AU2023222824A1 - High entropy collecting flotation method for low grade zinc oxide ore - Google Patents

High entropy collecting flotation method for low grade zinc oxide ore Download PDF

Info

Publication number
AU2023222824A1
AU2023222824A1 AU2023222824A AU2023222824A AU2023222824A1 AU 2023222824 A1 AU2023222824 A1 AU 2023222824A1 AU 2023222824 A AU2023222824 A AU 2023222824A AU 2023222824 A AU2023222824 A AU 2023222824A AU 2023222824 A1 AU2023222824 A1 AU 2023222824A1
Authority
AU
Australia
Prior art keywords
zinc oxide
low
oxide ore
entropy
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
AU2023222824A
Inventor
Shaojun BAI
Qicheng Feng
Guang HAN
Zhiwei Li
Runpeng LIAO
Dianwen LIU
Jian Liu
Yongchao MIAO
Zhihao Shen
Shuming Wen
Yongjun XIAN
Qian Zhang
Song Zhang
Qi Zuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Univ Kunming Science & Technology
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kunming Science & Technology, Kunming University of Science and Technology filed Critical Univ Kunming Science & Technology
Publication of AU2023222824A1 publication Critical patent/AU2023222824A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/002Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/012Organic compounds containing sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/018Mixtures of inorganic and organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/06Depressants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • B03D2203/04Non-sulfide ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a high-entropy collecting flotation method for low-grade zinc oxide ore, and belongs to the technical field of ore dressing. In the present invention, aiming at the zinc oxide ore having a low grade and a high oxidation ratio and mainly contains smithsonite and calamine as zinc oxide mineral, gangue minerals are inhibited by means of a multi-component inhibitor, the zinc oxide minerals are vulcanized by means of a vulcanizing agent, then the zinc oxide minerals are collected by means of high-entropy collecting agents in combination, thereby a high recovery ratio of the zinc oxide ore is achieved. According to the method, desliming is not needed, and gangue is fully inhibited; compared with the vulcanization-amine flotation process and vulcanization-xanthate flotation process, the reagent consumption is lower, the foam viscosity is remarkably reduced, the process route is simple, the production process is easy to control, and the flotation recycling efficiency of the low-grade zinc oxide ore is remarkably improved.

