AU3614701A - Apparatus and method for assigning a common packet channel in a cdma communication system - Google Patents

Apparatus and method for assigning a common packet channel in a cdma communication system Download PDF

Info

Publication number
AU3614701A
AU3614701A AU36147/01A AU3614701A AU3614701A AU 3614701 A AU3614701 A AU 3614701A AU 36147/01 A AU36147/01 A AU 36147/01A AU 3614701 A AU3614701 A AU 3614701A AU 3614701 A AU3614701 A AU 3614701A
Authority
AU
Australia
Prior art keywords
utran
channel
signature
cpch
ssf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU36147/01A
Other versions
AU760513B2 (en
Inventor
Sung-Ho Choi
Sung-Oh Hwang
Kyou-Woong Kim
Chang-Hoi Koo
Hyun-Woo Lee
Hyun-Jung Mun
Seong-Ill Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of AU3614701A publication Critical patent/AU3614701A/en
Application granted granted Critical
Publication of AU760513B2 publication Critical patent/AU760513B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/216Code division or spread-spectrum multiple access [CDMA, SSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • H04J13/0044OVSF [orthogonal variable spreading factor]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes
    • H04J13/20Allocation of orthogonal codes having an orthogonal variable spreading factor [OVSF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

WO 01/61877 PCT/KR01/00236 APPARATUS AND METHOD FOR ASSIGNING A COMMON PACKET CHANNEL IN A CDMA COMMUNICATION SYSTEM BACKGROUND OF THE INVENTION 5 1. Field of the Invention The present invention relates generally to a common channel communication apparatus and method for a CDMA (Code Division Multiple Access) communication system, and in particular, to an apparatus and method for communicating data over a common packet 10 channel in an asynchronous CDMA communication system. 2. Description of the Related Art An asynchronous CDMA communication system, such as the UMTS (Universal Mobile Telecommunications System) W-CDMA (Wideband Code Division Multiple Access) 15 communication system, uses a random access channel (RACH) and a common packet channel (CPCH) for an uplink (or reverse) common channel. FIG. 1 is a diagram for explaining how to transmit and receive a traffic signal over the RACH, which is one of the conventional asynchronous uplink common channels. In FIG. 20 1, reference numeral 151 indicates a signal transmission procedure of an uplink channel, which can be the RACH. Further, reference numeral 111 indicates an access preamble acquisition indicator channel (AICH), which is a downlink (or forward) channel. The AICH is a channel over which a UTRAN (UMTS Terrestrial Radio Access Network) receives a signal transmitted from the RACH and responds to the received signal. The signal 25 transmitted by the RACH is called an "access preamble" (AP), which is created by randomly selecting a signature for the RACH. The RACH selects an access service class (ASC) according to the type of transmission data, and acquires from the UTRAN the right to use a channel using a RACH 30 sub-channel group and an AP defined in the ASC.
WO 01/61877 PCT/KR01/00236 -2 Referring to FIG. 1, a user equipment (UE; or a mobile station in CDMA-2000 system) transmits an AP 162 of specific length using the RACH and then awaits a response from the UTRAN (or a base station in the CDMA-2000 system). If there is no response from the UTRAN for a predetermined time, the UE increases transmission power by a specific 5 level as represented by 164 and retransmits the AP at the increased transmission power. Upon detecting the AP transmitted over the RACH, the UTRAN transmits a signature 122 of the detected AP over the downlink AICH. After transmitting the AP, the UE determines whether the transmitted signature is detected from the AICH signal that the UTRAN has transmitted in response to the AP. In this case, if the signature used for the AP transmitted over the 10 RACH is detected, the LE determines that the UTRAN has detected the AP, and transmits a message over the uplink access channel. Otherwise, upon failure to detect the transmitted signature from the AICH signal that the UTRAN has transmitted within a set time TP-AI after transmission of the AP 162, the 15 UE judges that the UTRAN has failed to detect the preamble, and retransmits the AP after a lapse of a preset time. As represented by reference numeral 164, the AP is retransmitted at transmission power increased by AP(dB) from the transmission power at which the AP was previously transmitted. The signature used to create the AP is randomly selected from the signatures defined in the ASC selected by the UE. Upon failure to receive the AICH signal 20 using the transmitted signature from the UTRAN after transmission of the AP, the UE changes, after a lapse of a set time, the transmission power and signature of the AP and repeatedly performs the above operation. In the process of transmitting the AP and receiving the AICH signal, if the signature transmitted by the LE itself is received, the LYE spreads, after a lapse of a preset time, a RACH message 170 with a scrambling code for the signature, 25 and transmits the spread RACH message using a predetermined channelization code at a transmission power level corresponding to the preamble to which the UTRAN has responded with the AICH signal (i.e., at initial power for an uplink common channel message). As described above, by transmitting the AP using the RACH, it is possible for the 30 UTRAN to efficiently detect the AP and to readily set the initial power of an uplink common channel message. However, since the RACH is not power controlled, it is difficult to transmit packet data, which has a long transmission time because the UE has a high data rate or has a WO 01/61877 PCT/KR01/00236 -3 large amount of transmission data. In addition, since the channel is allocated through one APAICH (Access Preamble-Acquisition Indicator Channel), the UEs that have transmitted the AP using the same signature will use the same channel. In this case, the data transmitted by the different UEs collide with one another, so that the UTRAN cannot receive the data. 5 To solve this problem, a method for suppressing a collision between the UEs while power controlling the uplink common channel has been proposed for the W-CDMA system. This method is applied to a common packet channel (CPCH). The CPCH enables power control of the uplink common channel, and shows a higher reliability as compared with the 10 RACH in allocating the channel to different UEs. Thus, the CPCH enables the UE to transmit a data channel of a high rate for a predetermined time (from several tens to several hundreds of ms). Further, the CPCH enables the UE to rapidly transmit an uplink transmission message, which is smaller in size than a specific value, to the UTRAN without using a dedicated channel. 15 In order to establish the dedicated channel, many related control messages are exchanged between the UE and the UTRAN, and a long time is required in transmitting and receiving the control messages. Therefore, exchanging many control messages during the transmission of data of a comparatively small size (several tens to several hundreds of ms) 20 creates a situation where valuable channel resources are allocated to control messages rather than data. The control messages are referred to as overhead. Thus, it is more effective to use the CPCH, when transmitting data of a small size. However, since several UEs transmit preambles using several signatures in order to 25 acquire the right to use the CPCH, there may occur a collision between the CPCH signals from the UEs. To avoid this phenomenon, a method is needed for allocating to the UEs the right to use the CPCH. The asynchronous mobile communication system uses a downlink scrambling code 30 to distinguish the UTRANs, and uses an uplink scrambling code to distinguish the UEs. Further, the channels transmitted from the UTRAN are distinguished using an orthogonal WO 01/61877 PCT/KR01/00236 -4 variable spreading factor (OVSF) code, and the channels transmitted by the UE are also distinguished using the OVSF code. Therefore, the information required by the UE to use the CPCH, includes a 5 scrambling code used for a message part of the uplink CPCH channel, an OVSF code used for the message part (ULDPCCH) of the uplink CPCH, an OVSF code used for a data part (ULDPDCH) of the uplink CPCH, a maximum data rate of the uplink CPCH, and a channelization code for a downlink dedicated channel (DL DPCCH) used for power control of the CPCH. The above information is typically required when establishing a dedicated 10 channel between the UTRAN and the UE. Further, the above information (overhead) is transmitted to the UE through transmission of signaling signals before establishment of the dedicated channel. However, since the CPCH is a common channel rather than a dedicated channel, the above information is conventionally represented by a combination of the signatures used in the AP and the CPCH sub-channels to which the sub-channel concept used 15 in the RACH is introduced, in order to allocate the information to the UE. FIG. 2 shows a signal transmission procedure of the downlink and uplink channel signals according to the prior art. In FIG. 2, in addition to the method used for the RACH for transmitting the AP, a collision detection preamble (CDP) 217 is used to prevent a collision 20 between CPCH signals from the different UEs. In FIG. 2, reference numeral 211 indicates an operating procedure of an uplink channel performed when the UE requests allocation of the CPCH, and reference numeral 201 indicates an operating procedure of the UTRAN to allocate the CPCH to the UE. In FIG. 2, 25 the LE transmits an AP 213. For a signature constituting the AP 213, it is possible to use a selected one of the signatures used in the RACH or to use the same signature, and the signature can be distinguished using the different scrambling codes. The signature constituting the AP is selected by the UE based on the above-stated information, as opposed to the method where the RACH randomly selects the signature. That is, to each signature are 30 mapped an OVSF code to be used for the ULDPCCH, an OVSF code to be used for the UL_DPDCH, an OVSF code to be used for the UL_.Scrambling code and DLDPCCH, the maximum frame number, and a data rate. Therefore, in the UE, selecting one signature is WO 01/61877 PCT/KR01/00236 -5 equivalent to selecting four kinds of the information mapped to the corresponding signature. In addition, the UE examines a status of the CPCH channel which can be presently used in the UTRAN to which the UE belongs, through a CPCH status indicator channel (CSICH) transmitted using an ending part of the APAICH before transmitting the AP. Thereafter, the 5 UE transmits the AP over the CSICH after selecting the signatures for the channel to be used out of the CPCHs which can be presently used. The AP 213 is transmitted to the UTRAN at initial transmission power set by the UE. In FIG. 2, if there is no response from the UTRAN within a time 212, the UE retransmits the AP represented by AP 215, the higher power level transmission. The number of retransmissions of the AP and the waiting times are set before a 10 process for acquiring the CPCH channel is started, and the UE stops the CPCH channel acquisition process when the retransmission number exceeds a set value. Upon receipt of the AP 215, the UTRAN compares the received AP with the APs received from other UEs. Upon selecting the AP 215, the UTRAN transmits APAICH 203 15 as ACK after a lapse of a time 202. There are several criteria on which the UTRAN bases its comparison of the received APs to select the AP 215. For example, the criteria may correspond to a case where the CPCH, for which the UE has requested the UTRAN through the AP, is available, or a case where the receiving power of the AP received by the UTRAN satisfies the minimum receiving power requested by the UTRAN. The APAICH 203 20 includes a value of the signature constituting the AP 215 selected by the UTRAN. If the signature transmitted by the UE itself is included in the APAICH 203 received after transmitting the AP 215, the UE transmits a collision detection preamble (CDP) 217 after a lapse of a time 214, a time beginning at the time when AP 215 was originally transmitted. A reason for transmitting the CDP 217 is to prevent a collision between transmission channels 25 from the various UEs. That is, many UEs belonging to the UTRAN may request the right to use the same CPCH by simultaneously transmitting the same AP to the UTRAN, and as a result, the UBs receiving the same APAICH may try to use the same CPCH, thereby causing a collision. Each of the UEs which have simultaneously transmitted the same AP, selects the signature to be used for the CDP and transmits the CDP. Upon receipt of the CDPs, the 30 UTRAN can select one of the received CDPs and respond to the selected CDP. For example, a criterion for selecting the CDP can be a receiving power level of the CD_P received from the UTRAN. For the signature constituting the CDP 217, one of the WO 01/61877 PCT/KR01/00236 -6 signatures for the AP can be used, and it can be selected in the same manner as in the RACH. That is, it is possible to randomly select one of the signatures used for the CDP and transmit the selected signature. Alternatively, only one signature can be used for the CDP. When there is only one signature used for the CD_P, the UE selects a randomized time point in a 5 specific time period to transmit the CDP at the selected time point. Upon receipt of the CDP 217, the UTRAN compares the received CDP with the CDPs received from other UEs. Upon selecting the CDP 217, the UTRAN transmits a collision detection indicator channel (CDICH) 205 to the UEs after a lapse of a time 206. 10 Upon receipt of the CDICH 205 transmitted from the UTRAN, the UEs check whether a value of the signature used for the CDP transmitted to the UTRAN is included in the CDICH 205, and the UE, for which the signature used for the CDP is included in the CDICH 205, transmits a power control preamble (PCP) 219 after a lapse of a time 216. The PCP 219 uses an uplink scrambling code determined while the UJE determines a 15 signature to be used for the AP, and the same channelization code (OVSF) as a control part (UL_DPCCH) 221 during transmission of the CPCH. The PCP 219 is comprised of pilot bits, power control command bits, and feedback information bits. The PCP 219 has a length of 0 or 8 slots. The slot is a basic transmission unit used when the UMTS system transmits over a physical channel, and has a length of 2560 chips when the UMTS system uses a chip 20 rate of 3.84Mcps (chips per second). When the length of the PCP 219 is 0 slots, the present radio environment between the UTRAN and the UE is good, so that the CPCH message part can be transmitted at the transmission power at which the CDP was transmitted, without separate power control. When the PCP 219 has a length of 8 slots, it is necessary to control transmission power of the CPCH message part. 25 The AP 215 and the CDP 217 may use the scrambling codes which have the same initial value but have different start points. For example, the AP can use 0t to 4095 h scrambling codes of length 4096, and the CDP can use 4096*' to 8191st scrambling codes of length 4096. The AP and CDP can use the same part of the scrambling code having the 30 same initial value, and such a method is available when the W-CDMA system separates the signatures used for the uplink common channel into the signatures for the RACH and the signatures for the CPCH. For the scrambling code, the PCP 219 uses the 0* to 21429*1 WO 01/61877 PCT/KR1I/00236 -7values of the scrambling code having the same initial value as the scrambling code used for AP 215 and CDP 217. Alternatively, for the scrambling code for the PCP 219, a different scrambling code can also be used which is mapped one-to-one with the scrambling code used for AP 215 and CDP 217. 5 Reference numerals 207 and 209 denote a pilot field and a power control command field of a downlink dedicated physical control channel (DLDPCCH) out of a downlink dedicated physical channels (DL_DPCHs), respectively. The DL_DPCCH can use either a primary downlink scrambling code for distinguishing the UTRANs or a secondary 10 scrambling code for expanding the capacity of the UTRAN. For a channelization code OVSF to be used for the DL_DPCCH, a channelization code which is determined when the UE selects the signature for the AP is used. The DL DPCCH is used when the UTRAN performs power control on the PCP or CPCH message transmitted from the UE. The UTRAN measures receiving power of a pilot field of the PCP 219 upon receipt of the PCP 219, and 15 controls transmission power of the uplink transmission channel transmitted by the UE, using the power control command 209. The UE measures power of a DL_DPCCH signal received from the UTRAN to apply a power control command to the power control field of the PC_P 219, and transmits the PCP to the UTRAN to control transmission power of a downlink channel incoming from the UTRAN. 20 Reference numerals 221 and 223 denote a control part UL_DPCCH and a data part UL_DPDCH of the CPCH message, respectively. For a scrambling code for spreading the CPCH message of FIG. 2, a scrambling code is used which is identical to the scrambling code used for the PCP 219. For the used scrambling code, the 0* to 38399* scrambling 25 codes of length 38400 in a unit of 10ms are used. The scrambling code used for the message of FIG. 2 can be either a scrambling code used for the AP 215 and the CDP 217, or another scrambling code which is mapped on a one-to-one basis. The channelization code OVSF used for the data part 223 of the CPCH message is determined according to a method previously appointed between the UTRAN and the UE. That is, since the signature to be used 30 for the AP and the OVSF code to be used for the ULDPDCH are mapped, the OVSF code to be used for the ULDPDCH is determined by determining the AP signature to be used. For the channelization code used by the control part (UL_DPCCH) 221, a channelization code is WO 01/61877 PCT/KR01/00236 -8 used which is identical to the OVSF code used by the PC__P. When the OVSF code to be used for the UL_DPDCH is determined, the channelization code used by the control part (ULDPCCH) 221 is determined according to an OVSF code tree structure. 5 Referring to FIG. 2, the prior art enables power control of the channels in order to increase efficiency of the CPCH, which is the uplink common channel, and decreases the chance of a collision between uplink signals from the different UEs, by using the CDP and the CDICH. However, in the prior art, the UE selects all the information for using the CPCH and transmits the selected information to the UTRAN. This selecting method can be 10 performed by combining a signature of the AP, a signature of the CDP and the CPCH sub channel, transmitted from the UE. In the prior art, even though the UE requests allocation of the CPCH channel required by the UTRAN by analyzing a status of the CPCH, which is presently used in the UTRAN, by using the CSICH, the fact that the UE previously determines all the information required for transmitting the CPCH and transmits the 15 determined information will result in a limitation of the allocation of resources of the CPCH channel and a delay in acquiring the channel. The limitations on allocation of the CPCH channel are as follows. Although there exist several available CPCHs in the UTRAN, if the UEs in the UTRAN require the same 20 CPCH, the same AP will be selected. Although the same APAICH is received and the CDP is transmitted again, the UEs which transmitted the non-selected CDP should start the process for allocating the CPCH from the beginning. In addition, although the CD_P selecting process is perfonned, many UEs still receive the same CDICH, increasing a probability that a collision will occur during uplink transmission of the CPCH. Further, 25 although the CSICH is checked and the UE requests the right to use the CPCH, all of the UEs in the UTRAN which desire to use the CPCH receive the CSICH. Therefore, even though an available channel is required out of the CPCHs,. there is a case where several UEs simultaneously request channel allocation. In this case, the UTRAN cannot but allocate the CPCH requested by one of the UEs, even though there are other CPCHs which can be 30 allocated.
WO 01/61877 PCT/KR01/00236 -9 With regard to the delay in acquiring the channel, when the case occurs which has been described with reference to the limitations on allocation of the CPCH channel, the UE should repeatedly perform the CPCH allocation request to allocate the desired CPCH channel. When there is used a method for transmitting the CDP at a given time for a predetermined 5 time using only one signature for the CDP introduced to reduce the complexity of the system, it is not possible to process the CDICH of other UEs while transmitting and processing the CDICH of one UE. In addition, the prior art uses one uplink scrambling code in association with one 10 signature used for the AP. Thus, whenever the CPCH used in the UTRAN increases in number, the uplink scrambling code also increases in number, causing a waste of the resources. Meanwhile, in order to efficiently transmit packet data using the common channel 15 such as the CPCH channel, a scheduling method for effectively assigning and releasing the channel is required. The scheduling method is used to rapidly release the channel when there is no data on a given uplink channel, and then assign the released channel to another UE, thereby to prevent unnecessary channel access by the UE and a waste of the channel resources. 20 SUMMARY OF THE INVENTION It is, therefore, an object of the present invention to provide an apparatus and method for transmitting a message over a common channel in a CDMA communication 25 system. It is another object of the present invention to provide a downlink acquisition indicator channel (AICH), over which a mobile station receiver can receive an acquisition indicator channel with a low complexity. 30 WO 01/61877 PCT/KR01/00236 -10 It is further another object of the present invention to provide a method for enabling a mobile station to simply detect several signatures transmitted over the downlink acquisition indicator channel. 5 It is yet another object of the present invention to provide a channel allocation method for performing efficient power control on an uplink common channel for transmitting a message over a common channel in a CDMA communication system. It is still another object of the present invention to provide a channel allocation 10 method for rapidly allocating an uplink common channel for transmitting a message over a common channel in a CDMA communication system. It is still another object of the present invention to provide a reliable channel allocation method for allocating an uplink common channel for transmitting a message over a 15 common channel in a CDMA communication system. It is still another object of the present invention to provide a method for correcting errors occurring in an uplink common channel communication method for transmitting a message over a common channel in a CDMA communication system. 20 It is still another object of the present invention to provide a method for detecting and managing a collision of an uplink between UEs in an uplink common channel communication method for transmitting a message over a common channel in a CDMA communication system. 25 It is still another object of the present invention to provide a device and method for allocating a channel so as to transmit a message over an uplink common channel in a W CDMA communication system. 30 It is still another object of the present invention to provide a device and method which can detect an error which has occurred in a channel allocation message or a channel WO 01/61877 PCT/KR01/00236 - 11 request message in an uplink common channel communication method for transmitting a message over a common channel in a CDMA communication system. It is still another object of the present invention to provide a method for correcting 5 an error which has occurred in a channel allocation message or a channel request message in an uplink common channel communication system for transmitting a message over a common channel in a CDMA communication system. It is still another object of the present invention to provide a device and method 10 which uses a power control preamble to detect an error which has occurred in a channel allocation message or a channel request message in an uplink common channel communication method for transmitting a message over a common channel in a CDMA communication system. 15 It is still another object of the present invention to provide an apparatus and method for transmitting a single combined code to detect a collision of an uplink common packet channel and to allocate the uplink common packet channel in a CDMA communication system. 20 It is still another object of the present invention to provide a method for dividing uplink common channels into a plurality of groups and efficiently managing each group. It is still another object of the present invention to provide a method for dynamically managing radio resources allocated to the uplink common channels. 25 It is still another object of the present invention to provide a method for efficiently managing uplink scrambling codes allocated to the uplink common channels. It is still another object of the present invention to provide a method in which the 30 UTRAN informs the UE of the present status of the uplink common channel.
WO 01/61877 PCT/KR01/00236 -12 It is still another object of the present invention to provide a device and method for transmitting information, with increased reliability, used when the UTRAN informs the UE of the present status of the uplink common channel. 5 It is still another object of the present invention to provide an encoding/decoding apparatus and method for transmitting, with increased reliability, information used when the UTRAN informs the UE of the present status of the uplink common channel. It is still another object of the present invention to provide a device and method for 10 enabling the UE to rapidly detennine the present status of the uplink common channel transmitted from the UTRAN. It is still another object of the present invention to provide a method in which the UE determines whether to use the uplink common channel depending on the status 15 information of the uplink common channel, transmitted from the UTRAN. It is still another object of the present invention to provide an apparatus and method for allocating an uplink common channel using AP (Access Preamble) and CA (Channel Allocation) signals. 20 It is still another object of the present invention to provide a mapping method for allocating an uplink common channel using the AP and CA signals. It is still another object of the present invention to provide a method for operating an 25 upper layer of the UE to transmit data over an uplink common packet channel. It is still another object of the present invention to provide a method for indicating a data rate of an uplink common channel in combination with an AP signature and an access slot. 30 WO 01/61877 PCT/KR01/00236 - 13 It is still another object of the present invention to provide a method for indicating the number of transmission data frames of an uplink common channel in combination with the AP signature and the access slot. 5 It is still another object of the present invention to provide a method in which the UTRAN allocates an uplink common channel to the UE according to a group of the maximum data rates per CPCH set. To achieve the above and other objects, there is provided a method for assigning a 10 channel to a UE by a UTRAN in a CDMA communication system. In the method, the UTRAN receives a selected one of a plurality of access preamble signatures from the UE, and selects one of a plurality of channel assignment signatures associated with the received access preamble signature in order to assign one of a plurality of physical common packet channels (PCPCHs) unused in the UTRAN. 15 Preferably, the UTRAN selects one of the access preamble signatures depending on a maximum data rate required when the UE transmits data. Further, the UTRAN selects one of the unused PCPCH channels depending on the 20 received access preamble signature and the selected channel assignment signature. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will 25 become more apparent from the following detailed description when taken in conjunction with the accompanying drawings in which: FIG. 1 is a diagram for explaining how to transmit and receive a traffic signal over a RACH out of the conventional asynchronous uplink common channels; FIG. 2 is a diagram illustrating a signal transmission procedure of conventional 30 downlink and uplink channels; FIG. 3 is a diagram illustrating a signal flow between a UE and a UTRAN to establish an uplink common channel according to an embodiment of the present invention; WO 01/61877 PCT/KR01/00236 -14 FIG. 4 is a diagram illustrating a structure of a CSICH channel according to an embodiment of the present invention; FIG. 5 is a block diagram illustrating a CSICH encoder for transmitting an SI bit according to an embodiment of the present invention; 5 FIG. 6 is a block diagram illustrating a CSICH decoder corresponding to the CSICH encoder of FIG. 5; FIG. 7 is a diagram illustrating a.structure of an access slot used for transmitting an access preamble according to an embodiment of the present invention; FIG. 8A is a diagram illustrating a structure of an uplink scrambling code according 10 to the prior art; FIG. 8B is a diagram illustrating a structure of an uplink scrambling code according to an embodiment of the present invention; FIGS. 9A and 9B are diagrams illustrating a structure of an access preamble for a common packet channel according to an embodiment of the present invention, and a scheme 15 for generating the same; FIGS. 10A and 1OB are diagrams illustrating a channel structure of a collision detection preamble according to an embodiment of the present invention, and a scheme for generating the same; FIGS. 11A and 11B are diagrams illustrating structure of a channel allocation 20 indicator channel (CA ICH) according to an embodiment of the present invention, and a scheme for generating the same; FIG. 12 is a diagram illustrating an AICH generator according to an embodiment of the present invention; FIGS. 13A and 13B are diagrams illustrating a CAICH according to an 25 embodiment of the present invention, and a scheme for generating the same; FIG. 14 is a diagram illustrating a scheme for simultaneously transmitting a collision detection indicator channel (CD ICH) and the CAICH by allocating different channelization codes having the same spreading factor according to an embodiment of the present invention; 30 FIG. 15 is a diagram illustrating a scheme for spreading the CDICH and the CAICH with the same channelization code and simultaneously transmitting the spread WO 01/61877 PCT/KR01/00236 - 15 channels using the different signature groups according to another embodiment of the present invention; FIG. 16 is a diagram illustrating a CAICH receiver of a user equipment (UE) for a signature structure according to an embodiment of the present invention; 5 FIG. 17 is a diagram illustrating a receiver structure according to another embodiment of the present invention; FIG. 18 is a diagram illustrating a transceiver of a UE according to an embodiment of the present invention; FIG. 19 is a diagram illustrating a transceiver of a UTRAN according to an 10 embodiment of the present invention; FIG. 20 is a diagram illustrating a slot structure of a power control preamble (PCP) according to an embodiment of the present invention; FIG. 21 is a diagram illustrating a structure of the PCP shown in FIG. 20; FIG. 22A is a diagram illustrating a method for transmitting a channel allocation 15 confirmation message or a channel request confirmation message from the UE to the UTRAN using the PCP according to an embodiment of the present invention; FIG. 22B is a diagram illustrating a structure of the uplink scrambling codes used in FIG. 22A. FIG. 23 is a diagram illustrating a method for transmitting a channel allocation 20 confirmation message or a channel request confirmation message from the IE to the UTRAN using the PC_P according to another embodiment of the present invention; FIG. 24A is a diagram illustrating a method for transmitting a channel allocation confirmation message or a channel request confirmation message from the UE to the UTRAN using the PCP according to an embodiment of the present invention; 25 FIG. 24B is a diagram illustrating a tree structure of PCP channelization codes in one-to-one correspondence to the signature of the CAICH or the CPCH channel number according to an embodiment of the present invention; FIG. 25A is a diagram illustrating a method for transmitting a channel allocation confirmation message or a channel request confirmation message from the UE to the 30 UTRAN using the PC_P according to another embodiment of the present invention; WO 01/61877 PCT/KR01/00236 -16 FIG. 25B is a diagram illustrating structures of the uplink scrambling codes used for AP, CD_P, PCP and CPCH message part by the UEs when transmitting the PCP using the method of FIG. 25A; FIGS. 26A to 26C are flow charts illustrating a procedure for allocating a common 5 packet channel in the UE according to an embodiment of the present invention; FIGS. 27A to 27C are flow charts illustrating a procedure for allocating a common packet channel in the UTRAN according to an embodiment of the present invention; FIG. 28A and 28B are flow charts illustrating a procedure for setting a stable CPCH using the PCP, performed in the UE, according to an embodiment of the present invention; 10 FIGS. 29A to 29C are flow charts illustrating a procedure for setting a stable CPCH using the PCP, performed in the UTRAN, according to an embodiment of the present embodiment of the present invention; FIGS. 30A and 30B are flow charts illustrating a procedure for allocating information necessary for the CPCH to the UE using an AP signature and a CA message 15 according to an embodiment of the present invention; FIG. 31 is a block diagram illustrating a CSICH decoder according to another embodiment of the present invention; and FIG. 32 is a flow chart illustrating a procedure for transmitting data over an uplink common packet channel, performed in an upper layer of the UE, according to an embodiment 20 of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Preferred embodiments of the present invention will be described herein below with 25 reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail. In a CDMA communication system according to the preferred embodiments of the 30 present invention, in order to transmit a message to the UTRAN over the uplink common channel, the UE checks a status of the uplink common channel through the uplink common channel and then transmits a desired access preamble (AP) to the UTRAN. Upon acquisition WO 01/61877 PCT/KR01/00236 -17 of the AP, the UTRAN transmits a response signal (or access preamble acquisition indicator signal) in acknowledgment of the AP over the access preamble acquisition indicator channel (APAICH). Upon receipt of the access preamble acquisition indicator signal, the UE transmits a collision detection preamble (CDP) to the UTRAN, if the received access 5 preamble acquisition indicator signal is an ACK signal. Upon receipt of the collision detection preamble CD_P, the UTRAN transmits to the UE a response signal (or a collision detection indicator channel (CDICH) signal) for the received collision detection signal and a channel allocation (CA) signal for an uplink common channel. Upon receipt of the CDICH signal and the channel allocation signal from the UTRAN, the UE transmits an uplink 10 common channel message over a channel allocated according to the channel allocation message, if the CDICH signal is an ACK signal. Before transmission of this message, it is possible to transmit a power control preamble (PCP). In addition, the UTRAN transmits power control signals for the power control preamble and the uplink common channel message, and the UE controls transmission power of the power control preamble and the 15 uplink common channel message according to the power control command received over the downlink channel. In the above description, if the UE has several APs which can be transmitted, a preamble transmitted by the UE can be one of them, and the UTRAN generates APAICH in 20 response to the AP and may transmit CAICH for allocating the above-stated channel after transmitting the AP_AICH. FIG. 3 shows a signal flow between the UE and the UTRAN to establish an uplink common packet channel (CPCH) or an uplink common channel proposed in the preferred 25 embodiments of the present invention. In the preferred embodiments of the present invention, it will be assumed that an uplink common packet channel is used for the uplink common channel. However, a different common channel other than the uplink common packet channel can also be used for the uplink common channel. 30 Referring to FIG. 3, the UE, after time synchronization with the downlink through a downlink broadcasting channel, acquires information related to the uplink common channel or the CPCH. The information related to the uplink common channel includes information WO 01/61877 PCT/KR01/00236 - 18 about the number of scrambling codes and signatures used for the AP, and AICH timing of the downlink. Reference numeral 301 indicates a downlink signal transmitted from the UTRAN to the UE, and reference numeral 331 indicates an uplink signal transmitted from the UE to the UTRAN. When the UE attempts to transmit a signal over the CPCH, the UE 5 first receives information about a status of the CPCHs in the UTRAN over a CPCH status indicator channel (CSICH). Conventionally, the information about a status of the CPCHs refers to information about the CPCHs in the UTRAN, i.e., the number of CPCHs and availability of the CPCHs. However, in the preferred embodiments of the present invention, the information about a status of the CPCHs refers to information about the maximum data 10 rate available for each CPCH, and how many multi-codes can be transmitted when the UE transmits multi-codes over one CPCH. Even when information about availability of each CPCH is transmitted as in the prior art, it is possible to use the channel allocation method according to the present invention. The above data rate is 15Ksps (symbols per second) up to 960Ksps in the W-CDMA asynchronous mobile communication system, and the number of 15 multi-codes is 1 to 6. CPCH Status Indicator Channel (CSICH) Now, a detailed description will be made of a CPCH status indicator channel 20 (CSICH) transmitted to the UE by the UTRAN to allocate the CPCH according to an embodiment of the present invention. The present invention proposes a method in which the UTRAN transmits use-status information of physical channels (hereinafter, referred to as common packet channel) and maximum data rate information to the UE over the CSICH, so as to be allocated a desired physical channel. 25 A description of the CSICH will be given in accordance with the present invention in the following order. First, a structure of the CSICH for transmitting the use-status information of the 30 CPCH and the maximum data rate information, and a scheme for generating the same will be described.
