AU2127501A - Lightweight wall construction - Google Patents
Lightweight wall construction Download PDFInfo
- Publication number
- AU2127501A AU2127501A AU21275/01A AU2127501A AU2127501A AU 2127501 A AU2127501 A AU 2127501A AU 21275/01 A AU21275/01 A AU 21275/01A AU 2127501 A AU2127501 A AU 2127501A AU 2127501 A AU2127501 A AU 2127501A
- Authority
- AU
- Australia
- Prior art keywords
- water
- additive
- enhancing agent
- lightweight concrete
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Panels For Use In Building Construction (AREA)
- Load-Bearing And Curtain Walls (AREA)
- Laminated Bodies (AREA)
Description
WO 01/42164 PCT/AUOO/01524 TITLE: LIGHTWEIGHT WALL CONSTRUCTION TECHNICAL FIELD The present invention relates to cementitious articles and particularly but not only walls, floors and the like of lightweight construction. 5 BACKGROUND OF THE INVENTION There have been many proposals in the past for a lightweight contemporary monolithic wall system to replace conventional masonry walls. Lightweight walling systems provide significant advantages over the prior art particularly the reduction in load placed on foundations. 10 This has proved particularly difficult for external walling systems which require equivalent durability and load bearing capacity to conventional masonry. The lightweight systems must also be highly resistant to damage from impact, thermally and acoustically efficient and suitable for application of different decorative finishes. Traditional systems also require skilled labour. Many replacement systems strive 15 to be quicker, simpler and less expensive to install and less dependent on skilled labour. Off-site construction can produce lightweight wall or floor panels for subsequent installation on-site. Transportation costs with such systems, however, are significant. In situ building systems are preferred for various reasons. Transportation costs are reduced and the in situ systems are also more flexible in the type of wall or floor which can be 20 constructed. The systems also allow services to be installed in the wall during construction rather than subsequent installation. Such in situ construction of lightweight walls, for example, began with the so called "dry wall system". This was a sandwich wall comprised of timber or steel framing with thin sheeting of gypsum or fibre reinforced cement attached thereto. The 25 wall cavity remained hollow. The system was limited to internal partitioning, however, due to its very low load bearing capacity, lack of durability and low mass. The applicant has previously proposed a system for constructing a wall in which a lightweight aggregate concrete slurry is pumped into the void formed between two fibre cement sheets supported on a frame. This system essentially requires the entire wall to 30 be filled with the concrete slurry.
WO 01/42164 PCT/AUOO/01524 -2 This system has proved quite efficient in terms of acoustic and thermal insulation, durability and masonry feel. It does, however, require substantial quantities of cementitious material. Additionally, since the cavity is essentially filled with a monolithic cementitious block, water cannot escape from inside the cavity wall. 5 The cost of lightweight aggregate is also quite high and in many cases is difficult to mix with a cementitious binder to provide a homogeneous mixture. It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative. DISCLOSURE OF THE INVENTION 10 In a first aspect, the present invention provides a lightweight concrete mix for a building panel comprising 1 part by volume of a cementitious binder, 2-10 parts inert coarse aggregate, a cement additive in an amount of between 0.5-0.3% by weight of the cementitious binder and an effective amount of water, the additive including 40-99% of a viscosity enhancing agent which in water either 15 dissolves or forms colloidal dispersions, and 1-60% of an air entrainment agent/surfactant adapted to entrain air when mixed with water and/or pumped. In a second aspect, the present invention provides a method of constructing a panel comprising erecting a substantially rigid frame, attaching to the frame front and rear fibre reinforced cementitious sheets to form a cavity there between and providing to the 20 cavity a lightweight concrete loose fill comprising one part by volume of a cementitious binder, 2-10 parts inert coarse aggregate, a cement additive in an amount of between 0.5 0.3% by weight of the cementitious binder and an effective amount of water, the additive including 40-99% of a viscosity enhancing agent which in water either dissolves or forms colloidal dispersions, and 1-60% of an air entrainment 25 agent/surfactant adapted to entrain air when mixed with water and/or pumped. The applicant has found that the use of a low or no fines concrete mixture for a building panel provides significant advantages over the prior art. No fines concrete has previously been used to provide an external lightweight concrete wall. The procedure involved casting the concrete in conventional formwork, 30 waiting for the mixture to cure, stripping the formwork and then rendering the wall WO 01/42164 PCT/AUOO/01524 -3 surface. This last step was required since the no fines concrete wall is essentially filled with voids between the coated aggregate particles. Several problems arose with such previous methods, however, including: a) the need to maintain the formwork for extended periods (up to two weeks) 5 until sufficient strength had been developed in the mixture. This was due to very little cohesion existing between the coarse aggregate particles since there were little or no fines to fill the gaps therebetween. b) the no fines concrete had to be moist cured continuously for extended periods of time due to the limited volume of cement binder coating the 10 coarse aggregate and its susceptibility to drying particularly in dry or windy conditions. c) when