AU3164801A - Method of achieving persistent transgene expression - Google Patents

Method of achieving persistent transgene expression Download PDF

Info

Publication number
AU3164801A
AU3164801A AU31648/01A AU3164801A AU3164801A AU 3164801 A AU3164801 A AU 3164801A AU 31648/01 A AU31648/01 A AU 31648/01A AU 3164801 A AU3164801 A AU 3164801A AU 3164801 A AU3164801 A AU 3164801A
Authority
AU
Australia
Prior art keywords
composition according
nucleic acid
expression
inflammatory
administration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU31648/01A
Inventor
David Leonard Ennist
Patrick Lu
Mervat Mina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Novartis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis AG filed Critical Novartis AG
Publication of AU3164801A publication Critical patent/AU3164801A/en
Priority to AU2004240187A priority Critical patent/AU2004240187A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/55Protease inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Rheumatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Pain & Pain Management (AREA)
  • Cardiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

WO 01/48231 PCT/IEPOO/13297 Method of Achieving Persistent Transgene Expression The invention relates to non-inflammatory vector composition, as well as method of treating a patient suffering from a disorder having an inflammatory 5 component Background of the Invention The lung is an attractive target for gene therapy methodologies due to its 10 accessibility and large surface area. Existing techniques, however, suffer from certain failings. For example, ex vivo gene therapy for pulmonary diseases involving implantation into the tracheal epithelium has been studied experimentally, but faces challenges in transitioning to the clinic. For full effectiveness, this type of therapy requires the permanent genetic modification of a stable, self-renewing cell population 15 capable of giving rise to the other cell types of the epithelium. The existence of such a stem cell for the pulmonary epithelium, however, remains controversial to this day. An alternative ex vivo approach involves transplantation of gene-modified cells at a site distal to the lung to obtain serum secretion of a protein that is therapeutically relevant to pulmonary disease. Several studies have been reported using cells 20 transplanted in the liver or the peritoneum bearing a transgene encoding a-antitrypsin, a deficiency of which causes familial emphysema. Kay, et al., Proc. Natl. Acad. Sci. USA 89: 89-93 (1992); Garver, et al., Science 237: 762-64 (1987). Low-level transient expression was observed. However, cti-antitrypsin must reach a concentration of greater than 1 mg/ml in the serum in order to have a therapeutic effect by diffusion into 25 the lung. This level of expression is beyond the capabilities of the best vectors currently available. In addition, ex vivo approaches require use of syngeneic cells in order to avoid immunological rejection of the transplant. Accordingly, such methods are highly individualized and require a significant amount of tissue culture per patient. The ex vivo 30 approach is thus both labor intensive and technically very demanding. In contrast, in vivo gene therapy products for the lung that can be directly administered to the patient are more readily incorporated into the current medical and pharmaceutical infrastructure. For example, most cystic fibrosis gene therapy products under development are designed for delivery by aerosol based systems similar to those 35 currently in clinical use for the administration of a number of conventional pulmonary medicines. Martin, et al., Hum. Gene Ther. 9: 87-114 (1998). Thus, many of the technical, medical and commercial underpinnings that must be developed for the successful introduction of ex vivo gene therapies already are in place for in vivo gene WO 01/48231 PCT/EPOO/13297 2 therapies. Historically, in vivo systems have relied on viral delivery systems, but there is substantial interest and effort directed toward developing synthetic vector compositions, due to shortcomings associated with viral vectors. At first blush, adenoviruses seem a good choice for a pulmonary delivery 5 system. They are trophic for the respiratory epithelium and have a relatively large coding capacity. In 1992, the NIH Recombinant DNA Advisory Committee (RAC) approved the first three clinical gene therapy protocols for cystic fibrosis, all of which were adenoviral based. The initial enthusiasm over adenoviral vectors, however, has since been tempered by the realization that host responses severely limit the utility of 10 this vector system. In particular, immediate inflammatory responses limit initial transduction efficiencies, alveolar macrophages rapidly eliminate adenoviral vectors, cytotoxic T lymphocyte (CTL) responses limit persistence of expression, and the ability to readminister the vector is prevented by an antibody response. Another commonly used vehicle is adeno-associated virus (AAV), a small single 15 stranded DNA parvovirus that requires coinfection with adenovirus or a herpesvirus for propagation. Berns, in VIROLOGY (Fields, B.N. et al., eds), pp. 1743-63 (1990). The virus is able to integrate into the genome of human cells at a unique site on chromosome 19, but the location and extent to which vectors derived from AAV integrate remains problematic. Expression of human CFTR six months following AAV 20 mediated gene transfer has been detected in rabbits (Flotte et al., Proc. Natl. Acad. Sci. USA 90, 10613-17 (1993)), and human clinical trials have been approved using this vector. Flotte et al., Hum. Gene Ther. 7: 1145-1159 (1996). A phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease (Wagner et al., Hum. Gene Ther. 9: 889-909 (1998)), and an initial report of a clinical 25 trial have been published. Wagner et al., Lancet 351, 1702-03 (1998); Wagner et al., supra). Nevertheless, as with adenoviral vectors, preexisting antibodies may limit the usefulness of this vector, and the induction of an antibody response may prevent readministration of AAV vectors as well. Zeitlin in GENE THERAPY FOR DIsEAsES OF THE LuNG (Brigham, ed), pp. 53-81 (1997). Moreover, the viral coding sequences are 30 generally provided in trans from a helper plasmid, and the plasmids are cotransfected into adenovirus infected cells to produce quantities of the AAV vector. These procedures have proven to be cumbersome and subject to contamination with adenovirus. Lentiviruses are positive-strand RNA viruses that utilize reverse transcriptase to 35 convert their genome into a double-stranded DNA provirus that inserts into the genome of the infected cell. Narayan et al., in VIROLOGY (Fields et al., eds), pp. 1679-1721 (1990). Unlike traditional retroviral vectors, (Miller et al., Mol. Cell. Biol. 10: 4239-42 (1990)), lentiviral vectors are able to infect nondividing cells, (Naldini, et al., Science WO 01/48231 PCT/EPOO/13297 3 272, 263-67 (1996); Miyake et al., Hum. Gene Ther. 9: 467-75 (1998)), thus opening up the possibility that these vectors could be used for in vivo applications. Initial preclinical studies using an HIV based vector expressing the CFTR gene have been reported. Goldman et al., Hum. Gene Ther. 8: 2261-68 (1997). As with retroviral 5 vectors in general, safety considerations of an integrating lentiviral vector are a substantial concern. Temin, Hum. Gene Ther. 1: 111-23 (1990). Synthetic vectors employ a complex of nucleic acid, usually in the form of a plasmid, with molecules that facilitate the delivery of the nucleic acid to target cells. As alternatives to viral vectors, synthetic vectors should have lower toxicity and lower 10 immunogenicity. Synthetic vectors have several potential advantages: They do not have an upper size limit to the DNA that can be packaged, are not infectious, are easier to manufacture and QC in large quantities, and are made up of well-defined components. Thus, the primary rationale for pursuing synthetic vector systems is to avoid the known problems of viral systems. Two main classes of synthetic vectors have 15 proven to be useful in delivering genes in vivo, where DNA is complexed with cationic lipids or cationic polymers, respectively. Plasmid DNA complexed with cationic lipids has been successfully used to transfect lung cells in vivo by both intravenous and tracheal administration. Cationic polymers similarly interact with DNA by electrostatic interactions. Polylysine has been 20 conjugated to ligands that allow receptor-mediated delivery of the complex to specific target cells. Polyethyleneimine (PEI) is a cationic polymer that has shown some recent promise. This cationic polymer has been found to be an efficient vector for in vivo transduction of mouse lungs, either by the oral-tracheal or intravenous routes. Ferrari et al., Gene Ther. 4, 1100-1106 (1997); Goula et al., Gene Ther. 5, 1291-1295 (1998). 25 The majority of in vivo animal studies using synthetic vectors have relied on DNA plasmids complexed with a cationic component to deliver the transgene. See for example, Felgner et al., Proc. Natl. Acad. Sci. 84: 7413-17 (1987); Gao in GENE THERAPY FOR DISEASES OF THE LUNG (Brigham, ed.), pp. 99-112 (1997). In comparison to viral vectors, these studies with plasmids have demonstrated uniformly 30 low levels of transgene expression in experimental animals. On the other hand, the use of viral vectors appears to be limited by host response issues that may be minimal for synthetic vector formulations. Thus, neither system in its present conception has demonstrated a clear advantage, and both have substantial problems. It is, therefore, a goal of the present invention to overcome these difficulties in the art and to provide 35 methods and compositions for inducing persistent, effective amounts of pulmonary and intra-articular transgene expression.