WO 01/61877 PCT/KR01/00236 -19 Second, a method for transmitting the use-status information of the CPCH and the maximum data rate using the CSICH will be described. A detailed description will be made regarding a structure of the CSICH for 5 transmitting the use-status information of the CPCH and the maximum data rate, and a scheme for generating the same. FIG. 4 shows a structure of the CSICH channel according to an embodiment of the present invention. The CSICH shown in FIG. 4 is a channel for transmitting information 10 about a status of the CPCHs within the UTRAN by using the last 8 unused bits out of the access preamble acquisition indicator channel (AICH). The AICH is a channel used by a W CDMA UTRAN to receive an access preamble (AP) from the UE and send a response to the received AP. The response may be provided as ACK or NAK. The AP is a channel used by the UE to inform, when there exists data to be transmitted over the CPCH, the UTRAN of 15 existence of the transmission data. FIG. 4 shows a channel structure the CSICH. Referring to FIG. 4, reference numeral 431 indicates a structure where 32-bit AP AICH part and 8-bit CSICH part are included in one access slot. The access slot is a reference slot for transmitting and receiving the AP and 20 APAICH in the W-CDMA system, and 15 access slots are provided for a 20ms frame as shown by reference numeral 411. Thus, one frame has a length of 20ms and each access slot in the frame has a length of 5120 chips. As stated above, reference numeral 431 indicates a structure where the APAICH and the CSICH are transmitted in one access slot. When the APAICH part has no data to transmit, the APAICH part is not transmitted. The APAICH 25 and the CSICH are spread with a specific channelization code by a given multiplier. The specific channelization code is a channelization code designated by the UTRAN, and the APAICH and the CSICH use the same channelization code. In this embodiment of the present invention, the spreading factor (SF) of the channelization code is assumed to be 256. The spreading factor means that the OVSF code having a length of spreading factor per 30 symbol is multiplied by the APAICH and the CSICH. Meantime, it is possible to transmit different information over the APAICH and the CSICH at every access slot, and 120 bits of information (8 bits * 15 slots/frame = 120 bits/frame) on the CSICH are transmitted for every WO 01/61877 PCT/KR01/00236 -20 20ms frame. In the foregoing description, the last 8 unused bits of the APAICH are used when transmitting the CPCH channel state information over the CSICH. However, since the CDICH is identical to the APAICH in structure, it is also possible to transmit the CPCH channel status information to be transmitted over the CSICH through the CDICH. 5 As stated above, 120 bits are allocated to the CSICH according to an embodiment of the present invention in one frame, and the use-status information of the CPCH and the maximum data rate information are transmitted over the CSICH. That is, one frame includes 15 slots, and 8 bits are allocated for the CSICH in each slot. 10 A detailed description will now be made regarding a mapping scheme and method for transmitting, in the UTRAN, the use-status information of the CPCH and the maximum data information rate using the CSICH. That is, the present invention includes a method for mapping the use-status information of the CPCH and the maximum data rate information to 15 120 bits allocated to one frame. Further, in this embodiment of the present invention, information transmitted over the CSICH by the UTRAN is, as stated above, comprised of the maximum data rate information of the CPCH and the use-status information of the respective PCPCHs used in 20 the UTRAN. Meanwhile, the maximum data rate information of the CPCH may be transmitted with information about the number of multi-codes used when multi-code transmission is used in one CPCH. First, a detailed description will be given regarding a method for transmitting the 25 maximum data rate information of the CPCH in the UTRAN according to an embodiment of the present invention. Herein, the description will be made separately for one case wherein the multi-code transmission is used in one CPCH and another case wherein the multi-code transmission is not used in one CPCH. 30 Table 1 below shows an exemplary method for transmitting the information on the number of the multi-codes used when the multi-code transmission is used in one CPCH, together with the maximum data rate information of the CPCH out of the information WO 01/61877 PCT/KR01/00236 -21 transmitted over the SCICH. Table 1 shows 7 data rates of SF4, SF8, SF16, SF32, SF64, SF128 and SF256 for the maximum data rate of the CPCH, by way of example. Table 1 Information Bit Expression Data Rate 15Ksps (SF256) 0000(000) Data Rate 3OKsps (SF128) 0001(001) Data Rate 60Ksps (SF64) 0010(010) Data Rate 120Ksps (SF32) 0011(011) Data Rate 240Ksps (SF16) 0100(100) Data Rate 480Ksps (SF8) 0101(101) Data Rate 960Ksps (SF4) 0110(110) Number of Multi-codes = 2 0111 Number of Multi-codes = 3 1000 Number of Multi-codes = 4 1001 Number of Multi-codes = 5 1010 Number of Multi-codes = 6 1011 5 In Table 1, the multi-code has a spreading factor of 4, and it is specified in the W CDMA system that only the spreading factor of 4 can be used for the channelization code of the UE, when the UE performs the multi-code transmission. As shown in Table 1, in this embodiment of the present invention, the maximum data rate information of the CPCH, 10 transmitted over the CSICH, may be expressed with 4 bits. As a method for transmitting the 4 bits over the CSICH to the UE which desires to use the CPCH, it is possible to repeatedly transmit the 4 bits twice in one 8-bit access slot allocated to the CSICH or using a (8,4) coding method. 15 In the foregoing description given with reference to Table 1, 4 bits are transmitted including one bit for informing the UE of the number of the multi-codes according to the use of the multi-code. However, when the multi-code is not used, it is also possible to transmit only the 3 bits indicated in parentheses in Table 1. Here, the 3-bit information indicates the maximum data rate information of the CPCH. In this case, it is possible to transmit 8 symbols 20 at one slot by (8,3) coding or to repeat the 3 bits twice, and repeat once more 1 symbol out of the 3 bits.
WO 01/61877 PCT/KR01/00236 -22 Next, a detailed description will be made regarding a method for transmitting the use-status information of the PCPCH in the UTRAN according to an embodiment of the present invention. 5 The PCPCH use-status information to be transmitted is information indicating whether the respective PCPCHs used in the UTRAN are used or not, and the number of the bits of the PCPCH use-status information is determined depending on the total number of the PCPCHs used in the UTRAN. The bits of the PCPCH use-status information can also be transmitted over the CSICH, and to this end, it is necessary to propose a method for mapping 10 the bits of the PCPCH use-status information to a part allocated to the CSICH. In the following description, the bits in the part allocated to the CSICH out of the bits in the frame will be referred to as CSICH information bits. This mapping method can be determined depending on the number of the CSICH information bits and the total number of the PCPCHs used in the UTRAN, i.e., the number of the bits of the PCPCH use-status information. 15 First, there is a case where the number of the bits of the PCPCH use-status information due to the total number of the PCPCHs used in the UTRAN is identical to the number of the CSICH information bits in one slot when transmitting the PCPCH use-status information out of the information which can be transmitted over the CSICH. For example, 20 this corresponds to a case where the number of the CSICH information bits in one slot is 8 and the total number of the PCPCHs used in the UTRAN is 8. In this case, it is possible to repeatedly transmit the status information of every PCPCH used in the UTRAN 15 times for one frame by mapping one PCPCH use-status information bit to the one CSICH information bit. 25 Describing how to use the CSICH information bits in the foregoing case, the 3 rd CSICH information bit out of a plurality of the CSICH information bits is the use-status information indicating whether the 3 rd PCPCH out of a plurality of the PCPCHs used in the UTRAN is in use or not. Therefore, transmitting '0' as a value of the 3 rd CSICH information 30 bit indicates that the 3 rd PCPCH is presently in use. Alternatively, transmitting '1' as a value of the 3 rd CSICH information bit indicates that the 3 rd PCPCH is presently not in use. The WO 01/61877 PCT/KR01/00236 -23 meaning of the values '0' and '1' of the CSICH information bit indicating whether the PCPCH is in use or not, may be interchanged. Next, there is a case where the number of the PCPCH use-status information bits 5 due to the total number of the PCPCHs used in the UTRAN is larger than the number of the CSICH information bits in one slot when transmitting the PCPCH use-status information out of the information which can be transmitted over the CSICH. In this case, it is possible to use a multi-CSICH method for transmitting the use-status information of the PCPCH over at least two CSICHs and another method for transmitting multiple slots or multiple frames over one 10 channel. In the first method for transmitting the PCPCH use-status information over at least two CSICHs, the PCPCH use-status information is transmitted through CSICH information bits of different channels in a unit of 8 bits. Here, the CSICH information bits of the different 15 channels correspond to the last 8 unused bits out of the bits constituting one access slot of APAICH, RACHIACH and CD/CAICH. For example, when the total number of the PCPCHs used in the UTRAN is 24, the 24 PCPCHs are divided in a unit of 8 PCPCHs and the status information of the first 8 PCPCHs is transmitted through the last 8 unused bits out of the bits constituting one access slot of the APAICH. The status information of the next 8 20 PCPCHs is transmitted through the last 8 unused bits out of the bits constituting one access slot of the RACHAICH. The status information of the last 8 PCPCHs is transmitted through the last 8 unused bits out of the bits constituting one access slot of the CD/CAICH. As stated above, when there are many PCPCH use-status information bits to 25 transmit, it is possible to segment the PCPCH use-status information and transmit the segmented information using all or some of the proposed channels APAICH, RACHAICH and CD/CAICH. Since the channels APAICH, RACHAICH and CD/CAICH use unique downlink channelization codes, the UE can identify these channels during reception. That is, the UE can receive a multi-CSICH. 30 WO 01/61877 PCT/KR01/00236 -24 In addition, when there are many PCPCH use-status information bits, it is also possible to use a method for assigning a plurality of downlink channelization codes to a plurality of CSICHs and transmitting the CSICHs to the UE. 5 In the second method for transmitting the PCPCH use-status information over at least two CSICHs, the PCPCH use-status information is transmitted through plural slots or plural frames which are transmitted over one channel in a unit of 8 bits. For example, if the number of the PCPCH use-status information bits to be 10 transmitted is 60, the 60 bits can be repeatedly transmitted only twice to the CSICH information bits in one frame comprised of 120 bits. Repeating the 60 bits twice may decrease a reliability of the PCPCH use-status information. To solve this problem, it is possible to repeatedly transmit the 60-bit CSICH information over the next frame. It is also possible to divide the 60 bits into 30 bit segments, repeatedly transmit the first 30 bits 4 times 15 to the CSICH information bits in one frame, and then, repeatedly transmits the remaining 30 bits 4 times to the CSICH information bit in the next CSICH frame. Finally, there is a case where the number of the PCPCH use-status information bits due to the total number of the PCPCHs used in the UTRAN is smaller than the number of the 20 CSICH information bits in one slot when transmitting the PCPCH use-status information out of the information which can be transmitted over the CSICH. In this case, it is possible to transmit the PCPCH use-status information by partially using the 120-bit CSICH information allocated in one frame. That is, the PCPCH use-status information is transmitted by reducing the number of CSICH information bits for transmitting the PCPCH use-status information. 25 For example, if the PCPCH use-status information to be transmitted is comprised of 4 bits, the PCPCH use-status information is transmitted in the first 4 bits out of the 8 CSICH information bits in the respective access slots constituting one frame and the PCPCH use status information is not transmitted in the remaining 4 bits. It is possible to transmit null bits 30 known by the UE to the CSICH information bits which do not transmit the PCPCH use-status information. As another example, it is possible to repeatedly transmit 2-bit PCPCH use-status information and 2 null bits in the 8-bit CSICH information in the respective access slots WO 01/61877 PCT/KR01/00236 -25 constituting one frame. Otherwise, it is also possible to repeatedly transmit 1-bit PCPCH use status information and 1 null bit in the 8-bit CSICH information in the respective access slots constituting one frame. In addition, it is possible to transmit the PCPCH use-status information in the entire 8-bit CSICH information in an initial access slot constituting one 5 frame, and then, transmit null bits in the entire 8-bit CSICH information in the next access slot. That is, this is a method of alternately transmitting the PCPCH use-status information and the null bits at a period of one access slot. Therefore, the PCPCH use-status information is transmitted over the odd-numbered access slots in one frame and the null data is transmitted over the even-numbered access slots.- Alternatively, the PCPCH use-status 10 information can be transmitted over the even-numbered access slots and the null data can be transmitted over the odd-numbered access slots. The null bits can be replaced with discontinuous transmission (DTX), which means no data transmission. In the foregoing case, the UE will receive the PCPCH use-status information and the 15 null bits over one frame. If the UTRAN uses DTX instead of the null bits, the UE can use discontinuous reception (RDX), which means not receiving data in a non-data transmission period. In the foregoing examples, the UTRAN transmits the PCPCH use-status information 20 to the UEs, so as to enable each UE that desires to transmit data over the CPCH, to be able to monitor the use-status information of the present PCPCH. That is, upon receipt of the PCPCH use-status information transmitted over the CSICH, the UE desiring to use the CPCH can determine whether the PCPCHs available in the UTRAN are available or not. Therefore, the UE desiring to use the CPCH can request assignment of the PCPCH, use of which can be 25 approved by the present UTRAN. The UE desiring to use the CPCH selects an AP signature for requesting assignment of a desired one of the PCPCHs, availabilities of which are confirmed from the PCPCH use-status information, and transmits the selected AP signature to the UTRAN. Meanwhile, the UTRAN transmits ACK or NAK in response to the AP signature over the AP_AICH. Also, as stated above, the UTRAN transmits the PCPCH use 30 status information over the APAICH. Upon receipt of ACK from the UTRAN over the APAICH, the UE selects again a given CD signature and transmits CDP. The UTRAN then transmits a CA signal together with ACK or NAK in response to the CDP. Upon receipt of WO 01/61877 PCT/KR01/00236 -26 the ACK signal and the CA signal for the CD from the UTRAN, the UE compares the CPCH allocated to it with the result confirmed in the monitoring process. If it is determined that the allocated PCPCH is already in use, it means that the CA has an error. Therefore, the UE can transmit no signal over the allocated PCPCH. As another method, after the UE has allocated 5 the PCPCH in the foregoing procedure, if it is determined that the allocated PCPCH which was not in use in the previous monitoring process is indicated as being in use in the present monitoring process, it is noted that the CA is normally received. Otherwise, if the allocated PCPCH was already in use in the previous monitoring process or is not indicated as being in use in the present monitoring process, it is noted that the CA has an error. The latter 10 monitoring process can be performed after transmission of the PCPCH or a message, and upon detecting the error, the UE stops signal transmission. Heretofore, a description is made regarding one method in which the UTRAN transmits the maximum available data rate information to the UE, and another method in 15 which the UTRAN transmits the use-status information of the PCPCH to the UE. Finally, it is also possible to transmit the two kinds of information at the same time. Several embodiments of this method will be described below. 20 First Embodiment In a first embodiment of the method for transmitting the two kinds of information at the same time, some of the slots constituting one frame of the CSICH are used to transmit the maximum data rate information and the remaining slots are used to transmit the use-status 25 information of the PCPCH. One frame of the CSICH used in the present asynchronous standard may have the same length as one access frame. The frame length is 20ms and includes 15 access slots. As an example of this method, it is assumed that the number of the information bits needed to transmit the maximum data rate used in the UTRAN is 3 and the number of the PCPCHs used in the UTRAN is 40. In this case, the UTRAN can use 3 of the 30 15 slots constituting one CSICH frame in transmitting the maximum data rate information, and use the remaining 12 slots in transmitting the PCPCH use-status information. That is, the WO 01/61877 PCT/KR01/00236 -27 UTRAN can transmit 24-bit maximum data rate information and 96-bit PCPCH use-status information over one frame. Therefore, if it is assumed that the same data is transmitted to the I channel and the 5 Q channel in the CSICH, it is possible to repeatedly transmit 3-bit maximum data rate information 4 times in total. In addition, it is possible to transmit once the 40-bit use-status information indicating whether the individual PCPCHs used in the UTRAN are available or not, through the I channel and Q channel. On the contrary, if it is assumed that the different data is transmitted through the I channel and the Q channel, it is possible to transmit 3-bit 10 maximum data rate information 8 times in total. In addition, it is possible to repeatedly transmit twice the use-status information of the respective PCPCHs used in the UTRAN. In the first method stated above, the positions of a slot for transmitting the maximum data rate information and a slot for transmitting the use-status information of the PCPCHs used by the UTRAN may be arranged at random by the UTRAN or may be previously determined. 15 As one example of arranging the slot positions, the maximum data rate information can be transmitted through 0*, 5* and 1 0* slots out of the 15 access slots in one CSICH frame, and the PCPCH use-status information can be transmitted through the remaining slots. As another example, it is also possible to transmit the maximum data rate information 20 through the 0 *, 1 4s and 2 "d slots and the use-status information of the PCPCHs used in the UTRAN through the 3 rd to 14 " slots. The above-stated several slots are allocated for the maximum data rate information, and how many remaining slots are to be allocated for the PCPCH use-status information is determined by considering the number of the PCPCHs used in the UTRAN and the repeating frequency of the maximum data rate. In addition, it is also 25 possible to transmit the maximum data rate information and the PCPCH use-status information by segmenting the information into several CSICH frames according to the amount of the information. Before transmission of the CSICH, an agreement is previously made with the UE on which information is to be transmitted in which slot. 30 Second Embodiment WO 01/61877 PCT/KR01/00236 -28 In a second embodiment of the method for transmitting the two kinds of information at the same time, the 8 CSICH information bits transmitted in one access slot are divided so as to use several information bits in indicating the maximum data rate and the remaining information bits in indicating the PCPCH use-status information. 5 For example, when the same bit is transmitted through the I channel and the Q channel, the first 2 bits of one access slot can be used to transmit the information on the maximum data rate available for the PCPCH of the UTRAN, and the remaining 6 bits can be used to transmit the use-status information of the PCPCHs of the UTRAN. Therefore, 1 bit of 10 the maximum data rate information is transmitted through one access slot and 3 bits of the PCPCH use-status information are transmitted through one access slot. However, when the different bits are transmitted through the I channel and the Q channel, it is possible to transmit the maximum data rate information and the PCPCH use 15 status information twice as compared with the case where the same bit is transmitted through the I channel and the Q channel. In the foregoing second embodiment, the first 2 bits of one access slot are used to transmit the maximum data rate of the PCPCH and the remaining 6 bits are used to transmit 20 the PCPCH use-status information. However, various modifications may be made: for example, 6 bits of one access slot are used to transmit the maximum data rate information and 2 bits of one access slot are used to transmit the PCPCH use-status information. That is, the number and the positions of the bits used to transmit the maximum data rate information of the PCPCH and the PCPCH use-status information can be determined by the UTRAN and 25 notified to the UE. When the number and the positions of the bits used to transmit the maximum data rate information of the PCPCH and the PCPCH use-status information are determined, an agreement is made with the TE before transmission of the CSICH. In addition, the UTRAN can transmit the two kinds of information over a plurality 30 of access slots or a plurality of frames. Transmitting the two kinds of information over a plurality of frames is performed when the two kinds of information have a large volume or to increase a reliability of the information. The UTRAN may determine the number of access WO 01/61877 PCT/KR01/00236 -29 slots for transmitting the two kinds of information, considering the number of bits needed to transmit the maximum data rate information and the PCPCH use-status information. The number of the frames for transmitting the two kinds of information is also determined considering the number of bits needed to transmit the maximum data rate information and the 5 PCPCH use-status information. Third Embodiment In a third embodiment of the method for transmitting the two kinds of information at 10 the same time, the information on the maximum data rate available for the PCPCH and the PCPCH use-status information are transmitted through a plurality of CSICHs which may be simultaneously transmitted. For example, the maximum data rate information is transmitted through any one of the CSICHs and the PCPCH use-status information is transmitted through the other CSICHs. As one example, the transmitted CSICHs may be distinguished with the 15 downlink channelization codes or the uplink channelization codes. As another example, it is also possible to transmit 40 CSICH information bits within one access slot by allocating a separate channelization code to one CSICH. If a separate channelization code is allocated to one CSICH as stated above, it is possible to transmit the maximum data rate information of the PCPCH together with the PCPCH use-status information within one access slot. 20 In the foregoing third embodiment, the UTRAN may determine the number of the CSICHs to be transmitted, considering the maximum data rate information of the PCPCH, the information on the total number of the PCPCHs used in the UTRAN, and a reliability of the above information. 25 Fourth Embodiment In a fourth embodiment of the method for transmitting the two kinds of information at the same time, the information is transmitted using plural frames. That is, all the CSICH 30 information bits in one frame are used to transmit the information on the maximum data rate available for the PCPCH, and all the CSICH information bits in the other frames are used to transmit the use-status information of the PCPCHs used in the UTRAN.
WO 01/61877 PCT/KR01/00236 -30 In this embodiment, the UTRAN can determine the number of frames for transmitting the maximum data rate information of the PCPCH and the number of frames for transmitting the PCPCH use-status information, considering a quantity of the information to 5 be transmitted over the CSICH and a reliability of the information quantity. Here, an agreement on the determined results is previously made with the UE. Fifth Embodiment 10 In a fifth embodiment of the method for transmitting the two kinds of information at the same time, the maximum data rate information is transmitted to a bit in a previously appointed position out of the CSICH information bits. That is, the maximum data rate information of the PCPCH is transmitted through the CSICH information bits in the positions previously agreed between the UTRAN and the UE, out of the CSICH information bits in the 15 frame. Further, the use-status information of the PCPCHs used in the UTRAN is transmitted through the remaining CSICH information bits excepting the CSICH information bits used for transmitting the maximum data rate information. In the fifth embodiment, an exemplary method for recording the maximum data rate 20 information of the PCPCH in the CSICH information bits before transmission is expressed by Equation (1) below: d, = 1 1-= 0,1,..., 1I- 1 .. .. ... (1) 25 where i indicates the number of the maximum data rate information bits and d, indicates the maximum data rate information to be transmitted. For example, if di={1 0 1} with i=3, then d 0 =1, d 1 =0 and d 2 =1.
WO 01/61877 PCT/KR01/00236 -31 In the fifth embodiment, an exemplary method for recording the PCPCH use-status information in the CSICH information bits before transmission is expressed by Equation (2) below: 0 5 p = j=0,1,...,J-1 ....... (2) where j indicates the total number of the PCPCHs used per CPCH set in the UTRAN, and pj indicates the use-status information of the respective PCPCHs. Hence, the number of the PCPCHs is 16 and the PCPCH use-status information, indicating whether the respective 10 PCPCHs are used or not, is pj ={0 0 0 1 1 10 0 10 10 1 100}. Equation (3) below shows a method for recording '0' in the remaining bits except the bits needed to repeatedly transmit, for a preset number of times, the maximum data rate information together with the PCPCH use-status information out of the total CSICH 15 information bits, when the total number N of the CSICH information bits, which can be transmitted over one frame, are determined. ek=0, k=, 1, . . . , K-1 or 20 ek=l, k=0,1,...,K-1 ........ (3) where k indicates the remaining CSICH information bits other than the bits used to transmit the maximum data rate information available for the PCPCH and the use-status information of the respective PCPCHs used in the UTRAN. In particular, k indicates the number of bits 25 experiencing zero-fading or DTX. Equation (4) below shows the total number N of the CSICH information bits which can be transmitted over one frame. 30 N = I*R+J+K ........ (4) WO 01/61877 PCT/KR01/00236 - 32 When N defined in Equation (4) is less than 120, it is selected from divisors of 120. For example, N=3, 5, 15, 30 and 60. In Equation (4), R indicates how many times the maximum data rate information bits are to be repeated in one access frame. In Equation (4), I 5 and J are determined during system implementation and notified to the UE by the UTRAN. Thus, these values can be previously known. That is, these values are given from the upper layer. As one method for determining the value N, when I and J are known, the value N 10 may be determined as the minimum number among the values 3, 5, 15, 30 and 60, which satisfy the condition of N>I+J. Alternatively, the UTRAN transmits the value N or R to the UE in addition to the values I and J, so that the value R or N and the value K may be determined from Equation (4). 15 The order of determining the values N and R is given in three methods as follows. In a first method, the value N is determined by the given values I and J, and the value R can be determined as a quotient obtained by dividing (N-J) by I, as expressed by Equation (5) below. 20 (N- J) R= .(I I I .. ...... (5) In a second method, the value N is previously given using a message from the upper layer and the value R is calculated using Equation (5). 25 In a third method, the value R is previously given using a message from the upper layer and the vane N is calculated using a value of R*I+J. Meanwhile, the value K can be calculated using a formula K=N-(R*I+J). 30 WO 01/61877 PCT/KR01/00236 - 33 There are several methods for arranging the information on the values I, J, R, N and K, and will be described in the following description. The N bits are represented by SIO, SI, . . . , SIN-, where SI indicates the first bit and 5 SIN-1 indicates the N* bit. r= j ....... (6) where r is an intermediate parameter and may be defined as a quotient obtained by dividing J 10 by R. s= J-r*R ....... (7) where s is an intermediate parameter, which indicates the remaining bits which have failed to 15 be included in R r-bit groups out of J bits. Here, 0 < s < R and s is a remainder determined by dividing J by R. A first embodiment for arranging the information bits is as follows. 20 SIl(I+r)+i = d, 0 i I-l, 1=0,1,... ,s-1 ....... (8) 0 iI-, 1=0, 1, .. . , s-1........(9) 25 Equations (8) and (9) determine to which position of the CSICH the bit indicating the maximum data rate is to be transmitted. 51 (I+r+1)+I+j = PI(r+I)+j 30 0 ! j:5r, l=0,1,...,s-1 ....... (10) WO 01/61877 PCT/KR01/00236 - 34 SI ,,,g=ps~+)(-~ Ss(I+r4+1)+(1-s)(I+r)+I+j 0 j r-1, l=s,s+1,...,R-1 ....... . (11) When the SCICH is transmitted as stated above, the information bits are transmitted 5 in the following order. Thus, the UE is able to know the values I, J, R and K from the foregoing description and accordingly, know the bit arrangement. For example, if I=3, J=16, N=30, R=4 and K=2, the 3 maximum data rate information bits, the first 5 bits (1st to 5* bits) of the 16-bit PCPCH use-status information, 10 the 3 maximum data rate information bits, the next 5 bits ( 6 * to 10* bits) of the 16-bit PCPCH use-status information, the 3 maximum data rate information bits, the next 5 bits (11* to 15* bits) of the 16-bit PCPCH use-status information, and the 3 maximum data rate bits are repeatedly arranged in sequence in one frame, and the following 2 bits experience DTX or are padded with '0'. Here, the 16 * bit 's' indicating the last PCPCH use-status 15 information is located at the rear of the first 5 bits (1st to 5* bits) out of the 16 bits. If s=2 bits, it is located at the rear of the next block ( 6 th to 1 0 bits). Equations (10) and (11) determine to which positions of the CSICH the bits indicating the use-status information of the respective PCPCHs used in the UTRAN are to be 20 transmitted. SIR*I+J+k k k=o,1,...,K-1 ........ (12) 25 Equation (12) determines the positions where the bits remaining after transmitting through the CSICH the maximum data rate information bits of the PCPCH and the use-status information bits of the respective PCPCHs used in the UTRAN, are to experience zero padding or DTX. 30 A second embodiment for arranging the information bits is as follows: t = min [1:1*(r+l)> J] ....... .(13) WO 01/61877 PCT/KR01/00236 -35 where t is an intermediate parameter, which corresponds how many times the J bits are divided. In Equation (13), t is less than or equal to R. 5 SII(+r+)+i= di 0 i -1, l=0,1,...,t-1 ....... .(14) SljIai a= d, 0iI-l, l= t, t+1, . . .,R-1........(15) 10 Equations (14) and (15) determine to which positions of the CSICH the bits indicating the maximum data rate are to be transmitted. Sl )I+a = PI@±1)+j 15 0 ! j r, 1=0,1,...,t-2 ....... .(16) SI(t-1)(I+r+l)+I+j = p(t-1)(r+l)+j 0 j r - (t*(r+l)-J) ....... (17) 20 Equations (16) and (17) determine to which positions of the CSICH the bits indicating the use-status information of the respective PCPCHs used in the UTRAN are to be transmitted. SIR*I+J+k =k 25 k=0,1,...,K-1 ........ (18) Equation (18) determines the positions where the bits remaining after transmitting through the CSICH the maximum data rate information bits of the PCPCH and the use-status information bits of the respective PCPCHs used in the UTRAN, are to experience zero 30 padding or DTX. A third embodiment for arranging the information bits is as follows.
WO 01/61877 PCT/KR01/00236 -36 Sli = p 0 j s J-1 ........ (19) 5 Equation (19) determines to which positions of the CSICH the bits indicating the use-status information of the respective PCPCHs used in the UTRAN are to be transmitted. SljIim= di 0 ! i<J -1, 0 1s R-1 ........ (20) 10 Equation (20) determines to which positions of the CSICH the bits indicating the maximum data rate are to be transmitted. SIR*I+J+k = ek 15 k=0,1,...,K-1 .......... (21) Equation (21) determines the positions where the bits remaining after transmitting through the CSICH the maximum data rate information bits of the PCPCH and the use-status information bits of the respective PCPCHs used in the UTRAN, are to experience zero 20 padding or DTX. A fourth embodiment for arranging the information bits is as follows. SIR*I+j = pj 25 0 j J-1 ......... (22) Equation (22) determines to which positions of the CSICH the bits indicating the use-status information of the respective PCPCHs used in the UTRAN are to be transmitted. 30
SI*
1 +i =d, 0 i<iI-1, 0lR-1 ....... (23) WO 01/61877 PCT/KR01/00236 -37 Equation (23) determines to which positions of the CSICH the bits indicating the maximum data rate are to be transmitted. SI .++= e SR*I+J+k e 5 k = 0, 1, . . . , K-1 ......... .(24) Equation (24) determines the positions where the bits remaining after transmitting through the CSICH the maximum data rate information bits of the PCPCH and the use-status information bits of the respective PCPCHs used in the UTRAN, are to experience zero 10 padding or DTX. A fifth embodiment for arranging the information bits is as follows. m = - ......... (25) 15 where m is an intermediate parameter. 5 1 I+r+m)p±=di 0 i -1, l=0,1,...,R-1 ........ (26) 20 Equation (26) determines to which positions of the CSICH the bits indicating the maximum data rate are to be transmitted. S+r+m)+I+j = pi-+j 25 0 ! j s r-1, 1=0,1,...,R-2 . ......... (27) S(R-1)(Ir4m-m)+I+j = P(R-)r+j 0 j RI+J-1-(R-l)(I+r+m)-I ......... .(28) WO 01/61877 PCT/KR01/00236 -38 Equations (27) and (28) determine to which positions of the CSICH the bits indicating the use-status information of the respective PCPCHs used in the UTRAN are to be transmitted. 5 SI-(I+r+m)+I+r+k = el-m+k 0! l R-2, k=0,1,...,m-1 ......... (29) SIR-I+J+k = e(R-1)*m+k k = 0, 1,... ,N-1-R*I-J ......... (30) 10 Equations (29) and (30) determine the positions where the bits remaining after transmitting through the CSICH the maximum data rate information bits of the PCPCH and the use-status information bits of the respective PCPCHs used in the UTRAN, are to experience zero-padding or DTX. 15 In the foregoing embodiments of the method for simultaneously transmitting the maximum data rate information available for the PCPCH and the use-status information of the respective PCPCHs used in the UTRAN, it is also possible to transmit a persistence value or an NFMax value available for the PCPCH in the UTRAN instead of the maximum data 20 rate information. The transmission method using the separate coding method encodes SI (Status Indicator) information with an error correction code to increase reliability of the SI information transmitted over the CPICH, applies 8 coded symbols to an access slot of an 25 access frame, and transmits 120 coded symbols per access frame. Here, the number of the SI information bits, the meaning of the status information and the method for transmitting the same is previously determined by the UTRAN and the UE, and is also transmitted as a system parameter over the broadcasting channel (BCH). Therefore, the UE also previously knows the number of the SI information bits and the transmission method, and decodes the 30 CSICH signal received from the UTRAN.
