AU2018446174A1 - Process and system for tail gas treatment - Google Patents
Process and system for tail gas treatment Download PDFInfo
- Publication number
- AU2018446174A1 AU2018446174A1 AU2018446174A AU2018446174A AU2018446174A1 AU 2018446174 A1 AU2018446174 A1 AU 2018446174A1 AU 2018446174 A AU2018446174 A AU 2018446174A AU 2018446174 A AU2018446174 A AU 2018446174A AU 2018446174 A1 AU2018446174 A1 AU 2018446174A1
- Authority
- AU
- Australia
- Prior art keywords
- gas
- tower
- carried out
- tail gas
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1487—Removing organic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1493—Selection of liquid materials for use as absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/10—Oxidants
- B01D2251/11—Air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/202—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/204—Carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/10—Inorganic absorbents
- B01D2252/103—Water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/202—Alcohols or their derivatives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/202—Alcohols or their derivatives
- B01D2252/2021—Methanol
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20761—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2201/00—Pretreatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G7/00—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
- F23G7/06—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2215/00—Preventing emissions
- F23J2215/10—Nitrogen; Compounds thereof
- F23J2215/101—Nitrous oxide (N2O)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Treating Waste Gases (AREA)
- Catalysts (AREA)
- Gas Separation By Absorption (AREA)
Abstract
Presented is a process for treating a tail gas having nitrogen oxides and an alkyl nitrite. The process comprises contacting the tail gas with an alkyl alcohol in the presence of oxygen to absorb the alkyl nitrite, contacting the resulting absorbed gas with a reducing gas in the presence of a catalyst to reduce the nitrogen oxides, and washing the absorbed and reduced gas to generate a treated tail gas. Also provided is a system for treating a tail gas having nitrogen oxides and an alkyl nitrite. The treated tail gas has a low nitrogen oxide content and a low alkyl nitrite content.
Description
The present invention relates processes and systems for treatment of tail gases comprising nitrogen oxides and alkyl nitrite gases.
Nitrogen oxides (NO
x) are mainly used to refer to NO
2 and NO. NO
x can stimulate lungs and cause damages to the lungs. NO
x can also reduce visibility of the atmosphere. In addition, NO
x react with water in the air to form acid rain, which causes damages to the environment. Methyl nitrite (MN) is a flammable and explosive gas with strong toxicity. MN can form methemoglobin with red blood cells in blood after inhalation, so that the red blood cells lose their ability to carry oxygen. The principle of the toxicity is similar to that of carbon monoxide (CO) , but MN toxicity is much stronger than that of CO. Therefore, it is necessary to treat a tail gas containing NO
x and alkyl nitrites (RONO) by removing NO
x therein to lower its concentration to meet the relevant environmental standard, while simultaneously converting the MN therein before discharging the tail gas.
There remains a need for simple, low energy consumption and effective treatment and equipment for treating nitrogen oxides and alkyl nitrite gas.
SUMMARY OF THE INVENTION
The present invention provides treatment of a tail gas comprising nitrogen oxides and alkyl nitrite gas.
A process for treating a tail gas having nitrogen oxides and an alkyl nitrite is provided. The process comprises (a) contacting the tail gas with an effective amount of an alkyl alcohol in the presence of oxygen to absorb the alkyl nitrite, whereby an absorbed gas is generated; (b) contacting the absorbed gas with a reducing gas in the presence of an effective amount of a catalyst to reduce the nitrogen oxides, whereby an absorbed and reduced gas is generated; and (c) washing the absorbed and reduced gas, whereby a treated tail gas is prepared.
The treated tail gas may have a nitrogen oxide content less than 50 ppm. The treated tail gas may have an alkyl nitrite content less than 10 ppm.
The molar ratio of the nitrogen oxides in step (a) to the oxygen in step (a) may be from 1: 10 to 10: 1. The molar ratio of the alkyl alcohol in step (a) to the alkyl nitrite in step (a) may be from 1: 1 to 100: 1. The alkyl alcohol may be selected from the group consisting of methanol, ethanol, propanol and butanol.
Step (a) may be carried out under an operation pressure of 0.1-1.0 MPa. Step (a) may be carried out at an operation temperature from -30 ℃ to 90 ℃.
Step (a) may be carried out in a first absorption tower. The first absorption tower may be a packing tower, a washing tower or a spraying tower.
