AU2937402A - A device for detecting electrically conductive particles - Google Patents

A device for detecting electrically conductive particles Download PDF

Info

Publication number
AU2937402A
AU2937402A AU29374/02A AU2937402A AU2937402A AU 2937402 A AU2937402 A AU 2937402A AU 29374/02 A AU29374/02 A AU 29374/02A AU 2937402 A AU2937402 A AU 2937402A AU 2937402 A AU2937402 A AU 2937402A
Authority
AU
Australia
Prior art keywords
particle
conductors
circuit
detection
whisker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU29374/02A
Other versions
AU785118B2 (en
Inventor
Stephen Michael Molnar
David Allan Nolte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telstra Corp Ltd
Original Assignee
Telstra New Wave Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPR4198A external-priority patent/AUPR419801A0/en
Application filed by Telstra New Wave Pty Ltd filed Critical Telstra New Wave Pty Ltd
Priority to AU29374/02A priority Critical patent/AU785118B2/en
Publication of AU2937402A publication Critical patent/AU2937402A/en
Assigned to TELSTRA CORPORATION LIMITED reassignment TELSTRA CORPORATION LIMITED Alteration of Name(s) of Applicant(s) under S113 Assignors: TELSTRA NEW WAVE PTY LTD
Application granted granted Critical
Publication of AU785118B2 publication Critical patent/AU785118B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