WO 01/48231 PCT/IEPOO/13297 4 Summary of the invention It is an object of the invention, therefore, to provide a method of pulmonary transgene delivery that overcomes the above-identified and other deficiencies in the art. 5 According to this object of the invention, the invention provides a composition containing a free DNA vector encoding a transgene, an enhancing agent (like a surfactant) and/or an antiinflammatory agent, (like a steroid). This composition, when administered to a patient, is capable of eliciting significant levels of transgene expression, without a limiting immune response, which makes them particularly suitable 10 for treating inflammatory disorders. In one embodiment, the composition is administered repeatedly, typically at intervals exceeding forty-eight hours. In certain embodiments the transgene is a protease inhibitor, which can act on a variety of proteases, including neutrophil elastase, cathepsin G, collagenase, proteinase 3, plasminogen activator. The invention provides compositions and methods suitable to 15 obtain therapeutically effective levels of transgene-encoded products sufficient to treat patients suffering from pulmonary disorders such as emphysema, chronic obstructive pulmonary disease, cystic fibrosis, adult respiratory distress syndrome and asthma, and other disorders with an inflammatory component, like arthritis. 20 Brief Description of the Drawings Figure 1 demonstrates sustained high levels of transgene expression using the inventive compositions and methods. Figure 2 demonstrates in vivo distribution of a secreted protein following oral 25 tracheal instillation of a plasmid carrying the cDNA of the secreted protein. Detailed Description of the Invention The invention is directed to methods and compositions for achieving persistent 30 expression of a therapeutic gene product. The therapeutic gene product typically is a protein, but may also be a nucleic acid such as an antisense or ribozyme agent. Surprisingly, the inventors have found that the compositions and methods described herein do not elicit a limiting inflammatory or immune response, and this property allows for repeated nucleic acid administration without significantly reduced expression 35 levels. More specifically, the invention provides new and improved methods of delivering a nucleic acid to the lungs or joints of an animal. In one embodiment the WO 01/48231 PCT/EPOO/13297 5 nucleic acid encodes a gene whose expression is controlled by other elements contained within the same vector that contains the nucleic acid. These new and improved methods and compositions are useful in both therapeutic and experimental contexts. The present methods and compositions are useful in any situation, including 5 clinical situations, where persistent transgene expression is desired. They are especially suited to situations requiring persistent expression in the lungs or joints. For example, they are useful in human gene therapy applications. It will be understood, however, that they may also be used in veterinary (non-human animal) applications, especially for mammals. They are also useful in generating experimental animal models of transgenes. 10 1. Compositions Useful in the Invention The invention provides a composition suitable for delivering a transgene. Generally, such compositions are composed of a nucleic acid such as DNA, encoding at least one gene of interest ("transgene"). Some preferred compositions also contain a enhancing agent, such as a surfactant, and/or a steroid. Importantly, the vector portion 15 of the composition does not significantly exacerbate an inflammatory condition in the lung or joints. In other words, the vector does not induce a substantial inflammatory response, which would be counter to treating inflammatory disorders. Characteristics of the inflammatory response are provided below. One preferred form of such a composition contains a nucleic acid lacking CpG islands that activate or enhance 20 activation of lymphoid cells. These compositions may be used, for example, in the treatment of respiratory disease, particularly asthma and chronic obstructive pulmonary disease (COPD) or in the treatment of arthritic disease, such as rheumatoid arthritis and osteoarthritis. The DNA used in the present compositions can be plasmid-based. Such vectors 25 are conveniently propagated in bacteria, like E. coli. However, when bacterial propagation is used, it is preferable to use purification methodologies that result in efficient endotoxin removal, since endotoxin may interfere with persistent transgene expression, likely by promoting an inflammatory response. While the vector is preferably supercoiled, for maximum transgene expression it may also be relaxed or 30 even linearized. The artisan is well apprised of methods for generating and propagating such vectors. In general, the vectors used in the invention contain the features that are characteristic of plasmid vectors. These include, for example, an origin of replication suitable for propagation in a host. A standard example is the ColEl origin, which can 35 exist as the relatively low copy number version present in pBR322 or the higher copy number version present in the pUC series of vectors and other conventional vectors. The vectors also generally contain a selectable marker to ensure that a transformed host cell retains the vector. Common examples may confer ampicillin resistance, puromycin WO 01/48231 PCT/EPOO/13297 6 resistance, tetracycline resistance, kanamycin resistance, rifampicin resistance or spectinomycin resistance. The skilled artisan will be aware that other selectable markers, including markers that will be developed in the future, can be used. A multiple cloning site is also beneficially included. 5 The vectors contain all of the cis elements needed for effective transcription and translation of the encoded transgene. These elements will be operatively linked to the transgene so as to facilitate transgene expression. Such elements, such as promoters, are well known to the artisan. Exemplary promoters may be strong constitutive promoters, may be tissue-specific, inducible or have any other known desirable 10 characteristic. As used herein, "free nucleic acid" is defined as an aqueous solution of nucleic acid, typically DNA, RNA, or synthetic analogues. Nucleic acids are typically prepared by biological propagation of constructs that are isolated, purified, and in some cases modified synthetically from a plasmid or viral source. Conventional viral vectors, such 15 as recombinant retroviruses, lentiviruses, adenoviruses and adeno-associated viruses, are not included within this definition. Importantly, free nucleic acids do not induce an expression-limiting immune response; and do not exacerbate, for example, a pulmonary or intra-articular inflammatory condition. The free nucleic may be an RNA, but DNA molecules are preferred due to their superior stability. 20 A particular embodiment of the invention provides methods of using forms of nucleic acids that produce therapeutic activity through the expression of antisense or ribozyme constructs. In yet another embodiment of the invention, forms of nucleic acids are used that produce therapeutic activity without requiring expression by the cells of the lung or the joint. For instance, the nucleic acids themselves may be active 25 directly, as is the case with antisense and catalytic nucleic acid molecules. The compositions may contain an "enhancing agent" that improves the pharmacology of the nucleic acid composition within the tissues of the lung or joint, (e.g. distribution and persistence), resulting in improved therapeutic activity of the nucleic acid. One preferred enhancer is a natural or biological surfactant. Surfactants 30 are surface-active amphipathic compositions that have surface tension-lowering properties The surfactants useful in the invention are safe for pulmonary administration. Such surfactants, both synthetic and natural, are well known in the art and several are commercially available. Examples include Survanta (Beractant, available from Ross Laboratories), Exosurf (colfosceril palmitate, available from Glaxo 35 Wellcome), Infasurf (calfactant, available from Forest Laboratories) and other surfactants which lower the surface tension, thus facilitating the dispersion of the vector. Naturally occurring surfactants are a complex mixture of phospholipids, neutral lipids, fatty acids and proteins. Surfactants are amphipathic in nature, having polar as WO 01/48231 PCT/EPOO/13297 7 well as nonpolar components and, thus, permit interactions between aqueous and lipidic fluids. Survanta, a preferred surfactant, is a semi-synthetic surfactant derived from cow lung. It contains naturally-occurring lipids, fatty acids, and the surfactant-associated 5 proteins SP-B and SP-C. This mixture is supplemented with additional fatty acids to provide a standardized preparation. Survanta is approved for clinical use in treating infant respiratory distress syndrome (RDS). A typical dose is 4 cc/kg intratracheally and up to 4 doses, given 6-12 hours apart, are used. Similar dosing regimens are suitable for use in the present invention, though methods of determining alternative 10 dosing regimens are known to those of skill in the art. Some enhancing agents are synthetic or semi-synthetic surfactants. Such enhancers can be amphipathic synthetic or semi-synthetic polymers, lipids, and fluorocarbons. A suitable class of synthetic polymer surfactant is PluronicTM surfactants. One synthetic lipid surfactant is an anionic liposome formulation 15 (Bangham, et al., Chem-Phys-Lipids. 