AU2019397995B2 - Method for improving the accuracy of a convolution neural network training image dataset for loss prevention applications - Google Patents

Method for improving the accuracy of a convolution neural network training image dataset for loss prevention applications Download PDF

Info

Publication number
AU2019397995B2
AU2019397995B2 AU2019397995A AU2019397995A AU2019397995B2 AU 2019397995 B2 AU2019397995 B2 AU 2019397995B2 AU 2019397995 A AU2019397995 A AU 2019397995A AU 2019397995 A AU2019397995 A AU 2019397995A AU 2019397995 B2 AU2019397995 B2 AU 2019397995B2
Authority
AU
Australia
Prior art keywords
indicia
image scan
scan data
data
identification data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2019397995A
Other languages
English (en)
Other versions
AU2019397995A1 (en
Inventor
Yuri ASTVATSATUROV
Christopher J. FJELLSTAD
Robert James Pang
Sajan WILFRED
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zebra Technologies Corp
Original Assignee
Zebra Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/218,969 external-priority patent/US20200193281A1/en
Priority claimed from US16/221,816 external-priority patent/US20200192608A1/en
Application filed by Zebra Technologies Corp filed Critical Zebra Technologies Corp
Publication of AU2019397995A1 publication Critical patent/AU2019397995A1/en
Application granted granted Critical
Publication of AU2019397995B2 publication Critical patent/AU2019397995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
AU2019397995A 2018-12-13 2019-10-16 Method for improving the accuracy of a convolution neural network training image dataset for loss prevention applications Active AU2019397995B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US16/218,969 2018-12-13
US16/218,969 US20200193281A1 (en) 2018-12-13 2018-12-13 Method for automating supervisory signal during training of a neural network using barcode scan
US16/221,816 2018-12-17
US16/221,816 US20200192608A1 (en) 2018-12-17 2018-12-17 Method for improving the accuracy of a convolution neural network training image data set for loss prevention applications
PCT/US2019/056466 WO2020123029A2 (fr) 2018-12-13 2019-10-16 Procédé pour améliorer la précision d'un ensemble de données d'image d'apprentissage de réseau neuronal de convolution pour des applications de prévention de perte

Publications (2)

Publication Number Publication Date
AU2019397995A1 AU2019397995A1 (en) 2021-04-29
AU2019397995B2 true AU2019397995B2 (en) 2021-12-23

Family

ID=71075807

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2019397995A Active AU2019397995B2 (en) 2018-12-13 2019-10-16 Method for improving the accuracy of a convolution neural network training image dataset for loss prevention applications

Country Status (4)

Country Link
AU (1) AU2019397995B2 (fr)
DE (1) DE112019006192T5 (fr)
GB (1) GB2594176B (fr)
WO (1) WO2020123029A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115718445B (zh) * 2022-11-15 2023-09-01 杭州将古文化发展有限公司 适用于博物馆的智能物联网管理系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100217678A1 (en) * 2009-02-09 2010-08-26 Goncalves Luis F Automatic learning in a merchandise checkout system with visual recognition
US20140014724A1 (en) * 2012-07-10 2014-01-16 Honeywell International Inc. Doing Business As (D.B.A.) Honeywell Scanning & Mobility Cloud-based system for processing of decodable indicia
US20170323376A1 (en) * 2016-05-09 2017-11-09 Grabango Co. System and method for computer vision driven applications within an environment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9870377B2 (en) * 2014-04-29 2018-01-16 Ncr Corporation Signal-to-noise ratio image validation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100217678A1 (en) * 2009-02-09 2010-08-26 Goncalves Luis F Automatic learning in a merchandise checkout system with visual recognition
US20140014724A1 (en) * 2012-07-10 2014-01-16 Honeywell International Inc. Doing Business As (D.B.A.) Honeywell Scanning & Mobility Cloud-based system for processing of decodable indicia
US20170323376A1 (en) * 2016-05-09 2017-11-09 Grabango Co. System and method for computer vision driven applications within an environment

Also Published As

Publication number Publication date
GB2594176B (en) 2023-02-22
WO2020123029A3 (fr) 2020-07-30
GB202108211D0 (en) 2021-07-21
DE112019006192T5 (de) 2021-09-02
GB2594176A (en) 2021-10-20
AU2019397995A1 (en) 2021-04-29
WO2020123029A2 (fr) 2020-06-18

Similar Documents

Publication Publication Date Title
US10769399B2 (en) Method for improper product barcode detection
US20200193281A1 (en) Method for automating supervisory signal during training of a neural network using barcode scan
US20200192608A1 (en) Method for improving the accuracy of a convolution neural network training image data set for loss prevention applications
US12056932B2 (en) Multifactor checkout application
US11538262B2 (en) Multiple field of view (FOV) vision system
US11042787B1 (en) Automated and periodic updating of item images data store
EP3910608B1 (fr) Procédé et système d'identification d'article, et dispositif électronique associé
US9171442B2 (en) Item identification using video recognition to supplement bar code or RFID information
AU2020391392B2 (en) Method for optimizing improper product barcode detection
US20200193404A1 (en) An automatic in-store registration system
WO2020154838A1 (fr) Détection de produit mal étiqueté
US20200202091A1 (en) System and method to enhance image input for object recognition system
US20210097517A1 (en) Object of interest selection for neural network systems at point of sale
US20230177458A1 (en) Methods and systems for monitoring on-shelf inventory and detecting out of stock events
US10891561B2 (en) Image processing for item recognition
Moorthy et al. Applying image processing for detecting on-shelf availability and product positioning in retail stores
AU2019397995B2 (en) Method for improving the accuracy of a convolution neural network training image dataset for loss prevention applications
EP3629276A1 (fr) Différentiation d'objets de vision par machine à aide contextuelle
US20220051215A1 (en) Image recognition device, control program for image recognition device, and image recognition method
Merrad et al. A Real-time Mobile Notification System for Inventory Stock out Detection using SIFT and RANSAC.
US20240211712A1 (en) Multiple field of view (fov) vision system
US20230169452A1 (en) System Configuration for Learning and Recognizing Packaging Associated with a Product
US20240037907A1 (en) Systems and Methods for Image-Based Augmentation of Scanning Operations
US11756036B1 (en) Utilizing sensor data for automated user identification
CN116563989A (zh) 一种基于rfid采集及机器视觉结合的双校验控制方法及系统

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)