WO 01/61877 PCT/KR01/00236 -39 FIG. 5 shows a structure of a CSICH encoder for transmitting the SI information bits according to an embodiment of the present invention. Referring to FIG. 5, the UTRAN first checks the present use-status of the uplink 5 CPCH, i.e., the data rate and channel condition of the channel presently received over the uplink channel to determine the maximum data rate to be transmitted to the CSICH channel, and then outputs corresponding information bits shown in Table 1. The information bits are the input bits shown in Table 2 below. 10 A method for coding the input bits may vary according to a transmission method. That is, the coding method may vary according to whether to provide the channel status information in a frame unit or a slot unit. First, a description will be made of a case where the channel status information is transmitted in a frame unit. The input information (SI bits) and the control information for the number of the SI bits are simultaneously applied to a repeater 15 501. The repeater 501 then repeats the SI bits according to the control information for the number of the SI bits. However, the control information for the number of the SI bits is not necessary, when the number of the input information bits is previously known to both the UTRAN and the UE. 20 Operation of the CSICH encoder of FIG. 5 will be described. Upon receipt of 3 SI bits of SO, S1, and S2, the repeater 501 repeats the received SI bits according to the control information indicating that the number of the SI bits is 3, and outputs a repeated 60-bit stream of SO, S1, S2, SO, Si, S2, ..., SO, S1, S2. When repeated 60-bit stream is applied to an encoder 503 in a 4-bit unit, the encoder 503 encodes the bits in the bit stream with an (8,4) 25 bi-orthogonal code in a 4-bit unit, and outputs encoded symbols by 8 symbols. In this manner, when the input 60-bit stream is encoded, 120 symbols are output from the encoder 503. By transmitting 8 symbols to every slot in one CSICH, it is possible to transmit the symbols from the encoder 503 over one frame. 30 Furthermore, when the input information is comprised of 4 bits, the 4 input bits are repeated 15 times by the repeater 501 and output as 60 symbols. The 60 output symbols are encoded into a bi-orthogonal code of 8 symbols in the 4-bit unit by the (8,4) bi-orthogonal WO 01/61877 PCT/KR01/00236 -40 encoder 503. Such a method is equivalent to outputting the input 4 bits into an 8-symbol bi orthogonal code to transmit the same bi-orthogonal code to every slot (15 slots), with the repeater 501 removed. 5 Even when the input is. 3 bits and an (8,3) encoder is used, the repeater 501 is meaningless. Thus, during implementation, it is possible to remove the repeater 501 and transmit the same encoded symbols to every slot (of 15 slots) by outputting 8 symbols for the 3 input bits. 10 As described above, if it is possible to transmit the same symbols at every slot, the UTRAN can transmit the CPCH channel status information to the UE in a slot unit. That is, the UTRAN determines the maximum data rate at which the UTRAN transmits data to the UE in the slot unit, determines the input bits corresponding to the determined maximum data rate, and transmits the determined input bits in the slot unit. In this case, since the UTRAN 15 must analyze the data rate and the status of the uplink channel in the slot unit, it is also possible to transmit the maximum data rate in a unit of several slots. The (8,4) bi-orthogonal code, which is an error correction code used for encoding, has a relationship between 4 input bits and 8 output symbols as shown in Table 2 below. 20 Table 2 Input Bits Coded Symbols 0000 00000000 0001 01010101 0010 00110011 0011 01100110 0100 00001111 0101 0101 1010 0110 0011 1100 0111 0110 1001 1000 1111 1111 1001 10101010 1010 11001100 1011 1001 1001 1100 11110000 WO 01/61877 PCT/KR01/00236 -41 1101 10100101 1110 11000011 1111 10010110 FIG. 6 shows a structure of a CSICH decoder corresponding to the CSICH encoder of FIG. 5. 5 Referring to FIG. 6, 3 input bits are repeated 20 times to create 60 bits, and the created 60 bits are applied to the decoder in a unit of 4 bits. Assuming that the decoder corresponds to the encoder using the (8,4) bi-orthogonal code. Upon receipt of a received signal by 8 symbols, a correlation calculator 601 calculates a correlation between the received signal and the (8,4) bi-orthogonal code, and outputs one of 16 correlation values 10 shown in Table 2. The output correlation value is applied to a likelihood ratio (LLR) value calculator 603, which calculates a ratio of probability PO to probability P1, and outputs a 4-bit LLR value. Here, the probability PO indicates a probability that each decoded bit for the 4 15 information bits transmitted from the UTRAN according to the control information determined by the number of the SI bits will become 0, and a probability P1 indicates a probability that the decoded bit will become 1. The LLR value is applied to an LLR value accumulator 605. When 8 symbols are received in the next slot, the decoder repeats the above process and adds the 4 bits output from the LLR calculator 603 to the existing value. When 20 all the 15 slots are received in the above process, the decoder determines the status information transmitted from the UTRAN using the value stored in the LLR value accumulator 605. Next, a description will be made of a case where the input is 4 or 3 bits and the (8,4) 25 or (8,3) encoder is used. When a received signal is applied to the correlation calculator 601 in a unit of 8 symbols, the correlation calculator 601 calculates a correlation between the received signal and the (8,4) or (8,3) bi-orthogonal code. If the status information is received from the UTRAN in the slot unit, the decoder determines the status information transmitted from the UTRAN using the largest correlation value according to the correlation. Further, a 30 description will be made of a case where the UTRAN repeats the same status information in WO 01/61877 PCT/KR01/00236 -42 the unit of 15 slots (one frame) or several slots and transmits the repeated status information. When the received signal is applied to the correlation calculator 601 by 8 symbols, the correlation calculator 601 calculates a correlation between the received signal and the (8,4) or (8,3) bi-orthogonal code and outputs the calculated correlation value to the LLR value 5 calculator 603. The LLR value calculator 603 then calculates a ratio of a probability PO to a probability P1, and outputs an LLR value. Here, the probability PO indicates a probability that a decoded bit for the 4 or 3 information bits transmitted from the UTRAN will become 0 according to the control information determined depending on the number of the SI bits, and a probability PI indicates a probability that the decoded bit will become 1. The LLR value is 10 applied to an LLR value accumulator 605 and accumulated. For the 8 symbols received in the next slot, the decoder repeats the above process to accumulate the calculated value to the existing LLR value. Such an operation is performed on every symbol transmitted over one frame. That is, in the case where 8 symbols are transmitted at one slot, the foregoing operation is repeatedly performed 15 times. Therefore, when the UTRAN repeatedly 15 transmits the same status information, the final LLR value accumulated by the foregoing operation will be equal to the number of the repeated transmissions by the UTRAN. The UE determines the status information transmitted from the UTRAN depending on the accumulated LLR values. 20 A description will be made of another. embodiment which provides higher performance than the conventional method in terms of a method for encoding the information bits to be transmitted to the CSICH. To bring a better understanding of this embodiment of the present invention, it will be assumed that there are 4 information bits to be transmitted to the CSICH. The information bits will be represented by SO, S1, S2 and S3 in sequence. In the 25 prior art, the information bits are simply repeated before transmission. That is, if 120 bits are transmitted in one frame, SO is repeated 30 times, S1 is repeated 30 times, S2 is repeated 30 times and S3 is repeated 30 times. Therefore, the prior art is disadvantageous in that the UE only receives the necessary CPCH information after completely receiving one frame. 30 To solve this problem, in another embodiment, the sequence of transmitting the information bits is changed to obtain a time diversity so that the UE can know the CPCH status even though the CPCH of one frame is not completely received. For example, when WO 01/61877 PCT/KR01/00236 -43 the sequence of transmitting the information bits is SO, S1, S2, S3, SO, S1, S2, S3, SO, S1, S2, S3, ... , SO, Si, S2 and S3, the same code gain is given in an AWGN (Additive White Gaussian Noise) environment. However, since a gain of the time diversity is given in a fading environment which occurs inevitably in the mobile communication system, the invention has 5 a higher code gain as compared with the prior art. In addition, the UE can know the status of the CPCH in the UTRAN, even though only one slot of the CSICH (when the number of the information bits is 4 and below) is received. Even when there are many information bits to be transmitted to the CSICH, it is possible to know the information about the CPCH in the UTRAN more rapidly as compared with the prior art. 10 A description will be made below of yet another embodiment which provides higher performance than the conventional method in terms of a method for encoding the information bits to be transmitted to the CSICH. In the foregoing second method, the CSICH information bits were transmitted in a bit unit. That is, when there are 6 information bits to be transmitted 15 to the CSICH and the information bits are represented by SO, S1, S2, S3, S4, S5 and S6, the information bits are repeatedly transmitted in the sequence of SO, Si, S2, S3, S4, S5 and S6. On the contrary, however, in the third method which will be described below, the information bits are transmitted in a symbol unit. 20 In the third method, the reason for transmitting the information bits in a symbol unit is because the downlink AICH channel in the current W-CDMA system transmits in sequence the information bits to the I channel and the Q channel. In addition, another reason is to use the same receiver as the AICH receiver, since the current W-CDMA system is so structured as to repeat the same bit two times in order to transmit the same information bits to 25 the I channel and the Q channel. A method for transmitting the CSICH information bits in a symbol unit using the above-stated repeating structure is expressed by Equation (31) below. 30 b 2 (n+mN) =b 2 (n,)+= 1 f, SI, =0 WO 01/61877 PCT/KR01/00236 -44 n = 0,1,..., N - 1 M = 0,1,..., - 1 ......... (31) 2N where N is the number of the SI information bits. The current W-CDMA standard proposes 1, 5 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 and 60 for the value N. Further, in Equation (31), m indicates a period of the SI information bits which are repeatedly transmitted for one CSICH. The W CDMA standard proposes 120, 60, 40, 30, 24, 20, 12, 10, 8, 6, 4 and 2 for the value m. The value in is determined depending on the value N. Further, in Equation (31), n indicates which one of the N SI information bits is repeatedly transmitted. 10 In Equation (31), b 2
(.
1 N) is a 2(n+mN)th information bit and has the same value as b2(n+ni)± 1 . That is, the CSICH information bit is repeated two times with the same value. Meanwhile, in Equation (31), when the value SI. is 1, the information bits are mapped to -1, and when the value SI, is 0, the information bits are mapped to +1. The mapping values are 15 interchangeable. For example, if N=10 in Equation (31), then n has a value of 0 to 9 and m has a value of 0 to 5. Meantime, if S1 0 =1, S1 1 =0, SI 2 =1, S1 3 =1, S1 4 =0, SI1=0, S1 6 =1, SI7=1, SI=0 and S1 9 =1, it is possible to obtain from Equation (31) the values of bo=-1, bl=-1, b 2 =1, b 3 =1, 20 b 4 =-1, b,=-1, b 6 =-1, b 7 =-1, b 8 =1, b,=l, b 10 =1, b 11 =1, bl 2 =-1, b,,=-1, b, 4 =-1, bi=-1, b 16 =1, b 7 =1, bis=-1 and b 19 =-1. These values are repeated 6 times within one CSICH frame. That is, the values are repeated based on b 0 =-1, b 2 0 =-1, b 40 =-1, b 6 o=-l, b80=-1 and bj 00 =-1. FIG. 31 shows a CSICH decoder according to another embodiment of the present 25 invention. Referring to FIG. 31, a first repeater 3101 maps input SI information bits 0 and 1 to +1 and -1, and repeats the mapped SI bits in accordance with Equation (31). The repeated SI bits are applied to a second repeater 3103. The second repeater 3103 repeatedly transmits the 30 output of the first repeater 3101 according to control information for the number of the WO 01/61877 PCT/KR01/00236 -45 received SI information bits. The number of repetitions is 120/2N. If the first repeater 3101 is removed, FIG. 31 corresponds to a hardware structure for the second embodiment which provides the higher performance than the prior art in terms of a method for encoding the information bits to be transmitted to the CSICH. Otherwise, if the first and second repeaters 5 3101 and 3103 are both used, FIG. 31 corresponds to a hardware structure for the third embodiment for encoding the information bits to be transmitted to the CSICH. In the prior art, since the information about the status of each CPCH used in the UTRAN is transmitted over the CSICH, the UTRAN cannot transmit the information in one 10 CSICH slot, but must divide the information into the whole slots of one frame before transmission. Therefore, in order to know the CPCH status in the UTRAN, the UE which desires to use the CPCH must receive the CSICH for a time much longer than in this embodiment. In addition, the information about the slot where the CSICH information starts and the information about the slot where the CSICH information ends is required. However, 15 in this embodiment of the present invention, when the maximum data rate supported by the CPCH and the multi-code are used regardless of the number of the CPCHs used in the UTRAN, since the number of multi-codes which may be used per CPCH is transmitted, the CPCH status information can be expressed with 4 bits regardless of the number of the CPCHs. In FIGS. 5 and 6, although one information bit is used for the case where the multi 20 code is used, it is possible to allocate the information bit for the number, NFM (Number of Frame Max (NF_MAX)), of frames which can maximally transmit the CPCH message. The UTRAN can set one NFM per CPCH. Alternatively, the NFM can correspond to the CA or correspond to the downlink DPCCH. In order to select the NFM, the UE may match NFM with the AP or to the AP sub-channel. There are several methods for setting and informing 25 the NFMAX in the UTRAN and the UE. As one method, the UTRAN may set either one NFMAX per CPCH set or several NFMAXs per CPCH set. When UTRAN sets several NFMAXs per CPCH set, the UE may personally select each NFMAX in combination of the AP signature and the AP sub-channel which are transmitted to the UTRAN. 30 In another method for setting NF_MAX, the UTRAN matches the NFMAX to the channel allocation message and personally provides the UE with the information on the NFMAX. In yet another method for setting NF_MAX, it is possible to match to NFMAX WO 01/61877 PCT/KR01/00236 -46 to the uplink CPCH and its corresponding downlink DPCCH. In still another method, a supervision may be used without the NFM. That is, when there is no data to transmit, the UE stops transmission, and upon detecting this, the UTRAN releases the channel. In still another method, the NFM can be transmitted to the UE using the downlink DPDCH. 5 AP/AP AICH Upon receiving the information about the CPCH in the UTRAN through the CSICH of FIG. 4, the UE prepares to transmit the AP 333 of FIG. 3 in order to obtain the information 10 about the right to use the CPCH channel and the use of the CPCH channel. To transmit the AP 333, the UE should select a signature for the AP. In the preferred embodiments of the present invention, it is possible to select a proper access service class (ASC) based on the information about the CPCH in the UTRAN, acquired through the 15 CSICH before selecting the signature, and the property of the data that the UE will transmit over the CPCH. For example, the ASC can be distinguished according to a desired class of the UE, the data rate used by the UE, or the service type used by the UE. The ASC is transmitted to the UEs in the UTRAN over the broadcasting channel, and the UE selects a proper ASC according to the CSICH and the property of the data to be transmitted. Upon 20 selecting the ASC, the UE randomly selects one of AP sub-channel groups for the CPCH, defined in the ASC. If the system frame number (SFN) presently transmitted from the UTRAN is defined as K using Table 3 below and the SFN used for the frame transmitted from the UTRAN, the UE draws the access slots which are available at (K+1) and (K+2)' frames and selects one of the drawn access slots to transmit the AP 331 of FIG. 3. The "AP 25 sub-channel group" refers to the 12 sub-channel groups shown in Table 3. Table 3 Sub-channel Number SFNmod 8 0 1 2 3 4 5 6 7 8 9 10 11 0 0 1 2 3 4 5 6 7 1 8 9 10 11 2 12 13 14 3 0 1 2 3 4 56 7 4 9 10 11 12 1314 _8 WO 01/61877 PCT/KR01/00236 -47 5 6 7 0 1 2 3 4 5 6 3 4 5 67 7 8 9 10 11 12 13 14 A structure of an access slot used to transmit the AP 331 of FIG. 3 is shown in FIG. 7. Reference numeral 701 indicates an access slot, which has a length of 5120 chips. The access slot has a structure in which the access slot number is repeated from 0 to 14, and has a 5 repetition period of 20ms. Reference numeral 703 indicates a beginning and an end of the 0*' to 14" access slots. Referring to FIG. 7, since SFN has a unit of 1Oms, a beginning of the 0* access slot is identical to a beginning of a frame whose SFN is an even number, and an end of the 14 * 10 access slot is identical to an end of a frame whose SFN is an odd number. The UE randomly selects one of the valid signatures and a signature selected by the UE in the above described manner, i.e., the sub-channel groups for the CPCH, defined in the ASC allocated by the UTRAN. The UE assembles the AP 331 using the selected signature 15 and transmits the assembled AP to the UTRAN in sync with the timing of the UTRAN. The AP 331 is distinguished according to the AP signature used for the AP, and each signature is mapped to the maximum data rate, or the maximum data rate and the NFM can be mapped. Therefore, the information indicated by the AP is the information about the maximum data rate of a CPCH to be used by the UE or the number of data frames to be transmitted by the 20 UE, or a combination of the two kinds of the above information. Although the combination of the maximum data rate for the AP and the number of the data frames to be transmitted by the CPCH may be mapped, it is also possible, as an alternative method, to select the maximum data rate and NFMAX (Number of Frame Max) by combining the AP signature with an access slot for transmitting an AP made by the UE using the AP signature, and 25 transmit them to the UTRAN. As an example of the above method, the AP signature selected by the UIE can be associated with the maximum data rate or the spreading factor of the data to be transmitted by the LIE over the CPCH and the access sub-channel for transmitting the AP made by the UE using the above signature can be associated with the NFMAX, and vice versa. 30 WO 01/61877 PCT/KR01/00236 -48 For example and referring to FIG. 3, in the process for transmitting the AP from the UE to the UTRAN, after transmitting the AP 333, the UE awaits receipt of the APAICH signal from the UTRAN for a predetermined time 332 (i.e., 3 or 4-slot time), and upon receipt of the AP_AICH signal, determines whether the APAICH signal includes a response 5 to the AP signature transmitted by the UE. If the AP_AICH signal is not received within the time 332 or the AP_AICH signal is a NAK signal, the UE increases transmission power of the AP, and transmits AP 335 to the UTRAN at the increased transmission power. When the UTRAN receives AP 335 and it is possible to allocate the CPCH having a data rate requested by the UE, the UTRAN transmits the APAICH 303 in response to the received AP 335 after 10 a lapse of a previously appointed time 302. In this case, if the uplink capacity of the UTRAN exceeds a predetermined value or there is no more demodulation, the UTRAN transmits a NAK signal to temporarily discontinue UE's transmitting on the uplink common channel. In addition, when the UTRAN fails to detect the AP, the UTRAN cannot send the ACK or NAK signal on the AICH such as the APAICH 303. Therefore, in the embodiment, it will be 15 assumed that nothing is transmitted. CD Upon receipt of the ACK signal over the AP AICH 303, the UE transmits the CDP 20 337. The CDP has the same structure as that of the AP, and the signature used to construct the CDP can be selected from the same signature group as the signature group used for the AP. When a signature for the CDP is used out of the group of the signatures identical to the AP, different scrambling codes are used for the AP and the CD P in order to distinguish between the AP and the CDP. The scrambling codes have the same initial value but may 25 have different start points. Alternatively, the scrambling codes for the AP and the CDP may have different initial values. The reason for selecting a given signature and transmitting the CDP is to decrease the probability that the same CDP may be selected even though there occurs a collision because two or more UEs simultaneously transmit the AP. In the prior art, one CDP is transmitted at a given transmission time to decrease the probability of an uplink 30 collision between the different LEs. However, in such a method, if another user requests the UTRAN for the right to use the CPCH using the same CDP before processing a response to the CDP from one UE, the UTRAN cannot respond to the UE which transmitted the later WO 01/61877 PCT/KR01/00236 -49 CDP. Even if the UTRAN responds to this later UE, there is a probability of an uplink collision with the UE which first transmitted the CDP. In FIG. 3, the UTRAN transmits CD/CAICH 305 in response to the CDP 337 5 transmitted from the UE. The CD ICH out of the CD/CA ICH will be first described. The CDICH is a channel for transmitting the ACK signal for the CDP to the corresponding UE, when the UE transmits the signature used for the CDP over the downlink. The CDICH can be spread using a different orthogonal channelization code from that of the APAICH. Therefore, the CDICH and the APAICH can be transmitted over different physical 10 channels, or can be transmitted over the same physical channel by time dividing one orthogonal channel. In the preferred embodiments of the present invention, the CDICH is transmitted over a different physical channel from that of the APAICH. That is, the CDICH and the APAICH are spread with an orthogonal spreading code of length 256 and transmitted over independent physical channels. 15 CA In FIG. 3, the CA ICH (Channel AllocationIndicator Channel) includes channel information of the CPCH allocated to the UE by the UTRAN and downlink channel 20 allocation information for allocating power control of the CPCH. The downlink allocated to power control the CPCH is available in several methods. First, a downlink shared power control channel is used. A method for controlling transmission power of a channel using the shared power control channel is disclosed in detail 25 in Korean patent application No. 1998-10394, the contents of which are hereby incorporated by reference. Further, it is possible to transmit a power control command for the CPCH by using the shared power control channel. Allocating the downlink channel may include information about the channel number and the time slot for the downlink shared power control used for power control. 30 Second, a downlink control channel can be used which is time-divided into a message and a power control command. In the W-CDMA system, this channel is defined to WO 01/61877 PCT/KR01/00236 -50 control the downlink shared channel. Even when the data and the power control command is time divided for transmission, the channel information includes the information about the channel number and the time slot of the downlink control channel. 5 Third, one downlink channel can be allocated to control the CPCH. The power control command and the control command can be transmitted together over this channel. In this case, the channel information becomes a channel number of the downlink channel. In the preferred embodiments of the present invention, it is assumed that the 10 CD/CAICH are simultaneously transmitted. However, the CAICH may be transmitted after transmission of the CDICH, or the CDICH/CAICH may be simultaneously transmitted. When the CDICH/CAICH are simultaneously transmitted, they may be transmitted with either the different channelization codes or the same channelization code. Further, it will be assumed that in order to decrease the delay in processing a message from a upper layer, a 15 channel allocation command transmitted over the CA ICH is transmitted in the same format as the CDICH. In this case, if there exist 16 signatures and 16 CPCHs, each CPCH will correspond to a unique one of the signatures. For example, when the UTRAN desires to allocate a 5' CPCH for transmitting a message to the UE, the UTRAN transmits a 5* signature corresponding to the 5* CPCH in the channel allocation command. 20 If it is assumed that the CA ICH frame over which the channel allocation command is transmitted has a length of 20ms and includes 15 slots, this structure will be identical to the structure of the APAICH and the CDICH. The frame for transmitting AP AICH and the CDICH is comprised of 15 slots and each slot can be comprised of 20 symbols. It will be 25 assumed that one symbol period (or duration) has a length of 256 chips and a part where responses to the AP, CD and CA are transmitted, is transmitted in only a 16-symbol period. Therefore, the channel allocation command transmitted as shown in FIG. 3 can be comprised of 16 symbols, and each symbol has a length of 256 chips. Further, each symbol is 30 multiplied by the 1-bit signature and the spreading code and then transmitted over the downlink, and an orthogonal property (or orthogonality) is guaranteed between the signatures.
WO 01/61877 PCT/KR01/00236 -51 In the preferred embodiments of the present invention, the CAICH is transmitted using 1, 2 or 4 signatures for the channel allocation command. In FIG. 3, upon receipt of the CD/CAICH 305 transmitted from the UTRAN, the 5 UE examines whether the CDICH includes an ACK signal, and analyzes information about the use of the CPCH channel, transmitted over the CAICH. Analysis of the two kinds of the above information can be made either sequentially or simultaneously. Receiving the ACK signal through the CDICH out of the received CD/CAICH 305 and the channel allocation information through the CAICH, the UE assembles the data part 343 and the control part 10 341 of the CPCH according to the channel information of the CPCH allocated by the UTRAN, as shown in FIG. 3. Further, before transmitting the data part 343 and the control part 341 of the CPCH, the UE transmits the power control preamble (PCP) 339 to the UTRAN after a lapse of a predetermined time from a time when the CD/CAICH, set before the CPCH setting process, are received. 15 PC P Although the power control preamble PCP has a length of 0 or 8 slots, it will be assumed in the preferred embodiments of the present invention that the power control 20 preamble PCP 339 transmits 8 slots. The primary purpose of the power control preamble PCP is to enable the UTRAN to initially set an uplink transmission power of the UE using a pilot field of the power control preamble. However, in this embodiment of the present invention, as another use, the power control preamble can be used to reconfirm the channel allocation message received at the UE. A reason for reconfirming the channel allocation 25 message is to prevent a collision with a CPCH used by another UE, which may be caused by the UE's improperly setting the CPCH because the CAICH received at the UE has an error. When the power control preamble is used for the purpose of reconfirming the channel allocation message, the power control preamble has a length of 8 slots. 30 Although the CA message reconfirming method is used for the power control preamble, the UTRAN has no difficulty in measuring the power and confirming the CA message since it already knows a pattern of the pilot bit used for the power control preamble.
WO 01/61877 PCT/KR01/00236 - 52 At a time close to the time when the power control preamble 339 is transmitted, the UTRAN starts transmitting the downlink dedication channel for uplink power control of the CPCH for the corresponding UE. A channelization code for the downlink dedicated channel 5 (DLDCH) is transmitted to the UE through the CA message, and the downlink dedicated channel is comprised of a pilot field, a power control command field and a message field. The message field is transmitted only when the UTRAN has data to transmit to the UE. Reference numeral 307 of FIG. 3 indicates an uplink power control command field, and reference numeral 309 indicates a pilot field. 10 For the case where the power control preamble 339 of FIG. 3 is used not only for power control but also for reconfirming the CA (Channel Allocation) message, if the CA message transmitted to the analyzed power control preamble by the UTRAN is different from the message transmitted to the CD/CA_ICH 305 by the UTRAN, the UTRAN continuously 15 transmits a transmission power-decreasing command to the power control field of the established downlink dedicated channel, and transmits a CPCH transmission stop message to the FACH (Forward Access Channel) or the established downlink dedicated channel. After transmitting the power control preamble 339 of FIG. 3, the UE immediately 20 transmits the CPCH message part 343. Upon receipt of the CPCH transmission stop command from the UTRAN during transmission of the CPCH message part, the UE immediately stops transmission of the CPCH. If the CPCH transmission stop command is not received, the UE receives. an ACK or NAK for the CPCH from the UTRAN after completing transmission of the CPCH. 25 Structure of the Scrambling Code FIG. 8A shows a structure of an uplink scrambling code used in the prior art, and FIG. 8B shows a structure of an uplink scrambling code used in an embodiment of the 30 present invention.
WO 01/61877 PCT/KR01/00236 - 53 More specifically, FIG. 8A shows a structure of an uplink scrambling code used in the process of initially establishing and transmitting the CPCH in the prior art. Reference numeral 801 indicates an uplink scrambling code used for the AP, and reference numeral 803 indicates an uplink scrambling code used for the CDP. The uplink scrambling code used for 5 the AP and the uplink scrambling code used for the CDP are the uplink scrambling codes generated from the same initial value. In the uplink scrambling codes generates from the same initial value, 0' to 4095* values are used in the AP part, and 4096*h to 8191 " values are used in the CDP part. For the uplink scrambling codes for the AP and the CD_P, the uplink scrambling codes can be used which are broadcast by the UTRAN or previously set in the 10 system. In addition, for the uplink scrambling code, a sequence of length 256 can be used, and a long code which is not repeated for the AP or CDP period can also be used. In the AP and the CDP of FIG. 8A, the same uplink scrambling code can be used. That is, the AP and the CDP can be used equally by using a specific part of the uplink scrambling code generated using the same initial value. In this case, however, the signature used for the AP 15 and the signature used for the CDP are selected from the different signature groups. In such an example, 8 of 16 signatures used for a given access channel are allocated for the AP and the remaining 8 signatures are allocated for the CDP. Reference numerals 805 and 807 of FIG. 8A indicate uplink scrambling codes used 20 for the power control preamble PCP and the CPCH message part, respectively. The parts used in the uplink scrambling codes having the same initial value are made different to be used for the PCP and the CPCH message part. The uplink scrambling code used for the PCP part and the CPCH message part can be the same scrambling code as the uplink scrambling code used for the AP and the CD_P, or can be the uplink scrambling code 25 corresponding on a one-to-one basis to the signature for the AP transmitted by the UE. A PCP scrambling code 805 of FIG. 8A uses O* to 20,479t* values of the uplink scrambling code #B, and a message scrambling code 807 uses a scrambling code of length 38,400 by using 2 0
,
4 8 0 th to 2 0
,
4 7 9 * values of the uplink scrambling code. Also, for the scrambling codes used for the PCP and the CPCH message part, a scrambling code having a length of 30 256 can be used.
WO 01/61877 PCT/KR01/00236 -54 FIG. 8B shows a structure of an uplink scrambling code used in an embodiment of the present invention. Reference numerals 811 and 813 indicate uplink scrambling codes used for the AP and the CD_P, respectively. The uplink scrambling codes 811 and 813 are used in the same manner as in the prior art. The uplink scrambling codes are known to the 5 UE by the UTRAN, or the uplink scrambling codes are previously appointed in the system. Reference numeral 815 of FIG. 8B indicates an uplink scrambling code used for the PCP part. The uplink scrambling code used for the PCP part may be the same scrambling code as the uplink scrambling code used for the AP and the CD_P, or can be the scrambling 10 code which corresponds to the signature used for the AP on a one-to-one basis. Reference numeral 815 of FIG. 8B indicates a scrambling code used for the PCP part, having O* to 20,479* values. Reference numeral 817 of FIG. 8B indicates an uplink scrambling code used for the CPCH message part. For this scrambling code, there can be used the same code as the scrambling code used for the PC_P, or a scrambling code which corresponds to the 15 scrambling code used for the PC_P or the signature used for the AP on a one-to-one basis. The CPCH message part uses scrambling codes of length 38,400 of 0* to 38,399*. For all the scrambling codes used in describing the structure of the scrambling code according to an embodiment of the present invention, the long scrambling code is used which 20 is not repeated for the AP, CD_P, PCP and the CPCH message part. However, it is also possible to use a short scrambling code having a length of 256. Detailed Description of the AP 25 FIGS. 9A and 9B show a channel structure of the CPCH access preamble according to an embodiment of the present invention and a scheme for generating the same, respectively. More specifically, FIG. 9A shows the channel structure of the AP, and FIG. 9B shows a scheme for generating one AP slot. 30 Reference numeral 901 of FIG. 9A indicates a length of the access preamble AP, the size of which is identical to 256 times the length of a signature 903 for the AP. The signature 903 for the AP is an orthogonal code of length 16. Therefore, the length of the AP indicated WO 01/61877 PCT/KR01/00236 -55 by 901 is 4096 chips (=16 chips x 256). A variable 'k' indicated in the signature 903 of FIG. 9A is the selected signature number and can be 0 to 15. That is, in this embodiment of the present invention, there are provided 16 kinds of the signatures. Table 4 below shows the signatures for the AP, by way of example. A method for selecting the signature 903 in the UE 5 is as follows. That is, the UE first determines the maximum data rate which can be supported by the CPCH in the UTRAN through the CSICH (CPCH Status Indicator Channel) transmitted by the UTRAN and the number of the multi-codes which can be used in one CPCH, and selects a proper ASC (Access Service Class) in consideration of the properties, data rate and transmission length of the data to be transmitted through the CPCH. Thereafter, 10 the UE selects a signature proper for the UE data traffic out of the signatures defined in the selected ASC. Table 4 n. Signatur 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e Po(n) A A A A A A A A A A A A A A A A PI(n) A -A A -A A -A A -A A -A A -A A -A A -A
P
2 (n) A A -A -A A A -A -A A A -A -A A A -A -A P,(n) A -A -A A A -A -A A A -A -A A A -A -A A
P
4 (n) A A A A - A-A -A A AA A -A -A -A -A P,(n) A -A A -A -A A -A A A -A A -A -A A -A A P,(n) A A -A A -A -A A A A A -A A -A -A A A
P
7 (n) A -A -A A -A A A -A A -A -A A -A A A -A P,(n) A A A A A A A A -A -A -A -A -A -A -A -A Po(n) A -A A -A A -A A -A -A A -A A -A A -A A Po(n) A A -A -A A A -A -A -A -A A A -A -A A A P(n) A -A -A A A -A -A A -A A A -A -A A A -A
P
12 (n) A A A A -A -A -A -A -A -A -A -A A A A A
P
1 3 (n) A -A A -A -A A -A A -A A -A A A -A A -A
P
14 (n) A A -A A -A -A A A -A -A A -A A A -A -A P,,(n) A -A -A A -A A A -A -A A A -A A -A -A A 15 Reference numeral 905 of FIG. 9B indicates an AP having a length shown by 901. The access preamble 905 is spread with an uplink scrambling code 907 by a multiplier 906 in a chip unit and transmitted to the UTRAN. The time point where the AP is transmitted has WO 01/61877 PCT/KR01/00236 -56 been described with reference to FIG. 7 and Table 3, and the uplink scrambling code 907 has been described with reference to the reference number 811 of FIG. 8B. Conventionally, the UE determines the uplink scrambling code and the data rate 5 required in using the CPCH, the channelization code and the data rate for the downlink dedicated channel for CPCH power control, and the number of the transmission frames, and then transmits the determined information to the UTRAN. That is, conventionally, the UE determines most of the information needed to allocate the CPCH, so that the UTRAN has only the function of allowing or not allowing the UE to use the channel requested by the UE. 10 Therefore, even though there exists an available CPCH in the UTRAN, the prior art cannot allocate the CPCH to the UE. When there are many UEs which requests the CPCH having the same condition, a collision occurs between the different UEs trying to acquire the CPCH, thus increasing the time required when the UE acquires the channel. In this embodiment of the present invention, however, the UE transmits only the possible maximum data rate of the 15 CPCH, or the maximum data rate and the number of the data frames to be transmitted to the UTRAN by using the AP, and the UTRAN then determines, through the CA, the other information for using the CPCH of the uplink scrambling code and the channelization code for the downlink dedicated channel. Therefore, in the embodiment of the present invention, it is possible to endow the UE with the right to use the CPCH, thereby making it possible to 20 efficiently and flexibly allocate the CPCH in the UTRAN. When the UTRAN supports multi-channel code transmission which uses multiple channelization codes in one PCPCH (Physical CPCH), the AP signature used for transmission of the AP may indicate either a scrambling code used for transmission of the 25 multi-codes or the number of the multiple codes desired by the UE when the TIE can select the number of the multiple codes to be used in the PCPCH. When the AP signature indicates the uplink scrambling code for the multiple codes, the channel allocation message transmitted to the UE by the UTRAN may indicate the number of the multiple codes to be used by the UE, and when the AP signature indicates the number of the multiple codes that the UE 30 desires to use, the channel allocation message may indicate the uplink scrambling code to be used by the UE in transmitting the multiple codes.
WO 01/61877 PCT/KR01/00236 - 57 Detailed Description of the CD P FIGS. 10A and 10B show the channel structure of the collision detection preamble CDP and a scheme for generating the same, respectively, according to an embodiment of 5 the present invention. The structure of the CDP and its generating scheme are the same as those of the AP shown in FIGS. 9A and 9B. The uplink scrambling code shown in FIG. 10B is different from the AP scrambling code 811 shown in FIG. 8B. Reference numeral 1001 of FIG. 10A indicates a length of the CD_P, which is 256 times a signature 1003 for the AP, shown in Table 4. A variable 'j' of the signature 1003 indicates the selected signature number 10 and can be 0 to 15. That is, there are provided 16 signatures for the CDP. The signature 1003 of FIG. 10A is randomly selected from the 16 signatures. One reason for randomly selecting the signature is to prevent a collision between the UEs which have received the ACK signal after transmitting the same AP to the UTRAN, thereby having to perform the confirmation process again. 15 In using the signature 1003 of FIG. 10A, the prior art uses a method which is used when specifying only one signature for the CDP or transmitting the AP in a given access channel. The conventional method for transmitting the CDP using only one signature has an object of preventing a collision between the UEs by randomizing the transmission time point 20 of the CDP instead of using the same signature. However, the conventional method is disadvantageous in that if another UE transmits the CDP to the UTRAN at a time point where the UTRAN has not transmitted an ACK for the received CDP received from one UE, the UTRAN cannot process the CDP transmitted from another UE before processing the ACK for the first received CDP. That is, the UTRAN cannot process the CDP from the 25 other UEs while processing the CDP from one UE. The conventional method for transmitting the CDP in the random access channel RACH is disadvantageous in that it takes a long time until the UE detects an access slot for transmitting the CD_P, causing an increased time delay in transmitting the CDP. 30 In an embodiment of the present invention, upon receipt of the APAICH, the UE selects a given signature after a lapse of a predetermined time and transmits the selected signature to the UTRAN.
WO 01/61877 PCT/KR01/00236 -58 Reference numeral 1005 of FIG. 10B indicates an AP having a length shown by reference numeral 1001. The AP 1005 is spread with the uplink scrambling code 1007 (uplink scrambling codes 4096-8191 shown in FIG. 8B) by a multiplier 1006 and then 5 transmitted to the UTRAN after a lapse of a predetermined time from the time point where the APAICH is received. In FIG. 1 OB, for the uplink scrambling code, the code (of the 0* to 4,095* chips) which is identical to that used for the AP can be used. That is, when 12 of the 16 signatures are used for the preamble of the random access channel (RACH), the remaining 4 signatures can be dividedly used for the AP and the CDP of the CPCH. The uplink 10 scrambling code 1007 has been described with reference to FIG. 8B. AP AICH and CD ICH/CA ICH FIG. 11A shows a channel structure of an access preamble acquisition indicator 15 channel (APAICH) over which the UTRAN can transmit ACK or NAK in response to the received AP, a collision detection indicator channel (CDICH) over which the UTRAN can transmit ACK or NAK in response to the received CD_P, or a channel allocation indicator channel (CAICH) over which the UTRAN transmits a CPCH channel allocation command to the UE, and FIG. 11 B shows a scheme for generating the channel of FIG. 11 A. 20 Reference numeral 1101 of FIG. 11A indicates an APAICH indicator part for transmitting ACK and NAK for the AP acquired by the UTRAN. When transmitting the APAICH, a rear part 1105 of the indicator part (or signature transmission part) 1101 transmits the CSICH signal. In addition, FIG. 11A shows a structure for transmitting the 25 CD/CAICH signal for transmitting a response to the CDP signal, and the channel allocation signal. However, the indicator part 1101 has the same channel structure as the APAICH, and the response signals (ACK, NAK or Acquisition Fail) for the CPD and the CA signal are simultaneously transmitted. In describing the CD/CA ICH of FIG. 11 A, the rear part 1105 of the indicator part 1101 may either be left empty or transmit the CSICH. The 30 APAICH and the CD/CA_ICH can be distinguished from each other by making the channelization codes (OVSF codes) become different using the same scrambling code. The channel structure of the CSICH and its generating scheme have been described with WO 01/61877 PCT/KR01/00236 - 59 reference to FIGS. 4A and 4B. Reference numeral 1111 of FIG. 11B indicates a frame structure of an indicator channel (ICH). As illustrated, one ICH frame has a length of 20ms (=5120 chips x 15), and is comprised of 15 slots each having a 5120-chip length, each of which can transmit 0 or more than 1 of the 16 signatures shown in Table 4. A CPCH status 5 indicator channel (CSICH) 1007 of FIG. 11B has the same size as represented by 1103 of FIG. 11A. Reference numeral 1109 of FIG. 11B indicates a channelization code, for which the APAICH, CDICH, and CAICH may use different channelization codes and the CDICH and CAICH may use the same channelization code. A signal on the CPCH status indicator channel 1107 is spread with the channelization code 1109 by a multiplier 1108. The 10 15 spread slots constituting one ICH frame are spread with a downlink scrambling code 1113 by a multiplier 1112 before transmission. FIG. 12 shows an ICH generator for generating CDICH and CAICH commands. An APAICH generator also has the same structure. As described above, to each slot of the 15 ICH frame is allocated a corresponding one of the 16 signatures. Referring to FIG. 12, multipliers 1201-1216 receive corresponding signatures (orthogonal codes W-W 16 ) as a first input and receive acquisition indicators A-AIi 6 as a second input, respectively. Each Al has a value of 1, 0 or -1 for the APAICH and the CDICH: AI=1 indicates ACK, AI=-1 indicates NAK, and AI=0 indicates a failure to acquire the corresponding signature 20 transmitted from the UE. Therefore, the multipliers 1201-1216 multiply the corresponding signature (orthogonal code) by the corresponding acquisition indicator Al, respectively, and a summer 1220 sums up the outputs of the multipliers 1201-1216 and outputs the resulting value as an APAICH, CDICH or CAICH signal. 25 The UTRAN can transmit the channel allocation command using the ICH generator of FIG. 12 in several methods which are given below by way of example. 1. First Channel Allocation Method 30 In this method, one downlink channel is allocated to transmit the channel allocation command over the allocated channel. FIGS. 13A -and 13B show the structures of the CDICH and the CAICH implemented according to the first method. More specifically, FIG.