Description

Description High-Entropy Collecting Flotation Method for Low-Grade Zinc Oxide Ore
Technical field The present invention relates to a high-entropy collecting flotation method for low-grade zinc oxide ore, and belongs to the technical field of ore dressing. Background Art Zinc ore resources mainly include zinc sulfide ores and zinc oxide ores, wherein zinc sulfide ores account for about 80% and zinc oxide ores account for about 20%. Because there is a large quantity of zinc sulfide ore resources, ore dressing recovery of which is relatively easy, 95% or more zinc comes from the zinc sulfide ore resources presently. The ore dressing recovery of zinc oxide ores is very difficult, and the ore dressing recovery percentage is low. So far, no effective ore dressing method for zinc oxide ores has been applied in the industry. Today, with the shortage of zinc ore resources, the efficient utilization of zinc oxide ore resources has become a hot topic for ore dressing workers to study. Zinc oxide ores, including smithsonite, calamine, willemite and hydrozincite, etc., are zinc minerals with relative complex composition and structure, and may lead to sliming easily during treatment. At present, flotation processes are usually used for zinc oxide ore dressing, and there are six flotation processes commonly used for zinc oxide ores, namely, vulcanization-amine flotation, vulcanization-xanthate flotation, reverse flotation, fatty acid direct flotation, flocculating flotation and chelating flotation. The vulcanization-amine flotation process is to vulcanize zinc oxide ores with a vulcanizing reagent first, and then use an aliphatic amine collector to separate the mineral. The vulcanization-amine flotation process is sensitive to slime and soluble salts, and consumes the vulcanizing reagent heavily. Most zinc oxide ores have the features of serious sliming and a high content of soluble salts. Although this process has achieved a good result in laboratories, it has not been widely applied in industry because a large amount of foams are produced when this method is applied in industry, and as a result, production cannot proceed normally. For separating zinc oxide ores, the vulcanization-xanthate flotation process is to vulcanize the zinc oxide ores first, then further activate with copper sulfate, and then collect with high-grade xanthate. This process requires heating in the vulcanization process, because the effect of vulcanization at room temperature is poor. However, even if the vulcanization is performed at an elevated temperature, the flotation recovery percentage is low, usually lower than 70%. The reverse flotation process is to adjust the pH to about 7, inhibit the zinc oxide minerals in the rough concentrate of zinc oxide with starch etc., and remove gangue minerals through reverse flotation. This process can effectively remove a majority of carbonates, sulfates and ferriferous gangue minerals (e.g., mica, sericite and chlorite, etc.). However, the effect of this process is not ideal when it is applied to flotation of raw ores. The fatty acid flotation process uses fatty acid collectors to directly separate zinc oxide ores. This process has a certain flotation effect on zinc oxide ores that contain siliceous gangue or argillaceous gangue minerals. However, it cannot attain a good flotation effect for zinc oxide ores that contain carbonate gangue minerals, and it cannot attain an ideal effect for zinc oxide ores with a high iron content. This process has not been widely applied in industry because of its poor selectivity to most ores. The chelating flotation process is to collect smithsonite and monheimite and separate them from gangue minerals by using chelating collectors. This flotation process has good selectivity and .I .
collection performance. However, chelating agents are expensive and when the chelating agent is used as the collector solely, as it cannot make the ores have strong surface hydrophobicity, a large amount of chelating agent has to be used, so it has not been widely applied in production practice. In the process of recovering zinc from low-grade zinc oxide ores, selective leaching and recovery of ) zinc from the low-grade zinc oxide ores can be realized by adjusting the pH of a glycine leaching agent with an alkaline solution and selectively leaching zinc from the zinc oxide ores. However, this process consumes a lot of leaching agents, involves a high cost and difficult tailings treatment, and