AU2927202A - Prosthetic implant - Google Patents

Prosthetic implant Download PDF

Info

Publication number
AU2927202A
AU2927202A AU29272/02A AU2927202A AU2927202A AU 2927202 A AU2927202 A AU 2927202A AU 29272/02 A AU29272/02 A AU 29272/02A AU 2927202 A AU2927202 A AU 2927202A AU 2927202 A AU2927202 A AU 2927202A
Authority
AU
Australia
Prior art keywords
stem portion
profile
angle
implant
tapers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU29272/02A
Other versions
AU784248B2 (en
Inventor
Donald W. Howie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPR5263A external-priority patent/AUPR526301A0/en
Application filed by Individual filed Critical Individual
Priority to AU29272/02A priority Critical patent/AU784248B2/en
Publication of AU2927202A publication Critical patent/AU2927202A/en
Application granted granted Critical
Publication of AU784248B2 publication Critical patent/AU784248B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Landscapes

  • Prostheses (AREA)

Description

P/00/01i1 Regulation 3.2
AUSTRALIA
Patents Act 1990
ORIGINAL
COMPLETE SPECIFICATION STANDARD PATENT Invention Title: PROSTHETIC IMPLANT 0 The following statement is a full description of this invention, including the Applicant: DONALD W. HOWIE best method of performing it known to me: W.AAmanda'Pat\PO\(O8147CAP.doC PROSTHETIC IMPLANT Field of the Invention The present invention relates generally to prostheses, and more particularly to an implant for a bone or joint prosthesis.
The invention has particular application to femoral implants for hip prostheses and it will be convenient to hereinafter describe the invention in this exemplary context. It should be appreciated, however, that the invention is not limited to this particular application, but is suitable for use in a range of other bones and joints. For example, the invention may also be suitable for knee, shoulder and elbow prostheses and may therefore include an implant for the tibia or humerus.
SBackground of the Invention S' 15 Prostheses for use in total hip replacement typically include an elongate member for implantation in the femur. This implant member typically includes a distal tip portion for location deep within the bone, a proximal neck portion for e• providing articulation of the joint prosthesis and an elongate stem portion which extends from the distal tip portion to the proximal neck portion. In use, the 20 elongate stem portion is also located within the bone to provide a foundation or support for the artificial joint and to transmit forces to the skeletal structure. The proximal neck portion of the implant projects from the end of the femur to form part of the articulated joint.
When looking at either the anterior or posterior surface of a femoral implant, the outer contour of the medial and lateral sides define the implant profile in the medio-lateral plane. When looking at either the medial or lateral surfaces of the implant, the outer contour of the anterior and posterior sides define the implant profile in the antero-posterior plane the sagittal plane).
The stem portion of a femoral implant is typically integrally formed with the neck portion. Furthermore, the stem portion typically has a proximal end region adjacent the neck portion which, in use, is located within the proximal or metaphyseal end of the femur. The neck portion therefore joins the stem portion at this proximal or metaphyseal end region of the stem portion, and this W:kpwg- patPmplant.doc metaphyseal end region of the stem typically has a profile in the medio-lateral plane that converges distally. That profile is typically defined by a curved or angled medial outer contour and a curved or straight lateral outer contour.
Because the implant members for hip prostheses are to be inserted into the femur, the stem portions of those implants need to be relatively narrow (particularly in their more distal parts) to fit within the intramedullary canal of the bone. This applies especially to longer implants greater than 190mm).
Accordingly, the stem portion of an implant will typically taper in the mediolateral plane, and possibly also in the sagittal plane, decreasing in transverse width towards the distal tip portion. In short or standard length implants, this tapering is often continuous along the length of the stem portion to the distal tip S. portion. In longer implants, however, in order to retain the desired structural integrity and function of the implant, the tapering will sometimes terminate at an :approximately constant cross-section, which then continues to the distal tip 15 portion of the implant.
A disadvantage of femoral implants with stem portions having a constant cross-sectional extent is that the constant cross-section part does not provide optimum transfer of loads to the surrounding bone structure in use. A further disadvantage of such implants is that they can be harder to extricate from their 20 cemented position within the bone, in the event that the position or orientation of the implant requires revision at some later stage in the life of the prosthetic joint.
The present invention therefore aims to provide a new and improved prosthetic implant which substantially overcomes or at least ameliorates either or both of the above disadvantages.
Summary of the Invention According to a first aspect, the present invention provides an elongate prosthetic bone implant having a distal tip portion, a proximal neck portion and an elongate stem portion extending from the proximal neck portion to the distal tip portion. The stem portion of the implant is characterised by the fact that it has a first part having a profile in one of the medio-lateral and sagittal planes which tapers distally to a region intermediate the length of the stem portion at a first angle of taper, and a second part distal of the first part having a profile in W:pwg patUmplant.doc that same one of the medio-lateral and sagittal planes which tapers distally from the region intermediate the length of the stem portion at a second angle of taper.