used as external walling, this conventional wall was susceptible to moisture ingress from the outside due to the large volumes of connected pores existing in its honeycombed structure. As mentioned above, this could 15 at least partially be remedied by rendering the inner and outer wall surfaces. Not only was this quite expensive, however, but it reduced the sound absorbing properties of the no fines concrete wall through closing of the surface pores and increasing its density. The present applicant has found a novel mixture which allows the aggregate to 20 bond well with each other and the FRC sheets on the frame, and overcomes or at least reduces some of the difficulties associated with conventional no fines concrete (NFC) by: a) providing impact resistant wall skins to act as permanent formwork and avoid the need to wait for curing and subsequent removal of formwork; 25 b) providing the wall skins to protect the curing mixture in the wall cavity thereby avoiding the need for continuous moisture curing of the core; c) providing a smooth outer surface with the wall skins to avoid the need for rendering, prevent moisture ingress and maintain the acoustic performance of the no fines cement core. 30 The strength of bonding between the no fines cement core and the wall skins of the inventive method is quite surprising. Conventional NFC mixes which contain such high WO 01/42164 PCT/AUOO/01524 -4 volumes of coarse aggregate and relatively low cement contents are normally incapable of generating sufficient binder surface area in contact with the wall skins to enable bondability. In a third aspect, the present invention provides a building panel comprising a 5 substantially rigid frame defining front and rear faces, front and rear fibre reinforced cementitious sheets attached to the frame to form a cavity there between, the cavity being at least partially filled with a lightweight concrete loose fill, wherein the lightweight loose fill comprises 1 part by volume of cementitious binder, 2-10 parts inert coarse aggregate, a cement additive in an amount between 0.05 10 0.3% by weight of the cementitious binder and an effective amount of water, the additive including 40-99% of a viscosity enhancing agent which in water either dissolves or forms colloidal dispersions and 1-60% of an air entrainment agent/surfactant adapted to entrain air when mixed with water and/or pumped. The front and rear fibre reinforced cementitious sheets may be attached to the 15 frame by any method known in the art including gluing, screwing and stapling as disclosed in International Patent Application No. PCT/AU99/00639 which is incorporated herein by reference. Due to the absence of fines in the cementitious binder, the resulting mixture is highly porous and is composed of coarse aggregate bound together with a thin cement 20 paste. Not only does the resultant wall panel have excellent load bearing capacity, it is drainable due to the presence of 20%-40% by mix volume of interconnected pores, and is an excellent insulator due to such a high volume of pores within the mix. It may in fact be designed for its drainability for use as retaining wall on side slopes, for example. The novel cementitious mixture may completely fill the wall cavity if desired. 25 Alternatively, the wall cavity may be partially filled with the no fines concrete mix and the remainder left dry or filled with another material such as polystyrene concrete. While not wishing to be bound by any particular theory, the applicant believes that the present inventive mixture provides enhanced core/skin interface bonding due to the additional chemical bonding contributed by the cement additive and the enhanced 30 moisture retention in the cementitious binder in contact with the wall skins. This last WO 01/42164 PCT/AUOO/01524 -5 aspect reduces drying of the cementitious binder caused by moisture intake by the wall skin, and consequent debonding. In addition, the inventive additive provides excellent bonding between the various aggregate particles. It is believed this is due, at least in part, to the additive providing 5 efficient wetting of the aggregate particles, generation of a foamed cementitious binder in a volume sufficient to coat the coarse aggregate particles, and efficient retention of water in the cementitious binder. In a fourth aspect, the present invention provides an additive for a low or no fines concrete mixture comprising 40-99% of a viscosity agent which in water either dissolves 10 or forms colloidal dispersions and 1-60% of air entrainment agent/surfactant adapted to entrain air when mixed with water and pumped. The proportion of said viscosity enhancing agent ranges from about 40 to about 99, preferably from about 60 to about 90 and still more preferably from about 70 to about 85 parts by weight per 100 parts by weight of the blend. 15 The proportion of said air entrainer is an amount in the range of from about 1 to about 60, preferably from about 10 to about 50 and still more preferably from about 20 to about 40 parts by weight per 100 parts by weight of the blend. The term "viscosity enhancing agent" as used herein includes one or more thixotropic agents which either dissolve in water or which at least form colloidal 20 dispersions in the presence of water wherein the effect is to produce an increase in the viscosity of the water. These include cellulose derivatives, polysaccharides and synthetic hydrophilic polymers.. Examples of cellulose derivatives useful in the composition of this invention include hydroxymethylcellulose, hydroxyethylcellulose and hydroxy propyl methyl 25 cellulose. Examples of polysaccharides useful in the composition of this invention include starches and alginate. Examples of synthetic hydrophilic polymers and copolymers useful in the composition of this invention include polyvinyl alcohol and polyethylene and 30 polypropylene oxides.