64: 275-85 (1993), Bangham, et al., Lung. 165: 17-25, (1987)). Other lipid surfactants are surfactant polymer-lipid conjugates. Suitable such conjugates include ThesitTM, Brij 58TM, Brij 78Tm, Tween 80Tm, and Chol PEG 900. The skilled artisan will recognize that other synthetic and semi-synthetic surfactants may be used without departing from the spirit of the invention. 20 Other enhancing agents are particularly useful in delivering nucleic acids to the joint. In a manner analogous to the foregoing surfactants, certain compounds may be used to increase the distribution profile and other therapeutically useful characteristics of the present vectors in the joint. These compounds typically are polysaccharides, composed of linear repeating disaccharide units. Hyaluronic acid is exemplary; it 25 consists of disaccharide units of 1,4-linked $-D-glucuronic acid and 1,3-linked 2 acetamrido-2-deoxy- -D-glucopyranose. Hyalgan, a preferred form of hyaluronic acid, is a viscous solution of a high molecular weight fraction of purified natural sodium hyaluronate in buffered physiological saline. It is approved for clinical use for the treatment of pain in 30 osteoarthritis of the knee. A typical dose is 20 mg administered by intra-articular injection once a week for a total of five injections. Similar dosing regimens are suitable for use in the present invention, though methods of determining alternative dosing regimens are known to those of skill in the art. Still other enhancing agents permit improved contact with target cells in deep 35 airways and in structural regions or throughout the joint capsule once the nucleic acid has reached the tissue. Such enhancers can be electrically neutral, amphipathic polymers. One suitable electrically neutral, amphipathic polymer is polyoxazoline.
WO 01/48231 PCT/EPOO/13297 8 Yet other enhancing agents permits persistence of the nucleic acid extracellularly in the deep airways and within the joint capsule and in structural regions thereby enhancing persistence of therapeutic activity. Such enhancers reduce metabolic processes and clearance of the nucleic acid from the tissues of the lung or joint. 5 Additional preferred compositions contain an antiinflammatory agent, such as a steroid, that can effectively suppress or alleviate one or more aspects of an inflammatory response, including mononuclear cell infiltration, edema, release of chemokines and other pro-inflammatory mediators. Inhaled steroids for the lung or intra-articular steroid injections are particularly preferred in this regard. Examples 10 include beclomethasone (e.g., VANCERIL, BECLOVENT - conventional dose about 42 - 84 mcg/Inh), triamcinolone (e.g., AZMACORT - conventional dose about 100 mcg/Inh), flunisolide (e.g., AEROBID-M, NASALIDE, BRONALIDE, RHINALAR conventional dose 42 - 250 mcg/Inh), fluticasone (e.g., FLOVENT, conventional dose 50 - 250 mcg/Inh), budesonide (e.g., RHINOCORT - conventional dose 100 - 200 15 mcg/Inh), dexamethasone and hydrocortisone. In another embodiment of the invention, the anti-inflammatory agents can be administered systemically, for example via oral administration or intravenous administration. Examples include dexamethasone and hydrocortisone. The antiinflammatory compound may also be a non-steroidal anti-inflammatory 20 agent (an NSAID). Examples of suitable NSAIDs include COX2 inhibitors (e.g., CELEBREX, conventional dose 200 mg/day) and Tilade . Useful dosages are based on those conventionally used in the art. Frequency of administration also is informed by the art, but will generally be guided by how often the nucleic acid vector is administered. 25 It is understood that any compounds described herein contemplate, where applicable, any free acids, free bases, esters, as well as pharmaceutically acceptable salts thereof. Reference to one form, should be read as contemplating all forms, unless otherwise noted. 30 2. Methods of the Invention A typical method entails administering to a patient an effective amount of a composition comprising a free nucleic acid vector, such as a DNA plasmid, in combination with an enhancer and/or an antiinflammatory compound. The vector encodes a transgene of interest, and the methods result in effective transgene 35 expression. In the context of a therapeutic method, an effective amount of expression is one that is therapeutically significant, meaning that there is some measurable effect on the disease itself, symptoms and/or some underlying pathological marker. Such effects may be qualitative or quantitative, and the clinician will be familiar with each marker as WO 01/48231 PCT/EPOO/13297 9 it relates to different conditions being treated. For example, decreased IL8 or neutrophils in the bronchoalveolar fluid of COPD patients would be indicative of a therapeutic effect. Surfactants and other enhancing agents useful in the inventive methods may be 5 obtained commercially. Examples of suitable surfactants include, but are not limited to, Survanta (Beractant, available from Ross Laboratories), Pluronic T m , TweenT", and BrijTM. As noted, a key feature of the present methods is that no expression-limiting inflammatory response is induced, which allows for activity of the nucleic acid or persistent transgene expression. Survanta has been shown to suppress mitogen-induced 10 lymphocyte proliferation (Kremlev et al., Am. J. Physiol. 267:L357-64 (1994)), and may thus aid in this process. Other surfactants may have similar beneficial properties. The nucleic acid-containing composition may be delivered, for example, as a dry powder or as a liquid suspension by any suitable means that results in pulmonary administration. For example, the composition may be inhaled (e.g., as an aerosol), 15 instilled in the lung and/or administered tracheally. The skilled artisan will recognize that these methods of administration may be used independently or in combination, as particular circumstances require. In addition, other methods of pulmonary administration may be used, including methods that are developed in the future. Similarly, the transgene-containing composition may be delivered as a liquid 20 suspension, or other physiologically compatible form, by any suitable means that results in intra-articular administration. For example, the composition may be directly injected into the joint or injected intravenously and targeted to the inflamed joint. The skilled artisan will recognize that these methods of administration may be used independently or in combination, as particular circumstances require. In addition, other methods of 25 articular administration may be used, including methods that are developed in the future. A key feature of the present methods is persistent expression of the nucleic acid activity, e.g. transgene expression. Heretofore, gene therapy methods have been limited by immune and inflammatory responses, which (1) reduced overall nucleic acid activity, 30 in this case transgene expression and (2) prevented the use of re-administration as a method of boosting expression. Thus, while reasonable levels of transgene expression were obtained initially, the expression did not persist. Expression is "persistent" where it does not decrease substantially over time, either as a result of a single dose or multiple administrations. Usually, therefore, effective levels of expression are 35 maintained. Preferably, expression levels do not decrease to less than 25% of the maximal level in between administrations, and more preferably not less than about 50%, but in some instances it is beneficial to go below these thresholds, such that the a dose "pulsing" is accomplished with repeated administration.
WO 01/48231 PCT/EPO0/13297 10 A preferred method involves administering the free nucleic acid vector compositions on two or more occasions. In this manner, nucleic acid activity may be boosted or restored to levels approximating the level obtained following the initial administration so that effective levels of nucleic acid activity are maintained. Because 5 the present methods do not trigger a limiting immune or inflammatory response, the compositions of the invention may be administered as many times as needed to maintain effective levels of activity. In some methods, administration is accomplished every few days, but more typically it is done weekly, and some may involve biweekly or monthly administration. Using such methods, a decrease in activity between administrations may 10 be observed, depending on the condition being treated. These methods are still considered to induce "persistent" activity because, unlike prior art methods, the present compositions can be re-administered repeatedly, without a substantial decrease in transgene expression, relative to the previous dose. Typical methods entail repeated administration for at least about a month, but may entail longer periods of treatment. 