AU3602095A - Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements - Google Patents

Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements

Info

Publication number
AU3602095A
AU3602095A AU36020/95A AU3602095A AU3602095A AU 3602095 A AU3602095 A AU 3602095A AU 36020/95 A AU36020/95 A AU 36020/95A AU 3602095 A AU3602095 A AU 3602095A AU 3602095 A AU3602095 A AU 3602095A
Authority
AU
Australia
Prior art keywords
alloys
metals
treatment
rare earth
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU36020/95A
Inventor
Michael Brian Ives
Yucheng Lu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
McMaster University
Original Assignee
McMaster University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by McMaster University filed Critical McMaster University
Publication of AU3602095A publication Critical patent/AU3602095A/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/04Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly acid liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/52Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Chemical Treatment Of Metals (AREA)
AU36020/95A 1994-10-07 1995-10-10 Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements Abandoned AU3602095A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9420295 1994-10-07
GB9420295A GB9420295D0 (en) 1994-10-07 1994-10-07 Method of increasing corrosion resistance of steels by treatment with cerium
PCT/CA1995/000565 WO1996011290A1 (en) 1994-10-07 1995-10-10 Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements

Publications (1)

Publication Number Publication Date
AU3602095A true AU3602095A (en) 1996-05-02

Family

ID=10762538

Family Applications (1)

Application Number Title Priority Date Filing Date
AU36020/95A Abandoned AU3602095A (en) 1994-10-07 1995-10-10 Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements

Country Status (8)

Country Link
EP (1) EP0797691B1 (en)
JP (1) JPH10506959A (en)
KR (1) KR970706422A (en)
AU (1) AU3602095A (en)
CA (1) CA2201619A1 (en)
DE (1) DE69522709T2 (en)
GB (1) GB9420295D0 (en)
WO (1) WO1996011290A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE211780T1 (en) 1993-09-13 2002-01-15 Commw Scient Ind Res Org METAL TREATMENT WITH ACIDIC CLEANING SOLUTIONS CONTAINING RARE EARTH IONS
AUPM621194A0 (en) * 1994-06-10 1994-07-07 Commonwealth Scientific And Industrial Research Organisation Conversion coating and process for its formation
WO1996015292A1 (en) 1994-11-11 1996-05-23 Commonwealth Scientific And Industrial Research Organisation Process and solution for providing a conversion coating on a metal surface
GB2328447A (en) * 1997-08-16 1999-02-24 British Aerospace A desmutting solution for use prior to anodising
ES2151405B1 (en) * 1998-07-20 2001-07-01 Univ Sevilla PROCEDURE TO IMPROVE REFRACTORY BEHAVIOR OF STAINLESS STEEL.
WO2001029285A2 (en) 1999-10-19 2001-04-26 Advanced Mechanical Technology, Inc. Corrosion protection of steel in ammonia/water heat pumps
AU773837B2 (en) * 2000-03-20 2004-06-10 Commonwealth Scientific And Industrial Research Organisation Process and solution for providing a conversion coating on metallic surface
AUPQ633200A0 (en) 2000-03-20 2000-04-15 Commonwealth Scientific And Industrial Research Organisation Process and solution for providing a conversion coating on a metallic surface I
AU774225B2 (en) * 2000-03-20 2004-06-17 Commonwealth Scientific And Industrial Research Organisation Process and solution for providing a conversion coating on metallic surface II
AUPQ633300A0 (en) 2000-03-20 2000-04-15 Commonwealth Scientific And Industrial Research Organisation Process and solution for providing a conversion coating on a metallic surface ii
ES2193846B1 (en) * 2001-07-20 2005-03-01 Consejo Superior Investig. Cientificas. PROCEDURE FOR OBTAINING CERIO BASED PROTECTIVE COATINGS ON HOJALATA.
US10041176B2 (en) 2005-04-07 2018-08-07 Momentive Performance Materials Inc. No-rinse pretreatment methods and compositions
FR2981367B1 (en) * 2011-10-14 2013-11-08 Univ Toulouse 3 Paul Sabatier PROCESS FOR THE ANTICORROSIVE TREATMENT OF A SOLID METAL SUBSTRATE AND METALLIC SUBSTRATE WHICH CAN BE OBTAINED BY SUCH A METHOD
CN102586773A (en) * 2012-03-23 2012-07-18 上海大学 Passivating treatment method for stainless steel rare earth conversion coatings
US20180127850A1 (en) * 2016-10-19 2018-05-10 Ak Steel Properties, Inc. Surface modification of stainless steels
CN112666335A (en) * 2020-11-12 2021-04-16 西安交通大学 Method for representing performance of high-flux molybdenum alloy multi-scale micro-area
US20240167164A1 (en) * 2021-03-19 2024-05-23 Ppg Industries Ohio, Inc. Systems and methods for treating a substrate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1292155C (en) * 1987-03-03 1991-11-19 Lance Wilson Method of forming a corrosion resistant coating
DE68903770T2 (en) * 1988-02-03 1993-04-08 British Petroleum Co METHOD FOR TREATING A METAL OXIDE LAYER, METHOD FOR CONNECTING A METAL OBJECT PROVIDED WITH A METAL OXIDE LAYER, AND ARRANGEMENTS MADE THEREOF.
GB8825482D0 (en) * 1988-11-01 1988-12-07 British Petroleum Co Plc Surface treatment of metals
US5194138A (en) * 1990-07-20 1993-03-16 The University Of Southern California Method for creating a corrosion-resistant aluminum surface
US5221371A (en) * 1991-09-03 1993-06-22 Lockheed Corporation Non-toxic corrosion resistant conversion coating for aluminum and aluminum alloys and the process for making the same
US5192374A (en) * 1991-09-27 1993-03-09 Hughes Aircraft Company Chromium-free method and composition to protect aluminum
US5362335A (en) * 1993-03-25 1994-11-08 General Motors Corporation Rare earth coating process for aluminum alloys
US5356492A (en) * 1993-04-30 1994-10-18 Locheed Corporation Non-toxic corrosion resistant conversion process coating for aluminum and aluminum alloys
ATE211780T1 (en) * 1993-09-13 2002-01-15 Commw Scient Ind Res Org METAL TREATMENT WITH ACIDIC CLEANING SOLUTIONS CONTAINING RARE EARTH IONS