WO 01/42164 PCT/AUOO/01524 -6 The term "air entraining agent" (AEAs) refers to surface active agents (surfactants) which act to entrain air in the composition as it is mixed with water and/or pumped. AEAs used in the present invention may include one or more nonionic, cationic and anionic surfactants such as sodium salts of alpha olefine sulphonates and sodium lauryl 5 sulphate or sulphonate. The term "cementitious binder" as used herein, means all inorganic materials which comprise compounds of calcium, aluminium, silicon, oxygen, and/or sulfur which exhibit "hydraulic activity" that is, which set solid and harden in the presence of water. Cements of this type include common Portland cements, fast setting or extra fast setting, 10 sulphate resisting cements, modified cements, alumina cements, high alumina cements, calcium aluminate cements and cements which contain secondary components such as fly ash, pozzolana and the like. The term "cementitious binder" as used herein, also includes a material identified as slag and mixtures thereof with Portland cement. 15 The term "coarse aggregate" refers to the aggregate being inert with respect to other components of the mixture. It includes graded and ungraded aggregate such as washed river gravel, crushed igneous rock or limestone, lightweight aggregate, pumice, scoria, expanded shale (foamed clay) and other artificial aggregates, crushed hard-burnt clay bricks or air-cooled blast furnace slag. It preferably fits within the following 20 criteria: Size range: 5 mm to 20 mm, Maximum % coarser than 20 mm size: 5% Maximum % finer than 5 mm size: 10% The ideal coarse aggregate grading is: 25 single size (gap graded), with highest proportion ranging between 10 mm to 20 mm. containing minimum fines, preferably zero. The load bearing capacity of the cured material is between approximately 5 to 20 MPa. To assist in load bearing, the lightweight cementitious material may include 30 0 to 40% of a thickener, high reactive pozzalanes, such as silica fumes, water sealing WO 01/42164 PCT/AU00/01524 -7 agents, water reducing agents, setting rate modifiers, hardeners, plasticisers or waterproofing agents. The initial quantity of water in the cementitious loose fill will depend upon a number of factors including the type and content of other constituents. In most cases, a 5 water to cement ratio of 0.3 to 0.8 and preferably 0.5 to 0.7 is sufficient to ensure pumpability of the loose fill and adhesion of the aggregate particles to themselves and the FRC sheets. Unless the context clearly requires otherwise, throughout the description and the claims, the words 'comprise', 'comprising', and the like are to be construed in an 10 inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to". MODE(S) FOR CARRYING OUT THE INVENTION So that the present invention may be more clearly understood it will now be described with reference to the following examples: 15 EXAMPLE 1: Effect of cement additive addition in NFC mixes containing high aggregate volume on core/skin bonding Three mix ratios representing NFC mixes that were mostly applied in prior art , ie 1:6, 1:8 and 1:9 by bulk volume of cement, were chosen. The mix design data 20 corresponding to the three mix ratios are shown in Table 1. Table 1: Mix design of NFC mixes with various mix ratios NFC Mix Mix Ratio Porosity, Density Cement Agg. content (by vol.) % kg/ Content per m of mix per m 3 of mix 1:6 Mix Cement 1 27 1733 200 867 Aggregate 6 W/C ratio 0.61 1:8 Mix Cement 1 29 1667 155 894 Aggregate 8 W/C ratio 0.64 1:9 Mix Cement 1 30 1633 140 905 Aggregate 9 W/C ratio 0.66 WO 01/42164 PCT/AU00/01524 Two sets of mixes were produced for each mix ratio using machine mixing. One set was conventionally produced as in prior. The other set contained the cement blend additive at the addition rates shown in Table 2. Table 2: Cement additive addition rates in NFC mixes 5 Cement additive component Material description Addition rate Organic polymeric material: Cellulose ether 0.07% by weight of cement Air entraining agent: Anionic surfactant 0.03% by weight of cement The mixing sequence was as follows: a) Water and cement additive were added and allowed to mix and generate foam. 10 b) Coarse aggregate were batched and allowed to wet fully. c) Cement was added and mixing was continued until all aggregate were coated with foamed cement mix. Prototype sandwich composite walls (2400 mm long x 2400 mm wide x 100 mm thick) comprised of thin fibre reinforced cement skins fixed onto steel stud/track framing 15 were built and wall cavities were filled with the various NFC mixes produced. The wall configurations and details of NFC mixes vs skin/core bond outcomes are shown in Table Table 3: Data corresponding to walls filled with various NFC mix ratios Wall configuration NFC mix details Skin/cre Wall Wall Steel stud NFC NFC Cement bond outcomes skin skin spacing ix mix additive cornierr thicknes (mn.) ratio (by density addition cial I vo. of kg/m3 name) (mm) bulk cent) Hardiflex 6.0 450 1:6 1733 without debonded Pro additive with additive bonded Hardiflex 6.0 450 1:8 1666 without debonded Pro additive with additive bonded WO 01/42164 PCT/AUOO/01524 -9 Table 3 Continued Hardiflex 6.0 450 1:9 1633 without debonded Pro additive with additive bonded Hardiflex 4.5 450 1:6 1733 without debonded additive with additive bonded Hardiflex 4.5 450 1:8 1666 without debonded additive with additive bonded Hardiflex 4.5 450 1:9 1633 without debonded additive with additive bonded (*) Cellulose fibre-reinforced cementitious sheet laminates (trade name: fibre cement) 5 Table 3 shows that NFC mixes containing coarse aggregate ranging between 6 to 9 by volume of bulk cement addition have failed to bond with the composite wall skins. This is expected as these mixes contain low cement contents (ranging between 200 kg/m 3 to 140 kg/m 3 of mix - Table 1) resulting in low cement paste / coarse aggregate volume ratios, ie limited cement paste volumes, which are unable to provide sufficient 10 binder surface area at the skin/core interface to enable bonding. On the other hand, the NFC mixes containing cement additive components at the addition rates shown in Table 2 were surprisingly able to bond well with the fibre reinforced cementitious skins. It is hypothesised that the presence of the cement additive in the mix enables: 15 a) efficient wetting of the coarse aggregate prior to cement addition. b) generation of foamed cement paste in sufficient volume for coating the coarse aggregate in lean NFC mixes (cement content < 200 kg/m 3 ). c) efficient water retention in the cement paste which reduces water deprivation in NFC mixes and consequent debonding due to water absorption by highly 20 permeable FRC skins. d) effective core/sheet bond in lean NFC mixes due to the bonding characteristics of the cement blend additive.