15 In another embodiment, the inventive method further entails administering an antiinflammatory compound, such as a steroid or an NSAID, that has the ability to mitigate a subject's inflammatory response. In general, it is useful to administer the antiinflammatory compound prior to administering the vector/enhancer composition, but they may be administered together. Suitable antiinflammatory compounds are 20 described above. The antiinflammatory agent typically is administered by intravenous or oral route, and may be included in the nucleic acid composition, or used as a separate drug. 3. Therapeutic Indications 25 The therapeutic application of the present methods extends to pulmonary and non-pulmonary disorders, including rheumatoid arthritis and osteoarthritis. As indicated above, the lungs are an attractive target for nucleic acid delivery due to their large surface area and relative ease of access. Thus, the present methods are adaptable to the gene therapy-based treatment of any (pulmonary or non-pulmonary) disorder 30 where therapeutic levels of transgene expression are obtained. The artisan is well versed in such applications. For example, Brigham et al., Nature 362: 250-55 (1993), expressed human growth hormone (hGH) following administration of a plasmid encoding the cDNA and Cannizzo et al., Nature Biotech. 15: 570-73 (1997), increased blood platelet counts following instillation of an adenoviral vector expressing 35 thrombopoietin in the lungs of experimental animals. Due to their adaptability to gene therapy, the present methods are especially suited to treat disorders of the lung and conditions that have pathological manifestations in the lung. In particular, the methods are suited for treatment of diseases with WO 01/48231 PCT/EPOO/13297 11 inflammatory pathologies and etiologies. As discussed in detail below, exemplary disorders include, but are not limited to, emphysema, COPD, cystic fibrosis (CF), adult respiratory distress syndrome (ARDS), pulmonary fibrotic syndromes and asthma. Examples of genetic disorders with pulmonary manifestations suitable for the 5 inventive treatment methods include CF and familial emphysema. CF results from a deficiency in the cystic fibrosis transmembrane regulator (CFTR), a cAMP-activated chloride channel. The disease is characterized by viscous airway secretions, chronic respiratory infections, bronchiectasis, pancreatic fibrosis, and bowel dysfunction. The respiratory manifestations predominate and death results from progressive respiratory 10 failure in greater than 95% of cases. Numerous clinical trials for CF gene therapy have been initiated and reports have been published using adenoviral and synthetic vectors. See, for example, (Crystal et al., Nature Genet. 8: 42-51 (1994) and Caplen et al., Nature Med. 1: 39-46 (1995). Though none of these trials have demonstrated patient benefit, they have provided 15 evidence for gene delivery to the airway epithelium. Middleton et al., Thorax 53: 197 199 (1998); Alton et al., Gene Ther. 5: 291-92 (1998). While the levels of gene transfer and expression and the degree of electrophysiologic correction (where measured) have been uniformly low, the transgene, its mRNA and the protein product have all reached detectable levels in biopsies of treated patients. Only very low levels of 20 CFTR need to be expressed to treat CF, and a low-level constitutive promoter may be sufficient to express levels sufficient for therapeutic benefit. Of greater importance in treating CF is a need to achieve fairly uniform transduction of cells throughout the pulmonary epithelium. Because they are adapted for generalized delivery to the lung, the present methods are particularly suitable in this regard. 25 A genetic deficiency in cn-antitrypsin is a predisposing factor in developing familial emphysema. This protein, which normally provides much of the antiprotease protection for the lung, is produced in the liver and reaches the lung by diffusion from the serum. Thus, the use of this gene in the present methods will provide effective therapy for familial emphysema and other inflammatory conditions of the lung where 30 the antiprotease defenses are either nonexistent or have been overwhelmed. Pulmonary inflammatory processes are likely to be ongoing in emphysema patients. Accordingly, a vector that directly transduces the pulmonary epithelium must avoid exacerbating this condition. In addition, a suitable vector, rather than being injectable, could be aerosolized, and the promoter, without being required to be as 35 strong as the endogenous natural liver promoter, preferably is both tissue-specific and constitutively expressed. Though most gene therapies heretofore have concentrated on diseases with a clear genetic basis, acquired diseases of the lung and diseases with complex etiologies WO 01/48231 PCT/EPOO/13297 12 such as asthma are treatable by the present methods. For example, selective oxidation of anti-proteases in the smoker's lung contributes to the development of COPD, thereby altering the protease-anti-protease balance of the lung. Laurell et al., Sc. J. Clin. Lab. Invest. 15: .132-140, (1963). This balance may be restored by administering 5 antiprotease via the present methods. Moreover, in the case of secretory leukoprotease inactivator (SLPI), a major antiprotease present in the lung, it is known that a mutation replacing methionine at position 73 of the mature protein with leucine renders the protein oxidation resistant. Stolk et al., Pulm. Pharm. 6: 33-39, (1993). Hence, treatment of COPD patients with anti-proteases, like SLPI, and especially oxidation 10 resistant anti-proteases, is contemplated. Suitable SLPI proteins include the following: SEQ ID No. 1 (native mature form): SGKSFKAGVC PPKKSAQCLR YKKPECQSDW QCPGKKRCCP DTCGIKCLDP VDTPNPTRRK PGKCPVTYGQ CLMLNPPNFC EMDGQCKRDL KCCMGMCGKS CVSPVKA 15 SEQ ID No. 2 (native immature form): MKSSGLFPFL VLLALGTLAP WAVEGSGKSF KAGVCPPKKS AQCLRYKKPE CQSDWQCPGK KRCCPDTCGI KCLDPVDTPN PTRRKPGKCP VTYGQCLMLN PPNFCEMDGQ CKRDLKCCMG MCGKSCVSPV KA SEQ ID No. 3 (oxidation-resistant mature form): SGKSFKAGVC 20 PPKKSAQCLR YKKPECQSDW QCPGKKRCCP DTCGIKCLDP VDTPNPTRRK PGKCPVTYGQ CLLLNPPNFC EMDGQCKRDL KCCMGMCGKS CVSPVKA SEQ ID No. 4 (oxidation-resistant immature form): MKSSGLFPFL VLLALGTLAP WAVEGSGKSF KAGVCPPKKS AQCLRYKKPE CQSDWQCPGK KRCCPDTCGI KCLDPVDTPN PTRRKPGKCP VTYGQCLLLN PPNFCEMDGQ 25 CKRDLKCCMG MCGKSCVSPV KA Thus, a particularly useful class of nucleic acid is one which contains a transgene encoding a protease inhibitor. Exemplary protease inhibitors may inhibit the activity of proteases such as neutrophil elastase, cathepsin G, collagenase, proteinase 3 and plasminogen activator. The skilled artisan will recognize that inhibition of other 30 proteases, including proteases not yet identified, can be beneficial in this regard. Particular classes of protease inhibitors inhibit seine proteases or metalloproteases, for example. Protease inhibitors useful in the inventive methods and compositions include ai-antitrypsin, Secretory Leukocyte Protease Inhibitor (SLPI), al-antichymotrypsin, tissue inhibitors of metalloprotease ("TIMPs", like TIMP-1, -2 and -3), elafin and $2 35 macroglobulin. Some (ai-antitrypsin and SLPI, for example) of the foregoing protease inhibitors are inactivated via an oxidative mechanism. In particular, they have a sulfhydryl-containing amino acid (e.g., cysteine), which must be in reduced form for WO 01/48231 PCT/EPOO/13297 13 maximal activity. As detailed above for SLPI, oxidation resistant analogs may be prepared that lack such residues. It is anticipated that such oxidation-resistant (and, hence, inactivation-resistant) protease inhibitors will have improved pharmacodynamic properties, such as increased half-life. 5 In yet another embodiment, the transgene sequence for expression can be modified to generate a protein with altered or new peptide sequences that have beneficial effects on the pharmacology of the protease inhibitor. In one aspect of this embodiment, the transgene for a protease inhibitor is modified to produce a chimeric protein with all or part of a natural or engineered immunoglobin sequence. The binding 10 activity of the immunoglobin portion permits enhanced binding to tissue regions of interest and enhanced persistence at those tissue regions. Other peptide sequences can be used in place of the immunoglobin sequence that permit retention in the tissue or protection from metabolic processes in the tissue. An additional, more general, approach to remediating oxidative injury to the 15 lung, including anti-protease oxidation, is to use the present methods to deliver anti oxidants. Anti-oxidant therapies for lung diseases employ, for example, superoxide dismutase or catalase. These antioxidant therapies are also useful generally in treating inflammatory conditions, since inflammation results in the activation of oxidative processes (e.g., myeloperoxidase), and the subject antioxidants will neutralize the 20 resulting reactive oxygen species. Injury to the lung also is remediable by using nucleic acids that inhibit disease processes. In one embodiment, the nucleic acid inhibits production of natural proteases. This can be through expression of antisense or ribozyme constructs or through direct inhibition of cells producing the protease. 25 With regard to each therapeutic gene contemplated herein, the artisan will recognize that a certain degree of variation in the primary amino acid and protein sequence is tolerable without substantially impairing the function of the underlying protein, which is the most important characteristic. Thus, the invention encompasses such variation, in the form of derivatives or variants, which terms are used 30 interchangeably herein, and specifically include oxidation-resistant forms of protease inhibitors. In general, derivatives of both the DNA and protein molecules encompassed by the invention can be defined with reference to "sequence identity." "Sequence identity" refers to a comparison made between two molecules using, for example, the standard Smith Waterman algorithm that is well known in the art. 35 Some derivatives will have at least about 50%, 55% or 60% identity. Preferred molecules are those having at least about 65% sequence identity, more preferably at least 65% or 70% sequence identity. Other preferred molecules have at least about 80%, more preferably at least 80% or 85%, sequence identity. Particularly preferred molecules have at WO 01/48231 PCT/EPOO/13297 14 least about 90% sequence identity, more preferably at least 90% sequence identity. Most preferred molecules have at least about 95%, more preferably at least 95%, sequence identity. As used herein, two nucleic acid molecules or proteins are said to "share significant sequence identity" if the two contain regions which possess greater than 85% sequence 5 (amino acid or nucleic acid) identity. "Sequence identity" is defined herein with reference to the BLAST 2 algorithm using default parameters. See Altschul et al., J. Mol. Biol. 215:403-410 (1990); Gish, Nature Genet. 