WO 01/61877 PCT/KR01/00236 - 60 13A shows the slot structure of the CDICH and the CAICH, and FIG. 13B shows an exemplary method for transmitting the CDICH and CAICH. Reference numeral 1301 of FIG. 13A indicates a transmission slot structure of the 5 CD_ICH for transmitting a response signal for the CDP. Reference numeral 1311 indicates a transmission slot structure of the CAICH for transmitting a channel allocation command. Reference numeral 1331 indicates a transmission frame structure of the CD ICH for transmitting a response signal for the CDP. Reference -numeral 1341 indicates a frame structure for transmitting the channel allocation command over the CAICH with a tune 10 delay - after transmission of the CDICH frame. Reference numerals 1303 and 1313 indicate the CSICH part. The method for allocating the channels as shown in FIGS. 13A and 13B has the following advantages. In this channel allocation method, the CDICH and the CAICH are physically separated, because they have different downlink channels. Therefore, if the AICH has 16 signatures, the first channel allocation method can use 16 signatures for the 15 CDICH and also use 16 signatures for the CAICH. In this case, the kinds of information which can be transmitted using the sign of the signatures can be doubled. Therefore, by using the sign of '+1' or '-l' of the CAICH, it is possible to use 32 signatures for the CA_ICH. In this case, it is possible to allocate the different channels to several users, who 20 have simultaneously requested the same kind of channel, in the following sequence. First, it is assumed that UE#1, UE#2 and UE#3 in a UTRAN simultaneously transmit AP#3 to the UTRAN to request a channel corresponding to the AP#3, and UE#4 transmits AP#5 to the UTRAN to request a channel corresponding to the AP#5. This assumption corresponds to the first column (AP number) of Table 5 below. In this case, the UTRAN recognizes the AP#3 25 and the AP#5. At this point, the UTRAN generates APAICH as a response to the received APs according to a defined previously criterion. As an example of the previously defined criterion, the UTRAN can respond to the received APs according to a receiving power ratio of the APs. Here, it is assumed that the UTRAN selects the AP#3. The UTRAN then transmits ACK to the AP#3 and NAK to the AP#5. This corresponds to the second column 30 (APAICH) of Table 5.
WO 01/61877 PCT/KR01/00236 - 61 Then, the UE#1, UE#2 and UE#3 receive ACK transmitted from the UTRAN, and randomly generate CDPs, respectively. When three UEs generate the CDPs (i.e., at least two UEs generate the CDPs for one APAICH), the respective UEs generate the CDPs using given signatures and the CDPs transmitted to the UTRAN have the different 5 signatures. Herein, it is assumed that the UE#1 generated CDP#6, the UE#2 generated CDP#2 and the UE#3 generated CDP#9, respectively. This assumption corresponds to the third column (CDP number) of Table 5. Upon receipt of the CDPs transmitted from the UEs, the UTRAN recognizes receipt of the 3 CDPs and examines whether the CPCHs requested by the LEs are available. When there exist more than 3 CPCHs in the UTRAN, 10 requested by the UEs, the UTRAN transmits ACKs to CD ICH#2, CD_ICH#6 and CDICH#9, and transmits three channel allocation messages through the CAICH. This assumption corresponds to the fourth column (CDICH) of Table 5. In this case, if the UTRAN transmits the messages for allocating the channel numbers of #4, #6 and #10 through the CAICH, the UEs will know the CPCH number allocated to themselves in the 15 following process. The UE#1 knows the signature for the CDP transmitted to the UTRAN and also knows that the signature number is 6. In this manner, even when the UTRAN transmits several ACKs to the CDICH, it is possible to know how many ACKs have been transmitted. 20 A description of this embodiment of the present invention has been made on the assumption of the case shown in Table 5. First, the UTRAN has transmitted three ACKs to the UEs through CDICH, and also transmitted three channel allocation messages to the CAICH. The transmitted channel allocation messages correspond to the channel numbers of #2, #6 and #9. Upon receipt of the CDICH and the CAICH, the UE#1 may know that three 25 UEs in the UTRAN have simultaneously requested the CPCH channels and the UE#1 itself can use the CPCH according to the contents of the second message out of the channel allocation messages transmitted through the CAICH, in the sequence of the ACKs of the CDICH. 30 Table 5 UE No AP No AP IACH CD PNo CA ICH 1 3 ACK#3 6 (Second) #6 (Second) 2 3 ACK#3 2 (First) #4 (First) WO 01/61877 PCT/KR01/00236 -62 3 3 ACK#3 9 (Third) #10 (Third) 4 5 NAK#5 In this process, since the UE#2 has transmitted the CDP#2, the UE#2 will use the fourth one out of the channel allocation messages transmitted by the CAICH. In the same manner, the JE#3 is allocated the 1 0 th channel. In this manner, it is possible to 5 simultaneously allocate several channel to several users. 2. Second Channel Allocation Method The second channel allocation method is a modified form of the first channel 10 allocation method, implemented by setting a transmission time difference t between the CDICH frame and the CAICH frame to '0' to simultaneously transmit the CDICH and the CAICH. The W-CDMA system spreads one symbol of the APAICH with a spreading factor 15 256 and transmits 16 symbols at one slot of the AICH. The method for simultaneously transmitting the CDICH and the CAICH can be implemented by using symbols of different lengths. That is, the method can be implemented by allocating orthogonal codes having different spreading factors to the CDICH and the CAICH. As an example of the second method, when the possible number of the signatures used for the CDP is 16 and a maximum 20 of 16 CPCHs can be allocated, it is possible to allocate the channels of a length of 512 chips to the CAICH and the CD_ICH, and the CAICH and the CDICH each can transmit 8 symbols with a length of 512 chips. Here, by allocating 8 signatures, being orthogonal to one another, to the CDICH and the CAICH and multiplying the allocated 8 signatures by a sign of +1/-i, it is possible to transmit 16 kinds of the CAICH and the CDICH. This method is 25 advantageous in that it is not necessary to allocate separate orthogonal codes to the CAICH. As described above, the orthogonal codes having a length of 512 chips can be allocated to the CAICH and the CDICH in the following method. One orthogonal code Wi of length 256 is allocated to both the CAICH and the CDICH. For the orthogonal code of 30 length 512 allocated to the CDICH, the orthogonal code Wi is repeated twice to create an orthogonal code [Wi Wj] of length 512. Further, for the orthogonal code of length 512 WO 01/61877 PCT/KR01/00236 - 63 allocated to the CA ICH, an inverse orthogonal code - Wi is connected to the orthogonal code Wi to create an orthogonal code [Wi - Wj. It is possible to simultaneously transmit the CDICH and the CAICH without allocating separate orthogonal codes, by using the created orthogonal codes [W; Wi] and [W, - Wj]. 5 FIG. 14 shows another example of the second method, wherein the CDICH and the CAICH are simultaneously transmitted by allocating different channelization codes having the same spreading factor to them. Reference numerals 1401 and 1411 of FIG. 14 indicate the CDICH part and the CAICH part, respectively. Reference numerals 1403 and 1413 10 indicate different orthogonal channelization codes having the same spreading factor of 256. Reference numerals 1405 and 1415 indicate a CD ICH frame and a CAICH frame each comprised of 15 access slots having a length of 5120 chips. Referring to FIG. 14, the CDICH part 1401 is created by multiplying the signatures 15 obtained by repeating a signature of length 16 twice in a symbol unit by sign values of '1', ' 1' or '0' (indicating ACK, NAK, or AcquisitionFail, respectively) on a symbol unit basis. The CDICH part 1401 can simultaneously transmit ACK and NAK for several signatures. The CDICH part 1401 is spread with the channelization code 1403 by a multiplier 1402, and constitutes one access slot of the CDICH frame 1405. The CDICH frame 1405 is 20 spread with a downlink scrambling code 1407 by a multiplier 1406 and then transmitted. The CAICH part 1411 is created by multiplying the signatures obtained by repeating a signature of length 16 twice in a symbol unit by the sign values of '1', '-1' or '0' (indicating ACK, NAK, or AcquisitionFail, respectively) on a symbol unit basis. The 25 CA-ICH part 1411 can simultaneously transmit ACK and NAK for several signatures. The CA-ICH part 1411 is spread with the channelization code 1413 by a multiplier 1412, and constitutes one access slot of the CAICH frame 1415. The CAICH frame 1415 is spread with a downlink scrambling code 1417 by a multiplier 1416 before transmission. 30 FIG. 15 shows further another example of the second method, wherein the CDICH and the CAICH are spread with the same channelization code and simultaneously transmitted using different signature groups.
WO 01/61877 PCT/KR01/00236 - 64 Referring to FIG. 15, a CAICH part 1501 is created by multiplying the signatures obtained by repeating a signature of length 16 twice in a symbol unit by the sign values of '1', '-1' or '0' (indicating ACK, NAK, or Acquisition Fail, respectively) on a symbol unit basis. 5 The CAICH part 1501 can simultaneously transmit ACK and NAK for several signatures. A k* CAICH part 1503 is used when one CPCH channel is associated with several CA signatures. A reason for associating one CPCH channel with several CA signatures is to decrease the probability that the LE will use a CPCH which is not allocated by the UTRAN due to an error occurred while the CAICH is transmitted from the UTRAN to the TE. 10 Reference numeral 1505 of FIG. 15 indicates a CD ICH part. The CDICH part 1505 is identical to the CAICH part 1501 in physical structure. However, the CDICH part 1505 is orthogonal with the CAICH part 1501, since the CDICH part 1505 uses a signature selected from a signature group different from the signature group used for the CA ICH part. Therefore, even though the UTRAN simultaneously transmits the CDICH and the CA ICH, 15 the UE cannot confuse the CDICH with the CAICH. The CAICH part#1 1501 is added to the CAICH part#k 1503 by an adder 1502. The CD ICH part 1505 is added to the added CAICH part by an adder 1504, and then spread with the orthogonal channelization code 1507 by a multiplier 1506. The resulting spread value constitutes an indicator part of one CD/CAICH slot, and the CD/CAICH is spread with a downlink scrambling code 1510 by a 20 multiplier 1508 before transmission. In the method for simultaneously transmitting the CDICH and the CAICH by setting the transmission time different r between the CDICH frame and the CAICH frame to '0', the signatures for the AICH, shown in Table 4, defined in the W-CDMA standard can 25 be used. With regard to the CAICH, since the UTRAN designates one of several CPCH channels to the UE, the UE receiver should attempt detecting several signatures. In the conventional APAICH and the CDICH, the UE would perform detection on only one signature. However, when the CAICH according to this embodiment of the present invention is used, the UE receiver should attempt detecting all the possible signatures. 30 Therefore, there is required a method for designing or rearranging the structure of signatures for the AICH so as to decrease complexity of the UE receiver.
WO 01/61877 PCT/KR01/00236 - 65 As described above, it will be assumed that the 16 signatures created by multiplying 8 signatures out of 16 possible signatures by the signs (+1/-i) are allocated to the CDICH, and the 16 signatures created by multiplying the remaining 8 signatures out of the 16 possible signatures by the signs (+1/-i) are allocated to the CAICH for CPCH allocation. 5 In the W-CDMA standard, the signatures for the AICH use the Hadamard function, which is made in the following format. Hn = Hn-i Hn-1 10 Hn-1 -Hn-I H1= 1 1 1 -1 From this, the Hadamard function of length 16 required in the embodiment of the 15 present invention is as follows. The signatures created by the Hadamard function shown in Table 4 show the format given after multiplying the signatures by a channel gain A of the AICH, and the following signatures show the format given before multiplying the signatures by the channel gain A of the AICH. 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 =>Si 1-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 => S1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 =>S2 -- 1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 =>S3 1 1 1-1 -1 -1 1 1 1 1 -1-1-1 -1 =>S4 25 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 => S5 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 =>S6 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 =>S7 1 1 1 1 1 1 1 1 -i-i-i-i-i-1-1- =>S8 1 -1 1 -1 1 -1 1 -1 - 1-11-1-1 1 =>S9 30 1 1-1 -1 1 1-1-1 -1-1 1 1-1 -1 1 1 =>S1o -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 =>S11 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 =>S12 WO 01/61877 PCT/KR01/00236 -66 1-11-1-11-11 -1-1 1-1 => S13 1 1-1 1 - -11 1 -1 1 11 11 -1 -1 =>S14 1-1 -11-111-1 -1-1 -1 1-1 1 => S15 5 Eight of the above Hadamard functions are allocated to the CD ICH and the remaining eight Hadamard functions are allocated to the CAICH. In order to simply perform the fast Hadamard transform (FHT), the signatures for the CA_ICH are allocated in the following sequence. 10 {SO, S8, S12, S2, S6, S1, S14} Further, the signatures for the CDICH are allocated in the following sequence. {S1, S9, S5, S13, S3, S7, S11, S15} 15 Here, the signatures for the CAICH are allocated from left to right in order to enable the UE to perform FHT, thereby minimizing the complexity. When 2, 4 and 8 signatures are selected from the signatures for the CA ICH from left to right, the number of 1's is equal to the number of -1's in each column except the last column. By allocating the 20 signatures for the CDICH and the CAICH in the above manner, it is possible to simplify the structure of the UE receiver for the number of the used signatures. In addition, it is possible to associate the signatures to the CPCH or the downlink channel for controlling the CPCH in another format. For example, the signatures for the 25 CAICH can be allocated as follows. [0, 8 ] => a maximum of 2 signatures are used [0, 4, 8, 12] => a maximum of 4 signatures are used [0, 2, 4, 6, 8, 10,12, 14 ] => a maximum of 8 signatures are used 30 WO 01/61877 PCT/KR01/00236 - 67 If NUM_CPCH (where 1 < NUMCPCH 16) CPCHs are used, the signs (+1/-i) multiplied by the signatures associated with a k* (k=O, ..., NUMCPCH-1) CPCH (or a downlink channel for controlling the CPCH) are given as follows. 5 CA signsig[k] = (-l)[k mod 2 ] where CAsignsig[k] indicates the sign of +1/-1 multiplied by the k* signature, and [k mod 2] indicates a remainder determined by dividing 'k' by 2. 'x' is defined as a number indicating a dimension of the signatures. Then, the CPCH number NUMCPCH can be 10 expressed as follows. x =2 if 0 <NUM CPCH 4 4 if 4 <NUM CPCH 8 8 if 8 <NUM CPCH 16 15 Further, the used signatures are as follows. CA-sig [k] = (16/x) * Lk/2J + 1 20 where yl indicates that the maximum integer which does not exceed 'y'. For example, when 4 signatures are used, they can be allocated as follows. S1=>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 S5 => 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 25 S9 => 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 S13 => 1 1 1 1 -1 -- 1 -1 -1 -1 -1 -1 1 1 1 1 As can be appreciated, if the signatures are allocated according to an embodiment of the present invention, the signatures have a format in which the Hadamard codes of length 4 30 are repeated four times. The UE receiver adds the repeated 4 symbols and then takes FHT of length 4, when receiving the CAICH, thereby making it possible to highly decrease the complexity of the UE.
WO 01/61877 PCT/KR01/00236 - 68 Furthermore, in the CAICH signature mapping, the signature numbers for the respective CPCH are added one by one. In this case, the consecutive 2i* and (2i+1)*" symbols have opposite signs, and the UE receiver subtracts the rear symbol from the front symbol out 5 of the two despread symbols, so that it can be regarded as the same implementation. On the contrary, the signatures for the CDICH can be allocated in the following sequence. The easiest way of creating the signatures for the kth CDICH is to increase the signature number one by one in the above method for allocating the signatures for the 10 CAICH. Another method can be expressed as follow. CD signsig[k] = (-l)[k mod 2 ] CD-sig [k] = 2* Lk/2J +2 15 That is, as described above, the CAICH is allocated in the sequence of [1, 3, 5, 7, 9, 11, 13, 15]. FIG. 16 shows a CAICH receiving device of the UE for the above signature structure. Referring to FIG. 16, a multiplier 1611 multiplies a signal received from an analog 20 to-digital (A/D) converter (not shown) by a spreading code W, for the pilot channel to despread the received signal, and provides the despread signal to a channel estimator 1613. The channel estimator 1613 estimates the size and phase of the downlink channel from the despread pilot channel signal. A complex conjugator 1615 complex conjugates the output of the channel estimator 1613. A multiplier 1617 multiplies the received signal by a Walsh 25 spreading code WAICH for the AICH channel, and an accumulator 1619 accumulates the outputs of the multiplier 1617 for a predetermined symbol period (e.g. 256-chip period) and outputs despread symbols. A multiplier 1621 multiplies the output of the accumulator 1619 by the output of the complex conjugator 1615 to modulate the input values, and provides the resulting output value to an FHT converter 1629. Receiving the demodulated symbols, the 30 FHT converter 1629 outputs signal strength for each signature. A control and decision block 1631 receives the output of the FHT converter 1629 and decides a signature having the highest possibility for the CAICH. In this embodiment of the present invention, the WO 01/61877 PCT/KR01/00236 - 69 signature specified in the W-CDMA standard is used for the signature structure for the CAICH to simplify the structure of the UE receiver. Another allocation method will be described below, which is more efficient than the method for using a part of the signatures for the CAICH. 5 In this new allocation method, 2 K signatures of length 2 K are generated. (If the 2 K signatures are multiplied by the signs of +1/-1, the number of the possible signatures can be 2 "*1). However, if only some of the signatures are used, rather than all, it is necessary to more efficiently allocate the signatures in order to decrease complexity of the UE receiver. It will 10 be assumed that M signatures out of all possible signatures are used. Herein, 2 L- < M 2L and 1 L K. The M signatures of length 2 K are converted to the form in which each bit of the Hadamard function of length 2 L is repeated 2 ' times before transmission. In addition, further another method for transmitting the ICH is to use signatures 15 other than the signatures used for the preamble. These signatures are shown in Table 6 below. A second embodiment of the present invention uses the signatures shown in Table 6 for the ICH signatures and allocates the CAICH so that the UE receiver may have low complexity. An orthogonal property is maintained between the ICH signatures. Therefore, if 20 the signatures allocated to the ICH are efficiently arranged, the UE can easily demodulate the CDICH by inverse fast Hadamard transform (IFHT). Table 6 Preamble Symbol Signatur P 0 P P 2
P
3
P
4 Ps P 6
P
7 PS P 9 Pio P 11
P
1 2
P
13 PI P 15 e 1I 4 1 A A A -A -A -A A -A -A A A -A A -A A A 2 - A -A -A A A A -A A A A -A -A A -A A A 3 A - A A A -A A A -A A A A -A A -A A A 4 -A -A A -A -A -A -A -A A -A A -A A A A A 5 A - -A -A -A A A -A -A -A A -A-A-A A A 6 - -A -A A-A A-A A-A -AA A A A A WO 01/61877 PCT/KR01/00236 - 70 A A 7 - A A A -A -A A A A -A -A -A -A -A -A A A 8 A A -A -A -A -A -A A A -A A A A A -A A 9 A - A -A -A A -A A A A -A-A- A A A A 10 - A A -A A A -A A -A -A A A -A -A A A A 11 A A A A A A -A -A A A -A A A -A -A A 12 A A -A A A A A A -A -A -A -A A A A A 13 A - -A A A -A -A -A A -A A -A A -A A A A 14 - -- A A -A A A A A A A A A -A A A A A 15 - - -A -A A -A -A A -A A -A -A A -A -A A A A 16 -- A A -A -A -A -A -A A -A A A -A A In Table 6, let's say that n* signature is represented by Sn and a value determined by multiplying n* signature by a sign '-1' is represented by -Sn. The ICH signatures according to a second embodiment of the present invention are allocated as follows. 5 {S1, -S1, S2, -S2, S3, -S3, S14, -S14, S4, -S4, S9, -S9, S11, -S1l, S15, -S15} If the number of the CPCHs is smaller than 16, the signatures are allocated to the 10 CPCHs from left to right so as to enable the UE to perform IFHT, thereby reducing the complexity. If 2, 4 and 8 signatures are selected from {1, 2, 3, 14, 15, 9, 4, 11} from left to right, the number of A's is equal to the number of -A's in each column excepting the last column. Then, by rearranging (or permuting) the sequence of the symbols and multiplying the rearranged symbols by a given mask, the signatures are converted to an orthogonal code 15 capable of performing IFHT. FIG. 17 shows a structure of the UE receiver according to a second embodiment of the present invention. Referring to FIG. 17, the UE despreads an input signal for a 256-chip period to generate channel-compensated symbol X;. If it is assumed that Xi indicates an i WO 01/61877 PCT/KR01/00236 -71 symbol input to the UE receiver, a position shifter (or permuter) 1723 rearranges Xi as follows. Y = {X 5 , X 9 , X 10 , X, Xl, X 3 , X 7 , XI 5
X
13 , X 12 , X 1
,X
4 , XS, X, X 2 , X} A multiplier 1727 multiplies the rearranged value Y by the following mask M generated by a mask generator 1725. 10 M = {-1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1} Then, the signatures of Sl, S2, S3, S14, S15, S9, S4 and S1I are converted into S'l, S'2, S'3, S'14, S'15, S'9, S'4 and S'11, as follows. S'l =1 1 1 1 1111 1111 1 1 1 1 S'2 = 1 1 1 1 1 1 1 -1 -1-1-1 -1 -1 -1 -1 S'3 =1 1 1 1 -1 -1 -1 - 1 -1 -1 1 1 1 1 S'l = 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 4 S'1 = 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 5 S'9 = 1 -1- 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 S'4 =1 1 -1 -1 -1 -1 1 1 -1-111 11- -1 S'1 = 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 15 It can be understood that by rearranging the sequence of the input symbols and multiplying the rearranged symbols by a given mask, the signatures are converted to an orthogonal code capable of performing IFHT. Further, it is not necessary to perform IFHT on the length 16, and it is possible to further decrease the complexity of the receiver by adding 20 the repeated symbols and performing IFHT on the added symbols. That is, when 5 to 8 signatures are used (i.e., 9 to 16 CPCHs are used), two symbols are repeated. Thus, if the repeated symbols are added, IFHT is performed on only the length 8. In addition, when 3 to 4 signatures are used (i.e., 5 to 8 CPCHs are used), 4 symbols are repeated, so that IFHT can be WO 01/61877 PCT/KR01/00236 - 72 performed after adding the repeated symbols. By efficiently rearranging the signatures in this manner, it is possible to drastically decrease the complexity of the receiver. The UE receiver of FIG. 17 is so constructed as to rearrange the despread symbols 5 and then multiply the rearranged symbols by a specific mask M. However, it is possible to obtain the same result even if the despread symbols are first multiplied by a specific mask M before rearrangement. In this case, it should be noted that the mask M has a different type. In operation, a multiplier 1711 receives an output signal of an A/D converter (not 10 shown) and multiplies the received signal by a spreading code W, for the pilot channel to despread the received signal. A channel estimator 1713 estimates the size and phase of the downlink channel from the despread pilot signal. A multiplier 1717 multiplies the received signal by a Walsh spreading code WAICH for the AICH channel, and an accumulator 1719 accumulates the outputs of the multiplier 1717 for a predetermined symbol period (e.g., 256 15 chip period) and outputs despread symbols. For demodulation, the despread AICH symbols are multiplied by the output of a complex conjugator 1715, which complex conjugates the output of the channel estimator 1713. The demodulated symbols are provided to a position shifter 1723, which rearranges the input symbols such that the repeated symbols should neighbor to each other. The output of the position shifter 1723 is multiplied by a mask output 20 from a mask generator 1725 by a multiplier 1727 and provided to an FHT converter 1729. Receiving the output of the multiplier 1727, the FHT converter 1729 outputs signal strength of each signature. A control and decision block 1731 receives the output of the FHT converter 1729 and decides the signature having the highest possibility for CAICH. In FIG. 17, it is possible to obtain the same results, although the locations of the position shifter 1723, 25 the mask generator 1725 and the multiplier 1727 are interchanged. Further, even if the UE receiver does not rearrange the position of the input symbols using the position shifter 1723, it is also possible to previously appoint the positions at which the symbols are to be transmitted and use the positional information when performing FHT. 30 Summarizing the embodiment of the CAICH signature structure according to the present invention, 2 K signatures of length 2 K are generated. (If the 2 K signatures are multiplied by the signs of +1/-1, the number of the possible signatures can be 2 K"). However, WO 01/61877 PCT/KR01/00236 - 73 if only some of the signatures are used, rather than all, it is necessary to more efficiently allocate the signatures in order to decrease the complexity of the UE receiver. It will be assumed that M signatures out of the whole signatures are used. Herein, 2 L-1 < M 2 L and 1 < L K. The M signatures of length 2 K are converted to the form in which each bit of the 5 Hadamard function of length 2 L is repeated 2 K-L times before transmission, when a specific mask is applied to (or XORed with) the respective bits after permuting the symbols. Therefore, this embodiment aims to simply perform FHT by multiplying the received symbols by a specific mask and permuting the symbols at the UE receiver. 10 It is important not only to select the proper signatures used for allocating the CPCH channel, but also to allocate the data channel and control channel for the uplink CPCH and a downlink control channel for controlling the uplink CPCH. It is very important to allocate a data channel and a control channel of the uplink 15 CPCH and allocate a downlink control channel for controlling the uplink CPCH as well as to select the proper signatures used for assigning the CPCH channel. First, the easiest method for allocating the uplink common channel is to allocate a downlink control channel over which the UTRAN transmits power control information and 20 an uplink common control channel over which the UE transmits a message, on a one-to-one basis. When the downlink control channel and the uplink common control channel are allocated on a one-to-one basis, it is possible to allocate the downlink control channel and the uplink common control channel by transmitting a command only once without a separate message. That is, this channel allocation method is applied when the CAICH designates the 25 channels used for both the downlink and the uplink. A second method maps the uplink channel to the function of the signatures for the AP, the slot number of the access channel and the signatures for the CD_P, transmitted from the UE. For example, the uplink common channel is associated with an uplink channel 30 corresponding to a slot number at a time point when the signature for the CDP and its preamble are transmitted. That is, in this channel allocation method, the CDICH allocates the channel used for the uplink, and the CAICH allocates the channel used for the downlink.
WO 01/61877 PCT/KR01/00236 - 74 If the UTRAN allocates the downlink channel in this method, it is possible to maximally utilize the resources of the UTRAN, thereby increasing utilization efficiency of the channels. As another example of the method for allocating the uplink CPCH, since the 5 UTRAN and the UE simultaneously know the signature for the AP transmitted from the UE and the CAICH received at the UE, the uplink CPCH channel is allocated using the above two variables. It is possible to increase capability of freely selecting the channels by associating the signatures for the AP with the data rate and allocating the CAICH to the uplink CPCH channel belonging to the data rate. Here, if the total number of the signatures 10 for the AP is M and the number of the CAICHs is N, the number of selectable cases is MxN. It will be assumed herein that the number of the signatures for the AP is M=3 and the number of the CAICHs is N=4, as shown in Table 7 below. 15 Table 7 Channel No CA No received over CAICH CA(1) CA(2) CA(3) CA(4) AP(1) 1 2 3 4 AP No AP(2) 5 6 7 8 AP(3) 9 10 11 12 In Table 7, the signatures for the AP are AP(1), AP(2) and AP(3), and the channel numbers allocated by the CAICH are CA(l), CA(2), CA(3) and CA(4). For channel allocation, if the channels are selected by the CAICH only, the number of allocable channels 20 is 4. That is, when the UTRAN transmits CA(3) to the UE and the UE receives the transmitted CA(3), the UE allocates the 3 rd channel. However, since the UE and the UTRAN know the AP number and the CA number, it is possible to them in combination. For example, in the case where the channels are allocated using the AP number and the CA number shown in Table 7, if the UE has transmitted AP(2) and the UTRAN has received CA(3), the UE 25 selects the channel number 7 rather than selecting the channel number 3. That is, from Table 7, it is possible to know the channel corresponding to AP=2 and CA=3, and the information of Table 7 is stored in both the UE and the UTRAN. Therefore, the UE and the UTRAN may WO 01/61877 PCT/KR01/00236 - 75 know that the allocated CPCH channel number is 7, by selecting the second row and the third column of Table 7. As a result, the CHCP channel number corresponding to (2,3) is 7. Therefore, the method for selecting the channel using the two variables increases the 5 number of selectable channels. The UE and the UTRAN have the information of Table 7 by signal exchange with their upper layers, or can calculate the information based on a formula. That is, it is possible to determine an intersection and its associated number using the AP number in row and the CA number in column. At present, since there are 16 kinds of APs and there are 16 numbers which can be allocated by the CAACH, the number of the 10 possible channels is 16x16=256. The information determined using the 16 kinds of the AP signatures and the CAICH message means the scrambling code used when the PCP and the message of the uplink CPCH, the channelization code used for the uplink CPCH, (i.e., the channelization 15 code to be used for the uplink DPDCH and the uplink DPCCH included in the uplink CPCH), and the channelization code for the downlink dedicated channel DLDCH (i.e., the channelization code for the DLDPCCH) for controlling power of the uplink CPCH. Regarding a method in which the UTRAN allocates a channel to the UE, since the AP signature requested by the UE is the maximum data rate desired by the UE, the UTRAN 20 selects an unused one of the corresponding channels when it can allocate the maximum data rate requested by the UE. Subsequently, the UTRAN selects the signatures according to the following rule for designating the signatures corresponding to the channel and transmits the selected signatures. 25 Shown in FIGS. 30A and 30B is an embodiment in which, as described above, the UTRAN allocates to the UE the uplink scramble code, the channelization code used for the scrambling code and the downlink dedicated channel for power control of the uplink CPCH, using the 16 kinds of the AP signatures and the CAICH message. 30 This method has the following disadvantages, when the UTRAN allocates the number of modems to a fixed value according to a data rate of the PCPCH. For example, assume that the UTRAN allocated 5 modems for a data rate 60Kbps, 10 modems for a data WO 01/61877 PCT/KR01/00236 -76 rate 30Kbps and 20 modems for a data rate 15Kbps. In this circumstance, while the UEs belonging to the UTRAN use 20 15Kbps PCPCHs, 7 30Kbps PCPCHs and 3 60Kbps PCPCHs, if another UE in the UTRAN requests the 15Kbps PCPCH, the UTRAN cannot allocate the requested 15Kbps PCPCH to the UE due to lack of an extra 15Kbps PCPCH. 5 Therefore, an embodiment of the present invention includes a method of allocating the PCPCH to the UE even in the above situation, and providing two or more data rates to a certain PCPCH so as to allocate the PCPCH having a higher data rate as a PCPCH having a lower data rate, when necessary. 10 Before describing a first method in which the UTRAN transmits information needed to use the CPCH to the UE using the AP signature and the CAICH message, the following is assumed. 15 First, PSF indicates the number of the PCPCHs supporting at least a specific data rate with a specific spreading factor (SF), and a code number of a channelization code with a specific spreading factor can be represented using the PSF. For example, the channelization code can be represented by NodSF(0), NodSF(l), NodSF(2), .., NodSF(PSF-1). Among the NodsF values, the even NodsF values are used to spread the data part of the CPCH, and the odd 20 NodsF values are used to spread the control part of the CPCH. The PSF is equal to the number of modems used to demodulate the uplink CPCH at the UTRAN, and may also be equal to the number of the downlink dedicated channels allocated by the UTRAN in association with the uplink CPCH. 25 Second, TSF indicates the number of CA signatures used for a specific spreading factor, and a certain CA signature number used for a specific spreading factor can be represented using the TSF. For example, the CA signature number can be represented by CASF(0),CASF(1), .., CAsF(TSF-l). 30 Third, SSF indicates the number of the AP signatures used for a specific spreading factor, and a certain AP signature number used for a specific spreading factor may be WO 01/61877 PCT/KR01/00236 - 77 represented using the SSF' For example, the AP signature number may be represented by APSF(0), APSF(1), S APSF(SSF-')* The above 3 parameters are determined by the UTRAN. A value obtained by 5 multiplying TsF by SSF must be equal to or larger than PSF, and the SSF may be set by the UTRAN considering a collision degree permissible by the UEs using the CPCH in the process of transmitting the AP, and a utilization degree of the CPCH with the respective spreading factor (which is inversely proportional to the data rate). When the SSF is set, TsF is determined considering PSF* 10 Now, with reference to FIGS. 30A and 30B, a detailed description will be made of the first method for transmitting the information necessary for the CPCH to the UE using the AP signature and the CA message. In FIG. 30A, reference numeral 3001 indicates a step where the UTRAN sets PSF according to how may PCPCHs are to be used, and reference 15 numeral 3002 indicates a step of determining SSF and TsF. Reference numeral 3003 indicates a step of calculating MsF. The MSF is the minimum positive number C set such that a valued determined by multiplying a given positive number C by SSF and then dividing the multiplied value by SSF becomes 0. The MSF 20 is a period needed when the CA message indicates the same physical common packet channel (PCPCH). A reason for calculating MSF is to allocate the CA message such that the CA message should not repeatedly indicate the same PCPCH at stated periods. In step 3003, the MSF is calculated by 25 MSF = mS {c: cSSF) mod (SsF) 0} Reference numeral 3004 is a step of calculating a value n, which indicates how many times the period of MSF has been repeated. For example, n=0 means that the period of the CA message has never been repeated, and n=1 means that the period of the CA message 30 has been repeated once. The value n is obtained in the process of searching for n satisfying the following condition, wherein n starts from 0: WO 01/61877 PCT/KR01/00236 - 78 n*MSF*SSF +*SF < (n+1)*MSF*SSF where i denotes an AP signature number and j denotes a CA message number. 5 Reference numeral 3005 is a step of calculating a sigma (a) function value. The a function corresponds to permutation, and an abject of calculating the a function is as follows. That is, if the CA message periodically indicates only a specific PCPCH, the CA message will have a periodic property, so that it may not indicate other PCPCHs. Therefore, the a function is calculated to freely control the period of the CA message so as to prevent the CA 10 message from having the period property, thus enabling the CA message to be able to freely indicate PCPCHs. The a is defined as: 15 O4(i)= i U'(i) = (i + 1) mod SSF U"(i)= 0,(U"(i)) where i denotes an AP signature number, and an SSF modulo operation is performed to 20 prevent the a value from exceeding the SSF value and to enable the CA message to sequentially indicate the PCPCHs. Reference numeral 3006 indicates a step of calculating a value k by receiving an AP signature number i and a CA message number j, using the a function value calculated in step 25 3005 and the value n calculated in step 3004. The value k is calculated by: k = {[(i+n) mod SSF+j*SF} mod PSF The value k indicates a channel number of the PCPCH with a specific spreading 30 factor or a specific data rate. The value k corresponds on a one-to-one basis to the modem number allocated for demodulation of the uplink PDPDH with the specific spreading factor WO 01/61877 PCT/KR01/00236 - 79 or the specific data rate. In addition, the value k can also correspond to the scrambling code for the uplink PCPCH on a one-to-one basis. As a result of calculating the value k, a channel number of the downlink dedicated 5 channel (DL DCH) is determined which corresponds to the value k on a one-to-one basis. In other words, the channel number of the DLDCHs is determined in combination of the AP signature number transmitted by the UE and the CA message allocated by the UTRAN, thus making it possible to control the uplink CPCH which corresponds to the DL_DCH. 10 In FIG. 30B, reference numeral 3007 indicates a step of determining a range m of the channelization code to determine which spreading factor corresponds to the channelization code for the data part of the uplink common channel corresponding on a one to-one basis to the DL_DCH to which the value k calculated in step 3006 is designated. The range of the uplink channelization code is calculated using the following condition: 15 P -_ & k< P, where P, denotes a channelization code (or OVSF code) with a spreading factor 2"1, and P, denotes a channelization code (or OVSF code) with a spreading factor 2'. Hence, by 20 using the value k, it is possible to know which spreading factor the channelization code used in the message part of the uplink PCPCH has in the OVSF code tree. Reference numeral 3008 is a step of determining a code number of the scrambling code to be used for the uplink PCPCH depending on the value k calculated in step 3006 and 25 the value m calculated in step 3007. The code number of the scrambling code corresponds to the uplink scrambling code used for the PCPCH on a one-to-one basis, and the UE then spreads PCP and PCPCH using the scrambling code indicated by the scrambling code number and transmits the spread values to the UTRAN. 30 The code number of the uplink scrambling code is calculated by WO 01/61877 PCT/KR01/00236 - 80 (P, - P)/2a-1+ (k - P) /2' where, a is an integer numbers 12:a<m-1 where k denotes the value calculated in step 3006 and m denotes the value calculated instep 5 3007. Reference numeral 3009 indicates a step of determining a heading node of the channelization code used when the UE channelizes the message part of the uplink PCPCH. The heading node means a node, which coincides with the value k, having the lowest 10 spreading factor (or the highest data rate) in the branches of the OVSF code tree. The heading node is determined by ( (Pa - P )* 2'-a + k - P,,,, ) /2'n1 25asm-1 where the value 'k' is determined in step 3006, the value 'm' is determined in step 15 3007, and the integer value 'a' is determined in step 3008. After determining the heading node, the UE determines the channelization code to be used depending on the spreading factor determined while receiving AP. For example, if k=4, the heading node coinciding with the value k has a spreading factor 16 and the UE 20 desires a PCPCH with a spreading factor 64, then the UE will select and use a channelization code with a spreading factor 64 from the heading node. There are two selecting methods. In one method, a channelization code having a channelization code branch extending upward in the heading node, i.e., having a spreading factor 256, is used for a control part of the uplink PCPCH, and when it reaches a channelization code branch having the spreading factor 25 requested by the UE out of the channelization code branches extending downward in the heading node, a channelization code extending upward from the above branch is used for the message part. In another method, a channelization code with a spreading factor 256, created while continuously extending downward from the lower branch of the heading node is used for channel spreading the control part of the PCPCH, and when it reaches a channelization 30 code branch having the spreading code requested by the UE while continuously extending WO 01/61877 PCT/KR01/00236 - 81 upward from the upper branch of the heading node, the upper one of the two branches is used for channel spreading the message part. Reference numeral 3010 indicates a step of determining a channelization code used 5 to channel-spread the message part of the PCPCH using the heading node calculated in step 3009 and the spreading factor known to the UE while transmitting the AP. In this step, the latter method was used to determine the channelization code to be used by the UE. The channelization code is determined by a following formula: 10 Channel Code Number = (Heading Node Number)*SF/2" It is possible to increase utilization of the PCPCH resources as compared with the prior art, if the UTRAN allocates the information and channel necessary for the PCPCH to the UE using the AP and the CA message in the method described with reference to FIGS. 15 30A and 30B. Embodiments A detailed description will be made of an algorithm for the first method according to 20 an embodiment of the present invention, in which the UTRAN transmits to the UE the information needed to use the CPCH using the AP signature and the CAICH message. P4,2=1 AP, (=AP 4
