetting resins may be used, dependent upon the particular application; however, for thermosetting resins, subsequent curing may also be required. Post-molding curing may, if desired, be applied to any finished product by means of a system of one or more temperature controlled rollers 18, or devices, used in conjunction with the finished product handling system 14.
In Fig. 3, the elongated gasket product 21 is shown being applied to form a seal between a cover 19 and a case 20, as is well known.
As shown in Fig. 1, 4 and 5, the molding head 13 includes a rotary or endless molding element 22 mounted in kissing contact with the molding case. The case is comprised of three sealing chamber elements 23, 34, 35 and the material feeding nozzle 15. The shaft of the rotary molding element 22 is extended to receive a chain sprocket 25 which is connected to the corresponding chain sprocket 26 of the motor 27 by a chain 24, as shown in Fig. 5. The rotational speed of the molding element 22 may be controlled by the systems control 11 to suit the requirements of the finished product. In order to understand the structural interrelationship and operation of the molding head 13, reference is made to Figs, 4 and 5 of the drawings. In Fig. 5 it is seen that the shaft 28 of the molding element 22 is joumaled on each end by the bearings 29. The bearings themselves are mounted on side frame members 30 which are supported by base frame members 43 as shown in Fig. 1.
The arrangement and mounting of the ends of the rotary molding element 22 relative to the side frame members 30 is such that they are each in kissing contact with sealing elements 40, 40 as shown in Fig. 5. This is important since the rotary molding element 22 is provided with the mold configuration 31 formed therein which corresponds in shape to the molded part desired. Another important reason for the kissing contact is that the raw material will be forced under pressure and confined within the mold or form configurations 31 during the rotary molding operation. A very important feature of the present invention is that the rotary molding element 22 is surrounded by a sealed chamber means for maintaining a predetermined pressure and temperature during the molding process. More specifically, the sealed chamber means provide a sliding seal through the kissing contact between it and the rotary molding element 22 as seen in Figs. 4 and 5. This is important so that predetermined quantities of raw material fed by the nozzle 15 into the rotary molding element 22 will be confined mechanically, atmospherically and thermally for accurate, efficient and high speed molding or forming operations. The sealed chamber providing the sliding seal contact is shown in Figs. 1, 4 and 5 as being represented by the semicircular sealing elements 23, 34, 35 which are mounted to the side frame members 30, 30 by screws, as shown in Fig. 5. These sealing elements 23, 34, 35 also double as the outer frame members of the molding head 13. As best seen in Fig. 4, the sealing elements 23, 34, 35 sealingly contact the rotary molding element 22 for an arc of approximatly 90 degrees in each of their respective locations. The remaining arc of the molding element 22 is sealed by the semi-circular surface of the nozzle 15. It is to be noted here that the three sealing elements 23, 34, 35 are removeable for fast easy cleaning and set-up as shown in Fig. 1. It should also be understood that arrangement of the nozzle 15 and sealing elements 23, 34, 35 in relationship to the rotary molding element 22 can be designed to present the forced raw material at any desired cross sectional point along the surface of the rotary molding element 22 as reprsented in Fig.4 by the dotted line sample alternate position 32 of the nozzle 15. One may also find it necessary to add one or more additional rotary elements 33 if the product design requires more of a temperature change or possibly a second rotary element that also includes the mold configuration 31. These possiblities are best seen in Fig. 4.