3:266-272 (1993); Madden, Meth. Enzymol. 266:131-141 (1996); Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997); and Zhang et al., Genome 10 Res. 7:649-656 (1997). The BLAST 2 algorithm also is available at the NCBI (http://www.ncbi.nlm.nih.gov/BLAST). Because the present methods fail to exacerbate an inflammatory condition, they may be used for treating inflammatory conditions in general, including such conditions of the lung. In contrast to known methods, the methods described herein pose little risk 15 of contributing to the very condition sought to be treated. In the present methods, a therapeutically effective amount of transgene expression or nucleic acid activity is an amount that substantially inhibits an adverse inflammatory response. Other embodiments of the method for treating inflammatory conditions include treatments of arthritis. In this embodiment one method is the expression of transgenes 20 that protect the cartilage from proteases resulting from undesired inflammation in the joints. Likewise, the method can be used for delivery of nucleic acid constructs that exert an activity which diminishes one or more steps in the undesired inflammation in joints. Other embodiments of the method are for the treatment of undesired or excessive inflammation in other tissues and pathologies. 25 An example of an inflammatory disorder of the lungs that is treatable according to the present methods is asthma. Asthma involves a complex cascade of inflammatory mediators, any of which is a target for therapeutic intervention. Asthma is characterized predominantly by the presence of TH2-like T-cells, producing IL-4 and IL-5, but not IL-2 or IFN-y. The C-C-chemokines, which include RANTES, MCP-3, 30 MCP-4, Eotaxin and Eotaxin-2. In addition, certain cytokines are known to counteract the TH2-driven inflammatory response, including IL-12, IFN-a, IFN-y, IL-10, and TGF-3. Thus, the range of targets for the treatment of inflammatory pulmonary disorders includes, but is not limited to, IL-4, IL-5, RANTES, MCP-3, MCP-4, Eotaxin, Eotaxin-2, IL-12, IFN-a, IFN-y, IL-10, and TGF-P. 35 IL-10 is considered a general immunosuppressor that inhibits IFN-y and IL-2 production by TH2 cells, as well as a variety of other immune responses. While IL-10 is a somewhat general immune mediator, IL-5 is more specific. In particular, IL-5 is the major, and perhaps the only, cytokine involved in eosinophilia, which makes it a WO 01/48231 PCT/EPOO/13297 15 particularly attractive point of therapeutic intervention in eosinophilic diseases, such as allergy and asthma. Thus, preferred therapeutic targets also include IL-10 (see, e.g., GenBank Acc. Nos. U91746, U16720 and X78437 for IL-10, and 4504632 and U00672 for the IL-10 receptors) and IL-5 (see, e.g., GenBank Acc. Nos. J03478 and 5 M33949 for IL-5, and A26251 and A26249 the IL-5 receptor). The foregoing inflammatory mediators may be inhibited by a variety of agents that can be encoded in a gene therapy vector. For example, genes encoding specific antibodies, and especially antibody fragments may be cloned into such a vector. Where specific receptors for these mediators are involved and known, soluble forms of the 10 receptors may be encoded in the vector. For example, two naturally-occurring forms of the IL-5 receptor ("IL-5R") exist: one is membrane bound and the other is soluble. The soluble form inhibits the binding of IL-5 to the membrane form, thereby antagonizing the biological activity of IL-5. Thus, soluble IL-5R is a preferred antiinflammatory medicament. Other inhibitors, such as antisense nucleic acids and ribozymes also may 15 be employed. The term "treating" in its various grammatical forms as used in describing the present invention refers to preventing, curing, reversing, attenuating, alleviating, minimizing, suppressing or halting the deleterious effects of a disease state, disease progression, disease causative agent or other abnormal condition. The foregoing discussion and following examples are not limiting of the present 20 invention. In particular, one skilled in the art will readily recognize additional embodiments that are not specifically exemplified but that are within the scope of the invention. 25 Example 1 Optimum dose of free nucleic acid This example demonstrates the optimization of gene expression using free nucleic acid. The results presented below show that at all doses, gene expression was observed. However, the optimum levels of gene expression in this experiment were 30 observed when the dose was 80 pg. Experiments were conducted using different doses of naked DNA all diluted in 100 gl of phosphate buffered saline (PBS). As seen in Table 1, the doses used were 25, 50, 80 and 120 gg of DNA. STD is standard deviation. 35 WO 01/48231 PCT/EPOO/13297 16 (1) Table 1 Treatment Average STD PBS 208.75 39.23885 25pg 2949.75 1328.602 50gg 12666 5126.094 80gg 26758 2022.444 1204 g 14929 10208.28 Experimental: The plasmid used was pCIluc, which contains the firefly luciferase gene 5 under the control of the cytomegalovirus promoter. Female BALB/c mice (6-8 weeks old) were obtained from Harlan Sprague Dawley (Indianapolis, IN). Mice were anesthetized by placing them in a bell jar containing 5% isoflurane. The DNA was applied to the lungs by oral tracheal instillation using an angled feeding needle. Twenty four hours after administration, the animals were sacrificed, and the lungs were 10 removed and placed on dry ice. The luciferase activity was determined using a kit from Promega (Madison, WI), and a luminometer from Berthold Systems, Inc. (Pittsburgh, PA). Briefly, the lungs were placed in 500 pl of lysis buffer (Promega kit) and homogenized for 20 seconds with a tissue homogenizer (Brinkman Polytron). Samples were centrifuged in a 15 microcentrifuge for 30 minutes at 14 000 g at 4*C. The protein concentrations were determined using the Bradford reagent (BioRad, NY) A sample containing 100 gg of protein from the supernatant fraction was used in the luciferase assay. Luciferase activity in each sample was normalized to the relative light units per milligram of extracted protein. 20 Example 2 Optimizing the composition This example demonstrates that optimum gene expression is affected by the 25 solution in which the free nucleic acid is diluted. The results presented below show that free nucleic acid in a 5% glucose solution yielded the highest gene expression. Furthermore, compared to a volume of 100 p1, free nucleic acid delivered in a volume of 175 p1 resulted in higher levels of gene expression. The surprising finding that greater volumes of diluent resulted in higher transgene expression levels using the same 30 mass of nucleic acid facilitated the discoveries presented in Examples 3 through 10. The experiments were conducted using 50 gg of naked DNA per BALB/c mouse. Plasmid DNA was mixed with either H 2 0, PBS or 5% glucose at two different WO 01/48231 PCT/EPOO/13297 17 volumes (100 and 175 gA). This mixture was administered by oral tracheal instillation into the mice. Protein concentration and luciferase assays were performed. Results are shown in Table 2. (2) Table 2 Treatment Average STD 1 0l H 2 0 478.75 84.30253 175p JH 2 0 2761.25 706.1942 100g1 PBS 3887 533.9819 175gl PBS 17273.5 1847.8 100gl Glucose 17293.75 2284.07 175gl Glucose 24481.5 4452.451 5 Experimental: Samples were treated essentially as described in Example 1. Example 3 Surfactant improves delivery of free nucleic acid 10 This example demonstrates that surfactant-mediated vector delivery results in increased gene expression when compared to free nucleic acid. Compositions containing 50 gg of plasmid DNA and varying amounts of surfactant were provided by oral tracheal administration. A representative surfactant, 15 Survanta, was administered into BALB/c mice at 10, 12, 14 and 16 mg/ml. The lungs were collected at 24 hours, and protein concentration and luciferase activity were ascertained. As seen in Table 3, higher levels of expression were achieved in the presence of Survanta as opposed to control. 20 (3) Table 3 Experiment 1 Experiment 2 Composition Average STD Average STD Expression Expression PBS 111 9.128709 DNA 6763.25 790.8284 24495.75 3742.634 DNA (10 mg/ml) 8962 6295.523 41910.75 4558.049 DNA (12 mg/ml) 8579.25 4343.354 59728.75 16926.77 DNA (14 mg/ml) 12044.75 21841.94 28934 7381.025 DNA (16 mg/ml) 9748.75 2542.666 WO 01/48231 PCT/EPOO/13297 18 Experimental: Samples were treated essentially as described in Example 1. DNA samples were diluted in 5% glucose to a final volume of 150 91 (Experiment 1) or 175 p1 (Experiment 2) and then administered to each mouse. 5 Example 4 Comparative gene expression at different time points. This example demonstrates the different levels of gene expression over time for compositions containing free nucleic acid and a surfactant, Survanta. The results presented in Table 4 show, the levels of gene expression were increased with the 10 addition of surfactant after 24, 48 and 72 hours over DNA that was administered without surfactant. The experiments were conducted by mixing 50 gg of plasmid DNA with 14 mg/ml Survanta to a final volume of 100 p1. This mixture was administered by oral tracheal instillation to BALB/c mice. Protein concentration and luciferase assays were 15 performed. N DNA is DNA alone and DNA/Su is DNA with surfactant. (4) Table 4 Composition Average STD Expression PBS 111 9.128709 N DNA (24hr) 3334.75 1742.172 DNA/Su (24hr) 8159 6286.186 DNA/Su (48hr) 11830.75 11921.67 DNA/Su (72hr) 10496.75 5454.225 Experimental: Samples were treated essentially as described in Example 1. 20 Example 5 Optimizing the volume of administration This example demonstrates how to optimize the volume of administration. In sum, the quantity of vector and surfactant were held constant, and the volume of 25 composition was varied. Experiment 1 was conducted using compositions containing 50 gg of plasmid DNA, 14 mg/mI of surfactant, and the remaining volume being 5% glucose. The final volumes of the mixture were 75, 100, 120, 150 and 175 g1. Experiment 2 utilized 50 jg DNA in PBS without surfactant in volumes of 100, 125, 150, 175 and 200 1l. 30 Protein and luciferase assays were preformed. Results are shown in Table 5.