,
2 (0)), AP 2
(=AP
4
,
2 (1))
P
4 =1
AP
3
(=AP
4 (0)), AP 4
(=AP
4 (1)) 25 P8=2 AP 5 (=APS0)), AP 6 (=AP(1)) Pi6=4 AP 7 (=APi 6 (0)), APS (=APi 6 (1)) P32=8 AP 9
(=AP
3 2 (0)), APio (=AP 32 (l))
P
64 =16 AP 11
(=AP
64 (0)), AP1 2
(=AP
6 4 ()) P1 2 =32 AP 3 (=AP12 8 (0)), AP1 4 (=AP1 2 (1)) 30 P 2 5 =32 APi 5
(=AP
2 56 (0)), AP1 6
(=A-P
25 6 0)) WO 01/61877 PCT/KR01/00236 - 82 It will be assumed herein that all the 16 CAs can be used. Here, the node values are searched using a given AP signature value and a CA signature value provided from the UTRAN, as follows. 5 (1) For multi-code: P 4
.
2 =1
F(AP
1 ,CAO)=Nod4, 2 (0)
F(AP
2 ,CAO)=Nod 4
,
2 (O) (2) For SF=4: P 4 =1 10 F(AP 3
,CA
0 )=Nod 4 (0)
F(AP
4 ,CAO)=Nod 4 (0) (3) For SF=8: P 8 =2
F(AP
5 ,CAO)=Nod 8 (0), F(AP 6
,CA
1 )=Nod(0) 15 F(AP 6 ,CAO)=Nod 8 (1), F(AP 5
,CA
1 )=Nod 8 (1) (4) For SF=16: P 16 =4
F(AP
7 ,CAO)=NodI 6 (0), F(AP,CA 2 )=Nodi 6 (0)
F(AP
8 ,CAO)=NodI 6 (1), F(AP 7
,CA
2 )=Nod 1 6 (l) 20 F(AP 7
,CA
1 )=Nod 16 (2), F(AP,,CA 3 )=Nodi 6 (2)
F(AP
8
,CA
1 )=Nod 6 (3), F(AP 7
,CA
3 )=Nodi 6 (3) (5) For SF=32: P 32 =8
F(AP
9 ,CAO)=Nod 32 (0), F(AP 10
,CA
4 )=Nod 3 2(O) 25 F(APIO,CAO)=Nod 3 2 (1), F(AP 9
,CA
4 )=Nod 3 2(1)
F(AP
9
,CA
1 )=Nod 32 (2), F(APIO,CA 5 )=Nod 32 (2) F(APio,CA 1 )=Nod 3 2 (3), F(AP 9 ,CAS)=Nod 32 (3)
F(AP
9
,CA
2 )=Nod 32 (4), F(APIO,CA 6 )=Nod 32 (4)
F(AP
10
,CA
2 )=Nod 3 2 (5), F(AP 9
,CA
6 )=Nod 32 (5) 30 F(AP 9
,CA
3 )=Nod 3 2 (6), F(APIO,CA 7 )=Nod 32 (6)
F(AP
10
,CA
3 )=Nod 3 2 (7), F(AP 9
,CA
7 )=Nod 32 (6) WO 01/61877 PCTIT(R01100236 - 83 (6) For SF=64: P 64 =16 F(A-Pjj,CA 0 )=Nod 64 (O), F(AP 12
,CA
8 )=Nod 64 (O)
F(AP
12
,CA
0 )=Nod 64 (1), F(APll,CA 8 )=Nod 64 (1)
F(AP
1 1
,CA
1 )=Nod 64 (2), F(AP 12
,CA
9 )=Nod 64 (2) 5 F(AP 12 ,CA,)=Nod 64 (3), F(APll,CA 9 )=Nod 64 (3)
F(AP
11
,CA
2 )=Nod 64 (4), F(A1P 12
,CA
1 )=Nod 64 (4)
F(AP
12
,CA
2 )=Nod 64 (5), F(APll,CA 10 )=Nod 64 (5)
F(AP
1 1
,CA
3 )=Nod 64 (6), F(AP 12 ,CA,,)=Nod 64 (6)
F(AP
12
,CA
3 )=Nod 64 (7), F(APll,CA 11 )=Nod 64 (7) 10 F(A1P 1
,CA
4 )=Nod 64 (8), F(AP 12
,CA
12 )=Nod 64 (8)
F(AP
12
,CA
4 )=Nod 64 (9), F(AP 1
,CA
12 )=Nod 64 (9)
F(AP
1 1
,CA
5 )=Nod 64 (10), F(AP 1 2
,CA
13 )=Nod 64 (1 0)
F(AP
12
,CA
5 )=Nod 64 (1 1), F(AP 1 1
,CA
13 )=Nod 64 (1 1)
F(AP
11
,CA
6 )=Nod 64 (12), F(AP 12
,CA
14 )=Nod 64 (12) 15 F(AiP 12
,CA
6 )=Nod 64 (1 3), F(A1P 1
,CA,
4 )=Nod 64 ( 13)
F(AP
11
,CA
1 )=Nod 64 (1 4), F(AP 12
,CA
15 )=Nod 64 ( 14)
F(AP
12
,CA
7 )=Nod 64 (1 5), F(APll,CA, 5 )=Nod 64 (1 5) (7) For SF128: P 128 =32 20 F(A1P 13 ,CA,)=Nod 1 2 ,(0)
F(AP
14 ,CAo)=Nodl 28 (1)
F(AP
13 ,CA,)=Nodl 28 (2)
F('AP
14 ,CA,)=Nod 28 (3) F(AiP 13
,CA
2 )=Nod 1 2 ,(4) 25 F(AP 14
,CA
2 )=Nodl 28 (5) F(A-Pl 3
,CA
3 )=Nod 28 (6)
F(A-P
14 1CA 3 )=Nod, 2 ,(7)
F(AP
13
,CA
4 )=Nodl 28 (8) F(A-Pl 4
,CA
4 )=Nodl 28 (9) 30 F(AP 13
,CA
5 )=Nod 1 28 (10)
F(AP
14
,CA
5 )=Nodl 2 ,(1 1)
F(AP
13
,CA
6 )=Nodl 28 (1 2) WO 01/61877 PCTIT(R01100236 - 84
F(AP
14
,CA
6 )=Nodl 2 8 (1 3)
F(AP
13
,CA
7 )=Nodl 28 (1 4)
F(AP
14
,CA
7 )=Nod 2 8 (1 5) F(A1P 3 ,CA)=Nod 12 jl 6) 5 F(A-Pl 4 ,CAs)=Nodl 2 a(1 7)
F(AP
13
,CA
9 )=Nod 2 8 (1 8)
F(A-P
14
,CA
9 )=Nodl 2 ,(1 9)
F(AP
13
,CA
10 )=Nod 2 8 (20) F(A-Pl 4
,CA
1 0 )=Nodl 28 (2 1) 10 F(A-P 13 ,CA,,)=Nod, 2 ,(22)
F(AP
14
,CA
11 )=Nod, 28 (23)
F(AP
13
,CA
12 )=Nod 1 28 (24)
F(AP
14 ,CA1 2 )=Nodl 2 ,(25)
F(A-P
1 3
,CA
13 )=Nod 2 8 (26) 15 F(A-P 1 4
,CA
13 )=Nodl 2 8 (27)
F(AP
13
,CA
14 )=Nod 28 (28)
F(AP
14
,CA,
4 )=Nodl 2 j(29)
F(AP
1 3
,CA
15 )=Nodl,,(30)
F(AP
1 4
,CA
15 )=Nod 64 (3 1) 20 (8) For SF=256: P 256 =32
F(AP
15
,CA
0 )=Nod 256 (0)
F(AP
16
,CA
0 )=Nod 256 (1)
F(AP
1 5 ,CA,)=Nod 256 (2) 25 F(AP 16 ,CA,)=Nod 256 (3)
F(AP
15
,CA
2 )=Nod 2 5 6 (4)
F(AP
16
,CA
2 )=Nod 2
,
6 (5)
F(A-P
15
,CA
3 )=Nod 2
,
6 (6) F(A1P 16
,CA
3 )=Nod 2
,
6 (7) 30 F(AP 15
,CA
4 )=Nod 2 5 6 (8)
F(AP
16
,CA
4 )=Nod 2 5 6 (9)
F(A-P
15
,CA
5 )=Nod 256 (l 0) WO 01/61877 PCT/KR01/00236 - 85 F(AP 16 ,CA)=Nod 2 s 6 ( 1)
F(AP
15
,CA
6 )=Nd 2 56 (12)
F(AP
16
,CA
6 )=Nod 2 56 (13)
F(AP
1 5
,CA
7 )=Nod 2 56 (14) 5 F(AP 16
,CA
7 )=Nod 2 56 (15) F(APis,CA)=Nod 2 56 (16)
F(AP,
6 ,CA)=Nod 2 s 6 (17)
F(AP
15 ,CA)=Nod 2 56 (18)
F(AP
6 ,CA)=Nod 2 s 6 (19) 10
F(AP
1 5
,CA
10 )=Nod 2 56 (20)
F(AP
16
,CA
10 )=Nod 2 56 (2)
F(AP
15
,CA
1 )=Nod 2 s 6 (22)
F(AP
6
,CA,
1 )=Nod 2 56 (23)
F(AP
1 5
,CA
12 )=Nod 2 56 (24) 15 F(AP 16
,CA
1 2 )=Nod 2 s 6 (25)
F(AP
15
,CA
13 )=Nod 2 s 6 (26)
F(AP
16
,CA
13 )=Nod 56 (27)
F(AP
15
,CA
4 )=Nod 2 s 6 (28)
F(AP,
6
,CA,
4 )=Nod 2 56 (29) 20 F(AP 5
,CA
15 )=Nod 2 s 6 (30)
F(AP
16
,CA
15 )=Nod 2 56 (3) The foregoing can be expressed using Table 8 below, which shows a channel mapping relationship according to the embodiment of the present invention. The necessary 25 scrambling code number and channelization code number can be determined as shown in Table 8. When the UE uses its unique scrambling code, the scrambling code number is coincident with the PCPCH number and the channelization codes are all 0. Table 8 PCP ScrambI Channelizatio CH ing n Code Num SF=4 SF=8 SF=16 SF=32 SF=64 SF=128 SF=256 Nu Code m Num 0 N 1 SF4-0 Nod 4 (O) Nod,(0) Nod,,(O) Nod,,(O) Nod 4 (O) Nod..(0) Nods.(0) I 1 SF8 -4 | _ Nod,(1) Nod,,(1) Nod,,(1) Nod, 4 (1) | Nod,,,(I) I Nod..(1) WO 01/61877 PCT/KR01/00236 - 86 2 1 SF16 - 12 Nod,,(2) Nod,,(2) Nod 6 1(2) Nod 128 (2) Nod25 6 (2) 3 1 SF16 - 14 Nod 16 (3) Nod32(3) Nod,,(3) Nod 128 (3) Nod2, 6 (3) 4 2 SF32 -0 Nod,,(4) Nod.
4 4) Nod 12 j4) Nod 2 56 (4) 5 2 SF32 -2 Nod,,(5) Nod,(5) Nod,,,(5) Nod 25 1 5) 6 2 SF32 -4 Nod 32 (6) Nod 64 (6) Nod,,,(6) Nod 2 ,,(6) 7 2 SF32 - 6 Nod,,(7) Nod,,(7) Nod,,,(7) Nod,,,(7) 8 2 SF64 - 16 Nod 6 4 (8) Nod 1 2 .(8) Nod2 5 6 (8) 9 2 | SF64-i1 Nod 64 (9) Nod-218) Nod,1 6 (9) 10 2 SF64 - 20 Nod 6 ,(10) Nod 1 28 (0) Nod 2 56 ('0) 11 2 SF64 - 22 Nod 6 4 (1 ) Nod 12 101) Nod 2101) 12 2 NF64d(24 Nod 4 (12) Nod,,,(12) Nod1 6 (12) 13 2 NF64o-d26 Nod 4 (13) Nod,,,(13) Nod 2 .. (13) 14 2 SF64 -.28 Nod 64 (14) Nod 12 (14) Nod 2 6 (14) 15 2 SF64 -N30 Nod 4 (15) Nod,, 8 (15) Nod 5 6 (15) 16 2 N F128o-d64 Nod 2 (16) Nod2s,(16) 17 2 NF128d-(66 Nod,,J17) Nod 2 s.(17) 18 2 SF128N-d68 Nod 2 (18) Nod2 6 (18) 19 2 SF128 -N70 Nod 12 (19) Nod 6 (19) 20 2 NF128o-72 Nod 12 8 (20) Nod 2 ss(20) 21 2 NF128o-d74 Nod,, 8 (21) Nod2s 6 (21) 22 2 SF4 - 2-76 Nod 2 .(22) Nod2s 6 (22) 23 2 SF4 - 2-78 Nod,, 8 (23) Nod2s 6 (23) 24 2 SF128 -N80 Nod 128 (24) Nod 2 s 6 (24) 25 2 SF128 -82 Nod,,(25) Nod 2 56 (25) 26 2 SF128 -84 Nod,, 8 (26) Nod2,(26) 27 2 SF128 -86 Nodl 2 .(27) Nod2s 6 (27) 28 2 SF128-88 Nod..(28) Nod 2 ss(28) 29 2 SF128 - 90 |_Nod 28 (29) Nod 2 s 6 (29) 30 2 SF128 - 92 Nod2 1 2 (30) Nod, 6 (30) 31 2 SF128-94 Nod 2 (3 1) Nod2s 6 (3 1) Table 8 shows an example in which several UIEs can simultaneously use one scrambling code. However, when each IJE uses a unique scrambling code, the scrambling code number in Table 8 is identical to the PCPCH number and the channelization code 5 numbers are all 0 or 1 in an SF=4 node. Reference numerals 3001 to 3006 of FIG. 30A are the steps of calculating the PCPCH number k with a specific spreading factor or a specific data rate. Unlike the method used in steps 3001 to 3006 of FIG. 30A, there is another method for determining the value k 10 using the AP signature number i and the CA signature number j. The second method detennines the value k using the AP and the CA message in accordance with the following formula: WO 01/61877 PCT/KR01/00236 - 87 F(APSF(),CASF(j))= NodSF(*MSF+j mod PSF) for j < MSF MSF = li(PSF,TSF) where APSF(i) denotes an ith signature out of the AP signatures with a specific spreading 5 factor and CASF(j) denotes a message out of the CA signatures with a specific spreading factor. The F function indicates the uplink PCPCH number k that the UTRAN allocates to the UE using the AP signature number and the CA signature number at the specific spreading factor. MSF in the foregoing formula is different in meaning from MSF of FIG. 30A. MSF Of FIG. 30A is a period needed when the CA message indicates the same PCPCH, whereas MSF 10 in the foregoing formula indicates a smaller value out of the total number of the PCPCHs with a specific spreading factor and the total number of CA messages used at a specific spreading factor. The foregoing formula cannot be used, when the CA signature number is less than MSF at the specific spreading factor. That is, if the total number of the CA signatures used at the specific spreading factor is smaller than the number of the PCPCHs, the CA 15 signature number transmitted to the UE by the UTRAN should be set to a value smaller than the total number of the CA signatures. If, however, the total number of the PCPCHs used at the specific spreading factor is smaller than the number of the CA signatures, the CA signature number transmitted to the UE by the UTRAN should be set to a value smaller than the total number of the PCPCHs. The reason for defining the range as stated above is to 20 allocate the PCPCHs by the number of the CA signatures, with the AP signature number fixed in the formula of the foregoing second method. When the UTRAN allocates the PCPCHs to the UE using the multiple CA signatures, there is a case where the number of the PCPCHs with the specific spreading factor is larger than the number of the CA messages. In this case, the number of the CA signatures is insufficient, so that the UTRAN allocates the 25 PCPCHs using the AP signatures transmitted from the UE. In the foregoing formula, the value k of the uplink PCPCH number is determined by performing a modulo PSF operation on the CA signature number j and a value obtained by multiplying MSF by the AP signature number i. When the number of the CA signatures is smaller than the number of the PCPCHs after the modulo operation, the UTRAN can allocate the PCPCHs using even the AP, and 30 when the number of the CA signatures is larger than the number of the PCPCHs, the UTRAN can use the CA signatures as many as it requires, through the modulo operation.
WO 01/61877 PCT/KR01/00236 - 88 The major difference between the foregoing first and second methods for allocating the uplink PCPCH using the AP signature number i and the CA signature number j is as follows. The first method allocates the PCPCH using the AP signature number with the CA signature number fixed, while the second method allocates the PCPCH using the CA 5 signature number with the AP signature number fixed. The value k calculated by the formula used in the second method is used in step 3007 of FIG. 30B to calculate the spreading factor of the channelization code used for the data part of the uplink PCPCH. The calculation result of step 3007 and the value k determine 10 the uplink scrambling code number to be used for the uplink PCPCH. The heading node number is determined in step 3009, and the channelization code number used for the uplink PCPCH is determined in step 3010. The steps 3007 to 3010 are equal to the first method for allocating the uplink PCPCH using the AP signature number and the CA signature number. 15 A third method for allocating the uplink PCPCH using the AP signature number i and the CA signature numberj, uses the following formulas. PSF TSF -+ F(APSF(i),CASF(j))= NodSFO) PSF > TSF -+ F(APSF(i),CASF(j))=NodSF(a(n)(i)+((1)*SF mod PSF)) 20 The third method compares the total number of the PCPCHs with a specific data rate or a specific spreading factor with the total number of the CA signatures and uses different formulas for determining the uplink PCPCH number k. A first one of the foregoing formulas of the third method is used when the number of the PCPCHs is smaller than or equal to the 25 number of the CA signatures, and in this formula, the CA signature number j becomes the uplink PCPCH number k. A second one of the foregoing formulas of the third method is used when the number of the uplink PCPCHs is larger than the number of the CA signatures. In this formula, 30 the a function is identical to the a function calculated in step 3005 of FIG. 30A, and this a function enables the CA message to sequentially indicate the PCPCHs. In this formula, performing a modulo PSF operation on the value determined by multiplying the total number WO 01/61877 PCT/KR01/00236 - 89 of the AP signatures by the CA signature number subtracted by 1 is to prevent the uplink PCPCH number k from being higher than the total number of the uplink PCPCHs, set at a specific spreading factor. 5 The value k calculated in the foregoing formula is used in steps 3007 to 3010 where the UTRAN allocates the uplink PCPCH to the UE. Such an operation will be described with reference to FIGS. 18 and 19. A controller 1820 of the UE and a controller 1920 of the UTRAN can allocate the common packet 10 channels having the structure of Table 7, by using either the CPCH allocating information of Table 7 included therein, or the calculating method stated above. It will be assumed in FIGS. 18 and 19 that the controllers 1820 and 1920 include the information of Table 7. The controller 1820 of the TE determines, when communication over the CPCH is 15 required, an AP signature corresponding to a desired. data rate, and transmits the determined AP signature through a preamble generator 1831 which multiplies the determined AP signature by the scrambling code in a unit of a chip. Upon receipt of the AP preamble, the UTRAN examines the signature used for the AP preamble. If the received signature is not used by another UE, the UTRAN creates the APAICH using the received signature. 20 Otherwise, if the received signature is used by another UE, the UTRAN creates the APAICH using a signature value obtained by inverting the phase of the received signature. Upon receipt of an AP preamble for which a different signature is used by another UE, the UTRAN examines whether to use the received signature and creates the APAICH using the inversed or in-phase signature of the received signature. Thereafter, the UTRAN creates the 25 AP_AICH by adding the generated AP_AICH signals and thus, can transmit the status of the signatures. Upon receipt of an APAICH using the same signature as the transmitted signature, the UE creates the CDP using any one of the signatures for detecting collision and transmits the created CD_P. Upon receipt of the signature included in the CDP from the UE, the UTRAN transmits the CDICH using the same signature as the signature used for 30 the CDP. At the same time, if the UTRAN receives the CDP through a preamble detector 1911, the controller 1920 of the UTRAN detects CPCH allocation request, creates a CA ICH and transmits the CAICH to the UE. As stated above, the CDICH and the CA_ICH can be WO 01/61877 PCT/KR01/00236 - 90 transmitted either simultaneously or separately. Describing operation of generating the CAICH, the UTRAN determines an unused scrambling code out of the scrambling codes corresponding to the data rate requested by the UE according to the signatures requested in the AP by the UE, i.e., the designated CAICH signature of Table 7. The determined 5 CAICH signature is combined with the signature used for the AP preamble, creating information for allocating the CPCH. The controller 1920 of the UTRAN allocates the CPCH by combining the determined CAICH signature with the received AP signature. Further, the UTRAN receives the determined CAICH signature information through an AICH generator 1931 to generate the CAICH. The CAICH is transmitted to the UE through a frame 10 formatter 1933. Upon receipt of the CA ICH signature information, the UE allocates the common packet channel in the above manner, using the signature information of the transmitted AP and the received CAICH signature. FIG. 18 shows a structure of the UE for receiving AICH signals, transmitting 15 preambles, and, in general, communicating a message over an uplink CPCH according to an embodiment of the present invention. Referring to FIG. 18, an AICH demodulator 1811 demodulates AICH signals on the downlink transmitted from the AICH generator of the UTRAN, according to a control 20 message 1822 for channel designation, provided from the controller 1820. The AICH demodulator 1811 may include an APAICH demodulator, a CDICH demodulator and a CAICH demodulator. In this case, the controller 1820 designates the channels of the respective demodulators to enable them to receive APAICH, CDICH and CAICH, respectively, transmitted from the UTRAN. The APAICH, CDICH and CAICH can be 25 implemented by either one demodulator or separate demodulators. In this case, the controller 1820 can designate the channels by allocating the slots to receive the time-divided AICHs. A data and control signal processor 1813 designates a channel under the control of the controller 1820, and processes data or a control signal (including a power control 30 command) received over the designated channel. A channel estimator 1815 estimates strength of a signal received from the UTRAN over the downlink, and controls phase compensation and gain of the data and control signal processor 1813 to assist demodulation.
WO 01/61877 PCT/KR01/00236 - 91 The controller 1820 controls the overall operation of a downlink channel receiver and an uplink channel transmitter of the UE. In this embodiment of the present invention, the controller 1820 controls generation of the access preamble AP and the collision detection 5 preamble CDP while accessing the UTRAN using a preamble generating control signal 1826, controls transmission power of the uplink using an uplink power control signal 1824, and processes the AICH signals transmitted from the UTRAN. That is, the controller 1820 controls the preamble generator 1831 to generate the access preamble AP and the collision detection preamble CDP as shown by 331 of FIG. 3, and controls the AICH demodulator 10 1811 to process the AICH signals generated as shown by 301 of FIG. 3. The preamble generator 1831, under the control of the controller 1820, generates the preambles AP and CDP as shown by 331 of FIG. 3. A frame formatter 1833 formats frame data by receiving the preambles AP and CDP output from the preamble generator 1831, and 15 the packet data and pilot signals on the uplink. The frame formatter 1833 controls transmission power of the uplink according to the power control signal output from the controller 1820, and can transmit another uplink transmission signal 1832 such as a power control preamble and data after being allocated a CPCH from the UTRAN. In this case, it is also possible to transmit a power control command for controlling transmission power of the 20 downlink over the uplink. FIG. 19 shows a transceiver of the UTRAN for receiving preambles, transmitting AICH signals, and, in general, communicating a message over an uplink CPCH according to an embodiment of the present invention. 25 Referring to FIG. 19, an AICH detector 1911 detects the AP and the CD P shown by 331 of FIG. 3, transmitted from the UE, and provides the detected AP and CDP to the controller 1920. A data and control signal processor 1913 designates a channel under the control of the controller 1920, and processes data or a control signal received over the 30 designated channel. A channel estimator 1915 estimates strength of a signal received from the UE over the downlink, and controls a gain of the data and control signal processor 1913.
WO 01/61877 PCT/KR01/00236 - 92 The controller 1920 controls the overall operation of a downlink channel transmitter and an uplink channel receiver of the UTRAN. Based on a preamble select control command 1922, the controller 1920 controls detection of the access preamble AP and the collision detection preamble CDP generated when the UE accesses the UTRAN, and controls 5 generation of the AICH signals for responding to the AP and CDP and commanding channel allocation. That is, the controller 1920 controls the AICH generator 1931 using an AICH generation control command 1926 to generate the AICH signals shown by 301 of FIG. 3, upon detecting the access preamble AP and the collision detection preamble CD_P received through the preamble detector 1911. 10 The AICH generator 1931, under the control of the controller 1920, generates APAICH, CDICH and CAICH which are response signals to the preamble signals. The AICH generator 1931 may include an AP_AICH generator, a CDICH generator and a CAICH generator. In this case, the controller 1920 designates the generators so as to 15 generate the AP_AICH, CDICH and CAICH shown by 301 of FIG. 3, respectively. The APAICH, CD_ICH and CAICH can be implemented by either one generator or separate generators. In this case, the controller 1920 can allocate the time-divided slots of the AICH frame so as to transmit the APAICH, CDICH and CAICH. 20 A frame formatter 1933 formats frame data by receiving the APAICH, CDICH and CAICH output from the AICH generator 1931, and the downlink control signals, and controls transmission power of the uplink according to the power control command 1924 output from the controller 1920. Further, when a downlink power control command 1932 is received over the uplink, the frame formatter 1933 may control transmission power of an 25 downlink channel for controlling the common packet channel according to the power control command. The embodiment of the present invention includes one method in which the UTRAN performs outer-loop power control using the DL_DCH established in association with the 30 uplink CPCH on a one-to-one basis, and another method in which the UTRAN transmits a CA confirmation message to the UE.
WO 01/61877 PCT/KR01/00236 - 93 The downlink dedicated physical channel (DL _DPCH) is comprised of a downlink dedicated physical control channel (DLDPCCH) and a downlink dedicated physical data channel (DLDPDCH). The DL_DPCCH is comprised of a 4-bit pilot, a 2-bit uplink power control command and a 0-bit TFCI (Transport Format Combination Indicator), and the 5 DL_DPDCH is comprised of 4-bit data. The DL_DPCH corresponding to the uplink CPCH is spread with a channelization code with a spreading factor 512 and transmitted to the UE. In the method for performing outer-loop power control using the DL DPCH, the UTRAN sends a bit pattern previously scheduled with the UE using the TFCI part or the pilot 10' part of the DLDPDCH and the DL_DPCCH, to enable the UE to measure a bit error rate (BER) of the DL_DPDCH and a BER of the DL _DPCCH and transmit the measured values to the UTRAN. The UTRAN then performs the outer-loop power control using the measured values. 15 The "bit pattern" previously scheduled between the UTRAN and the UE may be a channel allocation confirmation message, a specific bit pattern corresponding to the channel allocation confirmation message on a one-to-one basis, or a coded bit stream. The "channel allocation confirmation message" refers to a confirmation message for the CPCH allocated by the UTRAN at the request of the UE. 20 The channel allocation confirmation message transmitted to the UE by the UTRAN, the specific bit pattern corresponding to the channel allocation confirmation message on a one-to-one basis or the coded bit stream can be transmitted using a data part of the DL_DPDCH corresponding to the uplink CPCH and the TFCI part of the DL_DPCCH. 25 The transmission method using the data part of the DLDPDCH is divided into one method for repeatedly transmitting the 4-bit or 3-bit channel allocation confirmation message for the 4-bit data part without encoding, and another method for transmitting the channel allocation confirmation after encoding. The 3-bit channel allocation confirmation message is 30 used when allocating the uplink CPCH to the UE using 2 signatures. In this case, the DL_DPCH structure is comprised of a 4-bit data part, a 4-bit pilot part and a 2-bit power control command part.
WO 01/61877 PCT/KR01/00236 - 94 The transmission method using the TFCI part of the downlink dedicated physical control channel (DLDPCCH) allocates, to the TFCI part, 2 of the 4 bits assigned to the data part of the downlink dedicated physical channel (DL_DPCH), and transmits coded symbols 5 to the 2-bit TFCI part. The 2-bit TFCI part is transmitted at one slot, and 30 bits are transmitted for one frame comprised of 15 slots. For a method for encoding the bits transmitted to the TFCI part, a (30,4) encoding method or a (30,3) encoding method is typically used, which can be implemented by using 0-fading in a (30,6) encoding method used to transmit the TFCI in the conventional W-CDMA standard. In this case, the 10 DL_DPCH structure is comprised of a 2-bit data part, a 2-bit TFCI part, a 2-bit TPC and a 4 bit pilot. In the foregoing two transmission methods, it is possible to measure the bit error rate for outer-loop power control using the DLDPCH. In addition, it is possible to confirm 15 channel allocation of the CPCH by transmitting the channel allocation confirmation message or the bit stream corresponding to the channel allocation confirmation message on a one-to one basis, which is known to both the UTRAN and the UE, thereby ensuring stable CPCH channel allocation. 20 When transmitting one frame of the DLDPCH, N slots of the frame can transmit a pattern previously scheduled between the UTRAN and the UE to measure the bit error rate, and the remaining (15-N) slots of the frame can be used to transmit the channel allocation confirmation message. Alternatively, when transmitting the DLDPCH, a specific frame can be used to transmit the pattern previously scheduled between the UTRAN and the UE to 25 measure the bit error rate, and another specific frame can be used to transmit the channel allocation confirmation message. As an example of the foregoing transmission method, the first one or two frames of the DL DPCH can be used to transmit the channel allocation message, and the succeeding frames can be used to transmit the bit pattern previously scheduled between the UTRAN and the UE to measure the bit error rate of the DLDPCH. 30 FIG. 20 shows a slot structure of a power control preamble PCP transmitted from the UE to the UTRAN. The PCP has a length of 0 or 8 slots. The length of the PC_P WO 01/61877 PCT/KR01/00236 - 95 becomes 0 slots, when the radio environment between the UTRAN and the UE is so good that it is not necessary to set initial power of the uplink CPCH or when the system does not use the PCP. Otherwise, the length of the PCP becomes 8 slots. Shown in FIG. 20 is the fundamental structure of the PC P defined in the W-CDMA standard. The PC P has two slot 5 types, and includes 10 bits per slot. Reference numeral 2001 of FIG. 20 indicates the pilot field, which is comprised of 8 or 7 bits according to the slot type of the PCP. Reference numeral 2003 indicates a feedback information field used when there is feedback information to be transmitted to the UTRAN, and this field has a length of 0 or 1 bit. Reference numeral 2005 indicates a field for transmitting a power control command. This field is used when the 10 UJE controls transmission power of the downlink, and has a length of 2 bits. The UTRAN measures transmission power of the UE using the pilot field 2001 and then transmits a power control command over the DLDPCH channel established when the uplink CPCH is established, to control initial transmission power of the uplink CPCH. In the 15 power control process, the UTRAN transmits a power-up command when it is determined that the transmission power of the UE is low, and transmits a power-down command when it is determined that the transmission power is high. The preferred embodiment of the present invention proposes a method for using the 20 PCP for the purpose of confirming CPCH establishment in addition to the purpose of power control. A reason for confirming CPCH establishment is as follows. When the UTRAN has transmitted a channel allocation message to the TE, the channel allocation message may have an error due to a bad radio environment or a bad multi-path environment between the UTRAN and the UE. In this case, the UE will receive the channel allocation message with 25 errors and wrongly use a CPCH which was not designated by the UTRAN, thus causing a collision on the uplink with another UE using the corresponding CPCH. Such a collision may occur in the prior art even when the right of using the channel is required, if the UE misconceives NAK transmitted from the UTRAN for ACK. Therefore, one preferred embodiment of the present invention proposes a method in which the UE requests the 30 UTRAN to confirm the channel message again, thereby increasing the reliability in using the uplink CPCH.
WO 01/61877 PCT/KR01/00236 - 96 The foregoing method in which the UE requests the UTRAN to confirm the channel allocation message or channel request message, using the PC_P, does not affect the PCP's original purpose of measuring receiving power of the uplink for power control. The pilot field of the PCP is information known to the UTRAN, and a value of the channel allocation 5 confirmation message transmitted from the UE to the UTRAN is also known to the UTRAN, so that the UTRAN has no difficulty in measuring the receiving power of the uplink. Therefore, the UTRAN can confirm whether the UE has normally received the channel allocation message, by examining the receiving status of the PCP. In this embodiment of the present invention, if the pilot bits known to the UTRAN are not demodulated in the process 10 of measuring the receiving power of the uplink, the UTRAN determines that a channel allocation message or a channel using ACK message transmitted to the UE has an error, and continuously transmits a power-down command for decreasing transmission power of the uplink over a downlink which corresponds to the uplink CPCH on a one-to-one basis. Since the W-CDMA standard specifies that the power-down command should be transmitted 16 15 times for one 1Oms frame, the transmission power decreases by at least 15dB within 1Oms from the time point when the error has occurred, not having so serious influence over the other UEs. FIG. 21 shows a structure of the PCP of FIG. 20. Referring to FIG. 21, reference 20 numeral 2101 indicates the PC P and has the same structure as shown in FIG. 20. Reference numeral 2103 indicates a channelization code, which is multiplied by the CPP by a multiplier 2102 to channel spread the PCP. The channelization code 2103 has a spreading factor of 256 chips, and is set according to a rule determined by a CA message transmitted from the UTRAN. Reference numeral 2105 indicates a PCP frame, which is comprised of 8 25 slots, each slot having a length of 2560 chips. Reference numeral 2107 indicates an uplink scrambling code used for the PCP. A multiplier 2106 spreads the PCP frame 2105 with the uplink scrambling code 2107. The spread PCP frame is transmitted to the UTRAN. FIG. 22A shows a method for transmitting a channel allocation confirmation 30 message or a channel request confirmation message from the UE to the UTRAN by using the PCP. In FIG. 22A, PCP 2201, channelization code 2203, PCP frame 2205 and uplink scrambling code 2207 have the same structure and operation as the PC_P 2101, WO 01/61877 PCT/KR01/00236 - 97 channelization code 2103, PCP frame 2105 and uplink scrambling code 2107 of FIG. 21. Further, multipliers 2202 and 2206 also have the same operation as the multipliers 2102 and 2106 of FIG. 21, respectively. To transmit the channel allocation confirmation message or channel request confirmation message to the UTRAN using the PC_P, a channel number or 5 signature number of the CAICH received from the UTRAN is repeatedly multiplied by the pilot field of the PCP 2201 before transmission. Reference numeral 2209 of FIG. 22A indicates a CPCH confirmation message which includes the signature number used in the CAICH transmitted from the UTRAN to the UE or the CPCH channel number. Here, the signature number is used for the CPCH confirmation message, when the signatures used for 10 the CAICH correspond to the CPCHs on a one-to-one basis, and the CPCH channel number is used for the CPCH confirmation message, when a plurality of signatures correspond to one CPCH. The CPCH confirmation message 2209 is repeatedly multiplied by the pilot field of the PCP by a multiplier 2208 before transmission. 15 FIG. 22B shows structures of the uplink scrambling codes used by a plurality of UEs in the UTRAN for the AP, CD_P, PC_P, and CPCH message part when transmitting the PC_P by using the method of FIG. 22A. Reference numeral 2221 of FIG. 22B indicates a scrambling code used for the AP, which is known to the UEs by the UTRAN over the broadcasting channel or which is equally used for the AP part in the whole system. The 20 scrambling code 2223 used for the CDP is a scrambling code which has the same initial value as the scrambling code 2221 for the AP but has a different start point. However, when the signature group used for the AP is different from the signature group used for the CP_P, the same scrambling code as the scrambling code 2221 for the AP is used for the scrambling code 2223. Reference numeral 2225 indicates a scrambling code used for the PC_P, which is 25 known to the UE by the UTRAN or which is equally used for the PCP part in the whole system. The scrambling code used for the PCP part can be either identical to or different from the scrambling code used for the AP and CPP part. Reference numerals 2227, 2237 and 2247 indicate scrambling codes used when UE#1, UE#2 and UE#k in the UTRAN transmit the CPCH message parts using CPCHs. The scrambling codes 2227, 2237 and 2247 30 can be set according to the APs transmitted from the UEs or the CAICH messages transmitted from the UTRAN. Here, 'k' indicates the number of the UEs which can simultaneously use CPCHs, or the number of the CPCHs in the UTRAN.