In further description of the arrangement of the sealing elements 23, 34, 35 and the nozzle 15, it will be seen that the lower sealing element 34 butts up against the nozzle 15 and extends the curvilinear strrface of the nozzle 15 counterclockwise approximately 90 degrees. The upper front sealing element 35 butts up against the nozzle 15 and the upper rear sealing element 23 extending the curvilinear surface of the nozzle approximately 180 degrees in a clockwise direction as shown in Fig. 4. This and any other structural arrangements may provide a molded part discharge port 36 which is laterally and circumferentially offset from the "kissing contact" areas between the sealing elements 23, 34, 35 and the rotary molding element 22. Thus, after the raw material is pressed and confined within the mold configurations 31 during the sealed and sliding molding operation, the products axe ejected through the offset discharge port 36 with the marginal end surface 37 of the lower sealing element 34 possibly serving as a stripper for separating the molded product from the mold configurations 31 of the molding element 22.
In order to insure complete circumferential sliding seal contact, except at the discharge port 36, the nozzle 15 is provided with upper and lower curvilinear surfaces 38 and 39 respectively which have a complementary configuration to the upper front sealing element35 and the lower sealing element 34, as seen in Fig. 4. The upper and lower curvilinear surfaces 38, 39 structurally cooperate with sealing elements 23, 34, 35 to provide a circumferential seal around the molding element 22 except at the molded part discharge port 36.
For a sliding sealing engagement along the end surfaces of the rotary molding element 22 there is provided end sealing elements 40, 40 at opposite ends of the rotary molding element 22. The end sealing elements 40, 40 axe mounted by suitable means to the side frame members 30, 30 and have openings therein for receipt of the shaft 28 of the rotary molding element 22. It is to be noted that the one-piece end sealing elements 40, 40 sealingly contact the end surfaces of the rotary molding element 22 including the area of "kissing contact" thereof. The outer edges of the end sealing elements 40, 40 sealingly contact the curvilinear surfaces of the sealed chamber elements 23, 34, 35 and the upper and lower curvilinear surfaces 38, 39 of the nozzle 15 as is best seen in Fig. 5.
As a result of the aforementioned sliding sealing contact of the sealing chamber elements 23, 34, 35, the nozzle 15 and the end sealing elements 40, 40 with the rotary molding element 22, it is possible to force raw material from the nozzle 15 into the mold configurations 31, and accurately confine and press the molding material therewithin in the "kissing contact" area of the rotary molding element 22, while the rotary molding element 22 is maintained in a sliding contact sealed chamber to provide a controlled mechanical, atmospheric and thermal environment during the molding operation.
To assist in maintaining the desired thermal environment required for the finishing of the molded product, one (or more, if applicable) rotary molding element 22 is provided with temperature control means to facilitate curing and stripping from the mold configuration 31, thereby to enhance the speed of production. This may be provided, for example, by the axially offset and circumferentially spaced flow channels 41 which axe shown as being facricated inside the rotary molding element 22 of Fig. 5. Note further that the flow channels41 are interconnected to each other by a common linking channel area 42 which, in turn is linked to the shaft 28 of the rotary molding element 22. The shaft 28, at each end thereof, is also axially bored for connection at each end to a continuous source of such substances that will provide the desired thermal control. The appropriate rotary seals, valves, pumps and controlling devices, not shown, facilitate the operation of the thermal control means.
Various types of material can be used for the various components of the molding apparatus to achieve the desired life, while minimizing cost and downtime. The invention is not to be limited to the types of material used, except insofar as their structural and functional design indicates.
With the aforementioned constructions and configurations, the continuous molding apparatus and method of the present invention produces accurately and efficiently molded parts without scrap at a high speed of production. A broad range of products can be produced without sacrificing design considerations. Rapid design changes to meet industry demands can be made by producing a number of rotary molding elements with different mold configurations which can be interchanged in the apparatus. The simplicity, low cost and efficient operation of the herin disclosed method and apparatus can now be fully understood and appreciated.