Also Published As

Publication number Publication date
GB9420295D0 (en) 1994-11-23
CA2201619A1 (en) 1996-04-18
WO1996011290A1 (en) 1996-04-18
KR970706422A (en) 1997-11-03
JPH10506959A (en) 1998-07-07
EP0797691B1 (en) 2001-09-12
DE69522709T2 (en) 2002-07-04
EP0797691A1 (en) 1997-10-01
DE69522709D1 (en) 2001-10-18

Similar Documents

Publication Publication Date Title
AU3602095A (en) Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements
EP0777753A4 (en) Method of making metals and other elements
AU5176498A (en) Molten metal pump and method of using
PL322198A1 (en) Copper alloy and method of obtaining same
AU668315B2 (en) Steel of high corrosion resistance and steel of high corcorrosion resistance and workability
ZA976711B (en) Metal can and method of making.
AUPO426096A0 (en) Method and apparatus for producing metals and metal alloys
ZA94279B (en) Metal matrix alloys
AU674374B2 (en) Steel of high corrosion resistance and high processability
ZA947707B (en) Precipitation hardened metal alloy
AU6052898A (en) Ferromagnetic amorphous metallic alloy and annealing method
IL131996A (en) Method of anodising magnesium metal and magnesium alloys
EP0255939A3 (en) Rare earth magnet and rare earth magnet alloy powder having high corrosion resistance
AU1383497A (en) Ready-to-use metal wire and method for producing same
AU6186094A (en) Steel wire coated with Fe-Zn-Al alloy and method for producing the same
IL109768A (en) Heavy metal alloy and method for its production
AU2453597A (en) Metal casket and method of making the same
EP0467180A3 (en) Rare earth/transition metal alloy scrap treatment method
AU5094598A (en) Free-machining aluminum alloy and method of use
AU602155B2 (en) Method of inhibiting the corrosion of copper and copper alloys
AU1770400A (en) Circular method for pickling copper and copper alloys
AU2842400A (en) Metal forming apparatus and method of use
GB2196479B (en) Method and apparatus for the manufacture of rare earth transition metal alloy magnets
AU3302597A (en) Method of improving the corrosion resistance of aluminum alloys and products therefrom
EP0602768A3 (en) Hydrogen-absorbing alloy electrode and manufacturing method therefor.