In the case of a femoral implant, the stem portion typically has a proximal end region adjacent the neck portion which, in use, is located within the proximal or metaphyseal end of the femur. As already noted, this metaphyseal end region of the stem portion typically has a profile in the medio-lateral plane defined by an angled or curved medial outer contour and a straight or curved lateral outer contour, with those outer contours tending to converge distally.
Accordingly, as far as the tapering profile of a femoral implant according to the invention concerns the medio-lateral plane, the first and second parts of the stem portion described above are located distally of the metaphyseal end oo region of the stem portion. The first part is preferably immediately adjacent and :joins with the metaphyseal end region of the stem portion. As far as the 15 tapering profile of a femoral implant according to the invention concerns the anterio-posterior (ie sagittal) plane, however, the first and second parts of the stem portion may be located at any position, including in the metaphyseal end region.
In a preferred embodiment of the invention, the tapering of the profiles of 20 the first and second parts of the stem portion is substantially constant or linear over the length of the respective parts. That is, the first and second angles of taper don't substantially vary over the extent of the first and second parts of the o• stem portion, respectively.
Furthermore, the first and second angles of taper are preferably calculated relative to a longitudinal axis of the stem portion. That is, the angle of taper corresponds to the angle subtended by an outer contour of the stem portion in the particular one of the medio-lateral and sagittal planes and a longitudinal axis of the stem portion.
In a preferred embodiment of the invention, the profiles of the first and second parts of the stem portion taper substantially symmetrically.
In a preferred embodiment of the invention, the first angle of taper is greater than the second angle of taper.
W:~pwg patlmplantdoc In a preferred embodiment of the invention, the profile of the first part of the stem portion which tapers at the first angle, and the profile of the second part of the stem portion which tapers at the second angle are in the mediolateral plane. In a particularly preferred embodiment of the invention, however, the stem portion also tapers in the antero-posterior plane. The angle of taper in the antero-posterior plane may be constant for both the first part and the second part of the stem portion. Alternatively, the first and second parts may again taper at differing angles. These differing angles may equal the first and second angles, respectively, or they may be entirely different.
In a preferred embodiment of the invention, the first part of the stem portion is substantially continuous with the second part of the stem portion.
SAccordingly, the stem portion may have no longitudinal extent in the intermediate region. Alternatively, however, the intermediate region may have S some longitudinal extent and it may include no tapering in either or both of the 15 medio-lateral and sagittal planes. This intermediate region could even have an extent of constant cross-section, but preferably there is no longitudinal extent of constant cross-section in the intermediate region. In a particularly preferred embodiment of the invention, the entire stem portion has no longitudinal extent having a constant cross-section. The tapering of the stem portion preferably 20 continues to the distal tip portion.
In a preferred embodiment of the invention, the distal tip portion terminates in a rounded point, which is preferably relatively dull or blunt. The .i S"distal tip portion may itself also taper to that rounded point. This region forms an end of the implant, and may be designed to modify the loading at that end of the implant or to accept one of a variety of centralising devices.
In a preferred embodiment of the invention the stem portion may include a third part, distal of the second part, the profile of which in that same one of the planes again tapers distally at a third angle of taper different to the second angle of taper. The third angle of taper for this part of the stem portion is preferably less than the second angle of taper. The present invention also contemplates yet further tapering parts of the stem portion.
In a preferred embodiment of the invention, the transverse crosssectional shape of the stem portion varies along its length. The cross-sectional W:\pwg- pat'lmplant.doc shape of the first part of the stem portion is preferably a generally rectangular shape having rounded corners. The orientation of the rectangular cross-section of the first part is such that the medial, lateral, anterior and posterior surfaces of the first part of the stem portion are substantially flat surfaces. The second part, and subsequent parts (if any), of the stem portion preferably has a crosssectional shape having opposite convexly arcuate curves inter-connected by two opposite parallel sides. In this respect, the convexly arcuate curves of the section shape correspond to convexly curved medial and lateral surfaces, while the opposite parallel sides of the section shape correspond to the substantially flat anterior and posterior surfaces.
In a preferred embodiment of the invention the cross-sectional shape of the distal tip portion also varies, transforming from the general configuration of .o the second or subsequent part of the stem portion to a generally circular crosssection at the extreme distal end of the tip.