WO 01/48231 PCT/EPOO/13297 19 (5) Table 5 Experiment 1 Experiment 2 Final Average STD Average STD Volume Expression Expression 75gl 684 164.8257 10041 3911.5 1928.204 7296.75 1582.134 120gl 4930.333 593.1546 125gl 9817.5 1662.179 150gl 11305.25 9313.851 20297.75 11546.76 175g1 4497.75 1737.65 43576.75 11354.37 200g1 36597.38 4269.023 100gl H 2 0 4296.75 1964.947 Eperimental: Samples were treated essentially as described in Example 1. 5 Example 6 Duration of gene expression upon a single oral tracheal administration of free nucleic acid This example demonstrates that, after a certain period of time, gene expression reached a peak, whereafter the gene expression gradually declined until it finally 10 reached a baseline level. The results presented below show that the gene expression started after 6 hours. The gene expression clearly started declining after 24 hours and reached its baseline by day 6. Experiments were conducted using 80 gg of naked DNA in a volume of 100 gl of PBS. As seen in Table 7, BALB/c mice were harvested at time points 6, 12, 24, 48 15 and 72 hours and 6, 10, 14, 21 and 28 days. (6) Table 6 Treatment Average STD Activity 6 hrs 11114.4 3682.37 12 hrs 9503 1998.875 24 hrs 9968.2 1123.176 48 hrs 6629.4 2385.795 72 hrs 6987 899.3717 6 days 3111.4 619.9881 10 days 331 109.5084 WO 01/48231 PCT/EPOO/13297 20 14 days 448.6 277.1395 21 days 146.6 22.08619 28 days 191 67.21235 -PBS 208.8 39.32302 Experimental: Samples were treated essentially as described in Example 1. Example 7 Repeated delivery of free nucleic acid surprisingly results in expression 5 levels that can be repeatedly achieved, with no limiting inflammatory or immune response This example demonstrates that the present methods can be performed repeatedly, such that expression of the delivered transgene can be repeatedly achieved. 10 The results presented below show that when 50 gg of plasmid DNA was readministered every seven days for 28 days, gene expression was sustained to levels seen after the original plasmid DNA administration. This experiment was conducted by repeatedly administering 50 gg of naked DNA in 150 0il of 5% glucose on days 0, 7, 14, 21 and 28. Protein concentration and 15 luciferase assays were performed on lung homogenates harvested 24 hours following a DNA administration. Measurements were taken at the indicated times following all previous doses (post) or with all but the dose administered 24 hours previously(pre). Results are shown in Table 7. Thus, in this example, expression levels peaked shortly after each DNA dose then gradually declined following kinetics similar to those 20 observed with a single DNA dose, as seen in Example 6. (7) Table 7 Day Average STD 1 (pre) 142 5.522681 1 (post) 10611.6 2044.122 8 (pre) 523.4 285.3722 8 (post) 6976.8 1828.562 15 (pre) 247.6 49.92795 15 (post) 13528.4 6640.327 22 (pre) 792.2 70.50674 22 (post) 7604.6 1158.241 29 (pre) 634.4 201.2965 29 (post) 12465.75 4197.746 WO 01/48231 PCT/EPOO/13297 21 Experimental: Samples were treated essentially as described in Example 1. Example 8 Repeated delivery of free nucleic acid does not result in persistent expression in mice when administered every 48 hours 5 Although repeated delivery of free nucleic acid in a one week period lead to repeated gene expression, this example demonstrates that persistent expression is not achieved in mice when the readministration is every 48 hours for about at least a week. While readministration after the initial 48 hour period lead to a sizeable increase in gene 10 expression, subsequent administrations failed to evoke further gene expression. Experiments were conducted using 80 gg of plasmid DNA in a 5% glucose solution to a final volume of 175 p1. The mixture was administered on days 3, 5, 7, 9, 11, 13 and 15. Protein concentration and luciferase assays were performed. Results are shown in Table 8. 15 (8) Table 8 Day Average STD Activity Day 3 17190.80 1064.4 Day 5 31161.20 6703.619 Day 7 5976.40 2608.461 Day 9 273.00 216.3631 Day 11 308.40 230.1028 Day 13 343.00 102.7643 Day 15 276.20 38.41484 Experimental: Samples were treated essentially as described in Example 1, except that five mice were treated every 48 hours. 20 Example 9 Using a Supplemental Antiinflanimatory Regimen This example demonstrates that the administration of an antiinflammatory compound in conjunction with the above-described protocol allows for more frequent vector administration, which results in greater overall sustained and persistent levels of 25 transgene expression. Experimental: This experiment was conducted using 80 pg of pCIluc plasmid in a 5% glucose solution to a final volume of 160 g1. The mixture was administered by oral tracheal delivery on days 0, 4, 8, 12, 16, 20 and 24. On days -1, 0 and 1, the mice WO 01/48231 PCT/EPOO/13297 22 received 10 mg/kg dexamethasone, intraperitoneally. Additionally, the mice received 10 mg/kg dexamethosone (ip) thirty minutes prior to plasmid delivery on days 4, 8, 12, 16, 20 and 24. Animals were sacrificed 4 days following plasmid administration and protein concentration and luciferase assays were performed. Results are presented 5 below in Figure 1 and are reported as mean +/- standard deviation. Data points represent five animals each, except day 24, which utilized only four animals. Example 10 Tissue distribution of a secreted transgene product 10 This example demonstrates the distribution of a protease inhibitor transgene product, following oral-tracheal instillation of a plasmid, versus intravenous administration and administration with purified protein. These data show that the transgene delivers similar amounts of product as direct delivery of the protein. Because the protein is constantly made by the transgene, overall levels do not decrease over time 15 as is the case with the protein, providing a clear benefit of the present methods. Data were collected twelve hours after oral-tracheal or intravenous administration. Experimental: These experiments employed the vector pCIhSPLI, which contains the human cDNA sequence of secretory leukoprotease inhibitor (SLPI) driven by the CMV 20 promoter. Stetler, et al., Nucleic Acids Res. 14: 7883-7896 (1986). Oral tracheal instillations (OT) were performed on a with 80 gg of pCIhSLPI diluted in 5% glucose to a final volume of either 150 p1. Additionally, a group of BALB/c mice was instilled via the OT route with 1 gg recombinant hSLPI protein in 150 g1 5% glucose (hSLPI protein). 25 DOTAP (1, 2 -dioleoyoxy-3-(trimethylammonio) propane)-cholesterol complexed pCIhSLPI was prepared for intravenous (IV) injection. Forty five mg DOTAP and 25 mg cholesterol were mixed in cyclohexane and lyophilized to dryness. Double distilled water was added to the lipid cake to give a final concentration of 10 mg/ml of cationic lipid (i.e., not including the cholesterol component) and allowed to 30 hydrate at 70*C for 1 hour. The DOTAP/cholesterol dispersion was extruded through 100 nm pore carbonate membranes (Avanti Polar Lipids, Inc.). The resulting size of the DOTAP-cholesterol dispersion was 150-200 nm. Intravenous (IV) injections (200 1) were performed using 60 jg pCIhSLPI complexed with DOTAP-cholesterol at a 4 to 1 (positive to negative) charge ratio. The lipoplexes were prepared immediately prior to 35 IV injection by adding the 60 gg of plasmid, dissolved in 100 .1 10% glucose, to 100 p1 of 5.1 mg/ml DOTAP-cholesterol dispersion in ddH 2 0. Twelve hours following administrations, the animals were sacrificed and bronchoalveolar lavage (BAL) was performed by annulating the trachea with a silastic WO 01/48231 PCT/EPOO/13297 23 catheter and slowly injecting 700 il of PBS. Lungs were collected and placed with 500 l lysis buffer in lysing matrix tubes (BIO 101, Vista, CA). The lungs were homogenized for 20 seconds at speed 6.0 in a Fast Prep FP120 (BIO 101). The homogenate was microcentrifuged at 14 000 g at 4*C for 30 minutes. Additionally, 5 blood was collected, allowed to clot and the sera were separated. The recovered fluids were then centrifuged at 1500 rpm for 10 minutes. The supernatant fractions were removed and assayed for the presence of human SLPI using a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems, Minneapolis, MN) following the recommended protocol. Data are reported as means 10 +/- standard deviations (Figure 2).