Regulation 3.2
AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT
(ORIGINAL)
0 0.
O*o. 000.
Name of Applicant: Actual Inventor(s): Address for Service: Telstra New Wave Pty Ltd DAVIES COLLISON CAVE, Patent Attorneys, 1 Little Collins Street, Melbourne, Victoria 3000.
"A Device For Detecting An Electrically Conductive Particle" Invention Title: Details of Associated Provisional Application No.: PR4198/01 The following statement is a full description of this invention, including the best method of performing it known to us: P:\OPER\RAB41984J CompleteI do-02/04/D2 -1- A DEVICE FOR DETECTING AN ELECTRICALLY CONDUCTIVE PARTICLE The present invention relates to a device for detecting an electrically conductive particle.
Electrical equipment may not perform correctly if undesirable electrically conducting paths form between circuit elements at different electrical potentials. Installations with low voltage circuitry such as telephone exchanges and computer rooms are particularly vulnerable. Electrically conducting paths may form when airborne, electrically conductive 10 particles settle upon circuit elements. For example, zinc particles or "whiskers" are known to grow on zinc electroplated metalwork used in such installations. If a whisker breaks away from the metalwork, the result is an extremely light, virtually invisible, needle-like and highly electrically conductive, airborne whisker. This whisker may fall upon sensitive electronic circuitry, resulting in equipment failure. This mode of failure is known to occur 15 in many installations, yet can be particularly difficult to diagnose. Failure due to metallic whiskers is an ongoing problem which is extremely costly for providers of data processing and switching equipment. It is desired, therefore, to provide a device for detecting an electrically conductive particle, or at least a useful alternative to existing detection devices.
20 In accordance with the present invention, there is provided a device for detecting the presence of an airborne, electrically conductive particle, said device including spaced conductors and a circuit for detecting when said electrically conductive particle forms a conducting path between said spaced conductors.
The present invention also provides a device for detecting an electrically conductive particle present in the air, including: a detection grid of spaced conductors; and a detection circuit for detecting when said particle electrically connects said conductors.
PAOPERURAB\4 1984)] wmnpIct.dMC-(2A)4AJ2 -2- The present invention also provides a device for detecting an electrically conductive whisker, including: a sensor of spaced conductors; and a detection circuit for detecting when said whisker electrically connects said conductors.
Preferred embodiments of the present invention are hereinafter described, by way of example only, with reference to the accompanying drawings, wherein: Figure 1 is a schematic diagram of a preferred embodiment of a particle detector; 10 Figure 2 is a diagram of an electrode structure of the detector; Figure 3 is a block diagram of the electrical components of the detector; Figure 4 is a circuit diagram of the electrical components of the detector; and Figure 5 is a flow diagram showing a preferred embodiment of a particle detection process executed by the detector.
oo A detector 10 of electrically conductive particles, as shown in Figures 1 to 4, includes a sensor 14 and a processing circuit 12. The detector 10 detects electrically conductive particles larger than a certain size that contact the sensor 14 and stores the number of detection events in non-volatile memory 40. The detector 10 includes status indicators 38 20 for providing visual information to a user of the detector 10, such as when a particle is detected, and the number of particles detected by the detector 10. The detector 10 may be used to qualitatively or quantitatively indicate the presence of airborne metallic whiskers in electrical installations prone to failures caused by whiskers from equipment metalwork.
Because the detector 10 is small enough to be held in the hand, it may be easily used by maintenance personnel to evaluate whisker counts in several locations within a single installation, for example. The early detection of whiskers allows subsequent equipment failure to be avoided by removing whiskers from an installation, and provides an indication of the likelihood of whiskers as the cause of equipment failure.
The sensor 14 comprises a number of detection grids 16, 18. The detector 10 is built on a standard fiberglass PC board (PCB) 22, and most of the surface of the PCB 22 is occupied P:\OPER\RAB\4 19M-0 mplete~do-02/04M) -3by two detection grids 16, one on either side of the PCB 22. The detector also includes two additional detection grids 18, mounted perpendicular to the plane of the PCB 22 to increase the detection probability. The four detection grids 16, 18 are connected in parallel. The PCB has a small rubber foot in each of its four corners for supporting the detector Each detection grid 16, 18 comprises a pair of electrically conductive, interdigitated tracks or fingers 24, 26, as shown in Figure 2 for the two mounted detection grids 18. The fingers 24, 26 are supported on fiberglass PC boards, and the outer surfaces of the fingers 24, 26 are coated with gold to ensure good electrical contact with impinging particles. The use of gold plating is significant as it provides good conductivity and does not form an insulating surface oxide layer on the fingers. The PCB material is electrically insulating, so that there is essentially no electrical conductivity between the two fingers 24, 26 unless an electrically conductive particle contacts the two fingers simultaneously, such as when an airborne metallic whisker impinges upon the two fingers 24, 26.
The processing circuit 12, as shown in Figures 3 and 4, includes a power supply 28 •.•powered by a 9V lithium battery 20, a DC step-up circuit 30, a detection circuit 32, a microcontroller 34, non-volatile, EEPROM memory 40, status indicators 38, and control switches 36. The power supply 28 in this implementation is a National Semiconductor .20 LM2936-5.0 5V regulator. The DC step-up circuit 30 generates a high (51V) voltage that is applied across the fingers 24, 26 of the sensor 14 to break down oxide layers of metallic whiskers that impinge upon the sensor 14.