Claims (17)

1. A continuous molding apparatus comprising at least one endless molding means which is configured to the shape of the molded parts desired, means for injecting molten material to said endless molding means, means for operating said endless molding means in timed relationship with said injection means, and endless sliding and sealing means in continuous sliding and sealing contact with said endless molding means around the molded part configurations thereof for maintaining a predetermined pressure, temperature, seal and confinement around the molded parts during the molding operation.
2. The molding apparatus as defined in Claim 1 and including temperature controlling means associated with the endless molding means to control the temperature of products made thereby.
3. The molding apparatus as defined in Claim 1 wherein said endless molding means comprises at least one rotary molding element, at least one of said rotary molding elements having configurations formed therein corresponding to the shape of the parts to be made.
4. The molding apparatus as defined in Claim 3 and including temperature control means provided in at least one of said rotary molding elements to change the temperature of products made thereby.
5. The molding apparatus as defined in Claim 4 wherein said temperature control means includes a plurality of axially offset and circumferentially spaced channels fabricated in at least one of said rotary molding elements, said channels being connected to a continuous source of temperature changing medium.
6. The Holding apparatus as defined in Claim 3 wherein the means providing sliding and sealing contact with said rotary molding elements is provided throughout except at a molded part discharge port.
7. The molding apparatus as defined in Claim 3 wherein said means for injecting material includes a nozzle means which is mounted and configured relative to the rotary molding means so as to form part of said sealed chamber means.
8. A continuous molding apparatus comprising at least one rotary molding element which is driven in timed relationship with the operation of the entire system, temperature control means provided in said at least one rotary molding element to change the temperature of products formed thereby during the molding operation, configurations formed in said at least one rotary molding element corresponding to the shape of products formed thereby, and sliding seal chamber means surrounding said at least one rotary molding element and in continuous kissing contact with said at least one rotary molding element around the configurations formed therein for maintaining a continuous predetermined pressure, temperature and seal around the molded parts during the molding operation, said sliding seal chamber means contacting said at least one rotary molding element throughout except at a molded part discharge port.
9. The molding apparatus as defined in Claim 8 wherein the sliding seal chamber means contacts said at least one rotary molding element along the circumferential and end surfaces there during the rotary operation thereof.
10. The molding apparatus as devined in Claim 9 wherein the sliding seal chambersmeans is comprised of two or more semi-cylindrical elements providing easy disassembly thereof for cleaning and set-up of said molding apparatus.
11. The molding apparatus defined in Claim 10 wherein said means for injecting material between rotary molding elements and sealed chamber surfaces comprises a nozzle means which is configured and arrangedrelative to the rotary molding element so as to be in circumferential sliding sealing contact therewith.
12. The molding apparatus as defined in Claim 11 and including at least two cooperating rotary molding elements, and a common sliding seal element along the end surfaces of said at least two cooperating rotary molding elements.
13. A continuous molding method comprising the steps of molding products between two cylindrical surfaces at least one of which is configured to the shape of the molded product desired, forcing material between the two surfaces, driving at least one of the surfaces in timed relationship with the elements of the systems operation, and maintaining a predetermined pressure, temperature and seal in a sealed chamber around the cylindrical molding surfaces during the molding operation.
14. The method as defined in Claim 13 including changing the temperature of molded products during the molding thereof.
15. The method as defined in Claim 14 including maintaining a sliding sealing relationship with one or more rolling surfaces in the sealed chamber.
16. A continuous molding apparatus comprising a sliding seal chamber in which moving molding surfaces form and change the temperature of molding material between the moving molding surfaces to form molded products.
17. A continuous molding method comprising the steps of forcing material between moving molding surfaces in a sliding seal chamber to form and change the temperature of molded parts thereby.
AU39400/85A 1985-02-01 1985-02-01 Continuous molding apparatus and method Abandoned AU3940085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU39400/85A AU3940085A (en) 1985-02-01 1985-02-01 Continuous molding apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU39400/85A AU3940085A (en) 1985-02-01 1985-02-01 Continuous molding apparatus and method

Publications (1)

Publication Number Publication Date
AU3940085A true AU3940085A (en) 1986-08-26

Family

ID=3726426

Family Applications (1)

Application Number Title Priority Date Filing Date
AU39400/85A Abandoned AU3940085A (en) 1985-02-01 1985-02-01 Continuous molding apparatus and method

Country Status (1)

Country Link
AU (1) AU3940085A (en)

Similar Documents

Publication Publication Date Title
US4552522A (en) Segmented spacer ring
CN1187178C (en) Process for manufacture of shaped articles
KR960014542B1 (en) Process and apparatus for processing elastomeric materials in particular plastic, rubber and a mixture thereof
CA1320615C (en) Method and apparatus for producing liquid filled receptacles
KR910005162B1 (en) Apparatus and method for making a band from strips
US5472659A (en) Method for continuously manufacturing compound corrugated pipe having smooth portions
AU590562B2 (en) Early progressive junction extrusion system
JPH0679826B2 (en) Improvements to methods and apparatus for continuous extrusion molding
JPH0564087B2 (en)
KR960020839A (en) Cotton fastener manufacturing method and apparatus
CA1304551C (en) Method for producing a weather strip for an automobile
US4631161A (en) Continuous molding method
US5273418A (en) Molding machine
GB1436132A (en) Apparatus and method for extruding and moulding plastic material
US3477101A (en) Apparatus for shaping raw rubber bodies
EP0384641B1 (en) Extruding apparatus
US4497619A (en) Continuous molding apparatus
EP0532903A1 (en) A continuous kneading apparatus
GB2112702A (en) Rotary processors e.g. for plastics material
AU3940085A (en) Continuous molding apparatus and method
WO1986004543A1 (en) Continuous molding apparatus and method
US3969461A (en) Transfer molding thermosetting polymeric material
EP0280518B1 (en) An apparatus for quantitatively extruding food material
EP0545080B1 (en) Method of producing a spliceless annular tread cap
US11485047B2 (en) Extrusion facility comprising an improved extrusion head