The molar ratio of the reducing gas to the nitrogen oxides in step (b) may be from 1: 1 to 10: 1. The reducing gas may comprise H
2, CO, NH
3, or a combination thereof. The catalyst may comprise Pd, Pt, Cu, Rh or a combination thereof.
Step (b) may be carried out at a temperature from 50 ℃ to 500 ℃. Step (b) may be carried out under a pressure of 0-10 barG. Step (b) may be carried out at a gas space velocity of 50-10,000 h
-1.
Step (b) may be carried out in a reactor. The reactor may be a fixed bed reactor.
The absorbed and reduced gas may be washed with water or an alkyl alcohol in step (c) . The alkyl alcohol used in step (c) may be methanol, ethanol, propanol or butanol. The alkyl alcohol used in step (c) may be the same as the alkyl alcohol used in step (a) . The molar ratio of the alkyl alcohol or water in step (c) to the alkyl nitrite in step (a) may be from 1: 1 to 1000: 1.
Step (c) may be carried out in a second absorption tower. The second absorption tower may be a packing tower, a washing tower or a spraying tower.
FIG. 1 illustrating a process and a system for absorbing and removing nitrogen oxides (NO
x) and alkyl nitrites in a gas according to an embodiment of the invention.
The invention relates to a process for treating a tail gas having nitrogen oxides (NO
x) and alkyl nitrites (RONO) . This invention was made based on the surprising discovery of novel treatment process by the inventors that removes RONO and NO
x from a tail gas by absorption with an alkyl alcohol and by a catalytic reduction reaction, respectively, such that the treated tail has a NO
x content below 50 ppm and a RONO content below 10 ppm. Also provided is a system for carrying out the treatment process.
A process for treating a tail gas is provided. The tail gas has nitrogen oxides (NO
x) and alkyl nitrite (RONO) . The process comprises contacting the tail gas with an effective amount of an alkyl alcohol in the presence of oxygen to absorb the alkyl nitrite, contacting the resulting absorbed gas with a reducing gas in the presence of an effective amount of a catalyst to reduce the nitrogen oxides, and washing the resulting absorbed and reduced gas. As a result, a treated tail gas is prepared.
Examples of nitrogen oxides include nitrogen monoxide (NO) and nitrogen dioxide (NO
2) . The tail gas may have an initial nitrogen oxide content greater than 50000 or 100000 ppm. The treated tail gas may have a nitrogen oxide content less than about 60, 55, 50, 45, 40, 35, 30, 25, 20, 15 or 10 ppm, preferably less than about 50 ppm.
Examples of alkyl nitrite include methyl nitrite (MN) and ethyl nitrite. The treated tail gas may have an alkyl nitrite content less than about 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 ppm, preferably less than about 10 ppm.
In alkyl nitrite absorption step, the molar ratio of the nitrogen oxides to the oxygen may be from about 1: 10 to about 10: 1, preferably from about 1: 5 to about 5: 1, more preferably from about 1: 2 to about 2: 1.
The molar ratio of the alkyl alcohol to the alkyl nitrite may be from about 1: 1 to about 100: 1, preferably from about 2: 1 to about 50: 1, more preferably from about 5: 1 to about 30: 1. The alkyl alcohol may be selected from the group consisting of methanol, ethanol, propanol and butanol.
The alkyl nitrite absorption step may be carried out under an operation pressure of about 0.1-1.0 MPa, preferably about 0.1-0.7 MPa, more preferably about 0.1-0.3 MPa.
The alkyl nitrite absorption step may be carried out at an operation temperature from about -30 ℃ to about 90 ℃, preferably from about -10 ℃ to about 60 ℃, more preferably from about 0 ℃ to about 50 ℃.
The alkyl nitrite absorption step may be carried out in an absorption tower, which may be a packing tower, a washing tower or a spraying tower.
In the reduction step, the molar ratio of the reducing gas to the nitrogen oxides may be from about 1: 1 to about 10: 1, preferably from about 1: 1 to about 5: 1, more preferably from about 1: 1 to about 3: 1. The reducing gas may comprise H
2, CO, NH
3, or a combination thereof. The catalyst may comprise Pd, Pt, Cu, Rh or a combination thereof.