WO 01/61877 PCT/KR01/00236 - 98 In FIG. 22B, when the uplink scrambling code used by the UTRAN for the CPCH is not allocated to every CPCH or every UE, the number of the scrambling codes used for the message part may be smaller than the number of the UEs which can simultaneously use the 5 CPCHs in the UTRAN or the number of the CPCHs in the UTRAN. FIG. 23 shows another method for transmitting the channel allocation confirmation message or channel request confirmation message transmitted from the UE to the UTRAN using the PC_P. In FIG. 23, PCP 2301, channelization code 2303, PC_P frame 2305 and 10 uplink scrambling code 2307 have the same structure and operation as the PC P 2101, channelization code 2103, PC_P frame 2105 and uplink scrambling code 2107 of FIG. 21. Further, multipliers 2302 and 2306 also have the same operation as the multipliers 2102 and 2106 of FIG. 21, respectively. To transmit the channel allocation confirmation message or channel request confirmation message to the UTRAN using the PC_P, the PCP frame 2305 15 is multiplied by the CPCH confirmation message 2309 in a chip unit and then spread with a scrambling code 2307. Here, it is possible to obtain the same result, even though the sequence of multiplying the CPCH confirmation message and the scrambling code by the PCP frame is reversed. The CPCH confirmation message includes the signature number used in the CA ICH transmitted from the UTRAN to the UE or the CPCH channel number. 20 Here, the signature number is used for the CPCH confirmation message, when the signatures used for the CAICH correspond to the CPCHs on a one-to-one basis, and the CPCH channel number is used for the CPCH confirmation message, when a plurality of signatures correspond to one CPCH. The environments in which the UEs in the UTRAN use the scrambling codes in the method of FIG. 23 are equal to the environments given in the method 25 of FIGS. 22A and 22B. FIG. 24A shows another method for transmitting the channel allocation confirmation message or channel request confirmation message from the UE to the UTRAN using the PCP. In FIG. 24A, PCP 2401, PCP frame 2405 and uplink scrambling code 30 2407 have the same structure and operation as the PCP 2101, PCP frame 2105 and uplink scrambling code 2107 of FIG. 21. Further, multipliers 2402 and 2306 also have the same operation as the multipliers 2102 and 2106 of FIG. 21, respectively. To transmit the channel WO 01/61877 PCT/KR01/00236 - 99 allocation confirmation message or channel request confirmation message to the UTRAN using the PC_P, a channelization code 2403 is associated with the CAICH signature received at the UE from the UTRAN or the CPCH channel number on a one-to-one basis to channel spread the PCP using the channelization code and transmit the channel-spread 5 PCP to the UTRAN. The environments in which the UEs in the UTRAN use the scrambling codes in the method of FIG. 24A are equal to the environments given in the method of FIG. 22B. FIG. 24B shows an example of a PCP channel code tree which correspond to the 10 CAICH signatures or the CPCH channel numbers on a one-to-one basis. This channel code tree is called an OVSF (Orthogonal Variable Spreading Factor) code tree in the W-CDMA standard, and the OVSF code tree defines orthogonal codes according to the spreading factors. In the OVSF code tree 2431 of FIG. 24B, a channelization code 2433 used as a PCP channelization code has a fixed spreading factor of 256, and there are several possible 15 mapping rules for associating the PCP channelization code with the CAICH signatures or the CPCH channel numbers on a one-to-one basis. As an example of the mapping rule, the lowest one of the channelization codes having the spreading factor 256 can be associated with the CA ICH signature or CPCH channel number on a one-to-one basis; and the highest channelization code can also be associated with the CAICH signature or the CPCH channel 20 number on a one-to-one basis, by changing the channelization code or skipping several channelization codes. In FIG. 24B, 'n' may be the number of the CAICH signatures or the number of the CPCH channels. FIG. 25A shows another method for transmitting a channel allocation confirmation 25 message or a channel request confirmation message transmitted from the UE to the UTRAN using the PCP. In FIG. 25A, PCP 2501, channelization code 2503 and PCP frame 2505 have the same structure and operation as the PCP 2101, channelization code 2103 and PC_P frame 2105 of FIG. 21. Further, multipliers 2502 and 2506 also have the same operation as the multipliers 2102 and 2106 of FIG. 21, respectively. To transmit the channel allocation 30 confirmation message or channel request confirmation message to the UTRAN using the PCP, an uplink scrambling code 2507 is associated with the channel number of signature number of the CAICH received from the UTRAN on a one-to-one basis to channel spread WO 01/61877 PCT/KR01/00236 -100 the PCP frame 2505 with the uplink scrambling code before transmission. Receiving the PCP frame transmitted from the UE, the UTRAN determines whether the scrambling code used for the PCP frame corresponds to the signature or CPCH channel number transmitted over the CAICH on a one-to-one basis. If the scrambling code does not correspond to the 5 signature or CPCH channel number, the UTRAN immediately transmits a power-down command for decreasing transmission power of the uplink to the power control command field of the DLDPCH corresponding to the uplink CPCH on a one-to-one basis. FIG. 25B shows the structures of uplink scrambling codes used for the AP, CD_P, 10 PCP and CPCH message part by a plurality of UEs in the UTRAN when transmitting the PCP using the method of FIG. 25A. Reference numeral 2521 of FIG. 25B indicates a scrambling code used for the AP, which is known to the UEs by the UTRAN over the broadcasting channel or which is equally used for the AP part in the whole system. For a scrambling code 2523 used for the CD_P, is used a scrambling code which has the same 15 initial value as the scrambling code 2521 for the AP but has a different start point. However, when the signature group used for the AP is different from the signature group used for the CP_P, the same scrambling code as the scrambling code 2521 for the PA is used for the scrambling code 2523. Reference numerals 2525, 2535 and 2545 indicate scrambling codes used when UE#1, UE#2 and UE#k transmit the PC_P, and these scrambling codes correspond 20 to the signature or CPCH channel number of the CAICH received at the UE from the UTRAN on a one-to-one basis. With regard to the scrambling codes, the LIE can store the scrambling code used for the PCP or the scrambling code can be known to the UE by the UTRAN. The PCP scrambling codes 2525, 2535 and 2545 may be identical to the scrambling codes 2527, 2537 and 2547 used for the CPCH message part, or may be 25 scrambling codes corresponding to them on a one-to-one basis. In FIG. 25B, 'k' indicates the number of CPCHs in the UTRAN. FIGS. 26A to 26C show the procedure for allocating the CPCH channel in the UE according to an embodiment of the present invention, and FIGS. 27A to 27C show the 30 procedure for allocating the CPCH channel in the UTRAN according to an embodiment of the present invention.
WO 01/61877 PCT/KR01/00236 - 101 Referring to FIG. 26A, the UE generates data to be transmitted over the CPCH in step 2601, and acquires information about a possible maximum data rate by monitoring the CSICH in step 2602. The information which can be transmitted over the CSICH in step 2602 may include information about whether the data rates supported by the CPCH can be used. 5 After acquiring the CPCH information of the UTRAN in step 2602, the UE selects a proper ASC based on the information acquired over the CSICH and the property of transmission data, and randomly selects a valid CPCHAP sub-channel group in the selected ASC, in step 2603. Thereafter, in step 2604, the UE selects a valid access slot from the frames of SFN+1 and SFN+2 using the SFN of the downlink frame and the sub-channel group number of the 10 CPCH. After selecting the access slot, the UE selects a signature appropriate for the data rate at which the UE will transmit the data, in step 2605. Here, the UE selects the signature by selecting one of the signatures for transmitting the information. Thereafter, the UE performs desired transport format (TF) selection, persistence check and accurate initial delay for AP transmission in step 2606, sets repetitive transmission number and initial transmission power 15 of the AP in step 2607, and transmits the AP in step 2608. After transmitting the AP, the UE awaits ACK in response to the transmitted AP in step 2609. It is possible to determine whether ACK has been received or not, by analyzing the APAICH transmitted from the UTRAN. Upon failure to receive ACK in step 2609, the UE determines in step 2631 whether the AP repetitive transmission number set in step 2607 has been exceeded. If the set AP 20 repetitive transmission number has been exceeded in step 2631, the UE transmits an error occurrence system response to the upper layer to stop the CPCH access process and to perform an error recovery process in step 2632. Whether the AP repetitive transmission number has been exceeded or not can be determined using a timer. However, if the AP repetitive transmission number has not been exceeded in step 2631, the LIE selects a new 25 access slot defined in the CPCHAP sub-channel group in step 2633, and selects a signature to be used for the AP in step 2634. In selecting the signature in step 2634, the UE selects a new signature out of the valid signatures in the ASC selected in step 2603 or selects the signature selected in step 2605. Thereafter, the UE resets transmission power of the AP in step 2635, and repeatedly performs the step 2608. 30 Upon receipt of ACK in step 2609, the LIE selects a signature to be used for the CDP from the signature group for the preamble and selects an access slot for transmitting WO 01/61877 PCT/KR01/00236 -102 the CDP in step 2610. The access slot for transmitting the CDP may indicate a given time point after the UE has received ACK, or a fixed time point. After selecting the signature and access slot for the CD_P, the UE transmits the CDP which uses the selected signature at the selected access slot, in step 2611. 5 After transmitting the CD_P, the UE determines in step 2612 of FIG. 26B whether ACK for CDP and a channel allocation message are received. The UE performs different operation according to whether an ACK has been received or not over the CDICH. In step 2612, the TE can determine a received time of an ACK for the CDP and the channel 10 allocation message by using a timer. If an ACK is not received within a time set by the timer or a NAK for the transmitted CDP is received in step 2612, the UE proceeds to step 2641 to stop the CPCH access procedure. In step 2641, the UE transmits an error occurrence system response to the upper layer to stop the CPCH access procedure and perform an error recovery process. However, if an ACK for the CDP is received in step 2612, the UE analyzes the 15 channel allocation message in step 2613. It is possible to simultaneously detect and analyze ACK for the CDP and the channel allocation message by using the AICH receivers of FIGS. 16 and 17. The UE determines, in step 2614, an uplink scrambling code and an uplink 20 channelization code for a message part of a physical common packet channel (PCPCH) according to the channel allocation message analyzed in step 2613, and determines a channelization code for a DLDPCH established for power control of the CPCH. Thereafter, the UE determines in step 2615 whether the slot number of power control preamble PCP is 8 or 0. If the number of the PCP slots is 0 in step 2615, the UE performs step 2619 to start 25 receiving the DLDPCH transmitted from the UTRAN; otherwise, if the number of the PC_P slots is 8, the UE performs step 2617. In step 2617, the UE formats the power control preamble PCP according to the uplink scrambling code, the uplink channelization code and the slot type to be used for the PCP. The PCP has 2 slot types. After selecting the scrambling code for the PCP and the channelization code, the UE transmits the PCP in step 30 2618, and at the same time, receives the DLDPCH to perform transmission power control of the uplink and reception power control of the downlink. Thereafter, in step 2620, the UE WO 01/61877 PCT/KR01/00236 - 103 formats the PCPCH message part according to the channel allocation message analyzed in step 2613, and starts transmission of the CPCH message part in step 2621. Thereafter, the UE determines in step 2622 of FIG. 26C whether the PCP is 5 transmitted in an acknowledgement transmission mode for acknowledging channel allocation. If the PCP is not transmitted in the acknowledgement transmission mode in step 2622, the UE performs step 2625 after transmission of the CPCH message part, to transmit a CPCH transmission stop status response to the upper layer, and ends the process of transmitting the data over the CPCH in step 2626. However, if the PC P is transmitted in the 10 acknowledgement transmission mode in step 2622, the UE sets a timer for receiving an ACK of the CPCH message part in step 2623, and monitors a forward access channel (FACH) during and after transmission of the CPCH message part in step 2624, to determine whether an ACK or NAK for the CPCH message part has been received from the UTRAN. It is possible to use a DLDPCH as well as the FACH in receiving an ACK or NAK from the 15 UTRAN. Upon failure to receive an ACK for the CPCH message part over the FACH in step 2624, the UE determines in step 2651 whether the timer set in step 2623 has expired or not. If the timer has not expired, the UE returns to step 2624 to monitor for an ACK or NAK from the UTRAN. However, if the timer has expired, the UE transmits a transmission fail status response to the upper layer and performs an error recovery process in step 2652. However, if 20 an ACK has been received in step 2624, the UE performs steps 2625 and 2626, completing transmission of the CPCH. Now, a detailed description will be made regarding how the UTRAN allocates the CPCH, with reference to FIGS. 27A to 27C. 25 The UTRAN transmits information about the maximum data rate supported by the CPCH or information as to whether the CPCH is available according to the data rates, using the CSICH, in step 2701 of FIG. 27A. The UTRAN monitors an access slot to receive an AP transmitted from the UEs in step 2702. While monitoring the access slot, the UTRAN 30 determines in step 2703 whether an AP has been detected. Upon failure to detect an AP in step 2703, the UTRAN returns to step 2702 and repeats the above process. Otherwise, upon detection of the AP in step 2703, the UTRAN determines in step 2704 whether two or more WO 01/61877 PCT/KR01/00236 -104 APs have been detected (or received). If two or more APs have been detected in step 2704, the UTRAN selects a proper one of the detected APs in step 2731 and then proceeds to step 2705. Otherwise, if one only AP has been received and it is determined that receiving power of the received AP or a requirement for the CPCH included in the signature for the received 5 AP is appropriate, the UTRAN performs step 2705. Here, the "requirement" refers to a data rate that the UE desires to use for the CPCH or the number of data frames to be transmitted by the user, or a combination of the two requirements. If one AP has been detected in step 2704 or after selecting a proper AP in step 2731, 10 the UTRAN proceeds to step 2705 to generate an APAICH for transmitting an ACK for the detected or selected AP, and then transmits the generated APAICH in step 2706. After transmitting the APAICH, the UTRAN monitors an access slot to receive the CD_P transmitted from the UE that has transmitted the AP, in step 2707. It is possible to receive the AP, even in the process of receiving the CDP and monitoring the access slot. That is, the 15 UTRAN can detect the AP, CDP and PCP from the access slots, and generate the AICHs for the detected preambles. Therefore, the UTRAN can simultaneously receive the CDP and the AP. In this embodiment of the present invention, the description will be made focusing on the process in which the UTRAN detects the AP generated by a given UE and then allocates the CPCH as shown in FIG. 3. Therefore, the description of the operation performed by the 20 UTRAN will be made in the sequence of a response, made by the UTRAN, to the AP transmitted from a given UE, a response to the CDP transmitted from the UE that has transmitted the AP, and a response to the PCP transmitted from the corresponding UE. Upon detecting the CDP in step 2708, the UTRAN performs step 2709; otherwise, upon failure to detect the CD_P, the UTRAN performs the step 2707 to monitor detection of the CD P. The 25 UTRAN has two monitoring methods: one method is to use a timer if the UE transmits the CDP at a fixed time after the APAICH, another method is to use a searcher if the UE transmits the CDP at a given time. Upon detecting the CDP in step 2708, the UTRAN determines in step 2709 whether two or more CDPs have been detected. If two or more CDPs have been detected in step 2709, the UTRAN selects a proper one of the received 30 CDPs in step 2741, and generates the CDICH and the channel allocation message in step 2710. In step 2741, the UTRAN may select the proper CDP depending on the receiving power of the received CDPs. If one CDP has been received in step 2709, the UTRAN WO 01/61877 PCT/KR01/00236 - 105 proceeds to step 2710 where the UTRAN generates a channel allocation message to be transmitted to the UE that has transmitted the CDP selected in step 2741 or the CD_P received in step 2709. 5 Thereafter, in step 2711 on FIG. 27B, the UTRAN generates ACK for the CD_P detected in step 2708 and the CD/CAICH for transmitting the channel allocation message generated in step 2710. The UTRAN may generate the CD/CA_ICH in the method described with reference to FIGS. 13A and 13B. The UTRAN transmits the generated CA/CD_CH in step 2712 in the method described with reference to FIGS. 14 and 15. After transmitting the 10 CD/CAICH, the UTRAN generates a downlink dedicated channel (DLDPCH) for controlling transmission power of the uplink CPCH in step 2713. the generated DLDPCH corresponds to the uplink CPCH transmitted from the UE on a one-to-one basis. The UTRAN transmits information for controlling transmission power of the PCPCH in step 2714, using the DLDPCH generated in step 2713. The UTRAN examines the slot or timing information 15 by receiving the PCP transmitted from the UE, in step 2715. If the slot number or timing information of the PCP transmitted from the UE is '0' in step 2715, the UTRAN starts receiving a message part of the PCPCH transmitted from the UE in step 2719. Otherwise, if the slot number or timing information of the PCP transmitted from the UE is '8' in step 2715, the UTRAN proceeds to step 2716 where the UTRAN receives the PCP transmitted 20 from the UE and creates a power control command for controlling transmission power of the PCP. One object of controlling transmission power of the PCP is to properly control initial transmission power of the uplink PCPCH transmitted from the UE. The UTRAN transmits the power control command generated in step 2716 through a power control command field of a downlink dedicated physical control channel (DLDPCCH) out of the DL_DPCH 25 channels generated in step 2713. Thereafter, the UTRAN determines in step 2718 whether the PCP has been completely received. If reception of the PCP is not completed, the UTRAN returns to step 2717; otherwise, if reception of the PCP is completed, the UTRAN performs step 2719. Whether reception of the PCP is completed or not can be determined by using a timer to examine whether 8 PCP slots have arrived. If it is determined in step 2718 30 that reception of the PCP is completed, the UTRAN starts receiving a message part of the uplink PCPCH in step 2719, and determines in step 2720 whether reception of the PCPCH message part is completed. If reception of the PCPCH message part is not completed, the WO 01/61877 PCT/KR01/00236 -106 UTRAN continuously receives the PCPCH, and otherwise, if reception of the PCPCH is completed, the UTRAN proceeds to step 2721 of FIG. 27C. The UTRAN determines in step 2721 whether the UE transmits the PCPCH in an 5 acknowledgement transmission mode. If the UE transmits the PCPCH in an acknowledgement transmission mode, the UTRAN performs step 2722, and otherwise, performs step 2724 to end reception of the CPCH. If it is determined in step 2721 that the UE transmits the PCPCH in the acknowledgement transmission mode, the UTRAN determines in step 2722 whether the received PCPCH message part has an error. If the received PCPCH 10 message part has an error, the UTRAN transmits NAK through a forward access channel (FACH) in step 2751. Otherwise, if the received PCPCH message part has no error, the UTRAN transmits ACK through the FACH in step 2723 and then ends reception of the CPCH in step 2724. 15 FIGS. 28A and 28B show the procedure for allocating the CPCH in the UE according to another embodiment of the present invention, wherein "START" of FIG. 28A is connected to "A" of FIG. 26A. FIGS. 29A to 29C show the procedure for allocating the CPCH in the UTRAN according to another embodiment of the present invention, wherein "START" of FIG. 29A is connected to "A" of FIG. 27A. FIGS. 28A-28B and FIGS. 29A 20 29C show the methods for establishing the stable CPCH using the PCP described with reference to FIGS. 22 to 26, performed by the TE and the UTRAN, respectively. Referring to FIG. 28A, the UE determines in step 2801 whether CDICH and CAICH have been received from the UTRAN. Upon failure to receive the CD/CAICH in 25 step 2801, the UE transmits an error occurrence system response to the upper layer to end the CPCH access procedure and the error recovery process in step 2821. "Failure to receive the CD/CAICH" includes one case where an ACK is not received although the CD/CA ICH is received, and another case where the CD/CA ICH is not received from the UTRAN within a predetermined time. The "predetermined time" refers to a time previously set when starting 30 the CPCH access procedure, and a timer can be used in setting the time.
WO 01/61877 PCT/KR01/00236 -107 Otherwise, if it is determined in step 2801 that the CD/CAICH have been received and ACK is detected from the CDICH, the UE analyzes the channel allocation message transmitted from the UTRAN in step 2802. After analyzing the channel allocation message in step 2802, the LE proceeds to step 2803 where the UE determines an uplink scrambling code 5 of the PCPCH message part, an uplink channelization code, and a channelization code for the downlink channel used for controlling the uplink CPCH according to the analyzed channel allocation message. Thereafter, in step 2804, the UE constructs the PCP according to the slot type using 10 the uplink scrambling code and the uplink channelization code set in step 2803. This embodiment of the present invention increases stability and reliability of the CPCH using the PCP. It is assumed that the length or timing information of the PCP slot is always set to 8 slots. 15 In step 2805, the UE inserts a channel allocation confirmation message in the PC_P in order to verify the channel allocation message received from the UTRAN. The UE can insert the channel allocation confirmation message in the PCP in the methods described with reference to FIGS. 22 to 25. In the method of FIG. 22, a pilot bit of the PCP is multiplied by the channel allocation message or the signature number received at the UE 20 before transmission. In the method of FIG. 23, the PCP slot is multiplied by the channel allocation message or the signature number received at the LIE by the chip level before transmission. In the method of FIG. 24, the PCP is channelized with a channelization code corresponding to the channel allocation message or the signature number received at the IE before transmission. In the method of FIGS. 25A and 25B, the PCP is spread with a 25 scrambling code corresponding to the channel allocation message or the signature received at the UE and then transmitted to the UTRAN. When transmitting the channel allocation message using the multiple signatures, the UTRAN uses the channel allocation message for the CPCH allocated to the UE. When allocating the CPCH using one signature, the UTRAN uses the signature for the channel allocation message. 30 Thereafter, in step 2806, the UE transmits the PCP generated in step 2805 to the UTRAN, and starts receiving the DLDPCH transmitted from the UTRAN in step 2807. In WO 01/61877 PCT/KR01/00236 - 108 addition, the UE measures receiving power of the downlink using the pilot field of the DLDPCH and inserts a command for controlling transmission power of the downlink in a power control command part of the PCP according the measured receiving power. 5 While transmitting the PCP to the UTRAN and receiving the DLDPCH, the UE determines in step 2808 whether an error signal for the channel allocation message analyzed by the UE or a specific PCB (Power Control Bit) pattern requiring release of the CPCH has been received from the UTRAN. If it is determined in step 2808 that the analyzed channel allocation message has an error or the PCB pattern indicates a CPCH release, the UE ends 10 transmission of the PCP in step 2831 and transmits a PCPCH transmission stop status response to the upper layer and performs the error recovery process, in step 2832. However, if it is determined in step 2808 that the error signal for the channel allocation message or the specific PCB pattern is not received from the UTRAN, the UE 15 constructs the PCPCH message part according to the analyzed channel allocation message in step 2809. Continuing at step 2810 of FIG. 28B, the UE starts transmitting the PCPCH message part generated in step 2809. While transmitting the PCPCH message part, the UE performs 20 step 2811 which is identical to step 2808 of FIG. 28A. Upon receipt of an error confirmation message for the channel assignment message or a channel release request message from the UTRAN in step 2811, the UE performs steps 2841 and 2842. The UE stops transmission of the PCPCH message part in step 2841, and transmits a PCPCH transmission stop status response to the upper layer and performs the error recovery process in step 2842. The 25 channel release request message has two different types. The first type of channel release request message is transmitted when the UTRAN knows, after starting transmission of the PCPCH, that the presently established CPCH has collided with a CPCH of another UE due to the delay in confirming the channel allocation message for the presently established CPCH, transmitted from the UTRAN. The second type of channel release request message is 30 transmitted when the UTRAN transmits a collision message indicating a collision with another user to a first UE which correctly uses the CPCH and a second UE starts transmission using the CPCH over which the first TIE is presently communicating with the WO 01/61877 PCT/KR01/00236 -109 UTRAN, because the channel allocation message received at the second UE using the CPCH from the UTRAN has an error. At any rate, upon receipt of the channel release message, the UTRAN command both the first UE which correctly uses the CPCH and the second UE which has received the channel allocation message with an error to stop using the uplink 5 CPCH. However, if the error signal for the channel allocation message or the specific PCB pattern for requesting channel release from the UTRAN is not received from the UTRAN in step 2811, the UE continuously transmits the PCPCH message part in step 2812, and 10 determines in step 2813 whether transmission of the PCPCH message part is completed. If transmission of the PCPCH message part is not completed, the UE returns to step 2812 to continue performing the above operation. Otherwise, if transmission of the PCPCH message part is completed, the UE performs operation of step 2814. 15 The UE determines in step 2814 whether transmission is made in the acknowledgement transmission mode. If transmission is not made in the acknowledgement transmission mode, the UE ends transmission of the PCPCH message part and performs step 2817 where the UE transmits a PCPCH transmission stop status response to the upper layer and ends the CPCH data transmission process. However, if transmission is made in the 20 acknowledgement transmission mode, the UE sets a timer for receiving ACK of the CPCH message part in step 2815. Thereafter, in step 2816, the UE monitors the forward access channel (FACH) during and after transmission of the CPCH message part, to determine whether an ACK or NAK for the CPCH message part has been received from the UTRAN. The UTRAN can transmit an ACK or NAK through the downlink channel as well as the 25 FACH. If an ACK for the CPCH message part is not received through the FACH in step 2816, the UE determines in step 2851 whether the timer set in step 2815 has expired or not. If the timer has not expired yet in step 2815, the UE returns to step 2816 and monitors for an ACK or NAK transmitted from the UTRAN. Otherwise, if the timer has expired in step 2815, the UE transmits a PCPCH transmission fail status response to the upper layer and performs the 30 error recovery process, in step 2852. However, upon receipt of ACK in step 2816, the UE performs step 2817 and ends transmission of the CPCH.
WO 01/61877 PCT/KR01/00236 -110 Now, a description of the UTRAN will be made with reference to FIGS. 29A to 29C, wherein "START" of FIG. 29A is connected to "A" of FIG. 27A. In step 2901 of FIG. 29A, the UTRAN generates the CD/CAICH for transmitting 5 ACK for the CDP detected in step 2708 of FIG. 27A and the channel allocation message generated in step 2710. The CD/CAICH can be generated in the method described with reference to FIGS. 13A and 13B. In step 2902, the UTRAN transmits the CA/CDICH generated in step 2901, in the methods described with reference to FIGS. 14 and 15. After transmitting the CD/CAICH, the UTRAN generates a DLDPCH for controlling 10 transmission power of the uplink CPCH. The generated DL_DPCH corresponds to the uplink CPCH transmitted from the UE on a one-to-one basis. The UTRAN transmits the DL DPCH generated in step 2903, in step 2904, and receives the PCP transmitted from the UE and analyzes a confirmation message for the received channel allocation message in step 2905. The UTRAN determines in step 2906 whether the channel allocation conformation message 15 transmitted from the UE is identical to the channel allocation message transmitted by the UTRAN, based on the results analyzed in the step 2905. If they are identical in step 2906, the UTRAN performs step 2907, and otherwise, proceeds to step 2921. The UE can transmit the channel allocation message to the UTRAN using the PCP in the methods described with reference to FIGS. 22 to 25. In the method of FIG. 22, a pilot bit of the PCP is multiplied by 20 the channel allocation message or the signature number received at the UE before transmission. In the method of FIG. 23, the PCP slot is multiplied by the channel allocation message or the signature number received at the UE by the chip level before transmission. In the method of FIG. 24, the PCP is channelized with a channelization code corresponding to the channel allocation message or the signature number received at the UE before 25 transmission. In the method of FIG. 25, the PCP is spread with a scrambling code corresponding to the channel allocation message or the signature received at the UE and then transmitted to the UTRAN. When transmitting the channel allocation message using the multi-signature, the UTRAN uses the channel allocation message for the CPCH allocated to the UE. When allocating the CPCH using one signature, the UTRAN uses the signature for 30 the channel allocation message.
WO 01/61877 PCT/KR01/00236 - 111 The UTRAN determines in step 2921 of FIG. 29B whether a CPCH corresponding to the channel allocation confirmation message received in step 2905 is used by another UE. If it is determined in step 2921 that the CPCH is not used by another UE, the UTRAN performs step 2925 where the UTRAN transmits a PCPCH transmission stop status response 5 to the upper link and performs the error recovery process. The "error recovery process" performed by the UTRAN refers to ordering the UE to stop transmission of the CPCH by transmitting a CPCH transmission stop message to the UE through the DLDPCH in use, transmitting the CPCH transmission stop message to the UE through the FACH, or continuously transmitting a specific bit pattern previously appointed with the UE. In addition, 10 the error recovery process may include a method in which the UTRAN continuously transmits a command for decreasing transmission power of the uplink through the DLDPCH received at the UE. If it is determined in step 2921 that the CPCH corresponding to the channel 15 allocation confirmation message received in step 2905 is used by another UE, the UTRAN transmits a power-down command through the DLDPCH which is commonly used by the two UEs, in step 2922. Thereafter, in step 2923, the UTRAN releases the channel by transmitting the channel release message or the specific PCB pattern to the two UEs through the FACH. The UTRAN may use the DLDPCH as well as the FACH, when transmitting the 20 channel release message or the specific PCB pattern. After step 2923, the UTRAN stops transmitting the DLDPCH to the UE in step 2924, and ends reception of the CPCH in step 2925. Otherwise, if the channel confirmation message received from the UE in step 2906 25 is consistent with the channel allocation message allocated by the UTRAN, the UTRAN performs step 2907 where the UTRAN receives the PC P transmitted from the UE and generates a power control command for controlling transmission power of the PCP. One object of controlling transmission power of the PCP is to properly control initial transmission power of the uplink PCPCH transmitted from the UE. In step 2908, the UTRAN 30 transmits the generated power control command through a power control command field of the downlink dedicated physical control channel (DLDPCCH) out of the DLDPCH generated in step 2903. The UTRAN determines in step 2909 whether reception of the PC_P WO 01/61877 PCT/KR01/00236 -112 is completed. If reception of the PCP is not completed, the UTRAN returns to step 2908, and otherwise, proceeds to step 2910. Whether reception of the PC__P is completed can be determined by using a timer to examine whether the 8 PCP slots have all been received. If reception of the PCP is completed in step 2909, the UTRAN starts receiving the message 5 part of the uplink PCPCH in step 2910, and determines in step 2911 whether reception of the message part of the uplink PCPCH. If reception of the PCPCH message part is not completed, the UTRAN continuously receives the PCPCH. If reception of the PCPCH message part is completed, the UTRAN determines in step 2921 of FIG. 29C whether the UE has transmitted the PCPCH in the acknowledgement transmission mode. If the UE has transmitted the 10 PCPCH in the acknowledgement transmission mode, the UTRAN performs step 2931, and if the UE has transmitted the PCPCH not in the acknowledgement transmission mode, the UTRAN performs step 2915. If the UE has transmitted the PCPCH in the acknowledgement transmission mode in 15 step 2912, the UTRAN determines in step 2913 whether the message part of the received PCPCH has an error. If the received PCPCH message part has an error, the UTRAN transmits NAK through the FACH in step 2931. If the received PCPCH message part has no error, the UTRAN transmits an ACK through the FACH in step 2914 and ends reception of the CPCH in step 2915. 20 FIG. 32 shows an operation performed by a MAC (Medium Access Control) layer of the UE according to an embodiment of the present invention. Upon receipt of MAC-Data REQ primitive from RLC (Radio Link Control) in step 3201, the MAC layer sets to '0' a parameter M needed to count a preamble romping cycle and a parameter FCT (Frame 25 Counter Transmitted) needed to count the number of transmitted frames, in step 3203. The "preamble romping cycle" refers to a time period in which how many times the access preamble can be transmitted. In step 3203, the MAC layer acquires a parameter needed to transmit the CPCH from RRC (Radio Resource Control). The parameter may include persistency value P, NFmax, and back-off (BO) time for the respective data rates. The MAC 30 layer increases the preamble romping cycle counter M in step 3204, and compares the value M with NFmax acquired from the RRC in step 3205. If M > NFmax, the MAC layer ends the CPCH acquiring process and performs an error correction process in step 3241. The error WO 01/61877 PCT/KR01/00236 - 113 correcting process can be a process for transmitting a CPCH acquisition fail message to the upper layer of the MAC layer. Otherwise, if M NFmax in step 3205, the MAC layer transmits a PHY-CPCHStatus-REQ primitive in step 3206, in order to acquire information about the PCPCH channels in the present UTRAN. The information about the PCPCH 5 channels in the UTRAN, requested in step 3206 by the MAC layer, can be acquired in step 3207. The acquired PCPCH information in the UTRAN may include an availability of the respective channels, a data rate supported by the UTRAN for the respective PCPCHs, multi code transmit information, and the maximum available data rate which can be presently allocated by the UTRAN. 10 In step 3208, the MAC layer compares the maximum available data rate of the PCPCH acquired in step 3207 with a requested data rate to determine whether the requested data rate is acceptable. If it is an acceptable data rate, the MAC layer proceeds to step 3209. Otherwise, if it is not an acceptable data rate, the MAC layer waits for an expiry time T until 15 the next TTI in step 3231 and then repeats the step 3203 and its succeeding steps. The step 3209 is performed when the data rate of the PCPCH desired by the MAC layer is coincident with the data rate of the PCPCHs in the present UTRAN, and in the step 3209, the MAC layer selects a desired transport format (TF) for transmitting the CPCH. In 20 order to perform a persistency test to determine whether to attempt an access to the PCPCH supporting the TF selected in step 3209, the MAC layer draws a random number R in step 3210. Thereafter, in step 3211, the MAC layer compares the random number R drawn in step 3210 with the persistency value P acquired in step 3203 from RRC. If R P, the MAC layer proceeds to step 3212, and if R > P, the MAC layer returns to step 3231. Alternatively, if R > 25 P in step 3211, the MAC layer can also perform the following process. That is, the MAC layer includes a busy table for recording availability of the respective TFs, records the persistency test-failed TF in the busy table and then performs again the process from the step 3209. In this case, however, the MAC layer consults the busy table in step 3209, in order to select the TF which is not recoded as "busy". 30 The MAC layer accurately performs initial delay in step 3212, and transmits to the physical layer a PHY-Access-REQ primitive for commanding the physical layer to perform a WO 01/61877 PCT/KR01/00236 - 114 procedure for transmitting the access preamble in step 3213. Reference 3214 indicates a process performed after receiving PHY-Access-CNF for the PHY-Access-REQ primitive transmitted by the MAC layer in step 3213. "A" of step 3214 indicates a case where the MAC layer has received no response over the APAICH, and in this case (i.e., upon failure 5 to receive the AP_AICH), the MAC layer performs again the process from the step 3231. "B" of step 3214 indicates a case where the physical layer having received the APAICH has failed to receive a response over the CD/CAICH after transmitting the CDP. At this point, the MAC layer performs the process from the step 3231, as in the case "A". "D" of step 3214 indicates a case where the physical layer of the UE has received a NAK from the UTRAN 10 over the APAICH. In this case, the MAC layer waits the expiry timer T until the next TTI in step 3271 and thereafter, waits a back-off time TBOC2 needed when the NAK is receive over the AP_AICH, in step 3273, and then performs the process again from the step 3203. "E" of step 3214 indicates a case where the physical layer of the UE has received the signature transmitted over the CD/CAICH by the UE itself and another signature. In this case, the 15 MAC layer waits the expiry timer T until the next TTI in step 3251, and thereafter, waits a back-off time TBOC1 given when the signature transmitted over the CD/CAICH by the UE itself and another signature are receive, in step 3253, and then performs the process again from the step 3203. 20 "C" of step 3214 indicates a case where the physical layer of the UE informs the MAC that an ACK for the CDICH and the channel allocation message have been received over the CAICH. In this case, the MAC layer of the UE selects an appropriate TF and builds a transport block set appropriate for the selected TF in step 3215. 25 In step 3216, the MAC layer of the UE transmits the built transport block set using a PHY-DATA-REQ primitive. In step 3217, the MAC layer of the UE decreases FCT by the number of the frames corresponding to one TTI and then ends the process for transmitting data over the CPCH in step 3218. 30 As described above, the UTRAN actively allocates the CPCH requested by the UE and can reduce the time required for setting up the CPCH. In addition, it is possible to decrease a probability of a collision which may be caused when a plurality of UEs requests WO 01/61877 PCT/KR01/00236 - 115 the CPCH, and to prevent a waste of radio resources. Furthermore, it is possible to secure stable allocation of the common packet channel through the PCP between the UIE and the UTRAN, and to provide stability in using the common packet channel. 5 In addition, the UTRAN assigns the PCPCH channels depending on the AP signature provided from the UE to the UTRAN and the CAICH message provided from the UTRAN to the UE, thus making it possible to assign the increased number of PCPCH channels with the less information. Further, the UE and the UTRAN need not exchange separate information for assignment of the PCPCH channels, thus contributing to 10 simplification of the PCPCH assignment process. While the invention has been shown and described with reference to a certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope 15 of the invention as defied by the appended claims.