15 The stem portion of the implant according to the invention preferably has 0. a smooth, continuous outer surface. That is, the stem portion is preferably S:highly polished and devoid of any ridges, fin-like projections or other complex surfaces. In fact, the entire implant preferably has a smooth and continuous outer surface.
20 In a preferred embodiment of the invention, the proximal neck portion includes means for attaching a joint articulation device. In the case of a femoral implant for a hip-joint prosthesis, the means for attaching a joint articulation go device includes a neck stub which projects at an angle in the range of between about 1200 and 1500 to the longitudinal axis of the stem portion. The neck stub is preferably a frusto-conical projection at a proximal end region of the neck portion and is adapted to receive a ball-shaped element of suitable diameter for engagement with either the patient's own acetabulum or a prosthetic acetabular cup element.
In a preferred embodiment of the invention, the proximal neck portion includes means for attaching a collar and/or spacer. The collar/spacer is adapted to assist in the positioning of the implant within the bone and also to transmit forces against a proximal end surface of the bone, from which the neck portion projects in use.
W:Npwg patlmplant.doc The proximal neck portion, stem portion and distal tip portion of the implant are typically integrally formed from stainless steel, titanium, or cobalt chrome molybdenum alloys, or other metals and metal alloys as known in the art. Furthermore, the stem portion of the implant is preferably overall generally straight.
In the case of femoral implants for hip prostheses, the boundary between the stem portion and the proximal neck portion of the implant can be thought of as being at the region where the implant is angled or curved medially to provide the correct angular orientation for the projecting neck stub ie at the metaphyseal end region of the stem portion which has the curved or angled medial outer contour. Accordingly, the proximal neck portion may have a length in the range of 25 to 65 mm, while the distal tip portion may similarly have a .i length in the range of 30 to 60 mm.
S• The prosthetic implant of the present invention is preferably highly 15 polished to provide relatively low shear forces when located in acrylic cement within the bone and to enhance the compression of the cement and any graft material employed. The implants of the invention are preferably fixed in position in the bone using an acrylic cement, or a combination of cement and bone graft or bone restoration material. However, cement may not necessarily be used.
20 Thus, in a preferred embodiment of the invention, the stem portion is adapted to enhance the distribution of stress through the acrylic cement to the bone graft or bone restoration material inserted within the femur to restore previous bone loss.
According to a second aspect, the present invention provides a joint prosthesis including an elongate prosthetic bone implant as described above. In particular, this invention preferably provides a hip prosthesis, which includes a femoral implant having the features described.
The present invention is therefore advantageously able to provide an elongate bone implant, and a joint prosthesis employing such an implant, having no regions of continuous cross-sectional extent. Rather, the invention is able to provide an implant for a joint prosthesis having a succession or series of tapered regions which enhance the fit of the implant within the bone, and enhance the compression or pressurization and thickness distribution of the W:pwg patflmplant.doc cement mantle, while also improving the stress distribution to the bone and graft material for the prosthesis. Furthermore, the invention is able to provide an implant for a joint prosthesis having a succession or series of tapers which make the implant more easily removable. This is particularly so in the case of implants having a length greater than 190mm, for example implants of 200mm, 205mm, 220mm, 230mm, 240mm, 260mm, 280mm, 300mm or even greater lengths.
It should be noted that the present invention does, however, also have application in standard or shorter length bone implants where the bones of the particular patient concerned have a relatively wide proximal cross-section but a relatively narrow more distal region. Prosthetic bone implants having a series of tapered regions according to the present invention may be designed to more optimally occupy or fill a bone having very narrow more distal dimensions.
15 Brief Description of the Drawings For assistance in arriving at a better understanding of the present invention, a preferred embodiment of a prosthetic implant according to this invention is hereafter described with reference to the accompanying drawings, in which: 20 FIG.1 is a view looking at the anterior surface of a femoral implant for a hip prosthesis according to a preferred embodiment of the invention; FIG.2 is a view looking at the lateral surface of the femoral implant p.
S"shown in FIG 1.
FIG.3 is a cross-sectional view of the stem portion of the implant in FIG.1 in the direction of arrows B-B; FIG.4 is a cross-sectional view of the stem portion of the implant in FIG.1 in the direction of arrows C-C; and is a cross-sectional view of the stem portion of the implant shown in FIG.1 in the direction of arrows D-D.
Detailed Description of the Preferred Embodiment Referring to FIG.1 of the drawings, the invention provides an integrally formed elongate femoral implant having a proximal neck portion an W:\pwg patlmplant.doc elongate stem portion (20) extending distally from the neck portion (10) and a distal tip portion The implant is for insertion within the intramedullary canal of a femur during hip-replacement surgery.