its industrial application is limited. In a copper-ammonia complex stepped activation-enhanced vulcanization flotation process for fine-grained zinc oxide ore, in view of the problems of poor vulcanization effect, unstable adsorption of collectors, and unsatisfactory flotation indexes in the direct vulcanization flotation process, a combined regulator is added to the pulp to control the slime, then a new copper-ammonia complex activator is added for primary activation, then a combined vulcanizing reagent is added for enhanced surface vulcanization, then the copper-ammonia complex is further added to the pulp for secondary activation, and finally, a combined collector and a foaming agent are sequentially added for flotation to recover the zinc minerals in the ore. However, when this process is used to treat complex zinc oxide ores with high slime content, the flotation recovery percentage still cannot meet the industrial requirements. Ammonia leaching can be used to recover zinc from zinc oxide ores, but the consumption of ammonia and the recovery cost are high, and it is difficult to treat ammonia-containing tailings, which have adverse effects on the environment. Ammonia leaching can obtain a high leaching rate in laboratories, but its industrial application is limited. Acid leaching can be used to recover zinc from zinc oxide ores, but large quantities of carbonate minerals consume sulfuric acid heavily and produce lots of carbon dioxide at the same time. It is difficult to treat the acidic wastewater and tailings, which may pollute the environment and limit the industrial application of this process. By direct reduction roasting of zinc oxide ores at a high temperature and recovering zinc by volatilizing zinc oxide powder, a high recovery percentage can be achieved; however, for low-grade zinc oxide ores, the process has high energy consumption and high cost, and is unreasonable in economic. Therefore, the process cannot be widely applied in the industry under the current situation of pursuing low carbon and low energy consumption. Based on the above analysis, mineral separation and recovery from low-grade zinc oxide ores is still an urgent resource recycle challenge. Despite decades of research on this issue, no breakthrough has been made so far. Contents of the Invention Aiming at low-grade zinc oxide ores mainly consisting of smithsonite and calamine, the present invention provides a high-entropy collecting flotation method for low-grade zinc oxide ore. In the present invention, gangue minerals are inhibited by means of a multi-component inhibitor, zinc oxide minerals are vulcanized by means of a vulcanizing reagent, and then the zinc oxide minerals are collected by means of a combination of high-entropy collectors, thereby a high recovery percentage of zinc oxide ore is achieved; and efficient recycling of zinc oxide ore resources is realized. A high-entropy collecting flotation method for low-grade zinc oxide ore, comprising the following specific steps: (1) evenly mixing sodium silicate, carboxymethyl cellulose, sodium hexametaphosphate and tannin to form a gangue mineral inhibitor A; (2) evenly mixing a xanthate collector, ammonium dibutyl dithiophosphate and hydroximic acid to form a high-entropy zinc oxide mineral collector B;
• 2 •
(3) evenly mixing dodecylamine and sodium hydrosulfide to form a collector C; (4) grinding low-grade zinc oxide ore till more than 80% of its zinc mineral is dissociated to obtain a ground pulp, adding a vulcanizing reagent into the ground pulp, and stirring for 4-6 minutes for reaction, to obtain a pulp I; (5) adding the gangue mineral inhibitor A into the pulp I, and stirring for 3-4 minutes for reaction, to obtain a pulp II; (6) adding the high-entropy zinc oxide mineral collector B into the pulp II, and stirring for 4-5 minutes for reaction, to obtain a pulp III; (7) adding the collector C into the pulp III, and stirring for 4-5 minutes for reaction, to obtain a pulp IV; (8) treating the pulp IV through primary rough flotation to obtain a zinc concentrate I and primary rough tailings, treating the primary rough tailings through secondary rough flotation to obtain a coarse concentrate and secondary rough tailings, treating the coarse concentrate through primary fine flotation to obtain a zinc concentrate II and primary fine tailings, combining the secondary rough tailings and the primary fine tailings into final tailings, and combining the zinc concentrate I and the zinc concentrate II into a final zinc concentrate. The mass ratio of sodium silicate to carboxymethyl cellulose to sodium hexametaphosphate to tannin in the step (1) is 1 : 0.5 : 1 : 1-0.5. The mass ratio of xanthate collector to ammonium dibutyl dithiophosphate to hydroximic acid in the step (2) is 1 : 0.2-0.3 : 0.2-0.3. Preferably, the xanthate collector is octyl xanthate or isopentyl xanthate. The mass ratio of dodecylamine to sodium hydrosulfide in the step (3) is 1: 0.1-0.3. The low-grade zinc oxide ore in the step (4) contains 4-8 wt.