AU2019101130A4 - An unmanned aerial vehicle for short distance delivery - Google Patents

An unmanned aerial vehicle for short distance delivery Download PDF

Info

Publication number
AU2019101130A4
AU2019101130A4 AU2019101130A AU2019101130A AU2019101130A4 AU 2019101130 A4 AU2019101130 A4 AU 2019101130A4 AU 2019101130 A AU2019101130 A AU 2019101130A AU 2019101130 A AU2019101130 A AU 2019101130A AU 2019101130 A4 AU2019101130 A4 AU 2019101130A4
Authority
AU
Australia
Prior art keywords
uav
goods
cargo
height
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2019101130A
Inventor
Ziyu Chen
Rao FU
Xiangyu Shao
Jiarong Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fu Rao Miss
Original Assignee
Fu Rao Miss
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fu Rao Miss filed Critical Fu Rao Miss
Priority to AU2019101130A priority Critical patent/AU2019101130A4/en
Application granted granted Critical
Publication of AU2019101130A4 publication Critical patent/AU2019101130A4/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/02Dropping, ejecting, or releasing articles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/60UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons
    • B64U2101/64UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons for parcel delivery or retrieval
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/104UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

The invention provides a civilian unmanned aerial vehicle for short-range transportation of goods. The UAV mainly includes the following equipment: processor, laser sensor, ultrasonic sensor, camera, mechanical claw, network module, touch screen, etc. The UVA has a GPS module and processor(2) inside. The UVA has propellers(1) at each end. The lower end of the UAV is equipped with a mechanical clamp(5) and four supporting legs(6). A "detected ball"(3) is mounted on one side of the UAV. The upper end of the UAV is equipped with a touch screen(4). After receiving the instruction to transport the goods, the UAV will take off and fly to the side of the goods to scan the qr code on the packaging of the goods and obtain the detailed information of the goods and orders. Figure 1