WO 01/42164 PCT/AUOO/01524 - 10 EXAMPLE 2 Pumpability of the NFC mixes containing cement blend additive This test aims to produce NFC mixes that could be pumped into sandwich wall cavities to form a flat solid wall in which the core infill (NFC mix) is well-bonded with 5 the sandwich fibre cement (FRC) skins. NFC mix details A 1:7 cement: aggregate volumeric mix ratio was chosen as a standard NFC core infill mix (cement content = 177 kg/m 3 of mix, aggregate content = 0.88 m 3 /m 3 of mix). The cement blend additive was dosed at the addition rates shown in Table 4. 10 Five NFC mixes containing a wide range of aggregate types and sizes were investigated for pumpability, as shown in Table 5. Table 4: Cement additive addition rate in the 1:7 NFC mix Cement additive component Material description Addition rate Viscosity enhancing agent: Cellulose ether 0.09% by weight of cement Air entraining agent: Anionic surfactant 0.04% by weight of cement Table 5: Details of 1:7 cement: aggregate (by volume) NFC mixes with various 15 aggregate types and sizes Mix Aggregate Aggregate NFC NFC Water/Cement Designation Type Max. Size Density Porosity ratio (mm) (kg/m 3 ) (%) (by weight) NFC 20 R Rounded agg. 20 1650 32 0.50 (Nepean River) NFC 10 R Rounded agg. 10 1725 29 0.60 (Nepean River) NFC 20 C Crushed stone 20 1500 37 0.50 (Blue Metal) NFC 10 C Crushed stone 10 1625 32 0.60 (Blue Metal) NFC 10 S Lightweight 10 1200 30 0.50 volcanic agg. (Scoria) WO 01/42164 PCT/AUOO/01524 - 11 Wall configurations Four (1.2 m wide x 2.4 m high) prototype sandwich walls lined with fibre cement (FRC) skins were built. They included two staple-fixed sandwich walls and two screw 5 fixed sandwich walls (configurations as shown in Table 6). Table 6: Prototype wall configurations Wall Mix FRC Sheet Stud Stud Sheet Fixing Mix Drop No. Designatio Type (*) Type Spacing Methodology Height n (mm) (mm) Wall # 1 NFC 20 R 6.6 mm 70 mm 400 Staple-fixed 2700 Hardiwall TM box @ 100 mm c/c section Wall # 2 NFC 10 R 6.6 mm 70 mm 400 Staple-fixed 2700 Hardiwall TM box 100 mm c/c section Wall # 3 NFC 10 S 6.6 mm 64 mm 400 Screw-fixed 2700 HardiwallTM C-section @ 150 mm c/c Wall # 4 NFC 20 C 6.6 mm 64 mm 300 Screw-fixed 2700 HardiwallTM C-section @ 150 mm c/c Wall # 5 NFC 10 C 6.0 mm 64 mm 600 Screw-fixed 2700 Hardiflex T M ______ ~~C-ecio _____ ____ _ __- _ _@200 mm. c/c____ Wall # 6 NFC 10 C 6.0 mm 70 mm 400 Staple-fixed 2700 Hardiflex TM box @200 mm c/c section Wall # 7 NFC 10 C 4.5 mm 70 mm 400 Staple-fixed 2700 Hardiflex T M box @ 100 mm section c/c Wall # 8 NFC 10 C 6.0 mm 90 mm 400 Screw-fixed 6000 HardiflexTM adfexM C-section :@ 200 mm. c/c _____ (*) Cellulose fibre-reinforced cementitious sheet laminates (trade name: fibre cement) The trial used a 200 litre tilting mixture to produce the five NFC mixes outlined in Table 5. The mixing sequence was as follows. 10 1. Water and the cement additive were added and allowed to mix and generate foam. 2. Course aggregate was then batched and allowed to wet fully.
WO 01/42164 PCT/AUOO/01524 - 12 3. Cement was added and mixing was continued until all aggregate were coated with the foamed cement mix. Each mix was then pumped into the cavities in the various walls (outlined in Table 6) using a rubber hose of 50 mm diameter. The pump used was a pneumatic rotary dry 5 mix spraying machine. This machine is designed for SHOTCRETE T M and GUNITETM applications but it was speculated may be able to pump the NFC mix. The following potential difficulties, however, were identified in using such a machine to convey the NFC mixture: a) Line blockage due to aggregate interlock and absence of finds in the NFC 10 mix, b) Back-spraying of the NFC mix and incomplete filing of the wall cavity due to the excessive thrust generated by the pneumatic rotary spraying machine, and c) Blowing out of the FRC skins (especially the staple-fixed skins) due to the excessive thrust generated by the pneumatic rotary spraying machine. 15 To avoid at least some of these difficulties, the pump was operated at a very low pressure (less than 30 % of normal pressure required for Guniting or Shotcreting). Pumping was continued until all the wall cavities were filled and the wall were inspected the next day for evidence of core/skin bondability. The results of this test were quite surprising. 20 The NFC mixes exhibit the flow behaviour of loose fill, whilst being pumpable similar to wet concrete mixes. The pneumatic rotary spraying machine, which was designed primarily for spraying dry concrete mixes, was able to pump the wet NFC mixes with water/cement ratios of around 0.5 by weight, and containing 10 mm and 20 mm maximum aggregate 25 size without any line blockage or jamming. The sandwich walls were successfully filled with NFC mixes. Complete void-free filing of cavities was achieved. The NFC mixes appeared to flow, consolidate and fill all wall cavities without bridging or clumping. The staple-fixed walls were able to withstand the dynamic thrust generated due to 30 core filling without blowing out. Especially surprising was wall # 7 in Table 6 above WO 01/42164 PCT/AUOO/01524 - 13 which incorporated a 4.5 mm thick fibre cement sheet. This thickness is outside the normal range conventionally used for permanent form work in concrete filled cavities. Such a thin sheet would normally be expected to blow out or bow considerably. Filling from a six metre height in one lift was carried out successfully without 5 excessive bowing, sheet blow out or presence of unfilled core areas (see wall #8 in Table 6 above). This is very surprising since this test was expected to exhibit some unfilled areas near the bottom of the wall due to the height of the drop. Wall cavities with 600 mm c/c stud spacing were successfully filled without excessive bowing or sheet blow out (see wall # 5 in Table 6 above). This was entirely 10 unexpected since such a large span between studs, ie 600 mm would normally cause excessive bowing or sheet blow out. The sandwich walls (including the staple-fixed walls) were successfully completely filled with the NFC mixes. The NFC mixes appeared to flow, consolidate and fill all the wall cavities without bridging or clumping. 15 Consistent bondability was achieved between the NFC core infill and the FRC skins thus enabling the sandwich walls to exhibit solid masonry feel. The resultant core-filled walls exhibited very good surface flatness with bowing between the studs in the core-filled walls of less than 1 mm. As a result, it was clear that the low or no fines concrete mix arising from the 20 present invention provided an excellent pumpable mix. The use of the pneumatic rotary dry mix spraying machine for pumping such a low or no fines concrete mix was also quite surprising. In particular, the combination of the cement additive along with the reduction in normal pressure provide a significant advance in techniques and machinery for filling cavity walls. 25 Accordingly, it can be seen that the present invention provides a viable alternative to conventional masonry systems and current lightweight wall systems. It will further be appreciated that the disclosed panel construction may be altered or embodied in other forms without departing from the spirit or scope of the present invention.