% zinc, wherein the oxidation ratio of zinc is 65-90%, and the mass percentage of smithsonite and calamine in the zinc oxide ore is more than 90%; the mass concentration of the ground pulp is 25-30%, and the adding amount of the vulcanizing reagent is 8,000-16,000 g/t based on the mass of the low-grade zinc oxide ore. Preferably, the vulcanizing reagent is sodium sulfide or sodium hydrosulfide. The adding amount of the gangue mineral inhibitor A in the step (5) is 600-800 g/t, based on the mass of the low-grade zinc oxide ore. The adding amount of the high-entropy zinc oxide mineral collector B in the step (6) is 600-800 g/t, based on the mass of the low-grade zinc oxide ore. The adding amount of the collector C in the step (7) is 150-250 g/t, based on the mass of the low-grade zinc oxide ore. Principle of high-entropy collecting flotation of low-grade zinc oxide ore After the collectors are adsorbed to the surface of the zinc oxide ore, the surface collecting entropy change is formed as follows:
ASC = -R ni Inni
where: AS'is the surface collecting entropy change of the zinc oxide ore; R is a gas constant; and ni is the molar concentration of the i-th collector on the surface of the zinc oxide ore, expressed in decimal. For the surface of the zinc oxide ore before the adsorption of any collector, there is one kind of surface component, i.e., i=1. At that time, the surface collecting entropy change is equal to zero, and .3 • no mineral is collected, and there is no flotation effect. After the high-entropy collector B and collector C for zinc oxide ore are used, there are four kinds of collectors adsorbed to the surface of the zinc oxide ore. In view that the molecules of the collectors fully cover the surface of the ore, and i=4, the surface collecting entropy change AS° can be calculated by measuring the adsorption amounts of the collectors on the surface. Obviously, after being collected by the high-entropy collector B, the surface collecting entropy of the zinc oxide ore is greatly increased, as is beneficial to the improvement of the flotation recovery ratio. The present invention has the following beneficial effects: (1) As a result of high-entropy collection, the entropy increase in the collection process of the present invention reaches a high value, thereby the collector adsorbate on the surface of the zinc oxide ore is more stable; compared with solo use of amine collectors or mixed use of xanthate collectors and amines, the recovery ratio of zinc oxide minerals is significantly improved because the surface collecting entropy is significantly improved; (2) By using high-entropy collectors in the present invention, the foam viscosity in vulcanization-amine flotation can be significantly decreased, and the problem that it is difficult to apply the vulcanization-amine flotation in industry owing to the difficulty in foam bursting is solved; (3) By using the high-entropy collectors in the present invention, heating is not needed in the vulcanization process, the surface of the vulcanized ore doesn't have to be activated by metal ions such as copper or lead, and a recovery ratio of higher than 80% can be achieved by direct flotation with the collectors. Embodiments Those skilled in the art can understand that the following examples are provided only to explain the present invention and shall not be deemed as constituting any limitation to the scope of the present invention. Where no specific technique or condition is indicated in the examples, the techniques or conditions described in literatures in the art or the product specification shall be followed. Any reagent or instrument, the manufacturer of which is not indicated, is a conventional product that is commercially available. Example 1: a high-entropy collecting flotation method for low-grade zinc oxide ore, specifically including the following steps: (1) Sodium silicate, carboxymethyl cellulose, sodium hexametaphosphate