Claims (19)

1. A method for assigning a channel to a UE (user equipment) by a UTRAN (UMTS (Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 5 in a CDMA (Code Division Multiple Access) communication system, the method comprising the steps of: receiving a access preamble signature from the UE; and selecting one of a plurality of channel assignment signatures associated with the received access preamble signature in order to assign one of a plurality of physical common 10 packet channels (PCPCHs) unused in the UTRAN.
2. The method as claimed in claim 1, wherein the UTRAN selects one of the channel assignment signatures depending on a maximum data rate required when the UE transmits data. 15
3. The method as claimed in claim 1, further comprising the step of selecting one of the PCPCHs unused in the UTRAN depending on the received access preamble signature and the selected channel assignment signature for receiving a packet data from the UE 20
4. The method as claimed in claim 3, wherein the PCPCH selecting step comprises the steps of: determining a number PSF of PCPCHs capable of supporting a maximum data rate required when the UE transmits data out of the unused PCPCHs; 25 determining a number SSF of access preamble signature available for the maximum data rate required when the UE transmits data; determining a number TSF of channel assignment signatures available for the maximum data rate depending on the number PSF of the PCPCHs; calculating a minimum positive number MSF out of positive numbers which are 30 determined to have a remainder of '0' when multiplying the number SSF of the access preamble signatures by a given positive number and dividing the multiplied value by the number PSF of the PCPCHs; WO 01/61877 PCT/KR01/00236 - 117 calculating a specific coefficient 'n' satisfying the following equation n*MSF*SSF i+j*SF < (n+1)*MSF*SSF where i denotes an access preamble signature number and j denotes a channel allocation message number; and 5 selecting one PCPCH's number 'k' out of the PCPCHs unused in the UTRAN by satisfying the following equation k = {[(i+n) mod SSF+j*SF) mod PsF'
5. The method as claimed in claim 4, further comprising the steps of: 10 calculating a specific coefficient 'm' for determining a data rate by satisfying the following equation P .- i k< P, where P, denotes a channelization code with a spreading factor 2'"1, and P,, denotes a channelization code with a spreading factor.2"'; 15 calculating an uplink scrambling code's number by satisfying the following equation I (P 2 , - Pp 1 ,)12a 1 + (k- P 2 ,,)/2'" where, a is an integer numbers; ,2sa<m-1 I calculating a heading node by satisfying the following equation (P, - P,)*2'"-a+ k-P /2'"~1; and 2:9as-m-1 20 selecting a channelization code with a spreading factor corresponding to the maximum data rate from the heading node and determining the selected channelization code as a channelization code to be used by the UE.
6. The method as claimed in claim 1, wherein the channel assignment 25 signature (j) is selected by satisfying following equation; n*MSF*SSF i±j*SSF < (n+l)*MSF*SSF where, i is number of the access preamble signature, the SSF is a number of access preamble signatures assigned for the maximum data rate determined by the access preamble signature, the MSF is a minimum positive number(MSF) out of positive numbers which are 30 determined to have a remainder of '0' when multiplying the number SSF by a given positive WO 01/61877 PCT/KR01/00236 - 118 number and dividing the multiplied value by a number PSF representing number of PCPCHs assigned to support the maximum data rate, the n indicates how many times a period of MSF has been repeated. 5
7. The method as claimed in claim 6, wherein a PCPCH (k) is determined by satisfying following equation; k = {[(i+n) mod SSFi*SSF mod PSF'
8. A method for assigning a channel to a UE (user equipment) by a UTRAN 10 (UMTS (Universal Mobile Telecommunications System) Terrestrial Radio Access Network) in a CDMA (Code Division Multiple Access) communication system, the method comprising the steps of: receiving a selected one of a plurality of access preamble signatures from the UE; and 15 determining a specific channel assignment signature from a plurality of channel assignment signatures so as to select one of a plurality of unused PCPCHs (physical common packet channels) depending on the received access preamble signature and a channel assignment signature. 20
9. The method as claimed in claim 8, wherein the UTRAN selects one of the channel assignment signatures depending on a maximum data rate determined by the access preamble signature.
10. The method as claimed in claim 9, wherein the channel assignment 25 signature (j) is selected by satisfying following equation; n*MSF*SSF i+j*SF < (n+1)*MSF*SSF where, i is number of the access preamble signature, the SSF is a number of access preamble signatures assigned for the maximum data rate determined by the access preamble signature, the MsF is a minimum positive number(MF) out of positive numbers which are 30 determined to have a remainder of '0' when multiplying the number SSF by a given positive number and dividing the multiplied value by a number PSF representing number of PCPCHs assigned to support the maximum data rate and the n indicates how many times a period of WO 01/61877 PCT/KR01/00236 -119 MSF has been repeated.
11. The method as claimed in claim 10, further comprising the step of selecting one of the PCPCHs unused in the UTRAN depending on the received access preamble 5 signature and the selected channel assignment signature for receiving a packet data from the UE.
12. The method as claimed in claim 11, wherein the selected PCPCH (k) is determined by satisfying following equation; 10 k = {[(i+n) mod SsF]+j SsF} mod PSF'
13. The method as claimed in claim 9, wherein the PCPCH selecting step comprises the steps of: determining a number PSF of PCPCHs capable of supporting a maximum data rate 15 required when the UE transmits data out of the unused PCPCHs; determining a number SSF of access preamble signatures available for the maximum data rate required when the UE transmits data; determining a number TSF of channel assignment signatures available for the maximum data rate depending on the number PSF of the PCPCHs; 20 calculating a minimum positive number MSF out of positive numbers which are determined to have a remainder of '0' when multiplying the number SSF of the access preamble signatures by a given positive number and dividing the multiplied value by the number PSF of the PCPCHs; calculating a specific coefficient 'n' satisfying the following equation 25 n*MSF*SSF ±j SSF < (n+1)*MSF*SSF where i denotes an access preamble signature number and j denotes a channel allocation message number; and selecting one PCPCH's number 'k' out of the PCPCHs unused in the UTRAN by satisfying the following equation 30 k = {[(i+n) mod SSF+j SSF} mod PSF'
14. The method as claimed in claim 13, further comprising the steps of: WO 01/61877 PCT/KR01/00236 -120 calculating a specific coefficient 'in' for determining a data rate by satisfying the following equation P, k < P, where P- denotes a channelization code with a spreading factor 2", and P,, denotes a 5 channelization code with a spreading factor 2'; calculating an uplink scrambling code's number by satisfying the following equation L I(P - P 2 ,) / 2a-I+ (k - P ) /2"' where, a is an integer numbers; 2 a<m-1 ] 10 calculating a heading node by satisfying the following equation (P2. - P, )* 2n-a + k- P- /2'-'; and (25as5m-1 selecting a channelization code with a spreading factor corresponding to the maximum data rate from the heading node and determining the selected channelization code as a channelization code to be used by the UE. 15
15. A method for assigning a channel in a UE (user equipment) for a CDMA (Code Division Multiple Access) communication system, comprising the steps of: upon generation of data to be transmitted over a PCPCH channel, selecting one of a plurality of access preamble signatures and transmitting the selected access preamble 20 signature to a UTRAN; receiving a selected one of a plurality of channel assignment signatures from the UTRAN; and determining a PCPCH channel for transmitting the data depending on the selected access preamble signature and the received channel assignment signature. 25
16. The method as claimed in claim 15, wherein the UE selects one of the access preamble signatures depending on a maximum data rate required when transmitting the data. 30
17. The method as claimed in claim 15, wherein the PCPCH (k) is determined WO 01/61877 PCT/KR01/00236 - 121 by satisfying following equation; k = {[(i+n) mod SSF]+j SSF} mod PSF where, i is a number of the access preamble signature, the j is a number of the received channel assignment signature, the SSF is a number of access preamble signatures 5 assigned for the maximum data rate determined by the access preamble signature, the PSF representing a number of PCPCHs assigned to support the maximum data rate, and the n indicates how many times a period of MsF, which represent a minimum positive number out of positive numbers which are determined to have a remainder of '0' when multiplying the number SSF by a given positive number and dividing the multiplied value by a number PSF, 10 has been repeated.
18. The method as claimed in claim 15, wherein the selecting step comprises the steps of: determining a number PSF of PCPCHs capable of supporting a maximum data rate 15 required when the UE transmits data out of the unused PCPCHs; determining a number SSF of access preamble signatures available for the maximum data rate required when the UE transmits data; determining a number TSF of channel assignment signatures available for the maximum data rate depending on the number PSF of the PCPCHs; 20 calculating a minimum positive number MSF out of positive numbers which are determined to have a remainder of '0' when multiplying the number SSF of the access preamble signatures by a given positive number and dividing the multiplied value by the number PSF of the PCPCHs; calculating a specific coefficient 'n' satisfying the following equation 25 n*MSF*SSF i+j*SSF < (n+l)*MSF*SSF where i denotes an access preamble signature number and j denotes a channel allocation message number; and selecting one PCPCH's number 'k' out of the PCPCHs unused in the UTRAN by satisfying the following equation 30 k = {[(i+n) mod SSF]+j SSF} mod PSF'
19. The method as claimed in claim 18, further comprising the steps of: WO 01/61877 PCT/KR01/00236 -122 calculating a specific coefficient 'm' for determining a data rate by satisfying the following equation P2, k < P,, where P- denotes a channelization code with a spreading factor 2'"m, and P2' 5 denotes a channelization code with a spreading factor 2'"; calculating an uplink scrambling code's number by satisfying the following equation (P2, - P) /2a-1+ (k - P2)/2" where, a is an integer numbers; 2--a<m-1 calculating a heading node by satisfying the following equation ( E (Pr - P2)*2"'~a + k- P2,,, /2"'~1; and 2!5as5m-1 10 selecting a channelization code with a spreading factor corresponding to the maximum data rate from the heading node and determining the selected channelization code as a channelization code to be used by the UE. 15
AU36147/01A 2000-02-16 2001-02-16 Apparatus and method for assigning a common packet channel in a CDMA communication system Ceased AU760513B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR008337 2000-02-16
KR20000008337 2000-02-16
KR009677 2000-02-26
KR20000009677 2000-02-26
PCT/KR2001/000236 WO2001061877A1 (en) 2000-02-16 2001-02-16 Apparatus and method for assigning a common packet channel in a cdma communication system