Description

An unmanned aerial vehicle for short distance delivery
FIELD OF THE INVENTION
The invention is in the field of short-distance transportation and used for city express service.
BACKGROUND OF THE INVENTION
Unmanned aerial vehicle (UAV) are known as aerial robot, which is a power-driven, unmanned, reusable aircraft. It is mainly composed of UAV carrier, ground station equipment (radio control, mission control, launch recovery and other landing equipment) and payload. We can divide UAVS into different types basing in their structure, flight time, flight distance and mission nature. In terms of overall structure, UAV can be divided into fixed wing, vertical rotor, inclined rotor and rotor/fixed wing. And according to the radius of activity and endurance, UAV can be roughly divided into four categories: short range, medium range and long range. Finally, according to the purpose, we can divide the UAV into military and civilian categories. Civilian UAVS are widely used, including aerial photography, agriculture, plant protection, photograph, express delivery, disaster relief, observation of wild animals, monitoring of infectious diseases, mapping, news reports, power inspection, disaster relief, film and television filming, etc.
2019101130 30 Sep 2019
Our invention is the use of UAVS in city express. First of all, express delivery has a great impact on some enterprises or vendors who need express services in the same city. A more efficient, convenient and safe way of express delivery can strongly increase the competitiveness of their enterprises and vendors, enabling them to win in the fierce market competition. The application of UAVS in express delivery can greatly save transportation costs and improve transportation efficiency, which can well meet the needs of enterprises or vendors for express delivery in the same city. Therefore, we believe that the use of UAVS for express delivery will become the mainstream way of express delivery in the city in the future.
But the usual pattern now is for the shippers to place the cargo in a special vehicle, such as a trawl under the UAV, and then fly it to the unloading point. When the UAV arrives at the unloading site, workers operate the UAV to land on the ground, and removing the cargo.In the whole process, UAV is only played for short in the air transport advantages, in the beginning and end of the transportation need personnel for unloading and loading , still take up many human. In addition, in order to avoid damaging UAV or making work injuries caused by the wrong operation in the process of unloading and loading, workers often need to have certain knowledge and experience. On the other hand, the amount of goods that need to be transported greatly affects the time that
2019101130 30 Sep 2019 workers spend to load and unload. In some situation, a large number of goods are required to be deal with in a short period of time, during the holidays, for example, UAV will need to wait for a long time until shippers finish their work, even they need to queue for being loaded and unloaded. This is bound to make the overall transport efficiency greatly affected.
SUMMARY OF THE INVENTION
The invention relates to a new civilian UAV, whose body is cruciform. Processors, GPS, batteries and other devices are set inside the UAV body Each end of the UAV body is provided with circular protective bars, in which a motor is installed in the heart. The lower end of the motor is connected with the UAV body, and the upper end of the motor is equipped with a propeller. The lower end of the UAV body is evenly arranged with four supporting legs, which are connected with the supporting feet. A mechanical grabber is arranged in the middle of the lower end face of the UAV body. The UAV body is equipped with a detected ball on the side, and the inside is equipped with laser sensor, camera, ultrasonic sensor and other devices.
The UAV is activated after receiving the boot command, and the laser sensor determines the height from the ground so that it can take off and hover at a certain height steadily The UAV can fly to the goods through
2019101130 30 Sep 2019 indoor positioning, scan the qr code on the package with a camera to get information about the goods, grab the goods with mechanical grabbers and start to transport the goods. The UAV 's processor matches the destination address with an electronic map to create a flight path and fly along it. GPS is used to locate and navigate during flight, and obstacles are detected and avoided by ultrasonic wave. After reaching the air above the designated drop point, the laser sensor measures the height from the ground to enable the UAV to hover steadily at the specified height, release the mechanical grabber and drop the goods.
This UAV can achieve the hover function. First, the UAV needs to measure its height from the ground. The laser sensor at the lower end of the UAV can emit laser signals to the ground and send signals to the processor at the same time. When it receives signals reflected from the ground, it also sends a signal to the processor. The processor will calculate the height of the ground based on the time difference between receiving the signal. After the UAV's processor acquires the appropriate hover altitude, the UAV speeds up or down and calculates the current altitude from the laser transmitter and receiver. When the UAV moves to a certain distance from the target height, it begins to slow down. When it reaches the target height, PID algorithm will be used to control the propeller speed and make the UAV hover at the corresponding height.