The proximal neck portion (10) includes a frusto-conical stub (11) projecting at the most proximal end region of the neck portion. This stub (11) has a free end (12) and continues from its other end (13) to join with the stem portion A line (14) across the neck portion (10) effectively marks the extent of the neck portion, which in use projects from the proximal end of the femur. This line (14) also marks the point to which cement is applied when the implant is embedded in the femur.
The stub (11) provides means for attaching a ball-joint articulation device (not shown). Specifically, this conical stub (11) is adapted to receive a ball-shaped element for pivotal engagement within either the patient's own acetabulum or a corresponding prosthetic acetabular cup element.
15 Furthermore, the stub (11) is oriented to project medially at a pre-determined angle in the range of 1200 to 1500 relative to a longitudinal axis of the implant to suit the patient's physical proportions.
Immediately adjacent the neck portion the elongate stem portion of the implant has a proximal or metaphyseal end region (21) which, in 20 use, is located within the proximal or metaphyseal end of the femur. This metaphyseal end region (21) has a curved medial outer contour (22) and a straight lateral outer contour Equally, however, the medial outer contour (22) could be angled, and/or the lateral outer contour (23) could be curved.
Furthermore, the elongate stem portion (20) includes a first part (24) which extends distally from the proximal end region (21) to an intermediate region of the stem. This intermediate region has effectively no longitudinal extent in this example, and a second part (25) of the stem portion extends distally from directly adjacent the first part A third part (26) also extends distally of the second part The third part (26) of the stem portion continues in its extent to the distal tip portion Importantly, the stem portion (20) of the femoral implant does not include any regions of longitudinal extent having a constant cross-section. The medio-lateral profile of the first part (24) of the stem portion (as seen in FIG.1) W:pwg patlmplantdoc tapers in the distal direction at a first angle of taper defined by the angle subtended between the longitudinal axis and a medial outer contour (27) or a lateral outer contour Furthermore, the second part (25) similarly tapers in the distal direction at a second angle of taper and the third part (26) tapers distally at a third angle of taper. In this particular example, the first angle of taper is larger than the second angle of taper which is, in turn, again larger than the third angle of taper.
Referring to FIG.2 of the drawings, the profile of the stem portion (20) in the sagittal plane showing the anterior and posterior outer contours (29) also tapers in the distal direction. In this particular example, the profile of a length of the stem portion comprising the end region (21) and the first part (24) tapers in the sagittal plane at one angle, and the profile in this plane of a length of the stem portion comprising the second and third parts (25,26) tapers constantly at another lesser angle. In an alternative configuration, however, the angle of taper in the sagittal plane could be substantially constant along the entire length of the stem portion Referring now to FIG.1 and FIGS.3 to 5, it should also be appreciated that the cross-section of the stem portion (20) also varies along its length. The first part (24) of the stem portion has a substantially rectangular cross-section, 20 with the flat sides of the rectangular-shaped cross-section corresponding to the flat anterior, posterior, medial and lateral surfaces of that part of the implant.
The corners of the rectangular-shaped cross-section are rounded as shown in FIG.3 and these rounded corners gradually transform over the length of the stem portion (20) to become the cross-sectional shape shown in FIG.4. The cross-section shown in FIG.4 reflects convexly curved medial and lateral outer surfaces of the stem portion and flat anterior and posterior surfaces. A similar but somewhat smaller cross-sectional shape is also shown in FIG.5. The dimensions marked in FIGS. 3 to 5 are in millimetres and the change in height dimension from 10mm in FIG.3, to 9.8mm in FIG.4 and 8.5mm in FIG.5 reflects the tapering of the stem portion (20) in the medio-lateral plane between section lines B-B, C-C and D-D shown in FIG.1, respectively.
The distal tip portion (30) of the implant continues to taper (albeit at an increased angle of taper) from the end of the third part (26) of the stem portion W:xpwg patlmplant.doc to the extreme distal point or tip The relatively dull or blunt rounded point (31) is adapted to accept a centralising device for maintaining the tip in the desired position once the implant is inserted into the intramedullary canal.
It will be appreciated that various alterations and/or additions to the particular construction and arrangement of parts just described may be made without departing from the spirit or ambit of the present invention.
In this regard, for example, the stem portion (20) of the implant may comprise merely a first part and a second part no third part), with the first part corresponding to the first part (24) as shown in FIG.1 and the second part corresponding to the third part (26) as shown in FIG.1. In such a case, the intermediate region of the stem portion (20) might correspond to the part the profile of which could for example be parallel (ie have no taper) in the medio-lateral plane while continuing to taper in the sagittal plane.
:*°:Alternatively, the stem portion (20) of the implant may comprise 15 merely a first part and a second part no third part), with the first part ;-corresponding to the first part (24) as shown in FIG.1 and the second part corresponding to a combination of the second part (25) and third part (26) shown in FIG.1. Again in this case, therefore, the intermediate region would have effectively no longitudinal extent.
et W:Wwg patfmplant.doc