and tannin were evenly mixed to form a gangue mineral inhibitor A, wherein the mass ratio of sodium silicate to carboxymethyl cellulose to sodium hexametaphosphate to tannin was 1: 0.5 : 1 : 1; (2) A xanthate collector (octyl xanthate), ammonium dibutyl dithiophosphate and hydroximic acid were evenly mixed to form a high-entropy zinc oxide mineral collector B, wherein the mass ratio of xanthate collector (octyl xanthate) to ammonium dibutyl dithiophosphate to hydroximic acid is 1 : 0.2 : 0.2; (3) Dodecylamine and sodium hydrosulfide were evenly mixed to form a collector C, wherein the mass ratio of dodecylamine to sodium hydrosulfide is 1 : 0.1; (4) Low-grade zinc oxide ore was ground till more than 80% of its zinc mineral was dissociated to obtain a ground pulp, a vulcanizing reagent (sodium sulfide) was added into the ground pulp at 25% mass concentration, and the mixture was stirred for 4 minutes for reaction, to obtain a pulp I; the low-grade zinc oxide ore contained 4 wt.% zinc, wherein the oxidation ratio of zinc was 65%, and the mass percentage of smithsonite and calamine in the zinc oxide ore was more than 90%; the adding amount of the vulcanizing reagent (sodium sulfide) was 8,000 g/t, based on the mass of the low-grade zinc oxide ore;
.4.
(5) The gangue mineral inhibitor A was added into the pulp I, and the mixture was stirred for 3 minutes for reaction, to obtain a pulp II; the adding amount of the gangue mineral inhibitor A was 600 g/t, based on the mass of the low-grade zinc oxide ore; (6) The high-entropy zinc oxide mineral collector B was added into the pulp II, and the mixture was stirred for 5 minutes for reaction, to obtain a pulp III; the adding amount of the high-entropy zinc oxide mineral collector B was 600 g/t, based on the mass of the low-grade zinc oxide ore; (7) The collector C was added into the pulp III, and the mixture was stirred for 4 minutes for reaction, to obtain a pulp IV; the adding amount of the collector C was 150 g/t, based on the mass of the low-grade zinc oxide ore; (8) The pulp IV was transferred into a flotation machine, and treated through primary rough flotation to obtain a zinc concentrate I and primary rough tailings, the primary rough tailings were treated through secondary rough flotation to obtain a coarse concentrate and secondary rough tailings, the coarse concentrate was treated through primary fine flotation to obtain a zinc concentrate II and primary fine tailings, the secondary rough tailings and the primary fine tailings were combined into final tailings, and the zinc concentrate I and the zinc concentrate II were combined into a final zinc concentrate; The zinc concentrate in this example contained 25% zinc, and the recovery ratio of zinc is 80%. Example 2: a high-entropy collecting flotation method for low-grade zinc oxide ore, specifically including the following steps: (1) Sodium silicate, carboxymethyl cellulose, sodium hexametaphosphate and tannin were evenly mixed to form a gangue mineral inhibitor A; wherein the mass ratio of sodium silicate to carboxymethyl cellulose to sodium hexametaphosphate to tannin was 1: 0.5 : 1 : 0.7; (2) A xanthate collector (isopentyl xanthate), ammonium dibutyl dithiophosphate and hydroximic acid were evenly mixed to form a high-entropy zinc oxide mineral collector B; wherein the mass ratio of xanthate collector (isopentyl xanthate) to ammonium dibutyl dithiophosphate to hydroximic acid was 1 : 0.25 : 0.25; (3) Dodecylamine and sodium hydrosulfide were evenly mixed to form a collector C; wherein the mass ratio of dodecylamine to sodium hydrosulfide is 1 : 0.2; (4) Low-grade zinc oxide ore was ground till more than 80% of its zinc mineral was dissociated to obtain a ground pulp, a vulcanizing reagent (sodium hydrosulfide) was added into the ground pulp at 28% mass concentration, and the mixture was stirred for 6 minutes for reaction, to obtain a pulp I; the low-grade zinc oxide ore contained 6 wt.% zinc, wherein the oxidation ratio of zinc was 80%, and the mass percentage of smithsonite and calamine in the zinc oxide ore was more than 90%; the adding amount of the vulcanizing reagent (sodium hydrosulfide) was 10,000 g/t, based on the mass of the low-grade zinc oxide ore; (5) The gangue mineral inhibitor A was added into the pulp I, and the mixture was stirred for 4 minutes for reaction, to obtain a pulp II; the adding amount of the gangue mineral inhibitor A was 700 g/t, based on the mass of the low-grade zinc oxide ore; (6) The high-entropy zinc oxide mineral collector B was added into the pulp II, and the mixture was stirred for 4 minutes for reaction, to obtain a pulp III; the adding amount of the high-entropy zinc oxide mineral collector B was 700 g/t, based on the mass of the low-grade zinc oxide ore; (7) The collector C was added into the pulp III, and the mixture was stirred for 5 minutes for reaction, to obtain a pulp IV; the adding amount of the collector C was 200 g/t, based on the mass of the low-grade zinc oxide ore;