Claims (20)

1. A non-inflammatory vector composition, comprising (i) aqueous free nucleic acid that encodes a gene product and (ii) an antiinflammatory compound.
2. A composition according to claim 1, further comprising (iii) an enhancing agent.
3. A composition according to claim 2, wherein said enhancing agent is a 10 surfactant.
4. A composition according to claim 3, wherein said surfactant is selected from the group consisting of Survanta, Exosurf, Infasurf, Pluronic, anionic liposome formulations, Thesit, Brij 58, Brij 78, Tween 80, and Chol-PEG 900.
5. A composition according to claim 2, wherein said enhancing agent is a polysaccharide.
6. A composition according to claim 5, wherein said polysaccharide is a 20 linear repeating disaccharide unit of 1,4-linked P-D-glucuronic acid and 1,3-linked 2 acetamido-2-deoxy-$-D-glucopyranose.
7. A composition according to claim 1, wherein said antiinflammatory agent is a steroid.
8. A composition according to claim 7, wherein said steroid is selected from the group consisting of beclomethasone, triamcinolone, flunisolide, fluticasone, budesonide dexamethasone and hydrocortisone. 30
9. A composition according to claim 1, wherein said gene product is a protease inhibitor.
10. A composition according to claim 9, wherein said protease inhibitor inhibits the activity of a protease selected from the group consisting of neutrophil elastase, cathepsin G, collagenase, gelatinase, proteinase 3, and plasminogen activator.
11. A composition according to claim 10, wherein said protease inhibitor is selected from the group consisting of al-antitrypsin, Secretory Leukocyte Protease WO 01/48231 PCT/EPOO/13297 25 Inhibitor, axl-antichymotrypsin, TIMP-1, elafin, P2-macroglobulin and derivatives thereof.
12. A composition according to claim 11, wherein said protease inhibitor is Secretory Leukocyte Protease Inhibitor or an oxidation-resistant form thereof.
13. A method of treating a patient suffering from a disorder having an inflammatory component, comprising at least twice administering to the patient an effective amount of a non-inflammatory vector composition, comprising (i) aqueous free 10 nucleic acid that encodes a gene product and (ii) an enhancing agent.
14. A method according to claim 13, wherein said administration is tracheal or intra-articular.
15. A method according to claim 14, wherein said administration is by aerosolization or by intra-articular injection.
16. A method according to claim 13, wherein administration is tracheal and further comprises administering an antiinflammatory agent by intravenous or oral route, 20 prior to administering said composition.
17. A method according to claim 13, wherein said disorder is associated with pulmonary or intra-articular inflammation.
18. A method according to claim 17, wherein said disorder is selected from the group consisting of emphysema, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), adult respiratory distress syndrome (ARDS) and asthma.
19. A method according to claim 17, wherein said disorder is selected from 30 the group consisting of rheumatoid arthritis and osteoarthritis.
20. A method of treating a patient suffering from a disorder having an inflammatory component, comprising at least twice administering to the patient an effective amount of a non-inflammatory vector composition, comprising (i) aqueous free nucleic acid that encodes a gene product and (ii) an immunosuppressive agent.
AU31648/01A 1999-12-28 2000-12-27 Method of achieving persistent transgene expression Abandoned AU3164801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2004240187A AU2004240187A1 (en) 1999-12-28 2004-12-17 Method of achieving persistent transgene expression