An EPROM-based microcontroller 34, such as the PICmicro PIC16C73B-20, executes a particle detection process, as shown in Figure 5. This process is implemented as a software program stored in the microcontroller's internal program memory. When the detector 10 is first powered, by inserting the battery 20, or when the microcontroller 34 is reset by pressing a reset switch of the control 36, the microcontroller 34 performs an initialisation step 502, and then switches the grid voltage at step 504. Step 504 is achieved by enabling the output 31 of a DC-DC controller chip, such as the Maxim MAX273, of the DC step-up circuit 30 through an output port 6 of the microcontroller 34.
P:\OPER\RB4 19"I0 wmnptdo-)2/04WJ -4- The microcontroller 34 detects the appearance of a conductive path between opposing fingers 24, 26 of the sensor 14 by sensing a change in the voltage on a single-bit input port (RB7) connected to the sensor 14 via the detection circuit 32, which includes a voltage divider having two resistors 44, 46 in series. Particular resistance and voltage values are described below for one implementation of the detector 10, but it will be understood by those skilled in the art that different values may be selected, particularly if a different microcontroller is used. For example, a microcontroller with an internal voltage comparator may be employed, or a microcontroller that is coupled to an external voltage 0 10 comparator.
A first resistor 46, of value 62 kM, is connected between the input port 45 and ground. A second resistor 44, of value 2 MQ, is connected between the port 45 and one set of fingers 24 of the detection region 14. These fingers 24 are also connected to the 51V supply 31 from the DC step-up circuit 30 through a current-limiting resistor 42 of value 560 0. The other set of fingers 26 is connected to ground. When there is no conductive particle V. between opposing fingers of the sensor 14, current flows from the 51 V supply to ground through the three resistors. Because the value of the current-limiting resistor 42 is negligible in comparison with the first and second resistors 44, 46, the 51 V supply potential is essentially divided across the first and second resistors, so that the potential at the input port 45 of the microcontroller 34 is at a level other than low, approximated by 51 V (62 kQ/2MQ) 1.6 V. When a conductive particle such as a metallic whisker forms a conductive path between opposing fingers 26 and 26 of the sensor 14, most of the current from the 51 V supply passes through the sensor 14 to ground, provided that the resistance of the conducting path through the particle is substantially less than 2 MQ. The potential at the input port 45 is therefore a low level, 0 V.
After turning the grid voltage on at step 504, a check is performed at step 506 to see if a particle is stuck between opposing fingers 24 and 26 of the sensor 14. If this occurs, the input port voltage will remain at 0 V. Normally, the current flowing through the conducting particle will be sufficient to melt the particle and destroy the conducting path.
P:\OPER).RA\4 1984)I wcpitcdc-02/A)2 However, if this does not occur, the detector cannot detect any more particles, and the battery power will simply drain away. Consequently, the grid voltage is shut off to save power and the process stops at step 508. Otherwise, the input port potential returns to 1.6 V, and the process proceeds to step 510 with a check to see if an erase EEPROM function has been selected by the user controls 36. If so, then the EEPROM memory 40 is erased at step 512. After this step, or if the function was not selected, a detection event count is read from the EEPROM memory 40 and the count value is displayed on the status indicator 38 and output to a serial port of the microcontroller 34 for transfer to an external device such as a notebook computer. The status indicator 38 is a light-emitting diode (LED) that flashes a number of times equal to the count value.
Subsequently, the microcontroller 34 enters a sleep mode at step 516 and waits for a particle to impinge upon the sensor 14. Sleep mode is a low power consumption mode of the microcontroller 34 which conserves battery power. If a particle forms a conducting 15 path between opposing fingers 24 and 26 of the sensor 14, the potential at the input port RB7 of the microcontroller 34 changes from ;1.6 V to ;0 V. The input port circuitry of the microcontroller 34 monitors the potential on this port and generates an interrupt when its p value differs from a previously latched value. The interrupt wakes the microcontroller 34 from sleep mode at step 520. The detection event is written to the EEPROM memory 40 at .1 20 step 522 by simply reading the currently stored detection count value, incrementing it by one, and storing the incremented value. The process then delays for a predetermined period of time, for instance 200 ns, at step 524, and then checks to see if the particle has been removed, as described above, at step 526. If the particle has been removed, the process loops back to step 516 and enters sleep mode. If the particle has not been removed, the grid voltage is turned off at step 528, a flag is written to EEPROM memory at step 530, and the process stops at step 532.
Many modifications will be apparent to those skilled in the art without departing from the scope of the present invention as herein described with reference to the accompanying drawings. For example, a more sophisticated display such as a liquid crystal display may be used instead of the status LEDs. More sophisticated communications methods may also P:\OPER\RAB\4198-01 comple .doc-02/04/2 -6be employed; for example, the detector 10 may include a Bluetooth module for wireless communication of particle detection events, event counts, and status information to a remote processing module. The storage of particle detection events may include storing a timestamp with each detection event.
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that that prior art forms part of the common general knowledge in Australia.
S.
S
S S