5.
(8) The pulp IV was transferred into a flotation machine, and treated through primary rough flotation to obtain a zinc concentrate I and primary rough tailings, the primary rough tailings were treated through secondary rough flotation to obtain a coarse concentrate and secondary rough tailings, the coarse concentrate was treated through primary fine flotation to obtain a zinc concentrate II and primary fine tailings, the secondary rough tailings and the primary fine tailings were combined into final tailings, and the zinc concentrate I and the zinc concentrate II were combined into a final zinc concentrate; The zinc concentrate in this example contained 28% zinc, and the recovery ratio of zinc is 81%. Example 3: a high-entropy collecting flotation method for low-grade zinc oxide ore, specifically including the following steps: (1) Sodium silicate, carboxymethyl cellulose, sodium hexametaphosphate and tannin were evenly mixed to form a gangue mineral inhibitor A; wherein the mass ratio of sodium silicate to carboxymethyl cellulose to sodium hexametaphosphate to tannin was 1: 0.5 : 1 : 0.5; (2) A xanthate collector (isopentyl xanthate), ammonium dibutyl dithiophosphate and hydroximic acid were evenly mixed to form a high-entropy zinc oxide mineral collector B; wherein the mass ratio of xanthate collector (isopentyl xanthate) to ammonium dibutyl dithiophosphate to hydroximic acid was 1 : 0.3 : 0.3; (3) Dodecylamine and sodium hydrosulfide were evenly mixed to form a collector C; wherein the mass ratio of dodecylamine to sodium hydrosulfide is 1 : 0.3; (4) Low-grade zinc oxide ore was ground till more than 80% of its zinc mineral was dissociated to obtain a ground pulp, a vulcanizing reagent (sodium hydrosulfide) was added into the ground pulp at 30% mass concentration, and the mixture was stirred for 5 minutes for reaction, to obtain a pulp I; the low-grade zinc oxide ore contained 8 wt.% zinc, wherein the oxidation ratio of zinc was 90%, and the mass percentage of smithsonite and calamine in the zinc oxide ore was more than 90%; the adding amount of the vulcanizing reagent (sodium hydrosulfide) was 16,000 g/t, based on the mass of the low-grade zinc oxide ore; (5) The gangue mineral inhibitor A was added into the pulp I, and the mixture was stirred for 4 minutes for reaction, to obtain a pulp II; the adding amount of the gangue mineral inhibitor A was 800 g/t, based on the mass of the low-grade zinc oxide ore; (6) The high-entropy zinc oxide mineral collector B was added into the pulp II, and the mixture was stirred for 5 minutes for reaction, to obtain a pulp III; the adding amount of the high-entropy zinc oxide mineral collector B was 800 g/t, based on the mass of the low-grade zinc oxide ore; (7) The collector C was added into the pulp III, and the mixture was stirred for 4 minutes for reaction, to obtain a pulp IV; the adding amount of the collector C was 250 g/t, based on the mass of the low-grade zinc oxide ore; (8) The pulp IV was transferred into a flotation machine, and treated through primary rough flotation to obtain a zinc concentrate I and primary rough tailings, the primary rough tailings were treated through secondary rough flotation to obtain a coarse concentrate and secondary rough tailings, the coarse concentrate was treated through primary fine flotation to obtain a zinc concentrate II and primary fine tailings, the secondary rough tailings and the primary fine tailings were combined into final tailings, and the zinc concentrate I and the zinc concentrate II were combined into a final zinc concentrate; The zinc concentrate in this example contained 30% zinc, and the recovery ratio of zinc is 84%. While the present invention is described above in detail in some specific embodiments, the present invention is not limited to those embodiments, and various modifications can be made within the knowledge of those skilled in the art without departing from the spirit of the present invention. • 6 •