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US47301899A 1999-12-28 1999-12-28
US09473018 1999-12-28
PCT/EP2000/013297 WO2001048231A2 (en) 1999-12-28 2000-12-27 Method of achieving persistent transgene expression

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2004240187A Division AU2004240187A1 (en) 1999-12-28 2004-12-17 Method of achieving persistent transgene expression

Publications (1)

Publication Number Publication Date
AU3164801A true AU3164801A (en) 2001-07-09

Family

ID=23877847

Family Applications (1)

Application Number Title Priority Date Filing Date
AU31648/01A Abandoned AU3164801A (en) 1999-12-28 2000-12-27 Method of achieving persistent transgene expression

Country Status (8)

Country Link
EP (1) EP1242608A2 (en)
JP (1) JP2003522133A (en)
CN (2) CN1310679C (en)
AU (1) AU3164801A (en)
CA (1) CA2395544A1 (en)
IL (1) IL150485A0 (en)
NZ (1) NZ531527A (en)
WO (1) WO2001048231A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003223718B2 (en) * 2002-04-25 2007-08-16 The Scripps Research Institute Treatment and prevention of pulmonary conditions
CN101495498B (en) * 2005-02-07 2013-09-18 基因信息公司 Mild osteoarthritis biomarkers and uses thereof
US20070225233A1 (en) * 2006-03-27 2007-09-27 Tsu-Fuh Yeh Reducing the risk of chronic lung disease in infants
CN113384705A (en) * 2021-06-28 2021-09-14 西南大学 Preparation of poloxamer modified liposome and application of poloxamer modified liposome in oral drug delivery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465529B1 (en) * 1989-03-21 1998-04-29 Vical, Inc. Expression of exogenous polynucleotide sequences in a vertebrate
US5693622A (en) * 1989-03-21 1997-12-02 Vical Incorporated Expression of exogenous polynucleotide sequences cardiac muscle of a mammal
EP1181937A3 (en) * 1994-08-09 2004-02-04 Cytrx Corporation Novel vaccine adjuvant and vaccine
US5633227A (en) * 1994-09-12 1997-05-27 Miles, Inc. Secretory leukocyte protease inhibitor as an inhibitor of tryptase
EP0804076A4 (en) * 1994-10-19 1998-10-21 Genetic Therapy Inc Gene therapy involving concurrent and repeated administration of adenoviruses and immunosuppressive agents
US5656611A (en) * 1994-11-18 1997-08-12 Supratek Pharma Inc. Polynucleotide compositions
US6353055B1 (en) * 1994-11-18 2002-03-05 Supratek Pharma Inc. Polynucleotide compositions
WO1996015780A1 (en) * 1994-11-23 1996-05-30 Isis Pharmaceuticals, Inc. Compositions and methods for preventing and treating allograft rejection
MY134778A (en) * 1995-10-23 2007-12-31 Hyal Pharmaceutical Australia Ltd Hyaluronic acid as dna carrier for gene therapy and vegf antisense dna to treat abnormal retinal vascularization
DE19711800A1 (en) * 1997-03-21 1998-09-24 Hoechst Ag Extension of expression of transgenic proteins by immunomodulating treatment
ATE321882T1 (en) * 1997-07-01 2006-04-15 Isis Pharmaceuticals Inc COMPOSITIONS AND METHODS FOR ADMINISTRATION OF OLIGONUCLEOTIDES VIA THE ESOPHAUS

Also Published As

Publication number Publication date
CA2395544A1 (en) 2001-07-05
CN101011584A (en) 2007-08-08
CN1310679C (en) 2007-04-18
EP1242608A2 (en) 2002-09-25
NZ531527A (en) 2005-10-28
CN1433477A (en) 2003-07-30
WO2001048231A2 (en) 2001-07-05
IL150485A0 (en) 2002-12-01
JP2003522133A (en) 2003-07-22
WO2001048231A3 (en) 2002-04-04

Similar Documents

Publication Publication Date Title
Brigham et al. Transfection of nasal mucosa with a normal alpha1-antitrypsin gene in alpha1-antitrypsin-deficient subjects: comparison with protein therapy
US5872154A (en) Method of reducing an immune response to a recombinant adenovirus
Geest et al. Elimination of innate immune responses and liver inflammation by PEGylation of adenoviral vectors and methylprednisolone
JP2004500880A (en) Liver-specific gene expression cassette and method of use
JP2021500341A (en) Use of Syncitin for Targeted Drugs and Gene Delivery to Lung Tissue
Gautam et al. Delivery systems for pulmonary gene therapy
US20210379203A1 (en) New Tools for Improving Gene Therapy and Use Thereof
AU732447B2 (en) Gene delivery and expression in areas inaccessible to direct protein delivery
AU3164801A (en) Method of achieving persistent transgene expression
Colledge Cystic fibrosis gene therapy
WO1996014837A1 (en) Gene therapy for hypercholesterolemia
US20090069257A1 (en) Method of achieving persistent Transgene expression
US7074399B2 (en) Treatment of inflammation with p20
EP1898945B1 (en) Airway administration of site-inactivated fviia in inflammatory conditions affecting the respiratory tract
AU2004240187A1 (en) Method of achieving persistent transgene expression
WO1996030051A1 (en) Use of surfactants for introducing genetic material into lung cells
EP1183361B1 (en) Gene therapy of pulmonary disease
US20240076691A1 (en) Codon-optimized nucleic acid encoding the fix protein
JP2003146909A (en) Induction of immune tolerance for therapeutic polypeptide
JP2002241303A (en) Gm-csf of epithelial cell comprising ets transcription factor or gene coding for the same and/or defensin protein manifestation-controlling agent
FLOTTE SECTION I GENETIC AND DEVELOPMENTAL BIOLOGY OF THE RESPIRATORY SYSTEM
Carter The Respiratory System as a Platform for Gene Delivery
CARTER 12 The Respiratory System as a Platform for Gene Delivery
Brigham et al. Rationale for the use of Gene Therapy for Critical Illness