Publications (2)

Publication Number Publication Date
AU3614701A true AU3614701A (en) 2001-08-27
AU760513B2 AU760513B2 (en) 2003-05-15

Family

ID=26637211

Family Applications (1)

Application Number Title Priority Date Filing Date
AU36147/01A Ceased AU760513B2 (en) 2000-02-16 2001-02-16 Apparatus and method for assigning a common packet channel in a CDMA communication system

Country Status (8)

Country Link
US (1) US20010026543A1 (en)
EP (1) EP1247349A1 (en)
JP (1) JP3840112B2 (en)
KR (1) KR100357618B1 (en)
CN (1) CN1419748A (en)
AU (1) AU760513B2 (en)
CA (1) CA2400272A1 (en)
WO (1) WO2001061877A1 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10008653A1 (en) * 2000-02-24 2001-09-06 Siemens Ag Improvements in a radio communication system
US7079507B2 (en) * 2000-02-25 2006-07-18 Nokia Corporation Method and apparatus for common packet channel assignment
KR20020030367A (en) * 2000-10-17 2002-04-25 오길록 Random Access Transmission and Procedure for Mobile Satellite Communication Systems
JP3399923B2 (en) 2000-11-29 2003-04-28 松下電器産業株式会社 Communication terminal apparatus and decoding method in communication terminal apparatus
JP3599713B2 (en) * 2001-02-27 2004-12-08 三星電子株式会社 Apparatus and method for transmitting combination format indicating bits in divided mode
US6950422B2 (en) * 2001-03-19 2005-09-27 Motorola, Inc. Interference reduction within a communication system
US20020141436A1 (en) * 2001-04-02 2002-10-03 Nokia Mobile Phone Ltd. Downlink dedicated physical channel (DPCH) with control channel interleaved for fast control of a separate high speed downlink common channel
US7099346B1 (en) * 2001-05-15 2006-08-29 Golden Bridge Technology, Inc. Channel capacity optimization for packet services
WO2002101941A2 (en) 2001-06-13 2002-12-19 Tantivy Communications, Inc. System and method for coordination of wireless maintenance channel power control
CN1152498C (en) * 2001-07-20 2004-06-02 华为技术有限公司 Variable-power regulation access method for CDMA communication system
US7558314B2 (en) * 2002-09-23 2009-07-07 Telefonaktiebolaget L M Ericsson (Publ) Method and device for detection of a UMTS signal
AU2003260476A1 (en) * 2002-09-23 2004-04-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for detection of a umts signal
ATE444600T1 (en) * 2002-09-23 2009-10-15 Ericsson Telefon Ab L M METHOD AND DEVICE FOR DETECTING A UMTS SIGNAL
CN100440745C (en) * 2002-09-23 2008-12-03 艾利森电话股份有限公司 Method and device for detection of a UMTS signal
AU2002349315A1 (en) * 2002-09-27 2004-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Requesting and controlling access in a wireless communications network
TWI332326B (en) * 2002-10-17 2010-10-21 Interdigital Tech Corp Power control for communications systems utilizing high speed shared channels
US7254170B2 (en) 2002-11-06 2007-08-07 Qualcomm Incorporated Noise and channel estimation using low spreading factors
EP1835645A1 (en) * 2003-02-11 2007-09-19 Interdigital Technology Corporation System and method using adaptive antennas to selectively reuse common physical channel timelots for dedicated channels
US6950667B2 (en) * 2003-02-11 2005-09-27 Inter Digital Technology Corporation System and method using adaptive antennas to selectively reuse common physical channel timeslots for dedicated channels
DE10306289A1 (en) * 2003-02-14 2004-08-26 Siemens Ag Encoding method for an authorizing request to use a radio channel in a mobile radiotelephone system makes the channel available as a common channel between a base station and multiple terminals
FR2865600B1 (en) * 2004-01-26 2006-05-19 Evolium Sas DYNAMIC ADAPTATION OF DETECTION OF ACCESS DEMANDS TO A CELLULAR COMMUNICATIONS NETWORK, BASED ON THE RADIO ENVIRONMENT ASSOCIATED WITH THE APPLICANT COMMUNICATION EQUIPMENT
US7701890B2 (en) * 2004-02-04 2010-04-20 Lg Electronics Inc. Apparatus and method of releasing a point-to-multipoint radio bearer
KR100810247B1 (en) * 2004-03-05 2008-03-06 삼성전자주식회사 Method and apparatus for allocation of channel in a orthogonal frequency division multiple access system
US7643454B2 (en) * 2004-06-07 2010-01-05 Alcatel-Lucent Usa Inc. Methods of avoiding multiple detections of random access channel preamble in wireless communication systems
US8897828B2 (en) 2004-08-12 2014-11-25 Intellectual Ventures Holding 81 Llc Power control in a wireless communication system
US8687618B2 (en) * 2005-04-28 2014-04-01 Nokia Corporation System and method which allow base station control of user equipment transmission
DK2009806T3 (en) * 2005-10-28 2014-12-01 Nokia Solutions & Networks Oy METHOD AND TELECOMMUNICATION UNIT FOR SELECTING A NUMBER OF CODE CHANNELS AND RELATED DISTRIBUTION FACTOR FOR A CDMA TRANSMISSION
EP1949562B1 (en) * 2005-10-31 2016-11-16 LG Electronics Inc. Method of transmitting a measurement report in a wireless mobile communications system
EP1949547B1 (en) * 2005-10-31 2019-08-07 LG Electronics, Inc. Data receiving method for mobile communication terminal
EP1943777B1 (en) * 2005-10-31 2016-07-20 LG Electronics Inc. Method for processing control information in a wireless mobile communication system
JP4818371B2 (en) * 2005-10-31 2011-11-16 エルジー エレクトロニクス インコーポレイティド Method for processing control information in wireless mobile communication system
CN101300754B (en) 2005-10-31 2012-02-22 Lg电子株式会社 Method of transmitting and receiving radio access information in a wireless mobile communications system
GB2469229B (en) 2005-11-04 2011-02-02 Nec Corp Wireless communication system and method of controlling a transmission power
US9301318B2 (en) 2006-01-20 2016-03-29 Nokia Technologies Oy Random access procedure with enhanced coverage
KR20070095583A (en) * 2006-03-21 2007-10-01 삼성전자주식회사 Apparatus and method for transmitting message in a mobile communication system
US20070291708A1 (en) * 2006-06-19 2007-12-20 Rao Anil M Method for reverse link resource assignment
GB2440978B (en) * 2006-08-16 2012-01-04 Wireless Tech Solutions Llc Wireless communication system, apparatus for supporting data flow and methods therefor
KR101226819B1 (en) * 2006-08-21 2013-01-25 삼성전자주식회사 Method and apparatus for transmitting/receiving preamble of random access channel in broadband wireless communication system
US8009639B2 (en) 2006-12-27 2011-08-30 Wireless Technology Solutions Llc Feedback control in an FDD TDD-CDMA system
KR20080097338A (en) * 2007-05-01 2008-11-05 엘지전자 주식회사 Discontinuous data transmittion/reception method
US8169992B2 (en) 2007-08-08 2012-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Uplink scrambling during random access
JP5070093B2 (en) * 2008-03-06 2012-11-07 パナソニック株式会社 Radio base station apparatus, radio terminal apparatus, radio relay station apparatus, transmission power control method, radio communication relay method, and radio communication system
KR101527109B1 (en) * 2009-01-06 2015-06-08 삼성전자주식회사 Apparatus and method for allocating ack/nack channel in wireless communication system
US9113395B2 (en) * 2009-11-27 2015-08-18 Nokia Solutions And Networks Oy Device-to-device communication
WO2016129970A1 (en) * 2015-02-15 2016-08-18 엘지전자 주식회사 Method and device for detecting rach preamble collision caused by multi-path channel in wireless communication system
US10897992B2 (en) 2018-09-07 2021-01-26 Newage Products Inc. Storage apparatus
US11405981B1 (en) * 2020-05-18 2022-08-02 NortonLifeLock Inc. Routing server communications through a nearby mobile device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA931077B (en) * 1992-03-05 1994-01-04 Qualcomm Inc Apparatus and method for reducing message collision between mobile stations simultaneously accessing a base station in a cdma cellular communications system
FI97517C (en) * 1993-09-06 1996-12-27 Nokia Mobile Phones Ltd Packet data transmission in a digital cellular network
FI96557C (en) * 1994-09-27 1996-07-10 Nokia Telecommunications Oy Method for data transmission in a TDMA mobile radio system and a mobile radio system for carrying out the method
US5657326A (en) * 1994-12-20 1997-08-12 3Com Corporation Radio based collision detection for wireless communication system
JP3212238B2 (en) * 1995-08-10 2001-09-25 株式会社日立製作所 Mobile communication system and mobile terminal device
JP2912884B2 (en) * 1995-12-14 1999-06-28 エヌ・ティ・ティ移動通信網株式会社 Multi-access method, mobile station and base station in CDMA mobile communication system
JPH09327072A (en) * 1996-06-05 1997-12-16 Hitachi Ltd Cdma communication method and spread spectrum communication system
FR2767007B1 (en) * 1997-08-01 1999-11-05 France Telecom MULTIPLE ACCESS METHOD IN A CELLULAR RADIO COMMUNICATION NETWORK
US6038223A (en) * 1997-10-22 2000-03-14 Telefonaktiebolaget Lm Ericsson (Publ) Access scheme for packet data in a digital cellular communication system
JP3507676B2 (en) * 1997-11-07 2004-03-15 日本電気株式会社 Terminal station device and wireless communication control system using the same
US6567482B1 (en) * 1999-03-05 2003-05-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient synchronization in spread spectrum communications
CN1124769C (en) * 1999-03-08 2003-10-15 诺基亚网络有限公司 Method for establishing a communication between a user equipment and a radio network
US6169759B1 (en) * 1999-03-22 2001-01-02 Golden Bridge Technology Common packet channel
US6850514B1 (en) * 2000-05-17 2005-02-01 Interdigital Technology Corporation Channel assignment in a spread spectrum CDMA communication system
JP3252840B2 (en) * 1999-08-06 2002-02-04 株式会社日立製作所 Mobile communication system and mobile terminal device
KR100662267B1 (en) * 1999-09-22 2007-01-02 엘지전자 주식회사 Method for Allocating CPCH and Apparatus for Transmitting/Receiving to Receive Packet through CPCH
US6643318B1 (en) * 1999-10-26 2003-11-04 Golden Bridge Technology Incorporated Hybrid DSMA/CDMA (digital sense multiple access/code division multiple access) method with collision resolution for packet communications
US6618591B1 (en) * 1999-10-28 2003-09-09 Nokia Mobile Phones Ltd. Mechanism to benefit from min and max bitrates
KR20010073313A (en) * 2000-01-13 2001-08-01 서평원 Allocation method for common packet channel
US6807192B2 (en) * 2000-01-14 2004-10-19 Interdigital Technology Corporation Wireless communication system with selectively sized data transport blocks
JP2001251667A (en) * 2000-02-02 2001-09-14 Lg Electronics Inc Method for assigning common packet channel
KR100767659B1 (en) * 2000-02-02 2007-10-17 엘지전자 주식회사 A method for transporting common packet channel
WO2001059968A1 (en) * 2000-02-09 2001-08-16 Golden Bridge Technology, Inc. Collision avoidance
US7079507B2 (en) * 2000-02-25 2006-07-18 Nokia Corporation Method and apparatus for common packet channel assignment

Also Published As

Publication number Publication date
KR100357618B1 (en) 2002-10-25
JP2003523686A (en) 2003-08-05
KR20010082724A (en) 2001-08-30
CN1419748A (en) 2003-05-21
WO2001061877A1 (en) 2001-08-23
EP1247349A1 (en) 2002-10-09
AU760513B2 (en) 2003-05-15
JP3840112B2 (en) 2006-11-01
CA2400272A1 (en) 2001-08-23
US20010026543A1 (en) 2001-10-04

Similar Documents

Publication Publication Date Title
US6963540B2 (en) Apparatus and method for assigning a common packet channel in a CDMA communication system
EP1190496B1 (en) Apparatus and method for assigning a common packet channel in a cdma communication system
US7233577B2 (en) Method for measuring confusion rate of a common packet channel in a CDMA communication system
AU3614701A (en) Apparatus and method for assigning a common packet channel in a cdma communication system
CA2378404C (en) Channel assignment apparatus and method for common packet channel in a wcdma mobile communication system
ZA200205150B (en) Apparatus and method for assigning a common packet channel in a CDMA Communication System.

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
SREP Specification republished