Claims (10)

Claims
1. A high-entropy collecting flotation method for low-grade zinc oxide ore, characterized in that, said method comprises the following steps: (1) evenly mixing sodium silicate, carboxymethyl cellulose, sodium hexametaphosphate and tannin to form a gangue mineral inhibitor A; (2) evenly mixing a xanthate collector, ammonium dibutyl dithiophosphate and hydroximic acid to form a high-entropy zinc oxide mineral collector B; (3) evenly mixing dodecylamine and sodium hydrosulfide to form a collector C; (4) grinding low-grade zinc oxide ore till more than 80% of its zinc mineral is dissociated to obtain a ground pulp, adding a vulcanizing reagent into the ground pulp, and stirring for 4-6 minutes for reaction, to obtain a pulp I; (5) adding the gangue mineral inhibitor A into the pulp I, and stirring for 3-4 minutes for reaction, to obtain a pulp II; (6) adding the high-entropy zinc oxide mineral collector B into the pulp II, and stirring for 4-5 minutes for reaction, to obtain a pulp III; (7) adding the collector C into the pulp III, and stirring for 4-5 minutes for reaction, to obtain a pulp IV; (8) treating the pulp IV through primary rough flotation to obtain a zinc concentrate I and primary rough tailings, treating the primary rough tailings through secondary rough flotation to obtain a coarse concentrate and secondary rough tailings, treating the coarse concentrate through primary fine flotation to obtain a zinc concentrate II and primary fine tailings, combining the secondary rough tailings and the primary fine tailings into final tailings, and combining the zinc concentrate I and the zinc concentrate II into afinal zinc concentrate.
2. The high-entropy collecting flotation method for low-grade zinc oxide ore according to claim 1, wherein the mass ratio of sodium silicate to carboxymethyl cellulose to sodium hexametaphosphate to tannin in the step (1) is 1 : 0.5 : 1 : 1-0.5.
3. The high-entropy collecting flotation method for low-grade zinc oxide ore according to claim 1, wherein the mass ratio of xanthate collector to ammonium dibutyl dithiophosphate to hydroximic acid in the step (2) is 1 : 0.2-0.3 : 0.2-0.3.
4. The high-entropy collecting flotation method for low-grade zinc oxide ore according to claim 1 or 3, wherein the xanthate collector is octyl xanthate or isopentyl xanthate.
5. The high-entropy collecting flotation method for low-grade zinc oxide ore according to claim 1, wherein the mass ratio of dodecylamine to sodium hydrosulfide in the step (3) is 1: 0.1-0.3.
6. The high-entropy collecting flotation method for low-grade zinc oxide ore according to claim 1, wherein the low-grade zinc oxide ore in the step (4) contains 4-8 wt.% zinc, wherein the oxidation ratio of zinc is 65-90%, and the mass percentage of smithsonite and calamine in the zinc oxide ore is more than 90%; the mass concentration of the ground pulp is 25-30%, and the adding amount of the vulcanizing reagent is 8,000-16,000 g/t based on the mass of the low-grade zinc oxide ore.
7. The high-entropy collecting flotation method for low-grade zinc oxide ore according to claim 1 or 6, wherein the vulcanizing reagent is sodium sulfide or sodium hydrosulfide.
8. The high-entropy collecting flotation method for low-grade zinc oxide ore according to claim 1, wherein the adding amount of the gangue mineral inhibitor A in the step (5) is 600-800 g/t, based on the mass of the low-grade zinc oxide ore.
9. The high-entropy collecting flotation method for low-grade zinc oxide ore according to claim 1, wherein the adding amount of the high-entropy zinc oxide mineral collector B in the step (6) is 600-800 g/t, based on the mass of the low-grade zinc oxide ore.
10. The high-entropy collecting flotation method for low-grade zinc oxide ore according to claim 1, wherein the adding amount of the collector C in the step (7) is 150-250 g/t, based on the mass of the low-grade zinc oxide ore.
AU2023222824A 2022-09-01 2023-08-28 High entropy collecting flotation method for low grade zinc oxide ore Pending AU2023222824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211062016.6A CN115318449B (en) 2022-09-01 2022-09-01 High-entropy collection flotation method for low-grade zinc oxide ores
CN202211062016.6 2022-09-01