Claims (80)
1. A lightweight concrete mix for a building panel comprising 1 part by volume of a cementitious binder, 2-10 parts inert coarse aggregate, a cement additive in an amount of between 0.5-0.3% by weight of the cementitious binder and an effective amount of 5 water, the additive including 40-99% of a viscosity enhancing agent which in water either dissolves or forms colloidal dispersions, and 1-60% of an air entrainment agent/surfactant adapted to entrain air when mixed with water and/or pumped.
2. A lightweight concrete mix as claimed in claim 1, wherein the additive comprises 10 60-90% of a viscosity enhancing agent.
3. A lightweight concrete mix as claimed in claim 1 or 2, wherein the additive comprises 70-85% of a viscosity enhancing agent.
4. A lightweight concrete mix as claimed in any one of the preceding claims, wherein the additive comprises 10-50% of air entrainment agent/surfactant. 15
5. A lightweight concrete mix as claimed in any one of the preceding claims, wherein the additive comprises 20-40% of air entrainment agent/surfactant.
6. A lightweight concrete mix as claimed in any one of the preceding claims, wherein the viscosity enhancing agent comprises one or more thixotropic agents which either dissolve in water or form colloidal dispersions in the presence of water to produce an 20 increase in the viscosity of the water.
7. A lightweight concrete mix as claimed in any one of the preceding claims, wherein the viscosity enhancing agent is selected from the group consisting of cellulose derivatives, polysaccharide or synthetic hydrophilic polymers.
8. A lightweight concrete mix as claimed in any one of the preceding claims, wherein 25 the viscosity enhancing agent is selected from the group consisting of hydroxymethylcellulose, hydroxyethylcellulose and hydroxypropylmethylcellulose.
9. A lightweight concrete mix as claimed in any one of the preceding claims, wherein the viscosity enhancing agent is selected from the group consistent of starches or alginate. WO 01/42164 PCT/AUOO/01524 - 15
10. A lightweight concrete mix as claimed in any one of the preceding claims, wherein the viscosity enhancing agent is a synthetic hydrophilic polymer or copolymer selected from the group consisting of polyvinyl alcohols, polyethylene or polypropylene oxides.
11. A lightweight concrete mix as claimed in any one of the preceding claims, wherein 5 the air entraining agent comprises one or more nonionic, cationic or anionic surfactants.
12. A lightweight concrete mix as claimed in any one of the preceding claims, wherein the air entrainment agent is selected from the group consisting of sodium salts of alpha olefin sulphonates, sodium lauryl sulphate or sulphonate.
13. A lightweight concrete mix as claimed in any one of the preceding claims, wherein 10 the cementitious binder is an inorganic material comprising calcium, aluminium, silicone, oxygen or sulphur compounds with sufficient hydraulic activity to solidify or harden in the presence of water.
14. A lightweight concrete mix as claimed in any one of the preceding claims, wherein the cementitious compound is selected from the group consisting of common portland 15 cements, fast setting or extra fast setting cements, sulphate resisting cements, modified cements, alumina cements, high alumina cements, calcium aluminate cements and cements containing secondary compounds such as fly ash, pozzolana and the like.
15. A lightweight concrete mix as claimed in any one of the preceding claims, wherein the coarse aggregate has a size range of between 5 and 20 mm with 5% maximum 20 aggregate coarser than 20 mm and 10% maximum finer than 5 mm size.
16. A lightweight concrete mix as claimed in any one of the preceding claims, wherein the coarse aggregate is gap graded as a single size with the highest proportion being between 10 mm and 20 mm.
17. A lightweight concrete mix as claimed in any one of the preceding claims, wherein 25 the coarse aggregate contains between 0 and 10% by weight of fines.