The reduction step may be carried out at a temperature of about 50-500 ℃, preferably about 100-450 ℃, more preferably about 150-350 ℃. The reduction step may be carried out under a pressure of about 0-10 barG, preferably about 0-8 barG, more preferably about 0-5 barG. The reduction step may be carried out at a gas space velocity of about 50-10,000 h
-1, preferably about 70-5,000 h
-1, more preferably about 100-2,000 h
-1.
The reduction step may be carried out in a reactor. The reactor may be a fixed bed reactor.
In the washings step, the absorbed and reduced gas may be washed with water or an alkyl alcohol. The alkyl alcohol used in the washing step may be methanol, ethanol, propanol or butanol. The alkyl alcohol used in the washing step may be the same as the alkyl alcohol used in absorption step. The molar ratio of the alkyl alcohol or water used in the washing step to the alkyl nitrite used in absorption step may be from about 1: 1 to about 1000: 1 , preferably from about 2: 1 to about 500: 1, more preferably from about 5: 1 to about 300: 1.
The washing step may be carried out in a second absorption tower. The second absorption tower may be a packing tower, a washing tower or a spraying tower.
A system for treating a tail gas having nitrogen oxides and an alkyl nitrite is also provided. The system comprises a first absorption tower, a reactor and a second absorption towner. In the first absorption towner, the tail gas is exposed to an effective amount of an alkyl alcohol in the presence of oxygen to absorb the alkyl nitrite, whereby an absorbed gas is generated. In the reactor, the absorbed gas is exposed to a reducing gas in the presence of an effective amount of a catalyst to reduce the nitrogen oxides, whereby an absorbed and reduced gas is generated. In the second absorption towner, the absorbed and reduced gas is washed. As a result, a treated tail gas is prepared.
The first absorption tower may be a packing tower, a washing tower or a spraying tower. The reactor may be a fixed bed reactor. The second absorption tower may be a packing tower, a washing tower or a spraying tower.
The term “about” as used herein when referring to a measurable value such as an amount, a percentage, and the like, is meant to encompass variations of ±20%or ±10%, more preferably ±5%, even more preferably ±1%, and still more preferably ±0.1%from the specified value, as such variations are appropriate.
Example 1. Treated Gas 1
A tail gas was treated to generate Treated Gas 1. A gas containing nitrogen oxides (NO
x) and methyl nitrite (MN) was introduced with air into a first washing tower. The molar ratio of the NO
x to the oxygen (O
2) in the air was 1: 10. Methanol was introduced at a molar ratio of methanol to MN at 1: 1 to adsorb MN. The operation pressure was 0.1 MPa. The operation temperature was -30 ℃. The gas exiting from the top of the adsorption tower was passed together with hydrogen (H
2) into a fixed bed reactor equipped containing Pt catalyst for catalytic reduction in the presence of a reducing gas having a molar ratio of the reducing gas to the NO
x at 1: 1. The reaction temperature was 500 ℃. The reaction pressure was 0 barG. The gas space velocity was 50 h
-1. The reduced gas was passed from the fixed bed reactor into a second washing tower for washing with water at a molar ratio of 1000: 1 for the water to the methyl nitrate before treatment and, after washing, the used water was discarded as waste water. The gas exiting from the top of the washing tower was Treated Gas 1. Treated Gas 1 was then subjected to combustion treatment.
Table 1 shows the key process conditions used to prepare Treated Gas 1 and its methyl nitrite content of 8 ppm and NOx content of 43 ppm.
Example 2: Treated Gas 2
A tail gas was treated to generate Treated Gas 2. A gas containing nitrogen oxides (NO
x) and ethyl nitrite was introduced with air into a first packing tower. The molar ratio of NO
x to oxygen (O
2) in the air was 10: 1. Ethanol was introduced at a molar ratio of ethanol to ethyl nitrite at 100: 1 to absorb ethyl nitrite. The operation pressure was 1.0 Mpa. The operation temperature was 90℃. The gas existing from the top of the filler tower was passed together with CO into a fixed bed reactor equipped with Pd catalyst for catalytic reduction in the presence of a reducing gas having a molar ratio of the reducing gas to the NO
x at 10: 1. The reaction temperature was 50 ℃. The reaction pressure was 10 barG. The gas space velocity was 10,000 h
-1. The reduced gas was passed into a second packing tower for washing with ethanol at a molar ratio of 1: 1 for the ethanol to the ethyl nitrite in the tail gas before treatment and, after washing, the used ethanol was introduced into the first packing tower to be reused in the absorption step. The gas exiting from the top of the washing tower was Treated Gas 2. Treated Gas 2 was then subjected to combustion treatment.
