AU2021103884A4 - Epileptic Seizure Detection and Classification Using HOG feature based MSCA-ELM Model and Embedded Prototype Development - Google Patents
Epileptic Seizure Detection and Classification Using HOG feature based MSCA-ELM Model and Embedded Prototype Development Download PDFInfo
- Publication number
- AU2021103884A4 AU2021103884A4 AU2021103884A AU2021103884A AU2021103884A4 AU 2021103884 A4 AU2021103884 A4 AU 2021103884A4 AU 2021103884 A AU2021103884 A AU 2021103884A AU 2021103884 A AU2021103884 A AU 2021103884A AU 2021103884 A4 AU2021103884 A4 AU 2021103884A4
- Authority
- AU
- Australia
- Prior art keywords
- seizure
- msca
- classification
- elm
- hog feature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 206010010904 Convulsion Diseases 0.000 title claims abstract description 79
- 238000001514 detection method Methods 0.000 title claims abstract description 23
- 206010015037 epilepsy Diseases 0.000 title claims abstract description 20
- 208000028329 epileptic seizure Diseases 0.000 title claims abstract description 14
- 238000011161 development Methods 0.000 title claims abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 24
- 210000004556 brain Anatomy 0.000 claims abstract description 22
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 13
- 238000010801 machine learning Methods 0.000 claims abstract description 12
- 238000000605 extraction Methods 0.000 claims abstract description 10
- 208000015181 infectious disease Diseases 0.000 claims abstract description 9
- 238000007781 pre-processing Methods 0.000 claims abstract description 9
- 230000011218 segmentation Effects 0.000 claims abstract description 9
- 208000006011 Stroke Diseases 0.000 claims abstract description 8
- 206010019196 Head injury Diseases 0.000 claims abstract description 7
- 230000018109 developmental process Effects 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000010586 diagram Methods 0.000 claims abstract description 4
- 238000013135 deep learning Methods 0.000 claims abstract description 3
- 238000002360 preparation method Methods 0.000 claims abstract description 3
- 238000011160 research Methods 0.000 claims abstract description 3
- 230000007177 brain activity Effects 0.000 claims abstract 2
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 230000001037 epileptic effect Effects 0.000 claims description 6
- 230000001537 neural effect Effects 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 208000014674 injury Diseases 0.000 claims description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims 2
- 208000027418 Wounds and injury Diseases 0.000 claims 1
- 230000006378 damage Effects 0.000 claims 1
- 230000006870 function Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 210000002569 neuron Anatomy 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000000638 stimulation Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013136 deep learning model Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000004118 muscle contraction Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011897 real-time detection Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 208000012260 Accidental injury Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 241001442234 Cosa Species 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002397 epileptogenic effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 201000001997 microphthalmia with limb anomalies Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 210000004205 output neuron Anatomy 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
- A61B5/4094—Diagnosing or monitoring seizure diseases, e.g. epilepsy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/726—Details of waveform analysis characterised by using transforms using Wavelet transforms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/4064—Evaluating the brain
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Psychiatry (AREA)
- Artificial Intelligence (AREA)
- Physiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Neurology (AREA)
- Signal Processing (AREA)
- Epidemiology (AREA)
- Neurosurgery (AREA)
- Primary Health Care (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Psychology (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2021103884A AU2021103884A4 (en) | 2021-07-06 | 2021-07-06 | Epileptic Seizure Detection and Classification Using HOG feature based MSCA-ELM Model and Embedded Prototype Development |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2021103884A AU2021103884A4 (en) | 2021-07-06 | 2021-07-06 | Epileptic Seizure Detection and Classification Using HOG feature based MSCA-ELM Model and Embedded Prototype Development |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2021103884A4 true AU2021103884A4 (en) | 2022-04-07 |
Family
ID=80932768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2021103884A Ceased AU2021103884A4 (en) | 2021-07-06 | 2021-07-06 | Epileptic Seizure Detection and Classification Using HOG feature based MSCA-ELM Model and Embedded Prototype Development |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2021103884A4 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116898439A (en) * | 2023-07-07 | 2023-10-20 | 湖北大学 | Emotion recognition method and system for analyzing brain waves by deep learning model |
-
2021
- 2021-07-06 AU AU2021103884A patent/AU2021103884A4/en not_active Ceased
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116898439A (en) * | 2023-07-07 | 2023-10-20 | 湖北大学 | Emotion recognition method and system for analyzing brain waves by deep learning model |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Raj et al. | Sparse representation of ECG signals for automated recognition of cardiac arrhythmias | |
Houssein et al. | ECG signals classification: a review | |
Huanhuan et al. | Classification of electrocardiogram signals with deep belief networks | |
CN109994203B (en) | Epilepsia detection method based on EEG signal depth multi-view feature learning | |
Sadati et al. | Epileptic seizure detection using neural fuzzy networks | |
US6549804B1 (en) | System for the prediction, rapid detection, warning, prevention or control of changes in activity states in the brain of a subject | |
Cherian et al. | Theoretical and methodological analysis of EEG based seizure detection and prediction: An exhaustive review | |
Javadi et al. | Improving ECG classification accuracy using an ensemble of neural network modules | |
Rajagopal et al. | Evaluation of effect of unsupervised dimensionality reduction techniques on automated arrhythmia classification | |
Nandan et al. | Support vector machines for seizure detection in an animal model of chronic epilepsy | |
Singh et al. | Classification of short unsegmented heart sound based on deep learning | |
Patra et al. | ECG-Based Cardiac Abnormalities Analysis Using Adaptive Artificial Neural Network | |
Chui et al. | Cardiovascular diseases identification using electrocardiogram health identifier based on multiple criteria decision making | |
Xu et al. | Patient-specific method for predicting epileptic seizures based on DRSN-GRU | |
CN114699093A (en) | Electroencephalogram seizure signal detection method based on convolutional neural network and long-term and short-term memory | |
Prakash et al. | A system for automatic cardiac arrhythmia recognition using electrocardiogram signal | |
Singh et al. | Short and noisy electrocardiogram classification based on deep learning | |
AU2021103884A4 (en) | Epileptic Seizure Detection and Classification Using HOG feature based MSCA-ELM Model and Embedded Prototype Development | |
Al-Huseiny et al. | Diagnosis of arrhythmia based on ECG analysis using CNN | |
Nugent et al. | An intelligent framework for the classification of the 12-lead ECG | |
Maurya et al. | Cardiac Arrhythmia Classification Using Cascaded Deep Learning Approach (LSTM & RNN) | |
Mangathayaru et al. | An attention based neural architecture for arrhythmia detection and classification from ecg signals | |
Fatma et al. | Survey on Epileptic Seizure Detection on Varied Machine Learning Algorithms | |
Velvizhy et al. | Detection of epileptic seizure using hybrid machine learning algorithms | |
Patel et al. | An automated approach for electroencephalography-based seizure detection using machine learning algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DA3 | Amendments made section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS: AMEND THE NAME OF THE INVENTOR TO READ MISHRA, SATYASIS; PANDA, SREELEKHA; MOHANTY, MIHIR NARAYAN AND SHAIK, ASIF BASHA |
|
HB | Alteration of name in register |
Owner name: MOHANTY, M.N. Free format text: FORMER NAME(S): MISHRA, SATYASIS; PANDA, SREELEKHA; MOHANTY, MIHIR NARAYAN Owner name: PANDA, S. Free format text: FORMER NAME(S): MISHRA, SATYASIS; PANDA, SREELEKHA; MOHANTY, MIHIR NARAYAN Owner name: MISHRA, S. Free format text: FORMER NAME(S): MISHRA, SATYASIS; PANDA, SREELEKHA; MOHANTY, MIHIR NARAYAN Owner name: SHAIK, A. Free format text: FORMER NAME(S): MISHRA, SATYASIS; PANDA, SREELEKHA; MOHANTY, MIHIR NARAYAN |
|
FGI | Letters patent sealed or granted (innovation patent) | ||
MK22 | Patent ceased section 143a(d), or expired - non payment of renewal fee or expiry |