18. A lightweight concrete mix as claimed in any one of the preceding claims, wherein the coarse aggregate is inert with respect to the other components of the mixture and is selected from the group consisting of washed river gravel, crushed igneous rock or limestone, lightweight aggregate, pumice, scoria, expanded shale (foamed clay) or other WO 01/42164 PCT/AUOO/01524 - 16 artificial aggregates such as crushed hard-burnt clay bricks or air-cooled blast furnace slag.
19. A lightweight concrete mix as claimed in any one of the preceding claims, wherein for load bearing purposes, the mix may contain 0 to 40% of a thickener, high reactive 5 pozzalanes such as silica fumes, water sealing agents, water reducing agents, setting rate modifiers, hardeners, plasticisers or water-proofing agents.
20. A lightweight concrete mix as claimed in any one of the preceding claims, wherein the water to cement ratio is 0.3 to 0.8.
21. A lightweight concrete mix as claimed in any one of the preceding claims, wherein 10 the water to cement ratio is 0.4 to 0.7.
22. A method of constructing a panel comprising erecting a substantially rigid frame, attaching to the frame front and rear fibre reinforced cementitious sheets to form a cavity there between and providing to the cavity a lightweight concrete loose fill comprising one part by volume of a cementitious binder, 2-10 parts inert coarse aggregate, a cement 15 additive in an amount of between 0.5-0.3% by weight of the cementitious binder and an effective amount of water, the additive including 40-99% of a viscosity enhancing agent which in water either dissolves or forms colloidal dispersions, and 1-60% of an air entrainment agent/surfactant adapted to entrain air when mixed with water and/or pumped. 20
23. A method as claimed in claim 22, wherein the entire cavity is filled with the lightweight concrete loose fill.
24. A method as claimed in claim 22 and 23, wherein the cavity is partially filled with the lightweight concrete loose fill, the remainder being left dry or filled with another material.
25 25. A method as claimed in claim 24, wherein the additive comprises 60-90% of a viscosity enhancing agent.
26. A method as claimed in claim 24 or 25, wherein the additive comprises 70-85% of a viscosity enhancing agent.
27. A method as claimed in any one of claims 24 or 26, wherein the additive 30 comprises 10-50% of air entrainment agent/surfactant. WO 01/42164 PCT/AUOO/01524 -17
28. A method as claimed in any one of claims 24 to 27, wherein the additive comprises 20-40% of air entrainment agent/surfactant.
29. A method as claimed in any one of claims 24 to 28, wherein the viscosity enhancing agent comprises one or more thixotropic agents which either dissolve in water 5 or form colloidal dispersions in the presence of water to produce an increase in the viscosity of the water.
30. A method as claimed in any one of claims 24 to 29, wherein the viscosity enhancing agent is selected from the group consisting of cellulose derivatives, polysaccharide or synthetic hydrophilic polymers. 10
31. A method as claimed in any one of claims 24 to 30, wherein the viscosity enhancing agent is selected from the group consisting of hydroxymethylcellulose, hydroxyethylcellulose and hydroxypropylmethylcellulose.
32. A method as claimed in any one of claims 24 to 31, wherein the viscosity enhancing agent is selected from the group consistent of starches or alginate. 15
33. A method as claimed in any one of claims 24 to 32, wherein the viscosity enhancing agent is a synthetic hydrophilic polymer or copolymer selected from the group consisting of polyvinyl alcohols, polyethylene or polypropylene oxides.
34. A method as claimed in any one of claims 24 to 33, wherein the air entraining agent comprises one or more nonionic, cationic or anionic surfactants. 20
35. A method as claimed in any one of claims 24 to 34, wherein the air entrainment agent is selected from the group consisting of sodium salts of alpha olefin sulphonates, sodium lauryl sulphate or sulphonate.
36. A method as claimed in any one of claims 24 to 35, wherein the cementitious binder is an inorganic material comprising calcium, aluminium, silicone, oxygen or 25 sulphur compounds with sufficient hydraulic activity to solidify or harden in the presence of water.
37. A method as claimed in any one of claims 24 to 36, wherein the cementitious compound is selected from the group consisting of common portland cements, fast setting or extra fast setting cements, sulphate resisting cements, modified cements, WO 01/42164 PCT/AUOO/01524 - 18 alumina cements, high alumina cements, calcium aluminate cements and cements containing secondary compounds such as fly ash, pozzalana and the like.
38. A method as claimed in any one of claims 24 to 37, wherein the coarse aggregate has a size range of between 5 and 20 mm with 5% maximum aggregate coarser than 20 5 mm and 10% maximum finer than 5 mm size.
39. A method as claimed in any one of claims 24 to 38, wherein the coarse aggregate is gap graded as a single size with the highest proportion being between 10 mm and 20 mm.
40. A method as claimed in any one of claims 24 to 39, wherein the coarse aggregate 10 contains between 0 and 10% by weight of fines.
41. A method as claimed in any one of claims 24 to 40, wherein the coarse aggregate is inert with respect to the other components of the mixture and is selected from the group consisting of washed river gravel, crushed igneous rock or limestone, lightweight aggregate, pumice, scoria, expanded shale (foamed clay) or other artificial aggregates 15 such as crushed hard-burnt clay bricks or air-cooled blast furnace slag.