2019101130 30 Sep 2019
The UAV uses the global positioning system (GPS) for flight navigation, enabling the aircraft to fly along optimal routes and transport cargo. During the flight, the UAV uses various sensors and GPS navigation system to obtain real-time information such as the flight direction, position and speed of the UAV, and send these information to the processor. After the calculation and deduction of parameters by the processor, the UAV will control the rotation speed of each propeller through the autopilot, and adjust the attitude and channel of the UAV in time to make the UAV fly in accordance with the prescribed route.
The UAV is equipped with networking equipment. The camera scans the qr code or bar code on the packaging of the goods, and the UAV obtains the details of the goods and orders in the cloud through the built-in software, and matches the information of the transportation destination and location with the map to calculate the optimal transportation route and generate the route.
The center of the lower end face of this UAV is equipped with a mechanical grabber. After grasping the handle on the package, the mechanical grabber determines whether it has grasped the goods through the pressure sensor. After capturing the cargo, the legs of the UAV will be lowered and secured to prevent the cargo from leaving the UAV in transit. Upon reaching the destination and landing at a certain altitude, the UAV
2019101130 30 Sep 2019 retract the leg and release the mechanical grabber to drop the cargo.
Ultrasonic sensors are installed on the side of the flight direction of the UAV. During the flight, if the ultrasonic sensor detects an obstacle ahead, it will slow down and make a lateral roll to avoid the obstacle. After dodging, the processor will re-plan the flight path and fly along the new route according to the positioning information provided by the GPS.
The upper end of the UAV is equipped with a touch screen, which can display the current working status, GPS positioning, power and other information of the UAV. The relevant staff can directly control the UAV through the touch screen, including starting up, shutting down, landing and modifying the order of goods. The device is designed to allow workers to control the UAV from a touch screen if it is not under external control in special circumstances.
DESCRIPTION OF THE DRAWINGS
The appended drawings are only for the purpose of description and explanation but not for limitation, wherein:
Fig.l is an overall view of the present invention.
Figs.2 is a drawing of the mechanical structure of the present invention.
Figs.3 is a drawing of the mechanical structure of “detected ball” mounted on the side of the present invention.
2019101130 30 Sep 2019
Fig.4 is a block diagram showing the major components and their relations, according to the present invention.
Fig.5 is a schematic diagram of laser ranging.
Fig.6 is a schematic diagram of ultrasonic positioning.
Fig.7 is a schematic diagram of GPS.
Fig. 8 is a structure drawing of mechanical grabber.
Fig.9 is is a front view of mechanical grabber.
Figs. 10 is a schematic diagram of supporting rod.
Fig. 11 is a picture illustrating the position of the support rod when the UAV is on the ground.
Fig. 12 is a picture illustrating the position of the support rod when the UAV is flying without cargo.
Fig. 13 is a picture illustrating the position of the support rod when the UAV is flying with cargo.
Fig. 14 is a flow chart showing the working process of controlling flight altitude, according to the present invention.
Fig. 15 is a flow chart showing the working process of using GPS for navigation, according to the present invention.
Fig. 16 is a flow chart showing the working process of using ultrasonic
2019101130 30 Sep 2019 sensors to detect and avoiding obstacles, according to the present invention.
Fig. 17 is a flow chart showing the working process of grabbing cargo by using mechanical grabber , according to the present invention.
DESCRIPTION OF PREFERRED EMBODIMENT
Referring to Figs.2, 1 is one of the quad-rotor wings; 2 is the fuselage; 3 is the detected ball; 4 is the interactive tablet; 5 is the mechanical grabber; 5.1 is the clamps; 5.2 is the telescopic rod; 6 is the fixed rod.
Referring to Figs.3, 1 is the protect shell; 2 is the support platform; 3 is the webcam; 4 is the ultrasonic detected module; 5 is the laser ranging module; 6 is the main control chip; 7 is the electric circuit.
The overall relations of the major components are shown in Fig.4.The probe board and motion board are connected, which allows them to transmit information to each other. The probe board is installed inside the “detected ball” and connected to laser sensors, ultrasonic sensors and webcam, which allow the probe board to receive its own height, distance from obstacle to itself and image information took by the webcam. The motion board is attached to the fuselage of the UAV and connected to the motors that control the propeller mechanical clamp, supporting posts, propeller and network modules, which allow the motion motherboard to control the UAV's movements and use GPS to navigate, receive and send
2019101130 30 Sep 2019 information over the network(as show in the figure 4).
In order to make the UAV hover at a certain height automatically and without manual adjustment, we install a laser sensor on the lower end face of the UAV body and set the height control system in the processor. This allows the UAV to fly automatically to the right height and grab the cargo with simple mechanical grabbers, and to drop the cargo to a safe height without breaking it. The laser sensor can measure the altitude of UAV from the ground in real time. The altitude control system can control the altitude of UAV in real time and use PID algorithm to make the UAV hover at a certain height. The built-in light source of the laser sensor continuously emits laser to the ground, and the laser is reflected by the ground and received by the sensor. Among them, the laser sensor modulates the light intensity of the emitted light wave with a modulated signal, so that the emitted laser light intensity and the received laser light intensity produce phase difference (as shown in the figure 5 ), and indirectly by phase difference measurement time lag between transmitting and receiving laser, again through the following formula: 2 L = φ *(c*T) / 2 PI measure the height of the unmanned aerial vehicle (UAV) from the ground. In the height control system, the processor input the information from the laser sensor into the PID control algorithm and calculated the corresponding UAV propeller speed, and then adjust the power of the motor to make the propeller speed close to the value obtained by the PID
2019101130 30 Sep 2019 control algorithm, so as to control the flight height of the UAV (as shown in the figure 14 ).
When the UAV flies over the city, it is easy for the UAV to hit the buildings due to the different height of buildings in the city, and the difference of the height of buildings is more than 10 meters. Therefore, the flying height of the UAV is stipulated to be more than 30 meters. Therefore, the UAV only needs to consider avoiding buildings that are too high when creating a flight path. In most cases, it can fly directly to the destination in a straight line. Unmanned aircraft in flight will use GPS for navigation, through multiple satellites and UAV signals between sending and receiving and to calculate the distance between them that UAV position in the city (as shown in the figure 6), through the moment before and after the position of the UAV than can draw their own speed, direction and at the same time, record its movement. As a result, the UAV can use GPS to adjust its flight direction in time or to recreate a predetermined flight path if it deviates significantly from its original course, (as shown in the figure 15)
The UAV can detect obstacles through ultrasonic sensors while flying (as shown in the figure?). When the distance from the obstacle is more than 5m, the UAV still follows the original route of GPS. When the distance from the obstacle is less than 5m, the UAV will control the propeller io
2019101130 30 Sep 2019 speed to swing from side to side and pan for a certain distance, and avoid the obstacle before hitting it. When the obstacle is successfully avoided, the processor replans the route according to the positioning information provided by the GPS, and the UAV follows the route at the specified speed (as shown in the figure6).
The mechanical grabber of this UAV is composed of two pairs of clamps, each pair of clamps has grooves and bumps that match each other (the grooves are 1cm apart from the bumps) (as shown in the figure 8), which is intended to facilitate the clamps to clip the cargo handle, and can grip the cargo firmly in the aerial transport, reducing the accidents of cargo falling in the process of transport. Two pairs of clamps are connected to the telescopic rod by the movable rod and fixed on the fixed rod outside the telescopic rod ((as shown in the figure 9). The tail of the telescopic rod is fixed on one side of a gear, which can be driven by a motor. The specific performance is that when the motor operates, the part of the gear connected with telescopic rod drops, driving the telescopic rod to drop, thus the clip opens; The part connected with the telescopic rod on the gear rises and drives the telescopic rod up, thus tightening the clamp. When necessary, the gear can be stuck so that the clamp of the mechanical grabber cannot move.
There are four groups of supporting legs of this UAV, and each group is
2019101130 30 Sep 2019 composed of three parts (a large supporting rod with inner groove, a medium supporting rod and a small supporting rod). The three supporting rods are connected by movable shafts, and each shaft is attached with a small steering engine (which can rotate 0-180° ) (as shown in the figure 10). The UAV operates in three main modes: in the first mode, the UAV does not fly and lands on the ground (the ground is flat). The supporting rods A forms a 450 angle with the ground and its lower end faces the outside of the UAV; the supporting rods B form a certain inclination angle with the ground; and the supporting rods C sticks to the ground (as shown in the figure 11). In the second mode, UAV flies without cargo. The supporting rod C is parallel to the supporting rod B, and the two rods are included in the supporting rod A together, and the supporting rods A is included in the groove of the UAV shell (as shown in the figure 12). In the third mode, UAV flies with cargo. The supporting rod is gathered towards the center of the UAV to form A shape similar to the cage, where the supporting rods C forms the bottom of the cage, and the supporting rods B and the supporting rods A form the cage body of the cage (as shown in the figure 13).
The UAV in identifying and fetching goods, is located in the unmanned aerial vehicle (UAV) in front of an external camera scan qr code and obtain goods information, after scanning the qr code, the UAV will fly to the upper part of the goods, using its bottom to install the laser sensor
2019101130 30 Sep 2019 measures the distance of UAV with the goods in the flight to specified height when loosen the mechanical paw, and decreased after a short distance to tighten mechanical grabbers to grab the handle (the outer packing of the goods is designed to be installed with the handle). After capturing the cargo, the UAV lowers its support legs to form a cage shape and wraps around the cargo to prevent it from falling during transit (as shown in the figure 17). UAV mechanical grabber when equipped with a pressure sensor, after the clip tightening, UAV will slightly increases the rotational speed of propeller, the aircraft rises, because of the weight of goods, machinery in pressure sensor can feel pressure changes, when the return value of the pressure sensor arrived at a certain critical value, the UAV built-in system will determine success picking up the goods.
EXAMPLEA
This UAV can install indoor positioning system and wireless charging module to realize automatic working mode. First of all, the UAV takes off in the room after receiving the starting order, and uses the laser sensor and PID height control system to hover at a certain height and retract the supporting legs, and then uses the indoor positioning system to fly to the cargo storage area. Have a goods need to be transport, no chance to use the camera scans the qr code on the outer packing of the goods, goods itself and the order of detailed information (considering the only city with
2019101130 30 Sep 2019 a large number of goods transport demand will use the UAV, goods that there will always be here waiting for transportation, so the UAV is almost always in working state). UAV in order to get the goods need to be transported to the site, the site info match the electronic maps, and automatically calculate the route (UAV flight level can be more than most of the buildings on the ground, so the course only need to avoid some high buildings, in most cases, a predetermined route is a straight line.). After scanning the qr code, UAV flight to the upper part of the goods, using its bottom to install the laser sensor measures the distance of UAV with the goods in the flight to specified height when loosen the mechanical paw, and decreased after a short distance to tighten mechanical grabbers to grab the handle (the outer packing of the goods is designed to be installed with the handle). The mechanical grabber of the UAV is equipped with a pressure sensor. If the pressure measured by the pressure sensor changes during the rising process after grasping the goods, the mechanical grabber will seize the goods, otherwise it will seize the goods again. After capturing the cargo, the UAV lowers its support legs to form a cage shape and wraps around the cargo to prevent it from falling during transit. After capturing the cargo, the UAV will fly out of the room to the outside, rise more than 30 meters above the ground, and begin to transport the cargo along the calculated flight route according to the navigation of the GPS. During the flight, turn off the laser sensor, and the
2019101130 30 Sep 2019 ultrasonic sensor will conduct real-time detection. If the obstacle in the flight direction is detected to be less than or equal to 5 meters from the UAV, the UAV will pan to the left or right for a certain distance, and avoid the obstacle before hitting it. When the obstacle is successfully avoided, the processor redirects the flight path based on the positioning information provided by the GPS, and the UAV continues to fly along the new route. When it arrives at its destination, the UAV will use GPS information to determine whether it has actually reached the destination. If the UAV receives an order that requires the goods to be delivered directly to the recipient, the UAV sends a notification message to the recipient's phone upon arrival at the destination. After confirm the delivery of the recipient on the phone to send information, UAV using laser sensor and the height of the PID control system will be able to slow down to plane, at the same time will tend to support the legs from the collapsed state to support the status of the pressure sensor in mechanical grabber to confirm the goods are no longer adding to pressure on the mechanical paw (the goods completely on the ground), after the UAV will loosen the mechanical paw on the goods. The processor then calculates the return route, along which the UAV will return. If the UAV receives an order for goods that requires it to be delivered to a centralized depot, the UAV will descend to a certain height and fly indoors and place the goods in a designated location through the interior. While the UAV is in action,
2019101130 30 Sep 2019 it sends orders, GPS locations and electricity to an associated computer over the network in real time. In cargo station, using the UAV wireless charging device can be placed in UAV with low power or electricity can't support a transport tasks, when using unmanned aircraft can fly through the indoor positioning system to wireless charging equipment above, using laser sensor and the height of the PID control system can be stable landing charge on wireless charging equipment. According to the above description, this UAV has completed a complete automatic cargo transportation task and can realize the function of automatic charging. Besides, it can also monitor the status of the UAV remotely by computer, so it can achieve the goal of automatic and uninterrupted cargo transportation 24 hours a day.

Claims (1)

1. An unmanned aerial vehicle for short distance delivery, which is designed to automate the transportation of goods between two locations; wherein the UAV can be connected to a network and is fitted with processors, sensors and mechanical claws; it can autonomously adjust its flight altitude; automatically search for and grab goods indoors; automatically generate a navigation route and fly along the route; avoid obstacles automatically; UAV can receive their own positioning information, orders for goods and information in orders through the network; and it can send information about its location, speed and power to computers that monitor the drone remotely.
AU2019101130A 2019-09-30 2019-09-30 An unmanned aerial vehicle for short distance delivery Ceased AU2019101130A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019101130A AU2019101130A4 (en) 2019-09-30 2019-09-30 An unmanned aerial vehicle for short distance delivery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2019101130A AU2019101130A4 (en) 2019-09-30 2019-09-30 An unmanned aerial vehicle for short distance delivery

Publications (1)

Publication Number Publication Date
AU2019101130A4 true AU2019101130A4 (en) 2020-01-16

Family

ID=69146781

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2019101130A Ceased AU2019101130A4 (en) 2019-09-30 2019-09-30 An unmanned aerial vehicle for short distance delivery

Country Status (1)

Country Link
AU (1) AU2019101130A4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11789469B1 (en) * 2020-02-27 2023-10-17 Express Scripts Strategic Development, Inc. Systems and methods for package delivery with unmanned aerial vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11789469B1 (en) * 2020-02-27 2023-10-17 Express Scripts Strategic Development, Inc. Systems and methods for package delivery with unmanned aerial vehicles

Similar Documents

Publication Publication Date Title
US11673650B2 (en) Adaptive thrust vector unmanned aerial vehicle
US11873091B2 (en) Landing and payload loading structures
US20210255642A1 (en) Method and apparatus for remote, interior inspection of cavities using an unmanned aircraft system
US10683102B2 (en) Home station for unmanned aerial vehicle
US20170313439A1 (en) Methods and syststems for obstruction detection during autonomous unmanned aerial vehicle landings
CN111512327A (en) Dynamic UAV transportation mission
WO2013055265A1 (en) SYSTEM AND METHOD FOR LAUNCHING AND LANDING UAVs
WO2023077341A1 (en) Return flight method and apparatus of unmanned aerial vehicle, unmanned aerial vehicle, remote control device, system, and storage medium
CN111527460A (en) Methods and systems using deployed Unmanned Aerial Vehicles (UAVs) dedicated to operating infrastructure
US11551565B2 (en) System and method for drone release detection
RU123393U1 (en) Unmanned aerial vehicle and aerial surveillance system for it
US20240203267A1 (en) Ruggedized autonomous helicopter platform
US11460866B2 (en) UAV carrier
AU2019101130A4 (en) An unmanned aerial vehicle for short distance delivery
RU2518440C2 (en) Pilotless aircraft and aerial monitoring complex for it
WO2022075165A1 (en) Autonomous mobile device, flying system, control method, and program
US11531337B2 (en) Systems and methods for surveillance
JP7490208B2 (en) Drone system, drone, control device, drone system control method, and drone system control program
US11928973B2 (en) Processing system, aerial vehicle capable of flying unmanned, and dust condition estimation method
US20240051690A1 (en) Storage device, unmanned aerial vehicle, and system
IL266248A (en) A uav carrier

Legal Events

Date Code Title Description
FGI Letters patent sealed or granted (innovation patent)
MK22 Patent ceased section 143a(d), or expired - non payment of renewal fee or expiry