Claims (36)

1. A device for detecting the presence of an airborne, electrically conductive particle, said device including spaced conductors and a circuit for detecting when said electrically conductive particle forms a conducting path between said spaced conductors.
2. A device as claimed in claim 1, wherein said circuit establishes a voltage between said conductors to break down an electrically insulating region of said particle.
3. A device as claimed in claim 1, wherein said circuit applies a voltage across said conducting path to destroy said electrically conducting path.
4. A device as claimed in claim 1, wherein said device includes means for indicating 00 the detection of said particle.
A device as claimed in claim 1, wherein said circuit stores event data representing detection events that respectively correspond to detection of each electrically conductive particle by said circuit. 20
6. A device as claimed in claim 5, wherein said event data includes a count of the number of said detection events.
7. A device as claimed in claim 6, wherein said event data includes a timestamp for each of said detection events.
8. A device as claimed in claim 5, wherein said device includes means for displaying said event data.
9. A device as claimed in claim 5, wherein said device includes means for transmitting said event data to an external device.
PAOPERWRAB\4I9s- I -8- A device as claimed in claim 5, wherein said device includes means for resetting said event data.
11. A device as claimed in any one of the preceding claims, wherein said device can be held in a hand of a user of said device.
12. A device as claimed in any one of the preceding claims, wherein the surface of said conductors comprises a non-oxidizing, conductive substance. 10
13. A device as claimed in any one of the preceding claims, wherein the spacing between said conductors corresponds to a predetermined minimum size of said particle.
*14. A device as claimed in any one of the preceding claims, wherein said conductors are in the form of a coplanar set of interdigitated fingers, forming a planar detection region. .o
"15. A device as claimed in claim 14, wherein said device includes a plurality of said planar detection region.
16. A device as claimed in claim 15, wherein at least two of said region are arranged in 20 substantially orthogonal orientations.
17. A device as claimed in claim 15, wherein said device includes three of said region, where two of said region are arranged to extend substantially perpendicular to the other region.
18. A device as claimed in claim 1 or 14, wherein said region includes a plurality of coplanar mutually spaced set of said conductors, such that said particle is detected by said circuit when said particle comes to rest across at least two of the conductors.
19. A device as claimed in any one of the preceding claims, wherein said circuit applies a voltage across said conductors and detects a change in said voltage by the formation of P:\OPERRAB\4198.01 complew.doc-02/042 -9- said conducting path by said particle.
A device as claimed in claim 19, wherein said voltage is sufficient to destroy said particle when said conducting path is formed.
21. A device as claimed in claim 20, wherein said circuit detects the destruction of said particle by removal of said conducting path.
22. A device as claimed in claim 21, wherein said circuit inhibits the application of said 10 voltage if said destruction has not occurred. jE
23. A device as claimed in claim 22, wherein said circuit stores a flag if said destruction has not occurred. 15
24. A device as claimed in claim 23, wherein said circuit enters a power saving mode when waiting to detect said particle or if said destruction has not occurred.
A device as claimed in any one of the preceding claims, wherein said particle is a metallic whisker.
26. A device as claimed in claim 25, wherein said whisker is a zinc whisker.
27. A device as claimed in claim 12, wherein said substance is gold.
28. A device for detecting an electrically conductive particle present in the air, including: a detection grid of spaced conductors; and a detection circuit for detecting when said particle electrically connects said conductors.
29. A device as claimed in claim 28, wherein said particle is a metallic whisker.
PAOPER\RAB41984)- complete.doc-2A)4A)2 A device for detecting an electrically conductive whisker, including: a sensor of spaced conductors; and a detection circuit for detecting when said whisker electrically connects said conductors.
31. A device as claimed in claim 30, wherein said sensor is a grid of alternate elongate spaced conductors, and said circuit applies a voltage to one set of said conductors sufficient to detect and destroy said particle when it creates a conductive path to the 10 alternate set of said conductors.
32. A device as claimed in claim 30 or 31, wherein said whisker is a zinc whisker.
33. A device as claimed in claim 30, 31 or 32, wherein said conductors are gold.
34. A device as claimed in any one of claim 28 to 33, wherein said device is hand held.
A detecting device substantially as hereinbefore described with reference to the accompanying drawings.
36. The steps, features, compositions and compounds disclosed herein or referred to or indicated in the specification and/or claims of this application, individually or collectively, and any and all combinations of any two or more of said steps or features. DATED this 2 nd day of April 2002 Telstra New Wave Pty Ltd By its Patent Attorneys DAVIES COLLISON CAVE
AU29374/02A 2001-04-03 2002-04-02 A device for detecting electrically conductive particles Ceased AU785118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU29374/02A AU785118B2 (en) 2001-04-03 2002-04-02 A device for detecting electrically conductive particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPR4198A AUPR419801A0 (en) 2001-04-03 2001-04-03 A device for detecting electrically conductive particles
AUPR4198 2001-04-03
AU29374/02A AU785118B2 (en) 2001-04-03 2002-04-02 A device for detecting electrically conductive particles

Publications (2)

Publication Number Publication Date
AU2937402A true AU2937402A (en) 2002-10-10
AU785118B2 AU785118B2 (en) 2006-09-28

Family

ID=25621051

Family Applications (1)

Application Number Title Priority Date Filing Date
AU29374/02A Ceased AU785118B2 (en) 2001-04-03 2002-04-02 A device for detecting electrically conductive particles

Country Status (1)

Country Link
AU (1) AU785118B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388448A (en) * 1993-08-12 1995-02-14 Vickers, Incorporated Conductive particle detector
CA2222835A1 (en) * 1997-11-28 1999-05-28 Celestica North America Inc. Method and apparatus for real-time detection of airborne conductive contaminants
US6043639A (en) * 1997-12-01 2000-03-28 Celestica International Inc. Method and apparatus for real-time detection of airborne conductive contaminants

Also Published As

Publication number Publication date
AU785118B2 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
US7106048B1 (en) Fault indicator with auto-configuration for overhead or underground application
US7023691B1 (en) Fault Indicator with permanent and temporary fault indication
US9337555B2 (en) Physical infrastructure management system having an integrated cabinet
EP2465102B1 (en) Mechanisms for detecting tampering of an electronic device
CN105301659B (en) Moisture enters sensor
US8482305B2 (en) Mechanisms for detecting exposure to water in an electronic device
US7053601B1 (en) Microprocessor controlled fault indicator having high visibility LED fault indication
US6859024B2 (en) Device for detecting an electrically conductive particle
CN111653225A (en) Display module, crack detection method thereof and display device
EP2422400A1 (en) Battery electrolyte level indicator
CN104184905A (en) Electrostatic disturbance processing method of mobile terminal and mobile terminal
CN107103875B (en) Flexible display panel, operation method thereof and flexible display device
CN106444115A (en) Rebooting system and method for liquid crystal display advisement player
CN103914361A (en) Detection jig and detection method of computer device
AU785118B2 (en) A device for detecting electrically conductive particles
CN109683844A (en) Line-screen control circuit, bar shaped screen display system and line-screen control method
CN202166925U (en) Machine cabinet of servers
CN107219803B (en) Device for detecting opening or closing of terminal cover in real time
JP2002111838A (en) Portable terminal
CN205581810U (en) Intelligent mouse
US11940297B2 (en) Very low power contaminant detection circuit
CN107493634A (en) A kind of Internet of Things man-machine interaction and the light source carrier and exchange method of energy self-test
CN110460723A (en) Screen protection method, device, computer equipment and computer readable storage medium
CN218767832U (en) Remote intelligent control system of electric power cabinet
CN220456033U (en) LED display screen of initiative dustproof antistatic