Publications (1)

Publication Number Publication Date
AU2023222824A1 true AU2023222824A1 (en) 2024-03-21

Family

ID=83927943

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2023222824A Pending AU2023222824A1 (en) 2022-09-01 2023-08-28 High entropy collecting flotation method for low grade zinc oxide ore

Country Status (2)

Country Link
CN (1) CN115318449B (en)
AU (1) AU2023222824A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074994A (en) * 1990-10-18 1991-12-24 The Doe Run Company Sequential and selective flotation of sulfide ores
ATE320855T1 (en) * 2001-12-12 2006-04-15 Vladimir Rajic SELECTIVE FLOTATION AGENT AND FLOTATION PROCESS
AU2007284003B2 (en) * 2006-08-17 2011-09-22 Ab Tall (Holdings) Pty Ltd Collectors and flotation methods
CN105363562B (en) * 2015-12-08 2017-10-17 中南大学 A kind of beneficiation method of low-grade cuprite
CN111266195B (en) * 2020-03-05 2021-09-07 中南大学 Zinc oxide ore flotation combined collecting agent and application thereof
CN111530633A (en) * 2020-04-27 2020-08-14 西部矿业股份有限公司 Novel composite collecting agent for recovering zinc oxide from peat plaza lead zinc oxide ore, preparation method and application
CN111530639B (en) * 2020-05-09 2021-04-02 昆明理工大学 Micro-fine particle zinc oxide ore copper ammonia complex gradient activation-enhanced vulcanization flotation method

Also Published As

Publication number Publication date
CN115318449A (en) 2022-11-11
CN115318449B (en) 2023-06-23

Similar Documents

Publication Publication Date Title
CN106391319B (en) A method of improving Skarn Cu molybdenum ore copper-cobalt ore molybdenum concentrate grade
CN106179761B (en) Beneficiation method for zinc oxide ore
CN113976307A (en) Flotation separation method of refractory lead-zinc sulfide ore and zinc blende inhibitor thereof
CN106269290B (en) The method for floating of decopperized lead zinc from highgrade pyrite concentrate
CN115318448B (en) Zinc oxide ore high entropy activation flotation method
CN105834008A (en) Preparation method of inhibitors for arsenic-containing sulfide minerals in copper tailings
CN104815762B (en) A kind of preparation method of tennantite collecting agent
CN113088702A (en) Method for recovering valuable elements from acid leaching solution of roasting slag of gold-containing sulfur concentrate
AU2023222824A1 (en) High entropy collecting flotation method for low grade zinc oxide ore
CN106995886A (en) A kind of silicate-type aoxidizes the Rapid Leaching method of lead concentrate
CN105441696A (en) Manganese carbonate ore leaching method based on two-section leaching
CN108588413A (en) A method of producing nano zine oxide using containing zinc ore crude
CN108950239A (en) A method of it produces using containing zinc ore crude containing zinc complexes
CN106238217B (en) A kind of preparation method of zinc oxide ore collecting agent
CN108862371A (en) A method of zinc oxide is produced using containing zinc ore crude
CN108754140A (en) A method of it is produced containing zinc complexes using containing zinc ore crude
CN111940146B (en) Low-temperature-resistant zinc oxide ore flotation composite reagent and preparation method and application thereof
CN109225654B (en) Bulk concentrate flotation separation method based on enhanced suppression of lead sulfide
CN103521504A (en) Method for comprehensively recovering gold and zinc from high leaching residue and recycling wastewater
CN108793227A (en) A method of producing nano zine oxide using containing zinc ore crude
CN214612692U (en) System for recovering valuable elements from acid leaching solution of roasting slag of gold-containing sulfur concentrate
CN113908994B (en) Flotation method of low-grade phosphorite
CN110972482B (en) Beneficiation method for low-grade zinc-containing raw ore
CN118022973A (en) Low-grade carbonate copper oxide ore four-component high-entropy collection flotation method
RU2054971C1 (en) Method of flotation separation of sulfide copper-zinc-pyritic concentrates, that have zinc sulfides activated by copper and calcium cations