42. A method as claimed in any one of claims 24 to 41, wherein for load bearing purposes, the mix may contain 0 to 40% of a thickener, high reactive pozzalanes such as silica fumes, water sealing agents, water reducing agents, setting rate modifiers, hardeners, plasticisers or water-proofing agents. 20
43. A method as claimed in any one of claims 24 to 42, wherein the water to cement ratio is 0.3 to 0.8.
44. A method as claimed in any one of claims 24 to 43, wherein the water to cement ratio is 0.4 to 0.7.
45. A building panel comprising a substantially rigid frame defining front and rear 25 faces, front and rear fibre reinforced cementitious sheets attached to the frame to form a cavity there between, the cavity being at least partially filled with a lightweight concrete loose fill, wherein the lightweight loose fill comprises 1 part by volume of cementitious binder, 2-10 parts inert coarse aggregate, a cement additive in an amount between 0.05 30 0.3% by weight of the cementitious binder and an effective amount of water, WO 01/42164 PCT/AUOO/01524 - 19 the additive including 40-99% of a viscosity enhancing agent which in water either dissolves or forms colloidal dispersions and 1-60% of an air entrainment agent/surfactant adapted to entrain air when mixed with water and/or pumped.
46. A building panel as claimed in claim 45, wherein the entire cavity is filled with the 5 lightweight concrete loose fill.
47. A building panel as claimed in claim 45 and 46, wherein the cavity is partially filled with the lightweight concrete loose fill, the remainder being left dry or filled with another material.
48. A building panel as claimed in any one of claims 45 to 47, wherein that portion of 10 the cavity filled with a lightweight concrete loose fill has, on curing, between 20-40% by volume of interconnected pores/voids.
49. A building panel as claimed in claim 48, wherein the additive comprises 60-90% of a viscosity enhancing agent.
50. A building panel as claimed in claim 48 or 49, wherein the additive comprises 70 15 85% of a viscosity enhancing agent.
51. A building panel as claimed in any one of claims 48 to 50, wherein the additive comprises 10-50% of air entrainment agent/surfactant.
52. A building panel as claimed in any one of claims 48 to 51, wherein the additive comprises 20-40% of air entrainment agent/surfactant. 20
53. A building panel as claimed in any one of claims 48 to 52, wherein the viscosity enhancing agent comprises one or more thixotropic agents which either dissolve in water or form colloidal dispersions in the presence of water to produce an increase in the viscosity of the water.
54. A building panel as claimed in any one of claims 48 to 53, wherein the viscosity 25 enhancing agent is selected from the group consisting of cellulose derivatives, polysaccharide or synthetic hydrophilic polymers.
55. A building panel as claimed in any one of claims 48 to 54, wherein the viscosity enhancing agent is selected from the group consisting of hydroxymethylcellulose, hydroxyethylcellulose and hydroxypropylmethylcellulose. WO 01/42164 PCT/AUOO/01524 -20
56. A building panel as claimed in any one of claims 48 to 55, wherein the viscosity enhancing agent is selected from the group consistent of starches or alginate.
57. A building panel as claimed in any one of claims 48 to 56, wherein the viscosity enhancing agent is a synthetic hydrophilic polymer or copolymer selected from the 5 group consisting of polyvinyl alcohols, polyethylene or polypropylene oxides.
58. A building panel as claimed in any one of claims 48 to 57, wherein the air entraining agent comprises one or more nonionic, cationic or anionic surfactants.
59. A building panel as claimed in any one of claims 48 to 58, wherein the air entrainment agent is selected from the group consisting of sodium salts of alpha olefin 10 sulphonates, sodium lauryl sulphate or sulphonate.
60. A building panel as claimed in any one of claims 48 to 59, wherein the cementitious binder is an inorganic material comprising calcium, aluminium, silicone, oxygen or sulphur compounds with sufficient hydraulic activity to solidify or harden in the presence of water. 15
61. A building panel as claimed in any one of claims 48 to 60, wherein the cementitious compound is selected from the group consisting of common portland cements, fast setting or extra fast setting cements, sulphate resisting cements, modified cements, alumina cements, high alumina cements, calcium aluminate cements and cements containing secondary compounds such as fly ash, pozzalana and the like. 20
62. A building panel as claimed in any one of claims 48 to 61, wherein the coarse aggregate has a size range of between 5 and 20 mm with 5% maximum aggregate coarser than 20 mm and 10% maximum finer than 5 mm size.
63. A building panel as claimed in any one of claims 48 to 62, wherein the coarse aggregate is gap graded as a single size with the highest proportion being between 10 25 mm and 20 mm.
64. A building panel as claimed in any one of claims 48 to 63, wherein the coarse aggregate contains between 0 and 10% by weight of fines.
65. A building panel as claimed in any one of claims 48 to 64, wherein the coarse aggregate is inert with respect to the other components of the mixture and is selected 30 from the group consisting of washed river gravel, crushed igneous rock or limestone, WO 01/42164 PCT/AUOO/01524 - 21 lightweight aggregate, pumice, scoria, expanded shale (foamed clay) or other artificial aggregates such as crushed hard-burnt clay bricks or air-cooled blast furnace slag.
66. A building panel as claimed in any one of claims 48 to 65, wherein for load bearing purposes, the mix may contain 0 to 40% of a thickener, high reactive pozzalanes 5 such as silica fumes, water sealing agents, water reducing agents, setting rate modifiers, hardeners, plasticisers or water-proofing agents.
67. A building panel as claimed in any one of claims 48 to 66, wherein the water to cement ratio is 0.3 to 0.8.
68. A building panel as claimed in any one of claims 48 to 67, wherein the water to 10 cement ratio is 0.4 to 0.7.
69. An additive for a low or no fines concrete mixture comprising 40-99% of a viscosity agent which in water either dissolves or forms colloidal dispersions and 1-60% of air entrainment agent/surfactant adapted to entrain air when mixed with water and pumped. 15
70. An additive as claimed in claim 69, wherein the additive comprises 60-90% of a viscosity enhancing agent.
71. An additive as claimed in claim 69 or 70, wherein the additive comprises 70-85% of a viscosity enhancing agent.
72. An additive as claimed in any one of claims 69 to 71, wherein the additive 20 comprises 10-50% of air entrainment agent/surfactant.