Claims (5)

1. An elongate, integrally formed prosthetic bone implant having a distal tip portion, a proximal neck portion and an elongate stem portion extending from the neck portion to the tip portion, wherein the stem portion of the implant has a first part adjacent the proximal neck portion having a profile in one of the medio- lateral and sagittal planes which tapers distally to a region intermediate the length of the stem portion at a first angle of taper, and a second part distal of the first part having a profile in that same one of the medio-lateral and sagittal planes which tapers distally from the region intermediate the length of the stem portion at a second angle of taper.
2. A prosthetic bone implant as claimed in claim 1 wherein the tapering of the profiles of the first and second parts of the stem portion is substantially •o constant or linear over the length of the respective parts.
9. 9 S 15 3. A prosthetic bone implant as claimed in claim 2, wherein the first angle of taper is greater than the second angle of taper. .l 4. A prosthetic bone implant as claimed in any one of claims 1 to 3, wherein the stem portion includes a third part, distal of the second part, the profile of which in that same one of the planes again tapers distally at a third angle of taper different to the second angle of taper. A prosthetic bone implant as claimed in any one of claims 1 to 4, wherein the profile of the first part of the stem portion which tapers at the first angle and the profile of the second part of the stem portion which tapers at the second angle are in the antero-posterior plane. 6. A prosthetic bone implant as claimed in any one of claims 1 to 4, wherein the profile of the first part of the stem portion which tapers at the first angle and the profile of the second part of the stem portion which tapers at the second angle are in the medio-lateral plane. 7. A prosthetic bone implant as claimed in claim 6, wherein the stem portion has a proximal or metaphyseal end region which adjoins the neck W:Npwg pat~lmplant.doc portion, the proximal/metaphyseal end region of the stem portion having a profile in the medio-lateral plane defined by a curved or angled medial outer contour and a curved or straight lateral outer contour, and wherein the first part of the stem portion is adjacent said end region. 8. A highly polished femoral implant having a proximal neck portion, a distal tip portion, and an elongate stem portion extending from the neck portion to the tip portion, the stem portion having a proximal or metaphyseal end region which adjoins the neck portion, the proximal/metaphyseal end region of the stem portion having a profile in the medio-lateral plane defined by a curved or angled medial outer contour and a curved or straight lateral outer contour, wherein the stem portion of the implant has a first part adjacent said end region having a profile in the medio-lateral plane which tapers distally at a first angle of S.taper to a region intermediate the length of the stem portion, and a second part distal of the first part having a profile in the medio-lateral plane which tapers 15 distally at a second angle of taper from the region intermediate the length of the stem portion. 9. A femoral implant as claimed in claim 8 wherein the stem portion has a profile in the antero-posterior plane which also tapers in the distal direction in each of the first and second parts of the stem portion. 20 10. A femoral implant as claimed in claim 9 wherein the profile in the antero-posterior plane tapers in the distal direction at a constant angle over the entire length of the stem portion.
11. A femoral implant as claimed in claim 9 wherein the profile in the antero-posterior plane tapers in the distal direction at different angles in the first part and the second part of the stem portion, respectively.
12. A prosthetic bone implant substantially as herein described with reference to the accompanying drawings. DATED: 28 March, 2002 PHILLIPS ORMONDE FITZPATRICK Attorneys for: DONALD W. HOWIE By:wg- pamplant.oc W:4mg patlmplant.doc
AU29272/02A 2001-05-25 2002-03-28 Prosthetic implant Expired AU784248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU29272/02A AU784248B2 (en) 2001-05-25 2002-03-28 Prosthetic implant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPR5263 2001-05-25
AUPR5263A AUPR526301A0 (en) 2001-05-25 2001-05-25 Prosthetic implant
AU29272/02A AU784248B2 (en) 2001-05-25 2002-03-28 Prosthetic implant

Publications (2)

Publication Number Publication Date
AU2927202A true AU2927202A (en) 2002-11-28
AU784248B2 AU784248B2 (en) 2006-02-23

Family

ID=25621016

Family Applications (1)

Application Number Title Priority Date Filing Date
AU29272/02A Expired AU784248B2 (en) 2001-05-25 2002-03-28 Prosthetic implant

Country Status (1)

Country Link
AU (1) AU784248B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327705A (en) * 1993-05-26 1994-11-29 Kobe Steel Ltd Artificial joint
AU708593B2 (en) * 1996-06-03 1999-08-05 Mathys Medizinaltechnik Ag Femur component for a hip endoprosthesis
US6190417B1 (en) * 1999-07-19 2001-02-20 Kyocera Corporation Femoral prosthesis device

Also Published As

Publication number Publication date
AU784248B2 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
CA2386715C (en) Prosthetic implant
US5702487A (en) Prosthetic device
US6652591B2 (en) Prosthesis with feature aligned to trabeculae
JP3834510B2 (en) Module hip prosthesis
ATE190212T1 (en) FEMORAL HIP JOINT PROSTHESIS
EP0985385A1 (en) Implantable prosthesis with bone engaging ribs
CN111759548B (en) Artificial hip joint femoral stem prosthesis
WO2005072231A2 (en) Femoral implant for hip arthroplasty
WO2005117762A2 (en) Canine femoral stem system
EP2712582A1 (en) Orthopaedic hip prosthesis
EP1013243A3 (en) Femoral component for use in replacement hip joint
US20110251697A1 (en) Femoral hip prosthesis
AU784248B2 (en) Prosthetic implant
AU2006200192B2 (en) Prosthesis with surface feature
EP1025816A1 (en) Femoral component for use in a replacement hip joint
AU665313B2 (en) Femoral stem prosthesis
CZ25296U1 (en) Short cemented hip shaft
JP2016501651A (en) Hip prosthesis with optimized shaft