Table 1 shows the key process conditions used to prepare Treated Gas 2 and its methyl nitrite content of 9 ppm and nitrogen oxide content of 43 ppm.
Example 3. Treated Gases 3-6 and Comparative Gas 1-3
Addition studies were carried out to treat a tail gas containing nitrogen oxide and alkyl nitrite according the process described in Example except the different conditions indicated in Table 1. Table 1 shows the process conditions used for preparing Treated Gases 3-6 and Comparative Treated Gases 1-3 and their methyl nitrite contents and nitrogen oxide contents.
Table 1. Preparation and properties of Treated Gases 1-6 and Comparative Gases 1-3
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims without departing from the invention.
Claims (24)
- A process for treating a tail gas having nitrogen oxides and an alkyl nitrite, comprising:(a) contacting the tail gas with an effective amount of an alkyl alcohol in the presence of oxygen to absorb the alkyl nitrite, whereby an absorbed gas is generated;(b) contacting the absorbed gas with a reducing gas in the presence of an effective amount of a catalyst to reduce the nitrogen oxides, whereby an absorbed and reduced gas is generated; and(c) washing the absorbed and reduced gas, whereby a treated tail gas is prepared.
- The process of claim 1, wherein the treated tail gas has a nitrogen oxide content less than 50 ppm.
- The process of claim 1, wherein the treated tail gas has an alkyl nitrite content less than 10 ppm.
- The process of claim 1, wherein the molar ratio of the nitrogen oxides to the oxygen in step (a) is from 1: 10 to 10: 1.
- The process of claim 1, wherein the molar ratio of the alkyl alcohol in step (a) to the alkyl nitrite in step (a) is from 1: 1 to 100: 1.
- The process of claim 1, wherein the alkyl alcohol is selected from the group consisting of methanol, ethanol, propanol and butanol.
- The process of claim 1, wherein step (a) is carried out under an operation pressure of 0.1-1.0 MPa.
- The process of claim 1, wherein step (a) is carried out at an operation temperature from -30 ℃ to 90 ℃.
- The process of claim 1, wherein step (a) is carried out in a first absorption tower.
- The process of claim 9, wherein the first absorption tower is a packing tower, a washing tower or a spraying tower.
- The process of claim 1, wherein the molar ratio of the reducing gas to the nitrogen oxides in step (b) is from 1: 1 to 10: 1.
- The process of claim 1, wherein the reducing gas comprises H 2, CO, NH 3, or a combination thereof.
- The process of claim 1, wherein the catalyst comprises Pd, Pt, Cu, Rh or a combination thereof.
- The process of claim 1, wherein step (b) is carried out at a temperature from 50 ℃ to 500 ℃.
- The process of claim 1, wherein step (b) is carried out under a pressure of 0-10 barG.
- The process of claim 1, wherein step (b) is carried out at a gas space velocity of 50-10,000 h -1.
- The process of claim 1, wherein step (b) is carried out in a reactor.
- The process of claim 17, wherein the reactor is a fixed bed reactor.
- The process of claim 1, wherein the absorbed and reduced gas is washed with water in step (c) .
- The process of claim 1, wherein the absorbed and reduced gas is washed with the alkyl alcohol in step (c) .
- The process of claim 20, wherein the molar ratio of the alkyl alcohol in step (c) to the alkyl nitrite in step (a) is from 1: 1 to 1000: 1.
- The process of claim 20, further comprising introducing the alkyl alcohol after step (c) into step (a) .
- The process of claim 1, wherein step (c) is carried out in a second absorption tower.