73. An additive as claimed in any one of claims 69 to 72, wherein the additive comprises 20-40% of air entrainment agent/surfactant.
74. An additive as claimed in any one of claims 69 to 73, wherein the viscosity enhancing agent comprises one or more thixotropic agents which either dissolve in water 25 or form colloidal dispersions in the presence of water to produce an increase in the viscosity of the water.
75. An additive as claimed in any one of claims 69 to 74, wherein the viscosity enhancing agent is selected from the group consisting of cellulose derivatives, polysaccharide or synthetic hydrophilic polymers. WO 01/42164 PCT/AUOO/01524 - 22
76. An additive as claimed in any one of claims 69 to 75, wherein the viscosity enhancing agent is selected from the group consisting of hydroxymethylcellulose, hydroxyethylcellulose and hydroxypropylmethylcellulose.
77. An additive as claimed in any one of claims 69 to 76, wherein the viscosity 5 enhancing agent is selected from the group consistent of starches or alginate.
78. An additive as claimed in any one of claims 69 to 77, wherein the viscosity enhancing agent is a synthetic hydrophilic polymer or copolymer selected from the group consisting of polyvinyl alcohols, polyethylene or polypropylene oxides.
79. An additive as claimed in any one of claims 69 to 78, wherein the air entraining 10 agent comprises one or more nonionic, cationic or anionic surfactants.
80. An additive as claimed in any one of claims 69 to 79, wherein the air entrainment agent is selected from the group consisting of sodium salts of alpha olefin sulphonates, sodium lauryl sulphate or sulphonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU21275/01A AU774869C (en) | 1999-12-10 | 2000-12-08 | Lightweight wall construction |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPQ4570A AUPQ457099A0 (en) | 1999-12-10 | 1999-12-10 | Lightweight wall construction |
AUPQ4570 | 1999-12-10 | ||
PCT/AU2000/001524 WO2001042164A1 (en) | 1999-12-10 | 2000-12-08 | Lightweight wall construction |
AU21275/01A AU774869C (en) | 1999-12-10 | 2000-12-08 | Lightweight wall construction |
Publications (3)
Publication Number | Publication Date |
---|---|
AU2127501A true AU2127501A (en) | 2001-06-18 |
AU774869B2 AU774869B2 (en) | 2004-07-08 |
AU774869C AU774869C (en) | 2005-03-17 |
Family
ID=25618178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU21275/01A Ceased AU774869C (en) | 1999-12-10 | 2000-12-08 | Lightweight wall construction |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU774869C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115716359A (en) * | 2022-10-18 | 2023-02-28 | 中铁第四勘察设计院集团有限公司 | Bonding type concrete canvas for track plate and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3989534A (en) * | 1973-03-19 | 1976-11-02 | Mark Plunguian | Foamed cementitious compositions and method of producing same |
GB8423076D0 (en) * | 1984-09-12 | 1984-10-17 | Blue Circle Ind Plc | Foamed cement compositions |
-
2000
- 2000-12-08 AU AU21275/01A patent/AU774869C/en not_active Ceased
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115716359A (en) * | 2022-10-18 | 2023-02-28 | 中铁第四勘察设计院集团有限公司 | Bonding type concrete canvas for track plate and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
AU774869B2 (en) | 2004-07-08 |
AU774869C (en) | 2005-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2393678C (en) | Lightweight wall construction | |
JP2003516302A5 (en) | ||
AU758420B2 (en) | Concrete formulation | |
KR100437300B1 (en) | Wall member and method of construction thereof | |
US20180058074A1 (en) | High performance, lightweight precast composite insulated concrete panels and high energy-efficient structures and methods of making same | |
US8277556B2 (en) | Articles made from cementitious foam and slurry | |
CN103964795B (en) | Reinforced cement based composite material with fiber woven mesh and preparation method of reinforced cement based composite material | |
US20150175887A1 (en) | Fire core compositions and methods | |
CN101844898A (en) | Multifunctional thermal insulation mortar and production method thereof | |
Bernardo et al. | Advancements in shotcrete technology | |
KR102626820B1 (en) | Ultra high strength shotcrete composition and construction method using the same | |
Beall | New masonry products and materials | |
AU774869C (en) | Lightweight wall construction | |
CN1288096A (en) | Method for mfg. sandwich structure light wt. wall plate and its inner layer mixed mortar | |
CN212405562U (en) | Structure reinforcing and energy-conserving integration brick brickwork wall that reforms transform | |
CN2150045Y (en) | Light-weight fire-retardant sandwich plate | |
JPH07173997A (en) | Lining structure for tunnel inner wall and construction method therefor | |
JPH0678678B2 (en) | Mortar wall construction method | |
JPH0578610B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DA2 | Applications for amendment section 104 |
Free format text: THE NATURE OF THE PROPOSED AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 20040812 |
|
DA2 | Applications for amendment section 104 |
Free format text: THE NATURE OF THE PROPOSED AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 20040812 |
|
PC1 | Assignment before grant (sect. 113) |
Owner name: JAMES HARDIE INTERNATIONAL FINANCE B.V. Free format text: THE FORMER OWNER WAS: JAMES HARDIE RESEARCH PTY LIMITED |
|
FGA | Letters patent sealed or granted (standard patent) |