- The process of claim 23, wherein the second absorption tower is a packing tower, a washing tower or a spraying tower.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/111138 WO2020082201A1 (en) | 2018-10-22 | 2018-10-22 | Process and system for tail gas treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2018446174A1 true AU2018446174A1 (en) | 2021-04-01 |
AU2018446174B2 AU2018446174B2 (en) | 2022-12-08 |
Family
ID=68500578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2018446174A Active AU2018446174B2 (en) | 2018-10-22 | 2018-10-22 | Process and system for tail gas treatment |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2018446174B2 (en) |
RU (1) | RU2705073C1 (en) |
WO (1) | WO2020082201A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4879401A (en) * | 1987-09-29 | 1989-11-07 | Union Carbide Chemicals And Plastics Company Inc. | Process for removal of impurities in alkyl nitrite formation |
RU2026811C1 (en) * | 1991-06-14 | 1995-01-20 | Акционерное общество "Куйбышевазот" | Nitrous rail gases low-temperature catalytic purification process control method |
DE4338982A1 (en) * | 1993-11-15 | 1995-05-18 | Bayer Ag | Purification of exhaust gases containing alkyl nitrite |
CN100493674C (en) * | 2006-06-27 | 2009-06-03 | 上海焦化有限公司 | Method for expelling nitrous acid alkyl ester and nitrogen oxide gas from the discharged gas |
CN102218258B (en) * | 2010-04-15 | 2013-08-21 | 中国石油化工股份有限公司 | Technology and equipment for recycling nitric oxides and purifying tail gas |
CN106139898B (en) * | 2015-04-14 | 2019-03-01 | 高化学技术株式会社 | Regeneration, the method for absorbing NO, alkyl nitrite and the CO and N2O that are coupled in synthesis of oxalate process tail gas with removing CO carbonyl |
CN108329210A (en) * | 2018-04-08 | 2018-07-27 | 西安汉术化学工程股份有限公司 | The recovery system and method for nitric oxide, methyl nitrite in a kind of tail gas of carbonylation dimethyl oxalate |
-
2018
- 2018-10-22 AU AU2018446174A patent/AU2018446174B2/en active Active
- 2018-10-22 WO PCT/CN2018/111138 patent/WO2020082201A1/en active Application Filing
- 2018-10-22 RU RU2018145377A patent/RU2705073C1/en active
Also Published As
Publication number | Publication date |
---|---|
AU2018446174B2 (en) | 2022-12-08 |
WO2020082201A1 (en) | 2020-04-30 |
RU2705073C1 (en) | 2019-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106215652B (en) | A kind of the combination denitrating system and method for aluminium oxide calcining flue gas | |
US11247197B1 (en) | Core-shell structured catalyst, preparation method thereof and method for treating industrial tail gas | |
CN106139898B (en) | Regeneration, the method for absorbing NO, alkyl nitrite and the CO and N2O that are coupled in synthesis of oxalate process tail gas with removing CO carbonyl | |
CN102059127A (en) | Catalyst for CO normal temperature catalytic oxidation and preparation method thereof | |
JPH02198639A (en) | Catalyst for decomposing ammonia | |
CN109862956A (en) | The method that denitrification is removed from gas using the zeolite catalyst that iron exchanges | |
CN104437028A (en) | Method for removing alkyl nitrite and nitrous oxide from tail gas | |
CN102463030A (en) | Method for removing nitrogen oxides in tail gas generated in preparation of oxalate from CO | |
AU2018446174B2 (en) | Process and system for tail gas treatment | |
CN101905114B (en) | High purification method of industrial tail gas containing oxynitride | |
CN109529613A (en) | A kind of method and purification system of the formaldehyde of mineralising at room temperature | |
US7192566B2 (en) | Process for the catalytic decomposition of N2O to N2 and O2 carried out at high temperature | |
CN106607087A (en) | Catalyst for catalytic conversion of nitrogen-containing compound with carbon monoxide | |
CN107261805A (en) | A kind of special hydrazine solution of chimney smoke desulphurization denitration and preparation method thereof | |
CN115193473B (en) | Catalyst for oxidizing methyl mercaptan by ozone, preparation method and application thereof | |
CN1006041B (en) | Composite Catalytic Potassium Carbonate Solution for Removing Carbon Dioxide in Mixed Gas | |
US20210229035A1 (en) | Method for removing nitrogen oxides from a gas | |
CN111644048B (en) | Process method for removing nitrogen oxide and alkyl nitrite gas in tail gas | |
CN106607082A (en) | Catalyst for efficiently removing nitrogen oxides through carbon monoxide | |
CN107663153B (en) | A kind of method of nitric acid gas phase catalysis reduction | |
CN114471559B (en) | Cu/AC catalyst for CO-SCR denitration and Zn poisoning resistance as well as preparation method and application thereof | |
CN103055957A (en) | Preparation method of supported catalyst | |
CN219209456U (en) | EC device relief valve exhaust treatment system that releases | |
CN115430287B (en) | Denitration technology for poisoning resistance of metal oxide catalyst | |
JP5498169B2 (en) | Method for removing NO and N2O from a gas mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |