AU2018203206A1 - Factor VIII Complex With XTEN and Von Willebrand Factor Protein, and Uses Thereof - Google Patents

Factor VIII Complex With XTEN and Von Willebrand Factor Protein, and Uses Thereof Download PDF

Info

Publication number
AU2018203206A1
AU2018203206A1 AU2018203206A AU2018203206A AU2018203206A1 AU 2018203206 A1 AU2018203206 A1 AU 2018203206A1 AU 2018203206 A AU2018203206 A AU 2018203206A AU 2018203206 A AU2018203206 A AU 2018203206A AU 2018203206 A1 AU2018203206 A1 AU 2018203206A1
Authority
AU
Australia
Prior art keywords
leu
ser
val
thr
fviii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2018203206A
Other versions
AU2018203206B2 (en
Inventor
Pei-Yun Chang
Ekta Seth Chhabra
John KULMAN
Tongyao Liu
Robert T. Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bioverativ Therapeutics Inc
Original Assignee
Amunix Operating Inc
Bioverativ Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amunix Operating Inc, Bioverativ Therapeutics Inc filed Critical Amunix Operating Inc
Priority to AU2018203206A priority Critical patent/AU2018203206B2/en
Publication of AU2018203206A1 publication Critical patent/AU2018203206A1/en
Assigned to BIOVERATIV THERAPEUTICS INC. reassignment BIOVERATIV THERAPEUTICS INC. Request for Assignment Assignors: AMUNIX OPERATING INC., BIOVERATIV THERAPEUTICS INC.
Application granted granted Critical
Publication of AU2018203206B2 publication Critical patent/AU2018203206B2/en
Priority to AU2020264355A priority patent/AU2020264355A1/en
Priority to AU2022252703A priority patent/AU2022252703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/755Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/36Blood coagulation or fibrinolysis factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/36Blood coagulation or fibrinolysis factors
    • A61K38/37Factors VIII
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/31Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/35Fusion polypeptide containing a fusion for enhanced stability/folding during expression, e.g. fusions with chaperones or thioredoxin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Diabetes (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention includes a chimeric protein comprising a VWF protein with D' domain and D3 domain of VWF, one or more XTEN sequence, and a FVIII protein, wherein the VWF fragment, the XTEN sequence, or the FVIII protein are linked to or associated with each other. The chimeric protein can further comprise one or more Ig constant region or a portion thereof (e.g., an Fc region). A polypeptide chain of a VWF fragment is associated with a FVIII polypeptide chain linked to an XTEN sequence. The VWF fragment polypeptide chain can prevent or inhibit binding of endogenous VWF to FVIII protein linked to the XTEN sequence. By preventing or inhibiting binding of endogenous VWF to FVIII protein, VWF fragment can extend half-life of chimeric protein comprising FVIII protein. The invention includes nucleotides, vectors, host cells, use of VWF fragment, or chimeric proteins.

Description

The present invention includes a chimeric protein comprising a VWF protein with D' domain and D3 domain of VWF, one or more XTEN sequence, and a FVIII protein, wherein the VWF fragment, the XTEN sequence, or the FVIII protein are linked to or associated with each other. The chimeric protein can further comprise one or more Ig constant region or a portion thereof (e.g., an Fc region). A polypeptide chain of a VWF fragment is associated with a FVIII polypeptide chain linked to an XTEN sequence. The VWF fragment polypeptide chain can prevent or inhibit binding of endogenous VWF to FVIII protein linked to the XTEN sequence. By preventing or inhibiting binding of endogenous VWF to FVIII protein, VWF fragment can extend half-life of chimeric protein comprising FVIII protein. The invention includes nucleotides, vectors, host cells, use of VWF fragment, or chimeric proteins.
2018203206 08 May 2018
FACTOR VIII COMPLEX WITH XTEN AND VON WILLEBRAND FACTOR PROTEIN,
AND USES THEREOF [0001] This application is a divisional of Australian Patent Application No.
2013290173, filed on 10 July 2013, and is related to International Patent Application No. PCT/US2013/049989, filed on 10 July 2013, and claims priority from U.S. Provisional Patent Application Nos. 61/670,401 filed on 11 July 2012, 61/759,819 filed on 1 February 2013, 61/801,504 filed on 15 March 2013, 61/801,544 filed on 15 March 2013, 61/827,158 filed on 24 May 2013, and 61/840,811 filed on 28 June 2013, each of which is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION [0001a] Haemophilia A is a bleeding disorder caused by defects in the gene encoding coagulation factor VIII (FVIII) and affects 1-2 in 10,000 male births. Graw et al., Nat. Rev. Genet. 6(6): 488-501 (2005). Patients affected with hemophilia A can be treated with infusion of purified or recombinantly produced FVIII. All commercially available FVIII products, however, are known to have a half-life of about 8-12 hours, requiring frequent intravenous administration to the patients. See Weiner M.A. and Cairo, M.S., Pediatric Hematology Secrets, Lee, M.T., 12. Disorders of Coagulation, Elsevier Health Sciences, 2001; Lillicrap, D. Thromb. Res. 122 Suppl 4:S2-8 (2008). In addition, a number of approaches have been tried in order to extend the FVIII half-life. For example, the approaches in development to extend the half-life of clotting factors include pegylation, glycopegylation, and conjugation with albumin. See Dumont et al., Blood. 119(13): 3024-3030 (Published online Jan. 13, 2012). Regardless of the protein engineering used, however, the long acting FVIII products currently under development are reported to have limited half-lives - only to about 1.5 to 2 hours in preclinical animal models. See id. Consistent results have been demonstrated in humans, for example, rFVIIIFc was reported to improve half-life up to ~ 1.7 fold compared with ADVATE® in hemophilia A patients. See Id. Therefore, the half-life increases, despite minor improvements, may indicate the presence of other Tl/2 limiting factors. See Liu, T. et al., 2007 ISTH meeting, abstract #PM- 035; Henrik, A. et al., 2011 ISTH meeting, abstract #P=MO-181; Liu, T. et al., 2011 ISTH meeting abstract #P-WE-131.
[0002] Plasma von Willebrand Factor (VWF) has a half-life of approximately 12 hours (ranging from 9 to 15 hours).
-1 http://www.nhlbi.nih.gov/guidelines/vwd/2_scientificoverview.htm (last visited October 22,
2011). The VWF half-life may be affected by a number of factors: glycosylation pattern,
ADAMTS-13 (a disintegrin and metalloprotease with thrombospondin motif- 13), and various mutations in VWF.
[0003] In plasma, 95-98% of FVIII circulates in a tight non-covalent complex with full length VWF. The formation of this complex is important for the [Text continues on page 2,]
2018203206 08 May 2018
- la 2018203206 08 May 2018 maintenance of appropriate plasma levels of FVIII in vivo. Lenting et al., Blood. 92(11): 3983-96 (1998); Lenting et al., J. Thromb. Haemost. 5(7): 1353-60 (2007). The full-length wild-type FVIII is mostly present as a heterodimer having a heavy chain (MW 200kD) and a light chain (MW 73kD). When FVIII is activated due to proteolysis at positions 372 and 740 in the heavy chain and at position 1689 in the light chain, the VWF bound to FVIII is removed from the activated FVIII. The activated FVIII, together with activated factor IX, calcium, and phospholipid (tenase complex), induces the activation of factor X, generating large amounts of thrombin. Thrombin, in turn, then cleaves fibrinogen to form soluble fibrin monomers, which then spontaneously polymerize to form the soluble fibrin polymer. Thrombin also activates factor XIII, which, together with calcium, serves to crosslink and stabilize the soluble fibrin polymer, forming crosslinked (insoluble) fibrin. The activated FVIII is cleared fast from the circulation by proteolysis.
[0004] Due to the frequent dosing and inconvenience caused by the dosing schedule, there is still a need to develop FVIII products requiring less frequent administration, i.e., a FVIII product that has a half-life longer than the 1.5 to 2 fold half-life limitation.
BRIEF SUMMARY OF THE INVENTION [0005] The present invention is directed to a chimeric protein comprising (i) a von
Willebrand Factor (VWF) fragment comprising the D' domain and the D3 domain of VWF, (ii) an XTEN sequence, and (iii) a FVIII protein, wherein the VWF fragment and the XTEN sequence are linked by an optional linker and wherein the VWF fragment or the XTEN sequence is linked to or associated with the FVIII protein. The chimeric protein can comprise a single polypeptide chain comprising the VWF fragment, the XTEN sequence, and the FVIII protein, or two polypeptide chains, a first chain comprising the VWF fragment and the second chain comprising the FVIII protein, wherein the XTEN polypeptide is linked either to the VWF fragment or the FVIII protein.
[0006] In one embodiment, the chimeric protein of the invention comprises a formula comprising:
(a) V-X-FVIII,
-22018203206 08 May 2018 (b) FVIII-X-V, (c) V-X:FVIII, (d) X-V:FVIII, (e) FVIII:V-X, or (f) FVIII:X-V, wherein V comprises a VWF fragment,
X comprises one or more XTEN sequences, and
FVIII comprises a FVIII protein. The hyphen (-) can be a peptide bond or a linker, e.g., a cleavable linker, while the colon (:) represents a chemical association or a physical association between the polypeptides, for example a covalent or non-covalent bond.
[0007] In another embodiment, the chimeric protein further comprises (iv) an immunoglobulin (Ig) constant region or a portion thereof (also indicated as FI or a first Ig constant region or a portion thereof) linked to the VWF fragment, the XTEN sequence, the FVIII protein, or any combinations thereof. In other embodiments, the chimeric protein further comprises an additional Ig constant region or a portion thereof (also indicated as F2 or a second Ig constant region or a portion thereof). The first Ig constant region or a portion thereof can be linked to the VWF fragment or the XTEN sequence, and the second Ig constant region can be linked to the FVIII protein. The first Ig constant region, the second Ig constant region or a portion thereof, or both can extend the half-life of the FVIII protein.
[0008] In some embodiments, the second Ig constant region or a portion thereof (F2) is linked to the VWF fragment by a linker, e.g., a processable linker. In other embodiments, the second Ig constant region or a portion thereof (F2) is associated with the (first) Ig constant region or a portion thereof (FI). The second Ig constant region or a portion thereof (F2) and the first Ig constant region or a portion thereof (FI) can be identical or different. The second Ig constant region or a portion thereof can be associated with the Ig constant region or a portion thereof by a covalent bond, e.g., a disulfide bond. The VWF fragment linked to the first Ig constant region or a portion thereof may also be associated with the FVIII protein linked to the second Fc region by a non-covalent bond. In certain embodiments, the FVIII protein can further comprise one or more additional XTEN sequences which are linked to the C-terminus or N-terminus of the FVIII
-3 2018203206 08 May 2018 protein or inserted immediately downstream of one or more amino acids in the FVIII protein (e.g., one or more XTEN insertion sites). In some embodiments, the half-life of the FVIII protein is extended, compared to wild type FVIII or a FVIII protein without the VWF fragment.
[0009] In some embodiments, the chimeric protein comprises a formula comprising:
(g) V-L2-X-L1-F1:FVIII-L3-F2;
(h) V-L2-X-L1-F1:F2-L3-FVIII;
(i) F1-L1-X-L2-V:FVIII-L3-F2;
(j) F1-L1-X-L2-V:F2-L3-FVIII;
(k) V-L2-X-L1-F1-L4-FVIII-L3-F2;
(l) F2-L3-FVIII-L4-F1-L1-X-L2-V;
(m) FVIII-L3-F2-L4-V-L2-X-L1-F1; or (n) F1-L1-X-L2-V-L4-F2-L3-FVIII, wherein V comprises a VWF fragment, each of Ll, L2, and L3 comprises an optional linker, e.g., a cleavable linker,
L4 is an optional linker, e.g., a processable linker,
FVIII comprises a FVIII protein,
X comprises one or more XTEN sequences,
FI comprises an optional first Ig constant region or a portion thereof,
F2 comprises an optional second Ig constant region or a portion thereof, and (:) is a covalent bond or non-covalent bond.
[0010] The present invention is also directed to a chimeric protein comprising (i) a
FVIII protein, (ii) an XTEN sequence, and (iii) an Ig constant region or a portion thereof, wherein the XTEN sequence is linked to the FVIII protein by an optional linker at the N-terminus or C terminus of the FVIII protein or inserted immediately downstream of one or more amino acids in the FVIII protein (e.g., one or more insertion sites) and wherein the Ig constant region or a portion thereof is linked to or associated with the FVIII protein or the XTEN sequence. In one embodiment, the Ig constant region or a portion thereof useful for the chimeric protein comprises a first Fc region. In another embodiment, the chimeric protein further comprises an additional Ig constant region or a portion thereof. The additional Ig constant region or a portion thereof useful for the invention can
-42018203206 08 May 2018 comprise a second Fc region, which is linked to or associated with the first Fc region, e.g., by a covalent bond. In other embodiments, the first Fc region is linked to the second Fc region by a linker, e.g., a processable linker.
[0011] In other aspects, a chimeric protein comprises (i) a FVIII protein, (ii) an
XTEN sequence, (iii) a VWF fragment, and (iv) an lg constant region or a portion thereof, which comprises the D' domain and the D3 domain of VWF, wherein the XTEN sequence is linked to the FVIII protein by an optional linker at the Nterminus or C terminus of the FVIII protein or inserted immediately downstream of one or more amino acids in the FVIII protein (e.g., one or more insertion sites), the VWF fragment is linked to or associated with the FVIII protein or the XTEN sequence, and the lg constant region or a portion thereof is linked to the FVIII protein, the XTEN sequence, the VWF fragment, or any combinations thereof. Non-limiting examples of the chimeric proteins may comprise a formula, which comprises:
(1) F VIII(X 1 )-L 1 -F1: V-L2-X2-L3 -F2;
(2) FVIII(X1)-L1-F1 :F2-L3-X2-L2-V;
(3) F1 -L1 -FVIII(X 1): V-L2-X2-L3 -F2;
(4) F1 -L1 -FVIII(X 1) :F2-L3 -X2-L2-V;
(5) FVIII(X1 )-L 1 -F1-L4-V-L2-X2-L3-F2;
(6) FVIII(X1 )-Ll -F1-L4-F2-L3-X2-L2-V;
(7) F1-L1-FVIII(X1)-L4-V-L2-X2-L3-F2, or (8) F1 -L1 -FVIII(X1 )-L4-F2-L3-X2-L2-V, wherein FVIII(Xl) comprises a FVIII protein and one or more XTEN sequences, wherein one or more of the XTEN sequences are linked to the N-terminus or Cterminus of the FVIII protein or inserted immediately downstream of one or more amino acids in the FVIII protein (e.g., one or more XTEN insertion sites); each of LI, L2, or L3 comprises an optional linker, e.g., a cleavable linker;
L4 is a linker, a processable linker;
X2 comprises one or more XTEN sequences;
FI comprises an lg constant region or a portion thereof;
F2 comprises an optional additional lg constant region or a portion thereof, and V comprises a VWF fragment;
(-) is a peptide bond or one or more amino acids; and
-5 2018203206 08 May 2018 (:) comprises a covalent bond or a non-covalent bond.
[0012] One aspect of the invention is that the VWF fragment useful for the chimeric protein does not bind to a VWF clearance receptor, which prevents or inhibits interaction of the FVIII protein with endogenous VWF. The chimeric protein comprising the VWF fragment thus has reduced clearance or is not cleared through a VWF clearance pathway. Another aspect of the invention is that the VWF fragment is capable of protecting the FVIII protein from one or more protease cleavages, protecting the FVIII protein from activation, stabilizing the heavy chain and/or the light chain of the FVIII protein, or preventing clearance of the FVIII protein by one or more scavenger receptors.
[0013] Because of the VWF fragment's ability to prevent or inhibit interaction between the FVIII protein and endogenous VWF, the half-life of the FVIII protein, is extended compared to a FVIII protein without the VWF fragment. In one embodiment, the half-life of the FVIII protein is extended at least about 1.5 times, at least about 2 times, at least about 2.5 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, or at least about 12 times longer than wild type FVIII. In another embodiment, the half-life of the FVIII protein is at least about 10 hours, at least about 11 hours, at least about 12 hours, at least about 13 hours, at least about 14 hours, at least about 15 hours, at least about 16 hours, at least about 17 hours, at least about 18 hours, at least about 19 hours, at least about 20 hours, at least about 21 hours, at least about 22 hours, at least about 23 hours, at least about 24 hours, at least about 36 hours, at least about 48 hours, at least about 60 hours, at least about 72 hours, at least about 84 hours, at least about 96 hours, or at least about 108 hours.
[0014] The Ig constant region or a portion thereof useful for the chimeric protein comprises a first Fc region, which is linked to the VWF fragment by an optional linker, e.g., a cleavable linker. The chimeric protein can further comprise an additional Ig constant region or a portion thereof, which is linked to the FVIII protein or the XTEN sequence, the Ig constant region or a portion thereof, the VWF fragment, or any combinations thereof by an optional linker. In one embodiment, the additional Ig constant region or a portion thereof is linked to the
-62018203206 08 May 2018
FVIII protein by an optional linker. The additional Ig constant region or a portion thereof can comprise a second Fc region.
[0015] The Ig constant region or a portion thereof useful in the present invention and the additional Ig constant region or a portion thereof useful in the present invention are identical or different.
[0016] In some aspects, the FVIII protein is linked to an XTEN sequence at the Cterminus or the N-terminus of the FVIII protein or inserted immediately downstream of one or more amino acids in mature native human FVIII (e.g., one or more insertion sites) or any combinations thereof. One or more insertion sites in the FVIII protein can be located within one or more domains of the FVIII protein selected from the group consisting of the Al domain, the al acidic region, the A2 domain, the a2 acidic region, the A3 domain, the B domain, the Cl domain, the C2 domain, and any combinations thereof or between one or more domains of the FVIII protein selected from the group consisting of the Al domain and al acidic region, the al acidic region and A2 domain, the A2 domain and a2 acidic region, the a2 acidic region and B domain, the B domain and A3 domain, the A3 domain and Cl domain, the Cl domain and C2 domain, and any combinations thereof or between two domains of the FVIII protein selected from the group consisting of the Al domain and al acidic region, the al acidic region and A2 domain, the A2 domain and a2 acidic region, the a2 acidic region and B domain, the B domain and A3 domain, the A3 domain and C1 domain, the C1 domain and C2 domain, and any combinations thereof.
[0017] In one embodiment, the one or more insertion sites are located immediately downstream of one or more amino acids in mature native human FVIII (e.g., SEQ ID NO: 4 [mature FVIII sequence-full length]) selected from the group consisting of the amino acid residues in Table 7, 8, 9, 10, 11, or any combinations thereof.
[0018] In another embodiment, the one or more insertion sites are located in one or more permissive loops of mature native human FVIII. In other embodiments, the one or more insertion sites are located in the a3 region of mature native human FVIII. For example, an XTEN sequence can be inserted immediately downstream of amino acid 1656 corresponding to SEQ ID NO: 4 (full length mature FVIII). In other embodiments, a FVIII protein is linked to at least two XTEN sequences, a
-72018203206 08 May 2018 first XTEN sequence inserted within the a3 region, and a second XTEN sequence inserted within a permissive loop in the FVIII protein (e.g., Al-1, Al-2, A2-1, A2 2, A3-1, or A3-2). In still other embodiments, a FVIII protein is linked to at least three XTEN sequences, a first XTEN sequence inserted within the a3 region and a second XTEN sequence and a third XTEN sequence inserted within one or two permissive loop in the FVIII protein (e.g., Al-1, Al-2, A2-1, A2-2, A3-1, or A32)· [0019] In certain embodiments, the one or more insertion sites for one or more
XTEN insertions are immediately downstream of one or more amino acids (numbered relative to mature FVIII sequence) selected from the group consisting
of: (1) amino acid 3, (2) amino acid 18, (3) amino acid 22,
(4) amino acid 26, (5) amino acid 32, (6) amino acid 40,
(7) amino acid 60, (8) amino acid 65, (9) amino acid 81,
(10) amino acid 116, (11) amino acid 119, (12) amino acid 130,
(13) amino acid 188, (14) amino acid 211, (15) amino acid 216,
(16) amino acid 220, (17) amino acid 224, (18) amino acid 230,
(19) amino acid 333, (20) amino acid 336, (21) amino acid 339,
(22) amino acid 375, (23) amino acid 399, (24) amino acid 403,
(25) amino acid 409, (26) amino acid 416, (26) amino acid 442,
(28) amino acid 487, (29) amino acid 490, (30) amino acid 494,
(31) amino acid 500, (32) amino acid 518, (33) amino acid 599,
(34) amino acid 603, (35) amino acid 713, (36) amino acid 745,
(37) amino acid 1656, (38) amino acid 1711, (39)
amino acid 1720, (40) amino acid 1725, (41) amino acid 1749, (42)
amino acid 1796, (43) amino acid 1802, (44) amino acid 1827, (45)
amino acid 1861, (46) amino acid 1896, (47) amino acid 1900, (48)
amino acid 1904, (49) amino acid 1905, (50) amino acid 1910, (51)
amino acid 1937,
-82018203206 08 May 2018 (53) amino acid 2068, (54) (52) amino acid 2019, amino acid 2111, (55) amino acid 2120, (56) amino acid 2171, (57) amino acid 2188, (58) amino acid 2227, (59) amino acid 2277, and (60) two or more combinations thereof.
[0020] In some embodiments, one XTEN is inserted in the FVIII protein. In some embodiments, two XTENs are inserted in the FVIII protein. In some embodiments, 3 XTENs are inserted in the FVIII protein.
[0021] In a particular example, a first XTEN is inserted immediately downstream of amino acid 26 corresponding to SEQ ID NO: 4, and a second XTEN is inserted immediately downstream of amino acid 1720 corresponding to SEQ ID NO: 4 (full-length mature FVIII). In another example, a first XTEN is inserted immediately downstream of amino acid 403 corresponding to SEQ ID NO: 4, and a second XTEN is inserted immediately downstream of amino acid 1720 corresponding to SEQ ID NO: 4. In some examples, a first XTEN is inserted immediately downstream of amino acid 1656 corresponding to SEQ ID NO: 4, and a second XTEN is inserted immediately downstream of amino acid 1720 corresponding to SEQ ID NO: 4. In other examples, a first XTEN is inserted immediately downstream of amino acid 26 corresponding to SEQ ID NO: 4, a second XTEN is inserted immediately downstream of amino acid 1656 corresponding to SEQ ID NO: 4, and a third XTEN is inserted immediately downstream of amino acid 1720 corresponding to SEQ ID NO: 4. In yet other embodiments, a first XTEN is inserted immediately downstream of amino acid 403 corresponding to SEQ ID NO: 4, a second XTEN is inserted immediately downstream of amino acid 1656 corresponding to SEQ ID NO: 4, and a third XTEN is inserted immediately downstream of amino acid 1720 corresponding to SEQ ID NO: 4. In still other embodiments, a first XTEN is inserted between amino acids 403 and 404 corresponding to SEQ ID NO: 4, a second XTEN is inserted immediately downstream of amino acid 1656 corresponding to SEQ ID NO: 4, and a third XTEN is inserted immediately downstream of amino acid 1720 corresponding to SEQ ID NO: 4. In certain embodiments, a first XTEN is inserted immediately downstream of amino acid 26 corresponding to SEQ ID NO: 4 (full-92018203206 08 May 2018 length mature FVIII), a second XTEN is inserted immediately downstream of amino acid 1720 corresponding to SEQ ID NO: 4, and a third XTEN is inserted immediately downstream of amino acid 1900 corresponding to SEQ ID NO: 4. In some embodiments, a first XTEN is inserted immediately downstream of amino acid 26 corresponding to SEQ ID NO: 4, a second XTEN is inserted immediately downstream of amino acid 1656 corresponding to SEQ ID NO: 2, a third XTEN is inserted immediately downstream of amino acid 1720 corresponding to SEQ ID NO: 4, and a fourth XTEN is inserted immediately downstream of amino acid 1900 corresponding to SEQ ID NO: 4. In another example, an XTEN is inserted immediately downstream of amino acid 745 corresponding to SEQ ID NO: 4. In an additional example, a first XTEN is inserted immediately downstream of amino acid 1656 corresponding to SEQ ID NO: 4 and a second XTEN is inserted immediately downstream of amino acid 1900 corresponding to SEQ ID NO: 4. In some embodiments, a first XTEN is inserted immediately downstream of amino acid 26 corresponding to SEQ ID NO: 4, a second XTEN is inserted immediately downstream of amino acid 1656 corresponding to SEQ ID NO: 4, and a third XTEN is inserted immediately downstream of amino acid 1900 corresponding to SEQ ID NO: 4. In another example, a first XTEN is immediately inserted downstream of amino acid 403 corresponding to SEQ ID NO: 4 and a second XTEN is inserted immediately downstream of amino acid 745 corresponding to SEQ ID NO: 4. In some embodiments, a first XTEN is inserted immediately downstream of amino acid 745 of corresponding to SEQ ID NO: 4, and a second XTEN is inserted immediately downstream of amino acid 1900 corresponding to SEQ ID NO: 4. In some embodiments, a first XTEN is inserted immediately downstream of amino acid 18 corresponding to SEQ ID NO: 4, and a second XTEN is inserted immediately downstream of amino acid 745 corresponding to SEQ ID NO: 4.
[0022] In some embodiments, the FVIII protein is a dual chain FVIII isoform. In some embodiments, the FVIII protein is a single chain FVIII isoform.
[0023] In some embodiments, the XTEN that is inserted is SEQ ID NO: 39 (AE288). In some examples, the XTENs that are inserted are SEQ ID NOs: 38 and 37 (AG144 and AE144). In some examples, the XTENs that are inserted are
SEQ ID NOs: 37, 38 and 37 (AE144, AG144, and AE144). In some
- 102018203206 08 May 2018 embodiments, the XTENs that are inserted are SEQ ID NOs: 37 and 40 (AE144 and AE288). In some embodiments, the XTENs that are inserted are AE42 (SEQ ID NO: 36), AE72 (SEQ ID NO: 127), AE144 2A (SEQ IDNO: 128), AE144 3B (SEQ ID NO: 129), AE144 4A (SEQ ID NO: 130), AE144 5A (SEQ IDNO:
131), AE144 6B (SEQ IDNO: 132), AG144 A (SEQ ID NO: 133), AG144 B (SEQ IDNO: 134), AG144 C (SEQ ID NO: 135), AG144 F (SEQ IDNO: 136), AE864 (SEQ ID NO: 43), AE576 (SEQ ID NO: 41), AE288 (SEQ IDNO: 39), AE288 2 (SEQ ID NO: 137), AE144 (SEQ ID NO: 37), AG864 (SEQ ID NO: 44), AG576 (SEQ ID NO: 42), AG288 (SEQ ID NO: 40), AG144 (SEQ ID NO: 38), and any combinations thereof.
[0024] The FVIII protein useful in the invention can comprise B domain or a portion thereof, e.g., SQ B domain deleted FVIII. In one embodiment, the FVIII protein comprises single chain FVIII. In another embodiment, the single chain FVIII contains at least one amino acid substitution at a residue corresponding to residue 1648, residue 1645, or both of full-length mature Factor VIII polypeptide (SEQ ID NO: 4) or residue 754, residue 751, or both of SQ BDD Factor VIII (SEQ ID NO: 6). In other embodiments, the amino acid substitution is an amino acid other than arginine. In some embodiments, the FVIII protein comprises a heavy chain of FVIII and a light chain of FVIII, wherein the heavy chain and the light chain are associated with each other by a metal bond.
[0025] The FVIII protein can have a low affinity to or does not bind to a lowdensity lipoprotein receptor-related protein (LRP), e.g., by containing at least one amino acid substitution that lowers the affinity to or eliminates the binding to the LRP. Such at least one amino acid substitution can be at a residue corresponding to residue 471, residue 484, residue 487, residue 490, residue 497, residue 2092, residue 2093 or two or more combinations thereof of full-length mature FVIII. In a particular embodiment, the amino acid substitution at residue 471, 484, or 497 is an amino acid other than arginine, the amino acid substitution at residue 487 is an amino acid other than tyrosine, the amino acid substitution at residue 2092 is an amino acid other than lysine, or the amino acid substitution at residue 2093 is an amino acid other than phenylalanine.
[0026] In some embodiments, the FVIII protein contains at least one amino acid substitution, which induces the FVIII protein to be more stable than a FVIII
- 11 2018203206 08 May 2018 protein without the substitution. Such substitutions can be located in the A2 domain and the A3 domain of the FVIII protein, e.g., at a residue corresponding to residue 664, residue 1826, residue 662, residue 1828, or two or more combinations thereof of full-length mature FVIII.
[0027] The VWF fragment useful for the present invention comprises a D' domain and D3 domain, which together are capable of binding to FVIII. The VWF fragment can comprise the amino acid sequence of the D' domain is at least 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acids 764 to 866 of SEQ ID NO: 2 and/or the amino acid sequence of the D3 domain is at least 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acids 867 to 1240 of SEQ ID NO: 2. In one embodiment, the VWF fragment is a monomer. In another embodiment, the VWF fragment comprises at least two VWF fragments, at least three VWF fragments, at least four VWF fragments, at least five VWF fragments, or at least six VWF fragments. In one embodiment, the two or more VWF fragments may be identical or they may be different. The VWF fragment can comprise an amino acid at least 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acids 764 to 1240 of SEQ ID NO: 2. The VWF fragment may consist essentially of or consist of amino acids 764 to 1240 of SEQ ID NO: 2. In certain embodiments, the VWF fragment can contain at least one amino acid substitution at a residue corresponding to residue 1099, residue 1142, or both residues 1099 and 1142 of SEQ ID NO: 2. In other embodiments, the VWF fragment further comprises the Dl domain, the D2 domain, or the Dl and D2 domains of VWF.
[0028] The VWF fragment may further comprise a VWF domain selected from the group consisting of the Al domain, the A2 domain, the A3 domain, the D4 domain, the BI domain, the B2 domain, the B3 domain, the Cl domain, the C2 domain, the CK domain, one or more fragments thereof, and any combinations thereof. For example, the VWF fragment can consist essentially of or consist of: (1) the D' and D3 domains of VWF or fragments thereof; (2) the Dl, D', and D3 domains of VWF or fragments thereof; (3) the D2, D', and D3 domains of VWF or fragments thereof; (4) the Dl, D2, D', and D3 domains of VWF or fragments thereof; or (5) the Dl, D2, D', D3, and Al domains of VWF or fragments thereof.
- 122018203206 08 May 2018
In some embodiments, the VWF fragment further comprises a signal peptide of
VWF or FVIII which is operably linked to the VWF fragment.
[0029] One or more of the linkers useful in the invention have a length of at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1200, 1400, 1600, 1800, or 2000 amino acids. In some embodiments, one or more of the linkers have a length of about 1 to about 2000 amino acids. In one embodiment, one or more of the linkers have a length of at least about 20, 35, 42, 48, 73, 75, 95, 98, 144, 288, 324, 333, 576, or 864 amino acids. In another embodiment, one or more of the linkers comprise a gly/ser peptide, an XTEN sequence, or both. Examples of the gly/ser peptide include, but are not limited to, a formula of (Gly4Ser)n (SEQ ID NO: 139) or S(Gly4Ser)n (SEQ ID NO: 140), wherein n is a positive integer selected from the group consisting of 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. For example, the (Gly4Ser)n linker can be (Gly4Ser)3 (SEQ ID NO: 63) or (Gly4Ser)4 (SEQ ID NO: 138). In one embodiment, the linker comprises at least one first cleavage site at the N-terminus of the linker, at least one second cleavage site at the C-terminus of the linker, or both. In another embodiment, the linker comprises 20 amino acids, 35 amino acids, 48 amino acids, 73 amino acids, or 95 amino acids thrombin cleavable linker. The cleavable linkers can comprise one or more of the cleavage sites by a protease selected from the group consisting of factor XIa, factor Xlla, kallikrein, factor Vila, factor IXa, factor Xa, factor Ila (thrombin), Elastase-2, Granzyme-B, TEV, Enterokinase, Protease 3C, Sortase A, MMP-12, MMP-13, MMP-17, and MMP-20, e.g., TLDPRSFLLRNPNDKYEPFWEDEEK (SEQ ID NO: 8). Nonlimiting examples of one or more of the cleavage sites comprise an amino acid sequence selected from the group consisting of RRRR (SEQ ID NO: 9), RKRRKR (SEQ ID NO: 10), RRRRS (SEQ ID NO: 11), TQSFNDFTR (SEQ ID NO: 12), SVSQTSKLTR (SEQ ID NO: 13), DFLAEGGGVR (SEQ ID NO: 14), TTKIKPR (SEQ ID NO: 15), LVPRG (SEQ ID NO: 16), ALRPR (SEQ ID NO: 17), KLTRAET (SEQ ID NO: 18), DFTRVVG (SEQ ID NO: 19), TMTRIVGG (SEQ ID NO: 20), SPFRSTGG (SEQ ID NO: 21), LQVRIVGG (SEQ ID NO: 22), PLGRIVGG (SEQ ID NO:23), IEGRTVGG (SEQ ID NO: 24), LTPRSLLV (SEQ ID NO: 25), LGPVSGVP (SEQ ID NO: 26), VAGDSLEE (SEQ ID NO: 27),
- 13 2018203206 08 May 2018
GPAGLGGA (SEQ ID NO: 28), GPAGLRGA (SEQ ID NO: 29), APLGLRLR (SEQ ID NO: 30), PALPLVAQ (SEQ ID NO: 31), ENLYFQG (SEQ ID NO: 32), DDDKIVGG (SEQ ID NO: 33), LEVLFQGP (SEQ ID NO: 34), and LPKTGSES (SEQ ID NO: 35). In some embodiments, the first cleavage site and the second cleavage site are identical or different.
[0030] The XTEN sequence useful for the invention can be selected from the group consisting of AE42 (SEQ ID NO: 36), AE144 (SEQ ID NO: 37), AG144 (SEQ ID NO: 38), AE288 (SEQ ID NO: 39), AG288 (SEQ ID NO: 40), AE576 (SEQ ID NO: 41). AG576 (SEQ ID NO: 42), AE864 (SEQ ID NO: 43), AE72 (SEQ ID NO: 127), AE144 2A (SEQ ID NO: 128), AE144 3B (SEQ ID NO: 129), AE144 4A (SEQ ID NO: 130), AE144 5A (SEQ ID NO: 131), AE144 6B (SEQ ID NO: 132), AG144 A (SEQ ID NO: 133), AG144 B (SEQ ID NO: 134), AG144C (SEQ ID NO: 135), AG144 F (SEQ ID NO: 136), AE288 2 (SEQ ID NO: 137), or AG864 (SEQ ID NO: 44). In a particular embodiment, the XTEN sequence comprises AE288 or AG288.
[0031] The chimeric protein of the invention can be polysialylated, pegylated, or hesylated.
[0032] The present invention is also directed to a polynucleotide or a set of polynucleotides encoding the chimeric protein. The polynucleotide can further comprise a polynucleotide chain, which encodes PC5 or PC7. The invention is also directed to a vector comprising the polynucleotide or the set of polynucleotides and one or more promoter operably linked to the polynucleotide or the set of polynucleotides. The vector can further comprise an additional vector, which comprises a polynucleotide chain encoding PC5 or PC7. The invention is also drawn to a host cell comprising the polynucleotide or the vector. The host cell can be a mammalian cell, e.g., HEK293 cell, CHO cell, or BHK cell. In some embodiments, the PC5 or PC7 of the host cell cleaves the D1D2 domains of VWF.
[0033] The invention is also directed to a pharmaceutical composition comprising the chimeric protein, the polynucleotide, the vector, or the host cell, and a pharmaceutically acceptable carrier. The composition of the invention thus has an extended half-life compared to wild type FVIII protein. The half-life of the FVIII protein is extended at least about 1.5 times, at least about 2 times, at least about
- 142018203206 08 May 2018
2.5 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, or at least about 12 times longer than wild type FVIII. The half-life of Factor VIII is at least about 17 hours, at least about 18 hours, at least about 19 hours, at least about 20 hours, at least about 21 hours, at least about 22 hours, at least about 23 hours, at least about 24 hours, at least about 25 hours, at least about 26 hours, at least about 27 hours, at least about 28 hours, at least about 29 hours, at least about 30 hours, at least about 31 hours, at least about 32 hours, at least about 33 hours, at least about 34 hours, at least about 35 hours, at least about 36 hours, at least about 48 hours, at least about 60 hours, at least about 72 hours, at least about 84 hours, at least about 96 hours, or at least about 108 hours.
[0034] The composition of the present invention can be administered by a route selected from the group consisting of topical administration, intraocular administration, parenteral administration, intrathecal administration, subdural administration and oral administration. In one embodiment, the composition is administered via parenteral administration, e.g., intravenous or subcutaneous administration. The composition of the invention is useful to treat a bleeding disease or condition in a subject in need thereof. The bleeding disease or condition is selected from the group consisting of a bleeding coagulation disorder, hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, bleeding in the illiopsoas sheath and any combinations thereof. In one embodiment, the subject treated with the chimeric protein is scheduled to undergo a surgery. In another embodiment, the treatment is prophylactic or on-demand.
[0035] The invention is also directed to a method of preventing or inhibiting binding of a FVIII protein with endogenous VWF comprising adding an effective amount of the chimeric protein, the polynucleotide vector, the host cell, or the composition to a subject in need thereof, wherein the VWF fragment binds to the
FVIII protein and thus prevents or inhibits binding of endogenous VWF. The
- 15 2018203206 08 May 2018 present invention is further directed to a method of extending or increasing the half-life of the FVIII protein, wherein the method comprises administering an effective amount of the chimeric protein, the polynucleotide, the vector, the host cell, or the composition to a subject in need thereof, wherein the VWF fragment binds to the FVIII protein and thus extends or increases the half-life of the FVIII protein. Also provided is a method of preventing or inhibiting clearance of a FVIII protein from a cell, wherein the method comprises administering an effective amount of the chimeric protein, the polynucleotide, the vector, the host cell, or the composition to a cell comprising a FVIII protein or a polynucleotide encoding the FVIII protein, wherein the protein having VWF activity binds to the FVIII protein. The subject useful for the present methods is an animal, e.g., a human, e.g., a patient suffering from hemophilia A.
[0036] The present invention also provides a method of treating a bleeding disease or disorder in a subject in need thereof comprising administering an effective amount of the chimeric protein, the polynucleotide, the vector, the host cell, or the composition, wherein the bleeding disease or disorder is selected from the group consisting of a bleeding coagulation disorder, hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, and bleeding in the illiopsoas sheath. The treatment can be prophylactic or on-demand. In one embodiment, the effective amount is 0.1 pg/kg to 500 mg/kg.
[0037] The invention also includes a method of making a chimeric protein, comprising transfecting one or more host cell with the polynucleotide or the vector and expressing the chimeric protein in the host cell.
BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES [0038] Figure 1A-D. Schematic diagrams of VWF fragments. Fig. 1A shows three exemplary VWF fragments useful for the invention, e.g., VWF-002, VWF010, and VWF-013. VWF-002 contains amino acids 1 to 477 of SEQ ID NO: 124 (amino acids 764 to 1240 of SEQ ID NO: 2) and is synthesized without the pre/propeptide sequences. VWF-010 contains the D1D2 domains in addition to the D'D3 domains. VWF-013 contains the D1D2DD3 domains in addition to
- 162018203206 08 May 2018 alanine residues substituting cysteines at residues 336 and 379 of SEQ ID NO:
123 Fig. IB shows VWF-031, which contains the D1D2D'D3 domains fused to an Ig constant region or a portion thereof, e.g., an Fc region, by a cleavable linker, e.g., a 48 amino acids thrombin cleavable linker. Fig. 1C shows VWF-025, which is a nucleotide sequence encoding D1D2D'D3 domains contained in pLIVE vector, and VWF-029, which is a nucleotide sequence encoding D1D2D'D3 domains with two amino acid substitutions, C336A and C379A, in pLIVE vector. Fig. ID shows full-length VWF fragment comprising propeptide (the DI and D2 domains) and mature subunits (the D', D3, Al, A2, A3, D4, Bl-3, Cl-2 domains). The VWF fragment is about 250 kDa protein and forms multimers (> 20 MDa) by disulfide bonding. The VWF fragment associates with FVIII (95-98%) in noncovalent complex and then extends half-life of FVIII by protecting FVIII from protease cleavage/activation, stabilizing heavy & light chain, and preventing clearance of FVIII by scavenger receptors. The VWF fragment also can limit half-life of FVIII by clearance of FVIII-VWF complex through VWF receptors and preventing pinocytosis and recycling of rFVIIIFc.
[0039] Figure 2. Pharmacokinetic profile of rFVIII-XTEN (rFVIII-AE288 or rFVIII-288AE) in VWF D’D3 expression mice or in FVIII and VWF double knockout (DKO) mice. Figure 2A shows the timeline of hydrodynamic injection (HDI) of the DD3 domain encoding plasmid DNA (VWF-025) (day -5), intravenous dosing of rFVIII-XTEN AE288 (day 0), and PK sample collection (day 5). Figure 2B shows FVIII activity measured by a FVIII chromogenic assay after IV dosing of rFVIII-XTEN288 in D1D2DO3 mice (inverted triangle) and rFVIII-XTEN288 in DKO mice (diamond). Fig. 2C shows the DD3 plasma level (ng/mL) after administration of VWF-025. The X axis represents time in hours.
[0040] Figure 3. Schematic diagram of exemplary VWF:FVIII heterodimer constructs. The constructs have the common structure represented as formula FVIII-F1-L1-V-X-L2-F2, but contain examples of different variable linkers. The construct (FVIII-161) shown contains a heterodimeric FVIII (the heavy chain and the light chain are associated by a metal bond) linked to a first Fc region and a VWF fragment, which is the D’ and D3 domains of VWF (i.e., amino acids 1 to 477 of SEQ ID NO: 2 with amino acid substitutions C336A and C379A) linked to an XTEN sequence, which is further linked to a cleavable linker and a second Fc
- 172018203206 08 May 2018 region. The XTEN sequence contained in FVIII-161 is an ΧΤΕΝ AE288 sequence, and the linker is a thrombin cleavable linker, which has 35 amino acids. In FVIII-161, the FVIII protein linked to the first Fc region is linked to the VWF fragment by a processable linker. Upon expression, the processable linker can be cleaved by an intracellular processing enzyme, thus making the construct three polypeptide chains associated with each other.
[0041] Figure 4 is schematic diagrams of FVIII-VWF heterodimer or monomer examples. FVIII-168, FVIII-175, FVIII-172, FVIII-174, and FVIII170. Construct FVIII-168 comprises a single chain FVIII sequence (having an alanine residue substitute the arginine residues at residues 1645 and 1648) linked to a first Fc region, which is then fused to a VWF fragment linked to a second Fc region by a thrombin cleavable linker, which has 48 amino acids. AE288 XTEN is inserted in the B domain of the single chain FVIII sequence. The linkage between the first Fc region and the VWF fragment comprises a linker that is capable of being cleaved by an intracellular processing enzyme, i.e., processable linker. Construct FVIII175 comprises a single chain FVIII (having an alanine residue substitute the arginine residues at residues 1645 and 1648) linked to AE288 XTEN and a first Fc region, which is linked to a second Fc region by a linker, e.g., a processable linker. AE288 XTEN is inserted in the B domain of the single chain FVIII sequence. Construct FVIII-172 comprises two polypeptide chains, a first chain comprising a heavy chain FVIII sequence fused to AE288 XTEN, a second chain comprising a light chain FVIII sequence, a first Fc region, a linker (e.g., a processable linker), a VWF fragment, a thrombin cleavable linker (e.g., 48 amino acids), and a second Fc region. Construct FVIII-174 comprises two polypeptide chains, a first chain comprising a heavy chain FVIII sequence fused to AE288 XTEN and a second chain comprises a light chain FVIII, a first Fc region, a linker (e.g., a processable linker), and a second Fc region. Construct FVIII-170 comprises a VWF fragment, AE288 XTEN, a linker (e.g., a thrombin cleavable linker, which is 35 amino acids in length), and a single chain FVIII sequence.
[0042] Figure 5. Pharmacokinetic profile of FVIII/VWF heterodimers containing an XTEN sequence in combination with an Fc region. Constructs FVIII-161,
FVIII-168, and FVIII-172 were administered to FVIII:VWF double knockout (DKO) mice by Hydrodynamic injection (HDI) at lOOug/mouse dose. Construct
- 182018203206 08 May 2018
FVIII-170 was administered to FVIITVWF DKO mice by HDI at 50 pg/mousc dose. The post-HDI plasma FVIII activity was analyzed by FVIII chromogenic assay for 24 hr post-HDI. The FVIII activity of the FVIITVWF heterodimers containing an XTEN sequence and Fc domains was compared with the FVIII activity of BDD-FVIII without the VWF fragment, XTEN sequence, and Fc domains.
[0043] Figure 6. Schematic diagrams of FVIII-VWF heterodimer examples cotransfection system. Fig. 6A. Construct FVIII-169 contains the full-length FVIII sequence (with an alanine residue substituting the arginine residues at 1645 and 1648 and with an XTEN sequence inserted in the single chain FVIII sequence), which is linked to an Fc region. VWF-031 contains the D1D2D'D3 fragment (with an alanine residue substituting the cysteine residues at 336 and 379) which is linked to another Fc region with a 48 thrombin cleavable linker. After intracellular processing, construct FVIII-169 produces a full length single chain FVIII (SCFVIII) fused to one Fc fragment and an XTEN sequence, and construct VWF-031 produces a 477 amino acid D'D3 fragment linked to another Fc fragment. Two covalent bonds can be formed between the Fc fragments that are linked to the SC FVIII or the D'D3 fragment, this in turn allows a non-covalent association of FVIII and D'D3. Fig. 6B. Construct FVIII-173 contains a heterodimeric FVIII sequence, a heavy chain FVIII sequence linked to an XTEN sequence and a light chain FVIII sequence linked to an Fc region. VWF-031 is described above. After intracellular processing, construct FVIII-173 produces a heterodimeric protein, a heavy chain FVIII fused to an XTEN sequence, a light chain FVIII fused to one Fc fragment, and construct VWF-031 produces a 477 amino acid D'D3 fragment linked to another Fc fragment. Two covalent bonds can be formed between the Fc fragments that are linked to the light chain FVIII or the D'D3 fragment, this in turn allows a non-covalent association of FVIII and D'D3.
[0044] Figure 7. Binding Affinity of Exemplary FVIITVWF containing an XTEN sequence and Fc domains to immobilized hVWF in Octet assay. The binding affinity for FVIII-169/VWF-031 and FVIII-057 (rFVIIIFc) fused to immobilized hVWF was tested using biolayer interferometry based measurements (Octet assay). Figure 7A shows binding response in nanomoles of FVIII169 and FVIIIFc
- 192018203206 08 May 2018 drug substance (a positive control) to immobilized hVWF. Figure 7B shows binding response of human IgGl (a negative control) to immobilized human VWF.
[0045] Figure 8. Pharmacokinetic (PK) profile of FVIII-169 in HemA and
FVIII:VWF double knockout (DKO) mice. Figure 8A shows the PK profile of FVIII-169/VWF-031 and FVIIIFc in HemA mice. HemA mice were treated with a single intravenous dose of FVIII-169/VWF-031 at 200 IU/kg. Plasma samples collected from the mice were tested by FVIII chromogenic assay. Half-life of FVIII-169/VWF-031 was calculated using WinNonlin program. Figure 8B shows the PK profde of FVIII-169/VWF-031, FVIII-169/Fc, and FVIIIFc in FVIII/VWF DKO mice.
[0046] Figure 9. PK profile of FVIII-ΧΤΕΝ variants in DD3 expressing
FVIII/VWF DKO mice. Figure 9A shows comparison of the PK profile of the FVIII-XTEN variants, FVIII with one XTEN, FVIII with two XTENs, and FVIII with three XTENs. One, two, or three XTENs were inserted in various portions of FVIII including C-terminus and B-domain. CT indicates that an XTEN is linked to the C-terminus of FVIII. Insertion site B/CT indicates that one XTEN is inserted between amino acid residue 745 and amino acid residue 746 of the FVIII protein and another XTEN is linked to the C-terminus of the FVIII protein. The amino acid residue numbering corresponds to the SQ BDD FVIII protein sequence. Insertion site 1900/B/CT indicates that a first XTEN is inserted between amino acid residue 1900 and amino acid residue 1901 of FVIII, a second XTEN is inserted between amino acid residue 745 and amino acid residue 746 of FVIII, and a third XTEN is linked to the C-terminus of FVIII. The mouse strain used to administer the FVIII-ΧΤΕΝ variants is a DKO mouse strain expressing D'D3 domains. Figure 9B shows the PK profile of FVIII-XTEN with three XTEN insertions. The FVIII-XTEN (1900/B/CT) variant was administered to either the FVIII/VWF DKO mice or HemA mice. The half-life of FVIII-XTEN (1900/B/CT) is compared.
[0047] Figure 10. FVIII activity of FVIIIFc (hollow triangle), FVIII169:Fc (filled circle), and FVIII 169 :VWF31 (hollow triangle) in mouse DKO plasma measured by chromogenic assay. FVIII:Fc contains a dual-chain FVIII (Heavy chain and
Light chain) fused to an Fc dimer (i.e., monomer-dimer hybrid). FVIII169 is
-202018203206 08 May 2018 described above (containing AE288 in the B domain, immediately downstream of amino acid 745 corresponding to mature FVIII sequence). FVIII169:Fc contains FVIII 169 fused to an Fc dimer. FVIII 169 :VWF31 contains VWF31 in addition to the Fc dimer, FVIII 169 fused to the first Fc region and VWF31 fused to the second Fc region, wherein the first Fc region and the second Fc region form a covalent bond, e.g., one or more disulfide bonds.
[0048] Figure 11. Effects of Fc, XTEN, and VWF-D'D3 fragments on FVIII halflife extension. BDD-FVIII (REFACTO®) (square), FVIIFc (circle), FVIII169/Fc (triangle), and FVIII 169/VWF031 (inverted triangle) were administered to FVIII and VWF double knockout (DKO) mice. The FVIII activity was measured by chromogenic assay, and the half-life was calculated using the WinNonlin-Phoenix program. X-axis shows time, and the Y-axis shows the FVIII plasma activity in mU/mL.
[0049] Figure 12A-C. Effects of different XTENs in rFVIII-XTEN/VWF heterodimer in HemA mice. Figure 12A shows the FVIII plasma activity normalized to 5 min value (%) of two XTENs inserted immediately downstream of residues 1900 and 1656 corresponding to mature FVIII sequence (i.e., FVIII195 (dual chain FVIII isoform) and FVIII-199 (single chain FVIII isoform)), compared to FVIII-169 containing an XTEN immediately downstream of residue 745 corresponding to mature FVIII sequence. FVIII-169/VWF-031 (filled circle), FVIII- 199/VWF-031 (filled square), and FVIII-195/VWF031 (hollow square) were administered in HemA mice to measure the FVIII plasma activity. Figure 12B shows the half-life extension effect of the second XTEN insertion immediately downstream of residues 403 (A2 domain) and 745 (B domain) (i.e., FVIII-203) and residues 745 (B domain) and 1900 (A3 domain) (FVIII-204) corresponding to mature FVIII sequence compared to FVIII-169 (an XTEN insertion in B domain only). FVIII-204/VWF031 (filled triangle), FVIII169/VWF-031 (filled circle), FVIII-203/VWF-031 (filled square), and scBDDFVIII (hollow diamond) were administered to HemA mice. The X-axis shows FVIII plasma activity normalized to 5 min value (%), and the y-axis shows time in hours. Figure 12C shows the half-life extension effect of the two XTEN insertions immediately downstream of residues 18 (Al domain) and 745 (B domain) (i.e., FVIII-205) compared to FVIII-169 (a single XTEN insertion in the B domain) and
-21 2018203206 08 May 2018 single chain FVIII without any Fc regions or any XTENs (i.e., FVIII-207). Figure 12C additionally shows the half-life extension effect of three XTEN insertions incorporated immediately downstream of residues 26 (Al domain), 1656 (A3 domain), and 1900 (A3 domain) (i.e., FVIII-201) compared to FVIII-169 (a single XTEN insertion immediately downstream of residue 745). . FVIII-205/VWF-031 (filled square), FVIII-201/VWF-031 (inverted triangle), FVIII-169/VWF-031 (filled circle), and FVIII-207 (hollow diamond) were administered to HemA mice. The FVIII plasma activity normalized to 5 min value (%) (X-axis) was measured over time in hours (Y-axis).
[0050] Figure 13. FVIII activity of rFVIII-XTEN/VWF-XTEN heterodimer in
FVIII/VWF DKO mice. FVIII activity of plasma samples was analyzed by FVIII chromogenic assay, and the regression curve of plasma FVIII activity (X-axis) as a function of time (Y-axis) was plotted. FVIII-155 (scFVIIIFc without any XTENs) was co-expressed with VWF-034 (VWF-Fc with AE 288 XTEN plus a 35 residue thrombin cleavable linker). The half-life of FVIII-155/VWF-034 was compared with that of FVIII-169/VWF-031, which has a AE 288 XTEN inserted into the B domain junction (immediately downstream of residue 745 corresponding to mature FVIII polypeptide) of FVIII.
[0051] Figure 14A-H. Schematic diagrams of various rFVIII-XTEN/VWF constructs. These constructs are also described in other sections herein. Fig. 14A shows single chain B domain deleted FVIII protein (sometimes indicated herein as scBDD-FVIII). The scBDD-FVIII constructs contain two substitutions at residues 1645 and 1648 from Arg to Ala. Figure 14B shows two polypeptide chain construct (FVIII155/VWF031), the first chain comprising single chain FVIII linked to an Fc region without any XTENS and the second chain comprising the VWF D'D3 fragment linked to an Fc region. This construct is used as a control. Fig. 14C shows two polypeptide chain construct (FVIII 199/VWF031), the first chain comprising single chain FVIII linked to an Fc region, in which a first XTEN is inserted immediately downstream of residue 1900 corresponding to mature FVIII sequence and a second XTEN is inserted immediately downstream of residue 1656 corresponding to mature FVIII sequence, and the second chain comprising the VWF D'D3 fragment linked to an Fc region. Fig. 14D shows two polypeptide chain construct (FVIII201/VWF031), the first chain comprising single
-222018203206 08 May 2018 chain FVIII protein linked to an Fc region, in which a first XTEN is inserted immediately downstream of residue 26 corresponding to mature FVIII sequence, a second XTEN is inserted immediately downstream of residue 1656 corresponding to mature FVIII sequence, and a third XTEN is inserted immediately downstream of residue 1900 corresponding to mature FVIII sequence ,and the second chain comprising the VWF D'D3 fragment linked to an Fc region. Fig. 14E shows two polypeptide chain constructs (FVIII 169/VWF031), the first chain comprising single chain FVIII protein linked to an Fc region, in which an XTEN is inserted immediately downstream of residue 745 (indicated as B) corresponding to mature FVIII sequence, and the second chain comprising the VWF D'D3 fragment linked to an Fc region. Fig. 14F shows two polypeptide chain construct (FVIII203/VWF031), the first chain comprising single chain FVIII protein, in which a first XTEN is inserted at residue 745 (B) corresponding to mature FVIII sequence and a second XTEN is inserted at residue 1900 corresponding to mature FVIII sequence, and the second chain comprising the VWF D'D3 fragment linked to an Fc region. Fig. 14G shows two polypeptide chain construct (FVIII204/VWF031), the first chain comprising single chain FVIII protein linked to an Fc region, in which a first XTEN is inserted immediately downstream of residue 403 corresponding to mature FVIII sequence and a second XTEN is inserted immediately downstream of residue 745 (B) corresponding to mature FVIII sequence, and a second chain comprising the VWF D'D3 fragment linked to an Fc region. Fig. 14H shows two polypeptide chain construct (FVIII205/VWF031), the first chain comprising single chain FVIII, in which a first XTEN is inserted immediately downstream of residue 18 corresponding to mature FVIII sequence and a second XTEN is inserted immediately downstream of residue 745 (B) corresponding to mature FVIII sequence, and the second chain comprising the VWF D'D3 fragment linked to an Fc region.
[0052] Figure 15. FVIII activity of rFVIII-XTEN/VWF and BDD-FVIII in
FVIII/VWF DKO mice. FVIII activity of plasma samples was analyzed by FVIII chromogenic assay, and the regression curve of plasma FVIII activity (X-axis) as a function of time (Y-axis) was plotted. The half-life of rFVIII-XTEN/VWF (FVIII-205/VWF-031) was compared with that of BDD-FVIII and rFVIIIFc.
-23 2018203206 08 May 2018 [0053] Figure 16. Efficacy of FVIII-XTEN-Fc:VWF-Fc heterodimers in HemA mice using tail clip bleeding model. The HemA mice tail clip bleeding model was used to compare the efficacy of FVIII169/VWF034, FVIII205/VWF031, and BDD-FVIII. The median blood loss in ml for 200 IU/kg of FVIII 169/VWF034 and FVIII205/VWF031 is compared with 200 IU/kg of BDD-FVIII, 65 IU/kg of BDD-FVIII, 20 IU/kg of BDD-FVIII, and vehicle.
DETAILED DESCRIPTION OF THE INVENTION
DEFINITIONS [0054] It is to be noted that the term a or an entity refers to one or more of that entity; for example, a nucleotide sequence, is understood to represent one or more nucleotide sequences. As such, the terms a (or an), one or more, and at least one can be used interchangeably herein.
[0055] The term polynucleotide or nucleotide is intended to encompass a singular nucleic acid as well as plural nucleic acids, and refers to an isolated nucleic acid molecule or construct, e.g., messenger RNA (mRNA) or plasmid DNA (pDNA). In certain embodiments, a polynucleotide comprises a conventional phosphodiester bond or a non-conventional bond (e.g., an amide bond, such as found in peptide nucleic acids (PNA)). The term nucleic acid refers to any one or more nucleic acid segments, e.g., DNA or RNA fragments, present in a polynucleotide. By isolated nucleic acid or polynucleotide is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment. For example, a recombinant polynucleotide encoding a Factor VIII polypeptide contained in a vector is considered isolated for the purposes of the present invention. Further examples of an isolated polynucleotide include recombinant polynucleotides maintained in heterologous host cells or purified (partially or substantially) from other polynucleotides in a solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of polynucleotides of the present invention. Isolated polynucleotides or nucleic acids according to the present invention further include such molecules produced synthetically. In addition, a polynucleotide or a nucleic acid can include regulatory elements such as promoters, enhancers, ribosome binding sites, or transcription termination signals.
-242018203206 08 May 2018 [0056] As used herein, a coding region or coding sequence is a portion of polynucleotide which consists of codons translatable into amino acids. Although a stop codon (TAG, TGA, or TAA) is typically not translated into an amino acid, it may be considered to be part of a coding region, but any flanking sequences, for example promoters, ribosome binding sites, transcriptional terminators, introns, and the like, are not part of a coding region. The boundaries of a coding region are typically determined by a start codon at the 5' terminus, encoding the amino terminus of the resultant polypeptide, and a translation stop codon at the 3' terminus, encoding the carboxyl terminus of the resulting polypeptide. Two or more coding regions of the present invention can be present in a single polynucleotide construct, e.g., on a single vector, or in separate polynucleotide constructs, e.g., on separate (different) vectors. It follows, then, that a single vector can contain just a single coding region, or comprise two or more coding regions, e.g., a single vector can separately encode a binding domain-A and a binding domain-B as described below. In addition, a vector, polynucleotide, or nucleic acid of the invention can encode heterologous coding regions, either fused or unfused to a nucleic acid encoding a binding domain of the invention. Heterologous coding regions include without limitation specialized elements or motifs, such as a secretory signal peptide or a heterologous functional domain.
[0057] Certain proteins secreted by mammalian cells are associated with a secretory signal peptide which is cleaved from the mature protein once export of the growing protein chain across the rough endoplasmic reticulum has been initiated. Those of ordinary skill in the art are aware that signal peptides are generally fused to the N-terminus of the polypeptide, and are cleaved from the complete or full-length polypeptide to produce a secreted or mature form of the polypeptide. In certain embodiments, a native signal peptide or a functional derivative of that sequence that retains the ability to direct the secretion of the polypeptide that is operably associated with it. Alternatively, a heterologous mammalian signal peptide, e.g., a human tissue plasminogen activator (TPA) or mouse β-glucuronidase signal peptide, or a functional derivative thereof, can be used.
[0058] The term downstream refers to a nucleotide sequence that is located 3' to a reference nucleotide sequence. In certain embodiments, downstream nucleotide
-25 2018203206 08 May 2018 sequences relate to sequences that follow the starting point of transcription. For example, the translation initiation codon of a gene is located downstream of the start site of transcription.
[0059] The term upstream refers to a nucleotide sequence that is located 5' to a reference nucleotide sequence. In certain embodiments, upstream nucleotide sequences relate to sequences that are located on the 5' side of a coding region or starting point of transcription. For example, most promoters are located upstream of the start site of transcription.
[0060] As used herein, the term regulatory region refers to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding region, and which influence the transcription, RNA processing, stability, or translation of the associated coding region. Regulatory regions may include promoters, translation leader sequences, introns, polyadenylation recognition sequences, RNA processing sites, effector binding sites and stem-loop structures. If a coding region is intended for expression in a eukaryotic cell, a polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence.
[0061] A polynucleotide which encodes a gene product, e.g., a polypeptide, can include a promoter and/or other transcription or translation control elements operably associated with one or more coding regions. In an operable association a coding region for a gene product, e.g., a polypeptide, is associated with one or more regulatory regions in such a way as to place expression of the gene product under the influence or control of the regulatory region(s). For example, a coding region and a promoter are operably associated if induction of promoter function results in the transcription of mRNA encoding the gene product encoded by the coding region, and if the nature of the linkage between the promoter and the coding region does not interfere with the ability of the promoter to direct the expression of the gene product or interfere with the ability of the DNA template to be transcribed. Other transcription control elements, besides a promoter, for example enhancers, operators, repressors, and transcription termination signals, can also be operably associated with a coding region to direct gene product expression.
-262018203206 08 May 2018 [0062] A variety of transcription control regions are known to those skilled in the art. These include, without limitation, transcription control regions which function in vertebrate cells, such as, but not limited to, promoter and enhancer segments from cytomegaloviruses (the immediate early promoter, in conjunction with intron-A), simian virus 40 (the early promoter), and retroviruses (such as Rous sarcoma virus). Other transcription control regions include those derived from vertebrate genes such as actin, heat shock protein, bovine growth hormone and rabbit β-globin, as well as other sequences capable of controlling gene expression in eukaryotic cells. Additional suitable transcription control regions include tissue-specific promoters and enhancers as well as lymphokine-inducible promoters (e.g., promoters inducible by interferons or interleukins).
[0063] Similarly, a variety of translation control elements are known to those of ordinary skill in the art. These include, but are not limited to ribosome binding sites, translation initiation and termination codons, and elements derived from picomaviruses (particularly an internal ribosome entry site, or IRES, also referred to as a CITE sequence).
[0064] The term expression as used herein refers to a process by which a polynucleotide produces a gene product, for example, an RNA or a polypeptide. It includes without limitation transcription of the polynucleotide into messenger RNA (mRNA), transfer RNA (tRNA), small hairpin RNA (shRNA), small interfering RNA (siRNA) or any other RNA product, and the translation of an mRNA into a polypeptide. Expression produces a gene product. As used herein, a gene product can be either a nucleic acid, e.g., a messenger RNA produced by transcription of a gene, or a polypeptide which is translated from a transcript. Gene products described herein further include nucleic acids with post transcriptional modifications, e.g., polyadenylation or splicing, or polypeptides with post translational modifications, e.g., methylation, glycosylation, the addition of lipids, association with other protein subunits, or proteolytic cleavage.
[0065] A vector refers to any vehicle for the cloning of and/or transfer of a nucleic acid into a host cell. A vector may be a replicon to which another nucleic acid segment may be attached so as to bring about the replication of the attached segment. A replicon refers to any genetic element (e.g., plasmid, phage, cosmid, chromosome, virus) that functions as an autonomous unit of replication in vivo,
-272018203206 08 May 2018
i.e., capable of replication under its own control. The term vector includes both viral and nonviral vehicles for introducing the nucleic acid into a cell in vitro, ex vivo or in vivo. A large number of vectors are known and used in the art including, for example, plasmids, modified eukaryotic viruses, or modified bacterial viruses. Insertion of a polynucleotide into a suitable vector can be accomplished by ligating the appropriate polynucleotide fragments into a chosen vector that has complementary cohesive termini.
[0066] Vectors may be engineered to encode selectable markers or reporters that provide for the selection or identification of cells that have incorporated the vector. Expression of selectable markers or reporters allows identification and/or selection of host cells that incorporate and express other coding regions contained on the vector. Examples of selectable marker genes known and used in the art include: genes providing resistance to ampicillin, streptomycin, gentamycin, kanamycin, hygromycin, bialaphos herbicide, sulfonamide, and the like; and genes that are used as phenotypic markers, i.e., anthocyanin regulatory genes, isopentanyl transferase gene, and the like. Examples of reporters known and used in the art include: luciferase (Luc), green fluorescent protein (GFP), chloramphenicol acetyltransferase (CAT), -galactosidase (LacZ), -glucuronidase (Gus), and the like. Selectable markers may also be considered to be reporters.
[0067] The term plasmid refers to an extra-chromosomal element often carrying a gene that is not part of the central metabolism of the cell, and usually in the form of circular double-stranded DNA molecules. Such elements may be autonomously replicating sequences, genome integrating sequences, phage or nucleotide sequences, linear, circular, or supercoiled, of a single- or doublestranded DNA or RNA, derived from any source, in which a number of nucleotide sequences have been joined or recombined into a unique construction which is capable of introducing a promoter fragment and DNA sequence for a selected gene product along with appropriate 3' untranslated sequence into a cell.
[0068] Eukaryotic viral vectors that can be used include, but are not limited to, adenovirus vectors, retrovirus vectors, adeno-associated virus vectors, and poxvirus, e.g., vaccinia virus vectors, baculovirus vectors, or herpesvirus vectors.
Non-viral vectors include plasmids, liposomes, electrically charged lipids (cytofectins), DNA-protein complexes, and biopolymers.
-282018203206 08 May 2018 [0069] A cloning vector refers to a replicon, which is a unit length of a nucleic acid that replicates sequentially and which comprises an origin of replication, such as a plasmid, phage or cosmid, to which another nucleic acid segment may be attached so as to bring about the replication of the attached segment. Certain cloning vectors are capable of replication in one cell type, e.g., bacteria and expression in another, e.g., eukaryotic cells. Cloning vectors typically comprise one or more sequences that can be used for selection of cells comprising the vector and/or one or more multiple cloning sites for insertion of nucleic acid sequences of interest.
[0070] The term expression vector refers to a vehicle designed to enable the expression of an inserted nucleic acid sequence following insertion into a host cell. The inserted nucleic acid sequence is placed in operable association with regulatory regions as described above.
[0071] Vectors are introduced into host cells by methods well known in the art,
e.g., transfection, electroporation, microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, lipofection (lysosome fusion), use of a gene gun, or a DNA vector transporter.
[0072] Culture, to culture and culturing, as used herein, means to incubate cells under in vitro conditions that allow for cell growth or division or to maintain cells in a living state. Cultured cells, as used herein, means cells that are propagated in vitro.
[0073] As used herein, the term polypeptide is intended to encompass a singular polypeptide as well as plural polypeptides, and refers to a molecule composed of monomers (amino acids) linearly linked by amide bonds (also known as peptide bonds). The term polypeptide refers to any chain or chains of two or more amino acids, and does not refer to a specific length of the product. Thus, peptides, dipeptides, tripeptides, oligopeptides, protein, amino acid chain, or any other term used to refer to a chain or chains of two or more amino acids, are included within the definition of polypeptide, and the term polypeptide can be used instead of, or interchangeably with any of these terms. The term polypeptide is also intended to refer to the products of post-expression modifications of the polypeptide, including without limitation glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups,
-292018203206 08 May 2018 proteolytic cleavage, or modification by non-naturally occurring amino acids. A polypeptide can be derived from a natural biological source or produced recombinant technology, but is not necessarily translated from a designated nucleic acid sequence. It can be generated in any manner, including by chemical synthesis.
[0074] An isolated polypeptide or a fragment, variant, or derivative thereof refers to a polypeptide that is not in its natural milieu. No particular level of purification is required. For example, an isolated polypeptide can simply be removed from its native or natural environment. Recombinantly produced polypeptides and proteins expressed in host cells are considered isolated for the purpose of the invention, as are native or recombinant polypeptides which have been separated, fractionated, or partially or substantially purified by any suitable technique.
[0075] Also included in the present invention are fragments or variants of polypeptides, and any combination thereof. The term fragment or variant when referring to polypeptide binding domains or binding molecules of the present invention include any polypeptides which retain at least some of the properties (e.g., FcRn binding affinity for an FcRn binding domain or Fc variant, coagulation activity for an FVIII variant, or FVIII binding activity for the VWF fragment) of the reference polypeptide. Fragments of polypeptides include proteolytic fragments, as well as deletion fragments, in addition to specific antibody fragments discussed elsewhere herein, but do not include the naturally occurring full-length polypeptide (or mature polypeptide). Variants of polypeptide binding domains or binding molecules of the present invention include fragments as described above, and also polypeptides with altered amino acid sequences due to amino acid substitutions, deletions, or insertions. Variants can be naturally or non-naturally occurring. Non-naturally occurring variants can be produced using art-known mutagenesis techniques. Variant polypeptides can comprise conservative or non-conservative amino acid substitutions, deletions or additions.
[0076] The term VWF fragment or VWF fragments used herein means any
VWF fragments that interact with FVIII and retain at least one or more properties that are normally provided to FVIII by full-length VWF, e.g., preventing
-302018203206 08 May 2018 premature activation to FVIIIa, preventing premature proteolysis, preventing association with phospholipid membranes that could lead to premature clearance, preventing binding to FVIII clearance receptors that can bind naked FVIII but not VWF-bound FVIII, and/or stabilizing the FVIII heavy chain and light chain interactions.
[0077] A conservative amino acid substitution is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, if an amino acid in a polypeptide is replaced with another amino acid from the same side chain family, the substitution is considered to be conservative. In another embodiment, a string of amino acids can be conservatively replaced with a structurally similar string that differs in order and/or composition of side chain family members.
[0078] As known in the art, sequence identity between two polypeptides is determined by comparing the amino acid sequence of one polypeptide to the sequence of a second polypeptide. When discussed herein, whether any particular polypeptide is at least about 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or 100% identical to another polypeptide can be determined using methods and computer programs/software known in the art such as, but not limited to, the BESTFIT program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive,
Madison, WI 53711). BESTFIT uses the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2:482-489 (1981), to find the best segment of homology between two sequences. When using BESTFIT or any other sequence alignment program to determine whether a particular sequence is, for example, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is
-31 2018203206 08 May 2018 calculated over the full-length of the reference polypeptide sequence and that gaps in homology of up to 5% of the total number of amino acids in the reference sequence are allowed.
[0079] As used herein, an amino acid corresponding to or an equivalent amino acid in a VWF sequence or a FVIII protein sequence is identified by alignment to maximize the identity or similarity between a first VWF or FVIII sequence and a second VWF or FVIII sequence. The number used to identify an equivalent amino acid in a second VWF or FVIII sequence is based on the number used to identify the corresponding amino acid in the first VWF or FVIII sequence.
[0080] As used herein, the term insertion site refers to a position in a FVIII polypeptide, or fragment, variant, or derivative thereof, which is immediately upstream of the position at which a heterologous moiety can be inserted. An insertion site is specified as a number, the number being the number of the amino acid in mature native FVIII (SEQ ID NO:4) to which the insertion site corresponds, which is immediately N-terminal to the position of the insertion. For example, the phrase a3 comprises an XTEN at an insertion site which corresponds to amino acid 1656 of SEQ ID NO: 4 indicates that the heterologous moiety is located between two amino acids corresponding to amino acid 1656 and amino acid 1657 of SEQ ID NO: 4.
[0081] The phrase immediately downstream of an amino acid as used herein refers to position right next to the terminal carboxyl group of the amino acid. Similarly, the phrase immediately upstream of an amino acid refers to the position right next to the terminal amine group of the amino acid. Therefore, the phrase between two amino acids of an insertion site as used herein refers to a position in which an XTEN or any other polypeptide is inserted between two adjacent amino acids. Thus, the phrases inserted immediately downstream of an amino acid and inserted between two amino acids of an insertion site are used synonymously with inserted at an insertion site.
[0082] The terms inserted, is inserted, inserted into or grammatically related terms, as used herein refers to the position of an XTEN in a chimeric polypeptide relative to the analogous position in native mature human FVIII. As used herein the terms refer to the characteristics of the recombinant FVIII polypeptide relative to native mature human FVIII, and do not indicate, imply or infer any methods or
-322018203206 08 May 2018 process by which the chimeric polypeptide was made. For example, in reference to a chimeric polypeptide provided herein, the phrase an XTEN is inserted into immediately downstream of residue 745 of the FVIII polypeptide means that the chimeric polypeptide comprises an XTEN immediately downstream of an amino acid which corresponds to amino acid 745 in native mature human FVIII, e.g., bounded by amino acids corresponding to amino acids 745 and 746 of native mature human FVIII.
[0083] A fusion or chimeric protein comprises a first amino acid sequence linked to a second amino acid sequence with which it is not naturally linked in nature. The amino acid sequences which normally exist in separate proteins can be brought together in the fusion polypeptide, or the amino acid sequences which normally exist in the same protein can be placed in a new arrangement in the fusion polypeptide, e.g., fusion of a Factor VIII domain of the invention with an lg Fc domain. A fusion protein is created, for example, by chemical synthesis, or by creating and translating a polynucleotide in which the peptide regions are encoded in the desired relationship. A chimeric protein can further comprises a second amino acid sequence associated with the first amino acid sequence by a covalent, non-peptide bond or a non-covalent bond.
[0084] As used herein, the term half-life refers to a biological half-life of a particular polypeptide in vivo. Half-life may be represented by the time required for half the quantity administered to a subject to be cleared from the circulation and/or other tissues in the animal. When a clearance curve of a given polypeptide is constructed as a function of time, the curve is usually biphasic with a rapid aphase and longer β-phase. The α-phase typically represents an equilibration of the administered Fc polypeptide between the intra- and extra-vascular space and is, in part, determined by the size of the polypeptide. The β-phase typically represents the catabolism of the polypeptide in the intravascular space. In some embodiments, FVIII and chimeric proteins comprising FVIII are monophasic, and thus do not have an alpha phase, but just the single beta phase. Therefore, in certain embodiments, the term half-life as used herein refers to the half-life of the polypeptide in the β-phase. The typical β-phase half-life of a human antibody in humans is 21 days.
-33 2018203206 08 May 2018 [0085] The term linked as used herein refers to a first amino acid sequence or nucleotide sequence covalently or non-covalently joined to a second amino acid sequence or nucleotide sequence, respectively. The first amino acid or nucleotide sequence can be directly joined or juxtaposed to the second amino acid or nucleotide sequence or alternatively an intervening sequence can covalently join the first sequence to the second sequence. The term linked means not only a fusion of a first amino acid sequence to a second amino acid sequence at the Cterminus or the N-terminus, but also includes insertion of the whole first amino acid sequence (or the second amino acid sequence) into any two amino acids in the second amino acid sequence (or the first amino acid sequence, respectively).
In one embodiment, the first amino acid sequence can be linked to a second amino acid sequence by a peptide bond or a linker. The first nucleotide sequence can be linked to a second nucleotide sequence by a phosphodiester bond or a linker. The linker can be a peptide or a polypeptide (for polypeptide chains) or a nucleotide or a nucleotide chain (for nucleotide chains) or any chemical moiety (for both polypeptide and polynucleotide chains). The term linked is also indicated by a hyphen (-).
[0086] As used herein the term associated with refers to a covalent or noncovalent bond formed between a first amino acid chain and a second amino acid chain. In one embodiment, the term associated with means a covalent, nonpeptide bond or a non-covalent bond. This association can be indicated by a colon, i.e., (:). In another embodiment, it means a covalent bond except a peptide bond. For example, the amino acid cysteine comprises a thiol group that can form a disulfide bond or bridge with a thiol group on a second cysteine residue. In most naturally occurring IgG molecules, the CHI and CL regions are associated by a disulfide bond and the two heavy chains are associated by two disulfide bonds at positions corresponding to 239 and 242 using the Kabat numbering system (position 226 or 229, EU numbering system). Examples of covalent bonds include, but are not limited to, a peptide bond, a metal bond, a hydrogen bond, a disulfide bond, a sigma bond, a pi bond, a delta bond, a glycosidic bond, an agnostic bond, a bent bond, a dipolar bond, a Pi backbond, a double bond, a triple bond, a quadruple bond, a quintuple bond, a sextuple bond, conjugation, hyperconjugation, aromaticity, hapticity, or antibonding. Non-limiting examples
-342018203206 08 May 2018 of non-covalent bond include an ionic bond (e.g., cation-pi bond or salt bond), a metal bond, an hydrogen bond (e.g., dihydrogen bond, dihydrogen complex, lowbarrier hydrogen bond, or symmetric hydrogen bond), van der Walls force,
London dispersion force, a mechanical bond, a halogen bond, aurophilicity, intercalation, stacking, entropic force, or chemical polarity.
[0087] The term monomer-dimer hybrid used herein refers to a chimeric protein comprising a first polypeptide chain and a second polypeptide chain, which are associated with each other by a disulfide bond, wherein the first chain comprises a clotting factor, e.g., Factor VIII, and a first Fc region and the second chain comprises, consists essentially of, or consists of a second Fc region without the clotting factor. The monomer-dimer hybrid construct thus is a hybrid comprising a monomer aspect having only one clotting factor and a dimer aspect having two Fc regions.
[0088] As used herein, the term cleavage site or enzymatic cleavage site refers to a site recognized by an enzyme. Certain enzymatic cleavage sites comprise an intracellular processing site. In one embodiment, a polypeptide has an enzymatic cleavage site cleaved by an enzyme that is activated during the clotting cascade, such that cleavage of such sites occurs at the site of clot formation. Exemplary such sites include, e.g., those recognized by thrombin, Factor XIa or Factor Xa. Exemplary FXIa cleavage sites include, e.g., TQSFNDFTR (SEQ ID NO: 45) and SVSQTSKLTR (SEQ ID NO: 46). Exemplary thrombin cleavage sites include, e.g., DFLAEGGGVR (SEQ ID NO: 47), TTKIKPR (SEQ ID NO: 48), LVPRG (SEQ ID NO: 49) and ALRPR (amino acids 1 to 5 of SEQ ID NO: 50). Other enzymatic cleavage sites are known in the art.
[0089] As used herein, the term processing site or intracellular processing site refers to a type of enzymatic cleavage site in a polypeptide which is a target for enzymes that function after translation of the polypeptide. In one embodiment, such enzymes function during transport from the Golgi lumen to the trans-Golgi compartment. Intracellular processing enzymes cleave polypeptides prior to secretion of the protein from the cell. Examples of such processing sites include, e.g., those targeted by the PACE/furin (where PACE is an acronym for Paired basic Amino acid Cleaving Enzyme) family of endopeptidases. These enzymes are localized to the Golgi membrane and cleave proteins on the carboxyterminal
-35 2018203206 08 May 2018 side of the sequence motif Arg-[any residue]-(Lys or Arg)-Arg. As used herein the furin family of enzymes includes, e.g., PCSK1 (also known as PCl/Pc3), PCSK2 (also known as PC2), PCSK3 (also known as furin or PACE), PCSK4 (also known as PC4), PCSK5 (also known as PC5 or PC6), PCSK6 (also known as PACE4), or PCSK7 (also known as PC7/LPC, PC8, or SPC7). Other processing sites are known in the art.
[0090] In constructs that include more than one processing or cleavage site, it will be understood that such sites may be the same or different.
[0091] The term Furin refers to the enzymes corresponding to EC No. 3.4.21.75.
Furin is subtilisin-like proprotein convertase, which is also known as PACE (Paired basic Amino acid Cleaving Enzyme). Furin deletes sections of inactive precursor proteins to convert them into biologically active proteins. During its intracellular transport, pro-peptide of VWF can be cleaved from mature VWF molecule by a Furin enzyme. In some embodiments, Furin cleaves the D1D2 from the D'D3 of VWF. In other embodiments, a nucleotide sequence encoding Furin can be expressed together with the nucleotide sequence encoding a VWF fragment so that D1D2 domains can be cleaved off intracellularly by Furin.
[0092] In constructs that include more than one processing or cleavage site, it will be understood that such sites may be the same or different.
[0093] A processable linker as used herein refers to a linker comprising at least one intracellular processing site, which is described elsewhere herein.
[0094] Hemostatic disorder, as used herein, means a genetically inherited or acquired condition characterized by a tendency to hemorrhage, either spontaneously or as a result of trauma, due to an impaired ability or inability to form a fibrin clot. Examples of such disorders include the hemophilias. The three main forms are hemophilia A (factor VIII deficiency), hemophilia B (factor IX deficiency or Christmas disease) and hemophilia C (factor XI deficiency, mild bleeding tendency). Other hemostatic disorders include, e.g., Von Willebrand disease, Factor XI deficiency (PTA deficiency), Factor XII deficiency, deficiencies or structural abnormalities in fibrinogen, prothrombin, Factor V, Factor VII, Factor X or factor XIII, Bernard-Soulier syndrome, which is a defect or deficiency in GPIb. GPIb, the receptor for VWF, can be defective and lead to lack of primary clot formation (primary hemostasis) and increased bleeding
-362018203206 08 May 2018 tendency), and thrombasthenia of Glanzman and Naegeli (Glanzmann thrombasthenia). In liver failure (acute and chronic forms), there is insufficient production of coagulation factors by the liver; this may increase bleeding risk.
[0095] The chimeric molecules of the invention can be used prophylactically. As used herein the term prophylactic treatment refers to the administration of a molecule prior to a bleeding episode. In one embodiment, the subject in need of a general hemostatic agent is undergoing, or is about to undergo, surgery. The chimeric protein of the invention can be administered prior to or after surgery as a prophylactic. The chimeric protein of the invention can be administered during or after surgery to control an acute bleeding episode. The surgery can include, but is not limited to, liver transplantation, liver resection, dental procedures, or stem cell transplantation.
[0096] The chimeric protein of the invention is also used for on-demand treatment. The term on-demand treatment refers to the administration of a chimeric molecule in response to symptoms of a bleeding episode or before an activity that may cause bleeding. In one aspect, the on-demand treatment can be given to a subject when bleeding starts, such as after an injury, or when bleeding is expected, such as before surgery. In another aspect, the on-demand treatment can be given prior to activities that increase the risk of bleeding, such as contact sports.
[0097] As used herein the term acute bleeding refers to a bleeding episode regardless of the underlying cause. For example, a subject may have trauma, uremia, a hereditary bleeding disorder (e.g., factor VII deficiency) a platelet disorder, or resistance owing to the development of antibodies to clotting factors.
[0098] Treat, treatment, treating, as used herein refers to, e.g., the reduction in severity of a disease or condition; the reduction in the duration of a disease course; the amelioration of one or more symptoms associated with a disease or condition; the provision of beneficial effects to a subject with a disease or condition, without necessarily curing the disease or condition, or the prophylaxis of one or more symptoms associated with a disease or condition. In one embodiment, the term treating or treatment means maintaining a FVIII trough level at least about 1 IU/dL, 2 IU/dL, 3 IU/dL, 4 IU/dL, 5 IU/dL, 6 IU/dL, 7 IU/dL, 8 IU/dL, 9 IU/dL,
IU/dL, 11 IU/dL, 12 IU/dL, 13 IU/dL, 14 IU/dL, 15 IU/dL, 16 IU/dL, 17
-372018203206 08 May 2018
IU/dL, 18 IU/dL, 19 IU/dL, or 20 IU/dL in a subject by administering a chimeric protein or a VWF fragment of the invention. In another embodiment, treating or treatment means maintaining a FVIII trough level between about 1 and about 20 IU/dL, about 2 and about 20 IU/dL, about 3 and about 20 IU/dL, about 4 and about 20 IU/dL, about 5 and about 20 IU/dL, about 6 and about 20 IU/dL, about 7 and about 20 IU/dL, about 8 and about 20 IU/dL, about 9 and about 20 IU/dL, or about 10 and about 20 IU/dL. Treatment or treating of a disease or condition can also include maintaining FVIII activity in a subject at a level comparable to at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, or 20% of the FVIII activity in a non-hemophiliac subject. The minimum trough level required for treatment can be measured by one or more known methods and can be adjusted (increased or decreased) for each person.
Chimeric Proteins [0099] The present invention is directed to extending the half-life of a Factor VIII protein using a VWF fragment and an XTEN sequence by preventing or inhibiting a FVIII half-life limiting factor, i.e., endogenous VWF, from associating with the FVIII protein. Endogenous VWF associates with about 95% to about 98% of FVIII in non-covalent complexes. While endogenous VWF is a FVIII half-life limiting factor, endogenous VWF bound to a FVIII protein is also known to protect FVIII in various ways. For example, full length VWF (as a multimer having about 250 kDa) can protect FVIII from protease cleavage and FVIII activation, stabilize the FVIII heavy chain and/or light chain, and prevent clearance of FVIII by scavenger receptors. But, at the same time, endogenous VWF limits the FVIII half-life by preventing pinocytosis and by clearing FVIII VWF complex from the system through the VWF clearance pathway. It is believed, while not bound by a theory, that endogenous VWF is a half-life limiting factor that prevents the half-life of a FVIII protein fused to a half-life extender from being longer than about two-fold that of wild-type FVIII. Therefore, the present invention is directed to preventing or inhibiting interaction between endogenous VWF and a FVIII protein using a VWF fragment, thereby increasing a half-life of the FVIII protein by using an XTEN sequence alone or an XTEN sequence in combination with an Ig constant region or a portion thereof The
-382018203206 08 May 2018 [0100] [0101]
XTEN sequence can be linked to the FVIII protein or the VWF fragment. The FVIII protein associated with the VWF fragment is thus cleared from the circulation more slowly by one or more VWF clearance receptors and then can have the full half-life extension of the XTEN sequence or the XTEN sequence in combination of the Ig constant region, as compared to wild type FVIII or a FVIII protein without the VWF fragment.
In one embodiment, a VWF fragment is associated (or linked) with the FVIII protein by a covalent or a non-covalent bond. In some instances, however, the physical blockage or chemical association (e.g., non-covalent bonding) between the VWF fragment and the FVIII protein may not be strong enough to provide a stable complex comprising the FVIII protein and the VWF fragment in the presence of endogenous VWF. For example, a VWF fragment forming a noncovalent bond with a FVIII protein without any other connections may readily be dissociated in vivo from the FVIII protein in the presence of endogenous VWF, replacing the VWF fragment (e.g., recombinant VWF, i.e., rVWF) with endogenous VWF. Therefore, the FVIII protein non-covalently bound to endogenous VWF would undergo the VWF clearance pathway and be readily cleared from the system. In order to prevent the dissociation of the VWF fragment with the FVIII protein, in some embodiments, the association or linkage between the FVIII protein and the VWF fragment is a covalent bond, e.g., a peptide bond, one or more amino acids, or a disulfide bond. In certain embodiments, the association (i.e., linkage) between the adjunct moiety and the FVIII protein is a peptide bond or a linker between the FVIII protein and the VWF fragment (FVIII/VWF linker). Non-limiting examples of the linker are described elsewhere herein. In some embodiments, the VWF fragment is a polypeptide comprising, consisting essentially of, or consisting of at least about 10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2500, 3000, or 4000 amino acids. Nonlimiting examples of the VWF fragment are described elsewhere herein.
In certain embodiments, the VWF fragment chemically (e.g., noncovalently) binds to or physically blocks one or more VWF binding sites on a FVIII protein. The VWF binding site on a FVIII protein is located within the A3 domain or the C2 domain of the FVIII protein. In still other embodiments, the
-392018203206 08 May 2018 [0102] [0103] [0104]
VWF binding site on a FVIII protein is located within the A3 domain and C2 domain. For example, the VWF binding site on a FVIII protein can correspond to amino acids 1669 to 1689 and/or 2303 to 2332 of SEQ ID NO: 4 [full-length mature FVIII],
The invention also provides a chimeric protein (comprising a FVIII protein and a VWF fragment) further comprising one or more XTEN sequences, which provide additional half-life extension properties. The one or more XTEN sequences can be inserted within the FVIII protein or the VWF fragment or linked to the N-terminus or the C-terminus of the FVIII protein or the VWF fragment. The invention also includes a FVIII protein linked to an XTEN sequence (a first half-life extending moiety) and an Ig constant region or a portion thereof (a second half-life extending moiety) so that the two half-life extending moieties extend the half-life of the FVIII protein through two different mechanisms.
In some embodiments, a chimeric protein comprises a FVIII protein linked to a first Ig constant region or a portion thereof (e.g., a first FcRn binding partner), a VWF fragment linked to a second Ig constant region or a portion thereof (e.g., a second FcRn binding partner), and one or more XTEN sequences inserted or linked to the FVIII protein or the VWF fragment, wherein the VWF fragment prevents the FVIII half-life limiting factor (e.g., endogenous VWF) from binding to the FVIII protein, wherein the first and second Ig constant regions or portions thereof forms a covalent bond, e.g., a disulfide bond, and the one or more XTEN sequences extends the half-life of the FVIII protein.
In certain embodiments, a chimeric protein of the invention comprises a FVIII protein linked to a VWF fragment by an optional linker (i.e., FVIII/VWF linker) and one or more XTEN sequences inserted or linked to the FVIII protein or the VWF fragment, wherein the VWF fragment prevents the FVIII half-life limiting factor (e.g., endogenous VWF) from binding to the FVIII protein and the one or more XTEN sequences extends the half-life of the FVIII protein. In one aspect, the optional linker (FVIII/VWF linker) comprises a sortase recognition motif. In another aspect, the optional linker (FVIII/VWF linker) comprises a cleavable site. Examples of the cleavage linker (i.e., linker containing one or more cleavage site) are described elsewhere herein.
-402018203206 08 May 2018 [0105] [0106]
The chimeric protein of the present invention includes, but is not limited to:
(1) a VWF fragment comprising a D' domain and a D3 domain, an XTEN sequence, and FVIII, wherein the XTEN sequence is linked to the VWF fragment;
(2) a FVIII protein, an XTEN sequence, and an Ig constant region or a portion thereof, wherein the FVIII protein is linked to an XTEN sequence and the Ig constant region or a portion thereof, or (3) a FVIII protein, an XTEN sequence, and a VWF fragment, wherein the XTEN sequence is linked to the FVIII protein at the C-terminus or N-terminus or inserted immediately downstream of one or more amino acids (e.g., one or more XTEN insertion sites) of FVIII, and the VWF fragment and the FVIII protein are associated with each other.
(1) Von Willebrand Factor (VWF) fragment linked to XTEN, and FVIII
The present invention is directed to a chimeric protein comprising (i) a VWF fragment comprising a D' domain and a D3 domain of VWF, (ii) an XTEN sequence, and (iii) a FVIII protein, wherein (i), (ii), and (iii) are linked to or associated with each other. The VWF fragment linked to the XTEN sequence, as a part of a chimeric protein in the present invention, associates with the FVIII protein, thus preventing or inhibiting interaction between endogenous VWF and the FVIII protein. In certain embodiments, the VWF fragment, which is capable of preventing or inhibiting binding of the FVIII protein with endogenous VWF, can at the same time have at least one VWF-like FVIII protecting property. Examples of the VWF-like FVIII protecting properties include, but are not limited to, protecting FVIII from protease cleavage and FVIII activation, stabilizing the FVIII heavy chain and/or light chain, and preventing clearance of FVIII by scavenger receptors. As a result, the VWF fragment can prevent clearance of the FVIII protein through the VWF clearance pathway, thus reducing clearance of FVIII from the circulatory system. In some embodiments, the VWF fragments of the present invention bind to or are associated with a FVIII protein and/or physically or chemically block the VWF binding site on the FVIII protein. The FVIII protein associated with the VWF fragment is thus cleared from the circulation more slowly, as compared to wild type FVIII or FVIII not associated with the VWF fragment.
-41 2018203206 08 May 2018 [0107] [0108]
In one embodiment, the invention is directed to a chimeric protein comprising (i) a VWF fragment comprising the D' domain and the D3 domain of VWF, (ii) an XTEN sequence, and (iii) a FVIII protein, wherein the XTEN sequence is linked to the VWF fragment (e.g., (al) V-X or (a2) X-V, wherein V comprises a VWF fragment and X comprises an XTEN sequence), and the VWF fragment is linked to or associated with the FVIII protein. In another embodiment, the VWF fragment and the XTEN sequence can be linked by a linker (e.g., (a3) V-F-X or (a4) X-F-V) or a peptide bond. The linker can be a cleavable linker, e.g., a thrombin cleavable linker, which can be cleaved at the site of coagulation. In other embodiments, the VWF fragment, the XTEN sequence, and the FVIII protein are placed in a single polypeptide chain. In still other embodiments, the chimeric protein comprises two polypeptide chains, a first chain comprising the VWF fragment and the XTEN sequence and a second chain comprising the FVIII protein. In yet other embodiments, the chimeric protein comprises three polypeptide chains, a first chain comprising the VWF fragment and the XTEN sequence, a second chain comprising a light chain of FVIII and a third chain comprising a heavy chain of FVIII, wherein the first chain and the second chain are associated with each other (e.g., covalent bond, e.g., disulfide bond), and the second chain and the third chain are associated with each other (e.g., metal bond). In still other embodiments, the XTEN sequence can be linked to the N-terminus or the C-terminus of the VWF fragment or inserted immediately downstream of one or more amino acids in the VWF fragment.
In certain embodiments, a chimeric protein of the invention comprises a formula comprising:
(a) V-X-FVIII, (b) FVIII-X-V, (c) V-X:FVIII, (d) X-V:FVIII, (e) FVIII:V-X, (f) FVIII:X-V, or (a5) X-V-FVIII, wherein V comprises a VWF fragment,
X comprises one or more XTEN sequences,
-422018203206 08 May 2018 [0109]
FVIII comprises a FVIII protein;
(-) represents a peptide bond or one or more amino acids; and (:) is a chemical association or a physical association. In one embodiment, (:) represents a chemical association, e.g., at least one non-peptide bond. In another embodiment, the chemical association, i.e., (:) is a covalent bond. In other embodiments, the chemical association, i.e., (:) is a non-covalent interaction, e.g., an ionic interaction, a hydrophobic interaction, a hydrophilic interaction, a Van der Waals interaction, or a hydrogen bond. In other embodiments, (:) is a nonpeptide covalent bond. In still other embodiments, (:) is a peptide bond. In yet other embodiments, (:) represents a physical association between two sequences, wherein a portion of a first sequence is in close proximity to a second sequence such that the first sequence shields or blocks a portion of the second sequence from interacting with another moiety, and further that this physical association is maintained without allowing the second sequence to interact with other moieties. The orientation of the polypeptide formulas herein is listed from N-terminus (left) to C-terminus (right). For example, formula V-X-FVIII means formula NH2-VX-FVIII -COOH. In one embodiment, the formulas described herein can comprise any additional sequences between the two moieties. For example, formula V-XFVIII can further comprise any sequences at the N-terminus of V between V and X, between X and FVIII, or at the C-terminus of FVIII unless otherwise specified. In another embodiment, the hyphen (-) indicates a peptide bond.
In other embodiments, a chimeric protein of the invention comprises a formula comprising:
(a) V(X1)-X2-FVIII, (b) FVIII-X2-V(X1), (c) V(X1):FVIII, (d) FVIII:V(X1), or (a5) X2-V(X1)-FVIII, wherein V(X1) comprises a VWF fragment and a first XTEN sequence (XI), wherein the XTEN sequence is inserted immediately downstream of one or more amino acids in the VWF fragment,
X2 comprises one or more optional XTEN sequences,
FVIII comprises a FVIII protein;
-43 2018203206 08 May 2018 [0110] (-) is a peptide bond or one or more amino acids; and (:) is a chemical association or a physical association.
In some embodiments, a chimeric protein comprises (i) a VWF fragment comprising a D' domain and a D3 domain of VWF, (ii) an XTEN sequence, (iii) a FVIII protein, (iv) a first optional linker, and (v) a second optional linker, wherein the XTEN sequence is linked to the VWF fragment and/or to the FVIII protein by the linker. In certain embodiments, a chimeric protein comprises a formula
comprising:
(bl) V-L1-X-L2-FVIII,
(b2) FVIII-L2-X-L1-V,
(b3) V-L1-X:FVIII,
(b4) X-L1-V:FVIII,
(b5) FVIII:V-L1-X,
(b6) FVIII:X-L1-V,
(b7) X-L1-V-L2-FVIII, or
(b8) FVIII-L2-V-L1-X,
wherein V comprises a VWF fragment,
X comprises one or more XTEN sequences,
FVIII comprises a FVIII protein,
LI comprises a first optional linker, e.g., a first cleavable linker,
L2 comprises a second optional linker, e.g., a second cleavable linker or an optional processable linker;
(-) is a peptide bond or one or amino acids; and (:) is a chemical association or a physical association. In one embodiment, (:) represents a chemical association, e.g., at least one non-peptide bond. In another embodiment, the chemical association, i.e., (:) is a covalent bond. In other embodiments, the chemical association, i.e., (:) is a non-covalent interaction, e.g., an ionic interaction, a hydrophobic interaction, a hydrophilic interaction, a Van der Waals interaction, or a hydrogen bond. In other embodiments, (:) is a nonpeptide covalent bond. In still other embodiments, (:) is a peptide bond. In yet other embodiments, (:) represents a physical association between two sequences, wherein a portion of a first sequence is in close proximity to a second sequence such that the first sequence shields or blocks a portion of the second sequence
-442018203206 08 May 2018 [0111] from interacting with another moiety, and further that this physical association is maintained without allowing the second sequence to interact with other moieties. The orientation of the polypeptide formulas herein is listed from N-terminus (left) to C-terminus (right). For example, formula (bl) V-L1-X-L2-FVIII means formula NH2-V-L1-X-L2-FVIII-COOH. In one embodiment, the formulas described herein can comprise any additional sequences between the two moieties. In another embodiment, the hyphen (-) indicates a peptide bond.
Another aspect of the present invention is to provide a FVIII chimeric protein having reduced or no interactions with a FVIII half-life limiting factor, e.g., endogenous VWF, and at the same time maximizing the half-life of the FVIII protein using an XTEN sequence (a first half-life extender) in combination with a second half-life extender or a moiety providing a covalent bond between the FVIII protein and the VWF fragment, e.g., an Ig constant region or a portion thereof. In one embodiment, a chimeric protein of the invention comprises (i) a VWF fragment comprising a D' domain and a D3 domain of VWF, (ii) an XTEN sequence, (iii) a FVIII protein, and (iv) an Ig constant region or a portion thereof (also referred to herein as F), wherein (1) the VWF fragment is linked to the XTEN sequence by an optional linker, e.g., a cleavable linker, (2) the VWF fragment is associated with or linked to the FVIII protein by an additional optional linker, e.g., a cleavable linker, and (3) the Ig constant region or a portion thereof is linked to the VWF fragment, the XTEN sequence, or the FVIII protein. In another embodiment, a chimeric protein of the invention comprises (i) a VWF fragment comprising a D' domain and a D3 domain of VWF, (ii) an XTEN sequence, (iii) a FVIII protein, (iv) an Ig constant region or a portion thereof (FI or a first Ig constant region or a portion thereof), and (v) an additional Ig constant region or a portion thereof (F2 or a second Ig constant region or a portion thereof), wherein (1) the VWF fragment is linked to the XTEN sequence by an optional linker, e.g., a cleavable linker, (2) the XTEN sequence or the VWF fragment is linked to the Ig constant region or a portion thereof, (3) the FVIII is linked to the additional Ig constant region or a portion thereof, and (4) the Ig constant region or a portion thereof is associated with or linked to the additional Ig constant region or a portion thereof. In one embodiment, the association or linkage between the two Ig constant regions or a portion thereof is a covalent bond, e.g., a disulfide bond. In
-45 2018203206 08 May 2018 [0112] [0113] another embodiment, the association or linkage between the two Ig constant regions or a portion thereof is a processable linker, wherein the processable linker is intracellularly processed by a protease. For example, the chimeric protein comprises a formula comprising:
(g) V-L2-X-L1-F1: FVIII-L3-F2;
(h) V-L2-X-L1-F1:F2-L3-FVIII;
(i) F-L1-X-L2-V: FVIII-L3-F2;
(j) F-L1-X-L2-V:F2-L3-FVIII;
(k) V-L2-X-L1-F1-L4-FVIII-L3-F2;
(l) F2-L3-FVIII-L4-F1-L1-X-L2-V;
(m) FVIII-L2-F2-L4-V-L2-X-L1-F1; or (n) F1-L1-X-L2-V-L4-F2-L2-FVIII, wherein V comprises a VWF fragment, each of LI and L3 comprises an optional linker,
L2 comprises an optional linker, e.g., a cleavable linker,
L4 is an optional linker, e.g., a processable linker,
FVIII comprises a FVIII protein,
X comprises one or more XTEN sequences,
FI comprises an optional Ig constant region or a portion thereof,
F2 comprises an optional additional Ig constant region or a portion thereof;
(-) is a peptide bond or one or more amino acids; and (:) is a chemical association or a physical association.
In some embodiments, the FVIII protein in any constructs or formulas disclosed herein can further comprises at least one, at least two, at least three, at least four, at least five, or at least six XTEN sequences, each of the XTEN sequences inserted immediately downstream of one or more amino acids in the FVIII protein or linked to the N-terminus or the C-terminus of the FVIII protein. Non-limiting examples of the XTEN insertion sites are disclosed elsewhere herein.
In one embodiment, (:) represents a chemical association, e.g., at least one non-peptide bond. In another embodiment, the chemical association, i.e., (:) is a covalent bond. In other embodiments, the chemical association, i.e., (:) is a noncovalent interaction, e.g., an ionic interaction, a hydrophobic interaction, a
-462018203206 08 May 2018 [0114] hydrophilic interaction, a Van der Waals interaction, or a hydrogen bond. In other embodiments, (:) is a non-peptide covalent bond. In still other embodiments, (:) is a peptide bond. In yet other embodiments, (:) represents a physical association between two sequences, wherein a portion of a first sequence is in close proximity to a second sequence such that the first sequence shields or blocks a portion of the second sequence from interacting with another moiety, and further that this physical association is maintained without allowing the second sequence to interact with other moieties. The orientation of the polypeptide formulas herein is listed from N-terminus (left) to C-terminus (right). For example, formula (η) ΓΙΕ 1-X-L2-V-L4-F2-L2-F VIII means formula NH2-F1-LI-X-L2-V-L4-F2-L2FVIII -COOH. In one embodiment, the formulas described herein can comprise any additional sequences between the two moieties. In another embodiment, the hyphen (-) indicates a peptide bond.
In one embodiment, either or both of the lg constant region or a portion thereof (sometimes indicated herein by F or FI) and the additional lg constant region or a portion thereof (sometimes indicated herein by F2) linked to the VWF fragment or the FVIII protein can extend the half-life of the VWF fragment, the FVIII protein, or both. In another embodiment, a pair of the lg constant region or a portion thereof (sometimes indicated herein by F or FI) and the additional lg constant region or a portion thereof (sometimes indicated herein by F2), each of which are linked to the VWF fragment and the FVIII protein, provides a bond stronger than the non-covalent bond between the FVIII protein and the VWF fragment, i.e., a covalent bond, e.g., a disulfide bond, thereby preventing endogenous VWF from replacing the VWF fragment in vivo. FI or F2 can comprise an Fc region or an FcRn binding partner. In other embodiments, either or both of FI and F2 linked to the VWF fragment and/or the FVIII protein form a covalent bond (e.g., a disulfide bond) between FI and F2, thereby placing the VWF fragment and the FVIII protein in close proximity to prevent interaction of the FVIII protein with the VWF fragment. In some embodiments, FI and F2 are identical or different. Non-limiting examples of FI and F2 can be selected from the group consisting of a CHI domain, a CH2 domain, a CH3 domain, a CH4 domain, a hinge domain, any functional fragments, derivatives, or analogs thereof, and two or more combinations thereof. In one embodiment, FI, F2, or both
-472018203206 08 May 2018 [0115] comprise at least one CHI domain, at least one CH2 domain, at least one CH3 domain, at least one CH4 domain, or the functional fragments, derivatives, or analogs thereof. In another embodiment, FI, F2, or both comprise at least one hinge domain or portion thereof and at least one CH2 domain or portion thereof (e.g., in the hinge-CH2 orientation). In other embodiments, FI, F2, or both comprise at least one CH2 domain or portion thereof and at least one CH3 domain or portion thereof (e.g., in the CH2-CH3 orientation.) Examples of the combination include, but are not limited to, a CH2 domain, a CH3 domain, and a hinge domain, which are also known as an Fc region (or Fc domain), e.g., a first Fc region or a first FcRn binding partner for Ff and a second Fc region or a second FcRn binding partner for F2. In other embodiments, Ff is linked to the VWF fragment by a linker, and/or F2 is linked to the FVIII protein by a linker. In some embodiments, FI and/or F2 comprises, consisting essentially of, or consisting of a hinge region. Additional non-limiting examples of the Fc regions or the FcRn binding partners are described elsewhere herein.
In certain embodiments, a chimeric protein of the invention comprises two polypeptide chains, a first polypeptide chain comprising, consisting essentially of, or consisting of a VWF fragment comprising a D' domain and a D3 domain, an XTEN sequence, a first Ig constant region or a portion thereof (e.g., a first Fc region), and an optional linker between the VWF fragment and the XTEN sequence or the XTEN sequence or the first Ig constant region or a portion thereof and a second polypeptide chain comprising, consisting essentially of, or consisting of a FVIII protein and a second Ig constant region or a portion thereof (e.g., a second Fc region). The linker between the VWF fragment and the first Ig constant region or a portion thereof can be a cleavable linker, e.g., a thrombin cleavable linker, which can be cleaved at the site of coagulation. In some embodiments, the first polypeptide chain and the second polypeptide chain are associated with each other. The association between the first chain and the second chain prevents replacement of the first chain comprising the VWF fragment with endogenous VWF in vivo. In one embodiment, the association between the first chain and the second chain can be a covalent bond. In a particular embodiment, the covalent bond is a disulfide bond. In some embodiments, the FVIII protein in the second chain further comprises one or more XTEN sequences linked to the C-terminus or
-482018203206 08 May 2018 [0116] [0117]
N-terminus of the FVIII protein or inserted immediately downstream of one or more amino acids (e.g., at least one insertion site disclosed herein) in the FVIII protein. Non-limiting examples of the insertion sites are described elsewhere herein.
In other embodiments, a chimeric protein of the invention comprises three polypeptide chains, wherein a first polypeptide chain comprises, consists essentially of, or consists of a heavy chain of a FVIII protein, a second polypeptide chain comprises, consists essentially of, or consists of a light chain of a FVIII protein fused to a first Ig constant region or a portion thereof (e.g., a first Fc region), and a third polypeptide chain comprises, consists essentially of, or consists of a VWF fragment comprising a D' domain and a D3 domain, an XTEN sequence, a second Ig constant region or a portion thereof (e.g., a second Fc region), and an optional linker between the XTEN sequence and the second Ig constant region or a portion thereof or the VWF fragment and the XTEN sequence. The linker in the third chain can be a cleavable linker, which is cleaved at the site of coagulation, e.g., a thrombin cleavage site. In some embodiments, the heavy chain FVIII or the light chain FVIII is linked to one or more XTEN sequences, which can be linked to the N-terminus, the C-terminus, or inserted within one or more insertion sites within the FVIII sequence. Non-limiting examples of the insertion sites are disclosed elsewhere herein.
In yet other embodiments, a chimeric protein of the invention comprises two polypeptide chains, a first polypeptide chain comprising, consisting essentially of, or consisting of a heavy chain of a FVIII protein and a second polypeptide chain comprising, consisting essentially of, or consisting of a light chain of a FVIII protein, a first Ig constant region or a portion thereof (e.g., a first Fc region), a first linker (e.g., a processable linker, which contains one or more protease cleavage sites comprising one or more intracellular processing sites), a VWF fragment, a second linker (e.g., a thrombin cleavable linker), an XTEN sequence, and a second Ig constant region or a portion thereof (e.g., a second Fc region), wherein the light chain of the FVIII protein is linked to the first Ig constant region or a portion thereof (e.g., the first Fc region), which is further linked to the VWF fragment by the first linker, and wherein the VWF fragment is linked to the XTEN sequence, which is further linked to the second Ig constant
-492018203206 08 May 2018 [0118] [0119] region or a portion thereof by the second linker. In certain embodiments, the first linker is a processable linker, and the second linker is a cleavable linker. Upon expression, the chimeric protein can be processed by an intracellular processing enzyme, which cleaves the processable linker, and thus the chimeric protein can comprise, consists essentially of, or consists of three polypeptide chains. In addition, the VWF fragment can be cleaved off at the site of coagulation due to the cleavable linker.
In certain embodiments, a chimeric protein of the invention comprises one polypeptide chain, which comprises a single chain FVIII protein, a first Ig constant region or a portion thereof (e.g., a first Fc region), a first linker (e.g., a processable linker), a VWF fragment, an XTEN sequence, a second linker (e.g., a thrombin cleavable linker), and a second Ig constant region or a portion thereof (e.g., a second Fc region), wherein the single chain FVIII protein is linked to the first Ig constant region or a portion thereof, which is also linked to the VWF fragment by the first linker, and the VWF fragment is linked to the XTEN sequence, which is further linked to the second Ig constant region or a portion thereof. In one embodiment, the VWF fragment and the XTEN sequence are linked by the second linker. In another embodiment, the XTEN sequence and the second Ig constant region or a portion thereof are linked by the second linker. In other embodiments, the second chain further comprises a third linker. The single polypeptide chain can thus comprise the VWF fragment linked to the XTEN sequence by the second linker and the XTEN linked to the second Ig constant region or a portion thereof by the third linker. The second linker and the third linker can be identical or different. In one embodiment, the first linker is a processable linker. In another embodiment, the second linker or the third linker is a cleavable linker comprising one or two cleavable sites. In a specific embodiment, the second linker is a thrombin cleavable linker. The linkers useful in the invention are described elsewhere herein.
(2) FVIII, XTEN, and Fc
A chimeric protein of the invention also comprises (i) a FVIII protein, (ii) an XTEN sequence (a first half-life extender), and (iii) an Ig constant region or a portion thereof (a second half-life extender), in which the XTEN sequence is linked to the FVIII protein by an optional linker and the Ig constant region or a
-502018203206 08 May 2018 [0120] [0121] portion thereof by an additional optional linker. The XTEN sequence and the Ig constant region or a portion thereof can be used together to extend half-life of the FVIII protein. In one embodiment, the chimeric protein is a monomer. In another embodiment, the chimeric protein is a dimer (a homodimer or a heterodimer).
The present invention is also directed to a chimeric protein comprising (i) a FVIII protein, (ii) an XTEN sequence, (iii) an Ig constant region or a portion thereof (i.e., a first Ig constant region or a portion thereof, F, or FI), and (iv) an additional Ig constant region or a portion thereof (i.e., a second Ig constant region or a portion thereof or F2). In one embodiment, the XTEN sequence is linked to the FVIII protein at the C-terminus or the N-terminus or inserted immediately downstream of one or more amino acids in the FVIII protein (e.g., one or more XTEN insertion sites), the FVIII protein is linked to the first Ig constant region or a portion thereof, and the first Ig constant region or a portion thereof and the second Ig constant region or a portion thereof are associated with or linked to each other by an optional linker. In certain aspects, the chimeric protein is a monomer-dimer hybrid, which comprises a first polypeptide chain and a second polypeptide chain, wherein the first polypeptide chain comprises a FVIII protein, an XTEN sequence, and a first Ig constant region or a portion thereof, and the second polypeptide chain comprises, consists essentially of, or consists of a second Ig constant region or a portion thereof without the FVIII protein and wherein the first chain and the second chain are associated with each other. The association between the Ig constant region or a portion thereof (e.g., the first Fc region) and the additional Ig constant region or a portion thereof (e.g., a second Fc region) is a chemical association or a physical association. In certain embodiments, the chemical association is a covalent bond. In other embodiments, the chemical association is a non-covalent interaction, e.g., an ionic interaction, a hydrophobic interaction, a hydrophilic interaction, a Van der Waals interaction, or a hydrogen bond. In other embodiments, the association is a non-peptide covalent bond. In still other embodiments, the association is a peptide bond.
In other aspects, the chimeric protein is a single polypeptide chain comprising a FVIII protein, an XTEN sequence, a first Ig constant region or a portion thereof, a linker, e.g., a processable linker, and a second Ig constant region
-51 2018203206 08 May 2018 [0122] [0123] [0124] [0125] or a portion thereof, wherein the single polypeptide chain is processed after expression by an intracellular enzyme and becomes two polypeptide chains.
In one embodiment, the lg constant region or a portion thereof (sometimes indicated herein by F or FI) linked to the FVIII protein can extend the half-life of the FVIII protein together with the XTEN sequence. In another embodiment, the lg constant region or a portion thereof (F or FI) is an Fc region or an FcRn binding partner described elsewhere herein.
In other embodiments, the additional lg constant region or a portion thereof (sometimes indicated herein by F2 or a second lg constant region or a portion thereof) associated with or linked to the first lg constant region or a portion thereof can also extend the half-life of the FVIII protein. In other embodiments, the second lg constant region or a portion thereof (F2) together with the first lg constant region or a portion thereof and the XTEN sequence can extend the half-life of the FVIII protein. The additional lg constant region or a portion thereof can be an Fc region or an FcRn binding partner described elsewhere herein.
In certain embodiments, the second lg constant region or a portion thereof associated with the first lg constant region or a portion thereof is further linked to a VWF fragment described elsewhere herein and an optional XTEN sequence.
In some embodiments, either or both of the lg constant region or a portion thereof (F or FI or a first lg constant region or a portion thereof) and an additional lg constant region or a portion thereof (i.e., a second lg constant region or a portion thereof or F2) (indicated in this paragraph as the lg constant regions or portion thereof') can include, but not limited to, a CHI domain, a CH2 domain, a CH3 domain, a CH4 domain, a hinge domain, any functional fragments, derivatives, or analogs thereof or two or more combinations thereof. In one embodiment, the lg constant region or a portion thereof comprises at least one CHI domain, at least one CH2 domain, at least one CH3 domain, at least one CH4 domain, or the functional fragments, derivatives, or analogues thereof. In another embodiment, the lg constant region or a portion thereof comprises at least one hinge domain or portion thereof and at least one CH2 domain or portion thereof (e.g., in the hinge-CH2 orientation). In other embodiments, the lg constant domain or portion thereof comprises at least one CH2 domain or portion thereof
-522018203206 08 May 2018 [0126] [0127] and at least one CH3 domain or portion thereof (e.g., in the CF2-CH3 orientation).
Examples of the combination include, but are not limited to, a CH2 domain, a
CH3 domain, and a hinge domain, which are also known as an Fc region (or Fc domain), e.g., first Fc region. Additional examples of the lg constant regions or portion thereof are described elsewhere herein.
The chimeric protein of the invention can have an extended half-life of the FVIII protein compared to wild-type FVIII. In one embodiment, the half-life of the FVIII protein is extended at least about 1.5 times, at least about 2 times, at least about 2.5 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, or at least about 12 times longer than the half-life of wild type FVIII. In another embodiment, the half-life of the FVIII protein is at least about 10 hours, at least about 11 hours, at least about 12 hours, at least about 13 hours, at least about 14 hours, at least about 15 hours, at least about 16 hours, at least about 17 hours, at least about 18 hours, at least about 19 hours, at least about 20 hours, at least about 21 hours, at least about 22 hours, at least about 23 hours, at least about 24 hours, at least about 36 hours, at least about 48 hours, at least about 60 hours, at least about 72 hours, at least about 84 hours, at least about 96 hours, or at least about 108 hours.
(3) FVIII, XTEN, and VWF
In one aspect, a chimeric protein of the present invention comprises (i) a FVIII protein, (ii) an XTEN sequence, and (iii) a VWF fragment comprising a D' domain and a D3 domain of VWF, wherein the FVIII protein is linked to the XTEN sequence and wherein the FVIII protein is associated with or linked to the VWF fragment. In one embodiment, the VWF fragment of the chimeric protein described herein is not capable of binding to a VWF clearance receptor. In another embodiment, the VWF fragment is capable of protecting the FVIII protein from one or more protease cleavages, protecting the FVIII protein from activation, stabilizing the heavy chain and/or the light chain of the FVIII protein, or preventing clearance of the FVIII protein by one or more scavenger receptors. In other embodiments, the VWF fragment prevents or inhibits binding of endogenous VWF to the VWF binding site in the FVIII protein. The VWF binding site can be located in the A3 domain or the C2 domain of the FVIII protein or both the A3
-53 2018203206 08 May 2018 [0128] [0129] domain and the C2 domain. In a specific embodiment, the VWF binding site comprises the amino acid sequence corresponding to amino acids 1669 to 1689 and/or amino acids 2303 to 2332 of SEQ ID NO: 2.
In another aspect, a chimeric protein comprises (i) a FVIII protein, (ii) an XTEN sequence, (iii) a VWF fragment, which comprises a D' domain and a D3 domain of VWF, and (iv) an Ig constant region or a portion thereof, wherein the XTEN sequence is linked to the FVIII protein at the C-terminus or the N-terminus or inserted immediately downstream of one or more amino acids (e.g., one or more XTEN insertion sites disclosed herein) in the FVIII protein, the VWF fragment is linked to or associated with the FVIII protein or the XTEN sequence, and the Ig constant region or a portion thereof is linked to the FVIII protein, the XTEN sequence, the VWF fragment, or any combinations thereof. The Ig constant region or a portion thereof useful for chimeric proteins of the invention is described elsewhere herein. In one embodiment, the Ig constant region or a portion thereof is capable of extending the half-life of a FVIII protein. In another embodiment, the Ig constant region or a portion thereof comprises a first Fc region or a first FcRn binding partner. In yet other embodiments, the Ig constant region or a portion thereof is linked to the FVIII protein by an optional linker. In still other embodiments, the linker comprises a cleavable linker. The chimeric protein can be a single polypeptide chain, i.e., a monomer (/.e., a single chain), containing (i) , (ii), (iii), and (iv) or two chains containing a first chain comprising (i) and (ii) and a second chain comprising (iii) and (iv). In other aspects, the chimeric protein is a dimer (e.g., a homodimer or a heterodimer). In one embodiment, the chimeric protein comprises two chains, each comprising (i), (ii), (iii), and (iv).
In certain embodiments, a chimeric protein comprises (i) a FVIII protein, (ii) an XTEN sequence, (iii) a VWF fragment, which comprises a D' domain and a D3 domain of VWF, (iv) an Ig constant region or a portion thereof (sometimes also indicated as F, a first Ig constant region or a portion thereof', or F2), and (v) an additional Ig constant region or a portion thereof (sometimes also indicated as F2 or a second Ig constant region or a portion thereof'), wherein (1) the FVIII protein is linked to the XTEN sequence at the C-terminus or N-terminus of the FVIII protein or inserted immediately downstream of one or more amino acids (e.g., one or more XTEN insertion sites disclosed herein) in the FVIII protein, (2)
-542018203206 08 May 2018 [0130] either the XTEN sequence or the FVIII protein is linked to the Ig constant region or a portion thereof, (3) the VWF fragment is linked to the second Ig constant region or a portion thereof, and (4) the Ig constant region or a portion thereof is associated with the second Ig constant region or a portion thereof. In one embodiment, the Ig constant region or a portion thereof linked to the FVII protein or the XTEN sequence is further linked to the VWF fragment by a linker, e.g., a processable linker. In another embodiment, the additional Ig constant region or a portion thereof useful for chimeric proteins of the invention can further be linked to the FVIII protein or the Ig constant region or a portion thereof by an optional linker, e.g., a processable linker. In some embodiments, a pair of the Ig constant region or a portion thereof and the additional Ig constant region or a portion thereof, each of which are linked to the VWF fragment and the FVIII protein, provides a bond stronger than the non-covalent bond between the FVIII protein and the VWF fragment, i.e., a covalent bond, e.g., a disulfide bond, thereby preventing endogenous VWF from replacing the VWF fragment in vivo. In other embodiments, either or both of the Ig constant region or a portion thereof and the additional Ig constant region or a portion thereof are capable of extending a halflife of the FVIII protein or the VWF fragment. In other embodiments, the additional Ig constant region or a portion thereof comprises a second Fc region or an FcRn binding partner. The Ig constant region or a portion thereof and the additional Ig constant region or a portion thereof in the chimeric proteins are identical or different.
In certain embodiments, the Ig constant region or a portion thereof and the additional Ig constant region or a portion thereof are associated by a chemical association or a physical association. In one embodiment, the chemical association, i.e., (:), is at least one non-peptide bond. In certain embodiments, the chemical association, i.e., (:), is a covalent bond. In other embodiments, the chemical association, i.e., (:), is a non-covalent interaction, e.g., an ionic interaction, a hydrophobic interaction, a hydrophilic interaction, a Van der Waals interaction, or a hydrogen bond. In other embodiments, (:) is a non-peptide covalent bond. In still other embodiments, (:) is a peptide bond. In yet other embodiments, (:) represents a physical association between two sequences, wherein a portion of a first sequence is in close proximity to a second sequence
-55 2018203206 08 May 2018 [0131] such that the first sequence shields or blocks a portion of the second sequence from interacting with another moiety. In some embodiments, the association between the Ig constant region or a portion thereof and the additional Ig constant region or a portion thereof can be a covalent bond, e.g., a disulfide bond, which prevents replacement the VWF fragment or the polypeptide containing the VWF fragment with endogenous VWF. Therefore, preventing interaction between the FVIII protein and endogenous VWF reduces or eliminates this half-life limiting factor for the FVIII protein, and thus the half-life of the FVIII protein is extended compared to a FVIII protein without the VWF protein or wild-type FVIII.
In other aspects, a chimeric protein comprises a formula comprising:
(1) F VIII(X 1 )-L 1 -F1: V-L2-X2-L3 -F2;
(2) FVIII(X1)-L1-F1 :F2-L3-X2-L2-V;
(3) F1 -L1 -FVIII(X 1): V-L2-X2-L3 -F2;
(4) F1 -L1 -FVIII(X 1) :F2-L3 -X2-L2-V;
(5) FVIII(X1)-L1 -F1-L4-V-L2-X2-L3-F2;
(6) FVIII(X1 )-L 1 -F1-L4-F2-L3-X2-L2-V;
(7) F1-L1-FVIII(X1)-L4-V-L2-X2-L3-F2, or (8) F1-L1-FVIII(X1)-L4- F2-L3-X2-L2-V, wherein FVIII(Xl) comprises a FVIII protein and one or more XTEN sequences, wherein the one or more XTEN sequence are linked to the N-terminus or Cterminus of the FVIII protein or inserted immediately downstream of one or more amino acids (e.g., one or more XTEN insertion sites disclosed herein) in the FVIII protein;
each of LI, L2, or L3 comprises an optional linker, e.g., a cleavable linker;
L4 is a linker, e.g., a processable linker;
X2 comprises one or more optional XTEN sequences;
FI comprises an Ig constant region or a portion thereof;
F2 comprises an optional additional Ig constant region or a portion thereof, and V comprises a VWF fragment;
-562018203206 08 May 2018 [0132] (-) is a peptide bond or one or more amino acids; and (:) comprises a chemical association or a physical association. In one embodiment, (:) represents a chemical association, e.g., at least one non-peptide bond. In another embodiment, the chemical association, i.e., (:) is a covalent bond. In other embodiments, the chemical association, i.e., (:) is a non-covalent interaction, e.g., an ionic interaction, a hydrophobic interaction, a hydrophilic interaction, a Van der Waals interaction, or a hydrogen bond. In other embodiments, (:) is a nonpeptide covalent bond. In still other embodiments, (:) is a peptide bond. In yet other embodiments, (:) represents a physical association between two sequences, wherein a portion of a first sequence is in close proximity to a second sequence such that the first sequence shields or blocks a portion of the second sequence from interacting with another moiety, and further that this physical association is maintained without allowing the second sequence to interact with other moieties. The orientation of the polypeptide formulas herein is listed from N-terminus (left) to C-terminus (right). For example, formula V-X-FVIII means formula NH2-VX-FVIII -COOH. In one embodiment, the formulas described herein can comprise any additional sequences between the two moieties. For example, formula V-XFVIII can further comprise any sequences at the N-terminus of V between V and X, between X and FVIII, or at the C-terminus of FVIII unless otherwise specified. In another embodiment, the hyphen (-) indicates a peptide bond.
In one aspect, the chimeric protein comprises two polypeptide chains, (A) a first chain comprising (i) a single chain FVIII protein (ii) an XTEN sequence, and (iii) a first Ig constant region or a portion thereof, e.g., a first Fc region or FcRn binding partner, wherein the XTEN sequence is linked to the FVIII protein at the N-terminus or C-terminus or inserted immediately downstream of one or more amino acids of the FVIII protein (e.g., one or more XTEN insertion sites disclosed herein) and the first Ig constant region or a portion thereof is linked to the XTEN sequence when the XTEN sequence is linked to the FVIII protein at the N-terminus or the C-terminus or the FVIII protein when the XTEN sequence is inserted within the FVIII protein, and (B) a second chain comprising (iv) a VWF fragment comprising a D' domain and a D3 domain, (v) a linker, and (vi) a second Ig constant region or a portion thereof, e.g., a second Fc region or a second FcRn binding partner, wherein the VWF fragment is linked to the linker, e.g., a
-572018203206 08 May 2018 [0133] [0134] cleavable linker, which is further linked to the second Ig constant region or a portion thereof, and wherein the first polypeptide chain and the second polypeptide chain are associated with each other, e.g., a covalent bond, e.g., a disulfide bond. In one embodiment, the linker is a cleavable linker described elsewhere herein, e.g., a thrombin cleavable linker. In some embodiments, the second chain comprises one or more XTEN sequences between (iv) and (v) or (v) and (vi).
In other aspects, the chimeric protein comprises one polypeptide chain comprising (i) a single chain FVIII protein (ii) an XTEN sequence, (iii) a first Ig constant region or a portion thereof, e.g., a first Fc region or a first FcRn binding partner, (iv) a first linker, (v) a VWF fragment comprising a D' domain and a D3 domain, (vi) a second linker, and (vii) a second Ig constant region or a portion thereof, e.g., a second Fc region or a second FcRn binding partner, wherein (i) to (vii) are linked in the order or in any orders. In one embodiment, the first linker is a processable linker, which can be intracellularly processed or cleaved after expression and makes the single polypeptide chain into two polypeptide chains.
In another embodiment, the second linker is a cleavable linker described herein, e.g., a thrombin cleavable linker. The XTEN sequence used herein can be linked to the FVIII protein by an optional linker at the N-terminus or the C terminus of the FVIII protein or inserted immediately downstream of one or more amino acids (e.g., one or more XTEN insertion sites) in the FVIII protein.
In certain aspects, a chimeric protein comprises three polypeptide chains, (A) a first polypeptide chain comprising (i) a heavy chain of a FVIII protein and (ii) an XTEN sequence, which are linked to each other and (B) a second polypeptide chain comprising (iii) a light chain of the FVIII protein and (iv) a first Ig constant region or a portion thereof, e.g., a first Fc region or a first FcRn binding partner, which are linked to each other, and (C) a third polypeptide chain comprising (v) a VWF fragment comprising a D' domain and a D3 domain, (vi) a linker, and (vii) a second Ig constant region or a portion thereof, e.g., a second Fc region or a second FcRn binding partner, wherein the second chain is associated with the first chain and the third chain. In one embodiment, the association between the first chain and the second chain is a chemical association or a physical association. For example, the association between the first chain and the
-582018203206 08 May 2018 [0135] [0136] second chain can be a metal bond. In another embodiment, the association between the second chain and the third chain is also a chemical association or a physical association, e.g., a covalent bond or a non-covalent bond. In certain embodiments, the association between the second chain and the third chain is through the two Ig constant regions or a portion thereof and is a disulfide bond. The bonding between the second chain and the third chain prevents or inhibits binding of the FVIII protein with endogenous VWF, thus preventing the FVIII protein being cleared by the VWF clearance pathway. In some embodiments, the linker is a processable linker, which is intracellularly cleaved after expression in a host cell. The XTEN sequence used herein is linked to the FVIII protein by an optional linker at the N-terminus or C terminus of the FVIII protein or inserted immediately downstream of one or more amino acids (e.g., one or more XTEN insertion sites) in the FVIII protein.
In certain embodiments, the VWF fragment is directly linked to the FVIII protein, which comprises one or more XTENs, by a peptide bond or a linker. As one way of linking the VWF fragment and the FVIII protein, in which one or more XTENs are inserted or linked, through a direct link (e.g. a peptide bond) or a linker, an enzymatic ligation (e.g., sortase) can be employed. For example, sortase refers to a group of prokaryotic enzymes that modify surface proteins by recognizing and cleaving a carboxyl-terminal sorting signal. For most substrates of sortase enzymes, the recognition signal consists of the motif LPXTG (Leu-Proany-Thr-Gly (SEQ ID NO: 51), then a highly hydrophobic transmembrane sequence, then a cluster of basic residues such as arginine. Cleavage occurs between the Thr and Gly, with transient attachment through the Thr residue to the active site Cys residue of a ligation partner, followed by transpeptidation that attaches the protein covalently to the cell wall. In some embodiments, the ligation partner contains Gly(n). In other embodiments, the chimeric protein further comprises a sortase recognition motif. In some embodiments, the VWF fragment is attached to FVIII comprising one or more XTENs inserted within or linked to using sortase mediated in vitro protein ligation.
In one embodiment, a VWF fragment linked to a sortase recognition motif by an optional linker can be fused to a FVIII protein linked to Gly(n) by a sortase, wherein n can be any integer and wherein one or more XTENs are inserted within
-592018203206 08 May 2018 [0137] or linked to the FVIII protein. A ligation construct comprises the VWF fragment (N-terminal portion of the construct) and the FVIII protein, in which one or more XTENs are inserted or linked (C-terminal portion of the construct), wherein the sortase recognition motif is inserted in between. Another ligation construct comprises the VWF fragment (N-terminal portion of the construct, the linker, the sortase recognition motif, and the FVIII protein, in which one or more XTENs are inserted or linked (C-terminal portion of the construct). In another embodiment, a FVIII protein linked to a sortase recognition motif by an optional linker can be fused to a VWF fragment linked to Gly(n) by a sortase, wherein n is any integer.
A resulting ligation construct comprises the FVIII protein (N-terminal portion of the construct), in which one or more XTENs are inserted or linked, and the VWF fragment (C-terminal portion of the construct), wherein the sortase recognition motif is inserted in between. Another resulting ligation construct comprises the FVIII protein (N-terminal portion of the construct), in which one or more XTENs are inserted or linked, the linker, the sortase recognition motif, and the VWF fragment (C-terminal portion of the construct). In other embodiments, a VWF fragment linked to a sortase recognition motif by a first optional linker can be fused to a heterologous moiety, e.g., an immunoglobulin constant region or a portion thereof, e.g., an Fc region, linked to a thrombin cleavage site by a second optional linker. A resulting construct can comprise the VWF fragment (Nterminal portion), the first linker, the sortase recognition motif, the protease cleavage site, the second optional linker, and the heterologous moiety.
In some embodiments, the VWF fragment is associated with the FVIII protein. The association between the VWF fragment and the FVIII protein can be a chemical association or a physical association. The chemical association can be a non-covalent interaction, e.g., an ionic interaction, a hydrophobic interaction, a hydrophilic interaction, a Van der Waals interaction, or a hydrogen bond. In yet other embodiments, the association between the FVIII protein and the VWF fragment is a physical association between two sequences, e.g., due to an additional association between the sequence having the FVIII protein and the sequence having the VWF fragment, wherein a portion of a first sequence is in close proximity to a second sequence such that the first sequence shields or blocks a portion of the second sequence from interacting with another moiety.
-602018203206 08 May 2018 [0138] [0139]
As a result of preventing or inhibiting endogenous VWF interaction with the FVIII protein by the VWF fragment, the chimeric protein described herein have an extended half-life compared to wild-type FVIII or the corresponding chimeric protein without the VWF fragment. In one embodiment, the half-life of the FVIII protein is extended at least about 1.5 times, at least about 2 times, at least about 2.5 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, or at least about 12 times longer than a FVIII protein without the VWF fragment. In another embodiment, the half-life of the FVIII protein is at least about 10 hours, at least about 11 hours, at least about 12 hours, at least about 13 hours, at least about 14 hours, at least about 15 hours, at least about 16 hours, at least about 17 hours, at least about 18 hours, at least about 19 hours, at least about 20 hours, at least about 21 hours, at least about 22 hours, at least about 23 hours, at least about 24 hours, at least about 36 hours, at least about 48 hours, at least about 60 hours, at least about 72 hours, at least about 84 hours, at least about 96 hours, or at least about 108 hours. In a particular embodiment, the half-life of the FVIII protein is extended at least 10 hours, at least about 11 hours, at least about 12 hours, at least about 13 hours, at least about 14 hours, at least about 15 hours, at least about 16 hours, at least about 17 hours, at least about 18 hours, at least about 19 hours, at least about 20 hours, at least about 21 hours, at least about 22 hours, at least about 23 hours, at least about 24 hours, at least about 25 hours, at least about 26 hours, or at least about 27 hours in HemA mice.
A) Von Willebrand Factor (VWF) Fragments
VWF (also known as F8VWF) is a large multimeric glycoprotein present in blood plasma and produced constitutively in endothelium (in the Weibel-Palade bodies), megakaryocytes (α-granules of platelets), and subendothelian connective tissue. The basic VWF monomer is a 2813 amino acid protein. Every monomer contains a number of specific domains with a specific function, the D'/D3 domain (which binds to Factor VIII), the Al domain (which binds to platelet GPIbreceptor, heparin, and/or possibly collagen), the A3 domain (which binds to collagen), the Cl domain (in which the RGD domain binds to platelet integrin allbp3 when this is activated), and the cysteine knot domain at the C-terminal
-61 2018203206 08 May 2018 end of the protein (which VWF shares with platelet-derived growth factor (PDGF), transforming growth factor-β (TGF3) and β-human chorionic gonadotropin (βΗΟΟ).
[0140] The term a VWF fragment as used herein includes, but is not limited to, functional VWF fragments comprising a D' domain and a D3 domain, which are capable of inhibiting binding of endogenous VWF to FVIII. In one embodiment, the VWF fragment binds to the FVIII protein. In another embodiment, the VWF fragment blocks the VWF binding site on the FVIII protein, thereby inhibiting interaction of the FVIII protein with endogenous VWF. The VWF fragments include derivatives, variants, mutants, or analogues that retain these activities of VWF.
[0141] The 2813 monomer amino acid sequence for human VWF is reported as
Accession Number NP 000543.2_in Genbank. The nucleotide sequence encoding the human VWF is reported as Accession Number_NM_000552.3_ in
Genbank. The nucleotide sequence of human VWF is designated as SEQ ID NO: 1. SEQ ID NO: 2 is the amino acid sequence encoded by SEQ ID NO: 1. Each domain of VWF is listed in Table 1.
TABLE 1. VWF Sequences
VWF domains Amino acid Sequence
VWF Signal Peptide 1 MIPARFAGVL LALALILPGT LC
(Amino acids 1 to 22 22
of SEQ ID NO :2)
VWF D1D2 region 23 AEGTRGRS
STARCSLFGS DFVNTFDGSM
(Amino acids 23 to 51 YSFAGYCSYL LAGGCQKRSF SIIGDFQNGK
763 of SEQ ID NO: 2) RVSLSVYLGE FFDIHLFVNG
101 TVTQGDQRVS MPYASKGLYL ETEAGYYKLS
GEAYGFVARI DGSGNFQVLL
151 SDRYFNKTCG LCGNFNIFAE DDFMTQEGTL
TSDPYDFANS WALSSGEQWC
201 ERASPPSSSC NISSGEMQKG LWEQCQLLKS
TSVFARCHPL VDPEPFVALC
251 EKTLCECAGG LECACPALLE YARTCAQEGM
VLYGWTDHSA CSPVCPAGME
301 YRQCVSPCAR TCQSLHINEM CQERCVDGCS
CPEGQLLDEG LCVESTECPC
351 VHSGKRYPPG TSLSRDCNTC ICRNSQWICS
NEECPGECLV TGQSHFKSFD
401 NRYFTFSGIC QYLLARDCQD HSFSIVIETV
-622018203206 08 May 2018
QCADDRDAVC TRSVTVRLPG 4 51 LHNSLVKLKH GAGVAMDGQD
RIQHTVTASV RLSYGEDLQM 501 DWDGRGRLLV KLSPVYAGKT
QGDDFLTPSG LAEPRVEDFG 551 NAWKLHGDCQ DLQKQHSDPC ALNPRMTRFS
EEACAVLTSP TFEACHRAVS 601 PLPYLRNCRY DVCSCSDGRE CLCGALASYA
AACAGRGVRV AWREPGRCEL
IQLPLLKGDL
CGLCGNYNGN
6 51 701 751 7 63 NCPKGQVYLQ EACLEGCFCP CVPKAQCPCY CEDGFMHCTM AVLSSPLSHR CGTPCNLTCR PGLYMDERGD YDGEIFQPED SGVPGSLLPD SLSYPDEECN IFSDHHTMCY SKR
VWF D' Domain 7 64 SLSCRPP MVKLVCPADN
LRAEGLECTK
TCONYDLECM
SOI SMGCVSGCLC PPGMVRHENR CVALERCPCF
HQGKEYAPGE TVKIGCNTCV
S 51 CRDRKWNCTD HVCDAT
8 6 6
VWF D3 Domain 867 CSTI GMAHYLTFDG
LKYLFPGECQ YVLVQDYCGS
901 NPGTFRILVG NKGCSHPSVK CKKRVTILVE
GGEIELFDGE VNVKRPMKDE
951 THFEVVESGR YIILLLGKAL SVVWDRHLSI
SVVLKQTYQE KVCGLCGNFD
10 01 GIQNNDLTSS NLQVEEDPVD FGNSWKVSSQ
CADTRKVPLD SSPATCHNNI
10 51 MKQTMVDSSC RILTSDVFQD CNKLVDPEPY
LDVCIYDTCS CESIGDCACF
1101 CDTIAAYAHV CAQHGKVVTW RTATLCPQSC
EERNLRENGY ECEWRYNSCA
1151 PACQVTCQHP EPLACPVQCV EGCHAHCPPG
KILDELLQTC VDPEDCPVCE
12 01 VAGRRFASGK KVTLNPSDPE HCQICHCDVV
1240 NLTCEACQEP
VWF Al Domain 1241 GGLVVPPTDA
1251 PVSPTTLYVE DISEPPLHDF YCSRLLDLVF
LLDGSSRLSE AEFEVLKAFV
13 01 VDMMERLRIS QKWVRVAVVE YHDGSHAYIG
LKDRKRPSEL RRIASQVKYA
13 51 GSQVASTSEV LKYTLFQIFS KIDRPEASRI
ALLLMASQEP QRMSRNFVRY
1401 VQGLKKKKVI VIPVGIGPHA NLKQIRLIEK
-63 2018203206 08 May 2018
QAPENKAFVL SSVDELEQQR
14 51 DEIVSYLCDL APEAPPPTLP PDMAQVTVG
1479
14 8 0 P
GLLGVSTLGP KRNSMVLDVA
1501 FVLEGSDKIG EADFNRSKEF MEEVIQRMDV
GQDSIHVTVL QYSYMVTVEY
1551 PFSEAQSKGD ILQRVREIRY QGGNRTNTGL
ALRYLSDHSF LVSQGDREQA
1600
1601 PNLVYMVTGN PASDEIKRLP GDIQVVPIGV
GPNANVQELE RIGWPNAPIL
1651 IQDFETLPRE APDLVLQRCC SGEGLQIPTL
SPAPDCSQPL DVILLLDGSS
17 01 SFPASYFDEM KSFAKAFISK ANIGPRLTQV
SVLQYGSITT IDVPWNVVPE
1Ί 51 KAHLLSLVDV MQREGGPSQI GDALGFAVRY
LTSEMHGARP GASKAVVILV
18 01 TDVSVDSVDA AADAARSNRV TVFPIGIGDR
YDAAQLRILA GPAGDSNVVK
1851 LQRIEDLPTM VTLGNSFLHK LCSGFVRICM
DEDGNEKRPG DVWTLPDQCH
1901 TVTCQPDGQT LLKSHRVNCD RGLRPSCPNS
QSPVKVEETC GCRWTCPCVC
1951 TGSSTRHIVT FDGQNFKLTG SCSYVLFQNK
EQDLEVILHN GACSPGARQG
2001 CMKSIEVKHS ALSVEXHSDM EVTVNGRLVS
VPYVGGNMEV NVYGAIMHEV
2 0 51 RFNHLGHIFT FTPQNNEFQL QLSPKTFASK
TYGLCGICDE NGANDFMLRD
2101 GTVTTDWKTL VQEWTVQRPG QTCQPILEEQ
CLVPDSSHCQ VLLLPLFAEC
2151 HKVLAPATFY AICQQDSCHQ EQVCEVIASY
AHLCRTNGVC VDWRTPDFCA
22 01 MSCPPSLVYN HCEHGCPRHC DGNVSSCGDH
PSEGCFCPPD KVMLEGSCVP
2251 EEACTQCIGE DGVQHQFLEA WVPDHQPCQI
CTCLSGRKVN CTTQPCPTAK
2301 APTCGLCEVA RLRQNADQCC PEYECVCDPV
SCDLPPVPHC ERGLQPTLTN
2 3 51 PGECRPNFTC ACRKEECKRV SPPSCPPHRL
PTLRKTQCCD EYECACNCVN
2401 STVSCPLGYL ASTATNDCGC TTTTCLPDKV
CVHRSTIYPV GQFWEEGCDV
2451 CTCTDMEDAV MGLRVAQCSQ KPCEDSCRSG
FTYVLHEGEC CGRCLPSACE
2501 VVTGSPRGDS QSSWKSVGSQ WASPENPCLI
NECVRVKEEV FIQQRNVSCP
2551 QLEVPVCPSG FQLSCKTSAC CPSCRCERME
ACMLNGTVIG PGKTVMIDVC
-642018203206 08 May 2018
2601 TTCRCMVQVG VISGFKLECR KTTCNPCPLG YKEENNTGEC CGRCLPTACT 2651 IQLRGGQIMT LKRDETLQDG CDTHFCKVNE RGEYFWEKRV TGCPPFDEHK 2701 CLAEGGKIMK IPGTCCDTCE EPECNDITAR LQYVKVGSCK SEVEVDIHYC 2751 QGKCASKAMY SIDINDVQDQ CSCCSPTRTE PMQVALHCTN GSVVYHEVLN 2801 AMECKCSPRK CSK
Nucleotide Sequence (SEQ ID NO: 1)
Full-length VWF 1 ATGATTCCTG CCAGATTTGC CGGGGTGCTG CTTGCTCTGG CCCTCATTTT 51 GCCAGGGACC CTTTGTGCAG AAGGAACTCG CGGCAGGTCA TCCACGGCCC 101 GATGCAGCCT TTTCGGAAGT GACTTCGTCA ACACCTTTGA TGGGAGCATG 151 TACAGCTTTG CGGGATACTG CAGTTACCTC CTGGCAGGGG GCTGCCAGAA 201 ACGCTCCTTC TCGATTATTG GGGACTTCCA GAATGGCAAG AGAGTGAGCC 251 TCTCCGTGTA TCTTGGGGAA TTTTTTGACA TCCATTTGTT TGTCAATGGT 301 ACCGTGACAC AGGGGGACCA AAGAGTCTCC ATGCCCTATG CCTCCAAAGG 351 GCTGTATCTA GAAACTGAGG CTGGGTACTA CAAGCTGTCC GGTGAGGCCT 401 ATGGCTTTGT GGCCAGGATC GATGGCAGCG GCAACTTTCA AGTCCTGCTG 4 51 T CAGACAGAT AC T T CAACAA GACCTGCGGG CTGTGTGGCA ACTTTAACAT 501 CTTTGCTGAA GATGACTTTA TGACCCAAGA AGGGACCTTG ACCTCGGACC 551 CTTATGACTT TGCCAACTCA TGGGCTCTGA GCAGTGGAGA ACAGTGGTGT 601 GAACGGGCAT CTCCTCCCAG CAGCTCATGC AACATCTCCT CTGGGGAAAT 651 GCAGAAGGGC CTGTGGGAGC AGTGCCAGCT TCTGAAGAGC ACCTCGGTGT 701 TTGCCCGCTG CCACCCTCTG GTGGACCCCG AGCCTTTTGT GGCCCTGTGT 751 GAGAAGACTT TGTGTGAGTG TGCTGGGGGG CTGGAGTGCG CCTGCCCTGC 801 CCTCCTGGAG TACGCCCGGA CCTGTGCCCA GGAGGGAATG GTGCTGTACG 851 GCTGGACCGA CCACAGCGCG TGCAGCCCAG TGTGCCCTGC TGGTATGGAG 901 TATAGGCAGT GTGTGTCCCC TTGCGCCAGG ACCTGCCAGA GCCTGCACAT 951 CAATGAAATG TGTCAGGAGC
-65 2018203206 08 May 2018
GATGCGTGGA TGGCTGCAGC TGCCCTGAGG 1001 GACAGCTCCT GGATGAAGGC CTCTGCGTGG AGAGCACCGA GTGTCCCTGC 1051 GTGCATTCCG GAAAGCGCTA CCCTCCCGGC ACCTCCCTCT CTCGAGACTG 1101 CAACACCTGC ATTTGCCGAA ACAGCCAGTG GATCTGCAGC AATGAAGAAT 1151 GTCCAGGGGA GTGCCTTGTC ACTGGTCAAT CCCACTTCAA GAGCTTTGAC 1201 AACAGATACT TCACCTTCAG TGGGATCTGC CAGTACCTGC TGGCCCGGGA 1251 TTGCCAGGAC CACTCCTTCT CCATTGTCAT TGAGACTGTC CAGTGTGCTG 1301 ATGACCGCGA CGCTGTGTGC ACCCGCTCCG TCACCGTCCG GCTGCCTGGC 1351 CTGCACAACA GCCTTGTGAA ACTGAAGCAT GGGGCAGGAG TTGCCATGGA 1401 TGGCCAGGAC ATCCAGCTCC CCCTCCTGAA AGGTGACCTC CGCATCCAGC 1451 ATACAGTGAC GGCCTCCGTG CGCCTCAGCT ACGGGGAGGA CCTGCAGATG 1501 GACTGGGATG GCCGCGGGAG GCTGCTGGTG AAGCTGTCCC CCGTCTATGC 1551 CGGGAAGACC TGCGGCCTGT GTGGGAATTA CAATGGCAAC CAGGGCGACG 1601 ACTTCCTTAC CCCCTCTGGG CTGGCRGAGC CCCGGGTGGA GGACTTCGGG 1651 AACGCCTGGA AGCTGCACGG GGACTGCCAG GACCTGCAGA AGCAGCACAG 1701 CGATCCCTGC GCCCTCAACC CGCGCATGAC CAGGTTCTCC GAGGAGGCGT 1751 GCGCGGTCCT GACGTCCCCC ACATTCGAGG CCTGCCATCG TGCCGTCAGC 1801 CCGCTGCCCT ACCTGCGGAA CTGCCGCTAC GACGTGTGCT CCTGCTCGGA 1851 CGGCCGCGAG TGCCTGTGCG GCGCCCTGGC CAGCTATGCC GCGGCCTGCG 1901 CGGGGAGAGG CGTGCGCGTC GCGTGGCGCG AGCCAGGCCG CTGTGAGCTG 1951 AACTGCCCGA AAGGCCAGGT GTACCTGCAG TGCGGGACCC CCTGCAACCT 2001 GACCTGCCGC TCTCTCTCTT ACCCGGATGA GGAATGCAAT GAGGCCTGCC 2051 TGGAGGGCTG CTTCTGCCCC CCAGGGCTCT ACATGGATGA GAGGGGGGAC 2101 TGCGTGCCCA AGGCCCAGTG CCCCTGTTAC TATGACGGTG AGATCTTCCA 2151 GCCAGAAGAC ATCTTCTCAG ACCATCACAC CATGTGCTAC TGTGAGGATG 2201 GCTTCATGCA CTGTACCATG AGTGGAGTCC CCGGAAGCTT GCTGCCTGAC
-662018203206 08 May 2018
2251 GCTGTCCTCA GCAGTCCCCT GTCTCATCGC AGCAAAAGGA GCCTATCCTG 2301 TCGGCCCCCC ATGGTCAAGC TGGTGTGTCC CGCTGACAAC CTGCGGGCTG 2351 AAGGGCTCGA GTGTACCAAA ACGTGCCAGA ACTATGACCT GGAGTGCATG 2401 AGCATGGGCT GTGTCTCTGG CTGCCTCTGC CCCCCGGGCA TGGTCCGGCA 2451 TGAGAACAGA TGTGTGGCCC TGGAAAGGTG TCCCTGCTTC CATCAGGGCA 2501 AGGAGTATGC CCCTGGAGAA ACAGTGAAGA TTGGCTGCAA CACTTGTGTC 2551 TGTCGGGACC GGAAGTGGAA CTGCACAGAC CATGTGTGTG ATGCCACGTG 2601 CTCCACGATC GGCATGGCCC ACTACCTCAC CTTCGACGGG CTCAAATACC 2651 TGTTCCCCGG GGAGTGCCAG TACGTTCTGG TGCAGGATTA CTGCGGCAGT 2701 AACCCTGGGA CCTTTCGGAT CCTAGTGGGG AATAAGGGAT GCAGCCACCC 2751 CTCAGTGAAA TGCAAGAAAC GGGTCACCAT CCTGGTGGAG GGAGGAGAGA 2801 TTGAGCTGTT TGACGGGGAG GTGAATGTGA AGAGGCCCAT GAAGGATGAG 2851 ACTCACTTTG AGGTGGTGGA GTCTGGCCGG TACATCATTC TGCTGCTGGG 2901 CAAAGCCCTC TCCGTGGTCT GGGACCGCCA CCTGAGCATC TCCGTGGTCC 2951 TGAAGCAGAC ATACCAGGAG AAAGTGTGTG GCCTGTGTGG GAATTTTGAT 3001 GGCATCCAGA ACAATGACCT CACCAGCAGC AACCTCCAAG TGGAGGAAGA 3051 CCCTGTGGAC TTTGGGAACT CCTGGAAAGT GAGCTCGCAG TGTGCTGACA 3101 CCAGAAAAGT GCCTCTGGAC TCATCCCCTG CCACCTGCCA TAACAACATC 3151 ATGAAGCAGA CGATGGTGGA TTCCTCCTGT AGAATCCTTA CCAGTGACGT 3201 CTTCCAGGAC TGCAACAAGC TGGTGGACCC CGAGCCATAT CTGGATGTCT 3251 GCATTTACGA CACCTGCTCC TGTGAGTCCA TTGGGGACTG CGCCTGCTTC 3301 TGCGACACCA TTGCTGCCTA TGCCCACGTG TGTGCCCAGC ATGGCAAGGT 3351 GGTGACCTGG AGGACGGCCA CATTGTGCCC CCAGAGCTGC GAGGAGAGGA 3401 ATCTCCGGGA GAACGGGTAT GAGTGTGAGT GGCGCTATAA CAGCTGTGCA 3451 CCTGCCTGTC AAGTCACGTG TCAGCACCCT GAGCCACTGG CCTGCCCTGT 3501 GCAGTGTGTG GAGGGCTGCC
-672018203206 08 May 2018
ATGCCCACTG CCCTCCAGGG AAAATCCTGG 3551 ATGAGCTTTT GCAGACCTGC GTTGACCCTG AAGACTGTCC AGTGTGTGAG 3601 GTGGCTGGCC GGCGTTTTGC CTCAGGAAAG AAAGTCACCT TGAATCCCAG 3651 TGACCCTGAG CACTGCCAGA TTTGCCACTG TGATGTTGTC AACCTCACCT 3701 GTGAAGCCTG CCAGGAGCCG GGAGGCCTGG TGGTGCCTCC CACAGATGCC 3751 CCGGTGAGCC CCACCACTCT GTATGTGGAG GACATCTCGG AACCGCCGTT 3801 GCACGATTTC TACTGCAGCA GGCTACTGGA CCTGGTCTTC CTGCTGGATG 3851 GCTCCTCCAG GCTGTCCGAG GCTGAGTTTG AAGTGCTGAA GGCCTTTGTG 3901 GTGGACATGA TGGAGCGGCT GCGCATCTCC CAGAAGTGGG TCCGCGTGGC 3951 CGTGGTGGAG TACCACGACG GCTCCCACGC CTACATCGGG CTCAAGGACC 4001 GGAAGCGACC GTCAGAGCTG CGGCGCATTG CCAGCCAGGT GAAGTATGCG 4051 GGCAGCCAGG TGGCCTCCAC CAGCGAGGTC TTGAAATACA CACTGTTCCA 4101 AATCTTCAGC AAGATCGACC GCCCTGAAGC CTCCCGCATC GCCCTGCTCC 4151 TGATGGCCAG CCAGGAGCCC CAACGGATGT CCCGGAACTT TGTCCGCTAC 4201 GTCCAGGGCC TGAAGAAGAA GAAGGTCATT GTGATCCCGG TGGGCATTGG 4251 GCCCCATGCC AACCTCAAGC AGATCCGCCT CATCGAGAAG CAGGCCCCTG 4301 AGAACAAGGC CTTCGTGCTG AGCAGTGTGG ATGAGCTGGA GCAGCAAAGG 4351 GACGAGATCG TTAGCTACCT CTGTGACCTT GCCCCTGAAG CCCCTCCTCC 4401 TACTCTGCCC CCCGACATGG CACAAGTCAC TGTGGGCCCG GGGCTCTTGG 4451 GGGTTTCGAC CCTGGGGCCC AAGAGGAACT CCATGGTTCT GGATGTGGCG 4501 TTCGTCCTGG AAGGATCGGA CAAAATTGGT GAAGCCGACT TCAACAGGAG 4551 CAAGGAGTTC ATGGAGGAGG TGATTCAGCG GATGGATGTG GGCCAGGACA 4601 GCATCCACGT CACGGTGCTG CAGTACTCCT ACATGGTGAC CGTGGAGTAC 4651 CCCTTCAGCG AGGCACAGTC CAAAGGGGAC ATCCTGCAGC GGGTGCGAGA 4701 GATCCGCTAC CAGGGCGGCA ACAGGACCAA CACTGGGCTG GCCCTGCGGT 4751 ACCTCTCTGA CCACAGCTTC TTGGTCAGCC AGGGTGACCG GGAGCAGGCG
-682018203206 08 May 2018
4801 CCCAACCTGG TCTACATGGT CACCGGAAAT CCTGCCTCTG ATGAGATCAA 4851 GAGGCTGCCT GGAGACATCC AGGTGGTGCC CATTGGAGTG GGCCCTAATG 4901 CCAACGTGCA GGAGCTGGAG AGGATTGGCT GGCCCAATGC CCCTATCCTC 4951 ATCCAGGACT TTGAGACGCT CCCCCGAGAG GCTCCTGACC TGGTGCTGCA 5001 GAGGTGCTGC TCCGGAGAGG GGCTGCAGAT CCCCACCCTC TCCCCTGCAC 5051 CTGACTGCAG CCAGCCCCTG GACGTGATCC TTCTCCTGGA TGGCTCCTCC 5101 AGTTTCCCAG CTTCTTATTT TGATGAAATG AAGAGTTTCG CCAAGGCTTT 5151 CATTTCAAAA GCCAATATAG GGCCTCGTCT CACTCAGGTG TCAGTGCTGC 5201 AGTATGGAAG CATCACCACC ATTGACGTGC CATGGAACGT GGTCCCGGAG 5251 AAAGCCCATT TGCTGAGCCT TGTGGACGTC ATGCAGCGGG AGGGAGGCCC 5301 CAGCCAAATC GGGGATGCCT TGGGCTTTGC TGTGCGATAC TTGACTTCAG 5351 AAATGCATGG TGCCAGGCCG GGAGCCTCAA AGGCGGTGGT CATCCTGGTC 5401 ACGGACGTCT CTGTGGATTC AGTGGATGCA GCAGCTGATG CCGCCAGGTC 5451 CAACAGAGTG ACAGTGTTCC CTATTGGAAT TGGAGATCGC TACGATGCAG 5501 CCCAGCTACG GATCTTGGCA GGCCCAGCAG GCGACTCCAA CGTGGTGAAG 5551 CTCCAGCGAA TCGAAGACCT CCCTACCATG GTCACCTTGG GCAATTCCTT 5601 CCTCCACAAA CTGTGCTCTG GATTTGTTAG GATTTGCATG GATGAGGATG 5651 GGAATGAGAA GAGGCCCGGG GACGTCTGGA CCTTGCCAGA CCAGTGCCAC 5701 ACCGTGACTT GCCAGCCAGA TGGCCAGACC TTGCTGAAGA GTCATCGGGT 5751 CAACTGTGAC CGGGGGCTGA GGCCTTCGTG CCCTAACAGC CAGTCCCCTG 5801 TTAAAGTGGA AGAGACCTGT GGCTGCCGCT GGACCTGCCC CTGYGTGTGC 5851 ACAGGCAGCT CCACTCGGCA CATCGTGACC TTTGATGGGC AGAATTTCAA 5901 GCTGACTGGC AGCTGTTCTT ATGTCCTATT TCAAAACAAG GAGCAGGACC 5951 TGGAGGTGAT TCTCCATAAT GGTGCCTGCA GCCCTGGAGC AAGGCAGGGC 6001 TGCATGAAAT CCATCGAGGT GAAGCACAGT GCCCTCTCCG TCGAGSTGCA 6051 CAGTGACATG GAGGTGACGG
-692018203206 08 May 2018
TGAATGGGAG ACTGGTCTCT GTTCCTTACG 6101 TGGGTGGGAA CATGGAAGTC AACGTTTATG GTGCCATCAT GCATGAGGTC 6151 AGATTCAATC ACCTTGGTCA CATCTTCACA TTCACTCCAC AAAACAATGA 6201 GTTCCAACTG CAGCTCAGCC CCAAGACTTT TGCTTCAAAG ACGTATGGTC 6251 TGTGTGGGAT CTGTGATGAG AACGGAGCCA ATGACTTCAT GCTGAGGGAT 6301 GGCACAGTCA CCACAGACTG GAAAACACTT GTTCAGGAAT GGACTGTGCA 6351 GCGGCCAGGG CAGACGTGCC AGCCCATCCT GGAGGAGCAG TGTCTTGTCC 6401 CCGACAGCTC CCACTGCCAG GTCCTCCTCT TACCACTGTT TGCTGAATGC 6451 CACAAGGTCC TGGCTCCAGC CACATTCTAT GCCATCTGCC AGCAGGACAG 6501 TTGCCACCAG GAGCAAGTGT GTGAGGTGAT CGCCTCTTAT GCCCACCTCT 6551 GTCGGACCAA CGGGGTCTGC GTTGACTGGA GGACACCTGA TTTCTGTGCT 6601 ATGTCATGCC CACCATCTCT GGTCTACAAC CACTGTGAGC ATGGCTGTCC 6651 CCGGCACTGT GATGGCAACG TGAGCTCCTG TGGGGACCAT CCCTCCGAAG 6701 GCTGTTTCTG CCCTCCAGAT AAAGTCATGT TGGAAGGCAG CTGTGTCCCT 6751 GAAGAGGCCT GCACTCAGTG CATTGGTGAG GATGGAGTCC AGCACCAGTT 6801 CCTGGAAGCC TGGGTCCCGG ACCACCAGCC CTGTCAGATC TGCACATGCC 6851 TCAGCGGGCG GAAGGTCAAC TGCACAACGC AGCCCTGCCC CACGGCCAAA 6901 GCTCCCACGT GTGGCCTGTG TGAAGTAGCC CGCCTCCGCC AGAATGCAGA 6951 CCAGTGCTGC CCCGAGTATG AGTGTGTGTG TGACCCAGTG AGCTGTGACC 7001 TGCCCCCAGT GCCTCACTGT GAACGTGGCC TCCAGCCCAC ACTGACCAAC 7051 CCTGGCGAGT GCAGACCCAA CTTCACCTGC GCCTGCAGGA AGGAGGAGTG 7101 CAAAAGAGTG TCCCCACCCT CCTGCCCCCC GCACCGTTTG CCCACCCTTC 7151 GGAAGACCCA GTGCTGTGAT GAGTATGAGT GTGCCTGCAA CTGTGTCAAC 7201 TCCACAGTGA GCTGTCCCCT TGGGTACTTG GCCTCAACCG CCACCAATGA 7251 CTGTGGCTGT ACCACAACCA CCTGCCTTCC CGACAAGGTG TGTGTCCACC 7301 GAAGCACCAT CTACCCTGTG GGCCAGTTCT GGGAGGAGGG CTGCGATGTG
-702018203206 08 May 2018
7351 TGCACCTGCA CCGACATGGA
GGATGCCGTG ATGGGCCTCC GCGTGGCCCA
7401 GTGCTCCCAG AAGCCCTGTG
AGGACAGCTG TCGGTCGGGC TTCACTTACG
7451 TTCTGCATGA AGGCGAGTGC
TGTGGAAGGT GCCTGCCATC TGCCTGTGAG
7501 GTGGTGACTG GCTCACCGCG
GGGGGACTCC CAGTCTTCCT GGAAGAGTGT
7551 CGGCTCCCAG TGGGCCTCCC
CGGAGAACCC CTGCCTCATC AATGAGTGTG
7601 TCCGAGTGAA GGAGGAGGTC
TTTATACAAC AAAGGAACGT CTCCTGCCCC
7651 CAGCTGGAGG TCCCTGTCTG
CCCCTCGGGC TTTCAGCTGA GCTGTAAGAC
7701 CTCAGCGTGC TGCCCAAGCT
GTCGCTGTGA GCGCATGGAG GCCTGCATGC
7751 TCAATGGCAC TGTCATTGGG
CCCGGGAAGA CTGTGATGAT CGATGTGTGC
7801 ACGACCTGCC GCTGCATGGT
GCAGGTGGGG GTCATCTCTG GATTCAAGCT
7851 GGAGTGCAGG AAGACCACCT
GCAACCCCTG CCCCCTGGGT TACAAGGAAG
7901 AAAATAACAC AGGTGAATGT
TGTGGGAGAT GTTTGCCTAC GGCTTGCACC
7951 ATTCAGCTAA GAGGAGGACA
GATCATGACA CTGAAGCGTG ATGAGACGCT
8001 CCAGGATGGC TGTGATACTC
ACTTCTGCAA GGTCAATGAG AGAGGAGAGT
8051 ACTTCTGGGA GAAGAGGGTC
ACAGGCTGCC CACCCTTTGA TGAACACAAG
8101 TGTCTTGCTG AGGGAGGTAA
AATTATGAAA ATTCCAGGCA CCTGCTGTGA
8151 CACATGTGAG GAGCCTGAGT
GCAACGACAT CACTGCCAGG CTGCAGTATG
8201 TCAAGGTGGG AAGCTGTAAG
TCTGAAGTAG AGGTGGATAT CCACTACTGC
8251 CAGGGCAAAT GTGCCAGCAA
AGCCATGTAC TCCATTGACA TCAACGATGT
8301 GCAGGACCAG TGCTCCTGCT
GCTCTCCGAC ACGGACGGAG CCCATGCAGG
8351 TGGCCCTGCA CTGCACCAAT
GGCTCTGTTG TGTACCATGA GGTTCTCAAT
8401 GCCATGGAGT GCAAATGCTC CCCCAGGAAG TGCAGCAAGT GA [0142]
The VWF fragment as used herein can be a VWF fragment comprising a D' domain and a D3 domain of VWF, wherein the VWF fragment binds to Factor
-71 2018203206 08 May 2018 [0143]
VIII (FVIII) and inhibits binding of endogenous VWF (full-length VWF) to FVIII. The VWF fragment comprising the D' domain and the D3 domain can further comprise a VWF domain selected from the group consisting of an A1 domain, an A2 domain, an A3 domain, a DI domain, a D2 domain, a D4 domain, a BI domain, a B2 domain, a B3 domain, a Cl domain, a C2 domain, a CK domain, one or more fragments thereof, and any combinations thereof. In one embodiment, a VWF fragment comprises, consists essentially of, or consists of:
(1) the D' and D3 domains of VWF or fragments thereof; (2) the DI, D', and D3 domains of VWF or fragments thereof; (3) the D2, D', and D3 domains of VWF or fragments thereof; (4) the DI, D2, D', and D3 domains of VWF or fragments thereof; or (5) the DI, D2, D', D3, and Al domains of VWF or fragments thereof. The VWF fragment described herein does not contain a site binding to a VWF clearance receptor. In another embodiment, the VWF fragment described herein is not amino acids 764 to 1274 of SEQ ID NO: 2. The VWF fragment of the present invention can comprise any other sequences linked to or fused to the VWF fragment. For example, a VWF fragment described herein can further comprise a signal peptide.
In one embodiment, the VWF fragment binds to or is associated with a FVIII protein. By binding to or associating with a FVIII protein, a VWF fragment of the invention protects FVIII from protease cleavage and FVIII activation, stabilizes the heavy chain and light chain of FVIII, and prevents clearance of FVIII by scavenger receptors. In another embodiment, the VWF fragment binds to or associates with a FVIII protein and blocks or prevents binding of the FVIII protein to phospholipid and activated Protein C. By preventing or inhibiting binding of the FVIII protein with endogenous, full-length VWF, the VWF fragment of the invention reduces the clearance of FVIII by VWF clearance receptors and thus extends half-life of the FVIII protein. In one embodiment, the half-life extension of a FVIII protein is thus due to the binding of or associating with the VWF fragment lacking a VWF clearance receptor binding site to the FVIII protein and shielding or protecting of the FVIII protein by the VWF fragment from endogenous VWF which contains the VWF clearance receptor binding site. The FVIII protein bound to or protected by the VWF fragment can also allow recycling of a FVIII protein. By eliminating the VWF clearance
-722018203206 08 May 2018 [0144] [0145] pathway receptor binding sites contained in the full length VWF molecule, the
FVIII/VWF heterodimers of the invention are shielded from the VWF clearance pathway, further extending FVIII half-life.
In one embodiment, a VWF fragment of the present invention comprises the D' domain and the D3 domain of VWF, wherein the D' domain is at least 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acids 764 to 866 of SEQ ID NO: 2, wherein the VWF fragment prevents binding of endogenous VWF to FVIII. In another embodiment, a VWF fragment comprises the D' domain and the D3 domain of VWF, wherein the D3 domain is at least 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acids 867 to 1240 of SEQ ID NO: 2, wherein the VWF fragment prevents binding of endogenous VWF to FVIII. In some embodiments, a VWF fragment described herein comprises, consists essentially of, or consists of the D' domain and D3 domain of VWF, which are at least 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acids 764 to 1240 of SEQ ID NO: 2, wherein the VWF fragment prevents binding of endogenous VWF to FVIII. In other embodiments, a VWF fragment comprises, consists essentially of, or consists of the DI, D2, D', and D3 domains at least 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acids 23 to 1240 of SEQ ID NO: 2, wherein the VWF fragment prevents binding of endogenous VWF to FVIII. In still other embodiments, the VWF fragment further comprises a signal peptide operably linked thereto.
In some embodiments, a VWF fragment of the invention consists essentially of or consists of (1) the D’D3 domain, the D1DD3 domain, D2D’D3 domain, or D1D2DD3 domain and (2) an additional VWF sequence up to about 10 amino acids (e.g., any sequences from amino acids 764 to 1240 of SEQ ID NO: 2 to amino acids 764 to 1250 of SEQ ID NO: 2), up to about 15 amino acids (e.g., any sequences from amino acids 764 to 1240 of SEQ ID NO: 2 to amino acids 764 to 1255 of SEQ ID NO: 2), up to about 20 amino acids (e.g., any sequences from amino acids 764 to 1240 of SEQ ID NO: 2 to amino acids 764 to 1260 of SEQ ID NO: 2), up to about 25 amino acids (e.g., any sequences from amino acids 764 to 1240 of SEQ ID NO: 2 to amino acids 764 to 1265 of SEQ ID NO: 2), or up to about 30 amino acids (e.g., any sequences from amino acids 764 to 1240 of SEQ
-73 2018203206 08 May 2018 [0146] [0147] [0148] [0149]
ID NO: 2 to amino acids 764 to 1260 of SEQ ID NO: 2). In a particular embodiment, the VWF fragment comprising or consisting essentially of the D' domain and the D3 domain is neither amino acids 764 to 1274 of SEQ ID NO: 2 nor the full-length mature VWF. In some embodiments, the D1D2 domain is expressed in trans with the D'D3 domain. In some embodiments, the D1D2 domain is expressed in cis with the D'D3 domain.
In other embodiments, the VWF fragment comprising the D'D3 domains linked to the D1D2 domains further comprises an intracellular cleavage site, e.g., (a cleavage site by PACE (furin) or PC5), allowing cleavage of the D1D2 domains from the D'D3 domains upon expression. Non-limiting examples of the intracellular cleavage site are disclosed elsewhere herein.
In yet other embodiments, a VWF fragment comprises the D' domain and the D3 domain, but does not comprise an amino acid sequence selected from the group consisting of (1) amino acids 1241 to 2813 of SEQ ID NO: 2, (2) amino acids 1270 to amino acids 2813 of SEQ ID NO: 2, (3) amino acids 1271 to amino acids 2813 of SEQ ID NO: 2, (4) amino acids 1272 to amino acids 2813 of SEQ ID NO: 2, (5) amino acids 1273 to amino acids 2813 of SEQ ID NO: 2, (6) amino acids 1274 to amino acids 2813 of SEQ ID NO: 2, and any combinations thereof
In still other embodiments, a VWF fragment of the present invention comprises, consists essentially of, or consists of an amino acid sequence corresponding to the D' domain, D3 domain, and Al domain, wherein the amino acid sequence is at least 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acid 764 to 1479 of SEQ ID NO: 2, wherein the VWF fragment prevents binding of endogenous VWF to FVIII. In a particular embodiment, the VWF fragment is not amino acids 764 to 1274 of SEQ ID NO: 2.
In some embodiments, a VWF fragment of the invention comprises the D' domain and the D3 domain, but does not comprise at least one VWF domain selected from the group consisting of (1) an Al domain, (2) an A2 domain, (3) an A3 domain, (4) a D4 domain, (5) a BI domain, (6) a B2 domain, (7) a B3 domain, (8) a Cl domain, (9) a C2 domain, (10) a CK domain, (11) a CK domain and C2 domain, (12) a CK domain, a C2 domain, and a Cl domain, (13) a CK domain, a C2 domain, a Cl domain, a B3 domain, (14) a CK domain, a C2 domain, a Cl domain, a B3 domain, a B2 domain, (15) a CK domain, a C2 domain, a Cl
-742018203206 08 May 2018 [0150] [0151] [0152] domain, a B3 domain, a B2 domain, and a BI domain, (16) a CK domain, a C2 domain, a Cl domain, a B3 domain, a B2 domain, a BI domain, and a D4 domain, (17) a CK domain, a C2 domain, a Cl domain, a B3 domain, a B2 domain, a BI domain, a D4 domain, and an A3 domain, (18) a CK domain, a C2 domain, a Cl domain, a B3 domain, a B2 domain, a BI domain, a D4 domain, an A3 domain, and an A2 domain, (19) a CK domain, a C2 domain, a Cl domain, a B3 domain, a B2 domain, a BI domain, a D4 domain, an A3 domain, an A2 domain, and an Al domain, and (20) any combinations thereof.
In yet other embodiments, the VWF fragment comprises the D'D3 domains and one or more domains or modules. Examples of such domains or modules include, but are not limited to, the domains and modules disclosed in Zhour et al., Blood published online April 6, 2012: DOI 10.1182/blood-2012-01-405134. For example, the VWF fragment can comprise the D'D3 domain and one or more domains or modules selected from the group consisting of Al domain, A2 domain, A3 domain, D4N module, VWD4 module, C8-4 module, TIL-4 module, Cl module, C2 module, C3 module, C4 module, C5 module, C5 module, C6 module, and any combinations thereof.
In still other embodiments, the VWF fragment is linked to a heterologous moiety, wherein the heterologous moiety is linked to the N-terminus or the Cterminus of the VWF fragment or inserted immediately downstream of one or more amino acids (e.g., one or more XTEN insertion sites) in the FVIII protein in the VWF fragment. For example, the insertion sites for the heterologous moiety in the VWF fragment can be in the D' domain, the D3 domain, or both. The heterologous moiety can be a half-life extender.
In certain embodiments, a VWF fragment of the invention forms a multimer, e.g., dimer, trimer, tetramer, pentamer, hexamer, heptamer, or the higher order multimers. In other embodiments, the VWF fragment is a monomer having only one VWF fragment. In some embodiments, the VWF fragment of the present invention can have one or more amino acid substitutions, deletions, additions, or modifications. In one embodiment, the VWF fragment can include amino acid substitutions, deletions, additions, or modifications such that the VWF fragment is not capable of forming a disulfide bond or forming a dimer or a multimer. In another embodiment, the amino acid substitution is within the D'
-75 2018203206 08 May 2018 [0153] [0154] domain and the D3 domain. In a particular embodiment, a VWF fragment of the invention contains at least one amino acid substitution at a residue corresponding to residue 1099, residue 1142, or both residues 1099 and 1142 of SEQ ID NO: 2. The at least one amino acid substitution can be any amino acids that are not occurring naturally in the wild type VWF. For example, the amino acid substitution can be any amino acids other than cysteine, e.g., Isoleucine, Alanine, Leucine, Asparagine, Lysine, Aspartic acid, Methionine, Phenylalanine, Glutamic acid, Threonine, Glutamine, Tryptophan, Glycine, Valine, Proline, Serine, Tyrosine, Arginine, or Histidine. In another example, the amino acid substitution has one or more amino acids that prevent or inhibit the VWF fragments from forming multimers.
In certain embodiments, the VWF fragment useful herein can be further modified to improve its interaction with FVIII, e.g., to improve binding affinity to FVIII. As a non-limiting example, the VWF fragment comprises a serine residue at the residue corresponding to amino acid 764 of SEQ ID NO: 2 and a lysine residue at the residue corresponding to amino acid 773 of SEQ ID NO: 2. Residues 764 and/or 773 can contribute to the binding affinity of the VWF fragments to FVIII. In other embodiments, the VWF fragments useful for the invention can have other modifications, e.g., the protein can be pegylated, glycosylated, hesylated, or polysialylated.
B) XTEN Sequences
As used here XTEN sequence refers to extended length polypeptides with non-naturally occurring, substantially non-repetitive sequences that are composed mainly of small hydrophilic amino acids, with the sequence having a low degree or no secondary or tertiary structure under physiologic conditions. As a chimeric protein partner, XTENs can serve as a carrier, conferring certain desirable pharmacokinetic, physicochemical and pharmaceutical properties when linked to a VWF fragment or a FVIII sequence of the invention to create a chimeric protein. Such desirable properties include but are not limited to enhanced pharmacokinetic parameters and solubility characteristics. As used herein, XTEN specifically excludes antibodies or antibody fragments such as single-chain antibodies or Fc fragments of a light chain or a heavy chain.
-762018203206 08 May 2018 [0155] [0156] [0157]
In some embodiments, the XTEN sequence of the invention is a peptide or a polypeptide having greater than about 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1200, 1400, 1600, 1800, or 2000 amino acid residues. In certain embodiments, XTEN is a peptide or a polypeptide having greater than about 20 to about 3000 amino acid residues, greater than 30 to about 2500 residues, greater than 40 to about 2000 residues, greater than 50 to about 1500 residues, greater than 60 to about 1000 residues, greater than 70 to about 900 residues, greater than 80 to about 800 residues, greater than 90 to about 700 residues, greater than 100 to about 600 residues, greater than 110 to about 500 residues, or greater than 120 to about 400 residues.
The XTEN sequence of the invention can comprise one or more sequence motif of 9 to 14 amino acid residues or an amino acid sequence at least 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the sequence motif, wherein the motif comprises, consists essentially of, or consists of 4 to 6 types of amino acids selected from the group consisting of glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P). See US 20100239554 Al.
In some embodiments, the XTEN comprises non-overlapping sequence motifs in which about 80%, or at least about 85%, or at least about 90%, or about 91%, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% or about 100% of the sequence consists of multiple units of non-overlapping sequences selected from a single motif family selected from Table 2A, resulting in a family sequence. As used herein, family means that the XTEN has motifs selected only from a single motif category from Table 2A; i.e., AD, AE, AF, AG, AM, AQ, BC, or BD XTEN, and that any other amino acids in the XTEN not from a family motif are selected to achieve a needed property, such as to permit incorporation of a restriction site by the encoding nucleotides, incorporation of a cleavage sequence, or to achieve a better linkage to FVIII or VWF. In some embodiments of XTEN families, an XTEN sequence comprises multiple units of non-overlapping sequence motifs of the AD motif family, or of the AE motif family, or of the AF motif family, or of the AG motif family, or of the AM motif family, or of the AQ motif family, or of the BC family,
-772018203206 08 May 2018 or of the BD family, with the resulting XTEN exhibiting the range of homology described above. In other embodiments, the XTEN comprises multiple units of motif sequences from two or more of the motif families of Table 2 A. These sequences can be selected to achieve desired physical/chemical characteristics, including such properties as net charge, hydrophilicity, lack of secondary structure, or lack of repetitiveness that are conferred by the amino acid composition of the motifs, described more fully below. In the embodiments hereinabove described in this paragraph, the motifs incorporated into the XTEN can be selected and assembled using the methods described herein to achieve an XTEN of about 36 to about 3000 amino acid residues.
Table 2A. XTEN Sequence Motifs of 12 Amino Acids and Motif Families
Motif Family MOTIF SEQUENCE
AD GESPGGSSGSES
AD GSEGSSGPGESS
AD GSSESGSSEGGP
AD GSGGEPSESGSS
AE, AM GSPAGSPTSTEE
AE, AM, AQ GSEPATSGSETP
AE, AM, AQ GTSESATPESGP
AE, AM, AQ GTSTEPSEGSAP
AF, AM GSTSESPSGTAP
AF, AM GTSTPESGSASP
AF, AM GTSPSGESSTAP
AF, AM GSTSSTAESPGP
AG, AM GTPGSGTASSSP
AG, AM GSSTPSGATGSP
AG, AM GSSPSASTGTGP
AG, AM GASPGTSSTGSP
AQ GEPAGSPTSTSE
AQ GTGEPSSTPASE
AQ GSGPSTESAPTE
AQ GSETPSGPSETA
AQ GPSETSTSEPGA
AQ GSPSEPTEGTSA
BC GSGASEPTSTEP
BC GSEPATSGTEPS
BC GTSEPSTSEPGA
BC GTSTEPSEPGSA
BD GSTAGSETSTEA
BD GSETATSGSETA
BD GTSESATSESGA
BD GTSTEASEGSAS
-782018203206 08 May 2018 [0158] [0159] • Denotes individual motif sequences that, when used together in various permutations, results in a family sequence
XTEN can have varying lengths for insertion into or linkage to FVIII or VWF. In one embodiment, the length of the XTEN sequence(s) is chosen based on the property or function to be achieved in the fusion protein. Depending on the intended property or function, XTEN can be short or intermediate length sequence or longer sequence that can serve as carriers. In certain embodiments, the XTEN include short segments of about 6 to about 99 amino acid residues, intermediate lengths of about 100 to about 399 amino acid residues, and longer lengths of about 400 to about 1000 and up to about 3000 amino acid residues. Thus, the XTEN inserted into or linked to FVIII or VWF can have lengths of about 6, about 12, about 36, about 40, about 42, about 72, about 96, about 144, about 288, about 400, about 500, about 576, about 600, about 700, about 800, about 864, about 900, about 1000, about 1500, about 2000, about 2500, or up to about 3000 amino acid residues in length. In other embodiments, the XTEN sequences is about 6 to about 50, about 50 to about 100, about 100 to 150, about 150 to 250, about 250 to 400, about 400 to about 500, about 500 to about 900, about 900 to 1500, about 1500 to 2000, or about 2000 to about 3000 amino acid residues in length. The precise length of an XTEN inserted into or linked to FVIII or VWF can vary without adversely affecting the activity of the FVIII or VWF. In one embodiment, one or more of the XTEN used herein has 36 amino acids, 42 amino acids, 72 amino acids, 144 amino acids, 288 amino acids, 576 amino acids, or 864 amino acids in length and can be selected from one or more of the XTEN family sequences; i.e., AD, AE, AF, AG, AM, AQ, BC or BD.
In some embodiments, the XTEN sequence used in the invention is at least
60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to a sequence selected from the group consisting of AE42, AG42, AE48, AM48, AE72, AG72, AE108, AG108, AE144, AF144, AG144, AE180, AG180, AE216, AG216, AE252, AG252, AE288, AG288, AE324, AG324, AE360, AG360, AE396, AG396, AE432, AG432, AE468, AG468, AE504, AG504, AF504, AE540, AG540, AF540, AD576, AE576, AF576, AG576, AE612, AG612, AE624, AE648, AG648, AG684, AE720, AG720, AE756, AG756, AE792, AG792, AE828, AG828, AD836, AE864, AF864,
-792018203206 08 May 2018 [0160] [0161] [0162]
AG864, AM875, AE912, AM923, AM1318, BC864, BD864, AE948, AE1044,
ΑΕΙ 140, AE1236, AE1332, AE1428, AE1524, AE1620, AE1716, AE1812,
AE1908, AE2004A, AG948, AG1044, AG1140, AG1236, AG1332, AG1428,
AG1524, AG1620, AG1716, AG1812, AG1908, and AG2004. See US 20100239554 Al.
In one embodiment, the XTEN sequence is at least 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to an amino acid sequence selected from the group consisting of AE42 (SEQ ID NO: 36), AE72 (SEQ ID NO: 127), AE144 2A (SEQ IDNO: 128), AE144 3B (SEQ ID NO: 129), AE144 4A (SEQ ID NO: 130), AE144 5A (SEQ IDNO: 131), AE144 6B (SEQ IDNO: 132), AG144 A (SEQ ID NO: 133), AG144 B (SEQ IDNO: 134), AG144 C (SEQ ID NO: 135), AG144 F (SEQ IDNO: 136), AE864 (SEQ ID NO: 43), AE576 (SEQ ID NO: 41), AE288 (SEQ IDNO: 39), AE288 2 (SEQ ID NO: 137), AE144 (SEQ ID NO: 37), AG864 (SEQ ID NO: 44), AG576 (SEQ ID NO: 42), AG288 (SEQ ID NO: 40), AG 144 (SEQ ID NO: 38), and any combinations thereof.
In some embodiments, less than 100% of amino acids of an XTEN are selected from glycine (G), alanine (A), serine (S), threonine (T), glutamate (E) and proline (P), or less than 100% of the sequence consists of the sequence motifs from Table 2 A or the XTEN sequences of Table 2B. In such embodiments, the remaining amino acid residues of the XTEN are selected from any of the other 14 natural L-amino acids, but may be preferentially selected from hydrophilic amino acids such that the XTEN sequence contains at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least about 99% hydrophilic amino acids. The content of hydrophobic amino acids in the XTEN utilized in the conjugation constructs may be less than 5%, or less than 2%, or less than 1% hydrophobic amino acid content. Hydrophobic residues that are less favored in construction of XTEN include tryptophan, phenylalanine, tyrosine, leucine, isoleucine, valine, and methionine. Additionally, XTEN sequences may contain less than 5% or less than 4% or less than 3% or less than 2% or less than 1% or none of the following amino acids: methionine (for example, to avoid oxidation), or asparagine and glutamine (to avoid desamidation).
In another embodiment, the XTEN sequence is selected from the group consisting of AE42 (SEQ ID NO: 36), AE72 (SEQ ID NO: 127), AE144 2A
-802018203206 08 May 2018 (SEQ IDNO: 128), AE144 3B (SEQ ID NO: 129), AE144 4A (SEQ ID NO:
130), AE144 5A (SEQ IDNO: 131), AE144 6B (SEQ IDNO: 132), AG144 A (SEQ ID NO: 133), AG144 B (SEQ IDNO: 134), AG144 C (SEQ ID NO: 135), AG144 F (SEQ IDNO: 136), AE864 (SEQ ID NO: 43), AE576 (SEQ ID NO: 41), AE288 (SEQ IDNO: 39), AE288 2 (SEQ ID NO: 137), AE144 (SEQ ID NO: 37), AG864 (SEQ ID NO: 44), AG576 (SEQ ID NO: 42), AG288 (SEQ ID NO: 40), AG 144 (SEQ ID NO: 38), and any combinations thereof. In a specific embodiment, the XTEN sequence is AE288. The amino acid sequences for certain XTEN sequences of the invention are shown in Table 2B.
TABLE 2B. XTEN Sequences
XTEN Amino Acid Sequence
AE42 SEQ ID NO: 36 GAPGSPAGSPTSTEEGTSESATPESGPGSEPATSGSETPASS
AE72 GAPTSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPA
SEQ ID NO: 127 TSGSETPGTSESATPESGPGTSTEPSEGSAPGASS
AE144 GSEPATSGSETPGTSESATPESGPGSEPATSGSETPGSPAGSPTSTE
SEQ ID EGTSTEPSEG
NO:37 SAPGSEPATSGSETPGSEPATSGSETPGSEPATSGSETPGTSTEPSE GSAPGTSESA PESGPGSEPATSGSETPGTSTEPSEGSAP
AE144 2A TSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPGTSTEPSEGSAP
(SEQ ID NO: GTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSEPATSGSET
PGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSESATPES
128) GPG
AE144 3B SPAGSPTSTEEGTSESATPESGPGSEPATSGSETPGTSESATPESGP
(SEQ ID NO: GTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSA
PGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGS
129) APG
AE144 4A TSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSGSETP
(SEQ ID NO: GTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSPAGSPTSTE
EGSPAGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGS
130) APG
AE144 5A TSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSGSETP
(SEQ ID NO: GTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSESATPESG
PGSEPATSGSETPGTSESATPESGPGSPAGSPTSTEEGSPAGSPTST
-81 2018203206 08 May 2018
131) EEG
AE144 6B (SEQ ID NO: 132) TSTEPSEGSAPGTSESATPESGPGTSESATPESGPGTSESATPESGP GSEPATSGSETPGSEPATSGSETPGSPAGSPTSTEEGTSTEPSEGSA PGTSTEPSEGSAPGSEPATSGSETPGTSESATPESGPGTSTEPSEGS APG
AG 144 SEQ ID NO:38 GTPGSGTASSSPGSSTPSGATGSPGSSPSASTGTGPGSSPSASTGTG PGASPGTSST GSPGASPGTSSTGSPGSSTPSGATGSPGSSPSASTGTGPGASPGTSS TGSPGSSPSA STGTGPGTPGSGTASSSPGSSTPSGATGSP
AG144_A (SEQ ID NO: 133) GASPGTSSTGSPGSSPSASTGTGPGSSPSASTGTGPGTPGSGTASSS PGSSTPSGATGSPGSSPSASTGTGPGASPGTSSTGSPGTPGSGTASS SPGSSTPSGATGSPGTPGSGTASSSPGASPGTSSTGSPGASPGTSST GSP
AG144B (SEQ ID NO: 134) GTPGSGTASSSPGSSTPSGATGSPGASPGTSSTGSPGTPGSGTASSS PGSSTPSGATGSPGSSPSASTGTGPGSSPSASTGTGPGSSTPSGATG SPGSSTPSGATGSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSST GSP
AG144_C (SEQ ID NO: 135) GTPGSGTASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGS PGSSPSASTGTGPGTPGSGTASSSPGASPGTSSTGSPGASPGTSSTG SPGASPGTSSTGSPGSSTPSGATGSPGSSTPSGATGSPGASPGTSST GSP
AG144F (SEQ ID NO: 136) GSSPSASTGTGPGSSPSASTGTGPGASPGTSSTGSPGASPGTSSTGS PGSSTPSGATGSPGSSPSASTGTGPGASPGTSSTGSPGSSPSASTGT GPGTPGSGTASSSPGSSTPSGATGSPGSSTPSGATGSPGASPGTSST GSP
AE288 SEQ ID NO:39 GTSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSGSET PGTSESATPESG PGTSTEPSEGSAPGSPAGSPTSTEEGTSESATPESGPGSEPATSGSE TPGTSESATPES GPGSPAGSPTSTEEGSPAGSPTSTEEGTSTEPSEGSAPGTSESATPE SGPGTSESATPE SGPGTSESATPESGPGSEPATSGSETPGSEPATSGSETPGSPAGSPT STEEGTSTEPSE GSAPGTSTEPSEGSAPGSEPATSGSETPGTSESATPESGPGTSTEPS EGSAP
AE288_2 (SEQ ID NO: 137) GSPAGSPTSTEEGTSESATPESGPGSEPATSGSETPGTSESATPESG PGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGS APGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEG SAPGTSESATPESGPGSEPATSGSETPGTSESATPESGPGSEPATSG SETPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSPAGSP TSTEEGSPAGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEP SEGSAP
AG288 PGASPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATG
-822018203206 08 May 2018
SEQ NO:40 ID SPGTPGSGTASS SPGSSTPSGATGSPGTPGSGTASSSPGSSTPSGATGSPGSSTPSGAT GSPGSSPSASTG TGPGSSPSASTGTGPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGA TGSPGSSPSAST GTGPGSSPSASTGTGPGASPGTSSTGSPGASPGTSSTGSPGSSTPSG ATGSPGSSPSAS TGTGPGASPGTSSTGSPGSSPSASTGTGPGTPGSGTASSSPGSSTPS GATGS
AE576 SEQ ID GSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTE EGTSTEPSEGSA PGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATSGSE
NO:41 TPGSPAGSPTST EEGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTS TEEGTSTEPSEG SAPGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGTSESATP ESGPGSEPATSG SETPGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSESAT PESGPGSPAGSP TSTEEGTSESATPESGPGSEPATSGSETPGTSESATPESGPGTSTEP SEGSAPGTSTEP SEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTE PSEGSAPGSPAG SPTSTEEGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGTSE SATPESGPGSEP ATSGSETPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSP AGSPTSTEEGSP AGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAP
AG576 SEQ ID PGTPGSGTASSSPGSSTPSGATGSPGSSPSASTGTGPGSSPSASTGT GPGSSTPSGATG SPGSSTPSGATGSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSST
NO:42 GSPGTPGSGTAS SSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSSPSAST GTGPGTPGSGTA SSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSSTPSG ATGSPGSSTPSG ATGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSSTPS GATGSPGSSTPS GATGSPGSSPSASTGTGPGASPGTSSTGSPGASPGTSSTGSPGTPGS GTASSSPGASPG TSSTGSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGTPG SGTASSSPGSST PSGATGSPGTPGSGTASSSPGSSTPSGATGSPGTPGSGTASSSPGSS TPSGATGSPGSS TPSGATGSPGSSPSASTGTGPGSSPSASTGTGPGASPGTSSTGSPGT PGSGTASSSPGS STPSGATGSPGSSPSASTGTGPGSSPSASTGTGPGASPGTSSTGS
AE864 GSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTE EGTSTEPSEGSA
-832018203206 08 May 2018
SEQ NO:43 ID PGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGSEPATSGSE TPGSPAGSPTST EEGTSESATPESGPGTSTEPSEGSAPGTSTEPSEGSAPGSPAGSPTS TEEGTSTEPSEG SAPGTSTEPSEGSAPGTSESATPESGPGTSTEPSEGSAPGTSESATP ESGPGSEPATSG SETPGTSTEPSEGSAPGTSTEPSEGSAPGTSESATPESGPGTSESAT PESGPGSPAGSP TSTEEGTSESATPESGPGSEPATSGSETPGTSESATPESGPGTSTEP SEGSAPGTSTEP SEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTEPSEGSAPGTSTE PSEGSAPGSPAG SPTSTEEGTSTEPSEGSAPGTSESATPESGPGSEPATSGSETPGTSE SATPESGPGSEP ATSGSETPGTSESATPESGPGTSTEPSEGSAPGTSESATPESGPGSP AGSPTSTEEGSP AGSPTSTEEGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGT SESATPESGPGS EPATSGSETPGTSESATPESGPGSEPATSGSETPGTSESATPESGPG TSTEPSEGSAPG SPAGSPTSTEEGTSESATPESGPGSEPATSGSETPGTSESATPESGP GSPAGSPTSTEE GSPAGSPTSTEEGTSTEPSEGSAPGTSESATPESGPGTSESATPESG PGTSESATPESG PGSEPATSGSETPGSEPATSGSETPGSPAGSPTSTEEGTSTEPSEGS APGTSTEPSEGS APGSEPATSGSETPGTSESATPESGPGTSTEPSEGSAP
AG864 GASPGTSSTGSPGSSPSASTGTGPGSSPSASTGTGPGTPGSGTASSS
SEQ ID PGSSTPSGATGS PGSSPSASTGTGPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATG
NO:44 SPGTPGSGTASS SPGASPGTSSTGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGAT GSPGASPGTSST GSPGTPGSGTASSSPGSSTPSGATGSPGSSPSASTGTGPGSSPSAST GTGPGSSTPSGA TGSPGSSTPSGATGSPGASPGTSSTGSPGASPGTSSTGSPGASPGTS STGSPGTPGSGT ASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSSPSA STGTGPGTPGSG TASSSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGSSTP SGATGSPGSSTP SGATGSPGASPGTSSTGSPGTPGSGTASSSPGSSTPSGATGSPGSST PSGATGSPGSST PSGATGSPGSSPSASTGTGPGASPGTSSTGSPGASPGTSSTGSPGTP GSGTASSSPGAS PGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGASPGTSSTGSPGT PGSGTASSSPGS STPSGATGSPGTPGSGTASSSPGSSTPSGATGSPGTPGSGTASSSPG SSTPSGATGSPG SSTPSGATGSPGSSPSASTGTGPGSSPSASTGTGPGASPGTSSTGSP GTPGSGTASSSP
-842018203206 08 May 2018
GSSTPSGATGSPGSSPSASTGTGPGSSPSASTGTGPGASPGTSSTGS PGASPGTSSTGS PGSSTPSGATGSPGSSPSASTGTGPGASPGTSSTGSPGSSPSASTGT GPGTPGSGTASS SPGSSTPSGATGSPGSSTPSGATGSPGASPGTSSTGSP
[0163] In further embodiments, the XTEN sequence used in the invention affects the physical or chemical property, e.g., pharmacokinetics, of the chimeric protein of the present invention. The XTEN sequence used in the present invention can exhibit one or more of the following advantageous properties: conformational flexibility, enhanced aqueous solubility, high degree of protease resistance, low immunogenicity, low binding to mammalian receptors, or increased hydrodynamic (or Stokes) radii. In a specific embodiment, the XTEN sequence linked to a FVIII protein in this invention increases pharmacokinetic properties such as longer terminal half-life or increased area under the curve (AUC), so that the chimeric protein described herein stays in vivo for an increased period of time compared to wild type FVIII. In further embodiments, the XTEN sequence used in this invention increases pharmacokinetic properties such as longer terminal half-life or increased area under the curve (AUC), so that FVIII protein stays in vivo for an increased period of time compared to wild type FVIII.
[0164] A variety of methods and assays can be employed to determine the physical/chemical properties of proteins comprising the XTEN sequence. Such methods include, but are not limited to analytical centrifugation, EPR, HPLC-ion exchange, HPLC-size exclusion, HPLC-reverse phase, light scattering, capillary electrophoresis, circular dichroism, differential scanning calorimetry, fluorescence, HPLC-ion exchange, HPLC-size exclusion, IR, NMR, Raman spectroscopy, refractometry, and UV/Visible spectroscopy. Additional methods are disclosed in Amau et al., Prot Expr and Purif 48, 1-13 (2006).
[0165] Additional examples of XTEN sequences that can be used according to the present invention and are disclosed in US Patent Publication Nos. 2010/0239554 Al, 2010/0323956 Al, 2011/0046060 Al, 2011/0046061 Al, 2011/0077199 Al, or 2011/0172146 Al, or International Patent Publication Nos. WO 2010091122 Al, WO 2010144502 A2, WO 2010144508 Al, WO 2011028228 Al, WO 2011028229 Al, or WO 2011028344 A2.
C) Factor VIII (FVIII) Protein
-852018203206 08 May 2018 [0166] [0167] [0168] [0169]
A FVIII protein as used herein means a functional FVIII polypeptide in its normal role in coagulation, unless otherwise specified. The term a FVIII protein includes a functional fragment, variant, analog, or derivative thereof that retains the function of full-length wild-type Factor VIII in the coagulation pathway. A FVIII protein is used interchangeably with FVIII polypeptide (or protein) or FVIII. Examples of the FVIII functions include, but not limited to, an ability to activate coagulation, an ability to act as a cofactor for factor IX, or an ability to form a tenase complex with factor IX in the presence of Ca and phospholipids, which then converts Factor X to the activated form Xa. The FVIII protein can be the human, porcine, canine, rat, or murine FVIII protein. In addition, comparisons between FVIII from humans and other species have identified conserved residues that are likely to be required for function (Cameron et al., Thromb. Haemost. 79:317-22 (1998); US 6,251,632).
A number of tests are available to assess the function of the coagulation system: activated partial thromboplastin time (aPTT) test, chromogenic assay, ROTEM assay, prothrombin time (PT) test (also used to determine INR), fibrinogen testing (often by the Clauss method), platelet count, platelet function testing (often by PFA-100), TCT, bleeding time, mixing test (whether an abnormality corrects if the patient's plasma is mixed with normal plasma), coagulation factor assays, antiphospholipid antibodies, D-dimer, genetic tests (e.g., factor V Leiden, prothrombin mutation G20210A), dilute Russell's viper venom time (dRVVT), miscellaneous platelet function tests, thromboelastography (TEG or Sonoclot), thromboelastometry (TEM®, e.g., ROTEM®), or euglobulin lysis time (ELT).
The aPTT test is a performance indicator measuring the efficacy of both the intrinsic (also referred to the contact activation pathway) and the common coagulation pathways. This test is commonly used to measure clotting activity of commercially available recombinant clotting factors, e.g., FVIII or FIX. It is used in conjunction with prothrombin time (PT), which measures the extrinsic pathway.
ROTEM analysis provides information on the whole kinetics of haemostasis: clotting time, clot formation, clot stability and lysis. The different parameters in thromboelastometry are dependent on the activity of the plasmatic coagulation system, platelet function, fibrinolysis, or many factors which
-86influence these interactions. This assay can provide a complete view of secondary haemostasis.
The FVIII polypeptide and polynucleotide sequences are known, as are many functional fragments, mutants and modified versions. Examples of human
FVIII sequences (full-length) are shown below.
TABLE 3. Amino Acid Sequence of Full-length Factor VIII (Full-length FVIII (FVIII signal peptide underlined; FVIII heavy chain is double underlined; B domain is italicized; and FVIII light chain is in plain text)
2018203206 08 May 2018 [0170]
Signal Peptide: (SEQ ID NO: 3)
MQIELSTCFFLCLLRFCFS
Mature Factor VIII (SEQ ID NO: 4)*
ATRRYYLGAVELSWPYMQSDLGELPVPARFPPRVPKSFPFNTSVVYKKTLFVEFT
DHLFNIAKPRPPWMGLLGPTTQAEVYDTVViTLKNMASHPVSLHAVGVSYWKASE
GAEYDpyrSQI^KEDDKVFPGGSHTYWQVLKENGPMAS'DPLCLTYSYLSHVDLAZ
KPLRSGLIGALLVCREGSLAKEKTQTLHKF'ILLF'AVFPEGKSWHSETKNSLMQPR
DAASARAWPKMHTVNGYVNRSLPGLIGCHRKSVYWHVIGMGTTPEVHSIFLEGHT
FLVRNHRQASLEISPITFLTAQTLLMDLGQFLLFCHISSHQHDGMEAYVKVDSCP
EEPQLRMKNNEEAEPYPPPLTPSEMPVVRFPPPNSPSFIQIRSVAKKHPKTWVHY
TAAEEEPWPYAPLVLAPPPRSYKSQYLNNGPQRIGRKYKKVRFMAYTPETFKTRE
AIQHESGTLGPLLYGE^DTLLTTi^NQASRPYNlYPHGTTDVRPLYSRRLPKGV
KHLKDFPILPGEIFKYKWTVTVEDGPTKSDPRCLTRYYSSFVNMERDLASGLIGP
LLICYKESVPQRGNQIMSPKRNVILFSVFPENRSWYLTENIQRFLPNPAGVQLEP
PEFQASNIMHSINGYVFDSLQLSVCLHEVAYWYILSIGAQTDFLSVFFSGYTFKH
KMVYEPTLTLFPFSGETVFMSMENPGLWILGCHNSPFRNRGMTALLKVSSCPKNT
GDY YE PS YE DISAYLL SKNNAIE PRSFSGNSR.S.PSIROFsFIS^IIIFENBPEKTE PEEAEEPPEiPKIGEVSSSDEEPiLEPOSPIPEGESLSDEQE-AEAFIFSEDPSPGAP DSNNSLSPPiPPFEPQPEESGDMVFIPPSGLQPELNPKLGIIAAIELEKLDEKVSS ISNNLPSIIPSDNLAAGPDNISSPGPPSP;PVHYDSGLlG:ILFGKKSSPLPPSGGP LSPSEENNDS.KPLEGGLIiPSQEGSEG.KEVSGIESGELEKGKPAHGPAPLPKDNAP EEVSPGPPKTNKPGNNSAINREIEPDGPSEIIENSPSyWGNPPESDIEEEKyppP PFPEFilPDKNATAIJlFEFPSNEIEFSKNEFIA/QQKKEGPIFPPAQPPDFiSFFKEP EL PE SAP FI QF FEGKES.LNSGQGPS PKOL VSLGPEKS VEGQNPL SEKEKV VVGE G EFIKDVSLKPPr/EPSSPNLRL lELDNLEENEPPNQEKKIQEPIEKKEIL IQENVV EPQLNTVPGTKEENKEEFLLSTEQNVEGSYDGAVAPVlQVNIISLNDSPNPIKKFI AKFS.KKGEPEEIPGLGNQIEGKYP.KYACIPRPSPEISQQEEVIQPSKPALKQLKL PEEEPELE.KEPPVDDEGTQGGKNEKELEPSPLPGPDYNEEEKGAITQSPESDGEP PSKG IPQA.NESPPPPA.KySG FPSIPPPII IRFI.FQ PFSSHIPAAS YRFIFSG POP SSFFFOGAKKNNFSLA IL PEEPIEGDOPEVGSEGISA INS VIYKEVENIVLF.KPEL PKPSGKVEPIMEVEIYGKDIFPPFIENGSPSFPELVEGSIPOSIEGAPKENEAKP PGKVPELPVALFSSAKIPSKLLDPLAEDEEYGIQIPKEFGKSQFKSPFKIAFKKK DIIININACFSNEAIAAINFGQNKFFIFVINAKQGPIERLCSGKFPVLKPHQKEI TRTTLQSPQEEIPYPPTISVEMKKEPFPIYPEPENQSPRSFQKKTRHYFIAAVER LWPYGMSSSPHVLRNRAQSGSVPQFKKVVFQEFTPGSFTQPLYRGELNEHLGLLG
-872018203206 08 May 2018
PYIRAEVEDNIMVTFRNQASRPYSFYSSLISYEEDQRQGAEPRKNFVKPNETKTY FWKVQHHMAPTKDEFDCKAWAYFSDVDLEKDVHSGLIGPLLVCHTNTLNPAHGRQ VTVQEFALFFTIFDETKSWYFTENMERNCRAPCNIQMEDPTFKENYRFHAINGYI MDTLPGLVMAQDQRIRWYLLSMGSNENIHSIHFSGHVFTVRKKEEYKMALYNLYP GVFETVEMLPSKAGIWRVECLIGEHLHAGMSTLFLVYSNKCQTPLGMASGHIRDF QITASGQYGQWAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGAR QKFSSLYISQFIIMYSLDGKKWQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPII ARYIRLHPTHYSIRSTLRMELMGCDLNSCSMPLGMESKAISDAQITASSYFTNMF ATWSPSKARLHLQGRSNAWRPQVNNPKEWLQVDFQKTMKVTGVTTQGVKSLLTSM YVKEFLISSSQDGHQWTLFFQNGKVKVFQGNQDSFTPVVNSLDPPLLTRYLRIHP QSWVHQIALRMEVLGCEAQDLY
TABLE 4. Nucleotide Sequence Encoding Full-Length FVIII (SEQ ID NO: 5)*
661 ATG
CAAATAGAGC TCTCCACCTG
721 CTTCTTTCTG TGCCTTTTGC GATTCTGCTT TAGTGCCACC AGAAGATACT ACCTGGGTGC
781 AGTGGAACTG TCATGGGACT ATATGCAAAG TGATCTCGGT GAGCTGCCTG TGGACGCAAG
841 ATTTCCTCCT AGAGTGCCAA AATCTTTTCC ATTCAACACC TCAGTCGTGT ACAAAAAGAC
901 TCTGTTTGTA GAATTCACGG ATCACCTTTT CAACATCGCT AAGCCAAGGC CACCCTGGAT
961 GGGTCTGCTA GGTCCTACCA TCCAGGCTGA GGTTTATGAT ACAGTGGTCA TTACACTTAA
1021 GAACATGGCT TCCCATCCTG TCAGTCTTCA TGCTGTTGGT GTATCCTACT GGAAAGCTTC
1081 TGAGGGAGCT GAATATGATG ATCAGACCAG TCAAAGGGAG AAAGAAGATG ATAAAGTCTT
1141 CCCTGGTGGA AGCCATACAT ATGTCTGGCA GGTCCTGAAA GAGAATGGTC CAATGGCCTC
1201 TGACCCACTG TGCCTTACCT ACTCATATCT TTCTCATGTG GACCTGGTAA AAGACTTGAA
1261 TTCAGGCCTC ATTGGAGCCC TACTAGTATG TAGAGAAGGG AGTCTGGCCA AGGAAAAGAC
1321 ACAGACCTTG CACAAATTTA TACTACTTTT TGCTGTATTT GATGAAGGGA AAAGTTGGCA
1381 CTCAGAAACA AAGAACTCCT TGATGCAGGA TAGGGATGCT GCATCTGCTC GGGCCTGGCC
1441 TAAAATGCAC ACAGTCAATG GTTATGTAAA CAGGTCTCTG CCAGGTCTGA TTGGATGCCA
1501 CAGGAAATCA GTCTATTGGC ATGTGATTGG AATGGGCACC ACTCCTGAAG TGCACTCAAT
2018203206 08 May 2018
1561 ATTCCTCGAA GGTCACACAT CAGGCGTCCT TGGAAATCTC
1621 GCCAATAACT TTCCTTACTG CTTGGACAGT TTCTACTGTT
1681 TTGTCATATC TCTTCCCACC TATGTCAAAG TAGACAGCTG 1741 TCCAGAGGAA CCCCAACTAC
GCGGAAGACT ATGATGATGA 1801 TCTTACTGAT TCTGAAATGG
GACAACTCTC CTTCCTTTAT 1861 CCAAATTCGC TCAGTTGCCA
GTACATTACA TTGCTGCTGA 1921 AGAGGAGGAC TGGGACTATG
GATGACAGAA GTTATAAAAG 1981 TCAATATTTG AACAATGGCC
TACAAAAAAG TCCGATTTAT 2041 GGCATACACA GATGAAACCT
CAGCATGAAT CAGGAATCTT 2101 GGGACCTTTA CTTTATGGGG
ATTATATTTA AGAATCAAGC 2161 AAGCAGACCA TATAACATCT
GTCCGTCCTT TGTATTCAAG 2221 GAGATTACCA AAAGGTGTAA
ATTCTGCCAG GAGAAATATT 2281 CAAATATAAA TGGACAGTGA
AAATCAGATC CTCGGTGCCT 2341 GACCCGCTAT TACTCTAGTT
CTAGCTTCAG GACTCATTGG 2401 CCCTCTCCTC ATCTGCTACA
GGAAACCAGA TAATGTCAGA 2461 CAAGAGGAAT GTCATCCTGT
CGAAGCTGGT ACCTCACAGA 2521 GAATATACAA CGCTTTCTCC
CTTGAGGATC CAGAGTTCCA 2581 AGCCTCCAAC ATCATGCACA
GATAGTTTGC AGTTGTCAGT 2641 TTGTTTGCAT GAGGTGGCAT
GGAGCACAGA CTGACTTCCT 2701 TTCTGTCTTC TTCTCTGGAT
GTCTATGAAG ACACACTCAC 2761 CCTATTCCCA TTCTCAGGAG
GAAAACCCAG GTCTATGGAT 2821 TCTGGGGTGC CACAACTCAG
ACCGCCTTAC TGAAGGTTTC 2881 TAGTTGTGAC AAGAACACTG
TATGAAGATA TTTCAGCATA 2941 CTTGCTGAGT AAAAACAATG TCCCAGAATT CAAGACACCC 3001 TAGCACTAGG CAAAAGCAAT
GAAAATGACA TAGAGAAGAC
TTCTTGTGAG GAACCATCGC CTCAAACACT CTTGATGGAC AACATGATGG CATGGAAGCT
GAATGAAAAA TAATGAAGAA
ATGTGGTCAG GTTTGATGAT
AGAAGCATCC TAAAACTTGG
CTCCCTTAGT CCTCGCCCCC
CTCAGCGGAT TGGTAGGAAG
TTAAGACTCG TGAAGCTATT
AAGTTGGAGA CACACTGTTG
ACCCTCACGG AATCACTGAT
AACATTTGAA GGATTTTCCA
CTGTAGAAGA TGGGCCAACT
TCGTTAATAT GGAGAGAGAT
AAGAATCTGT AGATCAAAGA
TTTCTGTATT TGATGAGAAC
CCAATCCAGC TGGAGTGCAG
GCATCAATGG CTATGTTTTT
ACTGGTACAT TCTAAGCATT
ATACCTTCAA ACACAAAATG
AAACTGTCTT CATGTCGATG
ACTTTCGGAA CAGAGGCATG
GTGATTATTA CGAGGACAGT
CCATTGAACC AAGAAGCTTC
TTAATGCCAC CACAATTCCA
2018203206 08 May 2018
3061 TGACCCTTGG TTTGCACACA CAAAATGTCT CCTCTAGTGA
3121 TTTGTTGATG CTCTTGCGAC CTATCCTTAT CTGATCTCCA
3181 AGAAGCCAAA TATGAGACTT GGAGCAATAG ACAGTAATAA
3241 CAGCCTGTCT GAAATGACAC CACAGTGGGG ACATGGTATT
3301 TACCCCTGAG TCAGGCCTCC CTGGGGACAA CTGCAGCAAC
3361 AGAGTTGAAG AAACTTGATT AATAATCTGA TTTCAACAAT
3421 TCCATCAGAC AATTTGGCAG TCCTTAGGAC CCCCAAGTAT
3481 GCCAGTTCAT TATGATAGTC GGCAAAAAGT CATCTCCCCT
3541 TACTGAGTCT GGTGGACCTC AATGATTCAA AGTTGTTAGA
3601 ATCAGGTTTA ATGAATAGCC AATGTATCGT CAACAGAGAG
3661 TGGTAGGTTA TTTAAAGGGA TTGTTGACTA AAGATAATGC
3721 CTTATTCAAA GTTAGCATCT ACTTCCAATA ATTCAGCAAC
3781 TAATAGAAAG ACTCACATTG GAGAATAGTC CATCAGTCTG
3841 GCAAAATATA TTAGAAAGTG ACACCTTTGA TTCATGACAG
3901 AATGCTTATG GACAAAAATG CATATGTCAA ATAAAACTAC
3961 TTCATCAAAA AACATGGAAA GGCCCCATTC CACCAGATGC
4021 ACAAAATCCA GATATGTCGT CCAGAATCAG CAAGGTGGAT
4081 ACAAAGGACT CATGGAAAGA GGCCCCAGTC CAAAGCAATT
4141 AGTATCCTTA GGACCAGAAA TTCTTGTCTG AGAAAAACAA
4201 AGTGGTAGTA GGAAAGGGTG CTCAAAGAGA TGGTTTTTCC
4261 AAGCAGCAGA AACCTATTTC CATGAAAATA ATACACACAA
3 21 TCAAGAAAAA AAAAT TCAGG ACATTAATCC AAGAGAATGT
4381 AGTTTTGCCT CAGATACATA TTCATGAAGA ACCTTTTCTT
4441 ACTGAGCACT AGGCAAAATG GCATATGCTC CAGTACTTCA
4501 AGATTTTAGG TCATTAAATG AAACACACAG CTCATTTCTC
GAACACCTAT
AGAGTCCTAC
TTTCTGATGA
ACTTCAGGCC
AATTAAGATT
TCAAAGTTTC
CAGGTACTGA
AATTAGATAC
TGAGCTTGAG
AAGAAAGTTC
AAAGAGCTCA
CTTTGTTAAA
ATGGCCCATC
ACACTGAGTT
CTACAGCTTT
TGGTCCAACA
TCTTTAAGAT
ACTCTCTGAA
AATCTGTGGA
AATTTACAAA
TTACTAACTT
AAGAAATAGA
CAGTGACTGG
TAGAAGGTTC
ATTCAACAAA
GCCTAAAATA
TCCACATGGG
TCCATCACCT
ACAGCTCCAT
AAATGAGAAA
TAGTACATCA
TAATACAAGT
CACTCTATTT
TGAAGAAAAT
ATGGGGAAAA
TGGACCTGCT
GACAAACAAA
ATTATTAATT
TAAAAAAGTG
GAGGCTAAAT
GAAAAAAGAG
GCTATTCTTG
CTCTGGGCAA
AGGTCAGAAT
GGACGTAGGA
GGATAATTTA
AAAGAAGGAA
CACTAAGAAT
ATATGACGGG
TAGAACAAAG
-902018203206 08 May 2018
4561 AAAAAAAGGG GAGGAAGAAA CAAACCAAGC AAATTGTAGA
4621 GAAATATGCA TGCACCACAA CAGCAGAATT TTGTCACGCA
4681 ACGTAGTAAG AGAGCTTTGA GAAGAAACAG AACTTGAAAA
4741 AAGGATAATT GTGGATGACA AACATGAAAC ATTTGACCCC
4801 GAGCACCCTC ACACAGATAG GGGGCCATTA CTCAGTCTCC
4861 CTTATCAGAT TGCCTTACGA GCAAATAGAT CTCCATTACC
4921 CATTGCAAAG GTATCATCAT TATCTGACCA GGGTCCTATT
4981 CCAAGACAAC TCTTCTCATC AAGAAAGATT CTGGGGTCCA
5041 AGAAAGCAGT CATTTCTTAC CTTTCTTTAG CCATTCTAAC
5101 CTTGGAGATG ACTGGTGATC GGGACAAGTG CCACAAATTC
5161 AGTCACATAC AAGAAAGTTG CCAGACTTGC CCAAAACATC
5221 TGGCAAAGTT GAATTGCTTC AAGGACCTAT TCCCTACGGA
5281 AACTAGCAAT GGGTCTCCTG GGGAGCCTTC TTCAGGGAAC
5341 AGAGGGAGCG ATTAAGTGGA AAAGTTCCCT TTCTGAGAGT
5401 AGCAACAGAA AGCTCTGCAA GATCCTCTTG CTTGGGATAA
5461 CCACTATGGT ACTCAGATAC CAAGAGAAGT CACCAGAAAA
5 21 AACAGCT TTT AAGAAAAAGG GCTTGTGAAA GCAATCATGC
5581 AATAGCAGCA ATAAATGAGG GAAGTCACCT GGGCAAAGCA
5641 AGGTAGGACT GAAAGGCTGT TTGAAACGCC ATCAACGGGA
5701 AATAACTCGT ACTACTCTTC GACTATGATG ATACCATATC
5761 AGTTGAAATG AAGAAGGAAG GATGAAAATC AGAGCCCCCG
8 21 CAGCTTTCAA AAGAAAACAC GTGGAGAGGC TCTGGGATTA
5881 TGGGATGAGT AGCTCCCCAC CAGAGTGGCA GTGTCCCTCA
5941 GTTCAAGAAA GTTGTTTTCC TTTACTCAGC CCTTATACCG
6001 TGGAGAACTA AATGAACATT ATAAGAGCAG AAGTTGAAGA
ACTTGGAAGG
GGATATCTCC
AACAATTCAG
CCTCAACCCA
ACTACAATGA
GGAGTCATAG
TTCCATCTAT
TTCCAGCAGC
AAGGAGCCAA
AAAGAGAGGT
AGAACACTGT
CAAAAGTTCA
GCCATCTGGA
ATGAAGCAAA
AGACTCCCTC
CAAAAGAAGA
ATACCATTTT
GACAAAATAA
GCTCTCAAAA
AGTCAGATCA
ATTTTGACAT
GACACTATTT
ATGTTCTAAG
AGGAATTTAC
TGGGACTCCT
CTTGGGAAAT
TAATACAAGC
ACTCCCACTA
GTGGTCCAAA
GAAGGAGAAA
CATCCCTCAA
TAGACCTATA
ATCTTATAGA
AAAAAATAAC
TGGCTCCCTG
TCTCCCGAAA
CATTTATCAG
TCTCGTGGAA
CAGACCTGGA
CAAGCTATTG
GTGGAAATCC
GTCCCTGAAC
GCCCGAAATA
CCCACCAGTC
AGAGGAAATT
TTATGATGAG
TATTGCTGCA
AAACAGGGCT
TGATGGCTCC
GGGGCCATAT
2018203206 08 May 2018
6061 TAATATCATG GTAACTTTCA TATTCCTTCT ATTCTAGCCT
6121 TATTTCTTAT GAGGAAGATC AGAAAAAACT TTGTCAAGCC
6181 TAATGAAACC AAAACTTACT ATGGCACCCA CTAAAGATGA
6241 GTTTGACTGC AAAGCCTGGG CTGGAAAAAG ATGTGCACTC
6301 AGGCCTGATT GGACCCCTTC CTGAACCCTG CTCATGGGAG
6361 ACAAGTGACA GTACAGGAAT TTTGATGAGA CCAAAAGCTG
6421 GTACTTCACT GAAAATATGG TGCAATATCC AGATGGAAGA
6481 TCCCACTTTT AAAGAGAATT GGCTACATAA TGGATACACT
6541 ACCTGGCTTA GTAATGGCTC TATCTGCTCA GCATGGGCAG
6601 CAATGAAAAC ATCCATTCTA TTCACTGTAC GAAAAAAAGA
6661 GGAGTATAAA ATGGCACTGT TTTGAGACAG TGGAAATGTT
6721 ACCATCCAAA GCTGGAATTT GGCGAGCATC TACATGCTGG
6781 GATGAGCACA CTTTTTCTGG ACTCCCCTGG GAATGGCTTC
6841 TGGACACATT AGAGATTTTC TATGGACAGT GGGCCCCAAA
6901 GCTGGCCAGA CTTCATTATT AGCACCAAGG AGCCCTTTTC
6961 TTGGATCAAG GTGGATCTGT GGCATCAAGA CCCAGGGTGC
7021 CCGTCAGAAG TTCTCCAGCC ATCATGTATA GTCTTGATGG
7081 GAAGAAGTGG CAGACTTATC TTAATGGTCT TCTTTGGCAA
7141 TGTGGATTCA TCTGGGATAA CCAATTATTG CTCGATACAT
7201 CCGTTTGCAC CCAACTCATT CGCATGGAGT TGATGGGCTG
7261 TGATTTAAAT AGTTGCAGCA AAAGCAATAT CAGATGCACA
7321 GATTACTGCT TCATCCTACT TGGTCTCCTT CAAAAGCTCG
7381 ACTTCACCTC CAAGGGAGGA GTGAATAATC CAAAAGAGTG
7441 GCTGCAAGTG GACTTCCAGA GTAACTACTC AGGGAGTAAA
7501 ATCTCTGCTT ACCAGCATGT TCCAGCAGTC AAGATGGCCA
GAAATCAGGC CTCTCGTCCC
AGAGGCAAGG AGCAGAACCT
TTTGGAAAGT GCAACATCAT
CTTATTTCTC TGATGTTGAC
TGGTCTGCCA CACTAACACA
TTGCTCTGTT TTTCACCATC
AAAGAAACTG CAGGGCTCCC
ATCGCTTCCA TGCAATCAAT
AGGATCAAAG GATTCGATGG
TTCATTTCAG TGGACATGTG
ACAATCTCTA TCCAGGTGTT
GGCGGGTGGA ATGCCTTATT
TGTACAGCAA TAAGTGTCAG
AGATTACAGC TTCAGGACAA
CCGGATCAAT CAATGCCTGG
TGGCACCAAT GATTATTCAC
TCTACATCTC TCAGTTTATC
GAGGAAATTC CACTGGAACC
AACACAATAT TTTTAACCCT
ATAGCATTCG CAGCACTCTT
TGCCATTGGG AATGGAGAGT
TTACCAATAT GTTTGCCACC
GTAATGCCTG GAGACCTCAG
AGACAATGAA AGTCACAGGA
ATGTGAAGGA GTTCCTCATC
-922018203206 08 May 2018
7561 TCAGTGGACT CTCTTTTTTC AGAATGGCAA AGTAAAGGTT
TTTCAGGGAA ATCAAGACTC
7621 CTTCACACCT GTGGTGAACT CTCTAGACCC ACCGTTACTG
ACTCGCTACC TTCGAATTCA
7681 CCCCCAGAGT TGGGTGCACC AGATTGCCCT GAGGATGGAG GTTCTGGGCT GCGAGGCACA
7741 GGACCTCTAC *The underlined nucleic acids encode a signal peptide.
[0171] FVIII polypeptides include lull-length FVIII, lull-length FVIII minus Met at the N-terminus, mature FVIII (minus the signal sequence), mature FVIII with an additional Met at the N-terminus, and/or FVIII with a lull or partial deletion of the B domain. In certain embodiments, FVIII variants include B domain deletions, whether partial or full deletions.
[0172] The sequence of native mature human FVIII is presented as SEQ ID NO:
4. A native FVIII protein has the following formula: Al-al-A2-a2-B-a3-A3-ClC2, where Al, A2, and A3 are the structurally-related A domains, B is the B domain, Cl and C2 are the structurally-related C domains, and al, a2 and a3 are acidic spacer regions. Referring to the primary amino acid sequence position in SEQ ID NO:4, the Al domain of human FVIII extends from Alai to about Arg336, the al spacer region extends from about Met337 to about Val374, the A2 domain extends from about Ala375 to about Tyr719, the a2 spacer region extends from about Glu720 to about Arg740, the B domain extends from about Ser741 to about Arg 1648, the a3 spacer region extends from about Glut649 to about Argl689, the A3 domain extends from about Seri690 to about Leu2025, the Cl domain extends from about Gly2026 to about Asn2072, and the C2 domain extends from about Ser2073 to Tyr2332. Other than specific proteolytic cleavage sites, designation of the locations of the boundaries between the domains and regions of FVIII can vary in different literature references. The boundaries noted herein are therefore designated as approximate by use of the term about.
[0173] The human FVIII gene was isolated and expressed in mammalian cells (Toole, J. J., et al., Nature 312:342-347 (1984); Gitschier, J., et al., Nature 312:326-330 (1984); Wood, W. I., et al., Nature 312:330-337 (1984); Vehar, G. A., etal., Nature 312:337-342 (1984); WO 87/04187; WO 88/08035; WO 88/03558; and U.S. Pat. No. 4,757,006). The FVIII amino acid sequence was
-93 2018203206 08 May 2018 [0174] [0175] [0176] deduced from cDNA as shown in U.S. Pat. No. 4,965,199. In addition, partially or fully B-domain deleted FVIII is shown in U.S. Pat. Nos. 4,994,371 and 4,868,112. In some embodiments, the human FVIII B-domain is replaced with the human Factor V B-domain as shown in U.S. Pat. No. 5,004,803. The cDNA sequence encoding human Factor VIII and amino acid sequence are shown in SEQ ID NOs: 4 and 5, respectively, of US Application Publ. No. 2005/0100990.
The porcine FVIII sequence is published in Toole, J. J., et al., Proc. Natl. Acad. Sci. USA 83:5939-5942 (1986). Further, the complete porcine cDNA sequence obtained from PCR amplification of FVIII sequences from a pig spleen cDNA library has been reported in Healey, J. F., et al., Blood 88:4209-4214 (1996). Hybrid human/porcine FVIII having substitutions of all domains, all subunits, and specific amino acid sequences were disclosed in U.S. Pat. No. 5,364,771 by Lollar and Runge, and in WO 93/20093. More recently, the nucleotide and corresponding amino acid sequences of the Al and A2 domains of porcine FVIII and a chimeric FVIII with porcine Al and/or A2 domains substituted for the corresponding human domains were reported in WO 94/11503. U.S. Pat. No. 5,859,204, Lollar, J. S., also discloses the porcine cDNA and deduced amino acid sequences. U.S. Pat. No. 6,458,563 discloses a B-domaindeleted porcine FVIII.
U.S. Pat. No. 5,859,204 to Lollar, J. S. reports functional mutants of FVIII having reduced antigenicity and reduced immunoreactivity. U.S. Pat. No.
6,376,463 to Lollar, J. S. also reports mutants of FVIII having reduced immunoreactivity. US Appl. Publ. No. 2005/0100990 to Saenko et al. reports functional mutations in the A2 domain of FVIII.
In one embodiment, the FVIII (or FVIII portion of a chimeric protein) may be at least 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to a FVIII amino acid sequence of amino acids 1 to 1438 of SEQ ID NO: 6 or amino acids 1 to 2332 of SEQ ID NO: 4 (without a signal sequence) or a FVIII amino acid sequence of amino acids 1 to 19 of SEQ ID NO: 3 and 1 to 1438 of SEQ ID NO: 6 or amino acids 1 to 19 of SEQ ID NO: 3 and amino acids 1 to 2332 of SEQ ID NO: 4 (with a signal sequence), wherein the FVIII has a clotting activity, e.g., activates Factor IX as a cofactor to convert Factor X to activated Factor X. The FVIII (or FVIII portion of a chimeric protein) may be identical to a
-942018203206 08 May 2018
FVIII amino acid sequence of amino acids 1 to 1438 of SEQ ID NO: 6 or amino acids 1 to 2332 of SEQ ID NO: 4 (without a signal sequence). The FVIII may further comprise a signal sequence.
[0177] The B-domain of FVIII, as used herein, is the same as the B-domain known in the art that is defined by internal amino acid sequence identity and sites of proteolytic cleavage, e.g., residues Ser741-Arg 1648 of full-length human FVIII. The other human FVIII domains are defined by the following amino acid residues: Al, residues Alal-Arg372; A2, residues Ser373-Arg740; A3, residues Seri690Asn2019; Cl, residues Lys2020-Asn2172; C2, residues Ser2173-Tyr2332. The A3-C1-C2 sequence includes residues Serl690-Tyr2332. The remaining sequence, residues Glul649-Argl689, is usually referred to as the a3 acidic region. The locations of the boundaries for all of the domains, including the B-domains, for porcine, mouse and canine FVIII are also known in the art. In one embodiment, the B domain of FVIII is deleted (B-domain-deleted factor VIII or BDD FVIII). An example of a BDD FVIII is REFACTO® (recombinant BDD FVIII), which has the same sequence as the Factor VIII portion of the sequence in Table 5. (BDD FVIII heavy chain is double underlined; B domain is italicized; and BDD FVIII light chain is in plain text). A nucleotide sequence encoding the amino acid sequence set forth in Table 5 (SEQ ID NO: 7) is shown in Table 6.
TABLE 5. Amino Acid Sequence of B-domain Deleted Factor VIII (BDD
FVIII)
BDD FVIII (SEQ ID NO: 6)
ATRRYYLGAyELSWDYMQSDLGELPyDARFPPRypKSFPFNTSyyYKKTLFyEFT
ΡΗΕΕΫΪΪΑΚΡ]ΫΡΕΜΡΚΕΪ^^
GAEYDDQTSOREKEDDKyFPGGSHTYyWOyLKENGPMASDPLCLTYSYLSHyDLy
KDLNSGLIGALLVCREGSLAKEKTQTLHKFILLFAVFDEGKSWHSETKNSLMQDR
DAASARAWPKMHTyNGYVNRSLPGLIGCHRKSVYWHVIGMGTTPEyHSIFLEGHT
FLyRNHRQASLETSPITFLTAQTLLMDLGQFLLFCHTSSHQHDGMEAYyKyDSCP
EEPQLRNKNNEEAEiGYDDDLTDSEMDWRFDDDNSPsHQTRSyAKKHPKTWyHY lAAEEEDWDYAPLyLAPDDRSYKSQYLENGPQRIGRKYKKyRFMjLYTDETFKTRE
AIOHESGILGPLLYGEyGbTLLIIFKNOASRPYNIYPHGITPyRPLYSRRLPKGy
KHLKDFPILPGEIFKYKWTyTVEDGPTKSDPRCLTRYYSSFVNMERDLASGLIGP
LLICYKESyDQRGNQIMSDKRNyiLFSyFDENRSWYLTENiQRFLPNPAGyQLED
PEFQASNIMHSINGYVFDSLQLSyCLHEyAYWYILSIGAQTDFLSVFFSGYTFKH
KWYEDTLTLFPFSGETWMSMENPGLWTLGCHNSDroNRGRITALLKySSCDKNT
GDYYE DSYE DISAYLLSKNNAIE PRGFgOVRpyLFRPfORE Ϊ TRT T LQ S DQEE Ϊ DY
DDT Ϊ SVEMKKEDFDIYDEDENQS PRSFQKKTRHYFIAAVERLWDYGMS S S PHVLR
-95 2018203206 08 May 2018
NRAQSGSVPQFKKVVFQEFTDGSFTQPLYRGELNEHLGLLGPYIRAEVEDNIMVT FRNQASRPYSFYSSLISYEEDQRQGAEPRKNFVKPNETKTYFWKVQHHMAPTKDE FDCKAWAYFSDVDLEKDVHSGLIGPLLVCHTNTLNPAHGRQVTVQEFALFFTIFD ETKSWYFTENMERNCRAPCNIQMEDPTFKENYRFHAINGYIMDTLPGLVMAQDQR IRWYLLSMGSNENIHSIHFSGHVFTVRKKEEYKMALYNLYPGVFETVEMLPSKAG IWRVECLIGEHLHAGMSTLFLVYSNKCQTPLGMASGHIRDFQITASGQYGQWAPK LARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGARQKFSSLYISQFIIM YSLDGKKWQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIR STLRMELMGCDLNSCSMPLGMESKAISDAQITASSYFTNMFATWSPSKARLHLQG RSNAWRPQVNNPKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVKEFLISSSQDGH QWTLFFQNGKVKVFQGNQDSFTPVVNSLDPPLLTRYLRIHPQSWVHQIALRMEVL GCEAQDLY
TABLE 6. Nucleotide Sequence Encoding BDD FVIII (SEQ ID NO: 7)*
61 A TGCAAATAGA
GCTCTCCACC TGCTTCTTTC
721 TGTGCCTTTT GCGATTCTGC TTTAGTGCCA CCAGAAGATA CTACCTGGGT GCAGTGGAAC
781 TGTCATGGGA CTATATGCAA AGTGATCTCG GTGAGCTGCC TGTGGACGCA AGATTTCCTC
841 CTAGAGTGCC AAAATCTTTT CCATTCAACA CCTCAGTCGT GTACAAAAAG ACTCTGTTTG
901 TAGAATTCAC GGATCACCTT TTCAACATCG CTAAGCCAAG GCCACCCTGG ATGGGTCTGC
961 TAGGTCCTAC CATCCAGGCT GAGGTTTATG ATACAGTGGT CATTACACTT AAGAACATGG
1021 CTTCCCATCC TGTCAGTCTT CATGCTGTTG GTGTATCCTA CTGGAAAGCT TCTGAGGGAG
1081 CTGAATATGA TGATCAGACC AGTCAAAGGG AGAAAGAAGA TGATAAAGTC TTCCCTGGTG
1141 GAAGCCATAC ATATGTCTGG CAGGTCCTGA AAGAGAATGG TCCAATGGCC TCTGACCCAC
1201 TGTGCCTTAC CTACTCATAT CTTTCTCATG TGGACCTGGT AAAAGACTTG AATTCAGGCC
1261 TCATTGGAGC CCTACTAGTA TGTAGAGAAG GGAGTCTGGC CAAGGAAAAG ACACAGACCT
1321 TGCACAAATT TATACTACTT TTTGCTGTAT TTGATGAAGG GAAAAGTTGG CACTCAGAAA
1381 CAAAGAACTC CTTGATGCAG GATAGGGATG CTGCATCTGC TCGGGCCTGG CCTAAAATGC
1441 ACACAGTCAA TGGTTATGTA AACAGGTCTC TGCCAGGTCT GATTGGATGC CACAGGAAAT
1501 CAGTCTATTG GCATGTGATT GGAATGGGCA CCACTCCTGA AGTGCACTCA ATATTCCTCG
1561 AAGGTCACAC ATTTCTTGTG AGGAACCATC GCCAGGCGTC CTTGGAAATC TCGCCAATAA
1621 CTTTCCTTAC TGCTCAAACA CTCTTGATGG ACCTTGGACA GTTTCTACTG TTTTGTCATA
-962018203206 08 May 2018
1681 TCTCTTCCCA CCAACATGAT GGCATGGAAG CTTATGTCAA
AGTAGACAGC TGTCCAGAGG
1741 AACCCCAACT ACGAATGAAA AATAATGAAG AAGCGGAAGA
CTATGATGAT GATCTTACTG
1801 ATTCTGAAAT GGATGTGGTC AGGTTTGATG ATGACAACTC TCCTTCCTTT ATCCAAATTC
1861 GCTCAGTTGC CAAGAAGCAT CCTAAAACTT GGGTACATTA CATTGCTGCT GAAGAGGAGG
1921 ACTGGGACTA TGCTCCCTTA GTCCTCGCCC CCGATGACAG AAGTTATAAA AGTCAATATT
1981 TGAACAATGG CCCTCAGCGG ATTGGTAGGA AGTACAAAAA AGTCCGATTT ATGGCATACA
2041 CAGATGAAAC CTTTAAGACT CGTGAAGCTA TTCAGCATGA ATCAGGAATC TTGGGACCTT
2101 TACTTTATGG GGAAGTTGGA GACACACTGT TGATTATATT TAAGAATCAA GCAAGCAGAC
2161 CATATAACAT CTACCCTCAC GGAATCACTG ATGTCCGTCC TTTGTATTCA AGGAGATTAC
2221 CAAAAGGTGT AAAACATTTG AAGGATTTTC CAATTCTGCC AGGAGAAATA TTCAAATATA
2281 AATGGACAGT GACTGTAGAA GATGGGCCAA CTAAATCAGA TCCTCGGTGC CTGACCCGCT
2341 ATTACTCTAG TTTCGTTAAT ATGGAGAGAG ATCTAGCTTC AGGACTCATT GGCCCTCTCC
2401 TCATCTGCTA CAAAGAATCT GTAGATCAAA GAGGAAACCA GATAATGTCA GACAAGAGGA
2461 ATGTCATCCT GTTTTCTGTA TTTGATGAGA ACCGAAGCTG GTACCTCACA GAGAATATAC
2521 AACGCTTTCT CCCCAATCCA GCTGGAGTGC AGCTTGAGGA TCCAGAGTTC CAAGCCTCCA
2581 ACATCATGCA CAGCATCAAT GGCTATGTTT TTGATAGTTT GCAGTTGTCA GTTTGTTTGC
2641 ATGAGGTGGC ATACTGGTAC ATTCTAAGCA TTGGAGCACA GACTGACTTC CTTTCTGTCT
2701 TCTTCTCTGG ATATACCTTC AAACACAAAA TGGTCTATGA AGACACACTC ACCCTATTCC
2761 CATTCTCAGG AGAAACTGTC TTCATGTCGA TGGAAAACCC AGGTCTATGG ATTCTGGGGT
2821 GCCACAACTC AGACTTTCGG AACAGAGGCA TGACCGCCTT ACTGAAGGTT TCTAGTTGTG
2881 ACAAGAACAC TGGTGATTAT TACGAGGACA GTTATGAAGA TATTTCAGCA TACTTGCTGA
2941 GTAAAAACAA TGCCATTGAA CCAAGAAGCT TCTCTCAAAA CCCACCAGTC TTGAAACGCC
3001 ATCAACGGGA AATAACTCGT ACTACTCTTC AGTCAGATCA AGAGGAAATT GACTATGATG
3061 ATACCATATC AGTTGAAATG AAGAAGGAAG ATTTTGACAT TTATGATGAG GATGAAAATC
3121 AGAGCCCCCG CAGCTTTCAA AAGAAAACAC GACACTATTT TATTGCTGCA GTGGAGAGGC
-972018203206 08 May 2018
3181 TCTGGGATTA TGGGATGAGT AAACAGGGCT CAGAGTGGCA
3241 GTGTCCCTCA GTTCAAGAAA TGATGGCTCC TTTACTCAGC
3301 CCTTATACCG TGGAGAACTA GGGGCCATAT ATAAGAGCAG
3361 AAGTTGAAGA TAATATCATG CTCTCGTCCC TATTCCTTCT
3421 ATTCTAGCCT TATTTCTTAT AGCAGAACCT AGAAAAAACT
3481 TTGTCAAGCC TAATGAAACC GCAACATCAT ATGGCACCCA
3541 CTAAAGATGA GTTTGACTGC TGATGTTGAC CTGGAAAAAG
3601 ATGTGCACTC AGGCCTGATT CACTAACACA CTGAACCCTG
3661 CTCATGGGAG ACAAGTGACA TTTCACCATC TTTGATGAGA
3721 CCAAAAGCTG GTACTTCACT CAGGGCTCCC TGCAATATCC
3781 AGATGGAAGA TCCCACTTTT TGCAATCAAT GGCTACATAA
3841 TGGATACACT ACCTGGCTTA GATTCGATGG TATCTGCTCA
3901 GCATGGGCAG CAATGAAAAC TGGACATGTG TTCACTGTAC
3961 GAAAAAAAGA GGAGTATAAA TCCAGGTGTT TTTGAGACAG
4021 TGGAAATGTT ACCATCCAAA ATGCCTTATT GGCGAGCATC
4081 TACATGCTGG GATGAGCACA TAAGTGTCAG ACTCCCCTGG
4141 GAATGGCTTC TGGACACATT TTCAGGACAA TATGGACAGT
4201 GGGCCCCAAA GCTGGCCAGA CAATGCCTGG AGCACCAAGG
4261 AGCCCTTTTC TTGGATCAAG GATTATTCAC GGCATCAAGA
4321 CCCAGGGTGC CCGTCAGAAG TCAGTTTATC ATCATGTATA
4381 GTCTTGATGG GAAGAAGTGG CACTGGAACC TTAATGGTCT
4441 TCTTTGGCAA TGTGGATTCA TTTTAACCCT CCAATTATTG
4501 CTCGATACAT CCGTTTGCAC CAGCACTCTT CGCATGGAGT
4561 TGATGGGCTG TGATTTAAAT AATGGAGAGT AAAGCAATAT
4621 CAGATGCACA GATTACTGCT GTTTGCCACC TGGTCTCCTT
AGCTCCCCAC ATGTTCTAAG
GTTGTTTTCC AGGAATTTAC
AATGAACATT TGGGACTCCT
GTAACTTTCA GAAATCAGGC
GAGGAAGATC AGAGGCAAGG
AAAACTTACT TTTGGAAAGT
AAAGCCTGGG CTTATTTCTC
GGACCCCTTC TGGTCTGCCA
GTACAGGAAT TTGCTCTGTT
GAAAATATGG AAAGAAACTG
AAAGAGAATT ATCGCTTCCA
GTAATGGCTC AGGATCAAAG
ATCCATTCTA TTCATTTCAG
ATGGCACTGT ACAATCTCTA
GCTGGAATTT GGCGGGTGGA
CTTTTTCTGG TGTACAGCAA
AGAGATTTTC AGATTACAGC
CTTCATTATT CCGGATCAAT
GTGGATCTGT TGGCACCAAT
TTCTCCAGCC TCTACATCTC
CAGACTTATC GAGGAAATTC
TCTGGGATAA AACACAATAT
CCAACTCATT ATAGCATTCG
AGTTGCAGCA TGCCATTGGG
TCATCCTACT TTACCAATAT
2018203206 08 May 2018
/.
[0178] ±681 CAAAAGCTCG ACTTCACCTC CAAGGGAGGA GTAATGCCTG
GAGACCTCAG GTGAATAATC ±741 CAAAAGAGTG GCTGCAAGTG GACTTCCAGA AGACAATGAA
AGTCACAGGA GTAACTACTC ±801 AGGGAGTAAA ATCTCTGCTT ACCAGCATGT ATGTGAAGGA GTTCCTCATC TCCAGCAGTC ±861 AAGATGGCCA TCAGTGGACT CTCTTTTTTC AGAATGGCAA AGTAAAGGTT TTTCAGGGAA ±921 ATCAAGACTC CTTCACACCT GTGGTGAACT CTCTAGACCC ACCGTTACTG ACTCGCTACC ±981 TTCGAATTCA CCCCCAGAGT TGGGTGCACC AGATTGCCCT GAGGATGGAG GTTCTGGGCT ±1 GCGAGGCACA GGACCTCTAC *The underlined nucleic acids encode a signal peptide.
A B-domain-deleted FVIII may have the full or partial deletions disclosed in U.S. Pat. Nos. 6,316,226, 6,346,513, 7,041,635, 5,789,203, 6,060,447, 5,595,886, 6,228,620, 5,972,885, 6,048,720, 5,543,502, 5,610,278, 5,171,844,
5,112,950, 4,868,112, and 6,458,563. In some embodiments, a B-domain-deleted FVIII sequence of the present invention comprises any one of the deletions disclosed at col. 4, line 4 to col. 5, line 28 and Examples 1-5 of U.S. Pat. No. 6,316,226 (also in US 6,346,513). In another embodiment, a B-domain deleted Factor VIII is the S743/Q1638 B-domain deleted Factor VIII (SQ BDD FVIII) (e.g., Factor VIII having a deletion from amino acid 744 to amino acid 1637, e.g., Factor VIII having amino acids 1-743 and amino acids 1638-2332 of SEQ ID NO: 4, i.e., SEQ ID NO: 6). In some embodiments, a B-domain-deleted FVIII of the present invention has a deletion disclosed at col. 2, lines 26-51 and examples 5-8 of U.S. Patent No. 5,789,203 (also US 6,060,447, US 5,595,886, and US 6,228,620). In some embodiments, a B-domain-deleted Factor VIII has a deletion described in col. 1, lines 25 to col. 2, line 40 of US Patent No. 5,972,885; col. 6, lines 1-22 and example 1 of U.S. Patent no. 6,048,720; col. 2, lines 17-46 of U.S. Patent No. 5,543,502; col. 4, line 22 to col. 5, line 36 of U.S. Patent no. 5,171,844; col. 2, lines 55-68, figure 2, and example 1 of U.S. Patent No. 5,112,950; col. 2, line 2 to col. 19, line 21 and table 2 of U.S. Patent No. 4,868,112; col. 2, line 1 to col. 3, line 19, col. 3, line 40 to col. 4, line 67, col. 7, line 43 to col. 8, line 26, and col. 11, line 5 to col. 13, line 39 of U.S. Patent no. 7,041,635; or col. 4, lines 2553, of U.S. Patent No. 6,458,563. In some embodiments, a B-domain-deleted FVIII has a deletion of most of the B domain, but still contains amino-terminal
-992018203206 08 May 2018 [0179] sequences of the B domain that are essential for in vivo proteolytic processing of the primary translation product into two polypeptide chain, as disclosed in WO 91/09122. In some embodiments, a B-domain-deleted FVIII is constructed with a deletion of amino acids 747-1638, i.e., virtually a complete deletion of the B domain. Hoeben R.C., et al. J. Biol. Chem. 265 (13): 7318-7323 (1990). A Bdomain-deleted Factor VIII may also contain a deletion of amino acids 771-1666 or amino acids 868-1562 of FVIII. Meulien P., et al. Protein Eng. 2(4): 301-6 (1988). Additional B domain deletions that are part of the invention include: deletion of amino acids 982 through 1562 or 760 through 1639 (Toole et al., Proc. Natl. Acad. Sci. U.S.A. (1986) 83, 5939-5942)), 797 through 1562 (Eaton, et al. Biochemistry (1986) 25:8343-8347)), 741 through 1646 (Kaufman (PCT published application No. WO 87/04187)), 747-1560 (Sarver, et al., DNA (1987) 6:553-564)), 741 through 1648 (Pasek (PCT application No.88/00831)), or 816 through 1598 or 741 through 1648 (Lagner (Behring Inst. Mitt. (1988) No 82:1625, EP 295597)). In other embodiments, BDD FVIII includes a FVIII polypeptide containing fragments of the B-domain that retain one or more N-linked glycosylation sites, e.g., residues 757, 784, 828, 900, 963, or optionally 943, which correspond to the amino acid sequence of the full-length FVIII sequence. Examples of the B-domain fragments include 226 amino acids or 163 amino acids of the B-domain as disclosed in Miao, H.Z., et al., Blood 103(a): 3412-3419 (2004), Kasuda, A, et al., J. Thromb. Haemost. 6: 1352-1359 (2008), and Pipe, S.W., et al., J. Thromb. Haemost. 9: 2235-2242 (2011) (i.e., the first 226 amino acids or 163 amino acids of the B domain are retained). In still other embodiments, BDD FVIII further comprises a point mutation at residue 309 (from Phe to Ser) to improve expression of the BDD FVIII protein. See Miao, H.Z., et al., Blood 103(a): 3412-3419 (2004). In still other embodiments, the BDD FVIII includes a FVIII polypeptide containing a portion of the B-domain, but not containing one or more furin cleavage sites (e.g., Argl313 and Arg 1648). See Pipe, S.W., et al., J. Thromb. Haemost. 9: 2235-2242 (2011). Each of the foregoing deletions may be made in any FVIII sequence.
In some embodiments, the FVIII has a partial B-domain. In some embodiments, the FVIII protein with a partial B-domain is FVIII 198 (SEQ ID NO: 89). FVIII198 is a partial B-domain containing single chain FVIIIFc
- 1002018203206 08 May 2018 [0180] [0181] [0182] [0183] molecule-226N6. 226 represents the N-terminus 226 amino acid of the FVIII Bdomain, and N6 represents six N-glycosylation sites in the B-domain.
In one embodiment, FVIII is cleaved right after arginine at amino acid 1648 (in full-length Factor VIII or SEQ ID NO: 4), amino acid 754 (in the S743/Q1638 B-domain deleted Factor VIII or SEQ ID NO: 6), or the corresponding arginine residue (in other variants), thereby resulting in a heavy chain and a light chain. In another embodiment, FVIII comprises a heavy chain and a light chain, which are linked or associated by a metal ion-mediated noncovalent bond.
In other embodiments, FVIII is a single chain FVIII that has not been cleaved right after Arginine at amino acid 1648 (in full-length FVIII or SEQ ID NO: 4), amino acid 754 (in the S743/Q1638 B-domain-deleted FVIII or SEQ ID NO: 6), or the corresponding Arginine residue (in other variants). A single chain FVIII may comprise one or more amino acid substitutions. In one embodiment, the amino acid substitution is at a residue corresponding to residue 1648, residue 1645, or both of full-length mature Factor VIII polypeptide (SEQ ID NO: 4) or residue 754, residue 751, or both of SQ BDD Factor VIII (SEQ ID NO: 6). The amino acid substitution can be any amino acids other than arginine, e.g., isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, valine, alanine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, selenocysteine, serine, tyrosine, histidine, ornithine, pyrrolysine, or taurine.
FVIII can further be cleaved by thrombin and then activated as FVIIIa, serving as a cofactor for activated Factor IX (FIXa). And the activated FIX together with activated FVIII forms a Xase complex and converts Factor X to activated Factor X (FXa). For activation, FVIII is cleaved by thrombin after three Arginine residues, at amino acids 372, 740, and 1689 (corresponding to amino acids 372, 740, and 795 in the B-domain deleted FVIII sequence), the cleavage generating FVIIIa having the 50kDa Al, 43kDa A2, and 73kDa A3-C1-C2 chains In one embodiment, the FVIII protein useful for the present invention is nonactive FVIII. In another embodiment, the FVIII protein is an activated FVIII.
The protein having FVIII polypeptide linked to or associated with the VWF fragment can comprise a sequence at least 50%, 60%, 70%, 80%, 90%,
- 101 2018203206 08 May 2018 [0184] [0185]
95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 4 or 6, wherein the sequence has the FVIII clotting activity, e.g., activating Factor IX as a cofactor to convert Factor X to activated Factor X (FXa).
Hybrid or chimeric polypeptides and proteins, as used herein, includes a combination of a first polypeptide chain, e.g., the VWF fragment, optionally fused to a first Ig constant region or a portion thereof, with a second polypeptide chain, e.g., a FVIII protein linked to an XTEN sequence, optionally fused to a second Ig constant region or a portion thereof, thereby forming a heterodimer. In one embodiment, the first polypeptide and the second polypeptide in a hybrid are associated with each other via protein-protein interactions, such as charge-charge or hydrophobic interactions. In another embodiment, the first polypeptide and the second polypeptide in a hybrid are associated with each other via disulfide or other covalent bond(s). Hybrids are described, for example, in US 2004/101740 and US 2006/074199. The second polypeptide may be an identical copy of the first polypeptide or a non-identical polypeptide. In one embodiment, the first polypeptide is a FVIII protein(X)-Fc fusion protein, and the second polypeptide is a polypeptide comprising, consisting essentially of, or consisting of an Fc region, wherein the first polypeptide and the second polypeptide are associated with each other. In another embodiment, the first polypeptide comprises a VWF ffagmentXTEN-Fc fusion protein, and the second polypeptide comprises FVIII-Fc fusion protein, making the hybrid a heterodimer. In other embodiments, the first polypeptide comprises a VWF ffagment-Fc fusion protein, and the second polypeptide comprises FVIII(X)-Fc fusion protein, making the hybrid a heterodimer. In yet other embodiments, the first polypeptide comprises a VWF fragment-XTEN-Fc fusion protein, and the second polypeptide comprises FVIII(X)-Fc fusion protein. The first polypeptide and the second polypeptide can be associated through a covalent bond, e.g., a disulfide bond, between the first Fc region and the second Fc region. The first polypeptide and the second polypeptide can further be associated with each other by binding between the VWF fragment and the FVIII protein.
A FVIII protein useful in the present invention can include FVIII having one or more additional XTEN sequences, which do not affect the FVIII coagulation activity. Such XTEN sequences can be fused to the C-terminus or N- 1022018203206 08 May 2018 [0186] [0187] terminus of the FVIII protein or inserted between one or more of the two amino acid residues in the FVIII protein wherein the insertions do not affect the FVIII coagulation activity or FVIII function. In one embodiment, the insertions improve pharmacokinetic properties of the FVIII protein (e.g., half-life). In another embodiment, the insertions can be multiple insertions, e.g., more than two, three, four, five, six, seven, eight, nine, or ten insertions. Examples of the insertion sites include, but are not limited to, the sites listed in Tables 7, 8, 9, 10, 11, 12, 13, 14, 15 or any combinations thereof.
The FVIII protein linked to one or more XTEN sequences can be represented as FVIII(X), FVIII(Xl), FVIII^-X-FVIII^ wherein FVIII^ comprises, consists essentially of, or consists of a first portion of a FVIII protein from amino acid residue a to amino acid residue b; X or XI comprises, consists essentially of, or consists of one or more XTEN sequences, FVIIΙ^-,ψ comprises, consists essentially of, or consists of a second portion of a FVIII protein from amino acid residue c to amino acid residue d;
a is the N-terminal amino acid residue of the first portion of the FVIII protein, b is the C-terminal amino acid residue of the first portion of the FVIII protein but is also the N-terminal amino acid residue of the two amino acids of an insertion site in which the XTEN sequence is inserted, c is the N-terminal amino acid residue of the second portion of the FVIII protein but is also the C-terminal amino acid residue of the two amino acids of an insertion site in which the XTEN sequence is inserted, and d is the C-terminal amino acid residue of the FVIII protein, and wherein the first portion of the FVIII protein and the second portion of the FVIII protein are not identical to each other and are of sufficient length together such that the FVIII protein has a FVIII coagulation activity.
In one embodiment, the first portion of the FVIII protein and the second portion of the FVIII protein are fragments of SEQ ID NO: 4 [full length mature FVIII sequence] or SEQ ID NO: 6 [B-domain deleted FVIII], e.g., N-terminal portion and C-terminal portion, respectively. In certain embodiments, the first portion of the FVIII protein comprises the Al domain and the A2 domain of the FVIII protein. The second portion of the FVIII protein comprises the A3 domain, the Cl domain, and optionally the C2 domain. In yet other embodiments, the first
- 103 2018203206 08 May 2018 [0188] portion of the FVIII protein comprises the Al domain and A2 domain, and the second portion of the FVIII protein comprises a portion of the B domain, the A3 domain, the Cl domain, and optionally the C2 domain. In still other embodiments, the first portion of the FVIII protein comprises the Al domain, A2 domain, and a portion of the B domain of the FVIII protein, and the second portion of the FVIII protein comprises the A3 domain, the Cl domain, and optionally the C2 domain. In still other embodiments, the first portion of the FVIII protein comprises the Al domain, A2 domain, and a first portion of the B domain of the FVIII protein. The second portion of the FVIII protein comprises a second portion of the B domain, the A3 domain, the C1 domain, and optionally the C2 domain. In some embodiments, the two amino acids (b and c) can be any one or more of the amino acid residues insertion sites shown in Tables 7, 8, 9, 10, 11, 12, 13, 14, and 15. For example, b can be the amino acid residue immediately upstream of the site in which one or more XTEN sequences are inserted or linked, and c can be the amino acid residue immediately downstream of the site in which the one or more XTEN sequences are inserted or linked. In some embodiments, a is the first mature amino acid sequence of a FVIII protein, and d is the last amino acid sequence of a FVIII protein. For example,
FVIcan be an amino acid sequence at least 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acids 1 to 745 of SEQ ID NO: 6 [B domain deleted FVIII amino acid sequence] or SEQ ID NO: 4 [full length FVIII] and FVIII^ can be amino acids 746 to 1438 of SEQ ID NO: 6 or amino acids 1641 to 2332 of SEQ ID NO: 4, respectively.
In some aspects, the insertion site in the FVIII protein is located in one or more domains of the FVIII protein, which is the N-terminus, the Al domain, the A2 domain, the A3 domain, the B domain, the Cl domain, the C2 domain, the Cterminus, or two or more combinations thereof or between two domains of the FVIII protein, which are the Al domain and al acidic region, and the al acidic region and A2 domain, the A2 domain and a2 acidic region, the a2 acidic region and B domain, the B domain and A3 domain, and the A3 domain and C1 domain, the Cl domain and C2 domain, or any combinations thereof. For example, the insertion sites in which the XTEN sequence can be inserted are selected from the group consisting of the N-terminus and Al domain, the N-terminus and A2
- 1042018203206 08 May 2018 [0189] [0190] [0191] domain, the N-terminus and A3 domain, the N-terminus and B domain, the Nterminus and Cl domain, the N-terminus and C2 domain, the N-terminus and the C-terminus, the Al and A2 domains, the Al and A3 domains, the Al and B domains, the Al and Cl domains, the Al and C2 domains, the Al domain and the C-terminus, the A2 and A3 domains, the A2 and B domains, the A2 and Cl domains, the A2 and C2 domains, the A2 domain and the C-terminus, the A3 and B domains, the A3 and C1 domains, the A3 and C2 domains, the A3 domain and the C-terminus, the B and Cl domains, the B and C2 domains, the B domain and the C-terminus, the Cl and C2 domains, the Cl and the C-terminus, the C2 domain, and the C-terminus, and two or more combinations thereof. Non-limiting examples of the insertion sites are listed in Tables 7, 8, 9, 10, 11, 12, 13, 14, and 15.
The FVIII protein, in which the XTEN sequence is inserted immediately downstream of one or more amino acids (e.g., one or more XTEN insertion sites) in the FVIII protein or linked at the C-terminus or the N-terminus, retains the FVIII activity after linkage to or insertion by the XTEN sequence. The XTEN sequence can be inserted in the FVIII protein once or more than once, twice, three times, four times, five times, or six times such that the insertions do not affect the FVIII activity (i.e., the FVIII protein still retains the coagulation property).
The FVIII protein useful in the present invention can be linked to one or more XTEN polypeptides at the N-terminus or C-terminus of the FVIII protein by an optional linker or inserted immediately downstream of one or more amino acids (e.g., one or more XTEN insertion sites) in the FVIII protein by one or more optional linkers. In one embodiment, the two amino acid residues in which the XTEN sequence is inserted or the amino acid residue to which the XTEN sequence is linked correspond to the two or one amino acid residues of SEQ ID NO: 4 [full length mature FVIII] selected from the group consisting of the residues in Table 7, Table 8, Table 9, and Table 10 and any combinations thereof.
In other embodiments, at least one XTEN sequence is inserted in any one or more XTEN insertion sites disclosed herein or any combinations thereof. In one aspect, at least one XTEN sequence is inserted in one or more XTEN insertion sites disclosed in one or more amino acids disclosed in Table 7.
- 105 2018203206 08 May 2018
TABLE 7: Exemplary XTEN Insertion Sites
11111111 llllllllll Insertion Point* insertion Residue FVIII BDD Downstream Sequence FVIII Domain
1 0 (N- terminus) ATR Al
2 3 R RYY Al
3 17 M QSD Al
4 18 Q SDL Al
5 22 G ELP Al
6 24 L PVD Al
7 26 V DAR Al
8 28 A RFP Al
9 32 P RVP Al
10 38 F PFN Al
11 40 F NTS Al
12 41 N TSV Al
13 60 N IAK Al
14 61 I AKP Al
15 65 R PPW Al
16 81 Y DTV Al
17 111 G AEY Al
18 116 D QTS Al
19 119 S QRE Al
20 120 Q REK Al
21 128 V FPG Al
22 129 F PGG Al
23 130 P GGS Al
24 182 G SLA Al
25 185 A KEK Al
26 188 K TQT Al
27 205 G KSW Al
28 210 S ETK Al
29 211 E TKN Al
30 216 L MQD Al
31 220 R DAA Al
32 222 A ASA Al
33 223 A SAR Al
34 224 S ARA Al
35 230 K MHT Al
36 243 P GLI Al
37 244 G LIG Al
38 250 R KSV Al
39 318 D GME Al
40 333 P QLR Al
42 334 Q LRM Al
43 336 R MKN al
- 1062018203206 08 May 2018
11111111 llllllllll Insertion Point* Insertion Residue FVIII BDD Downstream Sequence FVIII Domain
44 339 N NEE al
45 345 D YDD al
46 357 V VRF al
47 367 s FIQ al
48 370 s RPY al
49 375 A KKH A2
50 376 K KHP A2
51 378 H PKT A2
52 399 V LAP A2
53 403 D DRS A2
54 405 R SYK A2
55 409 S QYL A2
56 416 P QRI A2
57 434 E TFK A2
58 438 T REA A2
59 441 A IQH A2
60 442 I QHE A2
61 463 I IFK A2
62 487 Y SRR A2
63 490 R LPK A2
64 492 P KGV A2
65 493 K GVK A2
66 494 G VKH A2
67 500 D FPI A2
68 506 G EIF A2
69 518 E DGP A2
70 556 K ESV A2
71 565 Q IMS A2
72 566 I MSD A2
73 598 P AGV A2
74 599 A GVQ A2
75 603 L EDP A2
76 616 s ING A2
77 686 G LWI A2
78 713 K NTG A2
79 719 Y EDS A2
80 730 L LSK A2
81 733 K NNA A2
82 745 N PPV** B
83 1640 P PVL B
84 1652 R TTL B
85 1656 Q SDQ A3
86 1685 N QSP A3
87 1711 M sss A3
88 1713 S SPH A3
- 1072018203206 08 May 2018
11111111 IllBlllll! Insertion Point* Insertion Residue FVIII BDD Downstream Sequence FVIII Domain
89 1720 N RAQ A3
90 1724 S GSV A3
91 1725 G SVP A3
92 1726 S VPQ A3
93 1741 G SFT A3
94 1744 T QPL A3
95 1749 R GEL A3
96 1773 V TFR A3
97 1792 Y EED A3
98 1793 E EDQ A3
99 1796 Q RQG A3
100 1798 Q GAE A3
101 1799 G AEP A3
102 1802 P RKN A3
103 1803 R KNF A3
104 1807 V KPN A3
105 1808 K PNE A3
106 1827 K DEF A3
107 1844 E KDV A3
108 1861 N TLN A3
109 1863 L NPA A3
110 1896 E RNC A3
111 1900 R APC A3
112 1904 N IQM A3
113 1905 I QME A3
114 1910 P TFK A3
115 1920 A ING A3
116 1937 D QRI A3
117 1981 G VFE A3
118 2019 N KCQ A3
119 2020 K CQT Cl
120 2044 G QWA Cl
121 2068 F SWI Cl
122 2073 V DLL Cl
123 2090 R QKF Cl
124 2092 K FSS Cl
125 2093 F SSL Cl
126 2111 K WQT Cl
127 2115 Y RGN Cl
128 2120 T GTL Cl
129 2125 V FFG Cl
130 2171 L NSC Cl
131 2173 s CSM C2
132 2188 A QIT C2
133 2223 V NNP C2
- 108 2018203206 08 May 2018
11111111 llllllllll Insertion Point* Insertion Residue FVIII BDD Downstream Sequence FVIII Domain
134 2224 N NPK C2
135 2227 K EWL C2
136 2268 G HQW C2
137 2277 N GKV C2
138 2278 G KVK C2
139 2290 F TPV C2
140 2332 Y C terminus of FVIII CT
* Indicates an insertion point for XTEN based on the amino acid number of mature fulllength human FVIII, wherein the insertion could be either on the N- or C-terminal side of the indicated amino acid.
[0192] In some embodiments, one or more XTEN sequences are inserted within about six amino acids up or down from amino acids 32, 220, 224, 336, 339, 399, 416, 603, 1656, 1711, 1725, 1905, or 1910, corresponding to SEQ ID NO: 4 or any combinations thereof.
TABLE 8. Exemplary XTEN Insertion Ranges
IIHIIII llllllllll Insertion Point Insertion Residue FVIII BDD Downstrea m Sequence FVIII Domain Distance from insertion residue*
9 32 P RVP Al -3,+6
31 220 R DAA Al -
34 224 S ARA Al +5
43 336 R MKN al -1,+6
44 339 N NEE al -4, +5
52 399 V LAP A2 -6, +3
56 416 P QRI A2 +6
75 603 L EDP A2 6, +6
85 1656 Q SDQ B -3,+6
87 1711 M sss A3 -6,+1
91 1725 G SVP A3 +6
113 1905 I QME A3 +6
114 1910 P TFK A3 -5,+6
*Distance from insertion residue refers to the relative number of amino acids away from the N-terminus (negative numbers) or C-terminus (positive numbers) of the designated insertion residue (residue 0) where an insertion may be made. The designation -x refers to an insertion site which is x amino acids away on the Nterminal side of the designated insertion residue. Similarly, the designation +x
- 109refers to an insertion site which is x amino acids away on the C-terminal side of the designated insertion residue.
For example, -1, +2 indicates that the insertion is made at the N-terminus or Cterminus of amino acid residues denoted -1, 0, +1 or +2.
[0193] In other embodiments, one or more XTEN sequences are inserted immediately down stream of one or more amino acids corresponding to the fulllength mature human FVIII selected from the group consisting of one or more insertion sites in Table 9.
TABLE 9. Exemplary XTEN Insertion Sites or Ranges
2018203206 08 May 2018
iiiiiiii XTEN Insertion Point Range* First Insertion Residue IYIII Domain
3 18-32 Q Al
8 40 F Al
18 211-224 E Al
27 336-403 R Al, A2
43 599 A A2
47 745-1640 N B
50 1656-1728 Q B, a3, A3
57 1796-1804 R A3
65 1900-1912 R A3
81 2171-2332 L C1,C2
* indicates range of insertion sites numbered relative to the amino acid number of mature human FVIII [0194] In yet other embodiments, one or more XTENs are inserted in the B domain of FVIII. In one example, an XTEN is inserted between amino acids 740 and 1640 corresponding to SEQ ID NO: 4, wherein the FVIII sequence between amino acids 740 and 1640 is optionally not present. In another example, an XTEN is inserted between amino acids 741 and 1690 corresponding to SEQ ID NO: 4, wherein the FVIII sequence between amino acids 740 and 1690 is optionally not present. In other examples, an XTEN is inserted between amino acids 741 and 1648 corresponding to SEQ ID NO: 4, wherein the FVIII sequence between amino acids 741 and 1648 is optionally not present. In yet other examples, an XTEN is inserted between amino acids 743 and 1638 corresponding to SEQ ID NO: 4, wherein the FVIII sequence between amino acids 743 and 1638 is optionally not present. In still other examples, an XTEN is inserted between
- 1102018203206 08 May 2018 [0195] amino acids 745 and 1656 corresponding to SEQ ID NO: 4, wherein the FVIII sequence between amino acids 745 and 1656 is optionally not present. In some examples, an XTEN is inserted between amino acids 745 and 1657 corresponding to SEQ ID NO: 4, wherein the FVIII sequence between amino acids 745 and 1657 is optionally not present. In certain examples, an XTEN is inserted between amino acids 745 and 1667 corresponding to SEQ ID NO: 4, wherein the FVIII sequence between amino acids 745 and 1667 is optionally not present. In still other examples, an XTEN is inserted between amino acids 745 and 1686 corresponding to SEQ ID NO: 4, wherein the FVIII sequence between amino acids 745 and 1686 is optionally not present. In some other examples, an XTEN is inserted between amino acids 747 and 1642 corresponding to SEQ ID NO: 4, wherein the FVIII sequence between amino acids 747 and 1642 is optionally not present. In still other examples, an XTEN is inserted between amino acids 751 and 1667 corresponding to SEQ ID NO: 4, wherein the FVIII sequence between amino acids 751 and 1667 is optionally not present.
In some embodiments, one or more XTENs are inserted in one or more amino acids immediately downstream of an amino acid of an insertion site selected from the group consisting of the amino acid residues in Table 10.
- Ill TABLE 10: FVIII XTEN insertion sites and construct designations
2018203206 08 May 2018
Construct Number Domain Upstream Residue lllOdlllill Downstream Residue iiiiililiiii Upstream Sequence Downstream Sequence
F8X-1 Al 3 4 ATR RYY
F8X-2 Al 18 19 YMQ SDL
F8X-3 Al 22 23 DLG ELP
F8X-4 Al 26 27 LPV DAR
F8X-5 Al 40 41 FPF NTS
F8X-6 Al 60 61 LFN IAK
F8X-7 Al 116 117 YDD QTS
F8X-8 Al 130 131 VFP GGS
F8X-9 Al 188 189 KEK TQT
F8X-10 Al 216 217 NSL MQD
F8X-11 Al 230 231 WPK MHT
F8X-12 Al 333 334 EEP QLR
F8X-13 A2 375 376 SVA KKH
F8X-14 A2 403 404 APD DRS
F8X-15 A2 442 443 EAI QHE
F8X-16 A2 490 491 RRL PKG
F8X-17 A2 518 519 TVE DGP
F8X-18 A2 599 600 NPA GVQ
F8X-19 A2 713 714 CDK NTG
F8X-20 BD 745 746 SQN PPV
F8X-21 BD 745 746 SQN PPV
F8X-22 BD** 745 746 SQN PPV
F8X-23 A3 1720 1721 APT KDE
F8X-24 A3 1796 1797 EDQ RQG
F8X-25 A3 1802 1803 AEP RKN
F8X-26 A3 1827 1828 PTK DEF
F8X-27 A3 1861 1862 HTN TLN
F8X-28 A3 1896 1897 NME RNC
F8X-29 A3 1900 1901 NCR APC
F8X-30 A3 1904 1905 PCN IQM
F8X-31 A3 1937 1938 AQD QRI
F8X-32 Cl 2019 2020 YSN KCQ
F8X-33 Cl 2068 2069 EPF SWI
F8X-34 Cl 2111 2112 GKK WQT
F8X-35 Cl 2120 2121 NST GTL
F8X-36 C2 2171 2172 CDL NSC
F8X-37 C2 2188 2189 SDA QIT
F8X-38 C2 2227 2228 NPK EWL
F8X-39 C2 2277 2278 FQN GKV
F8X-40 CT 2332 NA DLY NA
F8X-41 CT 2332 NA DLY NA
F8X-42 Al 3 4 ATR ATR
pSDOOOl A2 403 404
pSD0002 A2 599 600
- 1122018203206 08 May 2018
pSD0021 N-term 0 1
pSD0022 Al 32 33
pSD0023 Al 65 66
pSD0024 Al 81 82
pSD0025 Al 119 120
pSD0026 Al 211 212
pSD0027 Al 220 221
pSD0028 Al 224 225
pSD0029 Al 336 337
pSD0030 Al 339 340
pSD0031 A2 378 379
pSD0032 A2 399 400
pSD0033 A2 409 410
pSD0034 A2 416 417
pSD0035 A2 487 488
pSD0036 A2 494 495
pSD0037 A2 500 501
pSD0038 A2 603 604
pSD0039 A3 1656 1657
pSD0040 A3 1711 1712
pSD0041 A3 1725 1726
pSD0042 A3 1749 1750
pSD0043 A3 1905 1906
pSD0044 A3 1910 1911
pDS0062 A3 1900 1901
* Indicates the amino acid number of the mature FVIII protein [0196]
In one embodiment, the one or more XTEN insertion sites are located within one or more surface-exposed, flexible loop structure of the FVIII protein (e.g., a permissive loop). For example, at least one XTEN sequence can be inserted in each FVIII A domain comprising at least two permissive loops into which at least one XTEN polypeptide can be inserted without eliminating procoagulant activity of the recombinant protein, or the ability of the recombinant proteins to be expressed in vivo or in vitro in a host cell. The permissive loops are regions that allow insertion of at least one XTEN sequence with, among other attributes, high surface or solvent exposure and high conformational flexibility. The Al domain comprises a permissive loop-1 (Al-1) region and a permissive loop-2 (A 1-2) region, the A2 domain comprises a permissive loop-1 (A2-1) region and a permissive loop-2 (A2-2) region, the A3 domain comprises a permissive loop-1 (A3-1) region and a permissive loop-2 (A3-2) region.
- 113 2018203206 08 May 2018 [0197] [0198]
In one aspect, a first permissive loop in the FVIII Al domain (Al-1) is located between beta strand 1 and beta strand 2, and a second permissive loop in the FVIII A2 domain (Al-2) is located between beta strand 11 and beta strand 12. A first permissive loop in the FVIII A2 domain (A2-1) is located between beta strand 22 and beta strand 23, and a second permissive loop in the FVIII A2 domain (A2-2) is located between beta strand 32 and beta strand 33. A first permissive loop in the FVIII A3 domain (A3-1) is located between beta strand 38 and beta strand 39, and a second permissive loop in the FVIII A3 (A3-2) is located between beta strand 45 and beta strand 46. In certain aspects, the surface-exposed, flexible loop structure comprising Al-1 corresponds to a region in native mature human FVIII from about amino acid 15 to about amino acid 45 of SEQ IDNO: 4, e.g., from about amino acid 18 to about amino acid 41 of SEQ ID NO: 4. In other aspects, the surface-exposed, flexible loop structure comprising Al-2 corresponds to a region in native mature human FVIII from about amino acid 201 to about amino acid 232 of SEQ ID NO: 4, e.g., from about amino acid 218 to about amino acid 229 of SEQ ID NO: 4. In yet other aspects, the surface-exposed, flexible loop structure comprising A2-1 corresponds to a region in native mature human FVIII from about amino acid 395 to about amino acid 421 of SEQ ID NO: 4, e.g. from about amino acid 397 to about amino acid 418 of SEQ ID NO: 4. In still other embodiments, the surface-exposed, flexible loop structure comprising A2-2 corresponds to a region in native mature human FVIII from about amino acid 577 to about amino acid 635 of SEQ ID NO: 4, e.g., from about amino acid 595 to about amino acid 607 of SEQ ID NO: 4. In certain aspects the surface-exposed, flexible loop structure comprising A3-1 corresponds to a region in native mature human FVIII from about amino acid 1705 to about amino acid 1732 of SEQ ID NO: 4, e.g., from about amino acid 1711 to about amino acid 1725 of SEQ ID NO: 4. In yet other aspects, the surface-exposed, flexible loop structure comprising A3-2 corresponds to a region in native mature human FVIII from about amino acid 1884 to about amino acid 1917 of SEQ ID NO: 4, e.g., from about amino acid 1899 to about amino acid 1911 of SEQ ID NO: 4.
In another embodiment, the one or more amino acids in which at least one XTEN sequence is inserted is located within a3 domain, e.g., amino acids 1649 to 1689, corresponding to full-length mature FVIII polypeptide. In a particular
- 114embodiment, an XTEN sequence is inserted between amino acids 1656 and 1657 of SEQ ID NO: 4 (full-length mature FVIII). In a specific embodiment, a FVIII protein comprising an XTEN sequence inserted immediately downstream of amino acid 1656 corresponding to SEQ ID NO: 4 further comprises a deletion from amino acid 745 to amino acid 1656 corresponding to SEQ ID NO: 4.
In some embodiments, the one or more insertion sites for one or more XTEN insertions are immediately downstream of one or more amino acids selected from the group consisting of:
2018203206 08 May 2018 [0199]
(1) amino acid 3, (2) amino acid 18, (3) amino acid 22,
(4) amino acid 26, (5) amino acid 32, (6) amino acid 40,
(7) amino acid 60, (8) amino acid 65, (9) amino acid 81,
(10) amino acid 116, (11) amino acid 119, (12) amino acid 130,
(13) amino acid 188, (14) amino acid 211, (15) amino acid 216,
(16) amino acid 220, (17) amino acid 224, (18) amino acid 230,
(19) amino acid 333, (20) amino acid 336, (21) amino acid 339,
(22) amino acid 375, (23) amino acid 399, (24) amino acid 403,
(25) amino acid 409, (26) amino acid 416, (26) amino acid 442,
(28) amino acid 487, (29) amino acid 490, (30) amino acid 494,
(31) amino acid 500, (32) amino acid 518, (33) amino acid 599,
(34) amino acid 603, (35) amino acid 713, (36) amino acid 745,
(37) amino acid 1656, amino acid 1720, (38) amino acid 1711, (39)
(40) amino acid 1725, amino acid 1796, (41) amino acid 1749, (42)
(43) amino acid 1802, amino acid 1861, (44) amino acid 1827, (45)
(46) amino acid 1896, amino acid 1904, (47) amino acid 1900, (48)
(49) amino acid 1905, amino acid 1937, (50) amino acid 1910, (51)
(52) amino acid 2019, amino acid 2111, (53) amino acid 2068, (54)
- 115 2018203206 08 May 2018 [0200] (57) (55) amino acid 2120, (56) amino acid 2171, amino acid 2188, (58) amino acid 2227, (59) amino acid 2277, and (60) two or more combinations thereof.
In one embodiment, a FVIII protein useful for the invention comprises two
XTEN sequences, a first XTEN sequence inserted into a first XTEN insertion site and a second XTEN inserted into a second XTEN insertion site. Non-limiting examples of the first XTEN insertion site and the second XTEN insertion site are listed in Table 11.
TABLE 11. Exemplary Insertion Sites for Two XTENs
Insertion I Insertion 2
Insertion Site Domain Insertion Site Domain
745 B 2332 CT
26 Al 403 A2
40 Al 403 A2
18 Al 403 A2
26 Al 599 A2
40 Al 599 A2
18 Al 599 A2
1720 A3 1900 A3
1725 A3 1900 A3
1711 A3 1905 A3
1720 A3 1905 A3
1725 A3 1905 A3
1656 A3 26 Al
1656 A3 18 Al
1656 A3 40 Al
1656 A3 399 A2
1656 A3 403 A2
1656 A3 1725 A3
1656 A3 1720 A3
1900 A3 18 Al
1900 A3 26 Al
1900 A3 40 Al
1905 A3 18 Al
1905 A3 40 Al
1905 A3 26 Al
1910 A3 26 Al
18 Al 399 A2
26 Al 399 A2
40 Al 399 A2
18 Al 403 A2
- 1162018203206 08 May 2018
Insertion 1 Insertion 2
Insertion Site Domain Insertion Site Domain
1656 A3 1900 A3
1656 A3 1905 A3
1711 A3 40 Al
1711 A3 26 Al
1720 A3 26 Al
1720 A3 40 Al
1720 A3 18 Al
1725 A3 26 Al
1725 A3 40 Al
1725 A3 18 Al
1720 A3 403 A2
1720 A3 399 A2
1711 A3 403 A2
1720 A3 403 A2
1725 A3 403 A2
1725 A3 399 A2
1711 A3 403 A2
1900 A3 399 A2
1900 A3 403 A2
1905 A3 403 A2
1905 A3 399 A2
1910 A3 403 A2
[0201]
The two XTENs inserted or linked to the FVIII protein can be identical or different. In some embodiments, a FVIII protein useful for the invention comprises two XTEN sequences inserted in the FVIII protein, a first XTEN sequence inserted immediately downstream of amino acid 745 corresponding to SEQ ID NO: 4, and a second XTEN sequence inserted immediately downstream of amino acid 2332 corresponding to SEQ ID NO: 4 (the C-terminus). In other embodiments, the first XTEN sequence is inserted immediately downstream of amino acid 18, 26, 40, 1656, or 1720 corresponding to SEQ ID NO: 4, and a second XTEN sequence inserted immediately downstream of amino acid 403 corresponding to SEQ ID NO: 4. In yet other embodiments, the first XTEN sequence is inserted immediately downstream of amino acid 18, 26, or 40 corresponding to SEQ ID NO: 4, and a second XTEN sequence inserted immediately downstream of amino acid 599 corresponding to SEQ ID NO: 4. In still other embodiments, the first XTEN sequence is inserted immediately downstream of amino acid 1656 corresponding to SEQ ID NO: 4, and a second XTEN sequence inserted immediately downstream of amino acid 18, 26, 40, 399,
- 1172018203206 08 May 2018 [0202]
403, 1725, 1720, 1900, 1905, or 2332 corresponding to SEQ ID NO: 4. In certain embodiments, the first XTEN sequence is inserted immediately downstream of amino acid 1900 corresponding to SEQ ID NO: 4, and a second XTEN sequence inserted immediately downstream of amino acid 18, 26, or 40 corresponding to SEQ ID NO: 4. In some embodiments, the first XTEN sequence is inserted immediately downstream of amino acid 18, 26, or 40 corresponding to SEQ ID NO: 4, and a second XTEN sequence inserted immediately downstream of amino acid 399 corresponding to SEQ ID NO: 4. In other embodiments, the first XTEN sequence is inserted immediately downstream of amino acid 1720 corresponding to SEQ ID NO: 4, and a second XTEN sequence inserted immediately downstream of amino acid 18, 26, or 40 corresponding to SEQ ID NO: 4. In still other embodiments, the first XTEN sequence is inserted immediately downstream of amino acid 1720 corresponding to SEQ ID NO: 4, and a second XTEN sequence inserted immediately downstream of amino acid 18 corresponding to SEQ ID NO: 4. In a particular embodiment, the FVIII protein comprising two XTEN sequences, a first XTEN sequence inserted immediately downstream of amino acid 745 corresponding to SEQ ID NO: 4 and a second XTEN sequence inserted immediately downstream of amino acid 2332 corresponding to SEQ ID NO: 4, wherein the FVIII protein further has a deletion from amino acid 745 corresponding to SEQ ID NO: 4 to amino acid 1685 corresponding to SEQ ID NO: 4, a mutation or substitution at amino acid 1680 corresponding to SEQ ID NO: 4, e.g., Y1680F, a mutation or substitution at amino acid 1648 corresponding to SEQ ID NO: 4, e.g., R1648A, or at least two mutations or substitutions at amino acid 1648 corresponding to SEQ ID NO: 4, e.g., R1648A, and amino acid 1680 corresponding to SEQ ID NO: 4, e.g., Y1680F. In a specific embodiment, the FVIII protein comprises two XTEN sequences, a first XTEN inserted immediately downstream of amino acid 1656 corresponding to SEQ ID NO: 4 and a second XTEN sequence inserted immediately downstream of amino acid 2332 of SEQ ID NO: 4, wherein the FVIII protein further has a deletion from amino acid 745 to amino acid 1656 corresponding to SEQ ID NO: 4.
In certain embodiments, a FVIII protein comprises three XTEN sequences, a first XTEN sequence inserted into a first XTEN insertion site, a second XTEN sequence inserted into a second XTEN sequence, and a third XTEN sequence
- 118 2018203206 08 May 2018 inserted into a third XTEN insertion site. The first, second, or third XTEN sequences can be identical or different. The first, second, and third insertion sites can be selected from the group of any one of the insertion sites disclosed herein. In some embodiments, the FVIII protein comprising three XTEN sequences can further comprise a mutation or substitution, e.g., amino acid 1648 corresponding to SEQ ID NO: 4, e.g., R1648A. For example, non-limiting examples of the first, second, and third XTEN insertion sites are listed in Table 12.
TABLE 12. Exemplary Insertion Sites for Three XTENs
Insertion 1 Insertion 2 Insertion 3
Insertion Site Domain Insertion llll/lBlllill Domain Insertion lllllliilllll Domain
26 Al 403 A2 1656 A3
26 Al 403 A2 1720 A3
26 Al 403 A2 1900 A3
26 Al 1656 A3 1720 A3
26 Al 1656 A3 1900 A3
26 Al 1720 A3 1900 A3
403 A2 1656 A3 1720 A3
403 A2 1656 A3 1900 A3
403 A2 1720 A3 1900 A3
1656 A3 1720 A3 1900 A3
745 B 1900 2332 CT
18 Al 745 B 2332 CT
26 Al 745 B 2332 CT
40 Al 745 B 2332 CT
18 Al 745 B 2332 CT
40 Al 745 B 2332 CT
403 A2 745 B 2332 CT
399 A2 745 B 2332 CT
1725 A3 745 B 2332 CT
1720 A3 745 B 2332 CT
1711 A3 745 B 2332 CT
1900 A3 745 B 2332 CT
1905 A3 745 B 2332 CT
1910 A3 745 B 2332 CT
[0203] In some embodiments, a FVIII protein comprises three XTEN sequences, a first XTEN sequence inserted immediately downstream of amino acid 26 corresponding to SEQ ID NO: 4, a second XTEN sequence inserted downstream of amino acid 403 corresponding to SEQ ID NO: 4, and a third XTEN sequence inserted downstream of amino acid 1656, 1720, or 1900 corresponding to SEQ ID
- 1192018203206 08 May 2018 [0204]
NO: 4. In other embodiments, the first XTEN sequence is inserted immediately downstream of amino acid 26 corresponding to SEQ ID NO: 4, a second XTEN sequence is inserted downstream of amino acid 1656 corresponding to SEQ ID NO: 4, and a third XTEN sequence is inserted downstream of amino acid 1720 or 1900 corresponding to SEQ ID NO: 4. In yet other embodiments, the first XTEN sequence is inserted immediately downstream of amino acid 26 corresponding to SEQ ID NO: 4, a second XTEN sequence is inserted downstream of amino acid 1720 corresponding to SEQ ID NO: 4, and a third XTEN sequence is inserted downstream of amino acid 1900 corresponding to SEQ ID NO: 4. In still other embodiments, the first XTEN sequence is inserted immediately downstream of amino acid 403 corresponding to SEQ ID NO: 4, a second XTEN sequence is inserted downstream of amino acid 1656 corresponding to SEQ ID NO: 4, and a third XTEN sequence is inserted downstream of amino acid 1720 or 1900 corresponding to SEQ ID NO: 4. In other embodiments, the first XTEN sequence is inserted immediately downstream of amino acid 403 or 1656 corresponding to SEQ ID NO: 4, a second XTEN sequence is inserted downstream of amino acid 1720 corresponding to SEQ ID NO: 4, and a third XTEN sequence is inserted downstream of amino acid 1900 corresponding to SEQ ID NO: 4. In other embodiments, the first XTEN sequence is inserted immediately downstream of amino acid 18, 26, 40, 399, 403, 1711, 1720, 1725, 1900, 1905, or 1910 corresponding to SEQ ID NO: 4, a second XTEN sequence is inserted downstream of amino acid 745 corresponding to SEQ ID NO: 4, and a third XTEN sequence is inserted downstream of amino acid 2332 corresponding to SEQ ID NO: 4.
In other embodiments, a FVIII protein in the invention comprises four XTEN sequences, a first XTEN sequence inserted into a first insertion site, a second XTEN sequence inserted into a second insertion site, a third XTEN sequence inserted into a third insertion site, and a fourth XTEN sequence inserted into a fourth insertion site. The first, second, third, and fourth XTEN sequences can be identical, different, or combinations thereof. In some embodiments, the FVIII protein comprising four XTEN sequences can further comprise a mutation or substitution, e.g., amino acid 1648 corresponding to SEQ ID NO: 4, e.g.,
- 120R1648A. Non-limiting examples of the first, second, third, and fourth XTEN insertion sites are listed in Table 13.
2018203206 08 May 2018
TABLE 13. Exemplary Insertion Sites for Four XTENs
Insertion 1 Insertion 2 Insertion 3 Insertion 4
Insertion Site Domain Insertion llllItBllil Domai IllOllI! Insertion llllliBlIll Domai lllfilll Insertion llllOlll Domai illOlll
26 Al 403 A2 1656 a3 1720 A3
26 Al 403 A2 1656 a3 1900 A3
26 Al 403 A2 1720 A3 1900 A3
26 Al 1656 a3 1720 A3 1900 A3
403 A2 1656 a3 1720 A3 1900 A3
0040 Al 0403 A2 745 B 2332 CT
0040 Al 0403 A2 745 B 2332 CT
0018 Al 0409 A2 745 B 2332 CT
0040 Al 0409 A2 745 B 2332 CT
0040 Al 0409 A2 745 B 2332 CT
0018 Al 0409 A2 745 B 2332 CT
0040 Al 1720 A3 745 B 2332 CT
0026 Al 1720 A3 745 B 2332 CT
0018 Al 1720 A3 745 B 2332 CT
0018 Al 1720 A3 745 B 2332 CT
0018 Al 1720 A3 745 B 2332 CT
0026 Al 1720 A3 745 B 2332 CT
0018 Al 1720 A3 745 B 2332 CT
0018 Al 1900 A3 745 B 2332 CT
0018 Al 1900 A3 745 B 2332 CT
0026 Al 1900 A3 745 B 2332 CT
0040 Al 1900 A3 745 B 2332 CT
0040 Al 1905 A3 745 B 2332 CT
0018 Al 1905 A3 745 B 2332 CT
0040 Al 1905 A3 745 B 2332 CT
0026 Al 1905 A3 745 B 2332 CT
0018 Al 1905 A3 745 B 2332 CT
0018 Al 1905 A3 745 B 2332 CT
0018 Al 1910 A3 745 B 2332 CT
0018 Al 1910 A3 745 B 2332 CT
0040 Al 1910 A3 745 B 2332 CT
0026 Al 1910 A3 745 B 2332 CT
0018 Al 1910 A3 745 B 2332 CT
0026 Al 1910 A3 745 B 2332 CT
0040 Al 1910 A3 745 B 2332 CT
0018 Al 1910 A3 745 B 2332 CT
0409 A2 1720 A3 745 B 2332 CT
0403 A2 1720 A3 745 B 2332 CT
0409 A2 1720 A3 745 B 2332 CT
0403 A2 1720 A3 745 B 2332 CT
- 121 2018203206 08 May 2018
0403 A2 1720 A3 745 B 2332 CT
0403 A2 1900 A3 745 B 2332 CT
0403 A2 1900 A3 745 B 2332 CT
0409 A2 1900 A3 745 B 2332 CT
0403 A2 1900 A3 745 B 2332 CT
0403 A2 1900 A3 745 B 2332 CT
0409 A2 1900 A3 745 B 2332 CT
0409 A2 1905 A3 745 B 2332 CT
0403 A2 1905 A3 745 B 2332 CT
0403 A2 1905 A3 745 B 2332 CT
0403 A2 1905 A3 745 B 2332 CT
0409 A2 1905 A3 745 B 2332 CT
0403 A2 1905 A3 745 B 2332 CT
0409 A2 1910 A3 745 B 2332 CT
0403 A2 1910 A3 745 B 2332 CT
0403 A2 1910 A3 745 B 2332 CT
0403 A2 1910 A3 745 B 2332 CT
0403 A2 1910 A3 745 B 2332 CT
1720 A3 1900 A3 745 B 2332 CT
1720 A3 1905 A3 745 B 2332 CT
1720 A3 1910 A3 745 B 2332 CT
1720 A3 1910 A3 745 B 2332 CT
0403 A2 1656 a3 1720 A3 2332 CT
0403 A2 1656 a3 1900 A3 2332 CT
0403 A2 1720 A3 1900 A3 2332 CT
1656 a3 1720 A3 1900 A3 2332 CT
0018 Al 0403 A2 1656 a3 2332 CT
0018 Al 0403 A2 1720 A3 2332 CT
0018 Al 0403 A2 1900 A3 2332 CT
0018 Al 1656 a3 1720 A3 2332 CT
0018 Al 1656 a3 1900 A3 2332 CT
0018 Al 1720 A3 1900 A3 2332 CT
0018 Al 0403 A2 0745 B 2332 CT
0018 Al 0745 B 1720 A3 2332 CT
0018 Al 0745 B 1900 A3 2332 CT
0403 A2 0745 B 1720 A3 2332 CT
0403 A2 0745 B 1900 A3 2332 CT
0745 B 1720 A3 1900 A3 2332 CT
0188 Al 1900 A3 0745 B 2332 CT
0599 1900 A3 0745 B 2332 CT
2068 1900 A3 0745 B 2332 CT
2171 1900 A3 0745 B 2332 CT
2227 1900 A3 0745 B 2332 CT
2277 1900 A3 0745 B 2332 CT
[0205] In some embodiments, a FVIII protein comprises five XTEN sequences, a first XTEN sequence inserted into a first insertion site, a second XTEN sequence
- 122inserted into a second insertion site, a third XTEN sequence inserted into a third
XTEN insertion site, a fourth XTEN sequence inserted into a fourth XTEN insertion site, and a fifth XTEN sequence inserted into a fifth XTEN insertion site.
The first, second, third, fourth, of fifth XTEN sequences can be identical, different, or combinations thereof Non-limiting examples of the first, second,
2018203206 08 May 2018 third, fourth, and fifth insertion sites are listed in Table 14.
TABLE 14. Exemplary Insertion Sites for Five XTENs
XTEN Insertion 1 XTEN insertion XTEN Insertion 3 XTEN Insertion 4 XTEN Insertion 5
0403 1656 1720 1900 2332
0018 0403 1656 1720 2332
0018 0403 1656 1900 2332
0018 0403 1720 1900 2332
0018 1656 1720 1900 2332
0018 0403 0745 1720 2332
0018 0403 0745 1900 2332
0018 0745 1720 1900 2332
0403 0745 1720 1900 2332
[0206] In certain embodiments, a FVIII protein comprises six XTEN sequences, a first XTEN sequence inserted into a first XTEN insertion site, a second XTEN sequence inserted into a second XTEN insertion site, a third XTEN sequence inserted into a third XTEN insertion site, a fourth XTEN sequence inserted into a fourth XTEN insertion site, a fifth XTEN sequence inserted into a fifth XTEN insertion site, and a sixth XTEN sequence inserted into a sixth XTEN insertion site. The first, second, third, fourth, fifth, or sixth XTEN sequences can be identical, different, or combinations thereof Examples of the six XTEN insertion sites include, but are not limited to the insertion sites listed in Table 15.
TABLE 15. Exemplary XTEN Insertion Sites for Six XTENs
XTEN Insertion 1 XTEN insertion 2 XTEN Insertion 3 XTEN Insertion 4 XTEN Insertion 5 XTEN Insertion 6
0018 0403 1656 1720 1900 2332
0018 0403 0745 1720 1900 2332
[0207] In a particular example, a first XTEN is inserted between amino acids 26 and 27 corresponding to SEQ ID NO: 4, and a second XTEN is inserted between
- 123 2018203206 08 May 2018 [0208] [0209] amino acids 1720 and 1721 corresponding to SEQ ID NO: 4 (full-length mature FVIII). In another example, a first XTEN is inserted between amino acids 403 and 404 corresponding to SEQ ID NO: 4, and a second XTEN is inserted between amino acids 1720 and 1721 corresponding to SEQ ID NO: 4. In some examples, a first XTEN is inserted between amino acids 1656 and 1657 corresponding to SEQ ID NO: 4, and a second XTEN is inserted between amino acids 1720 and 1721 corresponding to SEQ ID NO: 4. In other examples, a first XTEN is inserted between amino acids 26 and 27 corresponding to SEQ ID NO: 4, a second XTEN is inserted between amino acids 1656 and 1657 corresponding to SEQ ID NO: 4, and a third XTEN is inserted between amino acids 1720 and 1721 corresponding to SEQ ID NO: 4. In yet other embodiments, a first XTEN is inserted between amino acids 403 and 404 corresponding to SEQ ID NO: 4, a second XTEN is inserted between amino acids 1656 and 1657 corresponding to SEQ ID NO: 4, and a third XTEN is inserted between amino acids 1720 and 1721 corresponding to SEQ ID NO: 4. In still other embodiments, a first XTEN is inserted between amino acids 403 and 404 corresponding to SEQ ID NO: 4, a second XTEN is inserted between amino acids 1656 and 1657 corresponding to SEQ ID NO: 4, and a third XTEN is inserted between amino acids 1720 and 1721 corresponding to SEQ ID NO: 4. In certain embodiments, a first XTEN is inserted between amino acids 26 and 27 corresponding to SEQ ID NO: 4, a second XTEN is inserted between amino acids 1720 and 1721 corresponding to SEQ ID NO: 4, and a third XTEN is inserted between amino acids 1900 and 1901 corresponding to SEQ ID NO: 4. In some embodiments, a first XTEN is inserted between amino acids 26 and 27 corresponding to SEQ ID NO: 4, a second XTEN is inserted between amino acids 1656 and 1657 corresponding to SEQ ID NO: 4, a third XTEN is inserted between amino acids 1720 and 1721 corresponding to SEQ ID NO: 4, and a fourth XTEN is inserted between 1900 and 1901 corresponding to SEQ ID NO: 4.
In a particular embodiment, an XTEN sequence is inserted between amino acids 745 and 746 of a full-length Factor VIII or the corresponding insertion site of the B-domain deleted Factor VIII.
In some embodiments, a chimeric protein of the invention comprises two polypeptide sequences, a first polypeptide sequence comprising an amino acid
- 1242018203206 08 May 2018 [0210] [0211] [0212] sequence at least about 80%, 90%, 95%, or 100% identical to a sequence selected from FVIII-161 (SEQ ID NO: 101), FVIII-169 (SEQ ID NO: 103), FVIII-170 (SEQ ID NO: 102), FVIII-173 (SEQ ID NO: 104); FVIII-195 (SEQ ID NO: 105); FVIII-196 (SEQ ID NO: 106), FVIII-199 (SEQ ID NO: 107), FVIII-201 (SEQ ID NO: 108); FVIII-203 (SEQ ID NO: 109), FVIII-204 (SEQ ID NO: 110), FVIII205 (SEQ ID NO: 111), FVIII-266 (SEQ ID NO: 112), FVIII-267 (SEQ ID NO: 113), FVIII-268 (SEQ ID NO: 114), FVIII-269 (SEQ ID NO: 115), FVIII-271 (SEQ ID NO: 116), or FVIII-272 (SEQ ID NO: 117) and a second polypeptide sequence comprising an amino acid sequence at least about 80%, 90%, 95%, or 100% identical to a sequence selected from VWF031 (SEQ ID NO: 118), VWF034 (SEQ ID NO: 119), or VWF-036 (SEQ ID NO: 120).
D) lg Constant Region or a portion thereof
The VWF fragment or the FVIII protein linked to an XTEN sequence in the present invention can further comprise an lg constant region or a portion thereof. The lg constant region or a portion thereof can improve pharmacokinetic or pharmacodynamic properties of the VWF fragment or the FVIII protein in combination with the XTEN sequence. In certain embodiments, the lg constant region or a portion thereof extends a half-life of a molecule fused to the lg constant region or a portion thereof.
An lg constant region is comprised of domains denoted CH (constant heavy) domains (CHI, CH2, etc.). Depending on the isotype, (i.e. IgG, IgM, IgA, IgD, or IgE), the constant region can be comprised of three or four CH domains. Some isotypes (e.g. IgG) constant regions also contain a hinge region. See Janeway et al. 2001, Immunobiology, Garland Publishing, N.Y., N.Y.
An lg constant region or a portion thereof for producing the chimeric protein of the present invention may be obtained from a number of different sources. In some embodiments, an lg constant region or a portion thereof is derived from a human lg. It is understood, however, that the lg constant region or a portion thereof may be derived from an lg of another mammalian species, including for example, a rodent (e.g. a mouse, rat, rabbit, guinea pig) or nonhuman primate (e.g. chimpanzee, macaque) species. Moreover, the lg constant region or a portion thereof may be derived from any lg class, including IgM, IgG,
- 125 2018203206 08 May 2018 [0213] [0214]
IgD, IgA, and IgE, and any Ig isotype, including IgGl, IgG2, IgG3, and IgG4. In one embodiment, the human isotype IgGl is used.
A variety of the Ig constant region gene sequences (e.g., human constant region gene sequences) are available in the form of publicly accessible deposits. Constant region domains sequence can be selected having a particular effector function (or lacking a particular effector function) or with a particular modification to reduce immunogenicity. Many sequences of antibodies and antibody-encoding genes have been published and suitable Ig constant region sequences (e.g., hinge, CH2, and/or CH3 sequences, or portions thereof) can be derived from these sequences using art recognized techniques. The genetic material obtained using any of the foregoing methods may then be altered or synthesized to obtain polypeptides of the present invention. It will further be appreciated that the scope of this invention encompasses alleles, variants and mutations of constant region DNA sequences.
The sequences of the Ig constant region or a portion thereof can be cloned, e.g., using the polymerase chain reaction and primers which are selected to amplify the domain of interest. To clone a sequence of the Ig constant region or a portion thereof from an antibody, mRNA can be isolated from hybridoma, spleen, or lymph cells, reverse transcribed into DNA, and antibody genes amplified by PCR. PCR amplification methods are described in detail in U.S. Pat. Nos. 4,683,195; 4,683,202; 4,800,159; 4,965,188; and in, e.g, PCR Protocols: A Guide to Methods and Applications Innis et al. eds., Academic Press, San Diego, CA (1990); Ho et al. 1989. Gene 77:51; Horton et al. 1993. Methods Enzymol.
217:270). PCR may be initiated by consensus constant region primers or by more specific primers based on the published heavy and light chain DNA and amino acid sequences. As discussed above, PCR also may be used to isolate DNA clones encoding the antibody light and heavy chains. In this case the libraries may be screened by consensus primers or larger homologous probes, such as mouse constant region probes. Numerous primer sets suitable for amplification of antibody genes are known in the art (e.g., 5' primers based on the N-terminal sequence of purified antibodies (Benhar and Pastan. 1994. Protein Engineering 7:1509); rapid amplification of cDNA ends (Ruberti, F. et al. 1994. J. Immunol. Methods 173:33); antibody leader sequences (Larrick et al. 1989 Biochem.
- 1262018203206 08 May 2018 [0215] [0216] [0217] [0218] [0219]
Biophys. Res. Commun. 160:1250). The cloning of antibody sequences is further described in Newman et al., U.S. Pat. No. 5,658,570, filed January 25, 1995, which is incorporated by reference herein.
An Ig constant region used herein can include all domains and the hinge region or portions thereof. In one embodiment, the Ig constant region or a portion thereof comprises CH2 domain, CH3 domain, and a hinge region, i.e., an Fc region or an FcRn binding partner.
As used herein, the term Fc region is defined as the portion of a polypeptide which corresponds to the Fc region of native Ig, i.e., as formed by the dimeric association of the respective Fc domains of its two heavy chains. A native Fc region forms a homodimer with another Fc region. In contrast, the term genetically-fused Fc region or single-chain Fc region (scFc region), as used herein, refers to a synthetic dimeric Fc region comprised of Fc domains genetically linked within a single polypeptide chain (i.e., encoded in a single contiguous genetic sequence).
In one embodiment, the Fc region refers to the portion of a single Ig heavy chain beginning in the hinge region just upstream of the papain cleavage site (i.e. residue 216 in IgG, taking the first residue of heavy chain constant region to be 114) and ending at the C-terminus of the antibody. Accordingly, a complete Fc domain comprises at least a hinge domain, a CH2 domain, and a CH3 domain.
The Fc region of an Ig constant region, depending on the Ig isotype can include the CH2, CH3, and CH4 domains, as well as the hinge region. Chimeric proteins comprising an Fc region of an Ig bestow several desirable properties on a chimeric protein including increased stability, increased serum half-life (see Capon et al., 1989, Nature 337:525) as well as binding to Fc receptors such as the neonatal Fc receptor (FcRn) (U.S. Pat. Nos. 6,086,875, 6,485,726, 6,030,613; WO 03/077834; US2003-0235536A1), which are incorporated herein by reference in their entireties.
An Ig constant region or a portion thereof can be an FcRn binding partner. FcRn is active in adult epithelial tissues and expressed in the lumen of the intestines, pulmonary airways, nasal surfaces, vaginal surfaces, colon and rectal surfaces (U.S. Pat. No. 6,485,726). An FcRn binding partner is a portion of an Ig that binds to FcRn.
- 1272018203206 08 May 2018 [0220] [0221] [0222]
The FcRn receptor has been isolated from several mammalian species including humans. The sequences of the human FcRn, monkey FcRn, rat FcRn, and mouse FcRn are known (Story et al. 1994, J. Exp. Med. 180:2377). The FcRn receptor binds IgG (but not other Ig classes such as IgA, IgM, IgD, and IgE) at relatively low pH, actively transports the IgG transcellularly in a luminal to serosal direction, and then releases the IgG at relatively higher pH found in the interstitial fluids. It is expressed in adult epithelial tissue (U.S. Pat. Nos.
6,485,726, 6,030,613, 6,086,875; WO 03/077834; US2003-0235536A1) including lung and intestinal epithelium (Israel et al. 1997, Immunology 92:69) renal proximal tubular epithelium (Kobayashi et al. 2002, Am. J. Physiol. Renal Physiol. 282:F358) as well as nasal epithelium, vaginal surfaces, and biliary tree surfaces.
FcRn binding partners useful in the present invention encompass molecules that can be specifically bound by the FcRn receptor including whole IgG, the Fc fragment of IgG, and other fragments that include the complete binding region of the FcRn receptor. The region of the Fc portion of IgG that binds to the FcRn receptor has been described based on X-ray crystallography (Burmeister et al. 1994, Nature 372:379). The major contact area of the Fc with the FcRn is near the junction of the CH2 and CH3 domains. Fc-FcRn contacts are all within a single Ig heavy chain. The FcRn binding partners include whole IgG, the Fc fragment of IgG, and other fragments of IgG that include the complete binding region of FcRn. The major contact sites include amino acid residues 248, 250-257, 272, 285, 288, 290-291, 308-311, and 314 of the CH2 domain and amino acid residues 385-387, 428, and 433-436 of the CH3 domain. References made to amino acid numbering of Igs or Ig fragments, or regions, are all based on Rabat et al. 1991, Sequences of Proteins of Immunological Interest, U.S. Department of Public Health, Bethesda, Md.
Fc regions or FcRn binding partners bound to FcRn can be effectively shuttled across epithelial barriers by FcRn, thus providing a non-invasive means to systemically administer a desired therapeutic molecule. Additionally, fusion proteins comprising an Fc region or an FcRn binding partner are endocytosed by cells expressing the FcRn. But instead of being marked for degradation, these fusion proteins are recycled out into circulation again, thus increasing the in vivo
- 128 2018203206 08 May 2018 [0223] [0224] [0225] half-life of these proteins. In certain embodiments, the portions of Ig constant regions are an Fc region or an FcRn binding partner that typically associates, via disulfide bonds and other non-specific interactions, with another Fc region or another FcRn binding partner to form dimers and higher order multimers.
Two FcRn receptors can bind a single Fc molecule. Crystallographic data suggest that each FcRn molecule binds a single polypeptide of the Fc homodimer. In one embodiment, linking the FcRn binding partner, e.g., an Fc fragment of an IgG, to a biologically active molecule provides a means of delivering the biologically active molecule orally, buccally, sublingually, rectally, vaginally, as an aerosol administered nasally or via a pulmonary route, or via an ocular route. In another embodiment, the chimeric protein can be administered invasively, e.g., subcutaneously, intravenously.
An FcRn binding partner region is a molecule or a portion thereof that can be specifically bound by the FcRn receptor with consequent active transport by the FcRn receptor of the Fc region. Specifically bound refers to two molecules forming a complex that is relatively stable under physiologic conditions. Specific binding is characterized by a high affinity and a low to moderate capacity as distinguished from nonspecific binding which usually has a low affinity with a moderate to high capacity. Typically, binding is considered specific when the affinity constant KA is higher than 106 M’1, or higher than 108 M’1. If necessary, non-specific binding can be reduced without substantially affecting specific binding by varying the binding conditions. The appropriate binding conditions such as concentration of the molecules, ionic strength of the solution, temperature, time allowed for binding, concentration of a blocking agent (e.g. serum albumin, milk casein), etc., may be optimized by a skilled artisan using routine techniques.
In certain embodiments, a chimeric protein of the invention comprises one or more truncated Fc regions that are nonetheless sufficient to confer Fc receptor (FcR) binding properties to the Fc region. For example, the portion of an Fc region that binds to FcRn (i.e., the FcRn binding portion) comprises from about amino acids 282-438 of IgGl, EU numbering (with the primary contact sites being amino acids 248, 250-257, 272, 285, 288, 290-291, 308-311, and 314 ofthe CH2 domain and amino acid residues 385-387, 428, and 433-436 of the CH3 domain. Thus, an Fc region of the invention may comprise or consist of an FcRn binding
- 1292018203206 08 May 2018 [0226] [0227] portion. FcRn binding portions may be derived from heavy chains of any isotype, including IgGl, IgG2, IgG3 and IgG4. In one embodiment, an FcRn binding portion from an antibody of the human isotype IgGl is used. In another embodiment, an FcRn binding portion from an antibody of the human isotype
IgG4 is used.
In another embodiment, the Fc region includes an amino acid sequence of an Fc domain or derived from an Fc domain. In certain embodiments, an Fc region comprises at least one of: a hinge (e.g., upper, middle, and/or lower hinge region) domain (about amino acids 216-230 of an antibody Fc region according to EU numbering), a CH2 domain (about amino acids 231-340 of an antibody Fc region according to EU numbering), a CH3 domain (about amino acids 341-438 of an antibody Fc region according to EU numbering), a CH4 domain, or a variant, portion, or fragment thereof. In other embodiments, an Fc region comprises a complete Fc domain (i.e., a hinge domain, a CH2 domain, and a CH3 domain). In some embodiments, an Fc region comprises, consists essentially of, or consists of a hinge domain (or a portion thereof) fused to a CH3 domain (or a portion thereof), a hinge domain (or a portion thereof) fused to a CH2 domain (or a portion thereof), a CH2 domain (or a portion thereof) fused to a CH3 domain (or a portion thereof), a CH2 domain (or a portion thereof) fused to both a hinge domain (or a portion thereof) and a CH3 domain (or a portion thereof). In still other embodiments, an Fc region lacks at least a portion of a CH2 domain (e.g., all or part of a CH2 domain). In a particular embodiment, an Fc region comprises or consists of amino acids corresponding to EU numbers 221 to 447.
The Fc regions denoted as F, FI, or F2 herein may be obtained from a number of different sources. In one embodiment, an Fc region of the polypeptide is derived from a human lg. It is understood, however, that an Fc region may be derived from an lg of another mammalian species, including for example, a rodent (e.g. a mouse, rat, rabbit, or guinea pig) or non-human primate (e.g. chimpanzee, macaque) species. Moreover, the polypeptide of the Fc domains or portions thereof may be derived from any lg class, including IgM, IgG, IgD, IgA and IgE, and any lg isotype, including IgGl, IgG2, IgG3 and IgG4. In another embodiment, the human isotype IgGl is used.
- 1302018203206 08 May 2018 [0228] [0229] [0230]
In certain embodiments, the Fc variant confers a change in at least one effector function imparted by an Fc region comprising said wild-type Fc domain (e.g., an improvement or reduction in the ability of the Fc region to bind to Fc receptors (e.g. FcyRI, FcyRII, or FcyRIII) or complement proteins (e.g. Clq), or to trigger antibody-dependent cytotoxicity (ADCC), phagocytosis, or complement-dependent cytotoxicity (CDCC)). In other embodiments, the Fc variant provides an engineered cysteine residue.
The Fc regions of the invention may employ art-recognized Fc variants which are known to impart a change (e.g., an enhancement or reduction) in effector function and/or FcR or FcRn binding. Specifically, a binding molecule of the invention may include, for example, a change (e.g., a substitution) at one or more of the amino acid positions disclosed in International PCT Publications W088/07089A1, WO96/14339A1, WO98/05787A1, WO98/23289A1, WO99/51642A1, WO99/58572A1, WO00/09560A2, WOOO/32767A1, WO00/42072A2, WO02/44215A2, W002/060919A2, WO03/074569A2, W004/016750A2, W004/029207A2, WO04/035752A2, WO04/063351A2, WO04/074455A2, WO04/099249A2, W005/040217A2, WO04/044859, W005/070963A1, WO05/077981A2, WO05/092925A2, WO05/123780A2, W006/019447A1, W006/047350A2, and WO06/085967A2; US Patent Publication Nos. US2007/0231329, US2007/0231329, US2007/0237765, US2007/0237766, US2007/0237767, US2007/0243188, US20070248603, US20070286859, US20080057056 ; or US Patents 5,648,260; 5,739,277; 5,834,250; 5,869,046; 6,096,871; 6,121,022; 6,194,551; 6,242,195; 6,277,375; 6,528,624; 6,538,124; 6,737,056; 6,821,505; 6,998,253; 7,083,784; 7,404,956, and 7,317,091, each of which is incorporated by reference herein. In one embodiment, the specific change (e.g., the specific substitution of one or more amino acids disclosed in the art) may be made at one or more of the disclosed amino acid positions. In another embodiment, a different change at one or more of the disclosed amino acid positions (e.g., the different substitution of one or more amino acid position disclosed in the art) may be made.
The Fc region or FcRn binding partner of IgG can be modified according to well recognized procedures such as site directed mutagenesis and the like to yield modified IgG or Fc fragments or portions thereof that will be bound by
- 131 2018203206 08 May 2018 [0231]
FcRn. Such modifications include modifications remote from the FcRn contact sites as well as modifications within the contact sites that preserve or even enhance binding to the FcRn. For example, the following single amino acid residues in human IgGl Fc (Fc yl) can be substituted without significant loss of Fc binding affinity for FcRn: P238A, S239A, K246A, K248A, D249A, M252A, T256A, E258A, T260A, D265A, S267A, H268A, E269A, D270A, E272A,
L274A, N276A, Y278A, D280A, V282A, E283A, H285A, N286A, T289A, K290A, R292A, E293A, E294A, Q295A, Y296F, N297A, S298A, Y300F,
R301A, V303A, V305A, T307A, L309A, Q311A, D312A, N315A, K317A, E318A, K320A, K322A, S324A, K326A, A327Q, P329A, A330Q, P331A, E333A, K334A, T335A, S337A, K338A, K340A, Q342A, R344A, E345A, Q347A, R355A, E356A, M358A, T359A, K360A, N361A, Q362A, Y373A, S375A, D376A, A378Q, E380A, E382A, S383A, N384A, Q386A, E388A, N389A, N390A, Y391F, K392A, L398A, S400A, D401A, D413A, K414A, R416A, Q418A, Q419A, N421A, V422A, S424A, E430A, N434A, T437A, Q438A, K439A, S440A, S444A, and K447A, where for example P238A represents wild type proline substituted by alanine at position number 238. As an example, a specific embodiment incorporates the N297A mutation, removing a highly conserved N-glycosylation site. In addition to alanine other amino acids may be substituted for the wild type amino acids at the positions specified above. Mutations may be introduced singly into Fc giving rise to more than one hundred Fc regions distinct from the native Fc. Additionally, combinations of two, three, or more of these individual mutations may be introduced together, giving rise to hundreds more Fc regions. Moreover, one of the Fc region of a construct of the invention may be mutated and the other Fc region of the construct not mutated at all, or they both may be mutated but with different mutations.
Certain of the above mutations may confer new functionality upon the Fc region or FcRn binding partner. For example, one embodiment incorporates N297A, removing a highly conserved N-glycosylation site. The effect of this mutation is to reduce immunogenicity, thereby enhancing circulating half-life of the Fc region, and to render the Fc region incapable of binding to FcyRI, FcyRIIA, FcyRIIB, and FcyRIIIA, without compromising affinity for FcRn (Routledge et al. 1995, Transplantation 60:847; Friend et al. 1999, Transplantation 68:1632; Shields
- 1322018203206 08 May 2018 [0232] [0233] [0234] et al. 1995, J. Biol. Chem. 276:6591). As a further example of new functionality arising from mutations described above affinity for FcRn may be increased beyond that of wild type in some instances. This increased affinity may reflect an increased on rate, a decreased off rate or both an increased on rate and a decreased off' rate. Examples of mutations believed to impart an increased affinity for FcRn include, but not limited to, T256A, T307A, E380A, and N434A (Shields et al. 2001, J. Biol. Chem. 276:6591).
Additionally, at least three human Fc gamma receptors appear to recognize a binding site on IgG within the lower hinge region, generally amino acids 234237. Therefore, another example of new functionality and potential decreased immunogenicity may arise from mutations of this region, as for example by replacing amino acids 233-236 of human IgGl ELLG to the corresponding sequence from IgG2 PVA (with one amino acid deletion). It has been shown that FcyRI, FcyRII, and FcyRIII, which mediate various effector functions will not bind to IgGl when such mutations have been introduced. Ward and Ghetie 1995, Therapeutic Immunology 2:77 and Armour et al. 1999, Eur. J. Immunol. 29:2613.
In one embodiment, the Ig constant region or a portion thereof, e.g, an Fc region, is a polypeptide including the sequence PKNSSMISNTP (SEQ ID NO: 52) and optionally further including a sequence selected from HQSLGTQ (SEQ ID NO: 53), HQNLSDGK (SEQ ID NO: 54), HQNISDGK (SEQ ID NO: 55), or VISSHLGQ (SEQ ID NO: 56) (U.S. Pat. No. 5,739,277).
In another embodiment, the immunoglobulin constant region or a portion thereof comprises an amino acid sequence in the hinge region or a portion thereof that forms one or more disulfide bonds with another immunoglobulin constant region or a portion thereof. The disulfide bond by the immunoglobulin constant region or a portion thereof places the first polypeptide comprising FVIII and the second polypeptide comprising the VWF fragment together so that endogenous VWF does not replace the VWF fragment and does not bind to the FVIII. Therefore, the disulfide bond between the first immunoglobulin constant region or a portion thereof and a second immunoglobulin constant region or a portion thereof prevents interaction between endogenous VWF and the FVIII protein.
This inhibition of interaction between the VWF and the FVIII protein allows the half-life of the FVIII protein to go beyond the two fold limit. The hinge region or
- 133 2018203206 08 May 2018 [0235] [0236] [0237] a portion thereof can further be linked to one or more domains of CHI, CH2,
CH3, a fragment thereof, and any combinations thereof In a particular embodiment, the immunoglobulin constant region or a portion thereof is a hinge region and CH2.
In certain embodiments, the lg constant region or a portion thereof is hemiglycosylated. For example, the chimeric protein comprising two Fc regions or FcRn binding partners may contain a first, glycosylated, Fc region (e.g., a glycosylated CH2 region) or FcRn binding partner and a second, aglycosylated, Fc region (e.g., an aglycosylated CH2 region) or FcRn binding partner. In one embodiment, a linker may be interposed between the glycosylated and aglycosylated Fc regions. In another embodiment, the Fc region or FcRn binding partner is fully glycosylated, i.e., all of the Fc regions are glycosylated. In other embodiments, the Fc region may be aglycosylated, i.e., none of the Fc moieties are glycosylated.
In certain embodiments, a chimeric protein of the invention comprises an amino acid substitution to an lg constant region or a portion thereof (e.g., Fc variants), which alters the antigen-independent effector functions of the lg constant region, in particular the circulating half-life of the protein.
Such proteins exhibit either increased or decreased binding to FcRn when compared to proteins lacking these substitutions and, therefore, have an increased or decreased half-life in serum, respectively. Fc variants with improved affinity for FcRn are anticipated to have longer serum half-lives, and such molecules have useful applications in methods of treating mammals where long half-life of the administered polypeptide is desired, e.g., to treat a chronic disease or disorder (see, e.g., US Patents 7,348,004, 7,404,956, and 7,862,820). In contrast, Fc variants with decreased FcRn binding affinity are expected to have shorter halflives, and such molecules are also useful, for example, for administration to a mammal where a shortened circulation time may be advantageous, e.g. for in vivo diagnostic imaging or in situations where the starting polypeptide has toxic side effects when present in the circulation for prolonged periods. Fc variants with decreased FcRn binding affinity are also less likely to cross the placenta and, thus, are also useful in the treatment of diseases or disorders in pregnant women. In addition, other applications in which reduced FcRn binding affinity may be
- 1342018203206 08 May 2018 [0238] desired include those applications in which localization the brain, kidney, and/or liver is desired. In one exemplary embodiment, the chimeric protein of the invention exhibit reduced transport across the epithelium of kidney glomeruli from the vasculature. In another embodiment, the chimeric protein of the invention exhibit reduced transport across the blood brain barrier (BBB) from the brain, into the vascular space. In one embodiment, a protein with altered FcRn binding comprises at least one Fc region or FcRn binding partner (e.g, one or two Fc regions or FcRn binding partners) having one or more amino acid substitutions within the FcRn binding loop of an Ig constant region. The FcRn binding loop is comprised of amino acid residues 280-299 (according to EU numbering) of a wild-type, full-length, Fc region. In other embodiments, an Ig constant region or a portion thereof in a chimeric protein of the invention having altered FcRn binding affinity comprises at least one Fc region or FcRn binding partner having one or more amino acid substitutions within the 15 A FcRn contact zone. As used herein, the term 15 A FcRn contact zone includes residues at the following positions of a wild-type, full-length Fc moiety: 243-261, 275-280, 282-293, 302319, 336- 348, 367, 369, 372-389, 391, 393, 408, 424, 425-440 (EU numbering).
In other embodiments, a Ig constant region or a portion thereof of the invention having altered FcRn binding affinity comprises at least one Fc region or FcRn binding partner having one or more amino acid substitutions at an amino acid position corresponding to any one of the following EU positions: 256, 277-281, 283-288, 303-309, 313, 338, 342, 376, 381, 384, 385, 387, 434 (e.g., N434A or N434K), and 438. Exemplary amino acid substitutions which altered FcRn binding activity are disclosed in International PCT Publication No. WO05/047327 which is incorporated by reference herein.
An Fc region or FcRn binding partner used in the invention may also comprise an art recognized amino acid substitution which alters the glycosylation of the chimeric protein. For example, the Fc region or FcRn binding partner of the chimeric protein linked to a VWF fragment or a FVIII protein may comprise an Fc region having a mutation leading to reduced glycosylation (e.g., N- or O-linked glycosylation) or may comprise an altered glycoform of the wild-type Fc moiety (e.g., a low fucose or fucose-free glycan).
- 135 2018203206 08 May 2018 [0239] [0240] [0241]
In one embodiment, an unprocessed chimeric protein of the invention may comprise a genetically fused Fc region (i.e., scFc region) having two or more of its constituent Ig constant region or a portion thereof independently selected from the Ig constant region or a portion thereof described herein. In one embodiment, the Fc regions of a dimeric Fc region are the same. In another embodiment, at least two of the Fc regions are different. For example, the Fc regions or FcRn binding partners of the proteins of the invention comprise the same number of amino acid residues or they may differ in length by one or more amino acid residues (e.g., by about 5 amino acid residues (e.g., 1, 2, 3, 4, or 5 amino acid residues), about 10 residues, about 15 residues, about 20 residues, about 30 residues, about 40 residues, or about 50 residues). In yet other embodiments, the Fc regions or FcRn binding partners of the protein of the invention may differ in sequence at one or more amino acid positions. For example, at least two of the Fc regions or FcRn binding partners may differ at about 5 amino acid positions (e.g., 1, 2, 3, 4, or 5 amino acid positions), about 10 positions, about 15 positions, about 20 positions, about 30 positions, about 40 positions, or about 50 positions).
E) Linkers
The chimeric protein of the present invention further comprises one or more linkers. One type of the linkers is a cleavable linker, which can be cleaved by various proteases when administered to a subject in vivo, e.g., at a site of coagulation. In one embodiment, the cleavable linker allows cleavage of moiety, e.g., a VWF fragment, from the chimeric protein at the site of the coagulation cascade, thus allowing activated FVIII (FVIIIa) to have its FVIIIa activity.
Another type of the linkers is a processable linker, which contains an intracellular cleavage site and thus can be cleaved by an intracellular processing enzyme in a host cell, allowing convenient expression of a polypeptide and formation of a chimeric protein.
One or more linkers can be present between any two proteins in the chimeric protein. In one embodiment, a chimeric protein comprises (i) a VWF fragment, (ii) an XTEN sequence, and (iii) a FVIII protein, wherein the VWF fragment is linked to the XTEN sequence by a linker, e.g., a cleavable linker, and the XTEN sequence is further linked to the FVIII protein (i.e., V-L-X-FVIII). In another embodiment, a chimeric protein comprises (i) a VWF fragment, (ii) an
- 1362018203206 08 May 2018 [0242] [0243] [0244]
XTEN sequence, and (iii) a FVIII protein, wherein the VWF fragment is linked to the XTEN sequence, and the XTEN sequence is linked to the FVIII protein by a linker, e.g., a cleavable linker (i.e., V-X-L-FVIII).
In certain embodiments, a chimeric protein comprises (i) a VWF fragment, (ii) an XTEN sequence, (iii) a first Ig constant region or a portion thereof (e.g., a first Fc region), (iv) a FVIII protein, and (v) a second Ig constant region or a portion thereof (e.g., a second Fc region), wherein the VWF fragment is linked to the XTEN sequence by an optional linker, e.g., a cleavable linker. The XTEN sequence can be further linked to the first Ig constant region or a portion thereof by a linker, e.g., a cleavable linker. The FVIII protein (with or without an XTEN sequence) can also be linked to the second Ig constant region or a portion thereof by an optional linker, e.g. a cleavable linker. In certain embodiments, the chimeric protein further comprises one or more linkers, e.g., processable linkers, between the first Ig constant region or a portion thereof (e.g., first Fc region) and the second Ig constant region or a portion thereof (e.g., second Fc region), between the VWF fragment and the second Ig constant region or a portion thereof, or between the FVIII protein and the first Ig constant region or a portion thereof (e.g., first Fc region).
In some embodiments, the present invention includes a chimeric protein comprising (i) a FVIII protein, (ii) an XTEN sequence, (iii) a first Ig constant region or a portion thereof, and (iv) a second Ig constant region or a portion thereof, wherein the first Ig constant region or a portion thereof and the second Ig constant region or a portion thereof are linked by a processable linker.
The linker useful in the present invention can comprise any organic molecule. In one embodiment, the linker comprises a polymer, e.g., polyethylene glycol (PEG) or hydroxyethyl starch (HES). In another embodiment, the linker comprises an amino acids sequence. The linker can comprise at least about 10,
20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400 ,500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 amino acids. The linker can comprise 1-5 amino acids, 1-10 amino acids, 1-20 amino acids, 10-50 amino acids, 50-100 amino acids, 100-200 amino acids, 200-300 amino acids, 300-400 amino acids, 400-500 amino acids, 500-600 amino acids, 600-700 amino acids, 700-800 amino acids, 800-900 amino acids, or 900-1000
- 1372018203206 08 May 2018 [0245] [0246] amino acids. In one embodiment, the linker comprises an XTEN sequence. Additional examples of XTEN can be used according to the present invention and are disclosed in US Patent Publication Nos. 2010/0239554 Al, 2010/0323956 Al, 2011/0046060 Al, 2011/0046061 Al, 2011/0077199 Al, or 2011/0172146 Al, or International Patent Publication Nos. WO 2010091122 Al, WO 2010144502 A2, WO 2010144508 Al, WO 2011028228 Al, WO 2011028229 Al, or WO 2011028344 A2. In another embodiment, the linker is a PAS sequence.
The linker useful in the present invention can comprise any organic molecule. In one embodiment, the linker is a polymer, e.g., polyethylene glycol (PEG) or hydroxyethyl starch (HES). In another embodiment, the linker is an amino acid sequence. The linker can comprise at least about 10, 20, 30, 40, 50,
60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100,
1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 amino acids. The linker can comprise 1-5 amino acids, 1-10 amino acids, 1-20 amino acids, 10-50 amino acids, 50-100 amino acids, 100-200 amino acids, 200-300 amino acids, 300-400 amino acids, 400-500 amino acids, 500-600 amino acids, 600-700 amino acids, 700-800 amino acids, 800-900 amino acids, or 900-1000 amino acids.
Examples of linkers are well known in the art. In one embodiment, the linker comprises the sequence Gn. The linker can comprise the sequence (GA)n. The linker can comprise the sequence (GGS)n. In other embodiments, the linker comprises (GGGS)n (SEQ ID NO: 57). In still other embodiments, the linker comprises the sequence (GGS)n(GGGGS)n (SEQ ID NO: 58). In these instances, n may be an integer from 1-100. In other instances, n may be an integer from 120, i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. Examples of linkers include, but are not limited to, GGG, SGGSGGS (SEQ ID NO: 59), GGSGGSGGSGGSGGG (SEQ ID NO: 60), GGSGGSGGGGSGGGGS (SEQ ID NO: 61), GGSGGSGGSGGSGGSGGS (SEQ ID NO: 62), or GGGGSGGGGSGGGGS (SEQ ID NO: 63). The linker does not eliminate or diminish the VWF fragment activity or the clotting activity of Factor VIII. Optionally, the linker enhances the VWF fragment activity or the clotting activity of Factor VIII protein, e.g., by further diminishing the effects of steric hindrance and making the VWF fragment or Factor VIII portion more accessible to its target binding site.
- 138 2018203206 08 May 2018 [0247] [0248] [0249] [0250] [0251]
In one embodiment, the linker useful for the chimeric protein is 15-25 amino acids long. In another embodiment, the linker useful for the chimeric protein is 15-20 amino acids long. In some embodiments, the linker for the chimeric protein is 10-25 amino acids long. In other embodiments, the linker for the chimeric protein is 15 amino acids long. In still other embodiments, the linker for the chimeric protein is (GGGGS)n (SEQ ID NO: 64) where G represents glycine, S represents serine and n is an integer from 1-20.
F) Cleavage Sites
The linker may also incorporate a moiety capable of being cleaved either chemically (e.g., hydrolysis of an ester bond), enzymatically (i.e., incorporation of a protease cleavage sequence), or photolytically (e.g., a chromophore such as 3amino-3-(2-nitrophenyl) proprionic acid (ANP)) in order to release one molecule from another.
In one embodiment, the linker is a cleavable linker. The cleavable linkers can comprise one or more cleavage sites at the N-terminus or C-terminus or both. In another embodiment, the cleavable linker consists essentially of or consists of one or more cleavable sites. In other embodiments, the cleavable linker comprises heterologous amino acid linker sequences described herein or polymers and one or more cleavable sites.
In certain embodiments, a cleavable linker comprises one or more cleavage sites that can be cleaved in a host cell (i.e., intracellular processing sites). Non limiting examples of the cleavage site include RRRR (SEQ ID NO: 9), RKRRKR (SEQ ID NO: 10), and RRRRS (SEQ ID NO: 11).
In other embodiments, a cleavable linker comprises one or more cleavage sites that are cleaved by a protease after a chimeric protein comprising the cleavable linker is administered to a subject. In one embodiment, the cleavage site is cleaved by a protease selected from the group consisting of factor XIa, factor Xlla, kallikrein, factor Vila, factor IXa, factor Xa, factor Ila (thrombin), Elastase2, MMP-12, MMP-13, MMP-17, and MMP-20. In another embodiment, the cleavage site is selected from the group consisting of a FXIa cleavage site (e.g., KLTRjAET (SEQ ID NO: 65)), a FXIa cleavage site (e.g, DFTRjVVG (SEQ ID NO: 66)), a FXIIa cleavage site (e.g., TMTRjIVGG (SEQ ID NO: 67)), a Kallikrein cleavage site (e.g., SPFRjSTGG (SEQ ID NO: 68)), a FVIIa cleavage
- 1392018203206 08 May 2018 [0252] [0253] site (e.g., LQVRjIVGG (SEQ ID NO: 69)), a FIXa cleavage site (e.g., PLGRjIVGG (SEQ ID NO: 70)), a FXa cleavage site (e.g., IEGRjTVGG (SEQ ID NO: 71)), a Flla (thrombin) cleavage site (e.g, LTPRjSLLV (SEQ ID NO: 72)), a Elastase-2 cleavage site (e.g, LGPV jSGVP (SEQ ID NO: 73)), a Granzyme-B cleavage (e.g, VAGDjSLEE (SEQ ID NO: 74)), a MMP-12 cleavage site (e.g., GPAGjLGGA (SEQ ID NO: 75)), a MMP-13 cleavage site (e.g., GPAGjLRGA (SEQ ID NO: 76)), a MMP-17 cleavage site (e.g., APLGjLRLR (SEQ ID NO: 77)), a MMP-20 cleavage site (e.g., PALP jLVAQ (SEQ ID NO: 78)), a TEV cleavage site (e.g., ENLYFQ JG (SEQ ID NO: 79)), a Enterokinase cleavage site (e.g., DDDKjIVGG (SEQ ID NO: 80)), a Protease 3C (PRESCISSION™) cleavage site (e.g., LEVLFQjGP (SEQ ID NO: 81)), and a Sortase A cleavage site (e.g., LPKTjGSES) (SEQ ID NO: 82). In certain embodiments, the FXIa cleavage sites include, but are not limited to, e.g., TQSFNDFTR (SEQ ID NO: 83) and SVSQTSKLTR (SEQ ID NO: 84). Nonlimiting exemplary thrombin cleavage sites include, e.g., DFLAEGGGVR (SEQ ID NO: 85), TTKIKPR (SEQ ID NO: 86), or LVPRG (SEQ ID NO: 87), and a sequence comprising, consisting essentially of, or consisting of ALRPR (SEQ ID NO: 17) (e.g., ALRPRVVGGA (SEQ ID NO: 88)).
In a specific embodiment, the cleavage site is TLDPRSFLLRNPNDKYEPFWEDEEK (SEQ ID NO: 8).
Polynucleotides, Vectors, and Host cells
Also provided in the invention is a polynucleotide encoding (a) a VWF fragment linked to an XTEN sequence and a FVIII protein, (b) a FVIII protein linked to an XTEN sequence and Fc, or (c) a FVIII protein linked to an XTEN sequence and a VWF fragment described herein. When a chimeric protein is a single polypeptide chain (e.g., F2-L2-X-V-L1-FI-FVIII, wherein FVIII comprises a FVIII protein, FI comprises a first Ig constant region or a portion thereof, e.g., a first Fc region, LI comprises a first linker, V comprises a VWF fragment, X comprises an XTEN sequence, L2 comprises a second linker, and F2 comprises a second Ig constant region or a portion thereof, e.g., a second Fc region), the invention is drawn to a single polynucleotide chain encoding the single polypeptide chain. When the chimeric protein comprises a first and a second polypeptide chains (F2-L2-X-V:FVIII-F1), the first polypeptide chain comprising
- 1402018203206 08 May 2018 [0254] a VWF fragment linked to a XTEN sequence, which is further linked to a first Ig constant region or a portion thereof (e.g., a first Fc region) by a cleavable linker (e.g., F2-L2-X-V) and the second polypeptide chain comprising a FVIII protein and a second Ig constant region or a portion thereof (e.g., a second Fc region) (e.g, FVIII-F1), wherein the first polypeptide chain and the second polypeptide chain are associated with each other, a polynucleotide can comprise the first nucleotide sequence and the second nucleotide sequence. In one embodiment, the first polypeptide chain and the second polypeptide chain can be encoded by a single polynucleotide chain. In another embodiment, the first polypeptide chain and the second polypeptide chain are encoded by two different polynucleotides, i.e., a first nucleotide sequence and a second nucleotide sequence. In another embodiment, the first nucleotide sequence and the second nucleotide sequence are on two different polynucleotides (e.g., different vectors). In certain embodiments, the present invention is directed to a set of polynucleotides comprising a first nucleotide chain and a second nucleotide chain, wherein the first nucleotide chain encodes the VWF fragment of the chimeric protein and the second nucleotide chain encodes the FVIII protein. In some embodiments, a chimeric protein comprising two polypeptide chains or three polypeptide chains can be encoded by a single polynucleotide chain, and then processed into two or three (or more) polypeptide chains. In yet other embodiments, a chimeric protein comprising these polypeptide chains can be encoded by two or three polynucleotide chains.
In other embodiments, the set of the polynucleotides further comprises an additional nucleotide chain (e.g., a second nucleotide chain when the chimeric polypeptide is encoded by a single polynucleotide chain or a third nucleotide chain when the chimeric protein is encoded by two polynucleotide chains) which encodes a protein convertase. The protein convertase can be selected from the group consisting of proprotein convertase subtilisin/kexin type 5 (PCSK5 or PC5), proprotein convertase subtilisin/kexin type 7 (PCSK7 or PC5), a yeast Kex 2, proprotein convertase subtilisin/kexin type 3 (PACE or PCSK3), and two or more combinations thereof. In some embodiments, the protein convertase is PACE, PC5, or PC7. In a specific embodiment, the protein convertase is PC5 or PC7.
See International Application no. PCT/US2011/043568.
- 141 2018203206 08 May 2018 [0255] [0256] [0257]
As used herein, an expression vector refers to any nucleic acid construct which contains the necessary elements for the transcription and translation of an inserted coding sequence, or in the case of an RNA viral vector, the necessary elements for replication and translation, when introduced into an appropriate host cell. Expression vectors can include plasmids, phagemids, viruses, and derivatives thereof.
Expression vectors of the invention will include polynucleotides encoding the chimeric protein described herein. In one embodiment, one or more of the coding sequences for the VWF fragment and XTEN, the FVIII protein and XTEN, or both are operably linked to an expression control sequence. As used herein, two nucleic acid sequences are operably linked when they are covalently linked in such a way as to permit each component nucleic acid sequence to retain its functionality. A coding sequence and a gene expression control sequence are said to be operably linked when they are covalently linked in such a way as to place the expression or transcription and/or translation of the coding sequence under the influence or control of the gene expression control sequence. Two DNA sequences are said to be operably linked if induction of a promoter in the 5' gene expression sequence results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the coding sequence, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a gene expression sequence would be operably linked to a coding nucleic acid sequence if the gene expression sequence were capable of effecting transcription of that coding nucleic acid sequence such that the resulting transcript is translated into the desired protein or polypeptide.
A gene expression control sequence as used herein is any regulatory nucleotide sequence, such as a promoter sequence or promoter-enhancer combination, which facilitates the efficient transcription and translation of the coding nucleic acid to which it is operably linked. The gene expression control sequence may, for example, be a mammalian or viral promoter, such as a constitutive or inducible promoter. Constitutive mammalian promoters include, but are not limited to, the promoters for the following genes: hypoxanthine
- 1422018203206 08 May 2018 [0258] [0259] phosphoribosyl transferase (HPRT), adenosine deaminase, pyruvate kinase, betaactin promoter, and other constitutive promoters. Exemplary viral promoters which function constitutively in eukaryotic cells include, for example, promoters from the cytomegalovirus (CMV), simian virus (e.g., SV40), papilloma virus, adenovirus, human immunodeficiency virus (HIV), Rous sarcoma virus, cytomegalovirus, the long terminal repeats (LTR) of Moloney leukemia virus, and other retroviruses, and the thymidine kinase promoter of herpes simplex virus. Other constitutive promoters are known to those of ordinary skill in the art. The promoters useful as gene expression sequences of the invention also include inducible promoters. Inducible promoters are expressed in the presence of an inducing agent. For example, the metallothionein promoter is induced to promote transcription and translation in the presence of certain metal ions. Other inducible promoters are known to those of ordinary skill in the art.
In general, the gene expression control sequence shall include, as necessary, 5' non-transcribing and 5' non-translating sequences involved with the initiation of transcription and translation, respectively, such as a TATA box, capping sequence, CAAT sequence, and the like. Especially, such 5' nontranscribing sequences will include a promoter region which includes a promoter sequence for transcriptional control of the operably joined coding nucleic acid.
The gene expression sequences optionally include enhancer sequences or upstream activator sequences as desired.
Viral vectors include, but are not limited to, nucleic acid sequences from the following viruses: retrovirus, such as Moloney murine leukemia virus, Harvey murine sarcoma virus, murine mammary tumor virus, and Rous sarcoma virus; adenovirus, adeno-associated virus; SV40-type viruses; polyomaviruses; EpsteinBarr viruses; papilloma viruses; herpes virus; vaccinia virus; polio virus; and RNA virus such as a retrovirus. One can readily employ other vectors well-known in the art. Certain viral vectors are based on non-cytopathic eukaryotic viruses in which non-essential genes have been replaced with the gene of interest. Non-cytopathic viruses include retroviruses, the life cycle of which involves reverse transcription of genomic viral RNA into DNA with subsequent proviral integration into host cellular DNA. Retroviruses have been approved for human gene therapy trials. Most useful are those retroviruses that are replication-deficient (i.e., capable of
- 143 2018203206 08 May 2018 [0260] [0261] directing synthesis of the desired proteins, but incapable of manufacturing an infectious particle). Such genetically altered retroviral expression vectors have general utility for the high efficiency transduction of genes in vivo. Standard protocols for producing replication-deficient retroviruses (including the steps of incorporation of exogenous genetic material into a plasmid, transfection of a packaging cell line with plasmid, production of recombinant retroviruses by the packaging cell line, collection of viral particles from tissue culture media, and infection of the target cells with viral particles) are provided in Kriegler, M., Gene Transfer and Expression, A Laboratory Manual, W.H. Freeman Co., New York (1990) and Murry, E. J., Methods in Molecular Biology, Vol. 7, Humana Press, Inc., Cliffton, N.J. (1991).
In one embodiment, the virus is an adeno-associated virus, a doublestranded DNA virus. The adeno-associated virus can be engineered to be replication-deficient and is capable of infecting a wide range of cell types and species. It further has advantages such as heat and lipid solvent stability; high transduction frequencies in cells of diverse lineages, including hematopoietic cells; and lack of superinfection inhibition thus allowing multiple series of transductions. Reportedly, the adeno-associated virus can integrate into human cellular DNA in a site-specific manner, thereby minimizing the possibility of insertional mutagenesis and variability of inserted gene expression characteristic of retroviral infection. In addition, wild-type adeno-associated virus infections have been followed in tissue culture for greater than 100 passages in the absence of selective pressure, implying that the adeno-associated virus genomic integration is a relatively stable event. The adeno-associated virus can also function in an extrachromosomal fashion.
Other vectors include plasmid vectors. Plasmid vectors have been extensively described in the art and are well-known to those of skill in the art. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, 1989. In the last few years, plasmid vectors have been found to be particularly advantageous for delivering genes to cells in vivo because of their inability to replicate within and integrate into a host genome. These plasmids, however, having a promoter compatible with the host cell, can express a peptide from a gene operably encoded within the plasmid. Some
- 1442018203206 08 May 2018 [0262] [0263] [0264] commonly used plasmids available from commercial suppliers include pBR322, pUC18, pUC19, various pcDNA plasmids, pRC/CMV, various pCMV plasmids, pSV40, and pBlueScript. Additional examples of specific plasmids include pcDNA3.1, catalog number V79020; pcDNA3.1/hygro, catalog number V87020; pcDNA4/myc-His, catalog number V86320; and pBudCE4.1, catalog number V53220, all from Invitrogen (Carlsbad, CA.). Other plasmids are well-known to those of ordinary skill in the art. Additionally, plasmids may be custom designed using standard molecular biology techniques to remove and/or add specific fragments of DNA.
In one insect expression system that may be used to produce the proteins of the invention, Autographa californica nuclear polyhidrosis virus (AcNPV) is used as a vector to express the foreign genes. The virus grows in Spodoptera frugiperda cells. A coding sequence may be cloned into non-essential regions (for example, the polyhedron gene) of the virus and placed under control of an ACNPV promoter (for example, the polyhedron promoter). Successful insertion of a coding sequence will result in inactivation of the polyhedron gene and production of non-occluded recombinant virus (/. e., virus lacking the proteinaceous coat coded for by the polyhedron gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted gene is expressed, (see, e.g., Smith et al. (1983) J U/roZ 46:584; U.S. Pat. No. 4,215,051). Further examples of this expression system may be found in Ausubel et al., eds. (1989) Current Protocols in Molecular Biology, Vol. 2, Greene Publish. Assoc. & Wiley Interscience.
Another system which can be used to express the proteins of the invention is the glutamine synthetase gene expression system, also referred to as the GS expression system (Lonza Biologies PLC, Berkshire UK). This expression system is described in detail in U.S. Pat. No. 5,981,216.
In mammalian host cells, a number of viral based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, a coding sequence may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region
- 145 2018203206 08 May 2018 [0265] [0266] [0267]
El or E3) will result in a recombinant virus that is viable and capable of expressing peptide in infected hosts. See, e.g., Logan & Shenk (1984) Proc Natl
Acad Sci USA 81:3655). Alternatively, the vaccinia 7.5 K promoter may be used.
See, e.g., Mackett et al. (1982) Proc Natl Acad Sci USA 79:7415; Mackett et al.
(1984) J Virol 49:857; Panicali et al. (1982) Proc Natl Acad Sci USA 79:4927.
To increase efficiency of production, the polynucleotides can be designed to encode multiple units of the protein of the invention separated by enzymatic cleavage sites. The resulting polypeptide can be cleaved (e.g., by treatment with the appropriate enzyme) in order to recover the polypeptide units. This can increase the yield of polypeptides driven by a single promoter. When used in appropriate viral expression systems, the translation of each polypeptide encoded by the mRNA is directed internally in the transcript; e.g., by an internal ribosome entry site, IRES. Thus, the polycistronic construct directs the transcription of a single, large polycistronic mRNA which, in turn, directs the translation of multiple, individual polypeptides. This approach eliminates the production and enzymatic processing of polyproteins and may significantly increase the yield of polypeptides driven by a single promoter.
Vectors used in transformation will usually contain a selectable marker used to identify transformants. In bacterial systems, this can include an antibiotic resistance gene such as ampicillin or kanamycin. Selectable markers for use in cultured mammalian cells include genes that confer resistance to drugs, such as neomycin, hygromycin, and methotrexate. The selectable marker may be an amplifiable selectable marker. One amplifiable selectable marker is the dihydro folate reductase (DHFR) gene. Simonsen C C et al. (1983) Proc Natl Acad Sci USA 80:2495-9. Selectable markers are reviewed by Thilly (1986) Mammalian Cell Technology, Butterworth Publishers, Stoneham, Mass., and the choice of selectable markers is well within the level of ordinary skill in the art.
Selectable markers may be introduced into the cell on a separate plasmid at the same time as the gene of interest, or they may be introduced on the same plasmid. If on the same plasmid, the selectable marker and the gene of interest may be under the control of different promoters or the same promoter, the latter arrangement producing a dicistronic message. Constructs of this type are known in the art (for example, U.S. Pat. No. 4,713,339).
- 1462018203206 08 May 2018 [0268] [0269] [0270]
The expression vectors can encode for tags that permit easy purification of the recombinantly produced protein. Examples include, but are not limited to, vector pUR278 (Ruther et al. (1983) EMBO J 2ΆΊ9Ί), in which coding sequences for the protein to be expressed may be ligated into the vector in frame with the lac z coding region so that a tagged fusion protein is produced; pGEX vectors may be used to express proteins of the invention with a glutathione S-transferase (GST) tag. These proteins are usually soluble and can easily be purified from cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The vectors include cleavage sites (thrombin or Factor Xa protease or PRESCISSION PROTEASE™ (Pharmacia, Peapack, N.J.)) for easy removal of the tag after purification.
The expression vector or vectors are then transfected or co-transfected into a suitable target cell, which will express the polypeptides. Transfection techniques known in the art include, but are not limited to, calcium phosphate precipitation (Wigler et al. (1978) Cell 14:725), electroporation (Neumann et al. (1982) EMBO J 1:841), and liposome-based reagents. A variety of host-expression vector systems may be utilized to express the proteins described herein including both prokaryotic and eukaryotic cells. These include, but are not limited to, microorganisms such as bacteria (e.g., E. coli) transformed with recombinant bacteriophage DNA or plasmid DNA expression vectors containing an appropriate coding sequence; yeast or filamentous fungi transformed with recombinant yeast or fungi expression vectors containing an appropriate coding sequence; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing an appropriate coding sequence; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus or tobacco mosaic virus) or transformed with recombinant plasmid expression vectors (e.g.,
Ti plasmid) containing an appropriate coding sequence; or animal cell systems, including mammalian cells (e.g., HEK 293, CHO, Cos, HeLa, HKB11, and BHK cells).
In one embodiment, the host cell is a eukaryotic cell. As used herein, a eukaryotic cell refers to any animal or plant cell having a definitive nucleus. Eukaryotic cells of animals include cells of vertebrates, e.g., mammals, and cells of invertebrates, e.g., insects. Eukaryotic cells of plants specifically can include,
- 1472018203206 08 May 2018 [0271] [0272] [0273] [0274] [0275] without limitation, yeast cells. A eukaryotic cell is distinct from a prokaryotic cell, e.g., bacteria.
In certain embodiments, the eukaryotic cell is a mammalian cell. A mammalian cell is any cell derived from a mammal. Mammalian cells specifically include, but are not limited to, mammalian cell lines. In one embodiment, the mammalian cell is a human cell. In another embodiment, the mammalian cell is a HEK 293 cell, which is a human embryonic kidney cell line. HEK 293 cells are available as CRL-1533 from American Type Culture Collection, Manassas, VA, and as 293-H cells, Catalog No. 11631-017 or 293-F cells, Catalog No. 11625-019 from Invitrogen (Carlsbad, Calif.). In some embodiments, the mammalian cell is a PER.C6® cell, which is a human cell line derived from retina. PER.C6® cells are available from Crucell (Leiden, The Netherlands). In other embodiments, the mammalian cell is a Chinese hamster ovary (CHO) cell. CHO cells are available from American Type Culture Collection, Manassas, VA. (e.g., CHO-K1; CCL61). In still other embodiments, the mammalian cell is a baby hamster kidney (BHK) cell. BHK cells are available from American Type Culture Collection, Manassas, Va. (e.g., CRL-1632). In some embodiments, the mammalian cell is a HKB11 cell, which is a hybrid cell line of a HEK293 cell and a human B cell line. Mei et al., Mol. Biotechnol. 34(2): 165-78 (2006).
In one embodiment, a plasmid including a FVIII(X)-Fc fusion coding sequence, a VWF fragment-L-Fc fusion coding sequence, or both and a selectable marker, e.g., zeocin resistance, are transfected into HEK 293 cells, for production of a chimeric protein.
In another embodiment, a plasmid including a FVIII-Fc fusion coding sequence, a VWF fragment-XTEN-L-Fc fusion coding sequence, or both and a selectable marker, e.g., zeocin resistance, are transfected into HEK 293 cells, for production of a chimeric protein.
In other embodiments, a plasmid including a FVIII(X)-Fc fusion coding sequence, a Fc coding sequence, or both and a selectable marker, e.g., zeocin resistance, are transfected into HEK 293 cells, for production of a chimeric protein.
In some embodiments, a first plasmid including a FVIII(X)-Fc fusion coding sequence and a first selectable marker, e.g., a zeocin resistance gene, and a
- 148 2018203206 08 May 2018 [0276] [0277] [0278] second plasmid including an Fc coding sequence or a VWF fragment-L-Fc coding sequence and a second selectable marker, e.g., a neomycin resistance gene, and a third plasmid including a protein convertase coding sequence and a third selectable marker, e.g., a hygromycin resistance gene, are cotransfected into HEK 293 cells, for production of the chimeric protein. The first and second plasmids can be introduced in equal amounts (i.e., 1:1 molar ratio), or they can be introduced in unequal amounts.
In still other embodiments, a first plasmid including a FVIII-Fc fusion coding sequence and a first selectable marker, e.g., a zeocin resistance gene, and a second plasmid including a VWF fragment-XTEN-L-Fc coding sequence and a second selectable marker, e.g., a neomycin resistance gene, and a third plasmid including a protein convertase coding sequence and a third selectable marker, e.g., a hygromycin resistance gene, are cotransfected into HEK 293 cells, for production of the chimeric protein. The first and second plasmids can be introduced in equal amounts (i.e., 1:1 molar ratio), or they can be introduced in unequal amounts.
In yet other embodiments, a first plasmid including a FVIII(X)-Fc fusion coding sequence and a first selectable marker, e.g., a zeocin resistance gene, and a second plasmid including a VWF fragment-XTEN-L-Fc coding sequence and a second selectable marker, e.g., a neomycin resistance gene, and a third plasmid including a protein convertase coding sequence and a third selectable marker, e.g., a hygromycin resistance gene, are cotransfected into HEK 293 cells, for production of the chimeric protein. The first and second plasmids can be introduced in equal amounts (i.e., 1:1 molar ratio), or they can be introduced in unequal amounts.
In certain embodiments, a first plasmid, including a chimeric protein encoding FVIII (with or without XTEN)-F1-L1-V-XTEN-L2-F2 coding sequence and a first selectable marker, e.g., a zeocin resistance gene, and a second plasmid including a protein convertase coding sequence and a second selectable marker, e.g., a hygromycin resistance gene, are cotransfected into HEK 293 cells, for production of the chimeric protein. The promoters for the FVIII(X)-Fc coding sequence and the VWF-XTEN-Fc coding sequence can be different or they can be the same.
- 1492018203206 08 May 2018 [0279] [0280] [0281]
In still other embodiments, transfected cells are stably transfected. These cells can be selected and maintained as a stable cell line, using conventional techniques known to those of skill in the art.
Host cells containing DNA constructs of the protein are grown in an appropriate growth medium. As used herein, the term appropriate growth medium means a medium containing nutrients required for the growth of cells. Nutrients required for cell growth may include a carbon source, a nitrogen source, essential amino acids, vitamins, minerals, and growth factors. Optionally, the media can contain one or more selection factors. Optionally the media can contain bovine calf serum or fetal calf serum (FCS). In one embodiment, the media contains substantially no IgG. The growth medium will generally select for cells containing the DNA construct by, for example, drug selection or deficiency in an essential nutrient which is complemented by the selectable marker on the DNA construct or co-transfected with the DNA construct. Cultured mammalian cells are generally grown in commercially available serum-containing or serum-free media (e.g., MEM, DMEM, DMEM/F12). In one embodiment, the medium is CD293 (Invitrogen, Carlsbad, CA.). In another embodiment, the medium is CD 17 (Invitrogen, Carlsbad, CA.). Selection of a medium appropriate for the particular cell line used is within the level of those ordinary skilled in the art.
In order to co-express the two polypeptide chains of the chimeric protein, the host cells are cultured under conditions that allow expression of both chains. As used herein, culturing refers to maintaining living cells in vitro for at least a definite time. Maintaining can, but need not include, an increase in population of living cells. For example, cells maintained in culture can be static in population, but still viable and capable of producing a desired product, e.g., a recombinant protein or recombinant fusion protein. Suitable conditions for culturing eukaryotic cells are well known in the art and include appropriate selection of culture media, media supplements, temperature, pH, oxygen saturation, and the like. For commercial purposes, culturing can include the use of any of various types of scale-up systems including shaker flasks, roller bottles, hollow fiber bioreactors, stirred-tank bioreactors, airlift bioreactors, Wave bioreactors, and others.
- 1502018203206 08 May 2018 [0282] [0283] [0284] [0285] [0286] [0287]
The cell culture conditions are also selected to allow association of the VWF fragment with the FVIII protein. Conditions that allow expression of the VWF fragment and/or the FVIII protein may include the presence of a source of vitamin K. For example, in one embodiment, stably transfected HEK 293 cells are cultured in CD293 media (Invitrogen, Carlsbad, CA) or OptiCHO media (Invitrogen, Carlsbad, CA) supplemented with 4 mM glutamine.
In one aspect, the present invention is directed to a method of expressing, making, or producing the chimeric protein of the invention comprising a) transfecting a host cell comprising a polynucleotide encoding the chimeric protein and b) culturing the host cell in a culture medium under a condition suitable for expressing the chimeric protein, wherein the chimeric protein is expressed.
In further embodiments, the protein product containing the VWF fragment linked to an XTEN sequence or the FVIII protein linked to an XTEN sequence is secreted into the media. Media is separated from the cells, concentrated, filtered, and then passed over two or three affinity columns, e.g., a protein A column and one or two anion exchange columns.
In certain aspects, the present invention relates to the chimeric protein produced by the methods described herein.
In vitro production allows scale-up to give large amounts of the desired altered polypeptides of the invention. Techniques for mammalian cell cultivation under tissue culture conditions are known in the art and include homogeneous suspension culture, e.g. in an airlift reactor or in a continuous stirrer reactor, or immobilized or entrapped cell culture, e.g. in hollow fibers, microcapsules, on agarose microbeads or ceramic cartridges. If necessary and/or desired, the solutions of polypeptides can be purified by the customary chromatography methods, for example gel filtration, ion-exchange chromatography, hydrophobic interaction chromatography (HIC, chromatography over DEAE-cellulose or affinity chromatography.
Pharmaceutical Composition
Compositions containing the chimeric protein of the present invention may contain a suitable pharmaceutically acceptable carrier. For example, they may contain excipients and/or auxiliaries that facilitate processing of the active compounds into preparations designed for delivery to the site of action.
- 151 2018203206 08 May 2018 [0288] [0289] [0290] [0291]
The pharmaceutical composition can be formulated for parenteral administration (i.e. intravenous, subcutaneous, or intramuscular) by bolus injection. Formulations for injection can be presented in unit dosage form, e.g., in ampoules or in multidose containers with an added preservative. The compositions can take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient can be in powder form for constitution with a suitable vehicle, e.g., pyrogen free water.
Suitable formulations for parenteral administration also include aqueous solutions of the active compounds in water-soluble form, for example, watersoluble salts. In addition, suspensions of the active compounds as appropriate oily injection suspensions may be administered. Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, for example, ethyl oleate or triglycerides. Aqueous injection suspensions may contain substances, which increase the viscosity of the suspension, including, for example, sodium carboxymethyl cellulose, sorbitol and dextran. Optionally, the suspension may also contain stabilizers. Liposomes also can be used to encapsulate the molecules of the invention for delivery into cells or interstitial spaces. Exemplary pharmaceutically acceptable carriers are physiologically compatible solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, water, saline, phosphate buffered saline, dextrose, glycerol, ethanol and the like. In some embodiments, the composition comprises isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride. In other embodiments, the compositions comprise pharmaceutically acceptable substances such as wetting agents or minor amounts of auxiliary substances such as wetting or emulsifying agents, preservatives or buffers, which enhance the shelf life or effectiveness of the active ingredients.
Compositions of the invention may be in a variety of forms, including, for example, liquid (e.g., injectable and infusible solutions), dispersions, suspensions, semi-solid and solid dosage forms. The preferred form depends on the mode of administration and therapeutic application.
The composition can be formulated as a solution, micro emulsion, dispersion, liposome, or other ordered structure suitable to high drug
- 1522018203206 08 May 2018 [0292] [0293] [0294] concentration. Sterile injectable solutions can be prepared by incorporating the active ingredient in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active ingredient into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterilefiltered solution. The proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prolonged absorption of injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.
The active ingredient can be formulated with a controlled-release formulation or device. Examples of such formulations and devices include implants, transdermal patches, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, for example, ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for the preparation of such formulations and devices are known in the art. See e.g., Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.
Injectable depot formulations can be made by forming microencapsulated matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature of the polymer employed, the rate of drug release can be controlled. Other exemplary biodegradable polymers are polyorthoesters and polyanhydrides. Depot injectable formulations also can be prepared by entrapping the drug in liposomes or microemulsions.
Supplementary active compounds can be incorporated into the compositions. In one embodiment, the chimeric protein of the invention is formulated with another clotting factor, or a variant, fragment, analogue, or derivative thereof For example, the clotting factor includes, but is not limited to,
- 153 2018203206 08 May 2018 [0295] [0296] [0297] [0298] factor V, factor VII, factor VIII, factor IX, factor X, factor XI, factor XII, factor
XIII, prothrombin, fibrinogen, von Willebrand factor or recombinant soluble tissue factor (rsTF) or activated forms of any of the preceding. The clotting factor of hemostatic agent can also include anti-fibrinolytic drugs, e.g., epsilon-aminocaproic acid, tranexamic acid.
Dosage regimens may be adjusted to provide the optimum desired response. For example, a single bolus may be administered, several divided doses may be administered over time, or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. See, e.g., Remington's Pharmaceutical Sciences (Mack Pub. Co., Easton, Pa. 1980).
In addition to the active compound, the liquid dosage form may contain inert ingredients such as water, ethyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils, glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols, and fatty acid esters of sorbitan.
Non-limiting examples of suitable pharmaceutical carriers are also described in Remington's Pharmaceutical Sciences by E. W. Martin. Some examples of excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol, and the like. The composition can also contain pH buffering reagents, and wetting or emulsifying agents.
For oral administration, the pharmaceutical composition can take the form of tablets or capsules prepared by conventional means. The composition can also be prepared as a liquid for example a syrup or a suspension. The liquid can include suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats), emulsifying agents (lecithin or acacia), non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol, or fractionated vegetable oils), and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations can also include flavoring, coloring and sweetening agents.
- 1542018203206 08 May 2018 [0299] [0300] [0301] [0302]
Alternatively, the composition can be presented as a dry product for constitution with water or another suitable vehicle.
For buccal administration, the composition may take the form of tablets or lozenges according to conventional protocols.
For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of a nebulized aerosol with or without excipients or in the form of an aerosol spray from a pressurized pack or nebulizer, with optionally a propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoromethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit can be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator can be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
The pharmaceutical composition can also be formulated for rectal administration as a suppository or retention enema, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
In one embodiment, a pharmaceutical composition comprises a chimeric protein, the polynucleotide encoding the chimeric protein, the vector comprising the polynucleotide, or the host cell comprising the vector, and a pharmaceutically acceptable carrier. The FVIII protein in a chimeric protein has extended half-life compared to wild type FVIII protein or the corresponding FVIII protein without the VWF fragment. In one embodiment, wherein the half-life of the FVIII protein is extended at least about 1.5 times, at least about 2 times, at least about 2.5 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, or at least about 12 times longer than wild type FVIII. In another embodiment, the half-life of Factor VIII is at least about 17 hours, at least about 18 hours, at least about 19 hours, at least about 20 hours, at least about 21 hours, at least about 22 hours, at least about 23 hours, at least about 24 hours, at least about 25 hours, at least about 26 hours, at least about 27 hours, at least about 28 hours, at least about 29 hours, at least about 30 hours, at least about 31 hours, at least about 32 hours, at least about 33 hours, at least about 34 hours, at least about 35 hours, at least about 36 hours, at least about 48 hours, at
- 155 2018203206 08 May 2018 [0303] [0304] [0305] least about 60 hours, at least about 72 hours, at least about 84 hours, at least about hours, or at least about 108 hours.
In some embodiments, the composition is administered by a route selected from the group consisting of topical administration, intraocular administration, parenteral administration, intrathecal administration, subdural administration and oral administration. The parenteral administration can be intravenous or subcutaneous administration.
In other embodiments, the composition is used to treat a bleeding disease or condition in a subject in need thereof. The bleeding disease or condition is selected from the group consisting of a bleeding coagulation disorder, hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, bleeding in the illiopsoas sheath and any combinations thereof. In still other embodiments, the subject is scheduled to undergo a surgery. In yet other embodiments, the treatment is prophylactic or ondemand.
Gene Therapy
A chimeric protein thereof of the invention can be produced in vivo in a mammal, e.g., a human patient, using a gene therapy approach to treatment of a bleeding disease or disorder selected from the group consisting of a bleeding coagulation disorder, hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, and bleeding in the illiopsoas sheath would be therapeutically beneficial. In one embodiment, the bleeding disease or disorder is hemophilia. In another embodiment, the bleeding disease or disorder is hemophilia A. This involves administration of a suitable chimeric protein-encoding nucleic acid operably linked to suitable expression control sequences. In certain embodiment, these sequences are incorporated into a viral vector. Suitable viral vectors for such gene
- 1562018203206 08 May 2018 [0306] [0307] [0308] [0309] therapy include adenoviral vectors, lentiviral vectors, baculoviral vectors, Epstein Barr viral vectors, papovaviral vectors, vaccinia viral vectors, herpes simplex viral vectors, and adeno associated virus (AAV) vectors. The viral vector can be a replication-defective viral vector. In other embodiments, an adenoviral vector has a deletion in its El gene or E3 gene. When an adenoviral vector is used, the mammal may not be exposed to a nucleic acid encoding a selectable marker gene. In other embodiments, the sequences are incorporated into a non-viral vector known to those skilled in the art.
Methods of Using Chimeric Protein
The present invention is directed to a method of using a chimeric protein described herein to prevent or inhibit endogenous VWF binding to a FVIII protein. The present invention is also directed to a method of using a chimeric protein having a FVIII protein linked to XTEN and an Ig constant region or a portion thereof.
One aspect of the present invention is directed to preventing or inhibiting FVIII interaction with endogenous VWF by blocking or shielding the VWF binding site on the FVIII from endogenous VWF and at the same time extending half-life of the FVIII protein using an XTEN sequence in combination with an Ig constant region or a portion thereof, which can also be a half-life extender. In one embodiment, the invention is directed to a method of constructing a FVIII protein having half-life longer than wild-type FVIII. In one embodiment, an XTEN sequence inhibits or prevents interaction of a FVIII protein in a chimeric protein with endogenous VWF. In another embodiment, an Ig constant region or a portion thereof inhibits or prevents interaction of the FVIII protein with endogenous VWF. The chimeric protein useful in the method includes any one or more chimeric protein described herein.
Another aspect of the invention includes a method of administering to a subject in need thereof a chimeric protein comprising a FVIII protein having halflife longer than wild-type FVIII, wherein the method comprises administering the chimeric protein described herein to the subject.
In one embodiment, the invention is directed to a method of using an XTEN sequence and an Ig constant region or a portion thereof to extend a half-life of a FVIII protein and a VWF fragment to prevent or inhibit endogenous VWF
- 1572018203206 08 May 2018 [0310] [0311] [0312] interaction with a FVIII protein. A FVIII protein linked to an XTEN sequence (e.g., FVIII(X)) and then bound to or associated with a VWF fragment is shielded or protected from the clearance pathway of VWF and thus has reduced clearance compared to the FVIII protein not bound to the VWF fragment. The shielded FVIII protein thus has maximum extension of a half-life compared to a FVIII protein not bound to or associated with the XTEN sequence and the VWF fragment. In certain embodiments, the FVIII protein associated with or protected by a VWF fragment and linked to an XTEN sequence is not cleared by a VWF clearance receptor. In other embodiments, the FVIII protein associated with or protected by a VWF fragment and linked to an XTEN sequence is cleared from the system slower than the FVIII protein that is not associated with or protected by the VWF fragment and linked to the XTEN sequence.
In one aspect, the chimeric protein comprising the FVIII protein linked to an XTEN sequence or the FVIII protein bound to or associated with a VWF fragment linked to XTEN has reduced clearance from circulation as the VWF fragment does not contain a VWF clearance receptor binding site. The VWF fragment prevents or inhibits clearance of FVIII bound to or associated with the VWF fragment from the system through the VWF clearance pathway. The VWF fragments useful for the present invention can also provide at least one or more VWF-like FVIII protection properties that are provided by endogenous VWF. In certain embodiments, the VWF fragment or the XTEN sequence can also mask one or more FVIII clearance receptor binding site, thereby preventing clearance of FVIII by its own clearance pathway.
In some embodiments, the prevention or inhibition of a FVIII protein binding to endogenous VWF by the VWF fragment or the XTEN sequence can be in vitro or in vivo.
Also provided is a method of increasing the half-life of a FVIII protein comprising administering the chimeric protein described herein to a subject in need thereof. The half-life of non-activated FVIII bound to or associated with full-length VWF is about 12 to 14 hours in plasma. In VWD type 3, wherein there is almost no VWF in circulation, the half-life of FVIII is only about six hours, leading to symptoms of mild to moderate hemophilia A in such patients due to decreased concentrations of FVIII. The half-life of the FVIII protein linked to or
- 158 2018203206 08 May 2018 [0313] [0314] associated with the VWF fragment or the XTEN sequence of the present invention can increase at least about 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2.0 times, 2.1 times, 2.2 times, 2.3 times, 2.4 times, 2.6 times, 2.7. times, 2.8 times,
2.9 times, 3.0 times, 3.1 times, 3.2 times, 3.3 times, 3.4 times, 3.5 times, 3.6 times, 3.7 times, 3.8 times, 3.9 times, or 4.0 times higher than the half-life of the nonactivated FVIII bound to or associated with full-length VWF.
In one embodiment, the half-life of the FVIII protein linked to or associated with the VWF fragment or linked to an Ig constant region or a portion thereof in the chimeric protein comprising an XTEN sequence increases at least about 2 times, 2.5 times, 3.0 times, 3.5 times, 4.0 times, 4.5 times, 5.0 times, 5.5 times, 6.0 times, 7 times, 8 times, 9 times, or 10 times higher than the half-life of the non-activated FVIII bound to or associated with full-length VWF. In another embodiment, the half-life of the FVIII protein linked to or associated with the VWF fragment or an Ig constant region or a portion thereof in the chimeric protein comprising an XTEN sequence increases about 2 to about 5 times, about 3 to about 10 times, about 5 to about 15 times, about 10 to about 20 times, about 15 to about 25 times, about 20 to about 30 times, about 25 to about 35 times, about 30 to about 40 times, about 35 to about 45 times higher than the half-life of the nonactivated FVIII bound to or associated with full-length VWF or wild type FVIII.
In a specific embodiment, the half-life of the FVIII protein linked to or associated with the VWF fragment or linked to an Ig constant region in the chimeric protein comprising an XTEN sequence increases at least about 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 times higher than the half-life of the wild type FVIII in a FVIII and VWF double knockout mouse.
In some embodiments, the half-life of the chimeric protein comprising the VWF fragment fused to a first Ig constant region or a portion thereof, e.g., a first Fc region and an XTEN sequence, and a FVIII protein linked to an XTEN sequence and a second Ig constant region or a portion thereof, e.g., a second Fc region, is longer than the half-life of a FVIII associated with endogenous VWF.
In other embodiments, the half-life of the chimeric protein is at least about 1.5 times, 2 times, 2.5 times, 3.5 times, 3.6 times, 3.7 times, 3.8 times, 3.9 times, 4.0 times, 4.5 times, or 5.0 times the half-life of wild type FVIII or a FVIII protein associated with endogenous VWF.
- 1592018203206 08 May 2018 [0315]
In some embodiments, as a result of the invention the half-life of the FVIII protein is extended compared to a FVIII protein without the VWF fragment or wild-type FVIII. The half-life of the chimeric protein of the invention is at least about 1.5 times, at least about 2 times, at least about 2.5 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, or at least about 12 times longer than the half-life of a FVIII protein without the VWF fragment or wild-type FVIII. In one embodiment, the half-life of FVIII is about 1.5-fold to about 20-fold, about 1.5 fold to about 15 fold, or about 1.5 fold to about 10 fold longer than the half-life of wild-type FVIII. In another embodiment, the half-life of the FVIII is extended about 2-fold to about 10-fold, about 2-fold to about 9-fold, about 2-fold to about 8-fold, about 2-fold to about 7-fold, about 2-fold to about 6-fold, about 2-fold to about 5-fold, about 2fold to about 4-fold, about 2-fold to about 3-fold, about 2.5-fold to about 10-fold, about 2.5-fold to about 9-fold, about 2.5-fold to about 8-fold, about 2.5-fold to about 7-fold, about 2.5-fold to about 6-fold, about 2.5-fold to about 5-fold, about 2.5-fold to about 4-fold, about 2.5-fold to about 3-fold, about 3-fold to about 10fold, about 3-fold to about 9-fold, about 3-fold to about 8-fold, about 3-fold to about 7-fold, about 3-fold to about 6-fold, about 3-fold to about 5-fold, about 3fold to about 4-fold, about 4-fold to about 6 fold, about 5-fold to about 7-fold, or about 6-fold to about 8 fold as compared to wild-type FVIII or a FVIII protein without the VWF fragment. In other embodiments, the half-life of the chimeric protein of the invention is at least about 17 hours, at least about 18 hours, at least about 19 hours, at least about 20 hours, at least about 21 hours, at least about 22 hours, at least about 23 hours, at least about 24 hours, at least about 25 hours, at least about 26 hours, at least about 27 hours, at least about 28 hours, at least about 29 hours, at least about 30 hours, at least about 31 hours, at least about 32 hours, at least about 33 hours, at least about 34 hours, at least about 35 hours, at least about 36 hours, at least about 48 hours, at least about 60 hours, at least about 72 hours, at least about 84 hours, at least about 96 hours, or at least about 108 hours. In still other embodiments, the half-life of the chimeric protein of the invention is about 15 hours to about two weeks, about 16 hours to about one week, about 17 hours to about one week, about 18 hours to about one week, about 19 hours to
- 1602018203206 08 May 2018 [0316] [0317] [0318] about one week, about 20 hours to about one week, about 21 hours to about one week, about 22 hours to about one week, about 23 hours to about one week, about 24 hours to about one week, about 36 hours to about one week, about 48 hours to about one week, about 60 hours to about one week, about 24 hours to about six days, about 24 hours to about five days, about 24 hours to about four days, about 24 hours to about three days, or about 24 hours to about two days.
In some embodiments, the average half-life of the chimeric protein of the invention per subject is about 15 hours, about 16 hours, about 17 hours, about 18 hours, about 19 hours, about 20 hours, about 21 hours, about 22 hours, about 23 hours, about 24 hours (1 day), about 25 hours, about 26 hours, about 27 hours, about 28 hours, about 29 hours, about 30 hours, about 31 hours, about 32 hours, about 33 hours, about 34 hours, about 35 hours, about 36 hours, about 40 hours, about 44 hours, about 48 hours (2 days), about 54 hours, about 60 hours, about 72 hours (3 days), about 84 hours, about 96 hours (4 days), about 108 hours, about 120 hours (5 days), about six days, about seven days (one week), about eight days, about nine days, about 10 days, about 11 days, about 12 days, about 13 days, or about 14 days.
In addition, the invention provides a method of treating or preventing a bleeding disease or disorder comprising administering an effective amount of a chimeric protein. In one embodiment, the bleeding disease or disorder is selected from the group consisting of a bleeding coagulation disorder, hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intraabdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, and bleeding in the illiopsoas sheath. In a specific embodiment, the bleeding disease or disorder is hemophilia A.
The chimeric protein comprising an XTEN sequence and an Ig constant region or a portion thereof in combination with a VWF fragment described herein, that prevents or inhibits interaction of the FVIII protein with endogenous VWF prepared by the invention, has many uses as will be recognized by one skilled in the art, including, but not limited to methods of treating a subject having a hemostatic disorder and methods of treating a subject in need of a general
- 161 2018203206 08 May 2018 [0319] [0320] [0321] [0322] hemostatic agent. In one embodiment, the invention relates to a method of treating a subject having a hemostatic disorder comprising administering a therapeutically effective amount of the chimeric protein.
The FVIII protein portion in the chimeric protein treats or prevents a hemostatic disorder by serving as a cofactor to Factor IX on a negatively charged phospholipid surface, thereby forming a Xase complex. The binding of activated coagulation factors to a phospholipid surface localizes this process to sites of vascular damage. On a phospholipid surface, Factor Villa increases the maximum velocity of Factor X activation by Factor IXa, by approximately 200,000-fold, leading to the large second burst of thrombin generation.
The chimeric protein of the invention can be used to treat any hemostatic disorder. The hemostatic disorders that may be treated by administration of the chimeric protein of the invention include, but are not limited to, hemophilia A, as well as deficiencies or structural abnormalities relating to Factor VIII. In one embodiment, the hemostatic disorder is hemophilia A.
The chimeric protein of the invention can be used prophylacticaliy to treat a subject with a hemostatic disorder. The chimeric protein of the invention can be used to treat an acute bleeding episode in a subject with a hemostatic disorder. In another embodiment, the hemostatic disorder can be the result of a defective clotting factor, e.g., von Willebrand's factor. In one embodiment, the hemostatic disorder is an inherited disorder. In another embodiment, the hemostatic disorder is an acquired disorder. The acquired disorder can result from an underlying secondary disease or condition. The unrelated condition can be, as an example, but not as a limitation, cancer, an auto-immune disease, or pregnancy. The acquired disorder can result from old age or from medication to treat an underlying secondary disorder (e.g. cancer chemotherapy).
The invention also relates to methods of treating a subject that does not have a congenital hemostatic disorder, but has a secondary disease or condition resulting in acquisition of a hemostatic disorder, e.g., due to development of an anti-FVIII antibody or a surgery. The invention thus relates to a method of treating a subject in need of a general hemostatic agent comprising administering a therapeutically effective amount of the chimeric protein prepared by the present methods.
- 1622018203206 08 May 2018 [0323] [0324] [0325] [0326] [0327]
The present invention is also related to methods of reducing immunogenicity of FVIII or inducing less immunogenicity against FVIII comprising administering an effective amount of the chimeric proteins described herein, or the polynucleotides encoding the same.
In one embodiment, the subject in need of a general hemostatic agent is undergoing, or is about to undergo, surgery. The chimeric protein of the invention can be administered prior to, during, or after surgery as a prophylactic regimen. The chimeric protein of the invention can be administered prior to, during, or after surgery to control an acute bleeding episode..
The chimeric protein of the invention can be used to treat a subject having an acute bleeding episode who does not have a hemostatic disorder. The acute bleeding episode can result from severe trauma, e.g., surgery, an automobile accident, wound, laceration gun shot, or any other traumatic event resulting in uncontrolled bleeding. Non limiting examples of bleeding episodes include a bleeding coagulation disorder, hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, bleeding in the illiopsoas sheath, and any combinations thereof.
In prophylactic applications, one or more compositions containing the chimeric protein of the invention or a cocktail thereof are administered to a patient not already in the disease state to enhance the patient's resistance or reduce symptoms associated with a disease or disorder. Such an amount is defined to be a prophylactic effective dose. In therapeutic applications, a relatively high dosage (e.g., from about 1 to 400 mg/kg of polypeptide per dose, with dosages of from 5 to 25 mg being more commonly used for radioimmuno conjugates and higher doses for cytotoxin-drug modified polypeptides) at relatively short intervals is sometimes required until progression of the disease is reduced or terminated, and until the patient shows partial or complete amelioration of symptoms of disease. Thereafter, the patient can be administered a prophylactic regime.
In some embodiments, a chimeric protein or a composition of the invention is used for on-demand treatment, which includes treatment for a bleeding episode,
- 163 2018203206 08 May 2018 [0328] [0329] hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis (head trauma), gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, or bleeding in the illiopsoas sheath. The subject may be in need of surgical prophylaxis, peri-operative management, or treatment for surgery. Such surgeries include, e.g., minor surgery, major surgery, tooth extraction, tonsillectomy, inguinal herniotomy, synovectomy, total knee replacement, craniotomy, osteosynthesis, trauma surgery, intracranial surgery, intra-abdominal surgery, intrathoracic surgery, or joint replacement surgery.
In one embodiment, the chimeric protein of the present invention is administered intravenously, subcutaneously, intramuscularly, or via any mucosal surface, e.g., orally, sublingually, buccally, nasally, rectally, vaginally or via pulmonary route. The chimeric protein comprising a VWF fragment and a FVIII protein of the present invention can be implanted within or linked to a biopolymer solid support that allows for the slow release of the chimeric protein to the site of bleeding or implanted into bandage/dressing. The dose of the chimeric protein will vary depending on the subject and upon the particular route of administration used. Dosages can range from 0.1 to 100,000 pg/kg body weight. In one embodiment, the dosing range is 0.1-1,000 pg/kg. In another embodiment, the dosing range is 0.1-500 pg/kg. The protein can be administered continuously or at specific timed intervals. In vitro assays may be employed to determine optimal dose ranges and/or schedules for administration. In vitro assays that measure clotting factor activity are known in the art, e.g., STA-CLOT VIIa-rTF clotting assay or ROTEM clotting assay. Additionally, effective doses may be extrapolated from dose-response curves obtained from animal models, e.g., a hemophiliac dog (Mount et al. 2002, Blood 99(8):2670).
Having now described the present invention in detail, the same will be more clearly understood by reference to the following examples, which are included herewith for purposes of illustration only and are not intended to be limiting of the invention. All patents, publications, and articles referred to herein are expressly and specifically incorporated herein by reference.
- 1642018203206 08 May 2018 [0330] [0331] [0332] [0333]
Examples
Throughout the examples, the following materials and methods were used unless otherwise stated.
Materials and Methods
In general, the practice of the present invention employs, unless otherwise indicated, conventional techniques of chemistry, biophysics, molecular biology, recombinant DNA technology, immunology (especially, e.g., antibody technology), and standard techniques in electrophoresis. See, e.g., Sambrook, Fritsch and Maniatis, Molecular Cloning: Cold Spring Harbor Laboratory Press (1989); Antibody Engineering Protocols (Methods in Molecular Biology), 510, Paul, S., Humana Pr (1996); Antibody Engineering: A Practical Approach (Practical Approach Series, 169), McCafferty, Ed., Irl Pr (1996); Antibodies: A Laboratory Manual, Harlow et al., CS.H.L. Press, Pub. (1999); and Current Protocols in Molecular Biology, eds. Ausubel et al., John Wiley & Sons (1992). Example 1: Cloning different VWF domains (Figure 1) (a) Cloning of pSYN-VWF-002 pSYN-VWF-002 contains nucleotide sequences encoding a VWF fragment, which are amino acids 1-477 of SEQ ID NO: 100. [VWF-D'D3 protein sequence] Amino acid numbering represents the mature VWF sequence without propeptide and corresponds to amino acids 764-1240 of SEQ ID NO: 2. pSYNVWF-002 construct has the FVIII signal peptide at N-terminus, which allows proper secretion of the synthesized protein and followed by a 6xHis tag at Cterminus, which is used for protein purification. It was synthesized by using following primer combinations:
ESC48- Fwd - VWF-DO3 with VIII signal and BsiWl site
TCGCGACGTACGGCCGCCACCATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGT GCCTTTTGCGATTCTGCTTTAGCCTATCCTGTCGGCCCCCCATG (SEQ ID NO: 90)
ESC51- Rev- VWF D’D3 (1-477 amino acid) with 6His and Not 1 site
TGACCTCGAGCGGCCGCTCAGTGGTGATGGTGATGATGCGGCTCCTGGCAGGCTT CACAGGTGAGGTTGACAAC (SEQ ID NO: 91)
A 50 μΐ PCR reaction was carried out with ESC 48/ESC 51 primer combinations and full length VWF plasmid as the template, using the 2 step PCR
- 165 2018203206 08 May 2018 [0334] [0335] [0336] amplification cycle: 94 °C 2minutes; 21 cycles of (96 °C 30 seconds, 68 °C 2 minute). The 1460bp band was gel purified with a Gel Extraction kit (Qiagen,
Valencia, Calif.) and cloned into the BsiWI and Notl restriction sites of pcDNA 4 to generate pSYN-VWF 002.
(b) Cloning of pSYN-VWF- 010 and 013 pSYN-VWF-010 was constructed using pSYN-VWF-008 and pSYNVWF-002. pSYN-VWF-008 contains the full-length VWF sequence in pcDNA 3.1 (amino acids 1-2813 of SEQ ID NO: 2), it includes 763 amino acid propeptide (i.e., D1D2 domains) followed by remaining 2050 amino acids sequence of mature VWF. The FVIII signal peptide in pSYN-VWF-002 was replaced with D1D2 domains from pSYN-VWF-008, the resulting construct is pSYN-VWF-010. pSYN-VWF- 008 has a BamHl site at Arg907 and Notl site at the end of coding region (after stop codon). pSYN- VWF- 008 and 002 were digested with BamHl and Notl restriction enzymes. Inserts from pSYN- VWF-002 (1026 bp) were ligated into bamHl/Notl digested pSYN-VWF- 008 (8242bp) to obtain pSYNVWF -010 (D1D2DO3: amino acid 1-1240 of SEQ ID NO: 2), a 6xHis tag was also added at the C-terminus. In transformed cells pSYN-VWF-010 is synthesized with propeptide but due to intracellular processing the secreted products do not contain any propeptide (D1D2). Protein from VWF-010 exists as dimer.
pSYN-VWF-010 was used to generate pSYN-VWF-013 which has two point mutations at C336A and C379A corresponding to SEQ ID NO: 100 (amino acid numbering represents mature VWF sequence without D1D2 domain-VWF sequence 2). These mutations are predicted to prevent dimerization of VWF D'D3 domain.
(c) Cloning of pSYN-VWF-025 and pSYN-VWF-029 pSYN-VWF-025 contains wild type D1D2D'D3 sequences of full-length
VWF in pLIVE vector, and pSYN-VWF-029 contains D1D2DO3 sequence with C336A and C379A mutation. For cloning pSYN-VWF-025, the following primer combination was used:
ESC 89-fwd withNhelsite= CTCACTATAGGGAGACCCAAGCTGGCTAGCCG (SEQ ID NO: 92)
- 1662018203206 08 May 2018 [0337] [0338] [0339] [0340]
ESC 91-rev with Sail=
CTGGATCCCGGGAGTCGACTCGTCAGTGGTGATGGTGATGATG (SEQ ID NO:
93)
A 50 μΐ PCR reaction was carried out with ESC 89/ESC91 primer combinations and either pSYN-VWF 010 ( for pSYN-VWF-025) or pSYN-VWF 013 ( for pSYN-VWF-029) plasmid as the template using the 3 step PCR amplification cycle: 94 °C 2minutes; 21 cycles of (96 °C -30 seconds, 55 °C-30 second, 68 °C-4 minutes). The expected sized band (~3800bp) was gel purified with a Gel Extraction kit (Qiagen, Valencia, Calif.) and cloned into the Nhe land Sail restriction sites of pLIVE-Mirus vector (Invitrogen, Carlsbad, Calif.) to generate pSYN-VWF 025 and 029.
(d) Cloning pSYN-VWF-031 pSYN-VWF-031 is a D1D2D'D3(C336A/C379A) -Fc construct which has a 48 amino acid long thrombin cleavable linker (8x GGGGS (SEQ ID NO 94) + thrombin site) in between the VWF D1D2DD3(C336A/C379A) and the Fc sequences. To make this construct, VWF-Fc region was amplified from construct pSYN-FVIII-064 (refer FVIII-VWF construct below). pSYN-FVIII-VWF was digested with Xbal and Nhel. Resulting insert region of 4165bp, containing the VWF fragment and Fc region was used as a template for amplifying the VWF and Fc region by primer combinations LW 22/LW23.
LW 22-FWD-VWF-DD3 with FVIII signal sequence and BsiWl site
GCGCCGGCCGTACGATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTTTT GCGATTCTGCTTTAGCCTATCCTGTCGGCCCCCCATG (SEQ ID NO: 95)
LW 23-Rev- Fc with stop codon andNotl site
TCATCAATGTATCTTATCATGTCTGAATTCGCGGCCGCTCATTTACC (SEQ ID NO:96)
The PCR product obtained from LW22/LW23 amplification (~2300bp) was cloned in BsiWl/Notl digested pSYN-VWF-002 to obtain pSYN-VWF-014 intermediate. pSYN-VWF-014 contains FVIII signal peptide-DD3-20 amino acid thrombin cleavable linker followed by the Fc region.
To generate the D1D2D’D3-Fc construct, the D1D2DO3 region was amplified from pSYN-VWF-013 using primer combination LW24/LW27 by standard PCR method.
LW24- Fwd- VWF D1D2DO3 cloning oligo with BsiWl site
- 1672018203206 08 May 2018
GCGCCGGCCGTACGATGATTCCTGCCAGATTTGCCGGGGTG (SEQ ID NO:97)
LW27-Rev-VWF D'D3 oligo with EcoRV
CCACCGCCAGATATCGGCTCCTGGCAGGCTTCACAGGTGAG (SEQ ID NO:98) [0341] The PCR product obtained from LW22/LW23 amplification (~3750bp) was cloned in BsiWl/EcoRV digested pSYN-VWF-014 to obtain pSYN-VWF015 intermediate. The linker length between the VWF fragment and Fc region was changed to obtain pSYN-VWF-031.
VWF-D1D2DO3 protein sequence 1 (SEQ ID NO: 99)
MIPARFAGVL LALALILPGT LCAEGTRGRS STARCSLFGS DFVNTFDGSM
YSFAGYCSYL LAGGCQKRSF SIIGDFQNGK RVSLSVYLGE FFDIHLFVNG
101 TVTQGDQRVS MPYASKGLYL ETEAGYYKLS GEAYGFVARI DGSGNFQVLL
151 SDRYFNKTCG LCGNFNIFAE DDFMTQEGTL TSDPYDFANS WALSSGEQWC
201 ERASPPSSSC NISSGEMQKG LWEQCQLLKS TSVFARCHPL VDPEPFVALC
251 EKTLCECAGG LECACPALLE YARTCAQEGM VLYGWTDHSA CSPVCPAGME
301 YRQCVSPCAR TCQSLHINEM CQERCVDGCS CPEGQLLDEG LCVESTECPC
351 VHSGKRYPPG TSLSRDCNTC ICRNSQWICS NEECPGECLV TGQSHFKSFD
401 NRYFTFSGIC QYLLARDCQD HSFSIVIETV QCADDRDAVC TRSVTVRLPG
451 LHNSLVKLKH GAGVAMDGQD IQLPLLKGDL RIQHTVTASV RLSYGEDLQM
501 DWDGRGRLLV KLSPVYAGKT CGLCGNYNGN QGDDFLTPSG LAEPRVEDFG
551 NAWKLHGDCQ DLQKQHSDPC ALNPRMTRFS EEACAVLTSP TFEACHRAVS
601 PLPYLRNCRY DVCSCSDGRE CLCGALASYA AACAGRGVRV AWREPGRCEL
651 NCPKGQVYLQ CGTPCNLTCR SLSYPDEECN EACLEGCFCP PGLYMDERGD
701 CVPKAQCPCY YDGEIFQPED IFSDHHTMCY CEDGFMHCTM SGVPGSLLPD
751 AVLSSPLSHR SKRSLSCRPP MVKLVCPADN LRAEGLECTK TCQNYDLECM
801 SMGCVSGCLC PPGMVRHENR CVALERCPCF HQGKEYAPGE TVKIGCNTCV
851 CRDRKWNCTD HVCDATCSTI GMAHYLTFDG LKYLFPGECQ YVLVQDYCGS
901 NPGTFRILVG NKGCSHPSVK CKKRVTILVE GGEIELFDGE VNVKRPMKDE
- 168
2018203206 08 May 2018 [0342]
951 THFEVVESGR YIILLLGKAL SVVWDRHLSI SVVLKQTYQE
KVCGLCGNFD
L001 GIQNNDLTSS NLQVEEDPVD FGNSWKVSSQ CADTRKVPLD
SSPATCHNNI
LG51 MKQTMVDSSC RILTSDVFQD CNKLVDPEPY LDVCIYDTCS CESIGDCACF
L101 CDTIAAYAHV CAQHGKVVTW RTATLCPQSC EERNLRENGY ECEWRYNSCA
L151 PACQVTCQHP EPLACPVQCV EGCHAHCPPG KILDELLQTC VDPEDCPVCE
L.2 01 VAGRRFASGK KVTLNPSDPE HCQICHCDVV NLTCEACQEP* VWF-D'D3 protein sequence 2 (SEQ ID NO: 100)
SLSCRPPMVK LVCPADNLRA EGLECTKTCQ NYDLECMSMG CVSGCLCPPG
MVRHENRCVA LERCPCFHQG KEYAPGETVK IGCNTCVCRD RKWNCTDHVC
101 DATCSTIGMA HYLTFDGLKY LFPGECQYVL VQDYCGSNPG TFRILVGNKG
151 CSHPSVKCKK RVTILVEGGE IELFDGEVNV KRPMKDETHF EVVESGRYII
201 LLLGKALSVV WDRHLSISVV LKQTYQEKVC GLCGNFDGIQ NNDLTSSNLQ
251 VEEDPVDFGN SWKVSSQCAD TRKVPLDSSP ATCHNNIMKQ TMVDSSCRIL
301 TSDVFQDCNK LVDPEPYLDV CIYDTCSCES IGDCACFCDT IAAYAHVCAQ
351 HGKVVTWRTA TLCPQSCEER NLRENGYECE WRYNSCAPAC QVTCQHPEPL
401 ACPVQCVEGC HAHCPPGKIL DELLQTCVDP EDCPVCEVAG RRFASGKKVT
451 LNPSDPEHCQ ICHCDVVNLT CEACQEP
Example 2: Effects of D'D3 and XTEN fusion on FVIII half-life extension
To evaluate D'D3 FVIII half-life extension potential on rFVIII-XTEN fusion protein, a VWF D'D3 dimer was introduced into FVIII-VWF DKO mice by hydrodynamic injection of its corresponding DNA construct VWF-025 (Example 1). After D'D3 has reached the steady state expression (day5 post injection), a single dose of rFVIII-XTEN was administered by IV injection at 200 IU/kg dose. Blood samples were collected up to 120hrs post rFVIII-XTEN dosing. Plasma FVIII activity was analyzed by a FVIII chromogenic assay. The D'D3 expression level was measured by VWF ELISA, and rFVIIIFc PK profile was analyzed using WinNonlin program.
The study results were shown in Figure 2, and the PK parameter of rFVIIIXTEN with/without D'D3 in circulation was listed in Table 16. The D'D3 dimer further extended rFIII-XTEN ti/2 from 3.4hr to 17.8hr, a 5 fold increase. In [0343]
- 169addition to half-life, 5 fold of increase on MRT, 3.6 fold increases on AUC, 3.8 fold decreases on clearance were also observed.
[0344] We have observed a synergistic effect of D'D3 fragment and XTEN technology, a serial of FVIII/VWF/ΧΤΕΝ constructs will be evaluated for their
FVIII half-life extension potential in Hemophilic animals.
TABLE 16: rFVIII-XTEN PK parameter with/without D'D3 in blood
2018203206 08 May 2018 circulation
Treatment 5min Recovery (%) ^1/2 (hr) MRT (hr) Cl (mL/hr/kg) Vss (mL/kg) AUC D (hr*kg*mIU /mL/mIU)
rFVIIIXTE N VWF-025 80 17.8 19.3 3.5 67.4 0.29
rFVIIIXTE N 74 3.4 3.8 13.1 63.68 0.08
Improveme nt fold 1.1 5.2 5.1 3.8 0.9 3.6
Protein purification of FVIII-XTEN [0345] An AE288 XTEN was inserted at the C-terminus of BDD-FVIII for this study. To purify this protein, a tangential flow filtration (TFF) step was used first to buffer exchange the conditioned media. Products in the filtrate were then captured using a strong anion exchange chromatography, and then further purified using affinity chromatography. Purity of the molecule was acceptable by HPLCSEC and was further confirmed by western blotting. The specific activity of the molecule was comparable to B-domain deleted FVIII, as measured by aPTT assay and ELISA.
FVIII chromogenic assay [0346] The FVIII activity was measured using the COATEST SP FVIII kit from
DiaPharma (lot# N089019) and all incubations were performed on a 37°C plate heater with shaking.
[0347] The range of rFVIII standard was from 100 mlU/mL to 0.78 mlU/mL. A pooled normal human plasma assay control and plasma samples (diluted with IX Coatest buffer) were added into Immulon 2HB 96-well plates in duplicate (25 pL/well). Freshly prepared IXa/FX/Phospholipid mix (50 pL), 25 pL of 25mM CaC12, and 50 pL of FXa substrate were added sequentially into each well with 5
- 1702018203206 08 May 2018 [0348] [0349] [0350] minutes incubation between each addition. After incubating with the substrate, 25 pL of 20% Acetic Acid was added to terminate the color reaction, and the absorbance of OD405 was measured with a SpectraMAX plus (Molecular
Devices) instrument. Data were analyzed with SoftMax Pro software (version
5.2). The Lowest Level of Quantification (LLOQ) is 7.8 mlU/mL.
VWF ELISA:
Goat anti-human VWF antibody (Affinity purified, affinity biological, GAVWF-AP) was used as the capture antibody at 0.5ug/well and VWF-EIA-D (Affinity Biologicals, VWF-EIA-D, 1:100 dilution) was used as the detecting antibody for the VWF ELISA. ELISA assay was performed following the standard ELISA procedure, TMB was used as the HRP substrate, PBST/1.5% BSA/0.5M NaCl buffer was used as blocking and binding buffer. The assay standard range is lOOng to 0.78ng, and assay's lowest limit of quantification (LLOQ) is 7.8ng/mL.
Example 3: Plasmid construction of XTEN containing FVIII/VWF constructs (a) Cloning of pSYN-FVIII-161 (Figure 3)
The FVIII-161 plasmid comprises a single chain Fc (scFc) scaffold with enzyme cleavage sites which are processed during synthesis in a cell. The construct has a FVIII binding domain of full-length VWF ( DD3).
Plasmid (pSYN-FVIII-161) was designed for the expression FVIII-Fc and VWF-Fc heterodimer, where the D’D3 domains to bind FVIII and prevents FVIII interaction with phospholipids and activated protein C. Protein from pSYN-FVIII161 is expressed in the cell as a single polypeptide where the C-terminus of the FVIII-Fc subunit is linked to the N-terminus of the VWF D’D3-Fc subunit by a 6x (GGGGS) polypeptide linker (SEQ ID NO: 64). In addition, RRRRS (SEQ ID NO: 11) and RKRRKR (SEQ ID NO: 10) sequences were inserted at the 5' and 3' end of the polypeptide linker, respectively, for intracellular cleavage by proprotein convertases following the last Arg at each sequence. Hence, the cells can express a double chain FVIII-Fc/D'D3-Fc heterodimer where the FVIII-Fc chain has a RRRRS sequence (SEQ ID NO: 11) at the C-terminus, but the remainder of the linker sequence has been removed. An AE288 XTEN fragment immediately followed by IS{5X(GGGGS)}LVPRGSGG (SEQ ID NO: 122) polypeptide (contains thrombin cleavage site) is introduced in between the VWF domains and
- 171 2018203206 08 May 2018 [0351] the Fc region to facilitate release of the VWF fragment from FVIII once the FVIII
VWF hetero-dimeric protein is activated by thrombin allowing interaction of
FVIII with other clotting factors.
pSYN-FVIII-161 (SEQ ID NO: 101).protein sequence (FVIII sequence amino acid position 1-1457; underlined region represents Fc region; curvy underline represents cleavable linker in between first Fc and VWF fragment; double underlined region represents VWF fragment; bold region represents cleavable linker in between VWF fragment and Fc.
1 MQIELSTCFF GELPVDARFP LCLLRFCFSA TRRYYLGAVE LSWDYMQSDL
51 PRVPKSFPFN LGPTIQAEVY TSVVYKKTLF VEFTDHLFNI AKPRPPWMGL
101 DTVVITLKNM EKEDDKVFPG ASHPVSLHAV GVSYWKASEG AEYDDQTSQR
151 GSHTYVWQVL LIGALLVCRE KENGPMASDP LCLTYSYLSH VDLVKDLNSG
201 GSLAKEKTQT AASARAWPKM LHKFILLFAV FDEGKSWHSE TKNSLMQDRD
251 HTVNGYVNRS EGHTFLVRNH LPGLIGCHRK SVYWHVIGMG TTPEVHSIFL
301 RQASLEISPI AYVKVDSCPE TFLTAQTLLM DLGQFLLFCH ISSHQHDGME
351 EPQLRMKNNE RSVAKKHPKT EAEDYDDDLT DSEMDVVRFD DDNSPSFIQI
401 WVHYIAAEEE KYKKVRFMAY DWDYAPLVLA PDDRSYKSQY LNNGPQRIGR
451 TDETFKTREA PYNIYPHGIT IQHESGILGP LLYGEVGDTL LIIFKNQASR
501 DVRPLYSRRL TKSDPRCLTR PKGVKHLKDF PILPGEIFKY KWTVTVEDGP
551 YYSSFVNMER NVILFSVFDE DLASGLIGPL LICYKESVDQ RGNQIMSDKR
601 NRSWYLTENI FDSLQLSVCL QRFLPNPAGV QLEDPEFQAS NIMHSINGYV
651 HEVAYWYILS PFSGETVFMS IGAQTDFLSV FFSGYTFKHK MVYEDTLTLF
701 MENPGLWILG SYEDISAYLL CHNSDFRNRG MTALLKVSSC DKNTGDYYED
751 SKNNAIEPRS DTISVEMKKE FSQNPPVLKR HQREITRTTL QSDQEEIDYD
601 DFDIYDEDEN HVLRNRAQSG QSPRSFQKKT RHYFIAAVER LWDYGMSSSP
851 SVPQFKKVVF EVEDNIMVTF QEFTDGSFTQ PLYRGELNEH LGLLGPYIRA
901 RNQASRPYSF FWKVQHHMAP YSSLISYEED QRQGAEPRKN FVKPNETKTY
- 172
2018203206 08 May 2018
951 TKDEFDCKAW AHGRQVTVQE AYFSDVDLEK DVHSGLIGPL LVCHTNTLNP
1001 FALFFTIFDE TKSWYFTENM ERNCRAPCNI QMEDPTFKEN
YRFHAINGYI 1051 MDTLPGLVMA QDQRIRWYLL SMGSNENIHS IHFSGHVFTV
RKKEEYKMAL 1101 YNLYPGVFET VEMLPSKAGI WRVECLIGEH LHAGMSTLFL
VYSNKCQTPL 1151 GMASGHIRDF QITASGQYGQ WAPKLARLHY SGSINAWSTK
EPFSWIKVDL 1201 LAPMIIHGIK TQGARQKFSS LYISQFIIMY SLDGKKWQTY
RGNSTGTLMV 1251 FFGNVDSSGI KHNIFNPPII ARYIRLHPTH YSIRSTLRME
LMGCDLNSCS 1301 MPLGMESKAI SDAQITASSY FTNMFATWSP SKARLHLQGR
SNAWRPQVNN 1351 PKEWLQVDFQ KTMKVTGVTT QGVKSLLTSM YVKEFLISSS
QDGHQWTLFF 14 01 QNGKVKVFQG NQDSFTPVVN SLDPPLLTRY LRIHPQSWVH
QIALRMEVLG 1451 CEAQDLYDKT HTCPPCPAPE LLGGPSVFLF PPKPKDTLMI
SRTPEVTCVV 1501 VDVSHEDPEV KFNWYVDGVE VHNAKTKPRE EQYNSTYRVV
SVLTVLHQDW 1551 LNGKEYKCKV SNKALPAPIE KTISKAKGQP REPQVYTLPP
SRDELTKNQV 1601 SLTCLVKGFY PSDIAVEWES NGQPENNYKT TPPVLDSDGS
FFLYSKLTVD 1651 KSRWQQGNVF SCSVMHEALH NHYTQKSLSL SPGKRRRRSG
GGGSGGGGSG 17 01 GGGSGGGGSG GGGSGGGGSR KRRKRSLSCR PPMVKLVCPA
DNLRAEGLEC 1751 TKTCONYDLE CMSMGCVSGC LCPPGMVRHE NRCVALERCP
CFHQGKEYAP 1801 GETVKIGCNT CVCRDRKWNC TDHVCDATCS TIGMAHYLTF
DGLKYLFPGE 1851 CQYVLVQDYC GSNPGTFRIL VGNKGCSHPS VKCKKRVTIL
VEGGEIELFD 1901 GEVNVKRPMK DETHFEVVES GRYIILLLGK ALSVVWDRHL
SISVVLKQTY 1951 OEKVCGLCGN FDGIONNDLT SSNLOVEEDP VDFGNSWKVS
SOCADTRKVP 2001 LDSSPATCHN NIMKQTMVDS SCRILTSDVF QDCNKLVDPE
PYLDVCIYDT 2051 CSCESIGDCA AFCDTIAAYA HVCAQHGKVV TWRTATLCPQ
SCEERNLREN 2101 GYEAEWRYNS CAPACOVTCO HPEPLACPVO CVEGCHAHCP
PGKILDELLO 2151 TCVDPEDCPV CEVAGRRFAS GKKVTLNPSD PEHCQICHCD
VVNLTCEACQ
- 173 2018203206 08 May 2018
22 01 EPISGTSESA TPESGPGSEP ATSGSETPGT SESATPESGP
GSEPATSGSE 2251 TPGTSESATP ESGPGTSTEP SEGSAPGSPA GSPTSTEEGT
SESATPESGP 2301 GSEPATSGSE TPGTSESATP ESGPGSPAGS PTSTEEGSPA
GSPTSTEEGT 2351 STEPSEGSAP GTSESATPES GPGTSESATP ESGPGTSESA
TPESGPGSEP 2401 ATSGSETPGS EPATSGSETP GSPAGSPTST EEGTSTEPSE
GSAPGTSTEP 2451 SEGSAPGSEP ATSGSETPGT SESATPESGP GTSTEPSEGS
APDSGGGGSG 2501 GGGSGGGGSG GGGSGGGGSL VPRGSGGDKT HTCPPCPAPE
LLGGPSVFLF 2551 PPKPKDTLMI SRTPEVTCVV VDVSHEDPEV KFNWYVDGVE
VHNAKTKPRE 2601 EQYNSTYRVV SVLTVLHQDW LNGKEYKCKV SNKALPAPIE
KTISKAKGQP 2651 REPQVYTLPP SRDELTKNQV SLTCLVKGFY PSDIAVEWES
NGQPENNYKT 2701 TPPVLDSDGS FFLYSKLTVD KSRWQQGNVF SCSVMHEALH
NHYTQKSLSL 2751 SPGK
(b) Cloning of pSYN-FVIII-168, 175, 172 and 174 (Figure 4A-4D) [0352] pSYN-FVIII-168, 172, 174 and 175 are derivatives of pSYN-FVIII-161.
R1645A/R1648A mutations were introduced into pSYN-FVIII-161 to form pSYN-FVIII-168, which produces a SC-FVIII isoform, and an AE288 XTEN was directly fused into the C-terminus of FVIII-HC for further half-life extension. To construct pSYN-FVIII-175, the D'D3 codon sequence was remove form pSYNFVIII-168 for evaluation of the effect of Fc and XTEN technology on FVIII halflife extension.
[0353] To construct pSYN-FVIII-172, the AE288 XTEN fragment was directly fused into the C-terminus of FVIII-HC for further half-life extension, and the D’D3 codon sequence was removed from pSYN-FVIII-172 to form pSYN-FVIII174 for evaluation of the effect of Fc and XTEN technology on FVIII half-life extension.
(c) Cloning of pSYN-FVIII-170 (Figure 4E) [0354] pSYN-FVIII-170 was constructed to evaluate the effect of XTEN and
D’D3 fragment on FVIII half-life extension. The codon sequence VWFD1D2D’D3 fragment and BDD-FVIII were introduced into the 5’ and 3’ end of expression casket, an AE288 XTEN codon sequence which followed by a 35 aa
- 174thrombin cleavable linker was used to connect the VWF and FVIII molecule.
After intra cellular processing, the secreted protein comprises a polypeptide contains the D'D3 fragment of mature VWF molecule which is linked to the N terminus of mature BDD-FVIII by an AE288 XTEN/35 aa thrombin cleavable linker.
pSYN-FVIII-170 protein sequence (SEQ ID NO: 102)
2018203206 08 May 2018
1 SLSCRPPMVK LVCPADNLRA EGLECTKTCQ NYDLECMSMG
CVSGCLCPPG 51 MVRHENRCVA LERCPCFHQG KEYAPGETVK IGCNTCVCRD
RKWNCTDHVC 101 DATCSTIGMA HYLTFDGLKY LFPGECQYVL VQDYCGSNPG
TFRILVGNKG 151 CSHPSVKCKK RVTILVEGGE IELFDGEVNV KRPMKDETHF
EVVESGRYII 201 LLLGKALSVV WDRHLSISVV LKQTYQEKVC GLCGNFDGIQ
NNDLTSSNLQ 251 VEEDPVDFGN SWKVSSQCAD TRKVPLDSSP ATCHNNIMKQ
TMVDSSCRIL 301 TSDVFQDCNK LVDPEPYLDV CIYDTCSCES IGDCAAFCDT
IAAYAHVCAQ 351 HGKVVTWRTA TLCPQSCEER NLRENGYEAE WRYNSCAPAC
QVTCQHPEPL 401 ACPVQCVEGC HAHCPPGKIL DELLQTCVDP EDCPVCEVAG
RRFASGKKVT 451 LNPSDPEHCQ ICHCDVVNLT CEACQEPISG TSESATPESG
PGSEPATSGS 501 ETPGTSESAT PESGPGSEPA TSGSETPGTS ESATPESGPG
TSTEPSEGSA 551 PGSPAGSPTS TEEGTSESAT PESGPGSEPA TSGSETPGTS
ESATPESGPG 601 SPAGSPTSTE EGSPAGSPTS TEEGTSTEPS EGSAPGTSES
ATPESGPGTS 651 ESATPESGPG TSESATPESG PGSEPATSGS ETPGSEPATS
GSETPGSPAG 701 SPTSTEEGTS TEPSEGSAPG TSTEPSEGSA PGSEPATSGS
ETPGTSESAT 751 PESGPGTSTE PSEGSAPDSG GGGSGGGGSG GGGSGGGGSG
GGGSLVPRGS 8 01 GGASATRRYY LGAVELSWDY MQSDLGELPV DARFPPRVPK
SFPFNTSVVY 851 KKTLFVEFTD HLFNIAKPRP PWMGLLGPTI QAEVYDTVVI
TLKNMASHPV 901 SLHAVGVSYW KASEGAEYDD QTSQREKEDD KVFPGGSHTY
VWQVLKENGP 951 MASDPLCLTY SYLSHVDLVK DLNSGLIGAL LVCREGSLAK
EKTQTLHKFI
- 175
2018203206 08 May 2018
1001 LLFAVFDEGK YVNRSLPGLI SWHSETKNSL MQDRDAASAR AWPKMHTVNG
1051 GCHRKSVYWH VIGMGTTPEV HSIFLEGHTF LVRNHRQASL
EISPITFLTA 1101 QTLLMDLGQF LLFCHISSHQ HDGMEAYVKV DSCPEEPQLR
MKNNEEAEDY 1151 DDDLTDSEMD VVRFDDDNSP SFIQIRSVAK KHPKTWVHYI
AAEEEDWDYA 1201 PLVLAPDDRS YKSQYLNNGP QRIGRKYKKV RFMAYTDETF
KTREAIQHES 1251 GILGPLLYGE VGDTLLIIFK NQASRPYNIY PHGITDVRPL
YSRRLPKGVK 1301 HLKDFPILPG EIFKYKWTVT VEDGPTKSDP RCLTRYYSSF
VNMERDLASG 1351 LIGPLLICYK ESVDQRGNQI MSDKRNVILF SVFDENRSWY
LTENIQRFLP 1401 NPAGVQLEDP EFQASNIMHS INGYVFDSLQ LSVCLHEVAY
WYILSIGAQT 1451 DFLSVFFSGY TFKHKMVYED TLTLFPFSGE TVFMSMENPG
LWILGCHNSD 1501 FRNRGMTALL KVSSCDKNTG DYYEDSYEDI SAYLLSKNNA
IEPRSFSQNP 1551 PVLKRHQREI TRTTLQSDQE EIDYDDTISV EMKKEDFDIY
DEDENQSPRS 1601 FQKKTRHYFI AAVERLWDYG MSSSPHVLRN RAQSGSVPQF
KKVVFQEFTD 1651 GSFTQPLYRG ELNEHLGLLG PYIRAEVEDN IMVTFRNQAS
RPYSFYSSLI 1701 SYEEDQRQGA EPRKNFVKPN ETKTYFWKVQ HHMAPTKDEF
DCKAWAYFSD 1751 VDLEKDVHSG LIGPLLVCHT NTLNPAHGRQ VTVQEFALFF
TIFDETKSWY 18 01 FTENMERNCR APCNIQMEDP TFKENYRFHA INGYIMDTLP
GLVMAQDQRI 1851 RWYLLSMGSN ENIHSIHFSG HVFTVRKKEE YKMALYNLYP
GVFETVEMLP 1901 SKAGIWRVEC LIGEHLHAGM STLFLVYSNK CQTPLGMASG
HIRDFQITAS 1951 GQYGQWAPKL ARLHYSGSIN AWSTKEPFSW IKVDLLAPMI
IHGIKTQGAR 2001 QKFSSLYISQ FIIMYSLDGK KWQTYRGNST GTLMVFFGNV
DSSGIKHNIF 2051 NPPIIARYIR LHPTHYSIRS TLRMELMGCD LNSCSMPLGM
ESKAISDAQI 2101 TASSYFTNMF ATWSPSKARL HLQGRSNAWR PQVNNPKEWL
QVDFQKTMKV 2151 TGVTTQGVKS LLTSMYVKEF LISSSQDGHQ WTLFFQNGKV
KVFQGNQDSF 2201 TPVVNSLDPP LLTRYLRIHP QSWVHQIALR MEVLGCEAQD LY
- 176
2018203206 08 May 2018
Example 4: Hydrodynamic injection of XTEN containing FVIIIF/VWF constructs in FVIII and VWF deficient mice [0355] The XTEN containing DNA constructs in Figures 3 and 4 have combined
2-3 half-life extension elements together. To evaluate their FVIII half-life extension potential, a selective group of DNA constructs in figure 3 and figure 4 were introduced into FVIII/VWF double knockout (DKO) mice by Hydrodynamic injection (HDI) at lOOug/mouse dose. Blood samples were then collected by retro orbital blood collection at 24hr post HDI. The post HDI plasma FVIII activity was analyzed by FVIII chromogenic assay, and results were listed in Table 17 and Figure 5. Compared to wild type BDD-FVIII, all XTEN containing DNA constructs yield significantly higher FVIII plasma activity at 24hr post HDI, indicating the corresponding molecules had significant longer circulating protein half-life than BDD-FVIII. The application of the combination of those half-life extending elements was further evaluated in Hemophilic animals.
TABLE 17: FVIII plasma activity 24hr post HDI in FVIII/VWF DKO mice
DNA Construct BDD- FVIII FVIII-161 FVIII- 168 FVIII- 172 BDD- FVIII FVIII- 170
DNA Dose (pg/mouse) 100 100 100 100 50 50
FVIII Activity (mU/mL) 219±72 2446±1012 2209±609 167H223 197±21 399±30
Hydrodynamic injection:
[0356] Hydrodynamic Injection is an efficient and safe non-viral gene delivery method to the liver in small animals, such as mice and rats. It was originally described as a rapid injection of a naked plasmid DNA/saline solution free of endotoxin at a tenth volume of the animal's body weight in about 5-7 seconds.
The naked plasmid DNA contains the gene of interest and the liver produced in a tenth volume of the animal's body weight. The targeted protein is produced in the liver from the injected DNA and can be detected within 24 hours post-injection. Plasma samples were then collected to study the therapeutic property of the expressed protein.
[0357] For all the hydrodynamic injections that were performed herein, 2 ml of plasmid DNA in 0.9% sterile saline solution was delivered via intravenous tail vein injection within about 4-7 seconds to mice weighing 20-35 grams. The mice
- 1772018203206 08 May 2018 [0358] were closely monitored for the first couple of hours until the normal activity resumed. After the blood samples were collected via retro orbital blood collection, plasma samples were then obtained and stored at -80 °C for further analysis.
Example 5: Plasmid construction of co-transfection system for FVIIIFc-VWF Heterodimer contain XTEN insertions (Figure 6)
To increase the protein production yield, two co-transfection systems were generated for protein production, which contains three DNA constructs. The first DNA construct encoded a FVIII-Fc fusion protein in which a AE288 XTEN fragment was directly fuse to the C-terminus of the FVIII heavy chain and followed by either a wild type FVIII light chain fragment (pSYN-FVIII-173, Figure 6B) or a FVIII light chain fragment with R1645A/R1648A mutations (pSYN-FVIII-169, Figure 6A), the FVIII light chain was then directly fused to a single Fc fragment. The second DNA construct is pSYN-VWF-031 which encoding a D'D3-Fc fusion protein (Example 1). HEK293F cells were transfected with the two plasmid along with a third plasmid (PC5) at 80:15:5 ratio. The synthesized proteins were secreted as FVIII (XTEN) Fc/D'D3Fc heterodimer and D'D3Fc dimer and the FVIII (XTEN) Fc/D'D3Fc heterodimer was separated from the D'D3Fc dimer by protein purification.
pSYN-FVIII-169 mature Protein sequence (SEQ ID NO: 103):
ATRRYYLGAV ELSWDYMQSD LGELPVDARF PPRVPKSFPF NTSVVYKKTL
FVEFTDHLFN IAKPRPPWMG LLGPTIQAEV YDTVVITLKN MASHPVSLHA
101 VGVSYWKASE GAEYDDQTSQ REKEDDKVFP GGSHTYVWQV LKENGPMASD
151 PLCLTYSYLS HVDLVKDLNS GLIGALLVCR EGSLAKEKTQ TLHKFILLFA
201 VFDEGKSWHS ETKNSLMQDR DAASARAWPK MHTVNGYVNR SLPGLIGCHR
251 KSVYWHVIGM GTTPEVHSIF LEGHTFLVRN HRQASLEISP ITFLTAQTLL
301 MDLGQFLLFC HISSHQHDGM EAYVKVDSCP EEPQLRMKNN EEAEDYDDDL
351 TDSEMDVVRF DDDNSPSFIQ IRSVAKKHPK TWVHYIAAEE EDWDYAPLVL
401 APDDRSYKSQ YLNNGPQRIG RKYKKVRFMA YTDETFKTRE AIQHESGILG
451 PLLYGEVGDT LLIIFKNQAS RPYNIYPHGI TDVRPLYSRR LPKGVKHLKD
- 178
2018203206 08 May 2018
501 FPILPGEIFK RDLASGLIGP YKWTVTVEDG PTKSDPRCLT RYYSSFVNME
551 LLICYKESVD IQRFLPNPAG QRGNQIMSDK RNVILFSVFD ENRSWYLTEN
601 VQLEDPEFQA SIGAQTDFLS SNIMHSINGY VFDSLQLSVC LHEVAYWYIL
651 VFFSGYTFKH GCHNSDFRNR KMVYEDTLTL FPFSGETVFM SMENPGLWIL
701 GMTALLKVSS SFSQNGAPGT CDKNTGDYYE DSYEDISAYL LSKNNAIEPR
751 SESATPESGP SGSETPGTSE GSEPATSGSE TPGTSESATP ESGPGSEPAT
801 SATPESGPGT ESGPGSEPAT STEPSEGSAP GSPAGSPTST EEGTSESATP
851 SGSETPGTSE EEGTSTEPSE SATPESGPGS PAGSPTSTEE GSPAGSPTST
901 GSAPGTSESA GSEPATSGSE TPESGPGTSE SATPESGPGT SESATPESGP
951 TPGSEPATSG STEPSEGSAP SETPGSPAGS PTSTEEGTST EPSEGSAPGT
1001 GSEPATSGSE PVLKRHQAEI TPGTSESATP ESGPGTSTEP SEGSAPASSP
1051 TRTTLQSDQE FQKKTRHYFI EIDYDDTISV EMKKEDFDIY DEDENQSPRS
1101 AAVERLWDYG GSFTQPLYRG MSSSPHVLRN RAQSGSVPQF KKVVFQEFTD
1151 ELNEHLGLLG SYEEDQRQGA PYIRAEVEDN IMVTFRNQAS RPYSFYSSLI
1201 EPRKNFVKPN VDLEKDVHSG ETKTYFWKVQ HHMAPTKDEF DCKAWAYFSD
1251 LIGPLLVCHT FTENMERNCR NTLNPAHGRQ VTVQEFALFF TIFDETKSWY
1301 APCNIQMEDP RWYLLSMGSN TFKENYRFHA INGYIMDTLP GLVMAQDQRI
1351 ENIHSIHFSG SKAGIWRVEC HVFTVRKKEE YKMALYNLYP GVFETVEMLP
1401 LIGEHLHAGM GQYGQWAPKL STLFLVYSNK CQTPLGMASG HIRDFQITAS
1451 ARLHYSGSIN QKFSSLYISQ AWSTKEPFSW IKVDLLAPMI IHGIKTQGAR
1501 FIIMYSLDGK NPPIIARYIR KWQTYRGNST GTLMVFFGNV DSSGIKHNIF
1551 LHPTHYSIRS TASSYFTNMF TLRMELMGCD LNSCSMPLGM ESKAISDAQI
1601 ATWSPSKARL TGVTTQGVKS HLQGRSNAWR PQVNNPKEWL QVDFQKTMKV
1651 LLTSMYVKEF TPVVNSLDPP LISSSQDGHQ WTLFFQNGKV KVFQGNQDSF
1701 LLTRYLRIHP CPAPELLGGP QSWVHQIALR MEVLGCEAQD LYDKTHTCPP
- 179
2018203206 08 May 2018
17 51 SVFLFPPKPK DTLMISRTPE VTCVVVDVSH EDPEVKFNWY
18 VDGVEVHNAK 01 TKPREEQYNS TYRVVSVLTV LHQDWLNGKE YKCKVSNKAL
18 PAPIEKTISK 51 AKGQPREPQV YTLPPSRDEL TKNQVSLTCL VKGFYPSDIA
19 VEWESNGQPE 01 NNYKTTPPVL DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM
HEALHNHYTQ 1951 KSLSLSPGK pSYN-FVIII-173 mature Protein seuuencing (SEO ID NO: 104):
1 ATRRYYLGAV ELSWDYMQSD LGELPVDARF PPRVPKSFPF
NTSVVYKKTL 51 FVEFTDHLFN IAKPRPPWMG LLGPTIQAEV YDTVVITLKN
- MASHPVSLHA 01 VGVSYWKASE GAEYDDQTSQ REKEDDKVFP GGSHTYVWQV
-i LKENGPMASD 51 PLCLTYSYLS HVDLVKDLNS GLIGALLVCR EGSLAKEKTQ
/-> TLHKFILLFA 01 VFDEGKSWHS ETKNSLMQDR DAASARAWPK MHTVNGYVNR
/·> z SLPGLIGCHR 51 KSVYWHVIGM GTTPEVHSIF LEGHTFLVRN HRQASLEISP
3 ITFLTAQTLL 01 MDLGQFLLFC HISSHQHDGM EAYVKVDSCP EEPQLRMKNN
3 EEAEDYDDDL 51 TDSEMDVVRF DDDNSPSFIQ IRSVAKKHPK TWVHYIAAEE
EDWDYAPLVL 401 APDDRSYKSQ YLNNGPQRIG RKYKKVRFMA YTDETFKTRE
4 AIQHESGILG 51 PLLYGEVGDT LLIIFKNQAS RPYNIYPHGI TDVRPLYSRR
5 LPKGVKHLKD 01 FPILPGEIFK YKWTVTVEDG PTKSDPRCLT RYYSSFVNME
5 RDLASGLIGP 51 LLICYKESVD QRGNQIMSDK RNVILFSVFD ENRSWYLTEN
6 IQRFLPNPAG 01 VQLEDPEFQA SNIMHSINGY VFDSLQLSVC LHEVAYWYIL
6 SIGAQTDFLS 51 VFFSGYTFKH KMVYEDTLTL FPFSGETVFM SMENPGLWIL
7 GCHNSDFRNR 01 GMTALLKVSS CDKNTGDYYE DSYEDISAYL LSKNNAIEPR
·? SFSQNGAPGT 51 SESATPESGP GSEPATSGSE TPGTSESATP ESGPGSEPAT
o <' SGSETPGTSE 01 SATPESGPGT STEPSEGSAP GSPAGSPTST EEGTSESATP
8 ESGPGSEPAT 51 SGSETPGTSE SATPESGPGS PAGSPTSTEE GSPAGSPTST
9 EEGTSTEPSE 01 GSAPGTSESA TPESGPGTSE SATPESGPGT SESATPESGP
9 GSEPATSGSE 51 TPGSEPATSG SETPGSPAGS PTSTEEGTST EPSEGSAPGT
STEPSEGSAP
- 180
2018203206 08 May 2018
10 01 GSEPATSGSE PVLKRHQREI TPGTSESATP ESGPGTSTEP SEGSAPASSP
10 51 TRTTLQSDQE FQKKTRHYFI EIDYDDTISV EMKKEDFDIY DEDENQSPRS
11 01 AAVERLWDYG GSFTQPLYRG MSSSPHVLRN RAQSGSVPQF KKVVFQEFTD
11 51 ELNEHLGLLG SYEEDQRQGA PYIRAEVEDN IMVTFRNQAS RPYSFYSSLI
12 01 EPRKNFVKPN VDLEKDVHSG ETKTYFWKVQ HHMAPTKDEF DCKAWAYFSD
12 51 LIGPLLVCHT FTENMERNCR NTLNPAHGRQ VTVQEFALFF TIFDETKSWY
1301 APCNIQMEDP RWYLLSMGSN TFKENYRFHA INGYIMDTLP GLVMAQDQRI
13 51 ENIHSIHFSG SKAGIWRVEC HVFTVRKKEE YKMALYNLYP GVFETVEMLP
14 01 LIGEHLHAGM GQYGQWAPKL STLFLVYSNK CQTPLGMASG HIRDFQITAS
14 51 ARLHYSGSIN QKFSSLYISQ AWSTKEPFSW IKVDLLAPMI IHGIKTQGAR
15 01 FIIMYSLDGK NPPIIARYIR KWQTYRGNST GTLMVFFGNV DSSGIKHNIF
15 51 LHPTHYSIRS TASSYFTNMF TLRMELMGCD LNSCSMPLGM ESKAISDAQI
1601 ATWSPSKARL TGVTTQGVKS HLQGRSNAWR PQVNNPKEWL QVDFQKTMKV
16 51 LLTSMYVKEF TPVVNSLDPP LISSSQDGHQ WTLFFQNGKV KVFQGNQDSF
1701 LLTRYLRIHP CPAPELLGGP QSWVHQIALR MEVLGCEAQD LYDKTHTCPP
17 51 SVFLFPPKPK VDGVEVHNAK DTLMISRTPE VTCVVVDVSH EDPEVKFNWY
18 01 TKPREEQYNS TYRVVSVLTV LHQDWLNGKE YKCKVSNKAL
PAPIEKTISK
1851 AKGQPREPQV YTLPPSRDEL TKNQVSLTCL VKGFYPSDIA VEWESNGQPE
1901 NNYKTTPPVL DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ
1951 KSLSLSPGK
Example 6. Protein purification for FVIII- 169/VWF-031 and FVIII-173/VWF 031 [0359] A tangential flow filtration (TFF) step was used to buffer exchange the clarified conditioned media. The FVIII-169/VWF-031 or FVIII-173/VWF-031 heterodimer was then purified using a two-step chromatography process. A weak anion exchange resin was used, followed by affinity chromatography. The final purified product had acceptable purity by SEC-HPLC. The specific activity was
- 181 2018203206 08 May 2018 [0360] [0361] compatible to B-domain deleted FVIII, as measured by FVIII chromogenic assay and A280 concentration. Purity and the presence of each moiety of this molecule were confirmed by SDS-PAGE and western blotting.
Example 7. Evaluation the VWF binding ability of FVIII- 169/VWF-031 by Octet assay
The VWF binding ability of FVIII- 169/VWF-031 was obtained by BioLayer Interferometry (BLI) based measurements (Octet assay) at 25 °C with a ForteBio Octet 384 instrument, using Tris binding buffer (50 mM Tris, pH 7.2,
150 mM NaCI, 5 mM CaCF). The Octet assay for determining FVIII binding was based on the hydrophobic immobilization of Human von Willebrand Factor (Haematologic Technologies Catalog No. HCVWF-0191) onto the APS Biosensor, then followed by the binding of 1.0% Bovine Serum Albumin (Jackson ImmunoResearch Catalog No. 001-000-161). Briefly, hvWF (20 pg/mL) was diluted in Tris buffer and loaded across APS Biosensors for 600 sec, yielding approximately 3.0-3.5 nm binding on the reaction probes. Control APS probes were loaded with 1.0% BSA in the absence of hvWF for reference subtraction. After loading, all probes were incubated in Tris buffer for 300 sec to establish a new baseline. Subsequently, biosensor probes were incubated in solutions of FVIII-XTEN 169 or FVIIIFc Drug Substance (0, 0.6, 2, 6, 20, 60, 200, 600 IU/mL) for 5 min at room temperature, followed by a 5 min dissociation step. Using the Octet data analysis software, the binding response (nm) was derived from the subtracted data (Reaction probe minus Reference probe). No binding to immobilized VWF was detected for FVIII-169/VWF-031 (Figure 7), indicating a complete shielding of FVIII from full length VWF molecule by the D'D3 fragment.
Example 8. FVIII-169/VWF-031 PK in HemA and FVIII/VWF DKO mice
The PK profile of FVIII-169/VWF-031 was tested in HemA and FVIII/VWF DKO mice to evaluate the ability of the D'D3 fragment to shield the FVIII moiety from the endogenous VWF. HemA or FVIII/VWF DKO mice were treated with a single intravenous dose of FVIII- 169/VWF-031 at 200 IU/kg, plasma samples were then collected at 5min, 8hr, 24hr, 48hr and 72 hours post dosing. The FVIII activity of plasma sample was tested by FVIII chromogenic
- 1822018203206 08 May 2018 assay, and half-life of FVIII- 169/VWF-031 was calculated using WinNonlin program.
[0362] Complete inhibition of the constructs' binding to immobilized VWF was demonstrated by biolayer interferometry (Figure 7) for FVIII- 169/VWF-031. This indicates the D'D3 fragment in the molecule had successfully blocked the FVIII binding to native VWF molecules, therefor similar half-life of FVIII-169/VWF031 was predicted in the two different mouse strains. As shown in Figure 8A and Table 18, as expected, FVIII-169/VWF-031 had similar PK profile in both HemA and FVIII/VWF DKO mice, which has demonstrated that the half-life of FVIIIFc/VWF heterodimer is independent from the half-life of endogenous VWF. The separation of the FVIIIFc/VWF heterodimer half-life from the endogenous VWF half-life , eliminated the FVIII extension ceiling and opened the possibility of further extending FVIII half-life beyond the 2 fold half-life limit imposed by endogenous VWF.
TABLE 18: FVIII-169/VWF-031 PK in HemA and FVIII/VWF DKO mice
Mouse Strain Recover y (%) tl/2 (hr) MRT (hr) Cl (mL/hr/k g) Vss (mL/kg ) AUC (hr*kg*mIU/mL /mlU)
FVIII/VW FDKO 69 17.94 20.1 4.06 81.69 0.2461
HemA 83 16.65 18.44 3.57 85.72 0.28
[0363] The FVIII protecting ability of the XTEN insertion and D'D3 fragment was evaluated by comparing the half-life of FVIII- 169/VWF-031 with FVIII-169/Fc and FVIIIFc in FVIII/VWF DKO mice. After a single IV administration, blood samples were collected at 5min, 8hr, 24hr, 48hr and 72hr for FVIII-169/VWF031, 5min, 8hr, 24hr, 32hr, 48hr for FVIII-169/Fc and at 5min, 1, 2, 4, 6 and 8hrs for FVIIIFc. The FVIII activity of plasma sample was tested by FVIII chromogenic assay, and half-life of FVIII-155/VWF-031 was calculated using WinNonlin program.
[0364] The study results were summarized in Figure 8B and Table 19, rFVIIIFc has a 1,6hr half-life in DKO mice due to the loss of VWF protection. When an XTEN insertion was introduced into the FVIIIFc molecule, the resulting FVIII - 183 2018203206 08 May 2018
169/Fc molecule has a 7hr half-life, a 4 fold half-life extension by the XTEN insertion. Finally, when D'D3 fragment was incorporated into the molecule to form FVIII- 169/VWF-031, a 17hr half-life was observed, another 2.5 fold further increase by the D'D3 fragment. In addition of the half-life improvement, improved Mean residency time (MRT), Clearance (Cl) and AUC were also observed as shown in Table 19.
[0365] FVIII-169/VWF-031 has achieved 17-18hr ti/2 in both HemA and
FVIII/VWF DKO mice, which is the upper limit of the 1i/2 extension ceiling that imposed by VWF clearance. More ti/2 extension elements can be further incorporated into this molecule, such as a second XTEN insertion within FVIII. The synergistic effect of D'D3 fragment and XTEN insertions provided the possibility of the complete protection for FVIII from its clearance pathway, a final breakthrough of the 2 fold FVIII 11/2 extension limit might be achieved by the FVIIIFc/XTEN/VWF variants.
TABLE 19. FVIII-169/VWF-031 PK in FVIII/VWF DKO mice
Mouse Strain Treatment Recover y (%) tl/2 (hr) MRT (hr) Cl (mL/hr/k g) Vss (mL/kg ) AUC/D (hr*kg* mlU/mL /mlU)
FVIII/VW FDKO rFVIIIFc 35 1.6 2.1 57.7 120.2 0.0173
rFVIII- 169/ Fc 77 7.0 6.2 6.4 39.2 0.1573
rFVIII- 169/ VWF-031 69 17.9 20.1 4.1 81.7 0.2461
Example 9: FVIII-XTEN variants cell media concentrate PK in D'D3 expressing FVIII/VWF DKO mice [0366] The ability of D'D3 fragment to extend the ti/2 of FVII-XTEN was evaluated in the D'D3 expressing FVIII/VWF DKO mouse model (described in example 2). In this study, instead of using VWF-025 to introduce the DD3 dimer into the circulation, VWF-029 construct was used to introduce the DD3 monomer into the circulation. To prepare FVIII-XTEN variants protein, a small scale (5 ΟΙ 00 mL) transient transfection culture media was prepared, at day 4 post transfection, cell culture was harvested and concentrated to reach 10-20 IU/mL of
- 1842018203206 08 May 2018
FVIII activity range which is suitable for PK study. The concentrated cell media were then used for standard PK study in FVIII/VWF DKO mice with or without
D'D3 in the circulation.
[0367] Total of 6 FVIII-ΧΤΕΝ variants that contains 1-3 XTEN insertions were tested in the system, their ti/2 were summarized in Table 20 and data from representative variants were plotted in Figure 9A.
[0368] Longer half-life was observed for all the FVIII-ΧΤΕΝ variants with the presents of DD3 fragment in the circulation (Table 20), which demonstrated the D'D3 protection for FVIII-ΧΤΕΝ from its clearance pathways. Furthermore, when compared to its 14hr half-life in HemA mice, LSD0055.021 has a 20.4hr ti/2 in DD3 expressing DKO mice (Figure 9B, Table 20), indicates the final breakthrough of the 2 fold half-life extension ceiling for FVIII molecules. By further modify the FVIII(XTEN)/VWF molecule, we could potentially achieve even longer FVIII ti/2, and provide HemA patients a FVIII protein that only requires once weekly or less frequent dosing regimen.
TABLE 20. FVIII-XTEN ti/2 in D'D3 expressing FVIII/VWF DKO mice
FVIII-XTEN ID # of XTEN insertions Insertion sites XTEN size ti/2 (hr) DKO mice ti/2 (hr) pLIVEDD3/ DKO mice tl/2 (hr) HemA mice
pSD-0013 1 CT 144 3.3 7.9
LSD0003.009 2 B*/CT 144/288 9.7 16.4
LSD0038.015 2 1656/26 144/144 7.8 17.2
LSD0049.002 3 18/B*/CT 144/144/288 12.6 17.5
LSD0051.002 3 403/B*/CT 144/144/288 11.1 19.9
LSD0055.021 3 1900/B*/CT 144/144/288 16 20.4 14
*B indicates an XTEN sequence (e.g., 144) is inserted immediately downstream of amino acid residue 745 corresponding to mature FVIII sequence.
Example 10: Stability of VWF- and XTEN-containing FVIII variants in FVIII/VWF double knockout (DKO) plasma [0369] Plasma stability of rFVIIIFc protein variants was tested in FVIII/VWF double knockout (DKO) mouse plasma. For the stability assay, HEK293 cells were co-transfected with plasmids directing the expression of rFVIIIFc or FVIII 169 (rFVIIIFc with 288 AE XTEN inserted at the B-domain junction) and plasmids directing the expression of either IgG-Fc or VWF-031 (VWF D'D3 region fused to IgG-Fc). At day four post-transfection, cell culture media was
- 185 2018203206 08 May 2018 [0370] [0371] [0372] harvested and concentrated to 30 IU/mL based on FVIII chromogenic activity. Concentrated cell culture medium was then added into DKO mouse plasma to yield a FVIII activity of 5 IU/mL and incubated at 37°C. Aliquots were collected at different time points for activity measurement by chromogenic assay. Activity at each time point was measured in duplicate, and the average activity was plotted as a function of time. The activity of FVIIIFc, a dual chain (de) FVIII molecule in which heavy and light chains are held together by non-covalent interaction, decreases with time in DKO mouse plasma (Figure 10). The activity of FVIII169:Fc, which contains a 288 AE XTEN insertion at the B-domain junction, decays at a reduced rate relative to rFVIIIFc, indicating that enhanced stability is conferred by the XTEN insertion. Given that VWF has been proposed to enhance the stability of FVIII in vivo, we evaluated the plasma stability ofFVIII169:VWF-031. This heterodimeric molecule, in which the FVIII element and the VWF D'D3 element are fused to respective hemi-domains of Fc, exhibited additional plasma stability relative to FVIII-169:Fc, indicating that the VWF DD3 domain and XTEN have a synergistic effect on the plasma stability of rFVIIIFc. Example 11: The effect on FVIII half-life of Fc fusion, XTEN insertion and the D'D3 fragment of VWF.
To assess the effect of Fc fusion, XTEN insertion and D'D3 fragment of VWF on the half-life of FVIII, the pharmacokinetic properties of B domain deleted recombinant FVIII (rBDD-FVIII), rFVIIIFc, FVIII-169:Fc and FVIII169:VWF-031 were evaluated in FVIII/VWF double knockout (DKO) mice.
DKO mice were treated with a single intra venous administration of 200 IU/kg of FVIII proteins, and plasma samples were collected at designated time points as indicated in Figure 11. FVIII activity of the plasma samples were analyzed by FVIII chromogenic assay and half-life was calculated using the WinNonlin-Phoenix program. The pharmacokinetic parameters of the tested molecules are listed in Table 21. The time regression curve of plasma FVIII activity for each FVIII variants were plotted in Figure 11.
Unmodified BDD-FVIII had a half-life of 0.23 hr in DKO mice, the FVIIIFc fusion protein has an extended half-life of 1.66 hr in DKO mice due to the recycling of FVIIIFc protein through the Fc:FcRn interaction. When a 288 residue of AEXTEN polypeptide was incorporated into the B domain region of
- 1862018203206 08 May 2018
FVIII within the FVIIIFc molecule, the half-life of the resulting FVIII169/Fc protein was further extended to 7.41 hr in DKO mice. Finally, with the addition of the D'D3 domain of VWF, the half-life of FVIII 169/VWF031 heterodimer has reached 17.9 hr in DKO mice (Figure 11, Table 21). In addition of the half-life, all of the other PK parameters also improved proportionally with the addition of each element (Table 21). FVIII can tolerate multiple half-life extension elements, and this synergistic effect of the three elements on FVIII half-life extension, enabled the further improvement of the half-life of FVIII-ΧΤΕΝ VWF heterodimers.
Table 21: PK parameters of FVIII variants
FVIII FVIII Isofor m XTEN Insertions T 1/2 (hr) MRT (hr) Cl (mL/hr /kg) Vss (mL/kg ) AUC D kg*hr/ mL
Site XTEN Length
BDD-FVIII dc 0.23 0.24 407.72 97.42 0.0025
FVIIIFc dc 1.66 2.06 62.66 128.82 0.0161
FVIII 169/Fc sc B* AE288 7.41 6.67 6.24 41.61 0.1603
FVIII 169/VWFO 31 sc B* AE288 17.94 20.1 4.06 81.69 0.2463
*B indicates an XTEN sequence (e.g., 144) is inserted immediately downstream of amino acid residue 745 corresponding to mature FVIII sequence.
Example 12: Pharmacokinetic properties of different FVIII-XTENVWF heterodimers [0373] To evaluate the combined effect of the VWF-D'D3 fragment and XTEN insertions on the FVIII half-life, the pharmacokinetic properties of FVIII-XTENFc:VWF-Fc heterodimers were tested in HemA mice and compared to those of the single chain isoform of BDD-FVIII (scBDD-FVIII) and FVIII-169:VWF-031 (example 10). Seven new FVIII-ΧΤΕΝ-Fc constructs were generated (protein sequences were listed in Table 24). Schematic diagrams of those constructs are shown in Figure 14A-H. FVIII-195 and FVIII-199, respectively, are the FVIII dual chain and single chain isoforms that each contains two XTEN insertions at positions 1900 and 1656. FVIII-196 and FVIII-201, respectively, are the FVIII dual chain and single chain isoforms that each contains three XTEN insertions at positions 26, 1656 and 1900. FVIII-203, -204 and -205 are sc-FVIIIFc molecules with two XTEN insertions at the B domain junction and at positions 1900, 403 or 18, respectively. Each FVIII-ΧΤΕΝ-Fc construct was co-expressed with VWF- 1872018203206 08 May 2018 [0374]
031 in HEK293 cells to produce FVIII-XTEN-Fc/VWF heterodimeric proteins.
At day four post-transfection, cell culture medium was harvested and either concentrated to 20 IU/mL based on FVIII chromogenic activity (FVIII-195: VWF031, FVIII-196 :VWF-031, FVIII-199 :VWF-031, FVIII-203:VWF-031 and FVIII204: VWF-031) or purified (scBDD-FVIII, FVIII-169:VWF-031, FVIII201:VWF-031 and FVIII-205:VWF-031). Having demonstrated the complete intra-molecular shielding of FVIII molecule from the endogenous VWF by the D'D3 fragment in the FVIII-XTEN-Fc:VWF-Fc heterodimer (FVIII-169:VWF031, Example 5), HemA mice was chosen for the PK evaluations. Purified protein or concentrated cell culture medium was administered to 8-12 week-old HemA mice by intravenous administration at a dose of 200 IU/10 mL/kg. Plasma samples were collected at 5 min, 8 hr, 16 hr, 24 hr, 32 hr, 48 hr, 72 hr and 96 hr post-dosing. FVIII activity of the plasma samples were analyzed by FVIII chromogenic assay and half-life was calculated using the WinNonlin-Phoenix program. The pharmacokinetic parameters of the tested molecules are listed in Table 22. The plasma FVIII activities at selected time points for FVIII-XTENFc/VWF-Fc variants were plotted in Figures 12A-C.
When XTEN was inserted into positions 1900 and 1656 (FVIII-195,
FVIII-199), moderate improvement in half-life was observed for the scFVIII isoform (FVIII-199:VWF-031) compared to FVIII-169:VWF-031. However, the dcFVIII iso form exhibited a shorter half-life than did FVIII-169: VWF-031, indicating that the single chain isoform might be significantly more stable than the corresponding dual chain isoform (Table 22 and Figure 12A). When a third XTEN insertion was incorporated into FVIII-199 at position 26, the half-life of the resulting molecule FVIII-201:VWF-031 had reached 24.6 hr, which represents greater than a threefold half-life improvement relative to scBDD-FVIII (Table 22 and Figure 12C). We have also tested the half-life extension effect of the second XTEN insertion at position 403 (A2 domain), 1900 (A3 domain) and 18 (A 1 domain) each in combination with the B domain XTEN insertion. While the addition of the A2 or A3 XTEN insertion did not confer an additional half-life benefit (Table 22, Figure 12b), the addition of the Al insertion further extended the half-life of the FVIII-XTEN-Fc:VWF-Fc heterodimer to 29.4 hr (Table 22, Figure 12C), which is greater than threefold longer than that of scBDD-FVIII.
- 188 2018203206 08 May 2018 [0375] When XTENs were incorporated into the FVIIIFc/VWF heterodimer construct, degree of half-life improvement of the resulting molecules was variable, and no obvious correlation was observed between half-lives and either the site or number of XTEN insertion, suggesting that the half-life of the FVIII-XTENFc/VWF heterodimer is determined by the integrity of the whole molecule rather than by the number or placement of XTEN insertions.
[0376] The 24.6 hr and 29.4 hr half-lives observed for FVIII-XTEN-Fc:VWF-Fc heterodimers clearly exceeded the 1.6- to 2-fold limitation on FVIII half-life extension. If this finding translates for HemA patients, it will allow once-weekly or less frequent dosing for FVIII prophylaxis.
Table 22: PK parameters of FVIII-XTEN-Fc/VWF-Fc heterodimers
FVIII FVIII Iso for m XTEN Insertions T 1/2 (hr) MRT (hr) Cl (mL/h r/kg) Vss (mL/k g) AUC D kg*hr/ mL
Site XTEN Length
scBDD-FVIII sc 7.16 10.1 6 4.38 44.44 0.23
FVIII 169/VWFO 31 sc B* AE288 16.6 5 18.4 4 3.57 65.79 0.28
FVIII 195/VWFO dc 1656/190 AG 144/ 12.5 13.8 9.04 125.4 0.11
31 0 AE144 6 8 8
FVIII 199/VWFO sc 1656/190 AG 144/ 18.5 20.0 6.24 125.2 0.16
31 0 AE144 7 9 8
FVIII201/VWF0 31 sc 26/1656/ 1900 AG144/AG144/AE1 44 24.6 3 33.6 7 1.9 63.97 0.53
FVIII203/VWF0 31 sc 403/B* AE144/AE288 15.5 2 18 3.65 65.61 0.27
FVIII204/VWF0 31 sc 1900/B* AE144/AE288 16.3 20.6 3 2.87 59.14 0.35
FVIII205/VWF0 31 sc 18/B* AE144/AE288 29.4 37.0 6 1.82 67.39 0.55
*B indicates an XTEN sequence (e.g., 144) is inserted immediately downstream of amino acid residue 745 corresponding to mature FVIII sequence.
[0377] In addition to incorporating XTEN into the FVIII molecule, we also evaluated the potential half-life extension benefit of incorporating XTEN as a linker between the D'D3 and Fc fragment. FVIII-155 (scFVIIIFc) was coexpressed with VWF-034 (VWF-Fc with AE 288 XTEN plus a 35 residue thrombin cleavable linker) in HEK293 cells. At day 4 post-transfection, cell culture medium was harvested and concentrated to 20 IU/mL based on FVIII activity assay. FVIII/VWF DKO mice were dosed with concentrated cell culture
- 1892018203206 08 May 2018 [0378] media at 200 IU/10 mL/kg with a single intravenous injection. Plasma samples were collected at 5 min, 8 hr, 24 hr, 48 hr, 72 hr and 96 hr post-dosing. The FVIII activity of plasma samples was analyzed by FVIII chromogenic assay, and the regression curve of plasma FVIII activity as a function of time was plotted (Figure 13). FVIII-155/VWF-034 exhibited the same improvement in half-life as FVIII169/VWF-031, which has AE 288 XTEN inserted into the B domain junction of FVIII, as illustrated by the over lapping regression curves for the two molecules (Figure 13). The demonstration that XTEN insertion into the VWF-Fc polypeptide confers half-life improvement of a magnitude similar to that conferred by XTEN insertion at the B domain junction of the FVIII polypeptide suggests that further half-life improvement may be possible in a heterodimeric molecule in which intra-molecular XTEN insertion in the FVIII polypeptide is combined with inter-domain XTEN insertion between the VWF and Fc elements of the VWF-Fc polypeptide.
Example 13A: Pharmacokinetic properties of additional FVIII-XTENVWF heterodimers
In addition to the FVIII-XTEN VWF heterodimers that were listed in
Table 22, FVIII-XTEN VWF heterodimers containing different composition of
XTEN insertions, single chain and dual chain version of FVIII (Table 23 A) are either tested or will be tested in HemA for their pharmacokinetic properties.
Various FVIII constructs (Table 23B) and VWF constructs (Table 23C) are also disclosed below. HemA mice will be treated with a single dose of intravenous administration of the heterodimer proteins at 200 IU/10 mL/kg. Plasma samples will then be collected at 5 min, 24, 48, 72, 96 and 120 hrs post-dosing. FVIII activity of the plasma samples will be analyzed by FVIII chromogenic assay and half-life will be calculated using the WinNonlin-Phoenix program. The protein sequences of the listed heterodimers were listed in Table 25.
Table 23A. Plausible FVIII-XTEN-Fc:VWF-Fc heterodimer combinations for PK and activity improvement.
pSYN VWF015 pSYN VWF031 pSYN VWF034 ** pSYN VWF-036
pSYN FVIII 010 - ti/2 8.7 hr DKO mice To be tested -
pSYN FVIII 155 ti/2 6.3 hr DKO mice ti/2 10.8 hr HemA mice ti/218.6 hr HemA mice ti/2 13.3 hr HemA mice
- 1902018203206 08 May 2018
pSYN FVIII 169 ** - ti/2 16.7 hr Hem A mice ti/2 31.1 hr Hem A mice -
pSYN FVIII 173 ** - ti/2 15.2 hr DKO mice ti/2 28.9 hr Hem A mice To be tested
pSYN FVIII 205 ti/2 29.4 hr Hem A mice ti/2 32.4 hr Hem A mice ti/2 29.7 hr Hem A mice
pSYN FVIII 266 ti/2 24.5 hr Hem A mice ti/2 27.4 hr Hem A mice -
pSYN FVII 267 - ti/2 23.0 hr Hem A mice ti/2 25.7 hr Hem A mice
pSYN FVIII 268 To be tested To be tested To be tested
Dual chain isoform of pSYN FVIII 268 To be tested To be tested To be tested
**Fength of Xr ΈΝ can be changed to 72, 144, 288, 324, 333, 576, or 864.
Table 23B. FVIII Constructs:
pSYN FVIII 010 dual chain FVIIIFc
pSYN FVIII 169 Single chain FVIIIFc with 288 AE XTEN in B-domain
pSYN FVIII 173 dual chain FVIIIFc with 288 AE XTEN in B-domain
pSYN FVIII 195 dual chain FVIIIFc with two 144 XTENs at amino acid 1656 and 1900
pSYN FVIII 196 dual chain FVIIIFc with three 144 XTENs at amino acid 26, 1656 and 1900
pSYN FVIII 199 Single chain FVIIIFc with two 144 XTENs at amino acid 1656 and 1900
pSYN FVIII 201 Single chain FVIIIFc with three 144 XTENs at amino acid 26, 1656 and 1900
pSYN FVIII 203 Single chain FVIIIFc with 144 AE XTEN at amino acid 1900 and 288 AE XTEN in B-domain
pSYN FVIII 204 Single chain FVIIIFc with 144 AE XTEN at amino acid 403 and 288 AE XTEN in B-domain
pSYN FVIII 205 Single chain FVIIIFc with 144 AE XTEN at amino acid 18 and 288 AE XTEN in B-domain
pSYN FVIII 207 Single chain FVIII ( no Fc, no XTEN)
pSYN FVIII 266 Single chain FVIIIFc with 42 AE XTEN at amino acid 18 and 288 AE XTEN in B-domain
pSYN FVIII 267 Single chain FVIIIFc with 72 AE XTEN at amino acid 18 and 288 AE XTEN in B-domain
pSYN FVIII 268 Single chain FVIIIFc with 144 AE XTEN at amino acid 18
pSYN FVIII Single chain FVIIIFc with 72 AE XTEN at amino acid 18
- 191 2018203206 08 May 2018
269
pSYN FVIII 271 Single chain FVIIIFc with 42 AE XTEN at amino acid 18
pSYN FVIII 272 Single chain FVIII with 144 AE XTEN at amino acid 18 and 288 AE XTEN in B-domain (no Fc)
Table 23C. VWF Constructs:
pSYN VWF031 VWF-D1D2D'D3- 48aa long thrombin cleavable GS linker-Fc with C1099A/C1142 A
pSYN VWF034 VWF-D1D2D'D3- 288AE XTEN +35aa long thrombin cleavable GS linker-Fc with C1099A/C1142A
pSYN VWF035 VWF-D1D2D'D3- 72aa long thrombin cleavable GS linker-Fc with C1099A/C1142 A
pSYN VWF036 VWF-D1D2D'D3- 98aa long thrombin cleavable GS linker-Fc with C1099A/C1142 A
pSYN VWF041 VWF-D1D2DO3 with 288 AE XTEN in D3 and 48aa long thrombin cleavable GS linker after D3-Fc with C1099A/C1142A
Example 13B: Pharmacokinetic properties of additional FVIII-XTENVWF heterodimers.
[0379] FVIII-XTEN VWF heterodimers were tested in HemA mice for their pharmacokinetic properties. The heterodimers tested are FVIII 169/VWF034, FVIII205/VWF034, FVIII205/VWF036 and FVIII266/VWF031. HemA mice were administered with a single intravenous dose of various heterodimer proteins at 200 IU/10 mL/kg. Plasma samples were collected at 5 min, 24, 48, 72, 96 and 120 hrs post-dosing. FVIII activity of the plasma samples were analyzed by FVIII chromogenic assay, and half-lives were calculated using the WinNonlin-Phoenix program. The PK results are shown below in Table 24.
Table 24. Additional FVIII-XTEN_VWF - PK in HemA Mice
Treatment 5min recovery (%) HL (hr) MRT (hr) Cl (mL/hr/ kg) Vss (mL/kg) AUCD (hr*kg*m IU/ mL/mlU) Fold of ti/2 increase vs scBDD- FVIII
ScBDD- FVIII 7.16 10.16 4.83 44.44 0.23 -
FVIII 169/V WF034 76 31.1 34.57 1.73 59.77 0.58 4.3
FVIII205/V WF034 68 32.41 39.79 1.55 61.73 0.64 4.6
FVIII205/V WF036 74 29.71 36.35 1.61 58.43 0.62 4.1
FVIII266/V 66 24.45 22.75 2.67 60.83 0.37 3.4
- 1922018203206 08 May 2018
WF031
pSYNFVIII 010 nucleotide sequence-(Dual chain FVIIIFc) (SEQ ID NO:
1 ATGCAAATAG TGCGATTCTG AGCTCTCCAC CTGCTTCTTT CTGTGCCTTT
51 CTTTAGTGCC CTGTCATGGG ACCAGAAGAT ACTACCTGGG TGCAGTGGAA
101 ACTATATGCA AAGATTTCCT AAGTGATCTC GGTGAGCTGC CTGTGGACGC
151 CCTAGAGTGC TGTACAAAAA CAAAATCTTT TCCATTCAAC ACCTCAGTCG
201 GACTCTGTTT GCTAAGCCAA GTAGAATTCA CGGATCACCT TTTCAACATC
251 GGCCACCCTG TGAGGTTTAT GATGGGTCTG CTAGGTCCTA CCATCCAGGC
301 GATACAGTGG CTGTCAGTCT TCATTACACT TAAGAACATG GCTTCCCATC
351 TCATGCTGTT GCTGAATATG GGTGTATCCT ACTGGAAAGC TTCTGAGGGA
401 ATGATCAGAC CTTCCCTGGT CAGTCAAAGG GAGAAAGAAG ATGATAAAGT
451 GGAAGCCATA GTCCAATGGC CATATGTCTG GCAGGTCCTG AAAGAGAATG
501 CTCTGACCCA GTGGACCTGG CTGTGCCTTA CCTACTCATA TCTTTCTCAT
551 TAAAAGACTT ATGTAGAGAA GAATTCAGGC CTCATTGGAG CCCTACTAGT
601 GGGAGTCTGG TTATACTACT CCAAGGAAAA GACACAGACC TTGCACAAAT
651 TTTTGCTGTA ACAAAGAACT TTTGATGAAG GGAAAAGTTG GCACTCAGAA
701 CCTTGATGCA GCCTAAAATG GGATAGGGAT GCTGCATCTG CTCGGGCCTG
751 CACACAGTCA TGATTGGATG ATGGTTATGT AAACAGGTCT CTGCCAGGTC
801 CCACAGGAAA ACCACTCCTG TCAGTCTATT GGCATGTGAT TGGAATGGGC
851 AAGTGCACTC GAGGAACCAT AATATTCCTC GAAGGTCACA CATTTCTTGT
901 CGCCAGGCGT CTGCTCAAAC CCTTGGAAAT CTCGCCAATA ACTTTCCTTA
951 ACTCTTGATG ATCTCTTCCC GACCTTGGAC AGTTTCTACT GTTTTGTCAT
1001 ACCAACATGA CTGTCCAGAG TGGCATGGAA GCTTATGTCA AAGTAGACAG
1051 GAACCCCAAC ACTATGATGA TACGAATGAA AAATAATGAA GAAGCGGAAG
1101 TGATCTTACT GATGACAACT GATTCTGAAA TGGATGTGGT CAGGTTTGAT
- 193
2018203206 08 May 2018
1151 CTCCTTCCTT TCCTAAAACT TATCCAAATT CGCTCAGTTG CCAAGAAGCA
1201 TGGGTACATT ATGCTCCCTT ACATTGCTGC TGAAGAGGAG GACTGGGACT
1251 AGTCCTCGCC TTGAACAATG CCCGATGACA GAAGTTATAA AAGTCAATAT
1301 GCCCTCAGCG TATGGCATAC GATTGGTAGG AAGTACAAAA AAGTCCGATT
1351 ACAGATGAAA AATCAGGAAT CCTTTAAGAC TCGTGAAGCT ATTCAGCATG
1401 CTTGGGACCT TTGATTATAT TTACTTTATG GGGAAGTTGG AGACACACTG
1451 TTAAGAATCA CGGAATCACT AGCAAGCAGA CCATATAACA TCTACCCTCA
1501 GATGTCCGTC TAAAACATTT CTTTGTATTC AAGGAGATTA CCAAAAGGTG
1551 GAAGGATTTT AAATGGACAG CCAATTCTGC CAGGAGAAAT ATTCAAATAT
1601 TGACTGTAGA CCTGACCCGC AGATGGGCCA ACTAAATCAG ATCCTCGGTG
1651 TATTACTCTA CAGGACTCAT GTTTCGTTAA TATGGAGAGA GATCTAGCTT
1701 TGGCCCTCTC AGAGGAAACC CTCATCTGCT ACAAAGAATC TGTAGATCAA
1751 AGATAATGTC ATTTGATGAG AGACAAGAGG AATGTCATCC TGTTTTCTGT
1801 AACCGAAGCT TCCCCAATCC GGTACCTCAC AGAGAATATA CAACGCTTTC
1851 AGCTGGAGTG AACATCATGC CAGCTTGAGG ATCCAGAGTT CCAAGCCTCC
1901 ACAGCATCAA AGTTTGTTTG TGGCTATGTT TTTGATAGTT TGCAGTTGTC
1951 CATGAGGTGG AGACTGACTT CATACTGGTA CATTCTAAGC ATTGGAGCAC
2001 CCTTTCTGTC ATGGTCTATG TTCTTCTCTG GATATACCTT CAAACACAAA
2051 AAGACACACT CTTCATGTCG CACCCTATTC CCATTCTCAG GAGAAACTGT
2101 ATGGAAAACC CAGACTTTCG CAGGTCTATG GATTCTGGGG TGCCACAACT
2151 GAACAGAGGC GACAAGAACA ATGACCGCCT TACTGAAGGT TTCTAGTTGT
2201 CTGGTGATTA ATACTTGCTG TTACGAGGAC AGTTATGAAG ATATTTCAGC
2251 AGTAAAAACA ACCCACCAGT ATGCCATTGA ACCAAGAAGC TTCTCTCAAA
2301 CTTGAAACGC CAGTCAGATC CATCAACGGG AAATAACTCG TACTACTCTT
2351 AAGAGGAAAT GAAGAAGGAA TGACTATGAT GATACCATAT CAGTTGAAAT
- 194
2018203206 08 May 2018
2401 GATTTTGACA GCAGCTTTCA TTTATGATGA GGATGAAAAT CAGAGCCCCC
2451 AAAGAAAACA CTCTGGGATT CGACACTATT TTATTGCTGC AGTGGAGAGG
2501 ATGGGATGAG TCAGAGTGGC TAGCTCCCCA CATGTTCTAA GAAACAGGGC
2551 AGTGTCCCTC CTGATGGCTC AGTTCAAGAA AGTTGTTTTC CAGGAATTTA
2601 CTTTACTCAG TTGGGACTCC CCCTTATACC GTGGAGAACT AAATGAACAT
2651 TGGGGCCATA GGTAACTTTC TATAAGAGCA GAAGTTGAAG ATAATATCAT
2701 AGAAATCAGG TTATTTCTTA CCTCTCGTCC CTATTCCTTC TATTCTAGCC
2751 TGAGGAAGAT TTTGTCAAGC CAGAGGCAAG GAGCAGAACC TAGAAAAAAC
2801 CTAATGAAAC TATGGCACCC CAAAACTTAC TTTTGGAAAG TGCAACATCA
2851 ACTAAAGATG CTGATGTTGA AGTTTGACTG CAAAGCCTGG GCTTATTTCT
2901 CCTGGAAAAA CTGGTCTGCC GATGTGCACT CAGGCCTGAT TGGACCCCTT
2951 ACACTAACAC AGTACAGGAA ACTGAACCCT GCTCATGGGA GACAAGTGAC
3001 TTTGCTCTGT GGTACTTCAC TTTTCACCAT CTTTGATGAG ACCAAAAGCT
3051 TGAAAATATG CAGATGGAAG GAAAGAAACT GCAGGGCTCC CTGCAATATC
3101 ATCCCACTTT TGGCTACATA TAAAGAGAAT TATCGCTTCC ATGCAATCAA
3151 ATGGATACAC GGATTCGATG TACCTGGCTT AGTAATGGCT CAGGATCAAA
3201 GTATCTGCTC ATTCATTTCA AGCATGGGCA GCAATGAAAA CATCCATTCT
3251 GTGGACATGT AATGGCACTG GTTCACTGTA CGAAAAAAAG AGGAGTATAA
3301 TACAATCTCT TACCATCCAA ATCCAGGTGT TTTTGAGACA GTGGAAATGT
3351 AGCTGGAATT CTACATGCTG TGGCGGGTGG AATGCCTTAT TGGCGAGCAT
3401 GGATGAGCAC GACTCCCCTG ACTTTTTCTG GTGTACAGCA ATAAGTGTCA
3451 GGAATGGCTT CTTCAGGACA CTGGACACAT TAGAGATTTT CAGATTACAG
3501 ATATGGACAG TCCGGATCAA TGGGCCCCAA AGCTGGCCAG ACTTCATTAT
3551 TCAATGCCTG GGTGGATCTG GAGCACCAAG GAGCCCTTTT CTTGGATCAA
3601 TTGGCACCAA CCCGTCAGAA TGATTATTCA CGGCATCAAG ACCCAGGGTG
- 195
2018203206 08 May 2018
3651 GTTCTCCAGC AGTCTTGATG CTCTACATCT CTCAGTTTAT CATCATGTAT
3701 GGAAGAAGTG CTTAATGGTC GCAGACTTAT CGAGGAAATT CCACTGGAAC
3751 TTCTTTGGCA TTTTTAACCC ATGTGGATTC ATCTGGGATA AAACACAATA
3801 TCCAATTATT TATAGCATTC GCTCGATACA TCCGTTTGCA CCCAACTCAT
3851 GCAGCACTCT TAGTTGCAGC TCGCATGGAG TTGATGGGCT GTGATTTAAA
3901 ATGCCATTGG AGATTACTGC GAATGGAGAG TAAAGCAATA TCAGATGCAC
3951 TTCATCCTAC TCAAAAGCTC TTTACCAATA TGTTTGCCAC CTGGTCTCCT
4001 GACTTCACCT GGTGAATAAT CCAAGGGAGG AGTAATGCCT GGAGACCTCA
4051 CCAAAAGAGT AAGTCACAGG GGCTGCAAGT GGACTTCCAG AAGACAATGA
4101 AGTAACTACT TATGTGAAGG CAGGGAGTAA AATCTCTGCT TACCAGCATG
4151 AGTTCCTCAT TCTCTTTTTT CTCCAGCAGT CAAGATGGCC ATCAGTGGAC
4201 CAGAATGGCA CCTTCACACC AAGTAAAGGT TTTTCAGGGA AATCAAGACT
4251 TGTGGTGAAC CTTCGAATTC TCTCTAGACC CACCGTTACT GACTCGCTAC
4301 ACCCCCAGAG GGTTCTGGGC TTGGGTGCAC CAGATTGCCC TGAGGATGGA
4351 TGCGAGGCAC CACCGTGCCC AGGACCTCTA CGACAAAACT CACACATGCC
4401 AGCTCCAGAA CCCCCAAAAC CTCCTGGGCG GACCGTCAGT CTTCCTCTTC
4451 CCAAGGACAC ATGCGTGGTG CCTCATGATC TCCCGGACCC CTGAGGTCAC
4501 GTGGACGTGA GGTACGTGGA GCCACGAAGA CCCTGAGGTC AAGTTCAACT
4551 CGGCGTGGAG GAGCAGTACA GTGCATAATG CCAAGACAAA GCCGCGGGAG
4601 ACAGCACGTA CCAGGACTGG CCGTGTGGTC AGCGTCCTCA CCGTCCTGCA
4651 CTGAATGGCA CCCTCCCAGC AGGAGTACAA GTGCAAGGTC TCCAACAAAG
4701 CCCCATCGAG CGAGAACCAC AAAACCATCT CCAAAGCCAA AGGGCAGCCC
4751 AGGTGTACAC GAACCAGGTC CCTGCCCCCA TCCCGGGATG AGCTGACCAA
4801 AGCCTGACCT TCGCCGTGGA GCCTGGTCAA AGGCTTCTAT CCCAGCGACA
4851 GTGGGAGAGC ACGCCTCCCG AATGGGCAGC CGGAGAACAA CTACAAGACC
- 196
4901 TGTTGGACTC CGACGGCTCC TTCTTCCTCT ACAGCAAGCT
CACCGTGGAC
4951 AAGAGCAGGT GGCAGCAGGG GAACGTCTTC TCATGCTCCG
TGATGCATGA
5001 GGCTCTGCAC AACCACTACA CGCAGAAGAG CCTCTCCCTG TCTCCGGGTA
5051 AATGA pSYNFVIII 010 protein sequence-(Dual chain FVIIIFc) (SEQ ID NO: 126)
2018203206 08 May 2018
1 MQIELSTCFF GELPVDARFP LCLLRFCFSA TRRYYLGAVE LSWDYMQSDL
51 PRVPKSFPFN LGPTIQAEVY TSVVYKKTLF VEFTDHLFNI AKPRPPWMGL
101 DTVVITLKNM EKEDDKVFPG ASHPVSLHAV GVSYWKASEG AEYDDQTSQR
151 GSHTYVWQVL LIGALLVCRE KENGPMASDP LCLTYSYLSH VDLVKDLNSG
201 GSLAKEKTQT AASARAWPKM LHKFILLFAV FDEGKSWHSE TKNSLMQDRD
251 HTVNGYVNRS EGHTFLVRNH LPGLIGCHRK SVYWHVIGMG TTPEVHSIFL
301 RQASLEISPI AYVKVDSCPE TFLTAQTLLM DLGQFLLFCH ISSHQHDGME
351 EPQLRMKNNE RSVAKKHPKT EAEDYDDDLT DSEMDVVRFD DDNSPSFIQI
401 WVHYIAAEEE KYKKVRFMAY DWDYAPLVLA PDDRSYKSQY LNNGPQRIGR
451 TDETFKTREA PYNIYPHGIT IQHESGILGP LLYGEVGDTL LIIFKNQASR
501 DVRPLYSRRL TKSDPRCLTR PKGVKHLKDF PILPGEIFKY KWTVTVEDGP
551 YYSSFVNMER NVILFSVFDE DLASGLIGPL LICYKESVDQ RGNQIMSDKR
601 NRSWYLTENI FDSLQLSVCL QRFLPNPAGV QLEDPEFQAS NIMHSINGYV
651 HEVAYWYILS PFSGETVFMS IGAQTDFLSV FFSGYTFKHK MVYEDTLTLF
701 MENPGLWILG SYEDISAYLL CHNSDFRNRG MTALLKVSSC DKNTGDYYED
751 SKNNAIEPRS DTISVEMKKE FSQNPPVLKR HQREITRTTL QSDQEEIDYD
801 DFDIYDEDEN HVLRNRAQSG QSPRSFQKKT RHYFIAAVER LWDYGMSSSP
851 SVPQFKKVVF EVEDNIMVTF QEFTDGSFTQ PLYRGELNEH LGLLGPYIRA
901 RNQASRPYSF FWKVQHHMAP YSSLISYEED QRQGAEPRKN FVKPNETKTY
951 TKDEFDCKAW AHGRQVTVQE AYFSDVDLEK DVHSGLIGPL LVCHTNTLNP
1001 FALFFTIFDE YRFHAINGYI TKSWYFTENM ERNCRAPCNI QMEDPTFKEN
- 197
2018203206 08 May 2018
1051 MDTLPGLVMA QDQRIRWYLL SMGSNENIHS IHFSGHVFTV
RKKEEYKMAL
1101 YNLYPGVFET VEMLPSKAGI WRVECLIGEH LHAGMSTLFL
VYSNKCQTPL
1151 GMASGHIRDF QITASGQYGQ WAPKLARLHY SGSINAWSTK EPFSWIKVDL
1201 LAPMIIHGIK TQGARQKFSS LYISQFIIMY SLDGKKWQTY RGNSTGTLMV
1251 FFGNVDSSGI KHNIFNPPII ARYIRLHPTH YSIRSTLRME LMGCDLNSCS
1301 MPLGMESKAI SDAQITASSY FTNMFATWSP SKARLHLQGR SNAWRPQVNN
1351 PKEWLQVDFQ KTMKVTGVTT QGVKSLLTSM YVKEFLISSS QDGHQWTLFF
1401 QNGKVKVFQG NQDSFTPVVN SLDPPLLTRY LRIHPQSWVH QIALRMEVLG
1451 CEAQDLYDKT HTCPPCPAPE LLGGPSVFLF PPKPKDTLMI SRTPEVTCVV
1501 VDVSHEDPEV KFNWYVDGVE VHNAKTKPRE EQYNSTYRVV SVLTVLHQDW
1551 LNGKEYKCKV SNKALPAPIE KTISKAKGQP REPQVYTLPP SRDELTKNQV
1601 SLTCLVKGFY PSDIAVEWES NGQPENNYKT TPPVLDSDGS FFLYSKLTVD
1651 KSRWQQGNVF SCSVMHEALH NHYTQKSLSL SPGK*
Example 14: A new class of coagulation factor VIII molecules with greater than threefold half-life extension in hemophilia A mice [0380] The new class of FVIII molecules was designed to contain two polypeptides; one that consists of a single chain B-domain deleted (BDD) FVIII with XTEN inserted at one or more locations within the FVIII sequence, and one that is composed of the DD3 region of VWF. Each polypeptide was also recombinantly fused to the Fc region of IgGl to enable the DD3 region to be correctly aligned to bind the FVIII moiety. The resulting FVIII variants were expressed in HEK 293 cells by transient transfection, and purified from the conditioned media. FVIII activity was evaluated by FVIII chromogenic assay and the pharmacokinetic properties were assessed in both FVIII knockout (HemA) and FVIII/VWF double knock-out (DKO) mice.
[0381] Incorporating XTEN and D'D3 region of VWF into rFVIII led to the uncoupling of the clearance of the fusion proteins from endogenous VWF while extending their circulating half-life. FVIII in this fusion configuration is completely shielded from interacting with VWF, as measured by biolayer
- 198 2018203206 08 May 2018 [0382] interferometry (Octet) analysis. Consistent with this, their pharmacokinetic profiles in HemA and DKO mice were found to be identical, indicating that their clearance rate in mice was effectively disconnected from VWF. Optimization of XTEN length and the locations for inserting XTEN identified a subset of the proteins that have exceeded the VWF limitation (16 hours), reaching a circulating half-life of up to 30 hours in HemA mice representing a 4-fold improvement over BDD-FVIII. Importantly, these proteins maintained their functionality, as judged by FVIII chromogenic assay.
The VWF dependency has set a fundamental limitation for half-life of therapeutic FVIII. Uncoupling FVIII from VWF clearance pathways while extending half-life by the fusion of D'D3 region of VWF and XTEN has generated a novel FVIII molecule with a 4-fold half-life extension. This is the first report of an engineered FVIII that has exceeded the half-life limitation observed through industry-wide efforts in development of long-lasting FVIII, representing a potentially significant advancement in prophylactic treatment of hemophilia A.
Table 25: Protein sequences of FVIII-XTEN-Fc and VWF-Fc constructs FVIII 195 protein sequence (dual chain FVIIIFc with two 144 AE XTENs at amino acid 1656 and 1900) (SEQ ID NO: 105)
MQIELSTCFF LCLLRFCFSA TRRYYLGAVE LSWDYMQSDL
GELPVDARFP
51 PRVPKSFPFN TSVVYKKTLF VEFTDHLFNI AKPRPPWMGL
LGPTIQAEVY 101 DTVVITLKNM ASHPVSLHAV GVSYWKASEG AEYDDQTSQR
EKEDDKVFPG 151 GSHTYVWQVL KENGPMASDP LCLTYSYLSH VDLVKDLNSG
LIGALLVCRE 201 GSLAKEKTQT LHKFILLFAV FDEGKSWHSE TKNSLMQDRD
AASARAWPKM 251 HTVNGYVNRS LPGLIGCHRK SVYWHVIGMG TTPEVHSIFL
EGHTFLVRNH 301 RQASLEISPI TFLTAQTLLM DLGQFLLFCH ISSHQHDGME
AYVKVDSCPE 351 EPQLRMKNNE EAEDYDDDLT DSEMDVVRFD DDNSPSFIQI
RSVAKKHPKT 401 WVHYIAAEEE DWDYAPLVLA PDDRSYKSQY LNNGPQRIGR
KYKKVRFMAY 451 TDETFKTREA IQHESGILGP LLYGEVGDTL LIIFKNQASR
PYNIYPHGIT 501 DVRPLYSRRL PKGVKHLKDF PILPGEIFKY KWTVTVEDGP
TKSDPRCLTR 551 YYSSFVNMER DLASGLIGPL LICYKESVDQ RGNQIMSDKR
NVILFSVFDE
- 199
2018203206 08 May 2018
601 NRSWYLTENI FDSLQLSVCL QRFLPNPAGV QLEDPEFQAS NIMHSINGYV
651 HEVAYWYILS PFSGETVFMS IGAQTDFLSV FFSGYTFKHK MVYEDTLTLF
701 MENPGLWILG SYEDISAYLL CHNSDFRNRG MTALLKVSSC DKNTGDYYED
751 SKNNAIEPRS TASSSPGASP FSQNPPVLKR HQREITRTTL QGAPGTPGSG
801 GTSSTGSPGA GTGPGTPGSG SPGTSSTGSP GASPGTSSTG SPGSSPSAST
851 TASSSPGASP SPGSSTPSGA GTSSTGSPGA SPGTSSTGSP GASPGTSSTG
901 TGSPGSSTPS DTISVEMKKE GATGSPGASP GTSSTGSPAS SSDQEEIDYD
951 DFDIYDEDEN HVLRNRAQSG QSPRSFQKKT RHYFIAAVER LWDYGMSSSP
1001 SVPQFKKVVF EVEDNIMVTF QEFTDGSFTQ PLYRGELNEH LGLLGPYIRA
1051 RNQASRPYSF FWKVQHHMAP YSSLISYEED QRQGAEPRKN FVKPNETKTY
1101 TKDEFDCKAW AHGRQVTVQE AYFSDVDLEK DVHSGLIGPL LVCHTNTLNP
1151 FALFFTIFDE SEPATSGSET TKSWYFTENM ERNCRGAPTS ESATPESGPG
1201 PGTSESATPE TEPSEGSAPG SGPGSEPATS GSETPGTSES ATPESGPGTS
1251 TSESATPESG SPTSTEEGTS PGSPAGSPTS TEEGSPAGSP TSTEEGSPAG
1301 ESATPESGPG YRFHAINGYI TSTEPSEGSA PGASSAPCNI QMEDPTFKEN
1351 MDTLPGLVMA RKKEEYKMAL QDQRIRWYLL SMGSNENIHS IHFSGHVFTV
1401 YNLYPGVFET VYSNKCQTPL VEMLPSKAGI WRVECLIGEH LHAGMSTLFL
1451 GMASGHIRDF EPFSWIKVDL QITASGQYGQ WAPKLARLHY SGSINAWSTK
1501 LAPMIIHGIK RGNSTGTLMV TQGARQKFSS LYISQFIIMY SLDGKKWQTY
1551 FFGNVDSSGI LMGCDLNSCS KHNIFNPPII ARYIRLHPTH YSIRSTLRME
1601 MPLGMESKAI SNAWRPQVNN SDAQITASSY FTNMFATWSP SKARLHLQGR
1651 PKEWLQVDFQ QDGHQWTLFF KTMKVTGVTT QGVKSLLTSM YVKEFLISSS
1701 QNGKVKVFQG QIALRMEVLG NQDSFTPVVN SLDPPLLTRY LRIHPQSWVH
1751 CEAQDLYDKT SRTPEVTCVV HTCPPCPAPE LLGGPSVFLF PPKPKDTLMI
1801 VDVSHEDPEV SVLTVLHQDW KFNWYVDGVE VHNAKTKPRE EQYNSTYRVV
-200
1851 LNGKEYKCKV SNKALPAPIE KTISKAKGQP REPQVYTLPP
SRDELTKNQV
1901 SLTCLVKGFY PSDIAVEWES NGQPENNYKT TPPVLDSDGS
FFLYSKLTVD
1951 KSRWQQGNVF SCSVMHEALH NHYTQKSLSL SPGK*
2018203206 08 May 2018
FVIII 196 protein sequence (dual chain FVIIIFc with three 144 AE XTENs at amino acid 26,1656 and 1900) (SEQ ID NO: 106)
MQIELSTCFF LCLLRFCFSA TRRYYLGAVE LSWDYMQSDL
GELPVGAPGS
51 SPSASTGTGP SSTGSPGSST GSSPSASTGT GPGASPGTSS TGSPGASPGT
101 PSGATGSPGS GTGPGTPGSG SPSASTGTGP GASPGTSSTG SPGSSPSAST
151 TASSSPGSST SPASSDARFP PSGATGSPGS STPSGATGSP GASPGTSSTG
201 PRVPKSFPFN LGPTIQAEVY TSVVYKKTLF VEFTDHLFNI AKPRPPWMGL
251 DTVVITLKNM EKEDDKVFPG ASHPVSLHAV GVSYWKASEG AEYDDQTSQR
301 GSHTYVWQVL LIGALLVCRE KENGPMASDP LCLTYSYLSH VDLVKDLNSG
351 GSLAKEKTQT AASARAWPKM LHKFILLFAV FDEGKSWHSE TKNSLMQDRD
401 HTVNGYVNRS EGHTFLVRNH LPGLIGCHRK SVYWHVIGMG TTPEVHSIFL
451 RQASLEISPI AYVKVDSCPE TFLTAQTLLM DLGQFLLFCH ISSHQHDGME
501 EPQLRMKNNE RSVAKKHPKT EAEDYDDDLT DSEMDVVRFD DDNSPSFIQI
551 WVHYIAAEEE KYKKVRFMAY DWDYAPLVLA PDDRSYKSQY LNNGPQRIGR
601 TDETFKTREA PYNIYPHGIT IQHESGILGP LLYGEVGDTL LIIFKNQASR
651 DVRPLYSRRL TKSDPRCLTR PKGVKHLKDF PILPGEIFKY KWTVTVEDGP
701 YYSSFVNMER NVILFSVFDE DLASGLIGPL LICYKESVDQ RGNQIMSDKR
751 NRSWYLTENI FDSLQLSVCL QRFLPNPAGV QLEDPEFQAS NIMHSINGYV
801 HEVAYWYILS PFSGETVFMS IGAQTDFLSV FFSGYTFKHK MVYEDTLTLF
851 MENPGLWILG SYEDISAYLL CHNSDFRNRG MTALLKVSSC DKNTGDYYED
901 SKNNAIEPRS TASSSPGASP FSQNPPVLKR HQREITRTTL QGAPGTPGSG
951 GTSSTGSPGA GTGPGTPGSG SPGTSSTGSP GASPGTSSTG SPGSSPSAST
1001 TASSSPGASP SPGSSTPSGA GTSSTGSPGA SPGTSSTGSP GASPGTSSTG
-201
2018203206 08 May 2018
1051 TGSPGSSTPS DTISVEMKKE GATGSPGASP GTSSTGSPAS SSDQEEIDYD
1101 DFDIYDEDEN QSPRSFQKKT RHYFIAAVER LWDYGMSSSP
HVLRNRAQSG 1151 SVPQFKKVVF QEFTDGSFTQ PLYRGELNEH LGLLGPYIRA
EVEDNIMVTF 1201 RNQASRPYSF YSSLISYEED QRQGAEPRKN FVKPNETKTY
FWKVQHHMAP 1251 TKDEFDCKAW AYFSDVDLEK DVHSGLIGPL LVCHTNTLNP
AHGRQVTVQE 1301 FALFFTIFDE TKSWYFTENM ERNCRGAPTS ESATPESGPG
SEPATSGSET 1351 PGTSESATPE SGPGSEPATS GSETPGTSES ATPESGPGTS
TEPSEGSAPG 1401 TSESATPESG PGSPAGSPTS TEEGSPAGSP TSTEEGSPAG
SPTSTEEGTS 1451 ESATPESGPG TSTEPSEGSA PGASSAPCNI QMEDPTFKEN
YRFHAINGYI 1501 MDTLPGLVMA QDQRIRWYLL SMGSNENIHS IHFSGHVFTV
RKKEEYKMAL 1551 YNLYPGVFET VEMLPSKAGI WRVECLIGEH LHAGMSTLFL
VYSNKCQTPL 1601 GMASGHIRDF QITASGQYGQ WAPKLARLHY SGSINAWSTK
EPFSWIKVDL 1651 LAPMIIHGIK TQGARQKFSS LYISQFIIMY SLDGKKWQTY
RGNSTGTLMV 1701 FFGNVDSSGI KHNIFNPPII ARYIRLHPTH YSIRSTLRME
LMGCDLNSCS 1751 MPLGMESKAI SDAQITASSY FTNMFATWSP SKARLHLQGR
SNAWRPQVNN 1801 PKEWLQVDFQ KTMKVTGVTT QGVKSLLTSM YVKEFLISSS
QDGHQWTLFF 1851 QNGKVKVFQG NQDSFTPVVN SLDPPLLTRY LRIHPQSWVH
QIALRMEVLG 1901 CEAQDLYDKT HTCPPCPAPE LLGGPSVFLF PPKPKDTLMI
SRTPEVTCVV 1951 VDVSHEDPEV KFNWYVDGVE VHNAKTKPRE EQYNSTYRVV
SVLTVLHQDW 2001 LNGKEYKCKV SNKALPAPIE KTISKAKGQP REPQVYTLPP
SRDELTKNQV 2051 SLTCLVKGFY PSDIAVEWES NGQPENNYKT TPPVLDSDGS
FFLYSKLTVD 2101 KSRWQQGNVF SCSVMHEALH NHYTQKSLSL SPGK*
FVIII 199 protein sequence (single chain FVIIIFc with three 144 AE XTENs at amino acid 1656 and 1900) (SEQ ID NO: 107)
MQIELSTCFF LCLLRFCFSA TRRYYLGAVE LSWDYMQSDL
GELPVDARFP
PRVPKSFPFN TSVVYKKTLF VEFTDHLFNI AKPRPPWMGL LGPTIQAEVY
-2022018203206 08 May 2018
101 DTVVITLKNM EKEDDKVFPG ASHPVSLHAV GVSYWKASEG AEYDDQTSQR
151 GSHTYVWQVL LIGALLVCRE KENGPMASDP LCLTYSYLSH VDLVKDLNSG
201 GSLAKEKTQT AASARAWPKM LHKFILLFAV FDEGKSWHSE TKNSLMQDRD
251 HTVNGYVNRS EGHTFLVRNH LPGLIGCHRK SVYWHVIGMG TTPEVHSIFL
301 RQASLEISPI AYVKVDSCPE TFLTAQTLLM DLGQFLLFCH ISSHQHDGME
351 EPQLRMKNNE RSVAKKHPKT EAEDYDDDLT DSEMDVVRFD DDNSPSFIQI
401 WVHYIAAEEE KYKKVRFMAY DWDYAPLVLA PDDRSYKSQY LNNGPQRIGR
451 TDETFKTREA PYNIYPHGIT IQHESGILGP LLYGEVGDTL LIIFKNQASR
501 DVRPLYSRRL TKSDPRCLTR PKGVKHLKDF PILPGEIFKY KWTVTVEDGP
551 YYSSFVNMER NVILFSVFDE DLASGLIGPL LICYKESVDQ RGNQIMSDKR
601 NRSWYLTENI FDSLQLSVCL QRFLPNPAGV QLEDPEFQAS NIMHSINGYV
651 HEVAYWYILS PFSGETVFMS IGAQTDFLSV FFSGYTFKHK MVYEDTLTLF
701 MENPGLWILG SYEDISAYLL CHNSDFRNRG MTALLKVSSC DKNTGDYYED
751 SKNNAIEPRS TASSSPGASP FSQNPPVLKR HQAEITRTTL QGAPGTPGSG
801 GTSSTGSPGA GTGPGTPGSG SPGTSSTGSP GASPGTSSTG SPGSSPSAST
851 TASSSPGASP SPGSSTPSGA GTSSTGSPGA SPGTSSTGSP GASPGTSSTG
901 TGSPGSSTPS DTISVEMKKE GATGSPGASP GTSSTGSPAS SSDQEEIDYD
951 DFDIYDEDEN HVLRNRAQSG QSPRSFQKKT RHYFIAAVER LWDYGMSSSP
1001 SVPQFKKVVF EVEDNIMVTF QEFTDGSFTQ PLYRGELNEH LGLLGPYIRA
1051 RNQASRPYSF FWKVQHHMAP YSSLISYEED QRQGAEPRKN FVKPNETKTY
1101 TKDEFDCKAW AHGRQVTVQE AYFSDVDLEK DVHSGLIGPL LVCHTNTLNP
1151 FALFFTIFDE SEPATSGSET TKSWYFTENM ERNCRGAPTS ESATPESGPG
1201 PGTSESATPE TEPSEGSAPG SGPGSEPATS GSETPGTSES ATPESGPGTS
1251 TSESATPESG SPTSTEEGTS PGSPAGSPTS TEEGSPAGSP TSTEEGSPAG
1301 ESATPESGPG YRFHAINGYI TSTEPSEGSA PGASSAPCNI QMEDPTFKEN
-203
2018203206 08 May 2018
1351 MDTLPGLVMA RKKEEYKMAL QDQRIRWYLL SMGSNENIHS IHFSGHVFTV
1401 YNLYPGVFET VEMLPSKAGI WRVECLIGEH LHAGMSTLFL
VYSNKCQTPL 1451 GMASGHIRDF QITASGQYGQ WAPKLARLHY SGSINAWSTK
EPFSWIKVDL 1501 LAPMIIHGIK TQGARQKFSS LYISQFIIMY SLDGKKWQTY
RGNSTGTLMV 1551 FFGNVDSSGI KHNIFNPPII ARYIRLHPTH YSIRSTLRME
LMGCDLNSCS 1601 MPLGMESKAI SDAQITASSY FTNMFATWSP SKARLHLQGR
SNAWRPQVNN 1651 PKEWLQVDFQ KTMKVTGVTT QGVKSLLTSM YVKEFLISSS
QDGHQWTLFF 1701 QNGKVKVFQG NQDSFTPVVN SLDPPLLTRY LRIHPQSWVH
QIALRMEVLG 1751 CEAQDLYDKT HTCPPCPAPE LLGGPSVFLF PPKPKDTLMI
SRTPEVTCVV 1801 VDVSHEDPEV KFNWYVDGVE VHNAKTKPRE EQYNSTYRVV
SVLTVLHQDW 1851 LNGKEYKCKV SNKALPAPIE KTISKAKGQP REPQVYTLPP
SRDELTKNQV 1901 SLTCLVKGFY PSDIAVEWES NGQPENNYKT TPPVLDSDGS
FFLYSKLTVD 1951 KSRWQQGNVF SCSVMHEALH NHYTQKSLSL SPGK*
FVIII 201 protein sequence (single chain FVIIIFc with three 144 AE XTENs at amino acid 26,1656 &1900) (SEQ ID NO: 108)
1 MQIELSTCFF GELPVGAPGS LCLLRFCFSA TRRYYLGAVE LSWDYMQSDL
51 SPSASTGTGP SSTGSPGSST GSSPSASTGT GPGASPGTSS TGSPGASPGT
101 PSGATGSPGS GTGPGTPGSG SPSASTGTGP GASPGTSSTG SPGSSPSAST
151 TASSSPGSST SPASSDARFP PSGATGSPGS STPSGATGSP GASPGTSSTG
201 PRVPKSFPFN LGPTIQAEVY TSVVYKKTLF VEFTDHLFNI AKPRPPWMGL
251 DTVVITLKNM EKEDDKVFPG ASHPVSLHAV GVSYWKASEG AEYDDQTSQR
301 GSHTYVWQVL LIGALLVCRE KENGPMASDP LCLTYSYLSH VDLVKDLNSG
351 GSLAKEKTQT AASARAWPKM LHKFILLFAV FDEGKSWHSE TKNSLMQDRD
401 HTVNGYVNRS EGHTFLVRNH LPGLIGCHRK SVYWHVIGMG TTPEVHSIFL
451 RQASLEISPI AYVKVDSCPE TFLTAQTLLM DLGQFLLFCH ISSHQHDGME
501 EPQLRMKNNE RSVAKKHPKT EAEDYDDDLT DSEMDVVRFD DDNSPSFIQI
-204
2018203206 08 May 2018
551 WVHYIAAEEE KYKKVRFMAY DWDYAPLVLA PDDRSYKSQY LNNGPQRIGR
601 TDETFKTREA PYNIYPHGIT IQHESGILGP LLYGEVGDTL LIIFKNQASR
651 DVRPLYSRRL TKSDPRCLTR PKGVKHLKDF PILPGEIFKY KWTVTVEDGP
701 YYSSFVNMER NVILFSVFDE DLASGLIGPL LICYKESVDQ RGNQIMSDKR
751 NRSWYLTENI FDSLQLSVCL QRFLPNPAGV QLEDPEFQAS NIMHSINGYV
801 HEVAYWYILS PFSGETVFMS IGAQTDFLSV FFSGYTFKHK MVYEDTLTLF
851 MENPGLWILG SYEDISAYLL CHNSDFRNRG MTALLKVSSC DKNTGDYYED
901 SKNNAIEPRS TASSSPGASP FSQNPPVLKR HQAEITRTTL QGAPGTPGSG
951 GTSSTGSPGA GTGPGTPGSG SPGTSSTGSP GASPGTSSTG SPGSSPSAST
1001 TASSSPGASP SPGSSTPSGA GTSSTGSPGA SPGTSSTGSP GASPGTSSTG
1051 TGSPGSSTPS DTISVEMKKE GATGSPGASP GTSSTGSPAS SSDQEEIDYD
1101 DFDIYDEDEN HVLRNRAQSG QSPRSFQKKT RHYFIAAVER LWDYGMSSSP
1151 SVPQFKKVVF EVEDNIMVTF QEFTDGSFTQ PLYRGELNEH LGLLGPYIRA
1201 RNQASRPYSF FWKVQHHMAP YSSLISYEED QRQGAEPRKN FVKPNETKTY
1251 TKDEFDCKAW AHGRQVTVQE AYFSDVDLEK DVHSGLIGPL LVCHTNTLNP
1301 FALFFTIFDE SEPATSGSET TKSWYFTENM ERNCRGAPTS ESATPESGPG
1351 PGTSESATPE TEPSEGSAPG SGPGSEPATS GSETPGTSES ATPESGPGTS
1401 TSESATPESG SPTSTEEGTS PGSPAGSPTS TEEGSPAGSP TSTEEGSPAG
1451 ESATPESGPG YRFHAINGYI TSTEPSEGSA PGASSAPCNI QMEDPTFKEN
1501 MDTLPGLVMA RKKEEYKMAL QDQRIRWYLL SMGSNENIHS IHFSGHVFTV
1551 YNLYPGVFET VYSNKCQTPL VEMLPSKAGI WRVECLIGEH LHAGMSTLFL
1601 GMASGHIRDF EPFSWIKVDL QITASGQYGQ WAPKLARLHY SGSINAWSTK
1651 LAPMIIHGIK RGNSTGTLMV TQGARQKFSS LYISQFIIMY SLDGKKWQTY
1701 FFGNVDSSGI LMGCDLNSCS KHNIFNPPII ARYIRLHPTH YSIRSTLRME
1751 MPLGMESKAI SNAWRPQVNN SDAQITASSY FTNMFATWSP SKARLHLQGR
-205
2018203206 08 May 2018
1801 PKEWLQVDFQ QDGHQWTLFF
1851 QNGKVKVFQG QIALRMEVLG
1901 CEAQDLYDKT SRTPEVTCVV 1951 VDVSHEDPEV SVLTVLHQDW 2001 LNGKEYKCKV SRDELTKNQV 2051 SLTCLVKGFY FFLYSKLTVD 2101 KSRWQQGNVF
KTMKVTGVTT
NQDSFTPVVN
HTCPPCPAPE
KFNWYVDGVE
SNKALPAPIE
PSDIAVEWES
SCSVMHEALH
QGVKSLLTSM
SLDPPLLTRY
LLGGPSVFLF
VHNAKTKPRE
KTISKAKGQP
NGQPENNYKT
NHYTQKSLSL
YVKEFLISSS
LRIHPQSWVH
PPKPKDTLMI
EQYNSTYRVV
REPQVYTLPP
TPPVLDSDGS
SPGK*
FVIII 203 protein sequence (single chain FVIIIFc with two AE XTENs; one
288AE XTEN in B-domain and one 144 AE XTEN at amino acid 1900) (SEQ ID NO: 109)
1 MQIELSTCFF GELPVDARFP LCLLRFCFSA TRRYYLGAVE LSWDYMQSDL
51 PRVPKSFPFN LGPTIQAEVY TSVVYKKTLF VEFTDHLFNI AKPRPPWMGL
101 DTVVITLKNM EKEDDKVFPG ASHPVSLHAV GVSYWKASEG AEYDDQTSQR
151 GSHTYVWQVL LIGALLVCRE KENGPMASDP LCLTYSYLSH VDLVKDLNSG
201 GSLAKEKTQT AASARAWPKM LHKFILLFAV FDEGKSWHSE TKNSLMQDRD
251 HTVNGYVNRS EGHTFLVRNH LPGLIGCHRK SVYWHVIGMG TTPEVHSIFL
301 RQASLEISPI AYVKVDSCPE TFLTAQTLLM DLGQFLLFCH ISSHQHDGME
351 EPQLRMKNNE RSVAKKHPKT EAEDYDDDLT DSEMDVVRFD DDNSPSFIQI
401 WVHYIAAEEE KYKKVRFMAY DWDYAPLVLA PDDRSYKSQY LNNGPQRIGR
451 TDETFKTREA PYNIYPHGIT IQHESGILGP LLYGEVGDTL LIIFKNQASR
501 DVRPLYSRRL TKSDPRCLTR PKGVKHLKDF PILPGEIFKY KWTVTVEDGP
551 YYSSFVNMER NVILFSVFDE DLASGLIGPL LICYKESVDQ RGNQIMSDKR
601 NRSWYLTENI FDSLQLSVCL QRFLPNPAGV QLEDPEFQAS NIMHSINGYV
651 HEVAYWYILS PFSGETVFMS IGAQTDFLSV FFSGYTFKHK MVYEDTLTLF
701 MENPGLWILG SYEDISAYLL CHNSDFRNRG MTALLKVSSC DKNTGDYYED
751 SKNNAIEPRS PGTSESATPE FSQNGAPGTS ESATPESGPG SEPATSGSET
801 SGPGSEPATS SPAGSPTSTE GSETPGTSES ATPESGPGTS TEPSEGSAPG
-206
2018203206 08 May 2018
851 EGTSESATPE AGSPTSTEEG SGPGSEPATS GSETPGTSES ATPESGPGSP
901 SPAGSPTSTE EGTSTEPSEG SAPGTSESAT PESGPGTSES
ATPESGPGTS 951 ESATPESGPG SEPATSGSET PGSEPATSGS ETPGSPAGSP
TSTEEGTSTE 1001 PSEGSAPGTS TEPSEGSAPG SEPATSGSET PGTSESATPE
SGPGTSTEPS 1051 EGSAPASSPP VLKRHQAEIT RTTLQSDQEE IDYDDTISVE
MKKEDFDIYD 1101 EDENQSPRSF QKKTRHYFIA AVERLWDYGM SSSPHVLRNR
AQSGSVPQFK 1151 KVVFQEFTDG SFTQPLYRGE LNEHLGLLGP YIRAEVEDNI
MVTFRNQASR 1201 PYSFYSSLIS YEEDQRQGAE PRKNFVKPNE TKTYFWKVQH
HMAPTKDEFD 1251 CKAWAYFSDV DLEKDVHSGL IGPLLVCHTN TLNPAHGRQV
TVQEFALFFT 1301 IFDETKSWYF TENMERNCRG APTSESATPE SGPGSEPATS
GSETPGTSES 1351 ATPESGPGSE PATSGSETPG TSESATPESG PGTSTEPSEG
SAPGTSESAT 1401 PESGPGSPAG SPTSTEEGSP AGSPTSTEEG SPAGSPTSTE
EGTSESATPE 1451 SGPGTSTEPS EGSAPGASSA PCNIQMEDPT FKENYRFHAI
NGYIMDTLPG 1501 LVMAQDQRIR WYLLSMGSNE NIHSIHFSGH VFTVRKKEEY
KMALYNLYPG 1551 VFETVEMLPS KAGIWRVECL IGEHLHAGMS TLFLVYSNKC
QTPLGMASGH 1601 IRDFQITASG QYGQWAPKLA RLHYSGSINA WSTKEPFSWI
KVDLLAPMII 1651 HGIKTQGARQ KFSSLYISQF IIMYSLDGKK WQTYRGNSTG
TLMVFFGNVD 1701 SSGIKHNIFN PPIIARYIRL HPTHYSIRST LRMELMGCDL
NSCSMPLGME 1751 SKAISDAQIT ASSYFTNMFA TWSPSKARLH LQGRSNAWRP
QVNNPKEWLQ 1801 VDFQKTMKVT GVTTQGVKSL LTSMYVKEFL ISSSQDGHQW
TLFFQNGKVK 1851 VFQGNQDSFT PVVNSLDPPL LTRYLRIHPQ SWVHQIALRM
EVLGCEAQDL 1901 YDKTHTCPPC PAPELLGGPS VFLFPPKPKD TLMISRTPEV
TCVVVDVSHE 1951 DPEVKFNWYV DGVEVHNAKT KPREEQYNST YRVVSVLTVL
HQDWLNGKEY 2001 KCKVSNKALP APIEKTISKA KGQPREPQVY TLPPSRDELT
KNQVSLTCLV 2051 KGFYPSDIAV EWESNGQPEN NYKTTPPVLD SDGSFFLYSK
LTVDKSRWQQ 2101 GNVFSCSVMH EALHNHYTQK SLSLSPGK*
-207
2018203206 08 May 2018
FVIII 204 protein sequence (single chain FVIIIFc with two AE XTENs; one
288AE XTEN in B-domain and one 144 AE XTEN at amino acid 403) (SEQ ID NO: 110)
1 MQIELSTCFF GELPVDARFP LCLLRFCFSA TRRYYLGAVE LSWDYMQSDL
51 PRVPKSFPFN LGPTIQAEVY TSVVYKKTLF VEFTDHLFNI AKPRPPWMGL
101 DTVVITLKNM EKEDDKVFPG ASHPVSLHAV GVSYWKASEG AEYDDQTSQR
151 GSHTYVWQVL LIGALLVCRE KENGPMASDP LCLTYSYLSH VDLVKDLNSG
201 GSLAKEKTQT AASARAWPKM LHKFILLFAV FDEGKSWHSE TKNSLMQDRD
251 HTVNGYVNRS EGHTFLVRNH LPGLIGCHRK SVYWHVIGMG TTPEVHSIFL
301 RQASLEISPI AYVKVDSCPE TFLTAQTLLM DLGQFLLFCH ISSHQHDGME
351 EPQLRMKNNE RSVAKKHPKT EAEDYDDDLT DSEMDVVRFD DDNSPSFIQI
401 WVHYIAAEEE GSPTSTEEGT DWDYAPLVLA PDGAPTSTEP SEGSAPGSPA
451 STEPSEGSAP SEGSAPGTSE GTSTEPSEGS APGTSESATP ESGPGTSTEP
501 SATPESGPGS GSAPGTSESA EPATSGSETP GTSTEPSEGS APGTSTEPSE
551 TPESGPGTSE KYKKVRFMAY SATPESGPGA SSDRSYKSQY LNNGPQRIGR
601 TDETFKTREA PYNIYPHGIT IQHESGILGP LLYGEVGDTL LIIFKNQASR
651 DVRPLYSRRL TKSDPRCLTR PKGVKHLKDF PILPGEIFKY KWTVTVEDGP
701 YYSSFVNMER NVILFSVFDE DLASGLIGPL LICYKESVDQ RGNQIMSDKR
751 NRSWYLTENI FDSLQLSVCL QRFLPNPAGV QLEDPEFQAS NIMHSINGYV
801 HEVAYWYILS PFSGETVFMS IGAQTDFLSV FFSGYTFKHK MVYEDTLTLF
851 MENPGLWILG SYEDISAYLL CHNSDFRNRG MTALLKVSSC DKNTGDYYED
901 SKNNAIEPRS PGTSESATPE FSQNGAPGTS ESATPESGPG SEPATSGSET
951 SGPGSEPATS SPAGSPTSTE GSETPGTSES ATPESGPGTS TEPSEGSAPG
1001 EGTSESATPE AGSPTSTEEG SGPGSEPATS GSETPGTSES ATPESGPGSP
1051 SPAGSPTSTE ATPESGPGTS EGTSTEPSEG SAPGTSESAT PESGPGTSES
1101 ESATPESGPG TSTEEGTSTE SEPATSGSET PGSEPATSGS ETPGSPAGSP
-208
2018203206 08 May 2018
1151 PSEGSAPGTS SGPGTSTEPS TEPSEGSAPG SEPATSGSET PGTSESATPE
1201 EGSAPASSPP VLKRHQAEIT RTTLQSDQEE IDYDDTISVE
MKKEDFDIYD 1251 EDENQSPRSF QKKTRHYFIA AVERLWDYGM SSSPHVLRNR
AQSGSVPQFK 1301 KVVFQEFTDG SFTQPLYRGE LNEHLGLLGP YIRAEVEDNI
MVTFRNQASR 1351 PYSFYSSLIS YEEDQRQGAE PRKNFVKPNE TKTYFWKVQH
HMAPTKDEFD 1401 CKAWAYFSDV DLEKDVHSGL IGPLLVCHTN TLNPAHGRQV
TVQEFALFFT 1451 IFDETKSWYF TENMERNCRA PCNIQMEDPT FKENYRFHAI
NGYIMDTLPG 1501 LVMAQDQRIR WYLLSMGSNE NIHSIHFSGH VFTVRKKEEY
KMALYNLYPG 1551 VFETVEMLPS KAGIWRVECL IGEHLHAGMS TLFLVYSNKC
QTPLGMASGH 1601 IRDFQITASG QYGQWAPKLA RLHYSGSINA WSTKEPFSWI
KVDLLAPMII 1651 HGIKTQGARQ KFSSLYISQF IIMYSLDGKK WQTYRGNSTG
TLMVFFGNVD 1701 SSGIKHNIFN PPIIARYIRL HPTHYSIRST LRMELMGCDL
NSCSMPLGME 1751 SKAISDAQIT ASSYFTNMFA TWSPSKARLH LQGRSNAWRP
QVNNPKEWLQ 1801 VDFQKTMKVT GVTTQGVKSL LTSMYVKEFL ISSSQDGHQW
TLFFQNGKVK 1851 VFQGNQDSFT PVVNSLDPPL LTRYLRIHPQ SWVHQIALRM
EVLGCEAQDL 1901 YDKTHTCPPC PAPELLGGPS VFLFPPKPKD TLMISRTPEV
TCVVVDVSHE 1951 DPEVKFNWYV DGVEVHNAKT KPREEQYNST YRVVSVLTVL
HQDWLNGKEY 2001 KCKVSNKALP APIEKTISKA KGQPREPQVY TLPPSRDELT
KNQVSLTCLV 2051 KGFYPSDIAV EWESNGQPEN NYKTTPPVLD SDGSFFLYSK
LTVDKSRWQQ 2101 GNVFSCSVMH EALHNHYTQK SLSLSPGK*
FVIII 205 protein sequence (single chain FVIIIFc with two AE XTENs; one
288AE XTEN in B-domain and one 144 AE XTEN at amino acid 18) (SEQ ID
NO: 111)
MQIELSTCFF LCLLRFCFSA TRRYYLGAVE LSWDYMQGAP TSESATPESG
PGSEPATSGS ETPGTSESAT PESGPGSEPA TSGSETPGTS ESATPESGPG
101 TSTEPSEGSA PGSPAGSPTS TEEGTSESAT PESGPGSEPA TSGSETPGTS
-209 2018203206 08 May 2018
151 ESATPESGPG GELPVDARFP SPAGSPTSTE EGSPAGSPTS TEEGASSSDL
201 PRVPKSFPFN LGPTIQAEVY TSVVYKKTLF VEFTDHLFNI AKPRPPWMGL
251 DTVVITLKNM EKEDDKVFPG ASHPVSLHAV GVSYWKASEG AEYDDQTSQR
301 GSHTYVWQVL LIGALLVCRE KENGPMASDP LCLTYSYLSH VDLVKDLNSG
351 GSLAKEKTQT AASARAWPKM LHKFILLFAV FDEGKSWHSE TKNSLMQDRD
401 HTVNGYVNRS EGHTFLVRNH LPGLIGCHRK SVYWHVIGMG TTPEVHSIFL
451 RQASLEISPI AYVKVDSCPE TFLTAQTLLM DLGQFLLFCH ISSHQHDGME
501 EPQLRMKNNE RSVAKKHPKT EAEDYDDDLT DSEMDVVRFD DDNSPSFIQI
551 WVHYIAAEEE KYKKVRFMAY DWDYAPLVLA PDDRSYKSQY LNNGPQRIGR
601 TDETFKTREA PYNIYPHGIT IQHESGILGP LLYGEVGDTL LIIFKNQASR
651 DVRPLYSRRL TKSDPRCLTR PKGVKHLKDF PILPGEIFKY KWTVTVEDGP
701 YYSSFVNMER NVILFSVFDE DLASGLIGPL LICYKESVDQ RGNQIMSDKR
751 NRSWYLTENI FDSLQLSVCL QRFLPNPAGV QLEDPEFQAS NIMHSINGYV
801 HEVAYWYILS PFSGETVFMS IGAQTDFLSV FFSGYTFKHK MVYEDTLTLF
851 MENPGLWILG SYEDISAYLL CHNSDFRNRG MTALLKVSSC DKNTGDYYED
901 SKNNAIEPRS PGTSESATPE FSQNGAPGTS ESATPESGPG SEPATSGSET
951 SGPGSEPATS SPAGSPTSTE GSETPGTSES ATPESGPGTS TEPSEGSAPG
1001 EGTSESATPE AGSPTSTEEG SGPGSEPATS GSETPGTSES ATPESGPGSP
1051 SPAGSPTSTE ATPESGPGTS EGTSTEPSEG SAPGTSESAT PESGPGTSES
1101 ESATPESGPG TSTEEGTSTE SEPATSGSET PGSEPATSGS ETPGSPAGSP
1151 PSEGSAPGTS SGPGTSTEPS TEPSEGSAPG SEPATSGSET PGTSESATPE
1201 EGSAPASSPP MKKEDFDIYD VLKRHQAEIT RTTLQSDQEE IDYDDTISVE
1251 EDENQSPRSF AQSGSVPQFK QKKTRHYFIA AVERLWDYGM SSSPHVLRNR
1301 KVVFQEFTDG MVTFRNQASR SFTQPLYRGE LNEHLGLLGP YIRAEVEDNI
1351 PYSFYSSLIS HMAPTKDEFD YEEDQRQGAE PRKNFVKPNE TKTYFWKVQH
-210
2018203206 08 May 2018
1401 CKAWAYFSDV TVQEFALFFT DLEKDVHSGL IGPLLVCHTN TLNPAHGRQV
1451 IFDETKSWYF TENMERNCRA PCNIQMEDPT FKENYRFHAI
NGYIMDTLPG 1501 LVMAQDQRIR WYLLSMGSNE NIHSIHFSGH VFTVRKKEEY
KMALYNLYPG 1551 VFETVEMLPS KAGIWRVECL IGEHLHAGMS TLFLVYSNKC
QTPLGMASGH 1601 IRDFQITASG QYGQWAPKLA RLHYSGSINA WSTKEPFSWI
KVDLLAPMII 1651 HGIKTQGARQ KFSSLYISQF IIMYSLDGKK WQTYRGNSTG
TLMVFFGNVD 1701 SSGIKHNIFN PPIIARYIRL HPTHYSIRST LRMELMGCDL
NSCSMPLGME 1751 SKAISDAQIT ASSYFTNMFA TWSPSKARLH LQGRSNAWRP
QVNNPKEWLQ 1801 VDFQKTMKVT GVTTQGVKSL LTSMYVKEFL ISSSQDGHQW
TLFFQNGKVK 1851 VFQGNQDSFT PVVNSLDPPL LTRYLRIHPQ SWVHQIALRM
EVLGCEAQDL 1901 YDKTHTCPPC PAPELLGGPS VFLFPPKPKD TLMISRTPEV
TCVVVDVSHE 1951 DPEVKFNWYV DGVEVHNAKT KPREEQYNST YRVVSVLTVL
HQDWLNGKEY 2001 KCKVSNKALP APIEKTISKA KGQPREPQVY TLPPSRDELT
KNQVSLTCLV 2051 KGFYPSDIAV EWESNGQPEN NYKTTPPVLD SDGSFFLYSK
LTVDKSRWQQ 2101 GNVFSCSVMH EALHNHYTQK SLSLSPGK*
pSYN FVIII 266 protein sequence (FVIII Fc with 42 AE-XTEN at amino acid 18 and 288 AE XTEN in B-domain) SEQ ID NO: 112
MQIELSTCFF GSPAGSPTST
EEGTSESATP FPPRVPKSFP
101 FNTSVVYKKT VYDTVVITLK
151 NMASHPVSLH PGGSHTYVWQ
201 VLKENGPMAS REGSLAKEKT
251 QTLHKFILLF KMHTVNGYVN
301 RSLPGLIGCH NHRQASLEIS
351 PITFLTAQTL PEEPQLRMKN
401 NEEAEDYDDD KTWVHYIAAE
LCLLRFCFSA
ESGPGSEPAT
LFVEFTDHLF
AVGVSYWKAS
DPLCLTYSYL
AVFDEGKSWH
RKSVYWHVIG
LMDLGQFLLF
LTDSEMDVVR
TRRYYLGAVE
SGSETPASSS
NIAKPRPPWM
EGAEYDDQTS
SHVDLVKDLN
SETKNSLMQD
MGTTPEVHSI
CHISSHQHDG
FDDDNSPSFI
LSWDYMQGAP
DLGELPVDAR
GLLGPTIQAE
QREKEDDKVF
SGLIGALLVC
RDAASARAWP
FLEGHTFLVR
MEAYVKVDSC
QIRSVAKKHP
-211
2018203206 08 May 2018
451 EEDWDYAPLV AYTDETFKTR LAPDDRSYKS QYLNNGPQRI GRKYKKVRFM
501 EAIQHESGIL ITDVRPLYSR GPLLYGEVGD TLLIIFKNQA SRPYNIYPHG
551 RLPKGVKHLK TRYYSSFVNM DFPILPGEIF KYKWTVTVED GPTKSDPRCL
601 ERDLASGLIG DENRSWYLTE PLLICYKESV DQRGNQIMSD KRNVILFSVF
651 NIQRFLPNPA CLHEVAYWYI GVQLEDPEFQ ASNIMHSING YVFDSLQLSV
701 LSIGAQTDFL MSMENPGLWI SVFFSGYTFK HKMVYEDTLT LFPFSGETVF
751 LGCHNSDFRN LLSKNNAIEP RGMTALLKVS SCDKNTGDYY EDSYEDISAY
801 RSFSQNGAPG PESGPGSEPA TSESATPESG PGSEPATSGS ETPGTSESAT
851 TSGSETPGTS TEEGTSESAT ESATPESGPG TSTEPSEGSA PGSPAGSPTS
901 PESGPGSEPA EGSPAGSPTS TSGSETPGTS ESATPESGPG SPAGSPTSTE
951 TEEGTSTEPS TSESATPESG EGSAPGTSES ATPESGPGTS ESATPESGPG
1001 PGSEPATSGS TEPSEGSAPG ETPGSEPATS GSETPGSPAG SPTSTEEGTS
1051 TSTEPSEGSA PSEGSAPASS PGSEPATSGS ETPGTSESAT PESGPGTSTE
1101 PPVLKRHQAE YDEDENQSPR ITRTTLQSDQ EEIDYDDTIS VEMKKEDFDI
1151 SFQKKTRHYF FKKVVFQEFT IAAVERLWDY GMSSSPHVLR NRAQSGSVPQ
1201 DGSFTQPLYR SRPYSFYSSL GELNEHLGLL GPYIRAEVED NIMVTFRNQA
1251 ISYEEDQRQG FDCKAWAYFS AEPRKNFVKP NETKTYFWKV QHHMAPTKDE
1301 DVDLEKDVHS FTIFDETKSW GLIGPLLVCH TNTLNPAHGR QVTVQEFALF
1351 YFTENMERNC PGLVMAQDQR RAPCNIQMED PTFKENYRFH AINGYIMDTL
1401 IRWYLLSMGS PGVFETVEML NENIHSIHFS GHVFTVRKKE EYKMALYNLY
1451 PSKAGIWRVE GHIRDFQITA CLIGEHLHAG MSTLFLVYSN KCQTPLGMAS
1501 SGQYGQWAPK IIHGIKTQGA LARLHYSGSI NAWSTKEPFS WIKVDLLAPM
1551 RQKFSSLYIS VDSSGIKHNI QFIIMYSLDG KKWQTYRGNS TGTLMVFFGN
1601 FNPPIIARYI MESKAISDAQ RLHPTHYSIR STLRMELMGC DLNSCSMPLG
1651 ITASSYFTNM LQVDFQKTMK FATWSPSKAR LHLQGRSNAW RPQVNNPKEW
-212
2018203206 08 May 2018
1701 VTGVTTQGVK VKVFQGNQDS
1751 FTPVVNSLDP DLYDKTHTCP 1801 PCPAPELLGG
HEDPEVKFNW 1851 YVDGVEVHNA
EYKCKVSNKA 1901 LPAPIEKTIS
LVKGFYPSDI 1951 AVEWESNGQP
QQGNVFSCSV 2001 MHEALHNHYT
SLLTSMYVKE
PLLTRYLRIH
PSVFLFPPKP
KTKPREEQYN
KAKGQPREPQ
ENNYKTTPPV
QKSLSLSPGK
FLISSSQDGH
PQSWVHQIAL
KDTLMISRTP
STYRVVSVLT
VYTLPPSRDE
LDSDGSFFLY
QWTLFFQNGK
RMEVLGCEAQ
EVTCVVVDVS
VLHQDWLNGK
LTKNQVSLTC
SKLTVDKSRW pSYN FVIII 267 protein sequence (FVIII Fc with 72 AE-XTEN at amino acid 18 and 288
AE XTEN in B-domain) SEQ ID NO: 113
1 MQIELSTCFF TSESATPESG LCLLRFCFSA TRRYYLGAVE LSWDYMQGAP
51 PGSEPATSGS ESATPESGPG ETPGTSESAT PESGPGSEPA TSGSETPGTS
101 TSTEPSEGSA VVYKKTLFVE PGASSSDLGE LPVDARFPPR VPKSFPFNTS
151 FTDHLFNIAK HPVSLHAVGV PRPPWMGLLG PTIQAEVYDT VVITLKNMAS
201 SYWKASEGAE NGPMASDPLC YDDQTSQREK EDDKVFPGGS HTYVWQVLKE
251 LTYSYLSHVD KFILLFAVFD LVKDLNSGLI GALLVCREGS LAKEKTQTLH
301 EGKSWHSETK GLIGCHRKSV NSLMQDRDAA SARAWPKMHT VNGYVNRSLP
351 YWHVIGMGTT LTAQTLLMDL PEVHSIFLEG HTFLVRNHRQ ASLEISPITF
401 GQFLLFCHIS EDYDDDLTDS SHQHDGMEAY VKVDSCPEEP QLRMKNNEEA
451 EMDVVRFDDD DYAPLVLAPD NSPSFIQIRS VAKKHPKTWV HYIAAEEEDW
501 DRSYKSQYLN HESGILGPLL NGPQRIGRKY KKVRFMAYTD ETFKTREAIQ
551 YGEVGDTLLI GVKHLKDFPI IFKNQASRPY NIYPHGITDV RPLYSRRLPK
601 LPGEIFKYKW ASGLIGPLLI TVTVEDGPTK SDPRCLTRYY SSFVNMERDL
651 CYKESVDQRG FLPNPAGVQL NQIMSDKRNV ILFSVFDENR SWYLTENIQR
701 EDPEFQASNI AQTDFLSVFF MHSINGYVFD SLQLSVCLHE VAYWYILSIG
751 SGYTFKHKMV NSDFRNRGMT YEDTLTLFPF SGETVFMSME NPGLWILGCH
801 ALLKVSSCDK QNGAPGTSES NTGDYYEDSY EDISAYLLSK NNAIEPRSFS
-213
2018203206 08 May 2018
851 ATPESGPGSE ETPGTSESAT PATSGSETPG TSESATPESG PGSEPATSGS
901 PESGPGTSTE PGSEPATSGS PSEGSAPGSP AGSPTSTEEG TSESATPESG
951 ETPGTSESAT TSTEPSEGSA PESGPGSPAG SPTSTEEGSP AGSPTSTEEG
1001 PGTSESATPE PATSGSETPG SGPGTSESAT PESGPGTSES ATPESGPGSE
1051 SEPATSGSET PSEGSAPGSE PGSPAGSPTS TEEGTSTEPS EGSAPGTSTE
1101 PATSGSETPG KRHQAEITRT TSESATPESG PGTSTEPSEG SAPASSPPVL
1151 TLQSDQEEID KTRHYFIAAV YDDTISVEMK KEDFDIYDED ENQSPRSFQK
1201 ERLWDYGMSS TQPLYRGELN SPHVLRNRAQ SGSVPQFKKV VFQEFTDGSF
1251 EHLGLLGPYI EDQRQGAEPR RAEVEDNIMV TFRNQASRPY SFYSSLISYE
1301 KNFVKPNETK EKDVHSGLIG TYFWKVQHHM APTKDEFDCK AWAYFSDVDL
1351 PLLVCHTNTL NMERNCRAPC NPAHGRQVTV QEFALFFTIF DETKSWYFTE
1401 NIQMEDPTFK LLSMGSNENI ENYRFHAING YIMDTLPGLV MAQDQRIRWY
1451 HSIHFSGHVF GIWRVECLIG TVRKKEEYKM ALYNLYPGVF ETVEMLPSKA
1501 EHLHAGMSTL GQWAPKLARL FLVYSNKCQT PLGMASGHIR DFQITASGQY
1551 HYSGSINAWS SSLYISQFII TKEPFSWIKV DLLAPMIIHG IKTQGARQKF
1601 MYSLDGKKWQ IIARYIRLHP TYRGNSTGTL MVFFGNVDSS GIKHNIFNPP
1651 THYSIRSTLR SYFTNMFATW MELMGCDLNS CSMPLGMESK AISDAQITAS
1701 SPSKARLHLQ TTQGVKSLLT GRSNAWRPQV NNPKEWLQVD FQKTMKVTGV
1751 SMYVKEFLIS VNSLDPPLLT SSQDGHQWTL FFQNGKVKVF QGNQDSFTPV
1801 RYLRIHPQSW PELLGGPSVF VHQIALRMEV LGCEAQDLYD KTHTCPPCPA
1851 LFPPKPKDTL VEVHNAKTKP MISRTPEVTC VVVDVSHEDP EVKFNWYVDG
1901 REEQYNSTYR IEKTISKAKG VVSVLTVLHQ DWLNGKEYKC KVSNKALPAP
1951 QPREPQVYTL ESNGQPENNY PPSRDELTKN QVSLTCLVKG FYPSDIAVEW
2001 KTTPPVLDSD LHNHYTQKSL 2051 SLSPGK* GSFFLYSKLT VDKSRWQQGN VFSCSVMHEA
-214 pSYN FVIII 268 protein sequence (FVIII Fc with 144 AE-XTEN at amino
2018203206 08 May 2018
acid 18) SEO ID NO: 114
1 MQIELSTCFF TSESATPESG LCLLRFCFSA TRRYYLGAVE LSWDYMQGAP
51 PGSEPATSGS ESATPESGPG ETPGTSESAT PESGPGSEPA TSGSETPGTS
101 TSTEPSEGSA TSGSETPGTS PGSPAGSPTS TEEGTSESAT PESGPGSEPA
151 ESATPESGPG GELPVDARFP SPAGSPTSTE EGSPAGSPTS TEEGASSSDL
201 PRVPKSFPFN LGPTIQAEVY TSVVYKKTLF VEFTDHLFNI AKPRPPWMGL
251 DTVVITLKNM EKEDDKVFPG ASHPVSLHAV GVSYWKASEG AEYDDQTSQR
301 GSHTYVWQVL LIGALLVCRE KENGPMASDP LCLTYSYLSH VDLVKDLNSG
351 GSLAKEKTQT AASARAWPKM LHKFILLFAV FDEGKSWHSE TKNSLMQDRD
401 HTVNGYVNRS EGHTFLVRNH LPGLIGCHRK SVYWHVIGMG TTPEVHSIFL
451 RQASLEISPI AYVKVDSCPE TFLTAQTLLM DLGQFLLFCH ISSHQHDGME
501 EPQLRMKNNE RSVAKKHPKT EAEDYDDDLT DSEMDVVRFD DDNSPSFIQI
551 WVHYIAAEEE KYKKVRFMAY DWDYAPLVLA PDDRSYKSQY LNNGPQRIGR
601 TDETFKTREA PYNIYPHGIT IQHESGILGP LLYGEVGDTL LIIFKNQASR
651 DVRPLYSRRL TKSDPRCLTR PKGVKHLKDF PILPGEIFKY KWTVTVEDGP
701 YYSSFVNMER NVILFSVFDE DLASGLIGPL LICYKESVDQ RGNQIMSDKR
751 NRSWYLTENI FDSLQLSVCL QRFLPNPAGV QLEDPEFQAS NIMHSINGYV
801 HEVAYWYILS PFSGETVFMS IGAQTDFLSV FFSGYTFKHK MVYEDTLTLF
851 MENPGLWILG SYEDISAYLL CHNSDFRNRG MTALLKVSSC DKNTGDYYED
901 SKNNAIEPRS DTISVEMKKE FSQNPPVLKR HQAEITRTTL QSDQEEIDYD
951 DFDIYDEDEN HVLRNRAQSG QSPRSFQKKT RHYFIAAVER LWDYGMSSSP
1001 SVPQFKKVVF EVEDNIMVTF QEFTDGSFTQ PLYRGELNEH LGLLGPYIRA
1051 RNQASRPYSF FWKVQHHMAP YSSLISYEED QRQGAEPRKN FVKPNETKTY
1101 TKDEFDCKAW AHGRQVTVQE AYFSDVDLEK DVHSGLIGPL LVCHTNTLNP
1151 FALFFTIFDE YRFHAINGYI TKSWYFTENM ERNCRAPCNI QMEDPTFKEN
-215
2018203206 08 May 2018
1201 MDTLPGLVMA RKKEEYKMAL QDQRIRWYLL SMGSNENIHS IHFSGHVFTV
1251 YNLYPGVFET VEMLPSKAGI WRVECLIGEH LHAGMSTLFL
VYSNKCQTPL 1301 GMASGHIRDF QITASGQYGQ WAPKLARLHY SGSINAWSTK
EPFSWIKVDL 1351 LAPMIIHGIK TQGARQKFSS LYISQFIIMY SLDGKKWQTY
RGNSTGTLMV 1401 FFGNVDSSGI KHNIFNPPII ARYIRLHPTH YSIRSTLRME
LMGCDLNSCS 1451 MPLGMESKAI SDAQITASSY FTNMFATWSP SKARLHLQGR
SNAWRPQVNN 1501 PKEWLQVDFQ KTMKVTGVTT QGVKSLLTSM YVKEFLISSS
QDGHQWTLFF 1551 QNGKVKVFQG NQDSFTPVVN SLDPPLLTRY LRIHPQSWVH
QIALRMEVLG 1601 CEAQDLYDKT HTCPPCPAPE LLGGPSVFLF PPKPKDTLMI
SRTPEVTCVV 1651 VDVSHEDPEV KFNWYVDGVE VHNAKTKPRE EQYNSTYRVV
SVLTVLHQDW 1701 LNGKEYKCKV SNKALPAPIE KTISKAKGQP REPQVYTLPP
SRDELTKNQV 1751 SLTCLVKGFY PSDIAVEWES NGQPENNYKT TPPVLDSDGS
FFLYSKLTVD 1801 KSRWQQGNVF SCSVMHEALH NHYTQKSLSL SPGK*
pSYN FVIII 269 protein sequence (FVIII Fc with 72 AE-XTEN at amino acid
18) SEQ ID NO: 115
MQIELSTCFF TSESATPESG
PGSEPATSGS ESATPESGPG
101 TSTEPSEGSA VVYKKTLFVE
151 FTDHLFNIAK HPVSLHAVGV
201 SYWKASEGAE NGPMASDPLC
251 LTYSYLSHVD KFILLFAVFD
301 EGKSWHSETK GLIGCHRKSV
351 YWHVIGMGTT LTAQTLLMDL
401 GQFLLFCHIS EDYDDDLTDS
451 EMDVVRFDDD DYAPLVLAPD
501 DRSYKSQYLN HESGILGPLL
LCLLRFCFSA
ETPGTSESAT
PGASSSDLGE
PRPPWMGLLG
YDDQTSQREK
LVKDLNSGLI
NSLMQDRDAA
PEVHSIFLEG
SHQHDGMEAY
NSPSFIQIRS
NGPQRIGRKY
TRRYYLGAVE
PESGPGSEPA
LPVDARFPPR
PTIQAEVYDT
EDDKVFPGGS
GALLVCREGS
SARAWPKMHT
HTFLVRNHRQ
VKVDSCPEEP
VAKKHPKTWV
KKVRFMAYTD
LSWDYMQGAP
TSGSETPGTS
VPKSFPFNTS
VVITLKNMAS
HTYVWQVLKE
LAKEKTQTLH
VNGYVNRSLP
ASLEISPITF
QLRMKNNEEA
HYIAAEEEDW
ETFKTREAIQ
-216
2018203206 08 May 2018
551 YGEVGDTLLI GVKHLKDFPI IFKNQASRPY NIYPHGITDV RPLYSRRLPK
601 LPGEIFKYKW ASGLIGPLLI TVTVEDGPTK SDPRCLTRYY SSFVNMERDL
651 CYKESVDQRG FLPNPAGVQL NQIMSDKRNV ILFSVFDENR SWYLTENIQR
701 EDPEFQASNI AQTDFLSVFF MHSINGYVFD SLQLSVCLHE VAYWYILSIG
751 SGYTFKHKMV NSDFRNRGMT YEDTLTLFPF SGETVFMSME NPGLWILGCH
801 ALLKVSSCDK QNPPVLKRHQ NTGDYYEDSY EDISAYLLSK NNAIEPRSFS
851 AEITRTTLQS PRSFQKKTRH DQEEIDYDDT ISVEMKKEDF DIYDEDENQS
901 YFIAAVERLW FTDGSFTQPL DYGMSSSPHV LRNRAQSGSV PQFKKVVFQE
951 YRGELNEHLG SLISYEEDQR LLGPYIRAEV EDNIMVTFRN QASRPYSFYS
1001 QGAEPRKNFV FSDVDLEKDV KPNETKTYFW KVQHHMAPTK DEFDCKAWAY
1051 HSGLIGPLLV SWYFTENMER CHTNTLNPAH GRQVTVQEFA LFFTIFDETK
1101 NCRAPCNIQM QRIRWYLLSM EDPTFKENYR FHAINGYIMD TLPGLVMAQD
1151 GSNENIHSIH MLPSKAGIWR FSGHVFTVRK KEEYKMALYN LYPGVFETVE
1201 VECLIGEHLH TASGQYGQWA AGMSTLFLVY SNKCQTPLGM ASGHIRDFQI
1251 PKLARLHYSG GARQKFSSLY SINAWSTKEP FSWIKVDLLA PMIIHGIKTQ
1301 ISQFIIMYSL NIFNPPIIAR DGKKWQTYRG NSTGTLMVFF GNVDSSGIKH
1351 YIRLHPTHYS AQITASSYFT IRSTLRMELM GCDLNSCSMP LGMESKAISD
1401 NMFATWSPSK MKVTGVTTQG ARLHLQGRSN AWRPQVNNPK EWLQVDFQKT
1451 VKSLLTSMYV DSFTPVVNSL KEFLISSSQD GHQWTLFFQN GKVKVFQGNQ
1501 DPPLLTRYLR CPPCPAPELL IHPQSWVHQI ALRMEVLGCE AQDLYDKTHT
1551 GGPSVFLFPP NWYVDGVEVH KPKDTLMISR TPEVTCVVVD VSHEDPEVKF
1601 NAKTKPREEQ KALPAPIEKT YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN
1651 ISKAKGQPRE DIAVEWESNG PQVYTLPPSR DELTKNQVSL TCLVKGFYPS
1701 QPENNYKTTP SVMHEALHNH 1751 YTQKSLSLSP PVLDSDGSFF GK* LYSKLTVDKS RWQQGNVFSC
-217
2018203206 08 May 2018 pSYNFVIII 271 protein sequence (FVIII Fc with 42 AE-XTEN at amino acid
18) SEQ ID NO: 116
MQIELSTCFF LCLLRFCFSA TRRYYLGAVE LSWDYMQGAP GSPAGSPTST
EEGTSESATP ESGPGSEPAT SGSETPASSS DLGELPVDAR FPPRVPKSFP
101 FNTSVVYKKT LFVEFTDHLF NIAKPRPPWM GLLGPTIQAE VYDTVVITLK
151 NMASHPVSLH AVGVSYWKAS EGAEYDDQTS QREKEDDKVF PGGSHTYVWQ
201 VLKENGPMAS DPLCLTYSYL SHVDLVKDLN SGLIGALLVC REGSLAKEKT
251 QTLHKFILLF AVFDEGKSWH SETKNSLMQD RDAASARAWP KMHTVNGYVN
301 RSLPGLIGCH RKSVYWHVIG MGTTPEVHSI FLEGHTFLVR NHRQASLEIS
351 PITFLTAQTL LMDLGQFLLF CHISSHQHDG MEAYVKVDSC PEEPQLRMKN
401 NEEAEDYDDD LTDSEMDVVR FDDDNSPSFI QIRSVAKKHP KTWVHYIAAE
451 EEDWDYAPLV LAPDDRSYKS QYLNNGPQRI GRKYKKVRFM AYTDETFKTR
501 EAIQHESGIL GPLLYGEVGD TLLIIFKNQA SRPYNIYPHG ITDVRPLYSR
551 RLPKGVKHLK DFPILPGEIF KYKWTVTVED GPTKSDPRCL TRYYSSFVNM
601 ERDLASGLIG PLLICYKESV DQRGNQIMSD KRNVILFSVF DENRSWYLTE
651 NIQRFLPNPA GVQLEDPEFQ ASNIMHSING YVFDSLQLSV CLHEVAYWYI
701 LSIGAQTDFL SVFFSGYTFK HKMVYEDTLT LFPFSGETVF MSMENPGLWI
751 LGCHNSDFRN RGMTALLKVS SCDKNTGDYY EDSYEDISAY LLSKNNAIEP
801 RSFSQNPPVL KRHQAEITRT TLQSDQEEID YDDTISVEMK KEDFDIYDED
851 ENQSPRSFQK KTRHYFIAAV ERLWDYGMSS SPHVLRNRAQ SGSVPQFKKV
901 VFQEFTDGSF TQPLYRGELN EHLGLLGPYI RAEVEDNIMV TFRNQASRPY
951 SFYSSLISYE EDQRQGAEPR KNFVKPNETK TYFWKVQHHM APTKDEFDCK
1001 AWAYFSDVDL EKDVHSGLIG PLLVCHTNTL NPAHGRQVTV QEFALFFTIF
1051 DETKSWYFTE NMERNCRAPC NIQMEDPTFK ENYRFHAING YIMDTLPGLV
1101 MAQDQRIRWY LLSMGSNENI HSIHFSGHVF TVRKKEEYKM ALYNLYPGVF
1151 ETVEMLPSKA GIWRVECLIG EHLHAGMSTL FLVYSNKCQT PLGMASGHIR
-218
2018203206 08 May 2018
1201 DFQITASGQY DLLAPMIIHG
1251 IKTQGARQKF MVFFGNVDSS
1301 GIKHNIFNPP CSMPLGMESK
1351 AISDAQITAS NNPKEWLQVD
1401 FQKTMKVTGV FFQNGKVKVF
1451 QGNQDSFTPV LGCEAQDLYD
1501 KTHTCPPCPA VVVDVSHEDP
1551 EVKFNWYVDG DWLNGKEYKC
1601 KVSNKALPAP QVSLTCLVKG
1651 FYPSDIAVEW VDKSRWQQGN
1701 VFSCSVMHEA
GQWAPKLARL
SSLYISQFII
IIARYIRLHP
SYFTNMFATW
TTQGVKSLLT
VNSLDPPLLT
PELLGGPSVF
VEVHNAKTKP
IEKTISKAKG
ESNGQPENNY
LHNHYTQKSL
HYSGSINAWS
MYSLDGKKWQ
THYSIRSTLR
SPSKARLHLQ
SMYVKEFLIS
RYLRIHPQSW
LFPPKPKDTL
REEQYNSTYR
QPREPQVYTL
KTTPPVLDSD
SLSPGK*
TKEPFSWIKV
TYRGNSTGTL
MELMGCDLNS
GRSNAWRPQV
SSQDGHQWTL
VHQIALRMEV
MISRTPEVTC
VVSVLTVLHQ
PPSRDELTKN
GSFFLYSKLT pSYN FVIII protein sequence 272 (FVIII with 144 AE XTEN at amino acid and 244 AE XTEN in B-domain- no Fc) SEQ ID NO: 117
1 MQIELSTCFF TSESATPESG LCLLRFCFSA TRRYYLGAVE LSWDYMQGAP
51 PGSEPATSGS ESATPESGPG ETPGTSESAT PESGPGSEPA TSGSETPGTS
101 TSTEPSEGSA TSGSETPGTS PGSPAGSPTS TEEGTSESAT PESGPGSEPA
151 ESATPESGPG GELPVDARFP SPAGSPTSTE EGSPAGSPTS TEEGASSSDL
201 PRVPKSFPFN LGPTIQAEVY TSVVYKKTLF VEFTDHLFNI AKPRPPWMGL
251 DTVVITLKNM EKEDDKVFPG ASHPVSLHAV GVSYWKASEG AEYDDQTSQR
301 GSHTYVWQVL LIGALLVCRE KENGPMASDP LCLTYSYLSH VDLVKDLNSG
351 GSLAKEKTQT AASARAWPKM LHKFILLFAV FDEGKSWHSE TKNSLMQDRD
401 HTVNGYVNRS EGHTFLVRNH LPGLIGCHRK SVYWHVIGMG TTPEVHSIFL
451 RQASLEISPI AYVKVDSCPE TFLTAQTLLM DLGQFLLFCH ISSHQHDGME
501 EPQLRMKNNE RSVAKKHPKT EAEDYDDDLT DSEMDVVRFD DDNSPSFIQI
551 WVHYIAAEEE KYKKVRFMAY DWDYAPLVLA PDDRSYKSQY LNNGPQRIGR
601 TDETFKTREA PYNIYPHGIT IQHESGILGP LLYGEVGDTL LIIFKNQASR
-219
2018203206 08 May 2018
651 DVRPLYSRRL TKSDPRCLTR PKGVKHLKDF PILPGEIFKY KWTVTVEDGP
701 YYSSFVNMER DLASGLIGPL LICYKESVDQ RGNQIMSDKR
NVILFSVFDE 751 NRSWYLTENI QRFLPNPAGV QLEDPEFQAS NIMHSINGYV
FDSLQLSVCL 801 HEVAYWYILS IGAQTDFLSV FFSGYTFKHK MVYEDTLTLF
PFSGETVFMS 851 MENPGLWILG CHNSDFRNRG MTALLKVSSC DKNTGDYYED
SYEDISAYLL 901 SKNNAIEPRS FSQNGAPGTS ESATPESGPG SEPATSGSET
PGTSESATPE 951 SGPGSEPATS GSETPGTSES ATPESGPGTS TEPSEGSAPG
SPAGSPTSTE 1001 EGTSESATPE SGPGSEPATS GSETPGTSES ATPESGPGSP
AGSPTSTEEG 1051 SPAGSPTSTE EGTSTEPSEG SAPGTSESAT PESGPGTSES
ATPESGPGTS 1101 ESATPESGPG SEPATSGSET PGSEPATSGS ETPGSPAGSP
TSTEEGTSTE 1151 PSEGSAPGTS TEPSEGSAPG SEPATSGSET PGTSESATPE
SGPGTSTEPS 1201 EGSAPASSPP VLKRHQAEIT RTTLQSDQEE IDYDDTISVE
MKKEDFDIYD 1251 EDENQSPRSF QKKTRHYFIA AVERLWDYGM SSSPHVLRNR
AQSGSVPQFK 1301 KVVFQEFTDG SFTQPLYRGE LNEHLGLLGP YIRAEVEDNI
MVTFRNQASR 1351 PYSFYSSLIS YEEDQRQGAE PRKNFVKPNE TKTYFWKVQH
HMAPTKDEFD 1401 CKAWAYFSDV DLEKDVHSGL IGPLLVCHTN TLNPAHGRQV
TVQEFALFFT 1451 IFDETKSWYF TENMERNCRA PCNIQMEDPT FKENYRFHAI
NGYIMDTLPG 1501 LVMAQDQRIR WYLLSMGSNE NIHSIHFSGH VFTVRKKEEY
KMALYNLYPG 1551 VFETVEMLPS KAGIWRVECL IGEHLHAGMS TLFLVYSNKC
QTPLGMASGH 1601 IRDFQITASG QYGQWAPKLA RLHYSGSINA WSTKEPFSWI
KVDLLAPMII 1651 HGIKTQGARQ KFSSLYISQF IIMYSLDGKK WQTYRGNSTG
TLMVFFGNVD 1701 SSGIKHNIFN PPIIARYIRL HPTHYSIRST LRMELMGCDL
NSCSMPLGME 1751 SKAISDAQIT ASSYFTNMFA TWSPSKARLH LQGRSNAWRP
QVNNPKEWLQ 1801 VDFQKTMKVT GVTTQGVKSL LTSMYVKEFL ISSSQDGHQW
TLFFQNGKVK 1851 VFQGNQDSFT PVVNSLDPPL LTRYLRIHPQ SWVHQIALRM
EVLGCEAQDL 1901 Y*
-220 pSYN VWF 031 protein sequence (VWF Ρ1Ρ2Ρ'Ρ3- 48aa long thrombin cleavable GS
2018203206 08 May 2018 linker-Fc) SEQ ID NO: 118
MIPARFAGVL LALALILPGT LCAEGTRGRS STARCSLFGS DFVNTFDGSM
YSFAGYCSYL LAGGCQKRSF SIIGDFQNGK RVSLSVYLGE FFDIHLFVNG
101 TVTQGDQRVS MPYASKGLYL ETEAGYYKLS GEAYGFVARI DGSGNFQVLL
151 SDRYFNKTCG LCGNFNIFAE DDFMTQEGTL TSDPYDFANS WALSSGEQWC
201 ERASPPSSSC NISSGEMQKG LWEQCQLLKS TSVFARCHPL VDPEPFVALC
251 EKTLCECAGG LECACPALLE YARTCAQEGM VLYGWTDHSA CSPVCPAGME
301 YRQCVSPCAR TCQSLHINEM CQERCVDGCS CPEGQLLDEG LCVESTECPC
351 VHSGKRYPPG TSLSRDCNTC ICRNSQWICS NEECPGECLV TGQSHFKSFD
401 NRYFTFSGIC QYLLARDCQD HSFSIVIETV QCADDRDAVC TRSVTVRLPG
451 LHNSLVKLKH GAGVAMDGQD IQLPLLKGDL RIQHTVTASV RLSYGEDLQM
501 DWDGRGRLLV KLSPVYAGKT CGLCGNYNGN QGDDFLTPSG LAEPRVEDFG
551 NAWKLHGDCQ DLQKQHSDPC ALNPRMTRFS EEACAVLTSP TFEACHRAVS
601 PLPYLRNCRY DVCSCSDGRE CLCGALASYA AACAGRGVRV AWREPGRCEL
651 NCPKGQVYLQ CGTPCNLTCR SLSYPDEECN EACLEGCFCP PGLYMDERGD
701 CVPKAQCPCY YDGEIFQPED IFSDHHTMCY CEDGFMHCTM SGVPGSLLPD
751 AVLSSPLSHR SKRSLSCRPP MVKLVCPADN LRAEGLECTK TCQNYDLECM
801 SMGCVSGCLC PPGMVRHENR CVALERCPCF HQGKEYAPGE TVKIGCNTCV
851 CRDRKWNCTD HVCDATCSTI GMAHYLTFDG LKYLFPGECQ YVLVQDYCGS
901 NPGTFRILVG NKGCSHPSVK CKKRVTILVE GGEIELFDGE VNVKRPMKDE
951 THFEVVESGR YIILLLGKAL SVVWDRHLSI SVVLKQTYQE KVCGLCGNFD
1001 GIQNNDLTSS NLQVEEDPVD FGNSWKVSSQ CADTRKVPLD SSPATCHNNI
1051 MKQTMVDSSC RILTSDVFQD CNKLVDPEPY LDVCIYDTCS CESIGDCAAF
1101 CDTIAAYAHV CAQHGKVVTW RTATLCPQSC EERNLRENGY EAEWRYNSCA
-221
2018203206 08 May 2018
1151 PACQVTCQHP VDPEDCPVCE
1201 VAGRRFASGK ISGGGGSGGG 1251 GSGGGGSGGG
THTCPPCPAP 1301 ELLGGPSVFL
VKFNWYVDGV 1351 EVHNAKTKPR
VSNKALPAPI 1401 EKTISKAKGQ
YPSDIAVEWE 1451 SNGQPENNYK
FSCSVMHEAL 1501 HNHYTQKSLS
EPLACPVQCV
KVTLNPSDPE
GSGGGGSGGG
FPPKPKDTLM
EEQYNSTYRV
PREPQVYTLP
TTPPVLDSDG
LSPGK*
EGCHAHCPPG
HCQICHCDVV
GSLVPRGSGG
ISRTPEVTCV
VSVLTVLHQD
PSRDELTKNQ
SFFLYSKLTV
KILDELLQTC
NLTCEACQEP
GGSGGGGSDK
VVDVSHEDPE
WLNGKEYKCK
VSLTCLVKGF
DKSRWQQGNV pSYN VWF 034 protein sequence (VWF Ρ1Ρ2Ρ’Ρ3- 288AE XTEN- 35aa long thrombin cleavable GS linker-Fc) SEQ ID NO: 119
1 MIPARFAGVL LALALILPGT LCAEGTRGRS STARCSLFGS
DFVNTFDGSM 51 YSFAGYCSYL LAGGCQKRSF SIIGDFQNGK RVSLSVYLGE
FFDIHLFVNG 101 TVTQGDQRVS MPYASKGLYL ETEAGYYKLS GEAYGFVARI
DGSGNFQVLL 151 SDRYFNKTCG LCGNFNIFAE DDFMTQEGTL TSDPYDFANS
WALSSGEQWC 201 ERASPPSSSC NISSGEMQKG LWEQCQLLKS TSVFARCHPL
VDPEPFVALC 251 EKTLCECAGG LECACPALLE YARTCAQEGM VLYGWTDHSA
CSPVCPAGME 301 YRQCVSPCAR TCQSLHINEM CQERCVDGCS CPEGQLLDEG
LCVESTECPC 351 VHSGKRYPPG TSLSRDCNTC ICRNSQWICS NEECPGECLV
TGQSHFKSFD 401 NRYFTFSGIC QYLLARDCQD HSFSIVIETV QCADDRDAVC
TRSVTVRLPG 451 LHNSLVKLKH GAGVAMDGQD IQLPLLKGDL RIQHTVTASV
RLSYGEDLQM 501 DWDGRGRLLV KLSPVYAGKT CGLCGNYNGN QGDDFLTPSG
LAEPRVEDFG 551 NAWKLHGDCQ DLQKQHSDPC ALNPRMTRFS EEACAVLTSP
TFEACHRAVS 601 PLPYLRNCRY DVCSCSDGRE CLCGALASYA AACAGRGVRV
AWREPGRCEL 651 NCPKGQVYLQ CGTPCNLTCR SLSYPDEECN EACLEGCFCP
PGLYMDERGD 701 CVPKAQCPCY YDGEIFQPED IFSDHHTMCY CEDGFMHCTM
SGVPGSLLPD 751 AVLSSPLSHR SKRSLSCRPP MVKLVCPADN LRAEGLECTK
TCQNYDLECM
-222
2018203206 08 May 2018
801 SMGCVSGCLC TVKIGCNTCV PPGMVRHENR CVALERCPCF HQGKEYAPGE
851 CRDRKWNCTD HVCDATCSTI GMAHYLTFDG LKYLFPGECQ
YVLVQDYCGS 901 NPGTFRILVG NKGCSHPSVK CKKRVTILVE GGEIELFDGE
VNVKRPMKDE 951 THFEVVESGR YIILLLGKAL SVVWDRHLSI SVVLKQTYQE
KVCGLCGNFD 1001 GIQNNDLTSS NLQVEEDPVD FGNSWKVSSQ CADTRKVPLD
SSPATCHNNI 1051 MKQTMVDSSC RILTSDVFQD CNKLVDPEPY LDVCIYDTCS
CESIGDCAAF 1101 CDTIAAYAHV CAQHGKVVTW RTATLCPQSC EERNLRENGY
EAEWRYNSCA 1151 PACQVTCQHP EPLACPVQCV EGCHAHCPPG KILDELLQTC
VDPEDCPVCE 1201 VAGRRFASGK KVTLNPSDPE HCQICHCDVV NLTCEACQEP
ISGTSESATP 1251 ESGPGSEPAT SGSETPGTSE SATPESGPGS EPATSGSETP
GTSESATPES 1301 GPGTSTEPSE GSAPGSPAGS PTSTEEGTSE SATPESGPGS
EPATSGSETP 1351 GTSESATPES GPGSPAGSPT STEEGSPAGS PTSTEEGTST
EPSEGSAPGT 1401 SESATPESGP GTSESATPES GPGTSESATP ESGPGSEPAT
SGSETPGSEP 1451 ATSGSETPGS PAGSPTSTEE GTSTEPSEGS APGTSTEPSE
GSAPGSEPAT 1501 SGSETPGTSE SATPESGPGT STEPSEGSAP DIGGGGGSGG
GGSLVPRGSG 1551 GDKTHTCPPC PAPELLGGPS VFLFPPKPKD TLMISRTPEV
TCVVVDVSHE 1601 DPEVKFNWYV DGVEVHNAKT KPREEQYNST YRVVSVLTVL
HQDWLNGKEY 1651 KCKVSNKALP APIEKTISKA KGQPREPQVY TLPPSRDELT
KNQVSLTCLV 1701 KGFYPSDIAV EWESNGQPEN NYKTTPPVLD SDGSFFLYSK
LTVDKSRWQQ 1751 GNVFSCSVMH EALHNHYTQK SLSLSPGK*
PSYNVWF036 protein sequence (VWF DlD2DlD-98aa long thrombin cleavable GS linker-Fc) SEQ ID NO: 120
MIPARFAGVL LALALILPGT LCAEGTRGRS STARCSLFGS DFVNTFDGSM
YSFAGYCSYL LAGGCQKRSF SIIGDFQNGK RVSLSVYLGE FFDIHLFVNG
101 TVTQGDQRVS MPYASKGLYL ETEAGYYKLS GEAYGFVARI DGSGNFQVLL
151 SDRYFNKTCG LCGNFNIFAE DDFMTQEGTL TSDPYDFANS WALSSGEQWC
-223
2018203206 08 May 2018
201 ERASPPSSSC VDPEPFVALC NISSGEMQKG LWEQCQLLKS TSVFARCHPL
251 EKTLCECAGG CSPVCPAGME LECACPALLE YARTCAQEGM VLYGWTDHSA
301 YRQCVSPCAR LCVESTECPC TCQSLHINEM CQERCVDGCS CPEGQLLDEG
351 VHSGKRYPPG TGQSHFKSFD TSLSRDCNTC ICRNSQWICS NEECPGECLV
401 NRYFTFSGIC TRSVTVRLPG QYLLARDCQD HSFSIVIETV QCADDRDAVC
451 LHNSLVKLKH RLSYGEDLQM GAGVAMDGQD IQLPLLKGDL RIQHTVTASV
501 DWDGRGRLLV LAEPRVEDFG KLSPVYAGKT CGLCGNYNGN QGDDFLTPSG
551 NAWKLHGDCQ TFEACHRAVS DLQKQHSDPC ALNPRMTRFS EEACAVLTSP
601 PLPYLRNCRY AWREPGRCEL DVCSCSDGRE CLCGALASYA AACAGRGVRV
651 NCPKGQVYLQ PGLYMDERGD CGTPCNLTCR SLSYPDEECN EACLEGCFCP
701 CVPKAQCPCY SGVPGSLLPD YDGEIFQPED IFSDHHTMCY CEDGFMHCTM
751 AVLSSPLSHR TCQNYDLECM SKRSLSCRPP MVKLVCPADN LRAEGLECTK
801 SMGCVSGCLC TVKIGCNTCV PPGMVRHENR CVALERCPCF HQGKEYAPGE
851 CRDRKWNCTD YVLVQDYCGS HVCDATCSTI GMAHYLTFDG LKYLFPGECQ
901 NPGTFRILVG VNVKRPMKDE NKGCSHPSVK CKKRVTILVE GGEIELFDGE
951 THFEVVESGR KVCGLCGNFD YIILLLGKAL SVVWDRHLSI SVVLKQTYQE
1001 GIQNNDLTSS SSPATCHNNI NLQVEEDPVD FGNSWKVSSQ CADTRKVPLD
1051 MKQTMVDSSC CESIGDCAAF RILTSDVFQD CNKLVDPEPY LDVCIYDTCS
1101 CDTIAAYAHV EAEWRYNSCA CAQHGKVVTW RTATLCPQSC EERNLRENGY
1151 PACQVTCQHP VDPEDCPVCE EPLACPVQCV EGCHAHCPPG KILDELLQTC
1201 VAGRRFASGK ISGGGGSGGG KVTLNPSDPE HCQICHCDVV NLTCEACQEP
1251 GSGGGGSGGG GSGGGGSGGG GSGGGGSGGG GSGGGGSGGG GSGGGGSGGG
1301 GSGGGGSGGG THTCPPCPAP GSGGGGSGGG GSLVPRGSGG GGSGGGGSDK
1351 ELLGGPSVFL VKFNWYVDGV FPPKPKDTLM ISRTPEVTCV VVDVSHEDPE
1401 EVHNAKTKPR VSNKALPAPI EEQYNSTYRV VSVLTVLHQD WLNGKEYKCK
-224
1451 EKTISKAKGQ PREPQVYTLP PSRDELTKNQ VSLTCLVKGF
YPSDIAVEWE
1501 SNGQPENNYK TTPPVLDSDG SFFLYSKLTV DKSRWQQGNV
FSCSVMHEAL
1551 HNHYTQKSLS LSPGK*
2018203206 08 May 2018 pSYN Fc-015 protein sequence (IgG-Fc domain) SEQ ID NO: 121
METDTLLLWV FLFPPKPKDT
LMISRTPEVT PREEQYNSTY
101 RVVSVLTVLH GQPREPQVYT
151 LPPSRDELTK YKTTPPVLDS
201 DGSFFLYSKL LSLSPGK*
LLLWVPGSTG
CVVVDVSHED
QDWLNGKEYK
NQVSLTCLVK
TVDKSRWQQG
DKTHTCPPCP
PEVKFNWYVD
CKVSNKALPA
GFYPSDIAVE
NVFSCSVMHE
APELLGGPSV
GVEVHNAKTK
PIEKTISKAK
WESNGQPENN
ALHNHYTQKS
Example 15: FVIII-XTEN-Fc:VWF-Fc heterodimers have maintained normal FVIII specific activity as compared to wild type BDD-FVIII.
[0383] The FVIII specific activity of FVIII-XTEN-Fc:VWF-Fc heterodimers were determined. Heterodimers were purified using a two-step chromatography process. A weak anion exchange resin was used, followed by affinity chromatography. The final purified product had acceptable purity by SEC-HP LC. The specific activity was compared to B-domain deleted FVIII (BDD-FVIII), as measured by FVIII chromogenic assay and A280 concentration. The data are presented in Table 26. All tested molecules had demonstrated comparable FVIII specific activities to BDD-FVIII. Purity and the presence of each moiety of the molecules were confirmed by SDS-PAGE and western blotting.
Table 26: FVIII specific activity of FVIII-XTEN-Fc:VWF-Fc heterodimers
Construct FVIII 207 scBDDFVIII FVIII-66 dcBDD FVIII) FVIII 155/ vWF31 FVIII 155/ vWF39 FVIII 169/ vWF31 FVIII 205/ vWF31 FVIII 169/ vWF34
Measured Specific Activity (IU/nmol) 1473 1592 1534 1796 1511 1345 1505
[0384] The half-lives of rFVIII-XTEN/D'D3 and BDD-FVIII were compared in
HemA Mice (Figure 15; Table 27). As Figure 15 shows, rFVIII-XTEN/D'D3
-225 achieved a half-life that was four fold longer than the half-life achieved by BDDFVIII.
2018203206 08 May 2018
Table 27: rFVIII-XTEN/D'D3 and BDD-FVIII in HemA mice
Treatment 5 minutes Recovery (%) HL (hr) MRT (hr) Cl (mL/hr/kg) Vss (mL/kg) AUC D (hr*kg*mIU/mL/mIU)
BDD-FVIII 89 7.6 11 4.5 49.2 0.22
rFVIIIFc 78 16 20 2.9 57.8 0.35
rFVIII- XTEN/DO3 86 30 36 1.8 63.4 0.57
Example 16: FVIII-XTEN-Fc:VWF-Fc heterodimer's potency (FVIII activity) in hemostasis as measured by one stage aPTT assay [0385] The potency of FVIII-ΧΤΕΝ-Fc: VWF-Fc heterodimers in hemostasis was evaluated by their FVIII specific aPTT activity as summarized in Table 28. As demonstrated by Table 28, while the addition of the VWF D'D3 fragment and the insertion of XTEN into the intra-domains of FVIII reduce the FVIII specific aPTT activity of the heterodimers (as indicated by the FVIII155/VWF031 data and the FVIII205/VWF031 data), XTEN insertions in the FVIII B domain region or Cterminus of the VWF D'D3 fragment have no negative effect on the FVIII specific aPTT activity (as indicated by the FVIII 169/VWF031 data and the FVIII 169/VWF034 data). Compared to dual-chain BDD-FVIII (dcBDD-FVIII), FVIII155/VWF031, FVIII 169/VWF031, FVIII 169/VWF034 and VWF205/VWF031 showed reduction of specific aPTT activity by 2.5-fold, 2.8fold, 2.6-fold and 5.5-fold, respectively.
Table 28: FVIII specific aPTT activity of FVIII-XTEN-Fc:VWF-Fc heterodimers
Construct FVIII 207 scBDDFVIII FVIII-66 dcBDD- FVIII FVIII 155/ VWF31 FVIII 169 /VWF31 FVIII 205 / VWF31 FVIII 169/ VWF34
Measured Specific aPTT Activity (IU/nmol) 818±153 1188 ± 213 448 ± 111 416 ±70 214 ±38 436±189
-2262018203206 08 May 2018 [0386] [0387]
FVIII specific aPTT assay
FVIII variants were diluted with aPTT buffer (0.15 M NaCl, 0.05 M TrisHC1, 1% BSA, pH 7.4) to the linear assay range (200- 1.6 mU/mL). 50 pL of diluted samples or standards were sequentially mixed with 50 pL of 37°C naive human HemA pooled plasma, 50 pL of 37°C aPTT reagent (ACTIN® FSL activated cephaloplastin reagent - Dade Behring, reference # B4219-2) and incubated at 37 °C for 4 minutes. 50 pi of 20 mM CaCh (Dade Behring [reference # ORFO37]) was then added to the reaction mixture to start the clotting reactions. Using the clotting time of each sample (the length of time from the addition of CaCh until the onset of clot formation), the aPTT activity was calculated against the standard that was generated with the 8th international standard FVIII concentrate. Specific aPTT activity was calculated against the protein concentration of each molecule that measured by OD280.
Example 17: In vivo efficacy of FVIII-XTEN-Fc:VWF-Fc heterodimer in HemA mice Tail Clip bleeding model
To further access the hemostasis potency of the heterodimers, the acute efficacy of FVIII 169/VWF034 and FVIII205/VWF031 was evaluated in comparison with BDD-FVIII in the HemA mice Tail clip bleeding model. HemA mice were treated with a single IV injection of BDD-FVIII at 200, 65 and 20 IU/kg to generate the post tail clip injury blood loss control level. Blood loss from mice treated with 200 IU/kg of FVIII 169/VWF034 or FVIII205/VWF031 was compared to that of the BDD-FVIII treated control group mice to estimate their potency on hemostasis. Vehicle treated animals were used to generate blood loss baseline for the model. As shown in Figure 16, significant reduction in blood loss was observed from all FVIII treatment groups compared to that of the vehicle treated animals (p<0.05). Both FVIII 169/VWF034 and FVIII205/VWF031 are efficacious in the HemA mice Tail Clip model. Compared to BDD-FVIII, about 3 fold lower potency was observed for FVIII 169/VWF034, as demonstrated by the similar blood loss reduction achieved by 65 IU/kg BDD-FVIII and 200 IU/kg FVIII169/VWF034. As for FVIII205/VWF034, a 10 fold potency reduction has been observed, as demonstrated by the similar blood loss reduction achieved by 20 IU/kg BDD-FVIII and 200 IU/kg FVIII205/VWF031.
-2272018203206 08 May 2018 [0388] [0389] [0390] [0391]
Even though FVIII69/VWF034 and FVIII205/VWF031 had similar specific FVIII chromogenic activity compared to rBDD-FVIII, their FVIII aPTT activity and in vivo potency were both reduced due to the modifications of the molecules. Those data indicate that the aPTT activity of a FVIII molecule is a more accurate measurement on predicating its in vivo potency on hemostasis than the FVIII chromogenic activity.
HemA mice Tail clip bleeding model
8-10 weeks old male HemA mice were used for the study. Prior to tail clip injury, mice were anesthetized with a 50 mg/kg Ketamine/0.5 mg/kg Dexmedetomidine cocktail and placed on a 37°C heating pad to help maintain the body temperature. The tails of the mice were then be immersed in 37°C water for 10 minutes to dilate the lateral vein. After vein dilation, rFVIII or vehicle solution were injected via the tail vein and 5 min later, the distal 1 cm of the tail was cut off using a #11 scalpel with straight edge. The shed blood was collected into 13 ml of 37°C warm saline for 30 minutes and the mice were then euthanized while still under anesthesia by bilateral thoracotomy. Blood loss was quantified gravimetrically by weight change of the blood collection tubes before and after blood was collected in gram, which translated into milliliter (mL) of blood loss volume (lg weight change = 1 mL blood loss).
The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as
-228 exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
All patents and publications cited herein are incorporated by reference herein in their entirety.
2018203206 08 May 2018 [0392]
-2292018203206 08 May 2018

Claims (7)

  1. WHAT IS CLAIMED IS:
    1. A chimeric protein comprising (i) a von Willebrand Factor (VWF) protein comprising the D' domain and the D3 domain of VWF, (ii) an XTEN sequence, and (iii) a FVIII protein, wherein the VWF fragment and the XTEN sequence are linked by an optional linker, wherein the VWF fragment or the XTEN sequence is linked to or associated with the FVIII protein.
    2. A chimeric protein comprising a formula, which comprises:
    (a) V-X-FVIII, (b) FVIII-X-V, (c) V-X:FVIII, (d) X-V:FVIII, (e) FVIII:V-X, or (f) FVIII:X-V, wherein V comprises a VWF fragment,
    X comprises one or more XTEN sequences,
    FVIII comprises a FVIII protein;
    (-) is a peptide bond or one or more amino acids; and (:) is a covalent bond or a non-covalent bond.
    3. The chimeric protein of claim 1 or 2, wherein the XTEN sequence is linked to the FVIII protein by a linker.
    4. The chimeric protein of claim 3, wherein the linker is a cleavable linker.
    5. The chimeric protein of any one of claims 1 to 4, which comprises a single polypeptide chain comprising the VWF fragment, the XTEN sequence and the FVIII protein.
    6. The chimeric protein of any one of claims 1 to 4, which comprises a first polypeptide chain and a second polypeptide chain, wherein the first polypeptide chain comprises FVIII and the second polypeptide chain comprises the VWF fragment and the XTEN sequence.
    -230 2018203206 08 May 2018
    7. The chimeric protein of any one of claims 1 to 6, further comprising (iv) an Ig constant region or a portion thereof linked to either the VWF fragment, the XTEN sequence, or the FVIII protein, or any combination thereof.
    8. A chimeric protein comprising a formula, which comprises:
    (g) V-L2-X-L1-F1:FVIII-L3-F2;
    (h) V-L2-X-L1-F1:F2-L3-FVIII;
    (i) F1-L1-X-L2-V: FVIII-F3-F2;
    (j) F1-L1-X-L2-V:F2-L3-FVIII;
    (k) V-L2-X-L1-F1-L4-FVIII-L3-F2;
    (l) F2-L3-FVIII-L4-F1-L1-X-L2-V;
    (m) FVIII-L3-F2-L4-V-L2-X-L1-F1; and (n) F1-L1-X-L2-V-L4-F2-L3-FVIII, wherein V comprises a VWF fragment, each of Fl, F2, and F3 comprises an optional linker,
    F4 is an optional linker,
    FVIII comprises a FVIII protein,
    X comprises one or more XTEN sequences,
    Fl comprises an optional Ig constant region or a portion thereof,
    F2 comprises an optional additional Ig constant region or a portion thereof;
    (-) is a peptide bond or one or more amino acids; and (:) is a covalent bond or a non-covalent bond.
    9. The chimeric protein of any one of claims 7 or 8, wherein the Ig constant region or a portion thereof extends a half-life of the VWF fragment.
    10. The chimeric protein of any one of claims 7 to 9, wherein the Ig constant region or a portion thereof comprises a first Fc region, which is linked to the XTEN sequence or the VWF fragment.
    11. The chimeric protein of claim 10, wherein the Ig constant region or a portion thereof is linked to the XTEN sequence by a linker.
    12. The chimeric protein of claim 12, wherein the linker comprises a cleavable linker.
    -231 2018203206 08 May 2018
    13. The chimeric protein of any one of claims 7 to 12, further comprising an additional Ig constant region or a portion thereof.
    14. The chimeric protein of claim 13, wherein the additional Ig constant region or a portion thereof comprises an additional Fc region.
    15. The chimeric protein of claim 14, wherein the additional Ig constant region or a portion thereof extends the half-life of a FVIII protein.
    16. The chimeric protein of any one of claims 13 to 15, wherein the additional Ig constant region or a portion thereof is linked to the FVIII protein.
    17. The chimeric protein of claim 16, wherein the second Fc region is further linked to the VWF fragment by a linker.
    18. The chimeric protein of claim 17, wherein the linker is a processable linker.
    19. The chimeric protein of any one of claims 8 to 18, wherein L4 is a processable linker.
    20. The chimeric protein of any one of claims 7 to 19, wherein the additional Ig constant region or a portion thereof is associated with the Ig constant region or a portion thereof.
    21. The chimeric protein of claim 20, wherein the additional Ig constant region or a portion thereof is associated with the Ig constant region or a portion thereof by a covalent bond.
    22. The chimeric protein of claim 21, wherein the covalent bond is a disulfide bond.
    23. The chimeric protein of any one of claims 1 to 22, wherein the VWF fragment is associated with the FVIII protein by a non-covalent bond.
    24. The chimeric protein of any one of claims 1 to 23, wherein the half-life of the FVIII protein, is extended compared to a FVIII protein without the VWF fragment or compared to wild type FVIII.
    -232 2018203206 08 May 2018
    25. The chimeric protein of claim 24, wherein the half-life of the FVIII is extended at least about 1.5 times, at least about 2 times, at least about 2.5 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, or at least about 12 times longer than a FVIII protein without the VWF fragment or compared to wild type FVIII..
    26. The chimeric protein of claim 24, wherein the half-life of the Factor VIII is at least about 17 hours, at least about 18 hours, at least about 19 hours, at least about 20 hours, at least about 21 hours, at least about 22 hours, at least about 23 hours, at least about 24 hours, at least about 25 hours, at least about 26 hours, at least about 27 hours, at least about 28 hours, at least about 29 hours, at least about 30 hours, at least about 31 hours, at least about 32 hours, at least about 33 hours, at least about 34 hours, at least about 35 hours, at least about 36 hours, at least about 48 hours, at least about 60 hours, at least about 72 hours, at least about 84 hours, at least about 96 hours, or at least about 108 hours
    27. A chimeric protein comprising (i) a FVIII protein, (ii) an XTEN sequence, and (iii) an Ig constant region or a portion thereof, wherein the XTEN sequence is linked to the FVIII protein by an optional linker at the N-terminus or C terminus of the FVIII protein or is inserted between two amino acids of at least one or more insertion sites in the FVIII protein and wherein the Ig constant region or a portion thereof is linked to or associated with the FVIII protein or the XTEN sequence.
    28. The chimeric protein of claim 27, wherein the XTEN sequence and the Ig constant region or a portion thereof extends the half-life of the FVIII protein.
    29. The chimeric protein of claim 27 or 28, wherein the VWF binding site is located in the A3 domain or the C2 domain of the FVIII protein or both the A3 domain and the C2 domain.
    30. The chimeric protein of claim 29, wherein the VWF binding site comprises the amino acid sequence corresponding to amino acids 1669 to 1689 and 2303 to 2332 of SEQ ID NO: 4.
    -233 2018203206 08 May 2018
    31. The chimeric protein of any one of claims 27 to 30, wherein the half-life of the FVIII protein is extended compared to a FVIII protein without the Ig constant region or a portion thereof or a FVIII protein without the XTEN sequence.
    32. The chimeric protein of claim 31, wherein the half-life of the FVIII protein is extended at least about 1.5 times, at least about 2 times, at least about 2.5 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, or at least about 12 times longer than a FVIII protein without the Ig constant region or a portion thereof or a FVIII protein without the XTEN sequence or wild-type FVIII.
    33. The chimeric protein of claim 31, wherein the half-life of the FVIII protein is at least about 10 hours, at least about 11 hours, at least about 12 hours, at least about 13 hours, at least about 14 hours, at least about 15 hours, at least about 16 hours, at least about 17 hours, at least about 18 hours, at least about 19 hours, at least about 20 hours, at least about 21 hours, at least about 22 hours, at least about 23 hours, at least about 24 hours, at least about 36 hours, at least about 48 hours, at least about 60 hours, at least about 72 hours, at least about 84 hours, at least about 96 hours, or at least about 108 hours.
    34. The chimeric protein of any one of claims 27 to 33, wherein the Ig constant region or a portion thereof comprises a first Fc region.
    35. The chimeric protein of any one of claims 27 to 34, further comprising an additional Ig constant region or a portion thereof.
    36. The chimeric protein of claim 35, wherein the additional Ig constant region or a portion thereof comprises a second Fc region, which is linked to or associated with the first Fc region.
    37. The chimeric protein of claim 36, wherein the second Fc region is associated with the first Fc region by a covalent bond.
    38. The chimeric protein of claim 36, wherein the first Fc region is linked to the second Fc region by a linker.
    39. The chimeric protein of claim 38, wherein the linker is a processable linker.
    -234 2018203206 08 May 2018
    40. The chimeric protein of any one of claims 27 to 34, which comprises a single polypeptide chain comprising the FVIII protein, the XTEN sequence, and the lg constant region or a portion thereof.
    41. The chimeric protein of any one of claims 27 to 34, which comprises a first polypeptide chain and a second polypeptide chain, wherein the first polypeptide chain comprises a heavy chain of the FVIII protein, the second polypeptide chain comprises a light chain of the FVIII protein and the XTEN sequence and the lg constant region or a portion thereof.
    42. The chimeric protein of any one of claims 35 to 39, which comprises a first polypeptide chain and a second polypeptide chain, wherein the first polypeptide chain comprises the FVIII protein, the XTEN sequence, and the lg constant region and the second polypeptide chain comprises the additional lg constant region or a portion thereof.
    43. The chimeric protein of any one of claims 35 to 39, which comprises a first polypeptide chain, a second polypeptide chain, and a third polypeptide chain, wherein the first polypeptide chain comprises a heavy chain of the FVIII protein and the XTEN sequence, the second polypeptide chain comprises a light chain of the FVIII protein and the lg constant region or a portion thereof, and the third polypeptide chain comprises the additional lg constant region or a portion thereof.
    44. The chimeric protein of any one of claims 35 to 39, which comprises a single chain polypeptide comprising the FVIII protein, the XTEN sequence, the lg constant region or a portion thereof, and the additional lg constant region or a portion thereof.
    45. A chimeric protein comprising (i) a FVIII protein, (ii) an XTEN sequence, (iii) a VWF fragment, and (iv) an lg constant region or a portion thereof, which comprises the D' domain and the D3 domain of VWF, wherein the XTEN sequence is linked to the FVIII protein by an optional linker at the N-terminus or C terminus of the FVIII protein or inserted immediately downstream of one or more insertion sites in the FVIII protein, the VWF fragment is linked to or associated with the FVIII protein or the XTEN sequence, and the lg constant region or a portion thereof is linked to the FVIII protein, the XTEN sequence, the VWF fragment, or any combinations thereof.
    -235 2018203206 08 May 2018
    46. A chimeric protein comprising a formula, which comprises:
    (1) F VIII(X 1 )-L 1 -F1: V-L2-X2-L3 -F2;
  2. (2) FVIII(X1)-L1-F1 :F2-L3-X2-L2-V;
  3. (3) F1 -L1 -FVIII(X 1): V-L2-X2-L3 -F2;
  4. (4) F1-L1-FVIII(X1);F2-L3-X2-L2-V;
  5. (5) FVIII(X1)-L1 -F1-L4-V-L2-X2-L3-F2;
  6. (6) FVIII(X1 )-L 1 -F1-L4-F2-L3-X2-L2-V;
  7. (7) F1-L1-FVIII(X1)-L4-V-L2-X2-L3-F2, or (8) F1 -L1 -FVIII(X1 )-L4-F2-L3-X2-L2-V, wherein FVIII(Xl) comprises a FVIII protein and an XTEN sequence, wherein the XTEN sequence is linked to the N-terminus or C-terminus of the FVIII protein or inserted immediately downstream of one or more amino acids (one or more insertion site) in the FVIII protein;
    each of LI, L2, or L3 comprises an optional linker;
    L4 is a linker;
    X2 comprises one or more XTEN sequences;
    FI comprises an Ig constant region or a portion thereof;
    F2 comprises an optional additional Ig constant region or a portion thereof, and V comprises a VWF fragment;
    (-) is a peptide bond or one or more amino acids; and (:) comprises a covalent bond or a non-covalent bond.
    47. The chimeric protein of claim 45 or 46, wherein the VWF fragment does not bind to a VWF clearance receptor.
    48. The chimeric protein of any one of claims 45 to 47, wherein the VWF fragment is capable of protecting the FVIII protein from cleavage by one or more protease, protecting the FVIII protein from activation, stabilizing the heavy chain and/or the light chain of the FVIII protein, or preventing clearance of the FVIII protein by one or more scavenger receptors.
    49. The chimeric protein of any one of claims 45 to 48, wherein the Ig constant region or a portion thereof inhibits or prevents endogenous VWF from binding to the FVIII protein by shielding or blocking a VWF binding site on the FVIII protein.
    -236 2018203206 08 May 2018
    50. The chimeric protein of claim 49, wherein the VWF binding site is located in the A3 domain or the C2 domain of the FVIII protein or both the A3 domain and the C2 domain.
    51. The chimeric protein of claim 49 or 50, wherein the VWF binding site comprises the amino acid sequence corresponding to amino acids 1669 to 1689 and 2303 to 2332 of SEQ ID NO: 4.
    52. The chimeric protein of any one of claims 45 to 51, wherein a half-life of the FVIII protein is extended compared to a FVIII protein without the VWF fragment.
    53. The chimeric protein of claim 52, wherein the half-life of the FVIII protein is extended at least about 1.5 times, at least about 2 times, at least about 2.5 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, or at least about 12 times longer than wild type FVIII.
    54. The chimeric protein of claim 52, wherein the half-life of the FVIII protein is at least about 10 hours, at least about 11 hours, at least about 12 hours, at least about 13 hours, at least about 14 hours, at least about 15 hours, at least about 16 hours, at least about 17 hours, at least about 18 hours, at least about 19 hours, at least about 20 hours, at least about 21 hours, at least about 22 hours, at least about 23 hours, at least about 24 hours, at least about 36 hours, at least about 48 hours, at least about 60 hours, at least about 72 hours, at least about 84 hours, at least about 96 hours, or at least about 108 hours.
    55. The chimeric protein of any one of claims 45 to 54, which comprises a single polypeptide chain comprising the FVIII protein, the XTEN sequence, the VWF fragment, and the Ig constant region or a portion thereof.
    56. The chimeric protein of any one of claims 45 to 54, wherein the Ig constant region or a portion thereof comprises a first Fc region.
    57. The chimeric protein of any one of claims 45 to 54, wherein the Ig constant region or a portion thereof is linked to the VWF fragment by an optional linker.
    58. The chimeric protein of claim 57, wherein the linker comprises a cleavable linker.
    -237 2018203206 08 May 2018
    59. The chimeric protein of claim 45 to 50, which further comprises an additional Ig constant region or a portion thereof, which is linked to the FVIII protein, the Ig constant region or a portion thereof, the VWF fragment, or any combinations thereof by an optional linker.
    60. The chimeric protein of claim 59, wherein the additional Ig constant region or a portion thereof is linked to the FVIII protein by an optional linker.
    61. The chimeric protein of claim 59 or 60, wherein the Ig constant region or a portion thereof is a second Fc region.
    62. The chimeric protein of any one of claims 8 to 26, 42 to 44, and 46 to 61, wherein the Ig constant region or a portion thereof and the additional Ig constant region or a portion thereof are identical or different.
    63. The chimeric protein of any one of claims 46 to 62, which comprises a first polypeptide chain and a second polypeptide chain, wherein the first polypeptide chain comprises the FVIII protein, the XTEN sequence, and the Ig constant region or a portion thereof and the second polypeptide chain comprises the VWF fragment and the additional Ig constant region or a portion thereof.
    64. The chimeric protein of any one of claims 46 to 62, which comprises a first polypeptide chain, a second polypeptide chain, and a third polypeptide chain, wherein the first polypeptide chain comprises a heavy chain of the FVIII protein and the XTEN sequence, the second polypeptide chain comprises a light chain of the FVIII protein and the Ig constant region or a portion thereof, and the third polypeptide chain comprises the VWF fragment and the additional Ig constant region or a portion thereof.
    65. The chimeric protein of any one of claims 46 to 62, which comprises a first polypeptide chain, a second polypeptide chain, and a third polypeptide chain, wherein the first polypeptide chain comprises a heavy chain of the FVIII protein, the second polypeptide chain comprises a light chain of the FVIII protein, the XTEN sequence, and the Ig constant region or a portion thereof, and the third polypeptide chain comprises the VWF fragment and the additional Ig constant region or a portion thereof.
    -238 2018203206 08 May 2018
    66. The chimeric protein of any one of claims 46 to 62, wherein a first polypeptide chain and a second polypeptide chain, wherein the first polypeptide chain comprises a heavy chain of the FVIII protein and the XTEN sequence and the second polypeptide chain comprises a light chain of the FVIII protein, the Ig constant region or a portion thereof, the VWF fragment, and the additional Ig constant region or a portion thereof.
    67. The chimeric protein of any one of claims 63 to 66, which further comprises an additional XTEN sequence linked to the VWF fragment or to the additional Ig constant region or a portion thereof.
    68. The chimeric protein of any one of claims 1 to 26, wherein the FVIII protein is linked to an XTEN sequence at the C-terminus or the N-terminus of the FVIII protein or inserted immediately downstream of one or more amino acids in the FVIII protein or any combinations thereof.
    69. The chimeric protein of any one of claims 27 to 68, wherein the FVIII protein is linked to at least two XTEN sequences, at least three XTEN sequences, at least four XTEN sequences, at least five XTEN sequences, or at least six XTEN sequences.
    70. The chimeric protein of any one of claims 1 to 69, wherein the FVIII protein comprises one or more domains of FVIII selected from the group consisting of an A1 domain, al acidic region, an A2 domain, a2 acidic region, a B domain, an A3 domain, a3 acidic region, a Cl domain, a C2 domain, one or more fragments thereof, and any combinations thereof.
    71. The chimeric protein of any one of claims 27 to 70, wherein the one or more insertion sites in the FVIII protein is located within one or more domains of the FVIII protein selected from the group consisting of the Al domain, the al acidic region, the A2 domain, the a2 acidic region, the A3 domain, the B domain, the Cl domain, the C2 domain, and any combinations thereof or between one or more domains of the FVIII protein selected from the group consisting of the Al domain and al acidic region, the al acidic region and A2 domain, the A2 domain and a2 acidic region, the a2 acidic region and B domain, the B domain and A3 domain, the A3 domain and Cl domain, the Cl domain and C2 domain, and any combinations thereof or between two domains of the FVIII protein selected from the group consisting of the Al domain and al acidic region, the al acidic region and A2 domain, the A2 domain and a2 acidic region, the a2 acidic region and B domain, the B
    -239 2018203206 08 May 2018 domain and A3 domain, the A3 domain and Cl domain, the Cl domain and C2 domain, and any combinations thereof.
    72. The chimeric protein of any one of claims 27 to 71, wherein the one or more insertion sites in the FVIII protein are one or more amino acids selected from the group consisting of the amino acid residues in Table 7, Table 8, Table 9 and Table 10.
    73. The chimeric protein of claim 72, wherein the XTEN sequence inserted at the insertion site corresponding to amino acids 3R of SEQ ID NO: 4 further comprises an amino acid sequence of ATR.
    74. The chimeric protein of any one of claims 27 to 71, wherein the one or more insertion sites in the FVIII protein are located immediately downstream of one or more amino acids selected from the group consisting of:
    (1) amino acid 3, (2) amino acid 18, (3) amino acid 22, (4) amino acid 26, (5) amino acid 32, (6) amino acid 40, (7) amino acid 60, (8) amino acid 65, (9) amino acid 81, (10) amino acid 116, (11) amino acid 119, (12) amino acid 130, (13) amino acid 188, (14) amino acid 211, (15) amino acid 216, (16) amino acid 220, (17) amino acid 224, (18) amino acid 230, (19) amino acid 333, (20) amino acid 336, (21) amino acid 339, (22) amino acid 375, (23) amino acid 399, (24) amino acid 403, (25) amino acid 409, (26) amino acid 416, (26) amino acid 442, (28) amino acid 487, (29) amino acid 490, (30) amino acid 494, (31) amino acid 500, (32) amino acid 518, (33) amino acid 599, (34) amino acid 603, (35) amino acid 713, (36) amino acid 745, (37) amino acid 1656, (38) amino acid 1711, (39) amino acid 1720, (40) amino acid 1725, (41) amino acid 1749, (42) amino acid 1796, (43) amino acid 1802, (44) amino acid 1827, (45) amino acid 1861, (46) amino acid 1896, (47) amino acid 1900, (48)
    amino acid 1904,
    -2402018203206 08 May 2018
    (49) amino acid 1905, amino acid 1937, (50) amino acid 1910, (51) (52) amino acid 2019, amino acid 2111, (53) amino acid 2068, (54) (55) amino acid 2120, amino acid 2188, (56) amino acid 2171, (57) (58) amino acid 2227, (59) amino acid 2277, and (60) two or more combinations thereof.
    75. The chimeric protein of any one of claims 1 to 74, wherein the FVIII protein comprises B domain or a portion thereof.
    76. The chimeric protein of claim 75, wherein the FVIII protein is SQ B domain deleted FVIII.
    77. The chimeric protein of any one of claims 1 to 76, wherein the FVIII protein comprises single chain FVIII.
    78. The chimeric protein of claim 77, wherein the single chain FVIII contains at least one amino acid substitution at a residue corresponding to residue 1648, residue 1645, or both of full-length mature Factor VIII polypeptide (SEQ ID NO: 4) or residue 754, residue 751, or both of SQ BDD Factor VIII (SEQ ID NO: 6).
    79. The chimeric protein of claim 78, wherein the amino acid substitution is an amino acid other than arginine.
    80. The chimeric protein of any one of claims 1 to 76, wherein the FVIII protein comprises a heavy chain of FVIII and a light chain of Factor VIII, wherein the heavy chain and the light chain are associated with each other by a metal bond.
    81. The chimeric protein of any one of claims 1 to 80, wherein the FVIII protein has a low affinity to or does not bind to a low-density lipoprotein receptor-related protein (LRP).
    82. The chimeric protein of claim 81, wherein the FVIII protein contains at least one amino acid substitution that lowers the affinity to or eliminates the binding to the LRP.
    83. The chimeric protein of claim 82, wherein the at least one amino acid substitution is at a residue corresponding to residue 471, residue 484, residue 487, residue 490, residue 497,
    -241 2018203206 08 May 2018 residue 2092, residue 2093 or two or more combinations thereof of full-length mature
    FVIII.
    84. The chimeric protein of claim 83, wherein the amino acid substitution at residue 471, 484, or 497 is an amino acid other than Arginine, the amino acid substitution at residue 487 is an amino acid other than Tyrosine, the amino acid substitution at residue 2092 is an amino acid other than Lysine, or the amino acid substitution at residue 2093 is an amino acid other than phenylalanine.
    85. The chimeric protein of any one of claims 1 to 84, wherein the FVIII protein contains at least one amino acid substitution, which induces the FVIII protein to be more stable than a FVIII protein without the substitution.
    86. The chimeric protein of claim 85, wherein the A2 domain and the A3 domain of the FVIII protein are associated to each other by a covalent bond.
    87. The chimeric protein of claim 85 or 86, wherein the at least one amino acid substitution is at a residue corresponding to residue 664, residue 1826, residue 662, or residue 1828 of full-length mature FVIII, or two or more combinations thereof.
    88. The chimeric protein of claim 87, wherein the FVIII protein contains (a) cysteine at the residue corresponding to residue 664 of full-length mature FVIII and cysteine at the residue corresponding to residue 1826 of full-length mature FVIII or (b) cysteine at the residue corresponding to residue 662 of full-length mature FVIII and cysteine at the residue corresponding to residue 1828 of full-length mature FVIII.
    89. The chimeric protein of any one of claims 1 to 26 and 45 to 88, wherein the VWF fragment is not amino acids 764 to 1274 of SEQ ID NO: 2.
    90. The chimeric protein of any one of claims 1 to 26 and 45 to 89, wherein the amino acid sequence of the D' domain is at least 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acids 764 to 866 of SEQ ID NO: 2.
    91. The chimeric protein of any one of claims 1 to 26 and 45 to 90, wherein the amino acid sequence of the D3 domain is at least 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acids 867 to 1240 of SEQ ID NO: 2.
    -2422018203206 08 May 2018
    92. The chimeric protein of any one of claims 1 to 26 and 45 to 91, wherein the VWF fragment is a monomer.
    93. The chimeric protein of any one of claims 1 to 26 and 45 to 91, wherein the VWF fragment comprises at least two VWF fragments, at least three VWF fragments, at least four VWF fragments, at least five VWF fragments, or at least six VWF fragments.
    94. The chimeric protein of any one of claims 1 to 26 and 45 to 93, wherein the VWF fragment comprises an amino acid at least 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to amino acids 764 to 1240 of SEQ ID NO: 2.
    95. The chimeric protein of claim 94, wherein the VWF fragment consists essentially of or consists of amino acids 764 to 1240 of SEQ ID NO: 2.
    96. The chimeric protein of any one of claims 1 to 26 and 45 to 95, wherein the VWF fragment contains at least one amino acid substitution at a residue corresponding to residue 1099, residue 1142, or both residues 1099 and 1142 of SEQ ID NO: 2.
    97. The chimeric protein of claim 96, wherein the VWF fragment contains an amino acid other than cysteine substituted for a residue corresponding to residue 1099, residue 1142, or both residues 1099 and 1142 of SEQ ID NO: 2.
    98. The chimeric protein of any one of claims 1 to 26 and 45 to 97, wherein the VWF fragment further comprises the Dl domain, the D2 domain, or the Dl and D2 domains of VWF.
    99. The chimeric protein of any one of claims 1 to 27 and 45 to 98, wherein the VWF fragment further comprises a VWF domain selected from the group consisting of the Al domain, the A2 domain, the A3 domain, the D4 domain, the BI domain, the B2 domain, the B3 domain, the Cl domain, the C2 domain, the CK domain, one or more fragments thereof, and any combinations thereof
    100. The chimeric protein of any one of claims 1 to 27 and 45 to 99, wherein the VWF fragment consists essentially of or consists of: (1) the D' and D3 domains of VWF or fragments thereof; (2) the Dl, D', and D3 domains of VWF or fragments thereof; (3) the D2, D', and D3 domains of VWF or fragments thereof; (4) the Dl, D2, D', and D3
    -243 2018203206 08 May 2018 domains of VWF or fragments thereof; or (5) the Dl, D2, D', D3, and Al domains of
    VWF or fragments thereof
    101. The chimeric protein of any one of claims 1 to 27 and 45 to 100, wherein the VWF fragment further comprises a signal peptide of VWF or FVIII which is operably linked to the VWF fragment.
    102. The chimeric protein of any one of claims 1 to 101, wherein one or more of the linkers have a length of at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1200, 1400, 1600, 1800, or 2000 amino acids.
    103. The chimeric protein of any one of claims 1 to 101, wherein one or more of the linkers have a length of about 1 to about 2000 amino acids.
    104. The chimeric protein of claim 103, wherein one or more of the linkers have a length of at least about 20, 35, 42, 48, 73, 75, 95, 98, 144, 288, 324, 333, 576, or 864 amino acids.
    105. The chimeric protein of any one of claims 1 to 104, wherein one or more of the linkers comprise a Gly/Ser peptide.
    106. The chimeric protein of claim 105, wherein the Gly/Ser peptide has a formula of (Gly4Ser)n (SEQ ID NO: 139) or Ser(Gly4Ser)n (SEQ ID NO: 140), wherein n is a positive integer selected from the group consisting of 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.
    107. The chimeric protein of claim 106, wherein the (Gly4Ser)n linker is (Gly4Ser)3 (SEQ ID NO: 63) or (Gly4Ser)4 (SEQ ID NO: 138).
    108. The chimeric protein of any one of claims 1 to 107, wherein the XTEN sequence is selected from the group consisting of AE42, AE72, AE864, AE576, AE288, AE144, AG864, AG576, AG288, and AG144.
    109. The chimeric protein of claim 108, wherein the XTEN sequence is selected from the group consisting of SEQ ID NO: 36; SEQ ID NO: 37; SEQ ID NO: 38; SEQ ID NO:
    -2442018203206 08 May 2018
    39; SEQ ID NO: 40; SEQ ID NO: 41; SEQ ID NO: 42; SEQ ID NO: 43, SEQ ID NO: 44, and SEQ ID NO: 127.
    110. The chimeric protein of claim 109, wherein the XTEN sequence is AE288 or AG288.
    111. The chimeric protein of any one of claims 1 to 110, wherein the linker comprises at least one first cleavage site at the N-terminus of the linker, at least one second cleavage site at the C-terminus of the linker, or both.
    112. The chimeric protein of any one of claims 1 to 111, wherein the linker comprises 20 amino acids, 35 amino acids, 48 amino acids, 73 amino acids, or 95 amino acids.
    113. The chimeric protein of claim 112, wherein the linker is 48 amino acids thrombin cleavage linker.
    114. The chimeric protein of claim 112, wherein the linker is 35 amino acids thrombin cleavage linker.
    115. The chimeric protein of claim 111, wherein the one or more of the cleavage sites is TLDPRSFLLRNPNDKYEPFWEDEEK (SEQ ID NO: 8).
    116. The chimeric protein of claim 111, wherein one or more of the cleavage sites is cleaved by a protease selected from the group consisting of factor XIa, factor Xlla, kallikrein, factor Vila, factor IXa, factor Xa, factor Ila (thrombin), Elastase-2, GranzymeB, TEV, Enterokinase, Protease 3C, Sortase A, MMP-12, MMP-13, MMP-17, and MMP20.
    117. The chimeric protein of claim 111 or 116, wherein one or more of the cleavage sites comprise an amino acid sequence selected from the group consisting of RRRR (SEQ ID NO: 9), RKRRKR (SEQ ID NO: 10), RRRRS (SEQ ID NO: 11), TQSFNDFTR (SEQ ID NO: 12), SVSQTSKLTR (SEQ ID NO: 13), DFLAEGGGVR (SEQ ID NO: 14), TTKIKPR (SEQ ID NO: 15), LVPRG (SEQ ID NO: 16), ALRPR (SEQ ID NO: 17), KLTRAET (SEQ ID NO: 18), DFTRVVG (SEQ ID NO: 19), TMTRIVGG (SEQ ID NO: 20), SPFRSTGG (SEQ ID NO: 21), LQVRIVGG (SEQ ID NO: 22), PLGRIVGG (SEQ ID NO: 23), IEGRTVGG (SEQ ID NO: 24), LTPRSLLV (SEQ ID NO: 25), LGPVSGVP (SEQ ID NO: 26), VAGDSLEE (SEQ ID NO: 27), GPAGLGGA (SEQ ID NO: 28),
    -245 2018203206 08 May 2018
    GPAGLRGA (SEQ ID NO: 29), APLGLRLR (SEQ ID NO: 30), PALPLVAQ (SEQ ID
    NO: 31), ENLYFQG (SEQ ID NO: 32), DDDKIVGG (SEQ ID NO: 33), LEVLFQGP (SEQ ID NO: 34 ), and LPKTGSES (SEQ ID NO: 35).
    118. The chimeric protein of any one of claims 111 to 117, wherein the first cleavage site and the second cleavage site are identical or different.
    119. The chimeric protein of any one of claims 1 to 118, which is polysialylated, pegylated, or hesylated.
    120. A polynucleotide or a set of polynucleotides encoding the chimeric protein of any one of claims 1 to 120.
    121. The polynucleotide of claim 120, further comprising a polynucleotide chain, which encodes PC5 or PC7.
    122. A vector comprising the polynucleotide of claim 120 or 121 and one or more promoter operably linked to the polynucleotide or the set of polynucleotides.
    123. The vector of claim 122, further comprising an additional vector, which comprises a polynucleotide chain encoding PC5 or PC7.
    124. A host cell comprising the polynucleotide of any one of claims 120 or 121 or the vector of claim 122 or 123.
    125. The host cell of claim 124, which is a mammalian cell.
    126. The host cell of claim 125, wherein the mammalian cell is selected from the group consisting of HEK293 cell, CHO cell, and BHK cell.
    127. A pharmaceutical composition comprising the chimeric protein of any one of claims 1 to 119, the polynucleotide of claim 120 or 121, the vector of claim 122 or 123, or the host cell of any one of claims 124 to 125, and a pharmaceutically acceptable carrier.
    128. The composition of claim 127, wherein the FVIII protein has extended half-life compared to wild type FVIII protein.
    -2462018203206 08 May 2018
    129. The composition of claim 127 or 128, wherein the half-life of the FVIII protein is extended at least about 1.5 times, at least about 2 times, at least about 2.5 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, or at least about 12 times longer than wild type FVIII.
    130. The composition of claim 128 or 129, wherein the half-life of Factor VIII is at least about 17 hours, at least about 18 hours, at least about 19 hours, at least about 20 hours, at least about 21 hours, at least about 22 hours, at least about 23 hours, at least about 24 hours, at least about 25 hours, at least about 26 hours, at least about 27 hours, at least about 28 hours, at least about 29 hours, at least about 30 hours, at least about 31 hours, at least about 32 hours, at least about 33 hours, at least about 34 hours, at least about 35 hours, at least about 36 hours, at least about 48 hours, at least about 60 hours, at least about 72 hours, at least about 84 hours, at least about 96 hours, or at least about 108 hours.
    131. The composition of any one of claims 127 to 130, which is administered by a route selected from the group consisting of topical administration, intraocular administration, parenteral administration, intrathecal administration, subdural administration and oral administration.
    132. The composition of claim 131, wherein the parenteral administration is intravenous or subcutaneous administration.
    133. The composition of any one of claims 127 to 132, which is used to treat a bleeding disease or condition in a subject in need thereof.
    134. The composition of claim 133, wherein the bleeding disease or condition is selected from the group consisting of a bleeding coagulation disorder, hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, bleeding in the illiopsoas sheath and any combinations thereof.
    -2472018203206 08 May 2018
    135. The composition of claim 133 or 134, wherein the subject is scheduled to undergo a surgery.
    136. The composition of any one of claims 133 to 135, wherein the treatment is prophylactic or on-demand.
    137. A method of preventing or inhibiting binding of a FVIII protein with endogenous VWF comprising adding an effective amount of the chimeric protein of any one of claims 1 to 26 and 45 to 119, the polynucleotide of claim 120 or 121, the vector of claim 122 or 123, the host cell of any one of claims 124 to 126, or the composition of any one of claims 127 to 136 to a subject in need thereof, wherein the VWF fragment binds to the FVIII protein and thus prevents or inhibits binding of endogenous VWF.
    138. A method of extending or increasing half-life of a FVIII protein, wherein the method comprises adding an effective amount of the chimeric protein of any one of claims 1 to 26 and 45 to 119, the polynucleotide of claim 120 or 121, the vector of claim 122 or 123, the host cell of any one of claims 124 to 126, or the composition of any one of claims 127 to 136 to a subject in need thereof, wherein the VWF fragment binds to the FVIII protein and thus extends or increases half-life of the FVIII protein.
    139. A method of preventing or inhibiting clearance of a FVIII protein from a cell, wherein the method comprises adding an effective amount of the chimeric protein of any one of claims 1 to 26 and 45 to 119, the polynucleotide of claim 120 or 121, the vector of claim 122 or 123, the host cell of any one of claims 124 to 126, or the composition of any one of claims 127 to 136 to a cell comprising a FVIII protein or a polynucleotide encoding the FVIII protein, wherein the protein having VWF activity binds to the FVIII protein.
    140. The method of any one of claims 137 to 139, wherein the subject is an animal.
    141. The method of claim 140, wherein the animal is a human.
    142. The method of claim 140, wherein the subject is suffering from hemophilia A.
    143. A method of treating a bleeding disease or disorder in a subject in need thereof comprising administering an effective amount of the chimeric protein of any one of claims 1 to 26 and 45 to 119, the polynucleotide of claim 120 or 121, the vector of claim
    -248 2018203206 08 May 2018
    122 or 123, the host cell of any one of claims 124 to 126, or the composition of any one of claims 127 to 136, wherein the bleeding disease or disorder is selected from the group consisting of a bleeding coagulation disorder, hemarthrosis, muscle bleed, oral bleed, hemorrhage, hemorrhage into muscles, oral hemorrhage, trauma, trauma capitis, gastrointestinal bleeding, intracranial hemorrhage, intra-abdominal hemorrhage, intrathoracic hemorrhage, bone fracture, central nervous system bleeding, bleeding in the retropharyngeal space, bleeding in the retroperitoneal space, and bleeding in the illiopsoas sheath.
    144. The method of claim 143, wherein the treatment is prophylactic or on-demand.
    145. The method of claim 143 or 144, wherein the effective amount is 0.1 pg/kg to 500 mg/kg.
    146. The method of any one of claims 143 to 145, wherein the chimeric protein of any one of claims 1 to 119, the polynucleotide of claim 120 or 121, the vector of claim 122 or 123, the host cell of any one of claims 124 to 126, or the composition of any one of claims 127 to 136 is administered by a route selected from the group consisting of topical administration, intraocular administration, parenteral administration, intrathecal administration, subdural administration and oral administration.
    147. The method of claim 146, wherein the parenteral administration is selected from the group consisting of intravenous administration, subcutaneous administration, intramuscular administration, and intradermal administration,
    148. A method of making a chimeric protein, comprising transfecting one or more host cell with the polynucleotide of claim 120 or 121 or the vector of claim 122 or 123 and expressing the chimeric protein in the host cell.
    149. The chimeric protein of any one of claims 27-119, wherein the XTEN insertion site is immediately downstream of residue 745 corresponding to the mature FVIII protein (SEQ ID NO: 4).
    150. The chimeric protein of any one of claims 27-119, where the XTEN insertion sites are immediately downstream of residue 1656 and residue 1900 of the FVIII protein.
    -2492018203206 08 May 2018
    151. The chimeric protein of any one of claims 27-119, wherein the XTEN insertion sites are immediately downstream of residues 26, 1656, and 1900 of the FVIII protein.
    152. The chimeric protein of any one of claims 27-119, wherein the XTEN insertion sites are immediately downstream of residues 403 and 745 of the FVIII protein.
    153. The chimeric protein of any one of claims 27-119, wherein the XTEN insertion sites are immediately downstream of residues 745 and 1900 of the FVIII protein.
    154. The chimeric protein of any one of claims 27-119, wherein the XTEN insertion sites are immediately downstream of residues 18 and 745 of the FVIII protein.
    155. The chimeric protein of any one of claims 149-154, wherein the FVIII protein is a dual chain FVIII isoform.
    156. The chimeric protein of any one of claims 149-154, wherein the FVIII protein is a single chain FVIII isoform.
    157. The chimeric protein of any one of claims 149-156, comprising one XTEN.
    158. The chimeric protein of any one of claims 149-156, comprising two XTENs.
    159. The chimeric protein of any one of claims 149-156, comprising three XTENS are inserted.
    160. The chimeric protein of any one of claims 149-157, wherein the XTEN is SEQ ID NO: 39 (AE288).
    161. The chimeric protein of any one of claims 149-156 and 158, wherein the XTENs are SEQ ID NOs: 38 and 37 (AG144 and AE144).
    162. The chimeric protein of any one of claims 149-156, and 159 wherein the XTENs are SEQ ID NOs: 37, 38 and 37 (AE144, AG144, and AE144).
    163. The chimeric protein of any one of claims 149-156 and 157, wherein the XTENs are SEQ ID NOs: 38 and 39(AE144 and AE288).
    164. The host cell of claim 124, wherein the PC5 or PC7 cleaves the D1D2 domains of VWF.
    -250 165. The chimeric protein of any one of claims 1 to 27, which comprises at least two
    XTENs, at least three XTENs, at least four XTENs, at least five XTENs, or at least six
    XTENs.
    2018203206 08 May 2018
    -251 2018203206 08 May 2018
    L_ Ο υ φ > LU > o _l υ Q. φ C > LU Φ > o c _l Φ Q. c σ φ < (/) σ> h- c o to O Ό to o CO co o o co co o Q Q Q CM CM o o o o IO σ> CM CM
    2018203206 08 May 2018
    2/21
    Ο υ
    (0
    Ό
    C (0
    L_
    Φ §
    c o
    X
    Φ
    CL
    Ξ o
    c φ
    co >
    Ο o o ro ro >
    (0 ω
    Ό
    C
    Φ
    X
    LU
    o.
    (D o
    (D (D
    CD ro >
    ro _ro o
    ro w
    ro ro
    Q.
    (D
    CD c
    (D >
    ro o
    w
    C _Q ro — o >
    CD O > -c od o ro cd o
    Φ o ro co '8 DCZ3 CZ3 <
    w ro
    N w
    M—<
    c ro -Ω > ro ro
    M—> S— ω cl oo >
    CD _C o
    o ro o
    ro o
    c ro &_ ro _ro
    O
    Ό c
    ro w
    'w o
    4—I o
    o c
    'o.
    w
    M—<
    c ro >
    ro
    CL
    I
    A
    2018203206 08 May 2018
    3/21 (|Ui/miu) /1!A!13V IIIAd
    2018203206 08 May 2018
    4/21
    Linker between VWF and Fc 288AE XTEN + IS{5X(GGGGS)}LVPRGSGG D’D3= 1-477aawith C336A/C379A) DNA construct FVIII-161
    LU
    Φ
    -2£ c
    ω n
    ra ca ca φ
    o o
    0.
    2018203206 08 May 2018
    2018203206 08 May 2018 ω
    L_
    Φ
    E
    Ό
    O
    Φ
    Φ
    6/21 o
    Q_
    Φ
    O
    X.
    □ c
    CZ)
    O
    Q.
    ω φ
    >
    o
    L_
    Q.
    E c
    o
    Έ
    Φ ω
    c
    CN >
    *->
    >
    υ <
    co
    E
    CZ) «5
    Q.
    CD (/)
    O
    E
    CD
    O
    LO
    CD (/) o
    o
    E
    CD
    O o
    o (|ui/nui) A)!ai)ov hi Ad
    2018203206 08 May 2018
    7/21 ra σ) ω
    υ □
    L_ ω
    c ο
    ο <
    LU
    I—
    X
    LU <
    oo oo
    CN
    LaaaaaaitaaaaaJ ffSSSSSSHSSSSMl
    II
    2018203206 08 May 2018
    8/21 uiu ‘esuodsej Buipuig
    2018203206 08 May 2018
    9/21 (%) jndu| sa Λιθλοοθ^ |||AJ
    2018203206 08 May 2018
    10/21 (%) »ndu| sa XjSAoasy hiaj m
    Φ
    L_ □
    □)
    2018203206 08 May 2018
    2018203206 08 May 2018
    12/21 </)
    C o
    Έ
    Φ (/)
    C
    LU
    H
    X
    Φ
    Φ
    LU
    X o
    Q_ 00 σ> φ
    L_ □
    □)
    2018203206 08 May 2018
    13/21
    14/21
    2018203206 08 May 2018 c
    o '55 c
    Φ *>
    X
    Φ
    Φ υ
    £
    Φ
    Φ >
    Φ λ_ σ>
    (ηιιι/ηω) XtiAipv euiseid IIIAd
    15/21
    2018203206 08 May 2018 φ
    υ ε
    <
    ε φ
    pazi|BLUJON A)iAipv euiseid |||Ad
    16/21
    2018203206 08 May 2018
    Time (Hours) (%) θη|ΒΛ uiui s 0} peziieuiJON Ajiaijov ewseid |||Ad
    17/21
    2018203206 08 May 2018 φ
    ο ε
    <
    ε φ
    .C ο_ ι_
    Φ ε
    ο ι_
    Φ
    Φ
    C φ
    ι_
    Φ υ
    £
    LU
    Ο
    CM
    Φ ο
    ο
    CO ω
    φ ε
    ° ϊ— ο
    CM
    Ο ο
    (%) θηΙΒΛ uiui S ο» paZI|BLUJON λ)!ΛΙ)3Β BLUSBId |||Ad
    18/21
    2018203206 08 May 2018 φ
    υ
    Ε
    Ο
    Ο c
    0_
    Ε
    Ό
    Ο
    Φ
    Φ υ υ
    Ο φ
    Ε o| paziiBWJON ^ΐΛίρν |||ΛJ
    19/21
    2018203206 08 May 2018 c
    0_
    Ε
    Ό
    Ο
    Φ
    Φ
    LU
    I—
    X
    I
    LU
    20/21 (%) esoa o) peziiBiujON Λ}ΙΛΙ)θν BUISBId ΙΙΙΛJ
    21 /21
    2018203206 08 May 2018 φ
    Ε
    Ό
    Ο
    Φ
    Φ υ
    υ
    LU
    I—
    X φ
    Ό
    Ο
    Ε □>
    c
    Ό
    Φ
    Φ
    Χ2
    Ο.
    δ
    Έ <► ζ ¢, ίίειρθΐΛΐ - (ηω) sso~| poo|g
    2018203206 08 May 2018
    97047 1 SEQUENCE LI STI NG <110> Bi ogen I dec MA I nc. Chhabr a, Ekt a Set h Li u, Tongyao <120> FACTOR VI I I COMPLEX WITH XTEN AND VON WILLEBRAND FACTOR PROTEI N, AND USES THEREOF <130> 2159. 365PC06/ EKS/ C- K/ E- H <140> To be assi gned <141> Her ewi t h <150> US 61/840, 811 <151> 2013- 06- 28 <150> US 61/ 827, 158 <151> 2013- 05- 24 <150> US 61/ 801, 544 <151> 2013- 03- 15 <150> US 61/ 801, 504 <151> 2013- 03- 15 <150> US 61/ 759, 819 <151> 2013- 02- 01 <150> US 61/ 670, 401 <151> 2012- 07- 11 <160> 140
    Page 1
    2018203206 08 May 2018
    97047_1 <170> Pat ent I n version 3.5
    <210> 1 <211> 8442 <212> DNA <213> Homo sapi ens <400> 1
    at gat t cct g ct t t gt gcag gact t cgt ca ct ggcagggg agagt gagcc accgt gacac gaaact gagg gat ggcagcg ct gt gt ggca acct cggacc gaacgggcat ct gt gggagc gt ggaccccg ccagat t t gc aaggaact cg acacct t t ga gct gccagaa t ct ccgt gt a agggggacca ct gggt act a gcaact t t ca act t t aacat ct t at gact t ct cct cccag agt gccagct agcct t t t gt cggggt gct g cggcaggt ca t gggagcat g acgct cct t c tcttggggaa aagagt ct cc caagct gt cc agt cct gct g ct 11 gct gaa t gccaact ca cagct cat gc t ct gaagagc ggccct gt gt ct t gct ct gg t ccacggccc t acagct 11 g t cgat t at t g t t t t t t gaca at gccct at g ggt gaggcct t cagacagat gat gact t t a t gggct ct ga aacat ct cct acct cggt gt gagaagact t ccct cat t t t gat gcagcct cgggat act g gggact t cca t ccat 11 gt t cct ccaaagg at ggct t t gt act t caacaa t gacccaaga gcagt ggaga ct ggggaaat
    11 gcccgct g t gt gt gagt g gccagggacc t t t cggaagt cagt t acct c gaat ggcaag t gt caat ggt gct gt at ct a ggccaggat c gacct gcggg agggacct t g acagt ggt gt gcagaagggc ccaccct ct g tgctgggggg
    120
    180
    240
    300
    360
    420
    480
    540
    600
    660
    720
    780
    Page 2
    2018203206 08 May 2018 ct ggagt gcg gt gct gt acg t at aggcagt t gt caggagc ct ct gcgt gg acct ccct ct aat gaagaat aacagat act cact cct t ct acccgct ccg ggggcaggag cgcat ccagc gact gggat g t gcggcct gt ct ggcrgagc gacct gcaga gaggaggcgt cct gccct gc gct ggaccga gt gt gt cccc gat gcgt gga agagcaccga ct cgagact g gt ccagggga t cacct t cag ccat t gt cat t caccgt ccg t t gccat gga at acagt gac gccgcgggag gt gggaat t a cccgggt gga agcagcacag gcgcggt cct cct cct ggag ccacagcgcg tt gcgccagg t ggct gcagc gt gt ccct gc caacacct gc gt gcct t gt c t gggat ct gc t gagact gt c gct gcct ggc t ggccaggac ggcct ccgt g gct gct ggt g caat ggcaac ggactt cggg cgat ccct gc gacgt ccccc
    97047_1 t acgcccgga t gcagcccag acct gccaga t gccct gagg gt gcat t ccg at t t gccgaa act ggt caat cagt acct gc cagt gt gct g ct gcacaaca at ccagct cc cgcct cagct aagct gt ccc cagggcgacg aacgcct gga gccct caacc acat t cgagg cct gt gccca t gt gccct gc gcct gcacat gacagct cct gaaagcgct a acagccagt g cccact t caa t ggcccggga at gaccgcga gcct t gt gaa ccct cct gaa acggggagga ccgt ct at gc act t cct t ac agct gcacgg cgcgcat gac cct gccat cg ggagggaat g t ggt at ggag caat gaaat g ggat gaaggc ccct cccggc gat ct gcagc gagct t t gac t t gccaggac cgct gt gt gc act gaagcat aggt gacct c cct gcagat g cgggaagacc cccct ct ggg ggact gccag caggt t ct cc t gccgt cagc
    840
    900
    960
    1020
    1080
    1140
    1200
    1260
    1320
    1380
    1440
    1500
    1560
    1620
    1680
    1740
    1800
    Page 3
    2018203206 08 May 2018 ccgct gccct t gcct gt gcg gcgt ggcgcg t gcgggaccc gaggcct gcc t gcgt gccca at ct t ct cag agt ggagt cc agcaaaagga ct gcgggct g agcat gggct t gt gt ggccc acagt gaaga cat gt gt gt g ct caaat acc aaccct ggga t gcaagaaac acct gcggaa gcgccct ggc agccaggccg cct gcaacct t ggagggct g aggcccagt g accat cacac ccggaagct t gcct at cct g aagggct cga gt gt ct ct gg t ggaaaggt g t t ggct gcaa at gccacgt g t gt t ccccgg cct t t cggat gggt caccat ct gccgct ac cagct at gcc ct gt gagct g gacct gccgc ct t ct gcccc cccct gt t ac cat gt gct ac gct gcct gac t cggcccccc gt gt accaaa ct gcct ct gc t ccct gct t c cact t gt gt c ct ccacgat c ggagt gccag cct agt gggg cct ggt ggag
    97047_1 gacgt gt gct gcggcct gcg aact gcccga t ct ct ct ct t ccagggct ct t at gacggt g t gt gaggat g gct gt cct ca at ggt caagc acgt gccaga cccccgggca cat cagggca t gt cgggacc ggcat ggccc t acgt t ct gg aat aagggat ggaggagaga cct gct cgga cggggagagg aaggccaggt acccggat ga acat ggat ga agat ct t cca gct t cat gca gcagt cccct t ggt gt gt cc act at gacct t ggt ccggca aggagt at gc ggaagt ggaa act acct cac t gcaggat t a gcagccaccc t t gagct gt t cggccgcgag cgt gcgcgt c gt acct gcag ggaat gcaat gaggggggac gccagaagac ct gt accat g gt ct cat cgc cgct gacaac ggagt gcat g t gagaacaga ccct ggagaa ct gcacagac ct t cgacggg ct gcggcagt ct cagt gaaa t gacggggag
    1860
    1920
    1980
    2040
    2100
    2160
    2220
    2280
    2340
    2400
    2460
    2520
    2580
    2640
    2700
    2760
    2820
    Page 4
    2018203206 08 May 2018 gt gaat gt ga t acat cat t c t ccgt ggt cc ggcat ccaga t t t gggaact t cat cccct g agaat cct t a ct ggat gt ct t gcgacacca aggacggcca gagt gt gagt gagccact gg aaaat cct gg gt ggct ggcc cact gccaga ggaggcct gg gacat ct cgg agaggcccat t gct gct ggg t gaagcagac acaat gacct cct ggaaagt ccacct gcca ccagt gacgt gcat t t acga t t gct gcct a cat t gt gccc ggcgct at aa cct gccct gt at gagct t t t ggcgt t t t gc t t t gccact g t ggt gcct cc aaccgccgt t gaaggat gag caaagccct c at accaggag caccagcagc gagct cgcag t aacaacat c ct t ccaggac cacct gct cc t gcccacgt g ccagagct gc cagct gt gca gcagt gt gt g gcagacct gc ct caggaaag tgat gttgtc cacagat gcc gcacgat 11 c
    97047_1 act cact 11 g t ccgt ggt ct aaagt gt gt g aacct ccaag t gt gct gaca at gaagcaga t gcaacaagc t gt gagt cca t gt gcccagc gaggagagga cct gcct gt c gagggct gcc gt t gaccct g aaagt cacct aacct cacct ccggt gagcc t act gcagca aggt ggt gga gggaccgcca gcct gt gt gg t ggaggaaga ccagaaaagt cgat ggt gga t ggt ggaccc t t ggggact g at ggcaaggt at ct ccggga aagt cacgt g at gcccact g aagact gt cc t gaat cccag gt gaagcct g ccaccact ct ggct act gga gt ct ggccgg cct gagcat c gaat t t t gat ccct gt ggac gcct ct ggac t t cct cct gt cgagccat at cgcct gct t c ggt gacct gg gaacgggt at t cagcaccct ccct ccaggg agt gt gt gag t gaccct gag ccaggagccg gt at gt ggag cct ggt ct t c
    2880
    2940
    3000
    3060
    3120
    3180
    3240
    3300
    3360
    3420
    3480
    3540
    3600
    3660
    3720
    3780
    3840
    Page 5
    2018203206 08 May 2018 ct gct ggat g gt ggacat ga t accacgacg cggcgcat t g t t gaaat aca gccct gct cc gt ccagggcc aacct caagc agcagt gt gg gcccct gaag gggct ct t gg t t cgt cct gg at ggaggagg cagt act cct at cct gcagc gccct gcggt cccaacct gg gct cct ccag t ggagcggct gct cccacgc ccagccaggt cact gt t cca t gat ggccag t gaagaagaa agat ccgcct at gagct gga cccct cct cc gggt t t cgac aaggat cgga t gat t cagcg acat ggt gac gggt gcgaga acct ct ct ga t ct acat ggt gct gt ccgag gcgcat ct cc ct acat cggg gaagt at gcg aat ct t cagc ccaggagccc gaaggt cat t cat cgagaag gcagcaaagg t act ct gccc cct ggggccc caaaat t ggt gat ggat gt g cgt ggagt ac gat ccgct ac ccacagct t c caccggaaat
    97047_1 gctgagtttg cagaagt ggg ct caaggacc ggcagccagg aagat cgacc caacggat gt gt gat cccgg caggcccct g gacgagat cg cccgacat gg aagaggaact gaagccgact ggccaggaca ccct t cagcg cagggcggca t t ggt cagcc cct gcct ct g aagt gct gaa t ccgcgt ggc ggaagcgacc t ggcct ccac gccct gaagc cccggaact t t gggcat t gg agaacaaggc t t agct acct cacaagt cac ccat ggt t ct t caacaggag gcat ccacgt aggcacagt c acaggaccaa agggt gaccg at gagat caa ggcct t t gt g cgt ggt ggag gt cagagct g cagcgaggt c ct cccgcat c t gt ccgct ac gccccat gcc ct t cgt gct g ct gt gacct t t gt gggcccg ggat gt ggcg caaggagt t c cacggt gct g caaaggggac cact gggct g ggagcaggcg gaggct gcct
    3900
    3960
    4020
    4080
    4140
    4200
    4260
    4320
    4380
    4440
    4500
    4560
    4620
    4680
    4740
    4800
    4860
    Page 6
    2018203206 08 May 2018 ggagacat cc aggattggct gct cct gacc t cccct gcac agt t t cccag gccaat at ag at t gacgt gc at gcagcggg t t gact t cag acggacgt ct acagt gt t cc ggcccagcag gt cacct t gg gat gaggat g accgt gact t cgggggct ga ggct gccgct aggt ggt gcc ggcccaat gc t ggt gct gca ct gact gcag ct t ct t at t t ggcct cgt ct cat ggaacgt agggaggccc aaat gcat gg ct gt ggat t c ct at t ggaat gcgact ccaa gcaat t cct t ggaat gagaa gccagccaga ggcct t cgt g ggacct gccc cat t ggagt g ccct at cct c gaggt gct gc ccagcccct g t gat gaaat g cact caggt g ggt cccggag cagccaaat c t gccaggccg agt ggat gca t ggagat cgc cgt ggt gaag cct ccacaaa gaggcccggg t ggccagacc ccct aacagc ct gygt gt gc
    97047_1 ggccct aat g at ccaggact t ccggagagg gacgt gat cc aagagt t t cg t cagt gct gc aaagcccat t ggggat gcct ggagcct caa gcagct gat g t acgat gcag ct ccagcgaa ct gt gct ct g gacgt ct gga t t gct gaaga cagt cccct g acaggcagct ccaacgt gca t t gagacgct ggct gcagat t t ct cct gga ccaaggct t t agt at ggaag t gct gagcct tgggctttgc aggcggt ggt ccgccaggt c cccagct acg t cgaagacct gat t t gt t ag cct t gccaga gt cat cgggt t t aaagt gga ccact cggca ggagct ggag cccccgagag ccccaccct c t ggct cct cc cat t t caaaa cat caccacc t gt ggacgt c t gt gcgat ac cat cct ggt c caacagagt g gat ct t ggca ccct accat g gat t t gcat g ccagt gccac caact gt gac agagacct gt cat cgt gacc
    4920
    4980
    5040
    5100
    5160
    5220
    5280
    5340
    5400
    5460
    5520
    5580
    5640
    5700
    5760
    5820
    5880
    Page 7
    2018203206 08 May 2018 tttgatgggc gagcaggacc t gcat gaaat gaggt gacgg aacgt t t at g t t cact ccac acgt at ggt c ggcacagt ca cagacgt gcc gt cct cct ct gccat ct gcc gcccacct ct at gt cat gcc gat ggcaacg aaagt cat gt gat ggagt cc t gcacat gcc agaat t t caa t ggaggt gat ccat cgaggt t gaat gggag gt gccat cat aaaacaat ga t gt gt gggat ccacagact g agcccat cct t accact gt t agcaggacag gt cggaccaa caccat ct ct t gagct cct g t ggaaggcag agcaccagt t t cagcgggcg gct gact ggc t ct ccat aat gaagcacagt act ggt ct ct gcat gaggt c gt t ccaact g ct gt gat gag gaaaacact t ggaggagcag t gct gaat gc
    11 gccaccag cggggt ct gc ggt ct acaac t ggggaccat ct gt gt ccct cct ggaagcc gaaggt caac
    97047_1 agct gt t ct t ggt gcct gca gccct ct ccg gt t cct t acg agat t caat c cagct cagcc aacggagcca gt t caggaat t gt ct t gt cc cacaaggt cc gagcaagt gt gt t gact gga cact gt gagc ccct ccgaag gaagaggcct t gggt cccgg t gcacaacgc at gt cct at t gccct ggagc t cgagst gca t gggt gggaa acct t ggt ca ccaagact t t at gact t cat ggact gt gca ccgacagct c t ggct ccagc gt gaggt gat ggacacct ga at ggct gt cc gct gt t t ct g gcact cagt g accaccagcc agccct gccc t caaaacaag aaggcagggc cagt gacat g cat ggaagt c cat ct t caca t gct t caaag gct gagggat gcggccaggg ccact gccag cacat t ct at cgcct ct t at t t t ct gt gct ccggcact gt ccct ccagat cat t ggt gag ct gt cagat c cacggccaaa
    5940
    6000
    6060
    6120
    6180
    6240
    6300
    6360
    6420
    6480
    6540
    6600
    6660
    6720
    6780
    6840
    6900
    Page 8
    2018203206 08 May 2018 gct cccacgt cccgagt at g gaacgt ggcc gcct gcagga cccaccct t c t ccacagt ga accacaacca ggccagt t ct at gggcct cc t t cact t acg gt ggt gact g t gggcct ccc t t t at acaac t t t cagct ga gcct gcat gc acgacct gcc aagaccacct gt ggcct gt g agt gt gt gt g t ccagcccac aggaggagt g ggaagaccca gct gt cccct cct gcct t cc gggaggaggg gcgt ggccca t t ct gcat ga gct caccgcg cggagaaccc aaaggaacgt gct gt aagac t caat ggcac gct gcat ggt gcaacccct g t gaagt agcc t gacccagt g act gaccaac caaaagagt g gt gct gt gat tgggtacttg cgacaaggt g ct gcgat gt g gt gct cccag aggcgagt gc gggggact cc ct gcct cat c ct cct gcccc ct cagcgt gc tgtcattggg gcaggtgggg ccccct gggt
    97047_1 cgcct ccgcc agct gt gacc cct ggcgagt t ccccaccct gagt at gagt gcct caaccg t gt gt ccacc t gcacct gca aagccct gt g t gt ggaaggt cagt ct t cct aat gagt gt g cagct ggagg t gcccaagct cccgggaaga gt cat ct ct g t acaaggaag agaat gcaga t gcccccagt gcagacccaa cct gcccccc gt gcct gcaa ccaccaat ga gaagcaccat ccgacat gga aggacagct g gcct gccat c ggaagagt gt t ccgagt gaa t ccct gt ct g gt cgct gt ga ct gt gat gat gat t caagct aaaat aacac ccagt gct gc gcct cact gt ct t cacct gc gcaccgt t t g ct gt gt caac ct gt ggct gt ct accct gt g ggat gccgt g t cggt cgggc t gcct gt gag cggct cccag ggaggaggt c cccct cgggc gcgcat ggag cgat gt gt gc ggagt gcagg aggt gaat gt
    6960
    7020
    7080
    7140
    7200
    7260
    7320
    7380
    7440
    7500
    7560
    7620
    7680
    7740
    7800
    7860
    7920
    Page 9
    97047 1
    2018203206 08 May 2018
    t gt gggagat gt t t gcct ac ggct t gcacc at t cagct aa gaggaggaca gat cat gaca 7980 ct gaagcgt g at gagacgct ccaggat ggc t gt gat act c act t ct gcaa ggt caat gag 8040 agaggagagt act t ct ggga gaagagggt c acaggct gcc caccct t t ga t gaacacaag 8100 t gt ct t gct g agggaggt aa aat t at gaaa at t ccaggca cct gct gt ga cacat gt gag 8160 gagcct gagt gcaacgacat cact gccagg ct gcagt at g t caaggt ggg aagct gt aag 8220 t ct gaagt ag aggt ggat at ccact act gc cagggcaaat gt gccagcaa agccat gt ac 8280 t ccat t gaca t caacgat gt gcaggaccag t gct cct gct gct ct ccgac acggacggag 8340 cccat gcagg t ggccct gca ct gcaccaat ggct ctgttg t gt accat ga ggt t ct caat 8400 gccat ggagt gcaaat gct c ccccaggaag t gcagcaagt ga 8442
    <210> 2 <211> 2813 <212> PRT <213> Homo sapi ens <220>
    <221> mi sc_f eat ur e <222> (1)..(22) <223> VWF Si gnal Pept i de <220>
    <221> mi sc_f eat ur e <222> (23)..(763) <223> VWF D1D2 r egi on
    Page 10
    97047 1
    2018203206 08 May 2018 <220>
    <221> m sc_f eat ur e <222> (764)..(866) <223> VWF D Domai n <220>
    <221> m sc_f eat ur e <222> ( 867) . . ( 1240) <223> VWF D3 Domai n <220>
    <221> m sc_f eat ur e <222> ( 1241) . . ( 1479) <223> VWF A1 Domai n <220>
    <221> m sc_f eat ur e <222> ( 2016) . . ( 2016) <223> Xaa can be any naturally <400> 2
    Met Ile Pro Al a Arg Phe Al a Gl y 1 5
    Leu Pro Gl y Thr Leu Cys Al a Gl u 20
    Al a Arg Cys Ser Leu Phe Gl y Ser 35 40 occur r i ng ami no aci d
    Val Leu 10 Leu Al a Leu Al a Leu 15 I l e Gl y Thr Ar g Gl y Ar g Ser Ser Thr 25 30 Asp Phe Val As n Thr Phe As p Gl y 45
    Page 11
    97047 1
    2018203206 08 May 2018
    Ser Met 50 Ty r Ser Phe Al a Gl y Ty r 55 Cy s Ser Ty r Leu 60 Leu Al a Gl y Gl y Cys Gl n Lys Ar g Ser Phe Ser I l e I l e Gl y As p Phe Gl n As n Gl y Lys 65 70 75 80 Arg Val Ser Leu Ser Val Ty r Leu Gly Gl u Phe Phe As p I l e Hi s Leu 85 90 95 Phe Val As n Gl y Thr Val Thr Gl n Gly As p Gl n Ar g Val Ser Met Pr o 100 105 110 Tyr Al a Ser Lys Gl y Leu Ty r Leu Gl u Thr Gl u Al a Gl y Ty r Ty r Lys 115 120 125 Leu Ser Gl y Gl u Al a Ty r Gl y Phe Val Al a Ar g Ile As p Gl y Ser Gl y 130 135 140 Asn Phe Gl n Val Leu Leu Ser As p Ar g Ty r Phe As n Lys Thr Cy s Gl y 145 150 155 160 Leu Cy s Gl y As n Phe As n I l e Phe Al a Gl u As p As p Phe Met Thr Gl n 165 170 175 Gl u Gl y Thr Leu Thr Ser Asp Pr o Ty r As p Phe Al a As n Ser Tr p Al a
    Page 12
    97047 1
    2018203206 08 May 2018
    180 185 190 Leu Ser Ser Gl y Gl u Gl n Tr p Cy s Gl u Ar g Al a Ser Pr o Pr o Ser Ser 195 200 205 Ser Cy s As n I l e Ser Ser Gl y Gl u Met Gl n Lys Gl y Leu Tr p Gl u Gl n 210 215 220 Cys Gl n Leu Leu Lys Ser Thr Ser Val Phe Al a Ar g Cy s Hi s Pr o Leu 225 230 235 240 Val Asp Pr o Gl u Pr o Phe Val Al a Leu Cy s Gl u Lys Thr Leu Cy s Gl u 245 250 255 Cys Al a Gl y Gl y Leu Gl u Cy s Al a Cy s Pr o Al a Leu Leu Gl u Ty r Al a 260 265 270 Arg Thr Cy s Al a Gl n Gl u Gl y Met Val Leu Ty r Gl y Tr p Thr As p Hi s 275 280 285 Ser Al a Cy s Ser Pr o Val Cy s Pr o Al a Gl y Met Gl u Ty r Ar g Gl n Cy s 290 295 300 Val Ser Pr o Cy s Al a Ar g Thr Cy s Gl n Ser Leu Hi s I l e As n Gl u Met 305 310 315 320
    Page 13
    97047 1
    2018203206 08 May 2018
    Cys Gl n Gl u Ar g Cy s 325 Val As p Gl y Cy s Ser 330 Cy s Pr o Gl u Gl y Gl n 335 Leu Leu As p Gl u Gl y Leu Cy s Val Gl u Ser Thr Gl u Cy s Pr o Cy s Val Hi s 340 345 350 Ser Gl y Lys Ar g Ty r Pr o Pr o Gl y Thr Ser Leu Ser Ar g As p Cy s As n 355 360 365 Thr Cy s I l e Cy s Ar g As n Ser Gl n Tr p Ile Cy s Ser As n Gl u Gl u Cy s 370 375 380 Pr o Gl y Gl u Cy s Leu Val Thr Gl y Gl n Ser Hi s Phe Lys Ser Phe As p 385 390 395 400 Asn Ar g Ty r Phe Thr Phe Ser Gl y Ile Cy s Gl n Ty r Leu Leu Al a Ar g 405 410 415 Asp Cy s Gl n As p Hi s Ser Phe Ser Ile Val Ile Gl u Thr Val Gl n Cy s 420 425 430 Al a As p As p Ar g As p Al a Val Cy s Thr Ar g Ser Val Thr Val Ar g Leu 435 440 445 Pr o Gl y Leu Hi s As n Ser Leu Val Lys Leu Lys Hi s Gl y Al a Gl y Val
    Page 14
    2018203206 08 May 2018
    97047_1
    450 455 460
    Al a 465 Met As p Gl y Gl n As p 470 Ile Gl n Leu Pr o Leu 475 Leu Lys Gl y As p Leu 480 Ar g I l e Gl n Hi s Thr Val Thr Al a Ser Val Ar g Leu Ser Ty r Gl y Gl u 485 490 495 Asp Leu Gl n Met As p Tr p As p Gl y Ar g Gl y Ar g Leu Leu Val Lys Leu 500 505 510 Ser Pr o Val Tyr Al a Gl y Lys Thr Cy s Gl y Leu Cy s Gl y As n Ty r As n 515 520 525 Gl y As n Gl n Gl y As p As p Phe Leu Thr Pr o Ser Gl y Leu Al a Gl u Pr o 530 535 540 Ar g Val Gl u As p Phe Gl y As n Al a Tr p Lys Leu Hi s Gl y As p Cy s Gl n 545 550 555 560 As p Leu Gl n Lys Gl n Hi s Ser As p Pr o Cy s Al a Leu As n Pr o Ar g Met 565 570 575 Thr Ar g Phe Ser Gl u Gl u Al a Cys Al a Val Leu Thr Ser Pr o Thr Phe 580 585 590
    Page 15
    2018203206 08 May 2018
    97047_1
    Gl u Al a Cys Hi s Ar g Al a Val Ser 600 Pr o Leu Pr o Tyr Leu 605 Ar g As n Cys 595 Ar g Tyr As p Val Cys Ser Cys Ser As p Gl y Ar g Gl u Cys Leu Cys Gl y 610 615 620 Al a Leu Al a Ser Tyr Al a Al a Al a Cys Al a Gl y Ar g Gl y Val Ar g Val 625 630 635 640 Al a Tr p Ar g Gl u Pr o Gl y Ar g Cys Gl u Leu As n Cys Pr o Lys Gl y Gl n 645 650 655 Val Tyr Leu Gl n Cys Gl y Thr Pr o Cys As n Leu Thr Cys Ar g Ser Leu 660 665 670 Ser Tyr Pr o As p Gl u Gl u Cys As n Gl u Al a Cys Leu Gl u Gl y Cys Phe 675 680 685 Cy s Pr o Pr o Gl y Leu Tyr Met As p Gl u Ar g Gl y As p Cys Val Pr o Lys 690 695 700 Al a Gl n Cys Pr o Cys Tyr Tyr As p Gl y Gl u Ile Phe Gl n Pr o Gl u As p 705 710 715 720 I l e Phe Ser As p Hi s Hi s Thr Met Cys Tyr Cys Gl u As p Gl y Phe Met
    Page 16
    2018203206 08 May 2018
    97047_1
    725 730 735
    Hi s Cys Thr Met 740 Ser Gl y Val Pr o Gl y 745 Ser Leu Leu Pr o As p 750 Al a Val Leu Ser Ser Pr o Leu Ser Hi s Ar g Ser Lys Ar g Ser Leu Ser Cys Ar g 755 760 765 Pr o Pr o Met Val Lys Leu Val Cys Pr o Al a As p As n Leu Ar g Al a Gl u 770 775 780 Gly Leu Gl u Cys Thr Lys Thr Cys Gl n As n Tyr As p Leu Gl u Cys Met 785 790 795 800 Ser Met Gl y Cys Val Ser Gl y Cys Leu Cys Pr o Pr o Gl y Met Val Ar g 805 810 815 Hi s Gl u Asn Ar g Cys Val Al a Leu Gl u Ar g Cys Pr o Cys Phe Hi s Gl n 820 825 830 Gl y Lys Gl u Tyr Al a Pr o Gl y Gl u Thr Val Lys I l e Gl y Cys As n Thr 835 840 845 Cys Val Cys Ar g Asp Ar g Lys Tr p As n Cys Thr As p Hi s Val Cys As p 850 855 860
    Page 17
    2018203206 08 May 2018
    97047_1
    Al a 865 Thr Cy s Ser Thr Ile 870 Gl y Met Al a Hi s Ty r 875 Leu Thr Phe As p Gl y 880 Leu Lys Ty r Leu Phe Pr o Gl y Gl u Cy s Gl n Ty r Val Leu Val Gl n As p 885 890 895 Ty r Cy s Gl y Ser As n Pr o Gl y Thr Phe Ar g Ile Leu Val Gl y As n Lys 900 905 910 Gl y Cy s Ser Hi s Pr o Ser Val Lys Cy s Lys Lys Ar g Val Thr I l e Leu 915 920 925 Val Gl u Gl y Gl y Gl u Ile Gl u Leu Phe As p Gl y Gl u Val As n Val Lys 930 935 940 Ar g Pr o Met Lys As p Gl u Thr Hi s Phe Gl u Val Val Gl u Ser Gl y Ar g 945 950 955 960 Ty r I l e I l e Leu Leu Leu Gl y Lys Al a Leu Ser Val Val Tr p As p Ar g 965 970 975 Hi s Leu Ser I l e Ser Val Val Leu Lys Gl n Thr Ty r Gl n Gl u Lys Val 980 985 990
    Cys G y Leu Cys G y Asn Phe Asp G y Ile G n Asn Asn Asp Leu Thr Page 18
    2018203206 08 May 2018
    97047_1
    995 1000 1005
    Ser Ser 1010 As n Leu Gl n Val Gl u 1015 Gl u As p Pr o Val As p 1020 Phe Gl y As n Ser Tr p Lys Val Ser Ser Gl n Cy s Al a As p Thr Ar g Lys Val Pr o 1025 1030 1035 Leu Asp Ser Ser Pr o Al a Thr Cy s Hi s As n As n Ile Met Lys Gl n 1040 1045 1050 Thr Met Val As p Ser Ser Cy s Ar g Ile Leu Thr Ser As p Val Phe 1055 1060 1065 Gl n As p Cy s As n Lys Leu Val As p Pr o Gl u Pr o Ty r Leu As p Val 1070 1075 1080 Cys I l e Ty r As p Thr Cy s Ser Cy s Gl u Ser Ile Gl y As p Cy s Al a 1085 1090 1095 Cys Phe Cy s As p Thr Ile Al a Al a Ty r Al a Hi s Val Cy s Al a Gl n 1100 1105 1110 Hi s Gl y Lys Val Val Thr Tr p Ar g Thr Al a Thr Leu Cy s Pr o Gl n 1115 1120 1125
    Page 19
    2018203206 08 May 2018
    97047_1
    Ser Cy s 1130 Gl u Gl u Ar g As n Leu 1135 Ar g Gl u As n Gl y Ty r 1140 Gl u Cy s Gl u Tr p Ar g Ty r Asn Ser Cy s Al a Pr o Al a Cy s Gl n Val Thr Cy s Gl n 1145 1150 1155 Hi s Pr o Gl u Pr o Leu Al a Cy s Pr o Val Gl n Cy s Val Gl u Gl y Cy s 1160 1165 1170 Hi s Al a Hi s Cy s Pr o Pr o Gl y Lys Ile Leu As p Gl u Leu Leu Gl n 1175 1180 1185 Thr Cy s Val As p Pr o Gl u As p Cy s Pr o Val Cy s Gl u Val Al a Gl y 1190 1195 1200 Arg Ar g Phe Al a Ser Gl y Lys Lys Val Thr Leu As n Pr o Ser As p 1205 1210 1215 Pr o Gl u Hi s Cy s Gl n I l e Cy s Hi s Cy s As p Val Val As n Leu Thr 1220 1225 1230 Cys Gl u Al a Cy s Gl n Gl u Pr o Gl y Gl y Leu Val Val Pr o Pr o Thr 1235 1240 1245 As p Al a Pr o Val Ser Pr o Thr Thr Leu Ty r Val Gl u As p I l e Ser
    Page 20
    2018203206 08 May 2018
    1250 1255 97047 _1 1260 Gl u Pr o Pr o Leu Hi s As p Phe Tyr Cys Ser Ar g Leu Leu As p Leu 1265 1270 1275 Val Phe Leu Leu Asp Gl y Ser Ser Ar g Leu Ser Gl u Al a Gl u Phe 1280 1285 1290 Gl u Val Leu Lys Al a Phe Val Val As p Met Met Gl u Ar g Leu Ar g 1295 1300 1305 I l e Ser Gl n Lys Tr p Val Ar g Val Al a Val Val Gl u Ty r Hi s As p 1310 1315 1320 Gly Ser Hi s Al a Tyr Ile Gl y Leu Lys As p Ar g Lys Ar g Pr o Ser 1325 1330 1335 Gl u Leu Arg Ar g Ile Al a Ser Gl n Val Lys Ty r Al a Gl y Ser Gl n 1340 1345 1350 Val Al a Ser Thr Ser Gl u Val Leu Lys Ty r Thr Leu Phe Gl n I l e 1355 1360 1365 Phe Ser Lys Ile As p Ar g Pr o Gl u Al a Ser Ar g Ile Al a Leu Leu 1370 1375 1380
    Page 21
    2018203206 08 May 2018
    97047 1
    Leu Met Al a Ser Gl n Gl u Pr o Gl n Ar g Met Ser Ar g As n Phe Val 1385 1390 1395 Arg Tyr Val Gl n Gl y Leu Lys Lys Lys Lys Val Ile Val I l e Pr o 1400 1405 1410 Val Gl y I l e Gl y Pr o Hi s Al a As n Leu Lys Gl n Ile Ar g Leu I l e 1415 1420 1425 Gl u Lys Gl n Al a Pr o Gl u As n Lys Al a Phe Val Leu Ser Ser Val 1430 1435 1440 Asp Gl u Leu Gl u Gl n Gl n Ar g As p Gl u Ile Val Ser Tyr Leu Cys 1445 1450 1455 Asp Leu Al a Pr o Gl u Al a Pr o Pr o Pr o Thr Leu Pr o Pr o As p Met 1460 1465 1470 Al a Gl n Val Thr Val Gl y Pr o Gl y Leu Leu Gl y Val Ser Thr Leu 1475 1480 1485 Gly Pr o Lys Ar g As n Ser Met Val Leu As p Val Al a Phe Val Leu 1490 1495 1500 Gl u Gl y Ser As p Lys Ile Gl y Gl u Al a As p Phe As n Ar g Ser Lys
    Page 22
    2018203206 08 May 2018
    97047_1
    1505 1510 1515
    Gl u Phe Met Gl u Gl u Val Ile Gl n Ar g Met As p Val Gl y Gl n As p 1520 1525 1530 Ser I l e Hi s Val Thr Val Leu Gl n Tyr Ser Tyr Met Val Thr Val 1535 1540 1545 Gl u Tyr Pr o Phe Ser Gl u Al a Gl n Ser Lys Gl y As p I l e Leu Gl n 1550 1555 1560 Ar g Val Ar g Gl u Ile Ar g Tyr Gl n Gl y Gl y As n Ar g Thr As n Thr 1565 1570 1575 Gl y Leu Al a Leu Ar g Tyr Leu Ser As p Hi s Ser Phe Leu Val Ser 1580 1585 1590 Gl n Gl y Asp Ar g Gl u Gl n Al a Pr o As n Leu Val Tyr Met Val Thr 1595 1600 1605 Gl y As n Pr o Al a Ser As p Gl u Ile Lys Ar g Leu Pr o Gl y As p I l e 1610 1615 1620
    Gl n Val
    Val Pro I l e Gl y Val
    Gly Pro Asn Ala Asn
    Val Gl n Gl u
    1625
    1630
    1635
    Page 23
    2018203206 08 May 2018
    97047_1
    Leu Gl u 1640 Ar g I l e Gl y Tr p Pr o 1645 As n Al a Pr o Ile Leu 1650 I l e Gl n As p Phe Gl u Thr Leu Pr o Ar g Gl u Al a Pr o As p Leu Val Leu Gl n Ar g 1655 1660 1665 Cys Cy s Ser Gl y Gl u Gl y Leu Gl n Ile Pr o Thr Leu Ser Pr o Al a 1670 1675 1680 Pr o As p Cy s Ser Gl n Pr o Leu As p Val Ile Leu Leu Leu As p Gl y 1685 1690 1695 Ser Ser Ser Phe Pr o Al a Ser Ty r Phe As p Gl u Met Lys Ser Phe 1700 1705 1710 Al a Lys Al a Phe Ile Ser Lys Al a As n Ile Gl y Pr o Ar g Leu Thr 1715 1720 1725 Gl n Val Ser Val Leu Gl n Ty r Gl y Ser Ile Thr Thr I l e As p Val 1730 1735 1740 Pr o Tr p As n Val Val Pr o Gl u Lys Al a Hi s Leu Leu Ser Leu Val 1745 1750 1755 Asp Val Met Gl n Ar g Gl u Gl y Gl y Pr o Ser Gl n Ile Gl y As p Al a
    Page 24
    2018203206 08 May 2018
    1760 1765 97047 _1 1770 Leu Gl y Phe Al a Val Ar g Ty r Leu Thr Ser Gl u Met Hi s Gl y Al a 1775 1780 1785 Arg Pr o Gl y Al a Ser Lys Al a Val Val Ile Leu Val Thr As p Val 1790 1795 1800 Ser Val As p Ser Val As p Al a Al a Al a As p Al a Al a Ar g Ser As n 1805 1810 1815 Ar g Val Thr Val Phe Pr o Ile Gl y Ile Gl y As p Ar g Ty r As p Al a 1820 1825 1830 Al a Gl n Leu Ar g I l e Leu Al a Gl y Pr o Al a Gl y As p Ser As n Val 1835 1840 1845 Val Lys Leu Gl n Ar g Ile Gl u As p Leu Pr o Thr Met Val Thr Leu 1850 1855 1860 Gly As n Ser Phe Leu Hi s Lys Leu Cy s Ser Gl y Phe Val Ar g I l e 1865 1870 1875 Cys Met As p Gl u As p Gl y As n Gl u Lys Ar g Pr o Gl y As p Val Tr p 1880 1885 1890
    Page 25
    2018203206 08 May 2018
    97047_1
    Thr Leu 1895 Pr o As p Gl n Cy s Hi s 1900 Thr Val Thr Cy s Gl n 1905 Pr o As p Gl y Gl n Thr Leu Leu Lys Ser Hi s Ar g Val As n Cy s As p Ar g Gl y Leu 1910 1915 1920 Ar g Pr o Ser Cy s Pr o As n Ser Gl n Ser Pr o Val Lys Val Gl u Gl u 1925 1930 1935 Thr Cy s Gl y Cy s Ar g Tr p Thr Cy s Pr o Cy s Val Cy s Thr Gl y Ser 1940 1945 1950 Ser Thr Ar g Hi s Ile Val Thr Phe As p Gl y Gl n As n Phe Lys Leu 1955 1960 1965 Thr Gl y Ser Cy s Ser Ty r Val Leu Phe Gl n As n Lys Gl u Gl n As p 1970 1975 1980 Leu Gl u Val Ile Leu Hi s As n Gl y Al a Cy s Ser Pr o Gl y Al a Ar g 1985 1990 1995 Gl n Gl y Cy s Met Lys Ser Ile Gl u Val Lys Hi s Ser Al a Leu Ser 2000 2005 2010 Val Gl u Xaa Hi s Ser As p Met Gl u Val Thr Val As n Gl y Ar g Leu
    Page 26
    2018203206 08 May 2018
    97047_1
    2015 2020 2025
    Val Ser Val Pr o Ty r Val Gl y Gl y As n Met Gl u Val As n Val Ty r 2030 2035 2040 Gl y Al a I l e Met Hi s Gl u Val Ar g Phe As n Hi s Leu Gl y Hi s I l e 2045 2050 2055 Phe Thr Phe Thr Pr o Gl n As n As n Gl u Phe Gl n Leu Gl n Leu Ser 2060 2065 2070 Pr o Lys Thr Phe Al a Ser Lys Thr Ty r Gl y Leu Cy s Gl y I l e Cy s 2075 2080 2085 As p Gl u As n Gl y Al a As n As p Phe Met Leu Ar g As p Gl y Thr Val 2090 2095 2100 Thr Thr As p Tr p Lys Thr Leu Val Gl n Gl u Tr p Thr Val Gl n Ar g 2105 2110 2115 Pr o Gl y Gl n Thr Cy s Gl n Pr o Ile Leu Gl u Gl u Gl n Cy s Leu Val 2120 2125 2130
    Pro Asp
    Ser Ser Hi s Cys G n
    Val
    Leu Leu Leu Pro
    Leu Phe Al a
    2135
    2140
    2145
    Page 27
    2018203206 08 May 2018
    97047 1
    Gl u Cys 2150 Hi s Lys Val Leu Al a 2155 Pr o Al a Thr Phe Tyr 2160 Al a I l e Cys Gl n Gl n Asp Ser Cys Hi s Gl n Gl u Gl n Val Cys Gl u Val I l e Al a 2165 2170 2175 Ser Tyr Al a Hi s Leu Cys Ar g Thr As n Gl y Val Cys Val As p Tr p 2180 2185 2190 Arg Thr Pr o As p Phe Cys Al a Met Ser Cys Pr o Pr o Ser Leu Val 2195 2200 2205 Tyr As n Hi s Cys Gl u Hi s Gl y Cys Pr o Ar g Hi s Cys As p Gl y As n 2210 2215 2220 Val Ser Ser Cys Gl y As p Hi s Pr o Ser Gl u Gl y Cys Phe Cys Pr o 2225 2230 2235 Pr o As p Lys Val Met Leu Gl u Gl y Ser Cys Val Pr o Gl u Gl u Al a 2240 2245 2250 Cys Thr Gl n Cys I l e Gl y Gl u As p Gl y Val Gl n Hi s Gl n Phe Leu 2255 2260 2265 Gl u Al a Tr p Val Pr o As p Hi s Gl n Pr o Cys Gl n Ile Cys Thr Cys
    Page 28
    2018203206 08 May 2018
    2270 2275 97047 _1 2280 Leu Ser Gl y Ar g Lys Val As n Cy s Thr Thr Gl n Pr o Cy s Pr o Thr 2285 2290 2295 Al a Lys Al a Pr o Thr Cy s Gl y Leu Cy s Gl u Val Al a Ar g Leu Ar g 2300 2305 2310 Gl n As n Al a As p Gl n Cy s Cy s Pr o Gl u Ty r Gl u Cy s Val Cy s As p 2315 2320 2325 Pr o Val Ser Cy s As p Leu Pr o Pr o Val Pr o Hi s Cy s Gl u Ar g Gl y 2330 2335 2340 Leu Gl n Pr o Thr Leu Thr As n Pr o Gl y Gl u Cy s Ar g Pr o As n Phe 2345 2350 2355 Thr Cy s Al a Cy s Ar g Lys Gl u Gl u Cy s Lys Ar g Val Ser Pr o Pr o 2360 2365 2370 Ser Cy s Pr o Pr o Hi s Ar g Leu Pr o Thr Leu Ar g Lys Thr Gl n Cy s 2375 2380 2385 Cy s As p Gl u Ty r Gl u Cy s Al a Cy s As n Cy s Val As n Ser Thr Val 2390 2395 2400
    Page 29
    97047_1
    2018203206 08 May 2018
    Ser Cy s 2405 Pr o Leu Gl y Ty r Leu 2410 Al a Ser Thr Al a Thr 2415 As n As p Cy s Gl y Cy s Thr Thr Thr Thr Cy s Leu Pr o As p Lys Val Cy s Val Hi s 2420 2425 2430 Ar g Ser Thr Ile Ty r Pr o Val Gl y Gl n Phe Tr p Gl u Gl u Gl y Cy s 2435 2440 2445 As p Val Cy s Thr Cy s Thr As p Met Gl u As p Al a Val Met Gl y Leu 2450 2455 2460 Ar g Val Al a Gl n Cy s Ser Gl n Lys Pr o Cy s Gl u As p Ser Cy s Ar g 2465 2470 2475 Ser Gl y Phe Thr Ty r Val Leu Hi s Gl u Gl y Gl u Cy s Cy s Gl y Ar g 2480 2485 2490 Cy s Leu Pr o Ser Al a Cy s Gl u Val Val Thr Gl y Ser Pr o Ar g Gl y 2495 2500 2505 As p Ser Gl n Ser Ser Tr p Lys Ser Val Gl y Ser Gl n Tr p Al a Ser 2510 2515 2520 Pr o Gl u As n Pr o Cy s Leu Ile As n Gl u Cy s Val Ar g Val Lys Gl u
    Page 30
    2018203206 08 May 2018
    2525 2530 97047 _1 2535 Gl u Val Phe Ile Gl n Gl n Ar g As n Val Ser Cy s Pr o Gl n Leu Gl u 2540 2545 2550 Val Pr o Val Cy s Pr o Ser Gl y Phe Gl n Leu Ser Cy s Lys Thr Ser 2555 2560 2565 Al a Cy s Cy s Pr o Ser Cy s Ar g Cy s Gl u Ar g Met Gl u Al a Cy s Met 2570 2575 2580 Leu As n Gl y Thr Val Ile Gl y Pr o Gl y Lys Thr Val Met I l e As p 2585 2590 2595 Val Cy s Thr Thr Cy s Ar g Cy s Met Val Gl n Val Gl y Val I l e Ser 2600 2605 2610 Gl y Phe Lys Leu Gl u Cy s Ar g Lys Thr Thr Cy s As n Pr o Cy s Pr o 2615 2620 2625 Leu Gl y Ty r Lys Gl u Gl u As n As n Thr Gl y Gl u Cy s Cy s Gl y Ar g 2630 2635 2640 Cy s Leu Pr o Thr Al a Cy s Thr Ile Gl n Leu Ar g Gl y Gl y Gl n I l e 2645 2650 2655
    Page 31
    97047_1
    2018203206 08 May 2018
    Met Thr 2660 Leu Lys Ar g As p Gl u 2665 Thr Leu Gl n As p Gl y 2670 Cy s As p Thr Hi s Phe Cy s Lys Val As n Gl u Ar g Gl y Gl u Ty r Phe Tr p Gl u Lys 2675 2680 2685 Ar g Val Thr Gl y Cy s Pr o Pr o Phe As p Gl u Hi s Lys Cy s Leu Al a 2690 2695 2700 Gl u Gl y Gl y Lys Ile Met Lys Ile Pr o Gl y Thr Cy s Cy s As p Thr 2705 2710 2715 Cy s Gl u Gl u Pr o Gl u Cy s As n As p Ile Thr Al a Ar g Leu Gl n Ty r 2720 2725 2730 Val Lys Val Gl y Ser Cy s Lys Ser Gl u Val Gl u Val As p I l e Hi s 2735 2740 2745 Ty r Cy s Gl n Gl y Lys Cy s Al a Ser Lys Al a Met Ty r Ser I l e As p 2750 2755 2760 I l e As n As p Val Gl n As p Gl n Cy s Ser Cy s Cy s Ser Pr o Thr Ar g 2765 2770 2775 Thr Gl u Pr o Met Gl n Val Al a Leu Hi s Cy s Thr As n Gl y Ser Val
    Page 32
    2018203206 08 May 2018
    97047_1
    2780 2785 2790
    Val Tyr Hi s Gl u Val Leu Asn Al a Met Gl u Cys Lys Cys Ser Pro 2795 2800 2805
    Arg Lys Cys Ser Lys 2810 <210> 3 <211> 19 <212> PRT <213> Homo sapi ens <400> 3
    Met Gl n Ile Gl u Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe 1 5 10 15
    Cys Phe Ser
    <210> 4 <211> 2332 <212> PRT <213> Homo sapi ens <400> 4 Al a Thr Ar g Ar g Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr
    Page 33
    97047_1
    2018203206 08 May 2018
    1 5 10 15 Met Gl n Ser As p Leu Gl y Gl u Leu Pr o Val As p Al a Ar g Phe Pr o Pr o 20 25 30 Ar g Val Pr o Lys Ser Phe Pr o Phe As n Thr Ser Val Val Tyr Lys Lys 35 40 45 Thr Leu Phe Val Gl u Phe Thr As p Hi s Leu Phe As n I l e Al a Lys Pr o 50 55 60 Ar g Pr o Pr o Tr p Met Gl y Leu Leu Gl y Pr o Thr Ile Gl n Al a Gl u Val 65 70 75 80 Tyr As p Thr Val Val Ile Thr Leu Lys As n Met Al a Ser Hi s Pr o Val 85 90 95 Ser Leu Hi s Al a Val Gl y Val Ser Tyr Tr p Lys Al a Ser Gl u Gl y Al a 100 105 110 Gl u Tyr As p As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p As p Lys Val 115 120 125 Phe Pr o Gl y Gl y Ser Hi s Thr Tyr Val Tr p Gl n Val Leu Lys Gl u As n 130 135 140
    Page 34
    97047_1
    2018203206 08 May 2018
    Gl y 145 Pr o Met Al a Ser As p 150 Pr o Leu Cy s Leu Thr 155 Ty r Ser Ty r Leu Ser 160 Hi s Val As p Leu Val Lys As p Leu As n Ser Gl y Leu I l e Gl y Al a Leu 165 170 175 Leu Val Cy s Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr Gl n Thr Leu 180 185 190 Hi s Lys Phe I l e Leu Leu Phe Al a Val Phe As p Gl u Gl y Lys Ser Tr p 195 200 205 Hi s Ser Gl u Thr Lys As n Ser Leu Met Gl n As p Ar g As p Al a Al a Ser 210 215 220 Al a Ar g Al a Tr p Pr o Lys Met Hi s Thr Val As n Gl y Ty r Val As n Ar g 225 230 235 240 Ser Leu Pr o Gl y Leu Ile Gl y Cy s Hi s Ar g Lys Ser Val Ty r Tr p Hi s 245 250 255 Val I l e Gl y Met Gl y Thr Thr Pr o Gl u Val Hi s Ser I l e Phe Leu Gl u 260 265 270 Gl y Hi s Thr Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser Leu Gl u I l e
    Page 35
    2018203206 08 May 2018
    97047_1
    275 280 285
    Ser Pr o 290 I l e Thr Phe Leu Thr 295 Al a Gl n Thr Leu Leu 300 Met As p Leu Gl y Gl n Phe Leu Leu Phe Cy s Hi s Ile Ser Ser Hi s Gl n Hi s As p Gl y Met 305 310 315 320 Gl u Al a Ty r Val Lys Val As p Ser Cy s Pr o Gl u Gl u Pr o Gl n Leu Ar g 325 330 335 Met Lys As n As n Gl u Gl u Al a Gl u As p Ty r As p As p As p Leu Thr As p 340 345 350 Ser Gl u Met As p Val Val Ar g Phe As p As p As p As n Ser Pr o Ser Phe 355 360 365 I l e Gl n I l e Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr Tr p Val Hi s 370 375 380 Ty r I l e Al a Al a Gl u Gl u Gl u As p Tr p As p Ty r Al a Pr o Leu Val Leu 385 390 395 400 Al a Pr o As p As p Ar g Ser Ty r Lys Ser Gl n Ty r Leu As n As n Gl y Pr o 405 410 415
    Page 36
    97047_1
    2018203206 08 May 2018
    Gl n Ar g I l e Gl y 420 Ar g Lys Ty r Lys Lys 425 Val Ar g Phe Met Al a 430 Ty r Thr As p Gl u Thr Phe Lys Thr Ar g Gl u Al a Ile Gl n Hi s Gl u Ser Gl y I l e 435 440 445 Leu Gl y Pr o Leu Leu Ty r Gl y Gl u Val Gl y As p Thr Leu Leu I l e I l e 450 455 460 Phe Lys As n Gl n Al a Ser Ar g Pr o Ty r As n Ile Ty r Pr o Hi s Gl y I l e 465 470 475 480 Thr As p Val Ar g Pr o Leu Ty r Ser Ar g Ar g Leu Pr o Lys Gl y Val Lys 485 490 495 Hi s Leu Lys As p Phe Pr o Ile Leu Pr o Gl y Gl u Ile Phe Lys Ty r Lys 500 505 510 Tr p Thr Val Thr Val Gl u As p Gl y Pr o Thr Lys Ser As p Pr o Ar g Cy s 515 520 525 Leu Thr Ar g Ty r Ty r Ser Ser Phe Val As n Met Gl u Ar g As p Leu Al a 530 535 540 Ser Gl y Leu I l e Gl y Pr o Leu Leu Ile Cy s Ty r Lys Gl u Ser Val As p
    Page 37
    2018203206 08 May 2018
    97047_1
    545 550 555 560
    Gl n Ar g Gl y As n Gl n 565 Ile Met Ser As p Lys 570 Ar g As n Val I l e Leu 575 Phe Ser Val Phe As p Gl u As n Ar g Ser Tr p Ty r Leu Thr Gl u As n I l e Gl n 580 585 590 Ar g Phe Leu Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p Pr o Gl u Phe 595 600 605 Gl n Al a Ser As n Ile Met Hi s Ser Ile As n Gl y Ty r Val Phe As p Ser 610 615 620 Leu Gl n Leu Ser Val Cy s Leu Hi s Gl u Val Al a Ty r Tr p Ty r I l e Leu 625 630 635 640 Ser I l e Gl y Al a Gl n Thr As p Phe Leu Ser Val Phe Phe Ser Gl y Ty r 645 650 655 Thr Phe Lys Hi s Lys Met Val Ty r Gl u As p Thr Leu Thr Leu Phe Pr o 660 665 670 Phe Ser Gl y Gl u Thr Val Phe Met Ser Met Gl u As n Pr o Gl y Leu Tr p 675 680 685
    Page 38
    97047_1
    2018203206 08 May 2018
    I l e Leu 690 Gl y Cys Hi s As n Ser 695 As p Phe Ar g As n Ar g 700 Gl y Met Thr Al a Leu Leu Lys Val Ser Ser Cys As p Lys As n Thr Gl y As p Tyr Tyr Gl u 705 710 715 720 As p Ser Tyr Gl u As p Ile Ser Al a Tyr Leu Leu Ser Lys As n As n Al a 725 730 735 I l e Gl u Pr o Ar g Ser Phe Ser Gl n As n Ser Ar g Hi s Pr o Ser Thr Ar g 740 745 750 Gl n Lys Gl n Phe As n Al a Thr Thr Ile Pr o Gl u As n As p I l e Gl u Lys 755 760 765 Thr As p Pr o Tr p Phe Al a Hi s Ar g Thr Pr o Met Pr o Lys I l e Gl n As n 770 775 780 Val Ser Ser Ser As p Leu Leu Met Leu Leu Ar g Gl n Ser Pr o Thr Pr o 785 790 795 800 Hi s Gl y Leu Ser Leu Ser As p Leu Gl n Gl u Al a Lys Tyr Gl u Thr Phe 805 810 815 Ser As p As p Pr o Ser Pr o Gl y Al a Ile As p Ser As n As n Ser Leu Ser
    Page 39
    97047_1
    2018203206 08 May 2018
    820 825 830 Gl u Met Thr Hi s Phe Ar g Pr o Gl n Leu Hi s Hi s Ser Gl y As p Met Val 835 840 845 Phe Thr Pr o Gl u Ser Gl y Leu Gl n Leu Ar g Leu As n Gl u Lys Leu Gl y 850 855 860 Thr Thr Al a Al a Thr Gl u Leu Lys Lys Leu As p Phe Lys Val Ser Ser 865 870 875 880 Thr Ser As n As n Leu Ile Ser Thr Ile Pr o Ser As p As n Leu Al a Al a 885 890 895 Gl y Thr As p As n Thr Ser Ser Leu Gl y Pr o Pr o Ser Met Pr o Val Hi s 900 905 910 Tyr As p Ser Gl n Leu As p Thr Thr Leu Phe Gl y Lys Lys Ser Ser Pr o 915 920 925 Leu Thr Gl u Ser Gl y Gl y Pr o Leu Ser Leu Ser Gl u Gl u As n As n As p 930 935 940 Ser Lys Leu Leu Gl u Ser Gl y Leu Met As n Ser Gl n Gl u Ser Ser Tr p 945 950 955 960
    Page 40
    2018203206 08 May 2018
    97047_1
    Gl y Lys Asn Val Ser Ser Thr Gl u Ser Gl y Arg Leu Phe Lys Gl y Lys 965 970 975
    Arg Al a Hi s Gl y Pro Al a Leu Leu Thr Lys Asp Asn Al a Leu Phe Lys 980 985 990
    Val Ser I l e Ser Leu Leu Lys Thr Asn Lys Thr Ser Asn Asn Ser Al a 995 1000 1005
    Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser Leu Leu Ile Glu 1010 1015 1020
    Asn Ser Pro Ser Val Trp Gl n Asn I l e Leu Gl u Ser Asp Thr Gl u 1025 1030 1035
    Phe Lys Lys Val Thr Pr o Leu I l e Hi s Asp Ar g Met Leu Met Asp 1040 1045 1050
    Ly s As n Al a Thr Al a Leu Ar g Leu As n Hi s Met Ser As n Ly s Thr 1055 1060 1065
    Thr Ser Ser Lys Asn Met Gl u Met Val Gl n Gl n Lys Lys Gl u Gl y 1070 1075 1080
    Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met Ser Phe Phe Lys
    Page 41
    2018203206 08 May 2018
    1085 1090 97047 _1 1095 Met Leu Phe Leu Pr o Gl u Ser Al a Ar g Tr p Ile Gl n Ar g Thr Hi s 1100 1105 1110 Gl y Lys As n Ser Leu As n Ser Gl y Gl n Gl y Pr o Ser Pr o Lys Gl n 1115 1120 1125 Leu Val Ser Leu Gl y Pr o Gl u Lys Ser Val Gl u Gl y Gl n As n Phe 1130 1135 1140 Leu Ser Gl u Lys As n Lys Val Val Val Gl y Lys Gl y Gl u Phe Thr 1145 1150 1155 Lys As p Val Gl y Leu Lys Gl u Met Val Phe Pr o Ser Ser Ar g As n 1160 1165 1170 Leu Phe Leu Thr As n Leu As p As n Leu Hi s Gl u As n As n Thr Hi s 1175 1180 1185 As n Gl n Gl u Lys Lys Ile Gl n Gl u Gl u Ile Gl u Lys Lys Gl u Thr 1190 1195 1200 Leu I l e Gl n Gl u As n Val Val Leu Pr o Gl n Ile Hi s Thr Val Thr 1205 1210 1215
    Page 42
    2018203206 08 May 2018
    97047_1
    Gl y Thr Lys Asn Phe Met Lys Asn Leu Phe Leu Leu Ser Thr Arg 1220 1225 1230
    Gl n Asn Val Gl u Gl y Ser Tyr Asp Gl y Al a Tyr Al a Pro Val Leu 1235 1240 1245
    Gl n Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn Arg Thr Lys Lys 1250 1255 1260
    Hi s Thr Al a Hi s Phe Ser Lys Lys Gly Gu Gu Gu Asn Leu Gl u 1265 1270 1275
    Gl y Leu Gl y Asn Gl n Thr Lys Gl n I l e Val Gl u Lys Tyr Al a Cys 1280 1285 1290
    Thr Thr Arg I l e Ser Pro Asn Thr Ser Gl n Gl n Asn Phe Val Thr 1295 1300 1305
    Gl n Ar g Ser Lys Ar g Al a Leu Lys Gl n Phe Ar g Leu Pr o Leu Gl u 1310 1315 1320
    Gl u Thr Gl u Leu Gl u Lys Ar g I l e I l e Val Asp Asp Thr Ser Thr 1325 1330 1335
    Gl n Trp Ser Lys Asn Met Lys His Leu Thr Pro Ser Thr Leu Thr
    Page 43
    2018203206 08 May 2018
    1340 1345 97047 _1 1350 Gl n I l e As p Ty r As n Gl u Lys Gl u Lys Gl y Al a Ile Thr Gl n Ser 1355 1360 1365 Pr o Leu Ser As p Cy s Leu Thr Ar g Ser Hi s Ser Ile Pr o Gl n Al a 1370 1375 1380 As n Ar g Ser Pr o Leu Pr o Ile Al a Lys Val Ser Ser Phe Pr o Ser 1385 1390 1395 I l e Ar g Pr o Ile Ty r Leu Thr Ar g Val Leu Phe Gl n As p As n Ser 1400 1405 1410 Ser Hi s Leu Pr o Al a Al a Ser Ty r Ar g Lys Lys As p Ser Gl y Val 1415 1420 1425 Gl n Gl u Ser Ser Hi s Phe Leu Gl n Gl y Al a Lys Lys As n As n Leu 1430 1435 1440 Ser Leu Al a Ile Leu Thr Leu Gl u Met Thr Gl y As p Gl n Ar g Gl u 1445 1450 1455 Val Gl y Ser Leu Gl y Thr Ser Al a Thr As n Ser Val Thr Ty r Lys 1460 1465 1470
    Page 44
    97047_1
    2018203206 08 May 2018
    Lys Val 1475 Gl u As n Thr Val Leu 1480 Pr o Lys Pr o As p Leu 1485 Pr o Lys Thr Ser Gl y Lys Val Gl u Leu Leu Pr o Lys Val Hi s Ile Ty r Gl n Lys 1490 1495 1500 As p Leu Phe Pr o Thr Gl u Thr Ser As n Gl y Ser Pr o Gl y Hi s Leu 1505 1510 1515 As p Leu Val Gl u Gl y Ser Leu Leu Gl n Gl y Thr Gl u Gl y Al a I l e 1520 1525 1530 Lys Tr p As n Gl u Al a As n Ar g Pr o Gl y Lys Val Pr o Phe Leu Ar g 1535 1540 1545 Val Al a Thr Gl u Ser Ser Al a Lys Thr Pr o Ser Lys Leu Leu As p 1550 1555 1560 Pr o Leu Al a Tr p As p As n Hi s Ty r Gl y Thr Gl n Ile Pr o Lys Gl u 1565 1570 1575 Gl u Tr p Lys Ser Gl n Gl u Lys Ser Pr o Gl u Lys Thr Al a Phe Lys 1580 1585 1590 Lys Lys As p Thr Ile Leu Ser Leu As n Al a Cy s Gl u Ser As n Hi s
    Page 45
    2018203206 08 May 2018
    97047_1
    1595 1600 1605
    Al a I l e Al a Al a Ile As n Gl u Gl y Gl n As n Lys Pr o Gl u I l e Gl u 1610 1615 1620 Val Thr Tr p Al a Lys Gl n Gl y Ar g Thr Gl u Ar g Leu Cy s Ser Gl n 1625 1630 1635 As n Pr o Pr o Val Leu Lys Ar g Hi s Gl n Ar g Gl u Ile Thr Ar g Thr 1640 1645 1650 Thr Leu Gl n Ser As p Gl n Gl u Gl u Ile As p Ty r As p As p Thr I l e 1655 1660 1665 Ser Val Gl u Met Lys Lys Gl u As p Phe As p Ile Ty r As p Gl u As p 1670 1675 1680 Gl u As n Gl n Ser Pr o Ar g Ser Phe Gl n Lys Lys Thr Ar g Hi s Ty r 1685 1690 1695 Phe I l e Al a Al a Val Gl u Ar g Leu Tr p As p Ty r Gl y Met Ser Ser 1700 1705 1710
    Ser Pr o
    Hi s Val Leu Arg Asn
    Ar g Al a Gl n Ser Gl y
    Ser Val Pr o
    1715
    1720
    1725
    Page 46
    97047_1
    2018203206 08 May 2018
    Gl n Phe 1730 Lys Lys Val Val Phe 1735 Gl n Gl u Phe Thr As p 1740 Gl y Ser Phe Thr Gl n Pr o Leu Tyr Ar g Gl y Gl u Leu As n Gl u Hi s Leu Gl y Leu 1745 1750 1755 Leu Gl y Pr o Tyr Ile Ar g Al a Gl u Val Gl u As p As n I l e Met Val 1760 1765 1770 Thr Phe Ar g As n Gl n Al a Ser Ar g Pr o Tyr Ser Phe Tyr Ser Ser 1775 1780 1785 Leu I l e Ser Tyr Gl u Gl u As p Gl n Ar g Gl n Gl y Al a Gl u Pr o Ar g 1790 1795 1800 Lys As n Phe Val Lys Pr o As n Gl u Thr Lys Thr Tyr Phe Tr p Lys 1805 1810 1815 Val Gl n Hi s Hi s Met Al a Pr o Thr Lys As p Gl u Phe As p Cys Lys 1820 1825 1830 Al a Tr p Al a Tyr Phe Ser As p Val As p Leu Gl u Lys As p Val Hi s 1835 1840 1845 Ser Gl y Leu Ile Gl y Pr o Leu Leu Val Cys Hi s Thr As n Thr Leu
    Page 47
    2018203206 08 May 2018
    97047_1
    1850 1855 1860
    As n Pr o 1865 Al a Hi s Gl y Ar g Gl n 1870 Val Thr Val Gl n Gl u 1875 Phe Al a Leu Phe Phe Thr Ile Phe As p Gl u Thr Lys Ser Tr p Tyr Phe Thr Gl u 1880 1885 1890 As n Met Gl u Ar g As n Cys Ar g Al a Pr o Cys As n Ile Gl n Met Gl u 1895 1900 1905 As p Pr o Thr Phe Lys Gl u As n Tyr Ar g Phe Hi s Al a I l e As n Gl y 1910 1915 1920 Tyr I l e Met As p Thr Leu Pr o Gl y Leu Val Met Al a Gl n As p Gl n 1925 1930 1935 Ar g I l e Ar g Tr p Tyr Leu Leu Ser Met Gl y Ser As n Gl u As n I l e 1940 1945 1950 Hi s Ser I l e Hi s Phe Ser Gl y Hi s Val Phe Thr Val Ar g Lys Lys 1955 1960 1965 Gl u Gl u Tyr Lys Met Al a Leu Tyr As n Leu Tyr Pr o Gl y Val Phe
    1970 1975 1980
    Page 48
    97047_1
    2018203206 08 May 2018
    Gl u Thr 1985 Val Gl u Met Leu Pr o 1990 Ser Lys Al a Gl y Ile 1995 Tr p Ar g Val Gl u Cy s Leu Ile Gl y Gl u Hi s Leu Hi s Al a Gl y Met Ser Thr Leu 2000 2005 2010 Phe Leu Val Ty r Ser As n Lys Cy s Gl n Thr Pr o Leu Gl y Met Al a 2015 2020 2025 Ser Gl y Hi s Ile Ar g As p Phe Gl n Ile Thr Al a Ser Gl y Gl n Ty r 2030 2035 2040 Gl y Gl n Tr p Al a Pr o Lys Leu Al a Ar g Leu Hi s Ty r Ser Gl y Ser 2045 2050 2055 I l e As n Al a Tr p Ser Thr Lys Gl u Pr o Phe Ser Tr p I l e Lys Val 2060 2065 2070 As p Leu Leu Al a Pr o Met Ile Ile Hi s Gl y Ile Lys Thr Gl n Gl y 2075 2080 2085 Al a Ar g Gl n Lys Phe Ser Ser Leu Ty r Ile Ser Gl n Phe I l e I l e 2090 2095 2100 Met Ty r Ser Leu As p Gl y Lys Lys Tr p Gl n Thr Ty r Ar g Gl y As n
    Page 49
    2018203206 08 May 2018
    2105 2110 97047 _1 2115 Ser Thr Gl y Thr Leu Met Val Phe Phe Gl y As n Val As p Ser Ser 2120 2125 2130 Gl y I l e Lys Hi s As n Ile Phe As n Pr o Pr o Ile Ile Al a Ar g Ty r 2135 2140 2145 I l e Ar g Leu Hi s Pr o Thr Hi s Ty r Ser Ile Ar g Ser Thr Leu Ar g 2150 2155 2160 Met Gl u Leu Met Gl y Cy s As p Leu As n Ser Cy s Ser Met Pr o Leu 2165 2170 2175 Gl y Met Gl u Ser Lys Al a Ile Ser As p Al a Gl n Ile Thr Al a Ser 2180 2185 2190 Ser Ty r Phe Thr As n Met Phe Al a Thr Tr p Ser Pr o Ser Lys Al a 2195 2200 2205 Ar g Leu Hi s Leu Gl n Gl y Ar g Ser As n Al a Tr p Ar g Pr o Gl n Val 2210 2215 2220 As n As n Pr o Lys Gl u Tr p Leu Gl n Val As p Phe Gl n Lys Thr Met 2225 2230 2235
    Page 50
    97047_1
    2018203206 08 May 2018
    Lys Val 2240 Thr Gl y Val Thr Thr 2245 Gl n Gl y Val Lys Ser 2250 Leu Leu Thr Ser Met Ty r Val Lys Gl u Phe Leu Ile Ser Ser Ser Gl n As p Gl y 2255 2260 2265 Hi s Gl n Tr p Thr Leu Phe Phe Gl n As n Gl y Lys Val Lys Val Phe 2270 2275 2280 Gl n Gl y As n Gl n As p Ser Phe Thr Pr o Val Val As n Ser Leu As p 2285 2290 2295 Pr o Pr o Leu Leu Thr Ar g Ty r Leu Ar g Ile Hi s Pr o Gl n Ser Tr p 2300 2305 2310
    Val Hi s
    Gl n I l e Al a Leu Ar g
    Met Gl u Val Leu Gl y
    Cy s Gl u Al a
    2315
    2320
    2325
    Gl n Asp Leu Tyr 2330
    <210> 5 <211> 7053 <212> DNA <213> Homo s api ens
    Page 51
    97047_1 <400> 5
    2018203206 08 May 2018
    at gcaaat ag agct ct ccac ct gct t ct 11 ct gt gcct t t t gcgat t ct g ct t t agt gcc 60 accagaagat act acct ggg t gcagt ggaa ct gt cat ggg act at at gca aagt gat ct c 120 ggt gagct gc ct gt ggacgc aagat t t cct cct agagt gc caaaat ct t t t ccat t caac 180 acct cagt cg t gt acaaaaa gact ct gt 11 gt agaat t ca cggat cacct 111 caacat c 240 gct aagccaa ggccaccct g gat gggt ct g ct aggt cct a ccat ccaggc t gaggt t tat 300 gat acagt gg t cat t acact t aagaacat g gct t cccat c ct gt cagt ct t cat gct gt t 360 ggt gt at cct act ggaaagc tt ctgaggga gct gaat at g at gat cagac cagt caaagg 420 gagaaagaag at gat aaagt ct t ccct ggt ggaagccat a cat at gt ct g gcaggt cct g 480 aaagagaat g gt ccaat ggc ct ct gaccca ct gt gcct t a cct act cat a t ct t t ct cat 540 gt ggacct gg t aaaagact t gaat t caggc ct cat t ggag ccct act agt at gt agagaa 600 gggagt ct gg ccaaggaaaa gacacagacc 11 gcacaaat 11 at act act t t t t gct gt a 660 t t t gat gaag ggaaaagt t g gcact cagaa acaaagaact cct t gat gca ggat agggat 720 gct gcat ct g ct cgggcct g gcct aaaat g cacacagt ca at ggt t at gt aaacaggt ct 780 ct gccaggt c t gat t ggat g ccacaggaaa t cagt ct at t ggcat gt gat t ggaat gggc 840 accact cct g aagt gcact c aat at t cct c gaaggt caca cat t t ct t gt gaggaaccat 900 cgccaggcgt cct t ggaaat ct cgccaat a act t t cct t a ct gct caaac act ct t gat g 960 gacct t ggac agt t t ct act gt t t t gt cat at ct ct t ccc accaacat ga t ggcat ggaa 1020
    Page 52
    97047_1
    2018203206 08 May 2018
    gct t at gt ca aagt agacag ct gt ccagag gaaccccaac t acgaat gaa aaat aat gaa 1080 gaagcggaag act at gat ga t gat ct t act gat t ct gaaa t ggat gt ggt caggt t t gat 1140 gat gacaact ct cct t cct t t at ccaaat t cgct cagt t g ccaagaagca t cct aaaact 1200 t gggt acat t acat t gct gc t gaagaggag gact gggact at gct ccct t agt cct cgcc 1260 cccgat gaca gaagt t at aa aagt caat at t t gaacaat g gccct cagcg gat t ggt agg 1320 aagt acaaaa aagt ccgat t t at ggcat ac acagat gaaa cct t t aagac t cgt gaagct 1380 at t cagcat g aat caggaat ct t gggacct t t act t t at g gggaagt t gg agacacact g 1440 t t gat t at at t t aagaat ca agcaagcaga ccat at aaca t ct accct ca cggaat cact 1500 gat gt ccgt c ct t t gt at t c aaggagat t a ccaaaaggt g t aaaacat t t gaaggat t t t 1560 ccaat t ct gc caggagaaat at t caaat at aaat ggacag t gact gt aga agat gggcca 1620 act aaat cag at cct cggt g cct gacccgc t at t act ct a gt t t cgt t aa t at ggagaga 1680 gat ct agct t caggact cat t ggccct ct c ct cat ct gct acaaagaat c t gt agat caa 1740 agaggaaacc agat aat gt c agacaagagg aat gt cat cc t gt t t t ct gt at t t gat gag 1800 aaccgaagct ggt acct cac agagaat at a caacgct 11 c t ccccaat cc agct ggagt g 1860 cagct t gagg at ccagagt t ccaagcct cc aacat cat gc acagcat caa tggct at gt t 1920 t t t gat agt t t gcagt t gt c agt t t gt t t g cat gaggt gg cat act ggt a cat t ct aagc 1980 at t ggagcac agact gact t cct t t ct gt c 11 ct t ct ct g gat at acct t caaacacaaa 2040
    Page 53
    97047_1
    2018203206 08 May 2018
    at ggt ct at g aagacacact caccct at t c ccat t ct cag gagaaact gt ct t cat gt cg 2100 at ggaaaacc caggt ct at g gat t ct gggg t gccacaact cagact t t cg gaacagaggc 2160 at gaccgcct t act gaaggt 11 ct agt t gt gacaagaaca ct ggt gat t a t t acgaggac 2220 agt t at gaag at at t t cagc at act t gct g agt aaaaaca at gccat t ga accaagaagc 2280 t t ct cccaga at t caagaca ccct agcact aggcaaaagc aat t t aat gc caccacaat t 2340 ccagaaaat g acat agagaa gact gaccct t ggt 11 gcac acagaacacc t at gcct aaa 2400 at acaaaat g t ct cct ct ag tgatttgttg at gct ct t gc gacagagt cc t act ccacat 2460 gggct at cct t at ct gat ct ccaagaagcc aaat at gaga ct t t t t ct ga t gat ccat ca 2520 cct ggagcaa t agacagt aa t aacagcct g t ct gaaat ga cacact t cag gccacagct c 2580 cat cacagt g gggacat ggt at 11 acccct gagt caggcc t ccaat t aag at t aaat gag 2640 aaact gggga caact gcagc aacagagt t g aagaaact t g at t t caaagt t t ct agt aca 2700 t caaat aat c t gat t t caac aat t ccat ca gacaat 11 gg cagcaggt ac t gat aat aca 2760 agt t cct t ag gacccccaag t at gccagt t cat t at gat a gt caat t aga t accact ct a 2820 t t t ggcaaaa agt cat ct cc cct t act gag t ct ggt ggac ct ct gagct t gagt gaagaa 2880 aat aat gat t caaagt t gt t agaat caggt t t aat gaat a gccaagaaag ttcatgggga 2940 aaaaat gt at cgt caacaga gagt ggt agg t t at t t aaag ggaaaagagc t cat ggacct 3000 gct t t gt t ga ct aaagat aa t gcct t at t c aaagt t agca t ct ct t t gt t aaagacaaac 3060
    Page 54
    97047_1
    2018203206 08 May 2018
    aaaact t cca at aat t cagc aact aat aga aagact caca 11 gat ggccc at cat t at t a 3120 at t gagaat a gt ccat cagt ct ggcaaaat at at t agaaa gt gacact ga gt t t aaaaaa 3180 gt gacacct t t gat t cat ga cagaat gct t at ggacaaaa at gct acagc 111 gaggct a 3240 aat cat at gt caaat aaaac t act t cat ca aaaaacat gg aaat ggt cca acagaaaaaa 3300 gagggcccca t t ccaccaga t gcacaaaat ccagat at gt cgt t ct t t aa gat gct at t c 3360 t t gccagaat cagcaaggt g gat acaaagg act cat ggaa agaact ct ct gaact ct ggg 3420 caaggcccca gt ccaaagca at t agt at cc 11 aggaccag aaaaat ct gt ggaaggt cag 3480 aat t t ct t gt ct gagaaaaa caaagt ggt a gt aggaaagg gt gaat t t ac aaaggacgt a 3540 ggact caaag agat ggt t t t t ccaagcagc agaaacct at 11 ct t act aa ct t ggat aat 3600 t t acat gaaa at aat acaca caat caagaa aaaaaaat t c aggaagaaat agaaaagaag 3660 gaaacat t aa t ccaagagaa tgtagttttg cct cagat ac at acagt gac t ggcact aag 3720 aat t t cat ga agaacct t t t ct t act gagc act aggcaaa at gt agaagg 11 cat at gac 3780 ggggcat at g ct ccagt act t caagat 111 aggt cat t aa at gat t caac aaat agaaca 3840 aagaaacaca cagct cat t t ct caaaaaaa ggggaggaag aaaact t gga aggct t ggga 3900 aat caaacca agcaaat t gt agagaaat at gcat gcacca caaggat at c t cct aat aca 3960 agccagcaga at t t t gt cac gcaacgt agt aagagagct t t gaaacaat t cagact ccca 4020 ct agaagaaa cagaact t ga aaaaaggat a at t gt ggat g acacct caac ccagt ggt cc 4080
    Page 55
    97047_1
    2018203206 08 May 2018
    aaaaacat ga aacat t t gac cccgagcacc ct cacacaga t agact acaa t gagaaggag 4140 aaaggggcca t t act cagt c t ccct t at ca gat t gcct t a cgaggagt ca t agcat ccct 4200 caagcaaat a gat ct ccat t acccat t gca aaggt at cat cat t t ccat c t at t agacct 4260 at at at ct ga ccagggt cct at t ccaagac aact ct t ct c at ct t ccagc agcat ct t at 4320 agaaagaaag at t ct ggggt ccaagaaagc agt cat t t ct t acaaggagc caaaaaaaat 4380 aacct t t ct t t agccat t ct aacct t ggag at gact ggt g at caaagaga ggt t ggct cc 4440 ct ggggacaa gt gccacaaa 11 cagt caca t acaagaaag 11 gagaacac t gt t ct cccg 4500 aaaccagact t gcccaaaac at ct ggcaaa gt t gaat t gc 11 ccaaaagt t cacat t t at 4560 cagaaggacc t at t ccct ac ggaaact agc aat gggt ct c ct ggccat ct ggat ct cgt g 4620 gaagggagcc t t ct t caggg aacagaggga gcgat t aagt ggaat gaagc aaacagacct 4680 ggaaaagt t c cct t t ct gag agt agcaaca gaaagct ct g caaagact cc ct ccaagct a 4740 t t ggat cct c t t gct t ggga t aaccact at ggt act caga t accaaaaga agagt ggaaa 4800 t cccaagaga agt caccaga aaaaacagct 111 aagaaaa aggat accat t t t gt ccct g 4860 aacgct t gt g aaagcaat ca t gcaat agca gcaat aaat g agggacaaaa t aagcccgaa 4920 at agaagt ca cct gggcaaa gcaaggt agg act gaaaggc t gt gct ct ca aaacccacca 4980 gt ct t gaaac gccat caacg ggaaat aact cgt act act c 11 cagt caga t caagaggaa 5040 at t gact at g at gat accat at cagt t gaa at gaagaagg aagat t t t ga cat t t at gat 5100
    Page 56
    97047_1
    2018203206 08 May 2018
    gaggat gaaa at cagagccc ccgcagct 11 caaaagaaaa cacgacact a t t t t at t gct 5160 gcagt ggaga ggct ct ggga tt atgggatg agt agct ccc cacat gt t ct aagaaacagg 5220 gct cagagt g gcagt gt ccc t cagt t caag aaagt t gt t t t ccaggaat t t act gat ggc 5280 t cct t t act c agccct t at a ccgt ggagaa ct aaat gaac at t t gggact cct ggggcca 5340 t at at aagag cagaagt t ga agat aat at c at ggt aact t t cagaaat ca ggcct ct cgt 5400 ccct at t cct t ct at t ct ag cct t at t t ct t at gaggaag at cagaggca aggagcagaa 5460 cct agaaaaa act t t gt caa gcct aat gaa accaaaact t act t t t ggaa agt gcaacat 5520 cat at ggcac ccact aaaga t gagt 11 gac t gcaaagcct gggct t at t t ct ct gat gt t 5580 gacct ggaaa aagat gt gca ct caggcct g at t ggacccc ttctggt ctg ccacact aac 5640 acact gaacc ct gct cat gg gagacaagt g acagt acagg aat t t gct ct gt t t t t cacc 5700 at ct t t gat g agaccaaaag ct ggt act t c act gaaaat a t ggaaagaaa ct gcagggct 5760 ccct gcaat a t ccagat gga agat cccact 111 aaagaga at t at cgct t ccat gcaat c 5820 aat ggct aca t aat ggat ac act acct ggc 11 agt aat gg ct caggat ca aaggat t cga 5880 t ggt at ct gc t cagcat ggg cagcaat gaa aacat ccat t ct at t cat t t cagt ggacat 5940 gt gt t cact g t acgaaaaaa agaggagt at aaaat ggcac t gt acaat ct ct at ccaggt 6000 gt t t t t gaga cagt ggaaat gt t accat cc aaagct ggaa t t t ggcgggt ggaat gcct t 6060 at t ggcgagc at ct acat gc t gggat gagc acact 1111 c t ggt gt acag caat aagt gt 6120
    Page 57
    97047_1
    2018203206 08 May 2018
    cagact cccc t gggaat ggc 11 ct ggacac at t agagat t 11 cagat t ac agct t cagga 6180 caat at ggac agt gggcccc aaagct ggcc agact t cat t at t ccggat c aat caat gcc 6240 t ggagcacca aggagccct t 11 ct t ggat c aaggt ggat c t gt t ggcacc aat gat t at t 6300 cacggcat ca agacccaggg t gcccgt cag aagt t ct cca gcct ct acat ct ct cagt t t 6360 at cat cat gt at agt ct t ga t gggaagaag t ggcagact t at cgaggaaa 11 ccact gga 6420 acct t aat gg t ct t ct t t gg caat gt ggat t cat ct ggga t aaaacacaa t at 1111 aac 6480 cct ccaat t a t t gct cgat a cat ccgt 11 g cacccaact c at t at agcat t cgcagcact 6540 ct t cgcat gg agt t gat ggg ct gt gat t t a aat agt t gca gcat gccat t gggaat ggag 6600 agt aaagcaa t at cagat gc acagat t act gct t cat cct act t t accaa t at gt 11 gcc 6660 acct ggt ct c ct t caaaagc t cgact t cac ct ccaaggga ggagt aat gc ct ggagacct 6720 caggt gaat a at ccaaaaga gt ggct gcaa gt ggact t cc agaagacaat gaaagt caca 6780 ggagt aact a ct cagggagt aaaat ct ct g ct t accagca t gt at gt gaa ggagt t cct c 6840 at ct ccagca gt caagat gg ccat cagt gg act ct ct t t t 11 cagaat gg caaagt aaag 6900 gt t t t t cagg gaaat caaga ct cct t caca cct gt ggt ga act ct ct aga cccaccgt t a 6960 ct gact cgct acct t cgaat t cacccccag agt t gggt gc accagat t gc cct gaggat g 7020 gaggt t ct gg gct gcgaggc acaggacct c t ac 7053
    Page 58
    97047_1
    2018203206 08 May 2018 <210> 6 <211> 1438 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> BDDD FVI I I <400> 6 Al a Thr Ar g Ar g Tyr Tyr Leu Gl y 1 5 Met Gl n Ser As p Leu Gl y Gl u Leu 20 Ar g Val Pr o Lys Ser Phe Pr o Phe 35 40 Thr Leu Phe Val Gl u Phe Thr As p 50 55 Ar g Pr o Pr o Tr p Met Gl y Leu Leu 65 70 Tyr As p Thr Val Val Ile Thr Leu 85
    Al a Val 10 Gl u Leu Ser Tr p As p 15 Tyr Pr o Val As p Al a Ar g Phe Pr o Pr o 25 30 As n Thr Ser Val Val Tyr Lys Lys 45 Hi s Leu Phe As n I l e Al a Lys Pr o 60 Gl y Pr o Thr Ile Gl n Al a Gl u Val 75 80 Lys As n Met Al a Ser Hi s Pr o Val 90 95
    Page 59
    2018203206 08 May 2018
    Ser Leu Hi s Al a Val 100 Gl y 97047_1 Gl y Al a Val Ser Ty r 105 Tr p Lys Al a Ser Gl u 110 Gl u Ty r As p As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p As p Lys Val 115 120 125 Phe Pr o Gl y Gl y Ser Hi s Thr Ty r Val Tr p Gl n Val Leu Lys Gl u As n 130 135 140 Gl y Pr o Met Al a Ser As p Pr o Leu Cy s Leu Thr Ty r Ser Ty r Leu Ser 145 150 155 160 Hi s Val As p Leu Val Lys As p Leu As n Ser Gl y Leu I l e Gl y Al a Leu 165 170 175 Leu Val Cy s Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr Gl n Thr Leu 180 185 190 Hi s Lys Phe I l e Leu Leu Phe Al a Val Phe As p Gl u Gl y Lys Ser Tr p 195 200 205 Hi s Ser Gl u Thr Lys As n Ser Leu Met Gl n As p Ar g As p Al a Al a Ser 210 215 220 Al a Ar g Al a Tr p Pr o Lys Met Hi s Thr Val As n Gl y Ty r Val As n Ar g
    225 230 235 240
    Page 60
    97047_1
    2018203206 08 May 2018
    Ser Leu Pr o Gl y Leu 245 Ile Gl y Cy s Hi s Ar g 250 Lys Ser Val Ty r Tr p 255 Hi s Val I l e Gl y Met Gl y Thr Thr Pr o Gl u Val Hi s Ser I l e Phe Leu Gl u 260 265 270 Gl y Hi s Thr Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser Leu Gl u I l e 275 280 285 Ser Pr o I l e Thr Phe Leu Thr Al a Gl n Thr Leu Leu Met As p Leu Gl y 290 295 300 Gl n Phe Leu Leu Phe Cy s Hi s Ile Ser Ser Hi s Gl n Hi s As p Gl y Met 305 310 315 320 Gl u Al a Ty r Val Lys Val As p Ser Cy s Pr o Gl u Gl u Pr o Gl n Leu Ar g 325 330 335 Met Lys As n As n Gl u Gl u Al a Gl u As p Ty r As p As p As p Leu Thr As p 340 345 350
    Ser Gl u Met
    Asp Val Val
    Arg Phe Asp Asp Asp Asn Ser
    Pr o Ser Phe
    355
    360
    365
    Page 61
    2018203206 08 May 2018
    I l e Gl n I l e Ar g Ser Val Al a 375 97047_1 Tr p Val Hi s Lys Lys Hi s Pr o Lys 380 Thr 370 Ty r I l e Al a Al a Gl u Gl u Gl u As p Tr p As p Ty r Al a Pr o Leu Val Leu 385 390 395 400 Al a Pr o As p As p Ar g Ser Ty r Lys Ser Gl n Ty r Leu As n As n Gl y Pr o 405 410 415 Gl n Ar g I l e Gl y Ar g Lys Ty r Lys Lys Val Ar g Phe Met Al a Ty r Thr 420 425 430 As p Gl u Thr Phe Lys Thr Ar g Gl u Al a Ile Gl n Hi s Gl u Ser Gl y I l e 435 440 445 Leu Gl y Pr o Leu Leu Ty r Gl y Gl u Val Gl y As p Thr Leu Leu I l e I l e 450 455 460 Phe Lys As n Gl n Al a Ser Ar g Pr o Ty r As n Ile Ty r Pr o Hi s Gl y I l e 465 470 475 480 Thr As p Val Ar g Pr o Leu Ty r Ser Ar g Ar g Leu Pr o Lys Gl y Val Lys 485 490 495 Hi s Leu Lys As p Phe Pr o Ile Leu Pr o Gl y Gl u Ile Phe Lys Ty r Lys 500 505 510
    Page 62
    97047_1
    2018203206 08 May 2018
    Tr p Thr Val 515 Thr Val Gl u As p Gl y 520 Pr o Thr Lys Ser As p Pr o Ar g 525 Cy s Leu Thr Ar g Ty r Ty r Ser Ser Phe Val As n Met Gl u Ar g As p Leu Al a 530 535 540 Ser Gl y Leu I l e Gl y Pr o Leu Leu Ile Cy s Ty r Lys Gl u Ser Val As p 545 550 555 560 Gl n Ar g Gl y As n Gl n Ile Met Ser As p Lys Ar g As n Val I l e Leu Phe 565 570 575 Ser Val Phe As p Gl u As n Ar g Ser Tr p Ty r Leu Thr Gl u As n I l e Gl n 580 585 590 Ar g Phe Leu Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p Pr o Gl u Phe 595 600 605 Gl n Al a Ser As n Ile Met Hi s Ser Ile As n Gl y Ty r Val Phe As p Ser 610 615 620 Leu Gl n Leu Ser Val Cy s Leu Hi s Gl u Val Al a Ty r Tr p Ty r I l e Leu 625 630 635 640
    Page 63
    97047_1
    2018203206 08 May 2018
    Ser I l e Gl y Al a Gl n 645 Thr As p Phe Leu Ser 650 Val Phe Phe Ser Gl y 655 Ty r Thr Phe Lys Hi s Lys Met Val Ty r Gl u As p Thr Leu Thr Leu Phe Pr o 660 665 670 Phe Ser Gl y Gl u Thr Val Phe Met Ser Met Gl u As n Pr o Gl y Leu Tr p 675 680 685 I l e Leu Gl y Cy s Hi s As n Ser As p Phe Ar g As n Ar g Gl y Met Thr Al a 690 695 700 Leu Leu Lys Val Ser Ser Cy s As p Lys As n Thr Gl y As p Ty r Ty r Gl u 705 710 715 720 As p Ser Ty r Gl u As p Ile Ser Al a Ty r Leu Leu Ser Lys As n As n Al a 725 730 735 I l e Gl u Pr o Ar g Ser Phe Ser Gl n As n Pr o Pr o Val Leu Lys Ar g Hi s 740 745 750 Gl n Ar g Gl u I l e Thr Ar g Thr Thr Leu Gl n Ser As p Gl n Gl u Gl u I l e 755 760 765 As p Ty r As p As p Thr Ile Ser Val Gl u Met Lys Lys Gl u As p Phe As p
    770 775 780
    Page 64
    97047_1
    2018203206 08 May 2018
    I l e 785 Tyr As p Gl u As p Gl u 790 As n Thr Ar g Hi s Tyr Phe 805 Ile Al a Met Ser Ser Ser 820 Pr o Hi s Val Val Pr o Gl n 835 Phe Lys Lys Val Phe Thr 850 Gl n Pr o Leu Tyr Ar g 855 Leu 865 Gl y Pr o Tyr Ile Ar g 870 Al a Phe Ar g As n Gl n Al a 885 Ser Ar g Ser Tyr Gl u Gl u As p Gl n Ar g
    Ser Pr o Ar g 795 Ser Phe Gl n Lys Lys 800 Val Gl u 810 Ar g Leu Tr p As p Tyr 815 Gl y Ar g 825 As n Ar g Al a Gl n Ser 830 Gl y Ser Phe Gl n Gl u Phe Thr 845 As p Gl y Ser Gl u Leu As n Gl u 860 Hi s Leu Gl y Leu Val Gl u As p 875 As n I l e Met Val Thr 880 Tyr Ser 890 Phe Tyr Ser Ser Leu 895 I l e Gl y 905 Al a Gl u Pr o Ar g Lys 910 As n Phe
    900
    Page 65
    2018203206 08 May 2018
    97047_1
    Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val Gln His His
    915
    920
    925
    Met Al a Pro Thr Lys Asp Gl u Phe Asp Cys Lys Al a Trp Al a Tyr Phe 930 935 940
    Ser Asp Val Asp Leu Gl u Lys Asp Val Hi s Ser Gl y Leu I l e Gl y Pr o 945 950 955 960
    Leu Leu Val Cy s Hi s Thr As n Thr Leu As n Pr o Al a Hi s Gl y Ar g Gl n 965 970 975
    Val Thr Val Gl n Gl u Phe Al a Leu Phe Phe Thr I l e Phe Asp Gl u Thr 980 985 990
    Lys Ser Trp Tyr Phe Thr Gl u Asn Met Gl u Arg Asn Cys Arg Al a Pro 995 1000 1005
    Cys Asn Ile Gl n Met Gl u Asp Pro Thr Phe Lys Gl u Asn Tyr Arg 1010 1015 1020
    Phe Hi s Al a I l e Asn Gl y Tyr I l e Met Asp Thr Leu Pro Gl y Leu 1025 1030 1035
    Val Met Al a Gl n Asp Gl n Arg I l e Arg Trp Tyr Leu Leu Ser Met 1040 1045 1050
    Page 66
    97047_1
    2018203206 08 May 2018
    Gl y Ser 1055 As n Gl u As n Ile Hi s 1060 Ser Ile Hi s Phe Ser 1065 Gl y Hi s Val Phe Thr Val Ar g Lys Lys Gl u Gl u Ty r Lys Met Al a Leu Ty r As n 1070 1075 1080 Leu Ty r Pr o Gl y Val Phe Gl u Thr Val Gl u Met Leu Pr o Ser Lys 1085 1090 1095 Al a Gl y I l e Tr p Ar g Val Gl u Cy s Leu Ile Gl y Gl u Hi s Leu Hi s 1100 1105 1110 Al a Gl y Met Ser Thr Leu Phe Leu Val Ty r Ser As n Lys Cy s Gl n 1115 1120 1125 Thr Pr o Leu Gl y Met Al a Ser Gl y Hi s Ile Ar g As p Phe Gl n I l e 1130 1135 1140 Thr Al a Ser Gl y Gl n Ty r Gl y Gl n Tr p Al a Pr o Lys Leu Al a Ar g 1145 1150 1155 Leu Hi s Ty r Ser Gl y Ser Ile As n Al a Tr p Ser Thr Lys Gl u Pr o 1160 1165 1170
    Page 67
    97047_1
    2018203206 08 May 2018
    Phe Ser 1175 Tr p Ile Lys Val As p 1180 Leu Leu Al a Pr o Met 1185 I l e I l e Hi s Gl y I l e Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe Ser Ser Leu Ty r 1190 1195 1200 I l e Ser Gl n Phe Ile Ile Met Ty r Ser Leu As p Gl y Lys Lys Tr p 1205 1210 1215 Gl n Thr Ty r Ar g Gl y As n Ser Thr Gl y Thr Leu Met Val Phe Phe 1220 1225 1230 Gl y As n Val As p Ser Ser Gl y Ile Lys Hi s As n Ile Phe As n Pr o 1235 1240 1245 Pr o I l e I l e Al a Ar g Ty r Ile Ar g Leu Hi s Pr o Thr Hi s Ty r Ser 1250 1255 1260 I l e Ar g Ser Thr Leu Ar g Met Gl u Leu Met Gl y Cy s As p Leu As n 1265 1270 1275 Ser Cy s Ser Met Pr o Leu Gl y Met Gl u Ser Lys Al a I l e Ser As p 1280 1285 1290 Al a Gl n I l e Thr Al a Ser Ser Ty r Phe Thr As n Met Phe Al a Thr
    1295 1300 1305
    Page 68
    97047_1
    2018203206 08 May 2018
    Tr p Ser 1310 Pr o Ser Lys Al a Tr p 1325 Ar g Pr o Gl n As p Phe 1340 Gl n Lys Thr Val Lys 1355 Ser Leu Leu Ser Ser 1370 Ser Gl n As p Gl y Lys 1385 Val Lys Val Val Val 1400 As n Ser Leu I l e Hi s 1415 Pr o Gl n Ser
    Al a Ar g 1315 Leu Hi s Leu Val As n 1330 As n Pr o Lys Met Lys 1345 Val Thr Gl y Thr Ser 1360 Met Ty r Val Gl y Hi s 1375 Gl n Tr p Thr Phe Gl n 1390 Gl y As n Gl n As p Pr o 1405 Pr o Leu Leu Tr p Val 1420 Hi s Gl n Ile
    Gl n Gl y 1320 Ar g Ser As n Gl u Tr p 1335 Leu Gl n Val Val Thr 1350 Thr Gl n Gl y Lys Gl u 1365 Phe Leu I l e Leu Phe 1380 Phe Gl n As n As p Ser 1395 Phe Thr Pr o Thr Ar g 1410 Ty r Leu Ar g Al a Leu 1425 Ar g Met Gl u
    Page 69
    2018203206 08 May 2018
    97047_1
    Val Leu G y Cys G u Al a G n Asp Leu Tyr 1430 1435 <210> 7 <211> 4371 <212> DNA <213> Art i f i ci al Sequence <220>
    <223> BDDD FVI I I
    <400> 7 at gcaaat ag agct ct ccac ct gct t ct 11 ct gt gcct t t t gcgat t ct g ct t t agt gcc 60 accagaagat act acct ggg t gcagt ggaa ct gt cat ggg act at at gca aagt gat ct c 120 ggt gagct gc ct gt ggacgc aagat t t cct cct agagt gc caaaat ct t t t ccat t caac 180 acct cagt cg t gt acaaaaa gact ct gt 11 gt agaat t ca cggat cacct 111 caacat c 240 gct aagccaa ggccaccct g gat gggt ct g ct aggt cct a ccat ccaggc tgaggtttat 300 gat acagt gg t cat t acact t aagaacat g gct t cccat c ct gt cagt ct t cat gct gt t 360 ggt gt at cct act ggaaagc tt ctgaggga gct gaat at g at gat cagac cagt caaagg 420 gagaaagaag at gat aaagt ct t ccct ggt ggaagccat a cat at gt ct g gcaggt cct g 480 aaagagaat g gt ccaat ggc ct ct gaccca ct gt gcct t a cct act cat a t ct t t ct cat 540 gt ggacct gg t aaaagact t gaat t caggc ct cat t ggag ccct act agt at gt agagaa 600 gggagt ct gg ccaaggaaaa gacacagacc 11 gcacaaat 11 at act act t t t t gct gt a 660
    Page 70
    97047_1
    2018203206 08 May 2018
    t t t gat gaag ggaaaagt t g gcact cagaa acaaagaact cct t gat gca ggat agggat 720 gct gcat ct g ct cgggcct g gcct aaaat g cacacagt ca at ggt t at gt aaacaggt ct 780 ct gccaggt c t gat t ggat g ccacaggaaa t cagt ct at t ggcat gt gat t ggaat gggc 840 accact cct g aagt gcact c aat at t cct c gaaggt caca cat t t ct t gt gaggaaccat 900 cgccaggcgt cct t ggaaat ct cgccaat a act t t cct t a ct gct caaac act ct t gat g 960 gacct t ggac agt t t ct act gt t t t gt cat at ct ct t ccc accaacat ga t ggcat ggaa 1020 gct t at gt ca aagt agacag ct gt ccagag gaaccccaac t acgaat gaa aaat aat gaa 1080 gaagcggaag act at gat ga t gat ct t act gat t ct gaaa t ggat gt ggt caggt t t gat 1140 gat gacaact ct cct t cct t t at ccaaat t cgct cagt t g ccaagaagca t cct aaaact 1200 t gggt acat t acat t gct gc t gaagaggag gact gggact at gct ccct t agt cct cgcc 1260 cccgat gaca gaagt t at aa aagt caat at t t gaacaat g gccct cagcg gat t ggt agg 1320 aagt acaaaa aagt ccgat t t at ggcat ac acagat gaaa cct t t aagac t cgt gaagct 1380 at t cagcat g aat caggaat ct t gggacct t t act t t at g gggaagt t gg agacacact g 1440 t t gat t at at t t aagaat ca agcaagcaga ccat at aaca t ct accct ca cggaat cact 1500 gat gt ccgt c ct t t gt at t c aaggagat t a ccaaaaggt g t aaaacat t t gaaggat t t t 1560 ccaat t ct gc caggagaaat at t caaat at aaat ggacag t gact gt aga agat gggcca 1620 act aaat cag at cct cggt g cct gacccgc t at t act ct a gt t t cgt t aa t at ggagaga 1680
    Page 71
    97047_1
    2018203206 08 May 2018
    gat ct agct t caggact cat t ggccct ct c ct cat ct gct acaaagaat c t gt agat caa 1740 agaggaaacc agat aat gt c agacaagagg aat gt cat cc t gt 111 ct gt at t t gat gag 1800 aaccgaagct ggt acct cac agagaat at a caacgct 11 c t ccccaat cc agct ggagt g 1860 cagct t gagg at ccagagt t ccaagcct cc aacat cat gc acagcat caa tggct at gt t 1920 t t t gat agt t t gcagt t gt c agt t t gt t t g cat gaggt gg cat act ggt a cat t ct aagc 1980 at t ggagcac agact gact t cct t t ct gt c 11 ct t ct ct g gat at acct t caaacacaaa 2040 at ggt ct at g aagacacact caccct at t c ccat t ct cag gagaaact gt ct t cat gt cg 2100 at ggaaaacc caggt ct at g gat t ct gggg t gccacaact cagact t t cg gaacagaggc 2160 at gaccgcct t act gaaggt 11 ct agt t gt gacaagaaca ct ggt gat t a t t acgaggac 2220 agt t at gaag at at t t cagc at act t gct g agt aaaaaca at gccat t ga accaagaagc 2280 t t ct ct caaa acccaccagt ct t gaaacgc cat caacggg aaat aact cg t act act ct t 2340 cagt cagat c aagaggaaat t gact at gat gat accat at cagt t gaaat gaagaaggaa 2400 gat t t t gaca t t t at gat ga ggat gaaaat cagagccccc gcagct t t ca aaagaaaaca 2460 cgacact at t t t at t gct gc agt ggagagg ct ct gggat t at gggat gag t agct cccca 2520 cat gt t ct aa gaaacagggc t cagagt ggc agt gt ccct c agt t caagaa agt t gt t t t c 2580 caggaat t t a ct gat ggct c ct 11 act cag ccct t at acc gt ggagaact aaat gaacat 2640 t t gggact cc t ggggccat a t at aagagca gaagt t gaag at aat at cat ggt aact t t c 2700
    Page 72
    97047_1
    2018203206 08 May 2018
    agaaat cagg cct ct cgt cc ct at t cct t c t at t ct agcc t t at t t ct t a t gaggaagat 2760 cagaggcaag gagcagaacc t agaaaaaac 111 gt caagc ct aat gaaac caaaact t ac 2820 t t t t ggaaag t gcaacat ca t at ggcaccc act aaagat g agt t t gact g caaagcct gg 2880 gct t at t t ct ct gat gt t ga cct ggaaaaa gat gt gcact caggcct gat t ggacccct t 2940 ct ggt ct gcc acact aacac act gaaccct gct cat ggga gacaagt gac agt acaggaa 3000 t t t gct ct gt t t t t caccat ct t t gat gag accaaaagct ggt act t cac t gaaaat at g 3060 gaaagaaact gcagggct cc ct gcaat at c cagat ggaag at cccact t t t aaagagaat 3120 t at cgct t cc at gcaat caa t ggct acat a at ggat acac t acct ggct t agt aat ggct 3180 caggat caaa ggat t cgat g gt at ct gct c agcat gggca gcaat gaaaa cat ccat t ct 3240 at t cat t t ca gt ggacat gt gt t cact gt a cgaaaaaaag aggagt at aa aat ggcact g 3300 t acaat ct ct at ccaggt gt 1111 gagaca gt ggaaat gt t accat ccaa agct ggaat t 3360 t ggcgggt gg aat gcct t at t ggcgagcat ct acat gct g ggat gagcac act t t t t ct g 3420 gt gt acagca at aagt gt ca gact cccct g ggaat ggct t ct ggacacat t agagat t t t 3480 cagat t acag ct t caggaca at at ggacag t gggccccaa agct ggccag act t cat t at 3540 t ccggat caa t caat gcct g gagcaccaag gagccct t t t ct t ggat caa ggt ggat ct g 3600 t t ggcaccaa t gat t at t ca cggcat caag acccagggt g cccgt cagaa gt t ct ccagc 3660 ct ct acat ct ct cagt t t at cat cat gt at agt ct t gat g ggaagaagt g gcagact t at 3720
    Page 73
    97047_1
    2018203206 08 May 2018
    cgaggaaat t ccact ggaac ct t aat ggt c t t ct t t ggca at gt ggat t c at ct gggat a 3780 aaacacaat a t t t t t aaccc t ccaat t at t gct cgat aca t ccgt t t gca cccaact cat 3840 t at agcat t c gcagcact ct t cgcat ggag tt gat gggct gt gat t t aaa t agt t gcagc 3900 at gccat t gg gaat ggagag t aaagcaat a t cagat gcac agat t act gc t t cat cct ac 3960 t t t accaat a t gt t t gccac ct ggt ct cct t caaaagct c gact t cacct ccaagggagg 4020 agt aat gcct ggagacct ca ggt gaat aat ccaaaagagt ggct gcaagt ggact t ccag 4080 aagacaat ga aagt cacagg agt aact act cagggagt aa aat ct ct gct t accagcat g 4140 t at gt gaagg agt t cct cat ct ccagcagt caagat ggcc at cagt ggac t ct ct 11111 4200 cagaat ggca aagt aaaggt 1111 caggga aat caagact cct t cacacc t gt ggt gaac 4260 t ct ct agacc caccgt t act gact cgct ac ct t cgaat t c acccccagag ttgggtgcac 4320 cagat t gccc t gaggat gga ggt t ct gggc t gcgaggcac aggacct ct a c 4371
    <210> 8 <211> 25 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 8
    Page 74
    2018203206 08 May 2018
    97047_1
    Thr Leu Asp Pro Arg Ser Phe Leu Leu Arg Asn Pro Asn Asp Lys Tyr 1 5 10 15
    Gl u Pr o Phe Tr p Gl u Asp Gl u Gl u Lys 20 25 <210> 9 <211> 4 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 9
    Ar g Ar g Ar g Ar g <210> 10 <211> 6 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 10
    Ar g Lys Ar g Ar g Lys Ar g
    1 5
    Page 75
    97047_1
    2018203206 08 May 2018
    <210> 11 <211> 5 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 11 Ar g Ar g Ar g Ar g Ser 1 5
    <210> 12 <211> 9 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 12 Thr Gl n Ser Phe As n As p Phe Thr Ar g 1 5
    <210>
    <211>
    <212>
    <213>
    PRT
    Art i f i ci al Sequence
    Page 76
    97047_1
    2018203206 08 May 2018 <220>
    <223> cl eavage si t e <400> 13
    Ser Val Ser Gl n Thr Ser Lys Leu Thr Ar g 1 5 10 <210> 14 <211> 10 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 14
    Asp Phe Leu Al a Gl u Gl y Gl y Gl y Val Ar g 1 5 10 <210> 15 <211> 7 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 15
    Page 77
    97047_1
    2018203206 08 May 2018
    Thr Thr 1 Lys I l e Lys Pr o Ar g 5 <210> 16 <211> 5 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 16 Leu Val Pr o Ar g Gl y 1 5 <210> 17 <211> 5 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 17 Al a Leu Ar g Pr o Ar g 1 5 <210> 18 <211> 7
    Page 78
    2018203206 08 May 2018
    97047_1 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 18
    Lys Leu Thr Ar g Al a Gl u Thr
    1 5 <210> 19 <211> 7 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 19
    Asp Phe Thr Ar g Val Val Gl y
    1 5 <210> 20 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e
    Page 79
    2018203206 08 May 2018
    97047_1 <400> 20
    Thr Met Thr Arg Ile Val Gly Gly 1 5 <210> 21 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 21
    Ser Pr o Phe Ar g Ser Thr Gl y Gl y 1 5 <210> 22 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 22
    Leu Gl n Val Ar g I l e Val Gl y Gl y 1 5
    Page 80
    2018203206 08 May 2018
    97047_1 <210> 23 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 23
    Pr o Leu Gl y Ar g I l e Val Gl y Gl y
    1 5 <210> 24 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 24
    I l e Gl u Gl y Ar g Thr Val Gl y Gl y
    1 5 <210> 25 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    Page 81
    97047_1
    2018203206 08 May 2018
    <223> cl eavage si t e <400> 25 Leu Thr Pr o Ar g Ser Leu Leu Val 1 5 <210> 26 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 26 Leu Gl y Pr o Val Ser Gl y Val Pr o 1 5 <210> 27 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 27 Val Al a Gl y As p Ser Leu Gl u Gl u 1 5
    Page 82
    97047_1
    2018203206 08 May 2018
    <210> 28 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 28 Gl y Pr o Al a Gl y Leu Gl y Gl y Al a 1 5
    <210> 29 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 29 Gl y Pr o Al a Gl y Leu Ar g Gl y Al a 1 5
    <210> 30 <211> 8 <212> PRT <213> Ar t i f i c i al Sequenc e
    Page 83
    97047_1
    2018203206 08 May 2018 <220>
    <223> cl eavage si t e <400> 30
    Al a Pr o Leu Gl y Leu Ar g Leu Ar g 1 5 <210> 31 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 31
    Pr o Al a Leu Pr o Leu Val Al a Gl n
    1 5 <210> 32 <211> 7 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 32
    Page 84
    97047_1
    2018203206 08 May 2018
    Gl u Asn Leu Tyr Phe Gl n Gl y 1 5 <210> 33 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 33 Asp Asp Asp Lys I l e Val Gl y Gl y 1 5 <210> 34 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 34 Leu Gl u Val Leu Phe Gl n Gl y Pr o 1 5 <210> 35 <211> 8
    Page 85
    2018203206 08 May 2018
    97047_1 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 35
    Leu Pr o Lys Thr Gl y Ser Gl u Ser
    1 5 <210> 36 <211> 42 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AE42 <400> 36
    Gl y Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y
    1 5 10 15
    Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a
    20 25 30
    Thr Ser Gl y Ser
    Gl u Thr
    Pr o Al a
    Ser
    Ser
    Page 86
    97047_1
    2018203206 08 May 2018 <210> 37 <211> 143 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AE144 <400> 37
    Gl y Ser Gl u Pr o Al a Thr Ser Gl y 1 5 Ser Al a Thr Pr o Gl u Ser Gl y Pr o 20 Ser Gl u Thr Pr o Gl y Ser Pr o Al a 35 40 Gl y Thr Ser Thr Gl u Pr o Ser Gl u 50 55 Al a Thr Ser Gl y Se r Gl u Thr Pr o 65 70 Ser Gl u Thr Pr o Gl y Ser Gl u Pr o 85
    Se r Gl u Thr Pr o Gl y Thr Ser Gl u 10 15 Gl y Ser Gl u Pr o Al a Thr Ser Gl y 25 30 Gl y Ser Pr o Thr Ser Thr Gl u Gl u 45 Gl y Ser Al a Pr o Gl y Ser Gl u Pr o 60 Gl y Ser Gl u Pr o Al a Thr Ser Gl y 75 80 Al a Thr Ser Gl y Ser Gl u Thr Pr o 90 95
    Page 87
    2018203206 08 May 2018
    Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y 97047_1 Ser Al a Pr o Gl y Thr Ser Gl u 100 105 110 Ser Al a Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser 115 120 125 Gl u Thr Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 130 135 140 <210> 38 <211> 144 <212> PRT <213> Art i f i ci al Sequence <220> <223> AG144 <400> 38 Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Ser Ser Thr 1 5 10 15 Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Pr o Ser Al a Ser Thr 20 25 30 Gl y Thr Gl y Pr o Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o 35 40 45
    Page 88
    2018203206 08 May 2018
    Gl y Al a Ser Pr o Gl y Thr Ser Ser 50 55 Gl y Thr Ser Ser Th r Gl y Ser Pr o 65 70 Thr Gl y Ser Pr o Gl y Ser Ser Pr o 85 Gl y Al a Ser Pr o Gl y Thr Ser Ser 100 Ser Al a Ser Thr Gl y Thr Gl y Pr o 115 120 Ser Ser Ser Pr o Gl y Ser Ser Thr 130 135
    Thr 97047_1 Ser Pr o Gl y Ser Pr o 60 Gl y Al a Gl y Ser Ser Thr Pr o Ser Gl y Al a 75 80 Ser Al a Ser Thr Gl y Thr Gl y Pr o 90 95 Thr Gl y Ser Pr o Gl y Ser Ser Pr o 105 110 Gl y Thr Pr o Gl y Ser Gl y Thr Al a 125 Pr o Ser Gl y Al a Thr Gl y Ser Pr o 140
    <210> 39 <211> 288 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AE288 <400> 39
    Page 89
    2018203206 08 May 2018
    Gl y 1 Thr Ser Gl u Ser 5 Al a Thr 97047_1 Ser Gl u 15 Pr o Pr o Gl u Ser 10 Gl y Pr o Gl y Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 20 25 30 Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o 35 40 45 Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr 50 55 60 Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr 65 70 75 80 Ser Thr Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 85 90 95 Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u 100 105 110 Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr 115 120 125
    Ser Thr Gl u Gl u Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u
    130
    135
    140
    Page 90
    97047_1
    2018203206 08 May 2018
    Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u 145 150 155 160 Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 165 170 175 Gl u Ser Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 180 185 190 Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Gl u Pr o 195 200 205 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr 210 215 220 Ser Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 225 230 235 240 Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Gl u Pr o 245 250 255
    Al a Thr Ser Gl y Ser
    Gl u Thr
    Pr o
    260
    Gl y Thr Ser 265
    Gl u Ser Al a Thr Pr o
    270
    Page 91
    2018203206 08 May 2018
    97047_1
    Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 275 280 285 <210> 40 <211> 288 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AG288 <400> 40
    Pr o 1 Gl y Al a Ser Pr o 5 Gl y Thr Ser Ser Thr 10 Gl y Ser Pr o Gl y Al a 15 Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Thr Pr o Gl y Ser Gl y Thr 20 25 30 Al a Ser Ser Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser 35 40 45 Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Ser Ser 50 55 60 Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Thr Pr o Gl y Ser Gl y Thr 65 70 75 80
    Page 92
    97047_1
    2018203206 08 May 2018
    Al a Ser Ser Ser Pr o 85 Gl y Ser Ser Thr Pr o 90 Ser Gl y Al a Thr Gl y 95 Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser 100 105 110 Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Ser Ser Pr o Ser Al a Ser 115 120 125 Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser 130 135 140 Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Ser Ser 145 150 155 160 Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Pr o Ser Al a Ser 165 170 175 Thr Gl y Thr Gl y Pr o Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y 180 185 190 Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser 195 200 205 Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y
    210 215 220
    Page 93
    97047_1
    2018203206 08 May 2018
    Al a Thr Gl y Ser Pr o Gl y 225 230
    Pr o Gl y Al a Ser Pr o Gl y 245
    Pr o Ser Al a Ser Thr Gl y 260
    Al a Ser Ser Ser Pr o Gl y 275
    Ser Ser Pr o Ser Al a 235 Thr Ser Ser Thr 250 Gl y Thr Gl y Pr o 265 Gl y Thr Ser Ser 280 Thr Pr o Ser
    Ser Thr Gl y Thr Gl y 240 Ser Pr o Gl y Ser 255 Ser Pr o Gl y Ser 270 Gl y Thr Gl y Al a 285 Thr Gl y Ser
    <210> 41 <211> 576 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AE576 <400> 41
    Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Gl u 1 5 10 15
    Ser Al a Thr
    Pr o Gl u Ser Gl y
    Pr o Gl y Thr
    Ser Thr
    Gl u Pr o Ser
    Gl u
    Page 94
    97047_1
    2018203206 08 May 2018
    Gl y
    Gl y
    Gl u
    Gl u
    Gl y
    Gl y
    Gl u
    Gl y 145
    Ser Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u 35 40 45 Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr 50 55 60 Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 70 75 80 Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o 85 90 95 Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Pr o Al a 100 105 110 Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o 115 120 125 Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 130 135 140 Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Pr o Al a 150 155 160
    Page 95
    2018203206 08 May 2018
    Gl y
    Gl y
    Gl y
    Gl u
    Gl u
    225
    Gl y
    Gl u
    Gl u
    970 47_1 Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u 165 170 175 Ser Al a Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 180 18 5 190 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr 195 200 205 Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 210 215 220 Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o 230 235 240 Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr 245 250 255 Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 260 26 5 270 Ser Gl y Pr o Gl y Thr Ser Gl u Se r Al a Thr Pr o Gl u Ser Gl y Pr o 275 280 285
    290
    295
    300
    Gl y
    Ser Pr o Al a Gl y Ser
    Pr o Thr Ser Thr
    Gl u Gl u
    Gl y Thr Ser Gl u
    Page 96
    97047_1
    2018203206 08 May 2018
    Ser Al a Thr Pr o Gl u
    305
    Ser Gl u Thr Pr o Gl y 325
    Gl y Thr Ser Thr Gl u 340
    Gl u Pr o Ser Gl u Gl y 355
    Gl y Ser Al a Pr o Gl y 370
    Gl y Thr Ser Thr Gl u 385
    Gl u Pr o Ser Gl u Gl y 405
    Ser Thr Gl u Gl u Gl y 420
    Ser 310 Gl y Pr o Gl y Ser Gl u 315 Thr Ser Gl u Ser Al a 330 Thr Pr o Ser Gl u Gl y 345 Ser Al a Ser Al a Pr o 360 Gl y Thr Ser Thr Ser 375 Thr Gl u Pr o Ser Pr o 390 Ser Gl u Gl y Ser Al a 395 Ser Al a Pr o Gl y Ser 410 Pr o Thr Ser Thr Gl u 425 Pr o Ser
    Pr o Al a Thr Ser Gl y 320
    Pr o Gl u Ser Gl y Pr o 335
    Pr o Gl y Thr Ser Thr 350
    Thr Gl u Pr o Ser Gl u
    365
    Gl u Gl y Ser Al a Pr o 380
    Pr o Gl y Thr Ser Thr 400
    Al a Gl y Ser Pr o Thr 415
    Gl u Gl y Ser Al a Pr o
    430
    Page 97
    2018203206 08 May 2018
    Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u 97047_1 Ser Gl y Pr o Gl y Ser Gl u Pr o 435 440 445 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 450 455 460 Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o 465 470 475 480 Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr 485 490 495 Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 500 505 510 Gl u Ser Gl y Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u 515 520 525 Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Ser Pr o Al a 530 535 540 Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o 545 550 555 560
    565
    570
    575
    Gl u Ser
    Gl y Pr o Gl y Thr
    Ser Thr
    Gl u Pr o Ser
    Gl u Gl y Ser Al a Pr o
    Page 98
    97047_1
    2018203206 08 May 2018 <210> 42 <211> 576 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AG576 <400> 42
    Pr o 1 Gl y Thr Pr o Gl y 5 Ser Gl y Thr Al a Ser 10 Ser Ser Pr o Gl y Ser 15 Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Pr o Ser Al a Ser 20 25 30 Thr Gl y Thr Gl y Pr o Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y 35 40 45 Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser 50 55 60 Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser 65 70 75 80 Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser 85 90 95
    Page 99
    97047_1
    2018203206 08 May 2018
    Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Thr Pr o 100 105 110 Gl y Ser Gl y Thr Al a Se r Ser Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser 115 120 125 Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser 130 135 140 Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Ser Ser 145 15 0 155 160 Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Thr Pr o Gl y Ser Gl y Thr 165 170 175 Al a Ser Ser Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser 180 185 190 Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser 195 200 205
    Pr o Gl y Thr
    Ser Ser Thr
    Gl y Ser
    Pr o Gl y Ser Ser Thr
    Pr o Ser Gl y
    210
    215
    220
    Page 100
    97047_1
    2018203206 08 May 2018
    Al a 225 Thr Gl y Ser Pr o Gl y 230 Ser Ser Thr Pr o Ser 235 Gl y Al a Thr Gl y Ser 240 Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Thr Pr o 245 250 255 Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y 260 265 270 Al a Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser 275 280 285 Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser 290 295 300 Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o Gl y Thr Ser 305 310 315 320 Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser 325 330 335 Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Al a Ser 340 345 350 Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser
    355 360 365
    Page 101
    97047_1
    2018203206 08 May 2018
    Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser 370 375 380 Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Thr Pr o 385 390 395 400 Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y 405 410 415 Al a Thr Gl y Ser Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser 420 425 430 Pr o Gl y Se r Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Thr Pr o 43 5 440 445 Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y 450 455 460 Al a Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser 465 470 475 480 Pr o Gl y Se r Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Ser Ser 485 490 495
    Page 102
    97047_1
    2018203206 08 May 2018
    Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o Gl y Thr Ser 500 505 510 Ser Thr Gl y Ser Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser 515 520 525 Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser 530 535 540 Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Ser Ser Pr o Ser Al a Ser 545 55 0 555 560 Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser 565 570 575
    <210> 43 <211> 864 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AE864 <400> 43
    Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Gl u 1 5 10 15
    Page 103
    2018203206 08 May 2018
    Ser Al a Thr Pr o 20 97047_1 Gl u Ser Gl y Pr o Gl y 25 Thr Ser Thr Gl u Pr o 30 Ser Gl u Gl y Ser Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u 35 40 45 Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr 50 55 60 Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 65 70 75 80 Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o 85 90 95 Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Pr o Al a 100 105 110 Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o 115 120 125 Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 130 135 140 Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Pr o Al a 145 150 155 160
    Page 104
    97047_1
    2018203206 08 May 2018
    Gl y
    Gl y
    Gl y
    Gl u
    Gl u
    225
    Gl y
    Gl u
    Gl u
    Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u 165 170 175 Ser Al a Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 180 18 5 190 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr 195 200 205 Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 210 215 220 Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o 230 235 240 Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr 245 250 255 Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 260 26 5 270 Ser Gl y Pr o Gl y Thr Ser Gl u Se r Al a Thr Pr o Gl u Ser Gl y Pr o 275 280 285
    Page 105
    2018203206 08 May 2018
    97047_1
    Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Gl u 290 295 300
    Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y 305 310 315 320
    Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 325 330 335
    Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr 340 345 350
    Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u 355 360 365
    Gl y Ser Al a Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 370 375 380
    Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr 385 390 395 400
    Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr 405 410 415
    Ser Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 420 425 430
    Page 106
    97047_1
    2018203206 08 May 2018
    Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o 435 440 445 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 450 455 460 Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o 46 5 470 475 480 Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr 485 490 495 Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 500 50 5 510 Gl u Ser Gl y Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u 515 520 525 Gl y Ser Pr o Al a Gl y Ser Pr o Thr Se r Thr Gl u Gl u Gl y Ser Pr o Al a 530 535 540 Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o 54 5 550 555 560
    Page 107
    2018203206 08 May 2018
    Gl u
    Gl y
    Al a
    Gl u
    Gl y 625
    Gl u
    Ser
    Gl y
    Ser Gl y Pr o Gl y Thr Ser Thr Gl u 97047_1 Pr o Ser Gl u Gl y Ser Al a Pr o 565 570 575 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o 580 585 590 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 595 600 605 Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o 610 615 620 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr 630 635 640 Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr 645 650 655 Thr Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 660 665 670 Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u 675 680 685
    Ser
    Al a Thr
    Pr o Gl u Ser
    Gl y Pr o Gl y Ser
    Pr o Al a Gl y Ser
    Pr o Thr
    690
    695
    700
    Page 108
    97047_1
    2018203206 08 May 2018
    Ser Thr Gl u Gl u Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u 705 710 715 720 Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u 725 730 735 Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 740 745 750 Gl u Ser Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 755 760 765 Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Gl u Pr o 770 775 780 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr 785 790 795 800 Ser Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 805 810 815
    Gl y Thr Ser Thr
    Gl u Pr o Ser
    Gl u
    820
    Gl y Ser Al a Pr o 825
    Gl y Ser Gl u Pr o 830
    Page 109
    2018203206 08 May 2018
    97047_1
    Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o
    835
    840
    845
    Gl u Ser Gl y Pr o Gl y Thr Ser Thr
    Gl u Pr o Ser
    850
    855
    Gl u Gl y Ser Al a Pr o 860 <210> 44 <211> 864 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AG864 <400> 44
    Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Ser Ser Pr o 1 5 10 15
    Ser Al a Ser Thr
    Gl y Thr
    Gl y Pr o Gl y Ser Ser
    Pr o Ser Al a Ser
    Thr
    Gl y Thr
    Gl y Pr o Gl y Thr
    Pr o Gl y Ser
    Gl y Thr Al a Ser
    Ser
    Ser
    Pr o
    Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Pr o
    Page 110
    2018203206 08 May 2018
    Ser 65 Al a Ser Thr Gl y 97047_1 Ser 80 Thr 70 Gl y Pr o Gl y Al a Ser 75 Pr o Gl y Thr Ser Thr Gl y Ser Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o 85 90 95 Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Thr Pr o Gl y 100 105 110 Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 115 120 125 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 130 135 140 Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Ser Ser Thr 145 150 155 160 Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 165 170 175 Thr Gl y Ser Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o 180 185 190 Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Pr o
    195 200 205
    Page 111
    2018203206 08 May 2018
    97047 1
    Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Ser Ser Pr o Ser Al a Ser Thr 210 215 220 Gl y Thr Gl y Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o 225 230 235 240 Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Al a Ser Pr o 245 250 255 Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Th r Ser Ser 260 265 27 0 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 275 280 285 Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Al a Ser Pr o 290 295 300 Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Th r Ser Ser 305 310 315 320 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 325 330 335
    Page 112
    2018203206 08 May 2018
    Gl y Ser Ser Pr o 340 Ser Al a Ser Thr 97047_1 Gl y Thr 350 Pr o Gl y Gl y 345 Thr Gl y Pr o Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 355 360 365 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 370 375 380 Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Ser Ser Thr 385 390 395 400 Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a 405 410 415 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 420 425 430 Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Ser Ser Thr 435 440 445 Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a 450 455 460 Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o
    465 470 475 480
    Page 113
    97047_1
    2018203206 08 May 2018
    Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o 485 490 495 Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 500 505 510 Th r Gl y Ser Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o 515 520 525 Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o 530 535 540 Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 54 5 550 555 560 Th r Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 565 570 575 Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Ser Ser Thr 580 585 590
    Pr o Ser
    Gl y Al a Thr Gl y Ser
    Pr o Gl y Thr
    Pr o Gl y Ser
    Gl y Thr Al a
    595
    600
    605
    Page 114
    2018203206 08 May 2018
    97047_1
    Ser Ser Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o 610 615 620
    Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Ser Ser Thr 625 630 635 640
    Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a 645 650 655
    Thr Gl y Ser Pr o Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o 660 665 670
    Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o 675 680 685
    Gl y Thr Ser Ser Thr
    Gl y Ser
    Pr o Gl y Thr
    Pr o Gl y Ser
    Gl y Thr Al a
    690
    695
    700
    Ser Ser Ser
    Pr o Gl y Ser
    Ser Thr
    Pr o Ser Gl y Al a Thr
    Gl y Ser
    Pr o
    705
    710
    715
    720
    Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Ser Ser Pr o
    725
    730
    735
    Ser Al a Ser Thr
    Gl y Thr
    Gl y Pr o Gl y Al a Ser
    Pr o Gl y Thr
    Ser
    Ser
    740
    745
    750
    Page 115
    97047_1
    2018203206 08 May 2018
    Thr Gl y Ser 755 Pr o Gl y Al a Ser Pr o 760 Gl y Thr Ser Ser Thr 765 Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Pr o 770 775 780 Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 785 790 795 800 Thr Gl y Ser Pr o Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o 805 810 815 Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Ser Ser Thr 820 825 830 Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a 835 840 845 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 850 855 860
    <210> 45 <211> 9 <212> PRT <213> Ar t i f i c i al Sequenc e
    Page 116
    97047_1
    2018203206 08 May 2018
    <220> <223> cl eavage si t e <400> 45 Thr Gl n Ser Phe As n As p Phe Thr Ar g 1 5 <210> 46 <211> 10 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 46 Ser Val Ser Gl n Thr Ser Lys Leu Thr Ar g 1 5 10 <210> 47 <211> 10 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 47
    Page 117
    97047_1
    2018203206 08 May 2018
    As p Phe 1 Leu Al a Gl u Gl y Gl y Gl y Val Ar g 10 5 <210> 48 <211> 7 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 48 Thr Thr Ly s I l e Ly s Pr o Ar g 1 5 <210> 49 <211> 5 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 49 Leu Val Pr o Ar g Gl y 1 5 <210> 50 <211> 5
    Page 118
    2018203206 08 May 2018
    97047_1 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <400> 50
    Al a Leu Ar g Pr o Ar g
    1 5 <210> 51 <211> 5 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> sor t ase r ecogni t i on mot i f <220>
    <221> mi sc_f eat ur e <222> (3)..(3) <223> Xaa can be any nat ur al l y occur r i ng ami no aci d <400> 51
    Leu Pr o Xaa Thr Gl y
    1 5 <210> 52 <211> 11
    Page 119
    2018203206 08 May 2018
    97047_1 <212> PRT <213> Artificial Sequence <220>
    <223> pol ypept i de <400> 52
    Pro Lys Asn Ser Ser Met I l e Ser Asn Thr Pro 1 5 10 <210> 53 <211> 7 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> pol ypept i de <400> 53
    Hi s Gl n Ser Leu Gl y Thr Gl n
    1 5 <210> 54 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> pol ypept i de
    Page 120
    97047_1
    2018203206 08 May 2018
    <400> Hi s Gl 1 54 n As n Leu Ser As p Gl y 5 Lys <210> 55 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> pol ypept i de <400> 55 Hi s Gl n As n I l e Ser As p Gl y Lys 1 5 <210> 56 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> pol ypept i de <400> 56 Val I l e Ser Ser Hi s Leu Gl y Gl n 1 5
    Page 121
    97047_1
    2018203206 08 May 2018
    <210> 57 <211> 4 <212> PRT <213> Art i f i ci al Sequence <220> <223> l i nker
    <220> <221> REPEAT <222> (1). . (4) <223> Repeat f r om 1 t o 100 t i mes <400> 57
    Gl y Gl y Gl y Ser <210> 58 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> l i nker <220>
    <221> REPEAT <222> (1)..(3) <223> May be r epeat ed 1 t o 100 t i mes
    Page 122
    97047_1 <220>
    2018203206 08 May 2018
    <221> REPEAT <222> (4). . (8) <223> May be r epeat ed 1 t o 100 t i mes <400> 58 Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser 1 5
    <210> 59 <211> 7 <212> PRT <213> Art i f i ci al Sequence
    <220> <223> l i nker <400> 59 Ser Gl y Gl y Ser Gl y Gl y Ser 1 5
    <210> 60 <211> 15 <212> PRT <213> Art i f i ci al Sequence
    <220> <223> l i nker <400> 60
    Page 123
    2018203206 08 May 2018
    97047_1
    Gl y Gl y Ser Gl y Gl y Ser Gl y Gl y Ser Gl y Gl y Ser Gl y Gl y Gl y 1 5 10 15 <210> 61 <211> 16 <212> PRT <213> Artificial Sequence <220>
    <223> l i nker <400> 61
    Gl y Gl y Ser Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser 1 5 10 15 <210> 62 <211> 18 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> l i nker <400> 62
    Gl y Gl y Ser Gl y Gl y Ser Gl y Gl y Ser Gl y Gl y Ser Gl y Gl y Ser Gl y 1 5 10 15
    Gl y Ser
    Page 124
    97047_1
    2018203206 08 May 2018
    <210> 63 <211> 15 <212> PRT <213> Art i f i ci al Sequence
    <220> <223> l i nker <400> 63 Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser 1 5 10 15
    <210> 64 <211> 5 <212> PRT <213> Art i f i ci al Sequence
    <220> <223> l i nker
    <220> <221> REPEAT <222> (1). . (5) <223> May be r epeat ed 1- 20 t i mes <400> 64 Gl y Gl y Gl y Gl y Ser
    Page 125
    97047_1
    2018203206 08 May 2018
    1 5 <210> 65 <211> 7 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <220> <221> MI SC_FEATURE <222> (4). . (5) <223> Cl eavage si t e <400> 65 Lys Leu Thr Ar g Al a Gl u Thr 1 5 <210> 66 <211> 7 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <220> <221> MI SC_FEATURE
    Page 126
    97047 1
    2018203206 08 May 2018
    <222> (4). . (5) <223> Cl eavage si t e <400> 66
    Asp Phe Thr Ar g Val Val Gl y 1 5
    <210> 67 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e
    <220>
    <221> MI SC FEATURE
    <222> (4). . (5) <223> Cl eavage <400> 67 Thr Met Thr Ar g 1
    Si t e
    I l e Val Gl y Gl y 5 <210>
    <211>
    <212>
    <213>
    PRT
    Art i f i ci al Sequence
    Page 127
    2018203206 08 May 2018
    97047_1 <220>
    <223> cl eavage si t e <220>
    <221> MI SC_FEATURE <222> ( 4) . . ( 5) <223> Cl eavage si t e <400> 68
    Ser Pr o Phe Ar g Ser Thr Gl y Gl y
    1 5 <210> 69 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <220>
    <221> MI SC_FEATURE <222> ( 4) . . ( 5) <223> Cl eavage si t e <400> 69
    Leu Gl n Val Ar g I l e Val Gl y Gl y
    1 5
    Page 128
    97047_1
    2018203206 08 May 2018 <210> 70 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <220>
    <221> MI SC_FEATURE <222> (4)..(5) <223> Cl eavage si t e <400> 70
    Pr o Leu Gl y Ar g I l e Val Gl y Gl y 1 5 <210> 71 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <220>
    <221> MI SC_FEATURE <222> ( 4) . . ( 5) <223> Cl eavage si t e
    Page 129
    2018203206 08 May 2018
    <400> 71 I l e Gl u Gl y Ar g Thr Val Gl y Gl y 1 5
    <210> 72 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e
    97047 1
    <220> <221> MI SC_FEATURE <222> (4). . (5) <223> cl eavage si t e <400> 72 Leu Thr Pr o Ar g Ser Leu Leu Val 1 5
    <210> 73 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e
    Page 130
    97047_1
    2018203206 08 May 2018 <220>
    <221> MI SC_FEATURE <222> (4)..(5) <223> cl eavage si t e <400> 73
    Leu Gl y Pr o Val Ser Gl y Val Pr o 1 5 <210> 74 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <220>
    <221> MI SC_FEATURE <222> ( 4) . . ( 5) <223> Cl eavage si t e <400> 74
    Val Al a Gl y Asp Ser Leu Gl u Gl u 1 5 <210> 75
    Page 131
    97047 1
    2018203206 08 May 2018
    <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e
    <220> <221> MI SC_FEATURE <222> (4). . (5) <223> Cl eavage si t e <400> 75 Gl y Pr o Al a Gl y Leu Gl y Gl y Al a 1 5
    <210> 76 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e
    <220> <221> MI SC_FEATURE <222> (4). . (5) <223> Cl eavage si t e <400> 76
    Page 132
    97047_1
    2018203206 08 May 2018
    Gl y Pr o Al a Gl y Leu Ar g Gl y Al a 1 5 <210> 77 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e <220>
    <221> MI SC_FEATURE <222> (4)..(5) <223> Cl eavage si t e <400> 77
    Al a Pr o Leu Gl y Leu Ar g Leu Ar g 1 5 <210> 78 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> cl eavage si t e
    Page 133
    97047_1
    2018203206 08 May 2018
    <220> <221> <222> <223> MI SC_FEATURE (4). . (5) Cl eavage si t e <400> 78 Pr o Al a Leu Pr o Leu Val Al a Gl n 1 5
    <210> 79 <211> 7 <212> PRT <213> Ar t i f i c i al Sequenc e <220> <223> cl eavage si t e
    <220> <221> <222> <223> MI SC_FEATURE (6). . (7) Cl eavage si t e <400> 79 Gl u As n ι Leu Tyr Phe Gl n Gl y 1 5
    <210> 80 <211> 8 <212> PRT
    Page 134
    97047 1
    2018203206 08 May 2018
    <213> Art i f i ci al Sequence <220> <223> cl eavage site <220> <221> MI SC_FEATURE <222> (4). . (5) <223> Cl eavage si t e <400> 80 Asp Asp Asp Lys I l e Val Gl y Gl y 1 5 <210> 81 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <220> <221> MI SC_FEATURE <222> (6). . (7) <223> Cl eavage si t e <400> 81 Leu Gl u Val Leu Phe Gl n Gl y Pr o
    Page 135
    97047_1
    2018203206 08 May 2018
    1 5 <210> 82 <211> 8 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <220> <221> MI SC_FEATURE <222> (4). . (5) <223> Cl eavage si t e <400> 82 Leu Pr o Lys Thr Gl y Ser Gl u Ser 1 5 <210> 83 <211> 9 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 83 Thr Gl n Ser Phe As n As p Phe Thr Ar g
    Page 136
    97047 1
    2018203206 08 May 2018
    1 5 <210> 84 <211> 10 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 84 Ser Val Ser Gl n Thr Ser Lys Leu Thr Ar g 1 5 10 <210> 85 <211> 10 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 85 Asp Phe Leu Al a Gl u Gl y Gl y Gl y Val Ar g 1 5 10 <210> 86 <211> 7 <212> PRT
    Page 137
    97047 1
    2018203206 08 May 2018
    <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 86 Thr Thr Ly s I l e Ly s Pr o Ar g 1 5 <210> 87 <211> 5 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 87 Leu Val Pro Arg Gl y 1 5 <210> 88 <211> 10 <212> PRT <213> Art i f i ci al Sequence <220> <223> cl eavage si t e <400> 88
    Page 138
    2018203206 08 May 2018
    97047_1
    Al a Leu Ar g Pr o Ar g Val Val Gl y Gl y Al a 1 5 10 <210> 89 <211> 1896 <212> PRT <213> Artificial Sequence <220>
    <223> FVI I I 198 <400> 89
    Met 1 Gl n I l e Gl u Leu Ser 5 Thr Cy s Phe Phe 10 Leu Cy s Leu Leu Ar g 15 Phe Cy s Phe Ser Al a Thr Ar g Ar g Ty r Ty r Leu Gl y Al a Val Gl u Leu Ser 20 25 30 Tr p As p Ty r Met Gl n Ser As p Leu Gl y Gl u Leu Pr o Val As p Al a Ar g 35 40 45 Phe Pr o Pr o Ar g Val Pr o Lys Ser Phe Pr o Phe As n Thr Ser Val Val 50 55 60 Ty r Lys Lys Thr Leu Phe Val Gl u Phe Thr As p Hi s Leu Phe As n I l e 65 70 75 80
    Page 139
    97047 1
    2018203206 08 May 2018
    Al a Lys Pr o Ar g Pr o Pr o Tr p 85 Met Gl y Leu 90 Leu Gl y Pr o Thr I l e 95 Gl n Al a Gl u Val Tyr As p Thr Val Val Ile Thr Leu Lys As n Met Al a Ser 100 105 110 Hi s Pr o Val Ser Leu Hi s Al a Val Gl y Val Ser Ty r Tr p Lys Al a Ser 115 120 125 Gl u Gl y Al a Gl u Tyr As p As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p 130 135 140 Asp Lys Val Phe Pr o Gl y Gl y Ser Hi s Thr Ty r Val Tr p Gl n Val Leu 145 150 155 160 Lys Gl u As n Gl y Pr o Met Al a Ser As p Pr o Leu Cy s Leu Thr Ty r Ser 165 170 175 Tyr Leu Ser Hi s Val As p Leu Val Lys As p Leu As n Ser Gl y Leu I l e 180 185 190 Gly Al a Leu Leu Val Cys Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr 195 200 205 Gl n Thr Leu Hi s Lys Phe Ile Leu Leu Phe Al a Val Phe As p Gl u Gl y
    Page 140
    2018203206 08 May 2018
    97047_1
    210 215 220
    Lys 225 Ser Tr p Hi s Ser Gl u 230 Thr Lys As n Ser Leu 235 Met Gl n As p Ar g As p 240 Al a Al a Ser Al a Ar g Al a Tr p Pr o Lys Met Hi s Thr Val As n Gl y Ty r 245 250 255 Val Asn Ar g Ser Leu Pr o Gl y Leu Ile Gl y Cy s Hi s Ar g Lys Ser Val 260 265 270 Tyr Tr p Hi s Val Ile Gl y Met Gl y Thr Thr Pr o Gl u Val Hi s Ser I l e 275 280 285 Phe Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser 290 295 300 Leu Gl u I l e Ser Pr o Ile Thr Phe Leu Thr Al a Gl n Thr Leu Leu Met 305 310 315 320 Asp Leu Gl y Gl n Phe Leu Leu Phe Cys Hi s Ile Ser Ser Hi s Gl n Hi s 325 330 335 Asp Gl y Met Gl u Al a Tyr Val Lys Val As p Ser Cy s Pr o Gl u Gl u Pr o 340 345 350
    Page 141
    97047_1
    2018203206 08 May 2018
    Gl n Leu Ar g 355 Met Ly s As n As n Gl u Gl u Al a Gl u As p Ty r As p As p As p 360 365 Leu Thr As p Ser Gl u Met As p Val Val Ar g Phe As p As p As p As n Ser 370 375 380 Pr o Ser Phe I l e Gl n Ile Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr 385 390 395 400 Tr p Val Hi s Tyr Ile Al a Al a Gl u Gl u Gl u As p Tr p As p Tyr Al a Pr o 405 410 415 Leu Val Leu Al a Pr o As p As p Ar g Ser Tyr Lys Ser Gl n Tyr Leu As n 420 425 430 As n Gl y Pr o Gl n Ar g Ile Gl y Ar g Lys Tyr Lys Lys Val Ar g Phe Met 435 440 445 Al a Tyr Thr As p Gl u Thr Phe Lys Thr Ar g Gl u Al a I l e Gl n Hi s Gl u 450 455 460 Ser Gly I l e Leu Gl y Pr o Leu Leu Tyr Gl y Gl u Val Gl y As p Thr Leu 465 470 475 480 Leu I l e I l e Phe Lys As n Gl n Al a Ser Ar g Pr o Tyr As n I l e Tyr Pr o
    Page 142
    2018203206 08 May 2018
    97047_1
    485 490 495
    Hi s Gl y I l e Thr 500 As p Val Ar g Pr o Leu 505 Tyr Ser Ar g Ar g Leu 510 Pr o Lys Gl y Val Lys Hi s Leu Lys As p Phe Pr o Ile Leu Pr o Gl y Gl u I l e Phe 515 520 525 Lys Tyr Lys Tr p Thr Val Thr Val Gl u As p Gl y Pr o Thr Lys Ser As p 530 535 540 Pr o Ar g Cys Leu Thr Ar g Tyr Tyr Ser Ser Phe Val As n Met Gl u Ar g 545 550 555 560 As p Leu Al a Ser Gl y Leu Ile Gl y Pr o Leu Leu Ile Cys Tyr Lys Gl u 565 570 575 Ser Val As p Gl n Ar g Gl y As n Gl n Ile Met Ser As p Lys Ar g As n Val 580 585 590 I l e Leu Phe Ser Val Phe As p Gl u As n Ar g Ser Tr p Tyr Leu Thr Gl u 595 600 605 As n I l e Gl n Ar g Phe Leu Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p 610 615 620
    Page 143
    97047_1
    2018203206 08 May 2018
    Pro G u 625 Phe Gl n Al a Ser 630 As n Ile Met Hi s Ser 635 Ile As n Gl y Ty r Val 640 Phe As p Ser Leu Gl n Leu Ser Val Cy s Leu Hi s Gl u Val Al a Ty r Tr p 645 650 655 Ty r I l e Leu Ser Ile Gl y Al a Gl n Thr As p Phe Leu Ser Val Phe Phe 660 665 670 Ser Gl y Ty r Thr Phe Lys Hi s Lys Met Val Ty r Gl u As p Thr Leu Thr 675 680 685 Leu Phe Pr o Phe Ser Gl y Gl u Thr Val Phe Met Ser Met Gl u As n Pr o 690 695 700 Gl y Leu Tr p I l e Leu Gl y Cy s Hi s As n Ser As p Phe Ar g As n Ar g Gl y 705 710 715 720 Met Thr Al a Leu Leu Lys Val Ser Ser Cy s As p Lys As n Thr Gl y As p 725 730 735 Ty r Ty r Gl u As p Ser Ty r Gl u As p Ile Ser Al a Ty r Leu Leu Ser Lys 740 745 750 As n As n Al a I l e Gl u Pr o Ar g Ser Phe Ser Gl n As n Ser Ar g Hi s Pr o
    Page 144
    2018203206 08 May 2018
    97047_1
    755 760 765
    Ser Thr 770 Arg Gl n Lys Gl n Phe As n 775 Al a Thr Thr Ile 780 Pr o Gl u As n As p I l e Gl u Lys Thr As p Pr o Tr p Phe Al a Hi s Ar g Thr Pr o Met Pr o Lys 785 790 795 800 I l e Gl n As n Val Ser Ser Ser As p Leu Leu Met Leu Leu Ar g Gl n Ser 805 810 815 Pr o Thr Pr o Hi s Gl y Leu Ser Leu Ser As p Leu Gl n Gl u Al a Lys Tyr 820 825 830 Gl u Thr Phe Ser As p As p Pr o Ser Pr o Gl y Al a Ile As p Ser As n As n 835 840 845 Ser Leu Ser Gl u Met Thr Hi s Phe Ar g Pr o Gl n Leu Hi s Hi s Ser Gl y 850 855 860 Asp Met Val Phe Thr Pr o Gl u Ser Gl y Leu Gl n Leu Ar g Leu As n Gl u 865 870 875 880 Lys Leu Gl y Thr Thr Al a Al a Thr Gl u Leu Lys Lys Leu As p Phe Lys 885 890 895
    Page 145
    97047_1
    2018203206 08 May 2018
    Val Ser Ser Thr 900 Ser As n As n Leu Ile 905 Ser Thr Ile Pr o Ser 910 As p As n Leu Al a Al a Gl y Thr As p As n Thr Ser Ser Leu Gl y Pr o Pr o Ser Met 915 920 925 Pr o Val Hi s Tyr As p Ser Gl n Leu As p Thr Thr Leu Phe Gl y Lys Lys 930 935 940 Ser Ser Pr o Leu Thr Gl u Ser Gl y Gl y Pr o Leu Ser Leu Ser Gl u Gl u 945 950 955 960 As n As n As p Ser Lys Leu Leu Gl u Ser Gl y Leu Met As n Ser Gl n Gl u 965 970 975 Ser Ser Tr p Gl y Lys As n Val Ser Ser Gl u Ile Thr Ar g Thr Thr Leu 980 985 990 Gl n Ser As p Gl n Gl u Gl u Ile As p Ty r As p As p Thr I l e Ser Val Gl u 995 1000 1005
    Met Lys
    Lys Gl u Asp Phe Asp
    I l e Ty r As p Gl u As p
    Gl u As n Gl n
    1010
    1015
    1020
    Ser Pro Arg Ser Phe Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Page 146
    2018203206 08 May 2018
    1025 1030 97047 _1 1035 Al a Val Gl u Ar g Leu Tr p As p Tyr Gl y Met Ser Ser Ser Pr o Hi s 1040 1045 1050 Val Leu Ar g As n Ar g Al a Gl n Ser Gl y Ser Val Pr o Gl n Phe Lys 1055 1060 1065 Lys Val Val Phe Gl n Gl u Phe Thr As p Gl y Ser Phe Thr Gl n Pr o 1070 1075 1080 Leu Tyr Ar g Gl y Gl u Leu As n Gl u Hi s Leu Gl y Leu Leu Gl y Pr o 1085 1090 1095 Tyr I l e Ar g Al a Gl u Val Gl u As p As n Ile Met Val Thr Phe Ar g 1100 1105 1110 Asn Gl n Al a Ser Ar g Pr o Tyr Ser Phe Tyr Ser Ser Leu I l e Ser 1115 1120 1125 Tyr Gl u Gl u Asp Gl n Ar g Gl n Gl y Al a Gl u Pr o Ar g Lys As n Phe 1130 1135 1140 Val Lys Pr o As n Gl u Thr Lys Thr Tyr Phe Tr p Lys Val Gl n Hi s 1145 1150 1155
    Page 147
    97047_1
    2018203206 08 May 2018
    Hi s Met 1160 Al a Pr o Thr Lys As p 1165 Gl u Phe As p Cys Lys 1170 Al a Tr p Al a Tyr Phe Ser As p Val As p Leu Gl u Lys As p Val Hi s Ser Gl y Leu 1175 1180 1185 I l e Gl y Pr o Leu Leu Val Cys Hi s Thr As n Thr Leu As n Pr o Al a 1190 1195 1200 Hi s Gl y Ar g Gl n Val Thr Val Gl n Gl u Phe Al a Leu Phe Phe Thr 1205 1210 1215 I l e Phe As p Gl u Thr Lys Ser Tr p Tyr Phe Thr Gl u As n Met Gl u 1220 1225 1230 Ar g As n Cys Ar g Al a Pr o Cys As n Ile Gl n Met Gl u As p Pr o Thr 1235 1240 1245 Phe Lys Gl u As n Tyr Ar g Phe Hi s Al a Ile As n Gl y Tyr I l e Met 1250 1255 1260 Asp Thr Leu Pr o Gl y Leu Val Met Al a Gl n As p Gl n Ar g I l e Ar g 1265 1270 1275 Tr p Tyr Leu Leu Ser Met Gl y Ser As n Gl u As n Ile Hi s Ser I l e
    Page 148
    2018203206 08 May 2018
    1280 1285 97047 _1 1290 Hi s Phe Ser Gl y Hi s Val Phe Thr Val Ar g Lys Lys Gl u Gl u Ty r 1295 1300 1305 Lys Met Al a Leu Ty r As n Leu Ty r Pr o Gl y Val Phe Gl u Thr Val 1310 1315 1320 Gl u Met Leu Pr o Ser Lys Al a Gl y Ile Tr p Ar g Val Gl u Cy s Leu 1325 1330 1335 I l e Gl y Gl u Hi s Leu Hi s Al a Gl y Met Ser Thr Leu Phe Leu Val 1340 1345 1350 Ty r Ser As n Lys Cy s Gl n Thr Pr o Leu Gl y Met Al a Ser Gl y Hi s 1355 1360 1365 I l e Ar g As p Phe Gl n Ile Thr Al a Ser Gl y Gl n Ty r Gl y Gl n Tr p 1370 1375 1380 Al a Pr o Lys Leu Al a Ar g Leu Hi s Ty r Ser Gl y Ser I l e As n Al a 1385 1390 1395 Tr p Ser Thr Lys Gl u Pr o Phe Ser Tr p Ile Lys Val As p Leu Leu 1400 1405 1410
    Page 149
    97047_1
    2018203206 08 May 2018
    Al a Pr o 1415 Met Ile Ile Hi s Gl y 1420 Ile Lys Thr Gl n Gl y 1425 Al a Ar g Gl n Lys Phe Ser Ser Leu Tyr Ile Ser Gl n Phe Ile Ile Met Tyr Ser 1430 1435 1440 Leu As p Gly Lys Lys Tr p Gl n Thr Tyr Ar g Gl y As n Ser Thr Gl y 1445 1450 1455 Thr Leu Met Val Phe Phe Gl y As n Val As p Ser Ser Gl y I l e Lys 1460 1465 1470 Hi s As n I l e Phe Asn Pr o Pr o Ile Ile Al a Ar g Tyr I l e Ar g Leu 1475 1480 1485 Hi s Pr o Thr Hi s Tyr Ser Ile Ar g Ser Thr Leu Ar g Met Gl u Leu 1490 1495 1500 Met Gl y Cys Asp Leu As n Ser Cys Ser Met Pr o Leu Gl y Met Gl u 1505 1510 1515 Ser Lys Al a Ile Ser As p Al a Gl n Ile Thr Al a Ser Ser Tyr Phe 1520 1525 1530 Thr As n Met Phe Al a Thr Tr p Ser Pr o Ser Lys Al a Ar g Leu Hi s
    Page 150
    2018203206 08 May 2018
    1535 1540 97047 _1 1545 Leu Gl n Gl y Ar g Ser As n Al a Tr p Ar g Pr o Gl n Val As n As n Pr o 1550 1555 1560 Lys Gl u Tr p Leu Gl n Val As p Phe Gl n Lys Thr Met Lys Val Thr 1565 1570 1575 Gl y Val Thr Thr Gl n Gl y Val Lys Ser Leu Leu Thr Ser Met Tyr 1580 1585 1590 Val Lys Gl u Phe Leu Ile Ser Ser Ser Gl n As p Gl y Hi s Gl n Tr p 1595 1600 1605 Thr Leu Phe Phe Gl n As n Gl y Lys Val Lys Val Phe Gl n Gl y As n 1610 1615 1620 Gl n As p Ser Phe Thr Pr o Val Val As n Ser Leu As p Pr o Pr o Leu 1625 1630 1635 Leu Thr Ar g Tyr Leu Ar g Ile Hi s Pr o Gl n Ser Tr p Val Hi s Gl n 1640 1645 1650 I l e Al a Leu Ar g Met Gl u Val Leu Gl y Cys Gl u Al a Gl n As p Leu 1655 1660 1665
    Page 151
    2018203206 08 May 2018
    97047 1
    Tyr As p 1670 Lys Thr Hi s Thr Cys 1675 Pr o Pr o Cys Pr o Al a 1680 Pr o Gl u Leu Leu Gl y Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o Lys Pr o Lys As p 1685 1690 1695 Thr Leu Met Ile Ser Ar g Thr Pr o Gl u Val Thr Cys Val Val Val 1700 1705 1710 Asp Val Ser Hi s Gl u As p Pr o Gl u Val Lys Phe As n Tr p Tyr Val 1715 1720 1725 Asp Gl y Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o Ar g Gl u Gl u 1730 1735 1740 Gl n Tyr As n Ser Thr Tyr Ar g Val Val Ser Val Leu Thr Val Leu 1745 1750 1755 Hi s Gl n As p Tr p Leu As n Gl y Lys Gl u Tyr Lys Cys Lys Val Ser 1760 1765 1770 As n Lys Al a Leu Pr o Al a Pr o Ile Gl u Lys Thr Ile Ser Lys Al a 1775 1780 1785 Lys Gl y Gl n Pr o Ar g Gl u Pr o Gl n Val Tyr Thr Leu Pr o Pr o Ser
    Page 152
    97047_1
    2018203206 08 May 2018
    1790 Gl u 1795 Gl n Val Ser Leu 1800 Leu Val Ar g As p 1805 Leu Thr Lys As n 1810 Thr 1815 Cy s Lys Gl y Phe Tyr Pr o Ser As p Ile Al a Val Gl u Tr p Gl u Ser As n 1820 1825 1830 Gl y Gl n Pr o Gl u As n As n Tyr Lys Thr Thr Pr o Pr o Val Leu As p 1835 1840 1845 Ser As p Gl y Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val As p Lys 1850 1855 1860 Ser Ar g Tr p Gl n Gl n Gl y As n Val Phe Ser Cys Ser Val Met Hi s 1865 1870 1875 Gl u Al a Leu Hi s As n Hi s Tyr Thr Gl n Lys Ser Leu Ser Leu Ser 1880 1885 1890
    Pr o Gl y Lys 1895
    <210> 90 <211> 99 <212> DNA
    Page 153
    2018203206 08 May 2018
    97047_1 <213> Art i f i ci al Sequence <220>
    <223> ESC48- Fwd - VWF- D D3 wi t h VI I I si gnal and Bsi W1 site <400> 90 t cgcgacgt a cggccgccac cat gcaaat a gagct ct cca cctgcttctt tctgtgcctt 60 ttgcgattct gctttagcct at cct gt cgg ccccccat g 99 <210> 91 <211> 74 <212> DNA <213> Art i f i ci al Sequence <220>
    <223> ESC51- Rev- VWF D' D3 ( 1- 477 ami no aci d) wi t h 6Hi s and Not 1 si t e <400> 91 t gacct cgag cggccgct ca gt ggt gat gg t gat gat gcg gct cct ggca ggct t cacag 60 gt gaggt t ga caac 74
    <210> 92 <211> 32 <212> DNA <213> Ar t i f i c i al Sequence <220> <223> ESC 89-fwd wi t h Nhe1si t e <400> 92
    Page 154
    2018203206 08 May 2018
    97047_1 ct cact at ag ggagacccaa gct ggct agc cg 32 <210> 93 <211> 43 <212> DNA <213> Artificial Sequence <220>
    <223> ESC 91- r ev wi t h Sal 1 <400> 93 ct ggat cccg ggagt cgact cgt cagt ggt gat ggt gat g at g 43 <210> 94 <211> 40 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> l i nker <400> 94
    Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly
    1 5 10 15
    Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y
    Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser
    Page 155
    97047_1
    35 40
    2018203206 08 May 2018
    <210> 95 <211> 92 <212> DNA <213> Art i f i ci al Sequence <220> <223> LW22- FWD VWF- D D3 wi t h FVIII si gnal sequence and Bsi W site <400> 95 gcgccggccg t acgat gcaa at agagct ct ccacct gct t ct t t ct gt gc ct t t t gcgat tctgctttag cct at cct gt cggcccccca tg <210> 96 <211> 47 <212> DNA <213> Ar t i f i c i al Sequenc e <220> <223> LW23-Rev- Fc with stop codon and Not 1 site <400> 96 t cat caat gt at ct t at cat gt ct gaat t c gcggccgct c at t t acc <210> 97 <211> 41 <212> DNA <213> Ar t i f i c i al Sequenc e
    Page 156
    2018203206 08 May 2018
    97047_1 <220>
    <223> LW24- Fwd- VWF D1 D2D D3 cl oni ng ol i go wi t h Bsi W1 site <400> 97 gcgccggccg tacgatgatt cct gccagat ttgccggggt g 41 <210> 98 <211> 41 <212> DNA <213> Art i f i ci al Sequence <220>
    <223> LW27- Rev- VWF D' D3 ol i go wi t h EcoRV <400> 98 ccaccgccag at atcggctc ctggcaggct tcacaggtga g 41 <210> 99 <211> 1240 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> VWF- D1D2D' D3 pr ot ei n sequence 1 <400> 99
    Met I l e Pr o Al a Ar g Phe Al a Gl y Val Leu Leu Al a Leu Al a Leu I l e
    1 5 10 15
    Leu Pr o Gl y Thr Leu Cy s Al a Gl u Gl y Thr Ar g Gl y Ar g Ser Ser Thr
    Page 157
    2018203206 08 May 2018
    20 25 97047_1 30 Al a Ar g Cy s Ser Leu Phe Gl y Ser As p Phe Val As n Thr Phe As p Gl y 35 40 45 Ser Met Ty r Ser Phe Al a Gl y Ty r Cy s Ser Ty r Leu Leu Al a Gl y Gl y 50 55 60 Cy s Gl n Lys Ar g Ser Phe Ser Ile Ile Gl y As p Phe Gl n As n Gl y Lys 65 70 75 80 Ar g Val Ser Leu Ser Val Ty r Leu Gl y Gl u Phe Phe As p I l e Hi s Leu 85 90 95 Phe Val As n Gl y Thr Val Thr Gl n Gl y As p Gl n Ar g Val Ser Met Pr o 100 105 110 Ty r Al a Ser Lys Gl y Leu Ty r Leu Gl u Thr Gl u Al a Gl y Ty r Ty r Lys 115 120 125 Leu Ser Gl y Gl u Al a Ty r Gl y Phe Val Al a Ar g Ile As p Gl y Ser Gl y 130 135 140 As n Phe Gl n Val Leu Leu Ser As p Ar g Ty r Phe As n Lys Thr Cy s Gl y 145 150 155 160
    Page 158
    2018203206 08 May 2018
    97047 1
    Leu Cys Gl y As n Phe As n 165 Ile Phe Al a Gl u 170 As p As p Phe Met Thr 175 Gl n Gl u Gl y Thr Leu Thr Ser As p Pr o Tyr As p Phe Al a As n Ser Tr p Al a 180 185 190 Leu Ser Ser Gl y Gl u Gl n Tr p Cys Gl u Ar g Al a Ser Pr o Pr o Ser Ser 195 200 205 Ser Cys As n I l e Ser Ser Gl y Gl u Met Gl n Lys Gl y Leu Tr p Gl u Gl n 210 215 220 Cys Gl n Leu Leu Lys Ser Thr Ser Val Phe Al a Ar g Cys Hi s Pr o Leu 225 230 235 240 Val As p Pr o Gl u Pr o Phe Val Al a Leu Cys Gl u Lys Thr Leu Cys Gl u 245 250 255 Cys Al a Gl y Gl y Leu Gl u Cys Al a Cys Pr o Al a Leu Leu Gl u Tyr Al a 260 265 270 Ar g Thr Cys Al a Gl n Gl u Gl y Met Val Leu Tyr Gl y Tr p Thr As p Hi s 275 280 285 Ser Al a Cys Ser Pr o Val Cys Pr o Al a Gl y Met Gl u Tyr Ar g Gl n Cys
    Page 159
    2018203206 08 May 2018
    97047_1
    290 295 300
    Val Ser Pr o Cys Al a Ar g Thr Cy s Gl n Ser Leu Hi s I l e As n Gl u Met 305 310 315 320 Cys Gl n Gl u Ar g Cys Val As p Gl y Cys Ser Cys Pr o Gl u Gl y Gl n Leu 325 330 335 Leu As p Gl u Gl y Leu Cys Val Gl u Ser Thr Gl u Cys Pr o Cys Val Hi s 340 345 350 Ser Gl y Lys Ar g Tyr Pr o Pr o Gl y Thr Ser Leu Ser Ar g As p Cys As n 355 36 0 365 Thr Cys I l e Cys Ar g As n Ser Gl n Tr p Ile Cys Ser As n Gl u Gl u Cys 370 375 380 Pr o Gl y Gl u Cys Leu Val Thr Gl y Gl n Ser Hi s Phe Lys Ser Phe As p 385 390 395 400 As n Ar g Tyr Phe Thr Phe Ser Gl y Ile Cys Gl n Tyr Leu Leu Al a Ar g 405 410 415 As p Cys Gl n As p Hi s Ser Phe Se r Ile Val Ile Gl u Thr Val Gl n Cys 420 425 430
    Page 160
    97047_1
    2018203206 08 May 2018
    Al a As p As p 435 Ar g As p Al a Val Cy s 440 Thr Ar g Ser Val Thr 445 Val Ar g Leu Pr o Gl y Leu Hi s As n Ser Leu Val Lys Leu Lys Hi s Gl y Al a Gl y Val 450 455 460 Al a Met As p Gl y Gl n As p Ile Gl n Leu Pr o Leu Leu Lys Gl y As p Leu 465 470 475 480 Ar g I l e Gl n Hi s Thr Val Thr Al a Ser Val Ar g Leu Ser Ty r Gl y Gl u 485 490 495 As p Leu Gl n Met As p Tr p As p Gl y Ar g Gl y Ar g Leu Leu Val Lys Leu 500 505 510 Ser Pr o Val Ty r Al a Gl y Lys Thr Cy s Gl y Leu Cy s Gl y As n Ty r As n 515 520 525 Gl y As n Gl n Gl y As p As p Phe Leu Thr Pr o Ser Gl y Leu Al a Gl u Pr o 530 535 540 Ar g Val Gl u As p Phe Gl y As n Al a Tr p Lys Leu Hi s Gl y As p Cy s Gl n 545 550 555 560 As p Leu Gl n Lys Gl n Hi s Ser As p Pr o Cy s Al a Leu As n Pr o Ar g Met
    Page 161
    2018203206 08 May 2018
    97047_1
    565 570 575
    Thr Ar g Phe Ser 580 Gl u Gl u Al a Cys Al a 585 Val Leu Thr Ser Pr o 590 Thr Phe Gl u Al a Cys Hi s Ar g Al a Val Ser Pr o Leu Pr o Tyr Leu Ar g As n Cys 595 600 605 Ar g Tyr As p Val Cys Ser Cys Ser As p Gl y Ar g Gl u Cys Leu Cys Gl y 610 615 620 Al a Leu Al a Ser Tyr Al a Al a Al a Cys Al a Gl y Ar g Gl y Val Ar g Val 625 630 635 640 Al a Tr p Ar g Gl u Pr o Gl y Ar g Cys Gl u Leu As n Cys Pr o Lys Gl y Gl n 645 650 655 Val Tyr Leu Gl n Cys Gl y Thr Pr o Cys As n Leu Thr Cys Ar g Ser Leu 660 665 670 Ser Tyr Pr o As p Gl u Gl u Cys As n Gl u Al a Cys Leu Gl u Gl y Cys Phe 675 680 685 Cys Pr o Pr o Gl y Leu Tyr Met As p Gl u Ar g Gl y As p Cys Val Pr o Lys 690 695 700
    Page 162
    97047_1
    2018203206 08 May 2018
    Al a Gl n 705 Cy s Pr o Cy s Ty r 710 Ty r As p Gl y Gl u Ile 715 Phe Gl n Pr o Gl u As p 720 I l e Phe Ser As p Hi s Hi s Thr Met Cy s Ty r Cy s Gl u As p Gl y Phe Met 725 730 735 Hi s Cy s Thr Met Ser Gl y Val Pr o Gl y Ser Leu Leu Pr o As p Al a Val 740 745 750 Leu Ser Ser Pr o Leu Ser Hi s Ar g Ser Lys Ar g Ser Leu Ser Cy s Ar g 755 760 765 Pr o Pr o Met Val Lys Leu Val Cy s Pr o Al a As p As n Leu Ar g Al a Gl u 770 775 780 Gl y Leu Gl u Cy s Thr Lys Thr Cy s Gl n As n Ty r As p Leu Gl u Cy s Met 785 790 795 800 Ser Met Gl y Cy s Val Ser Gl y Cy s Leu Cy s Pr o Pr o Gl y Met Val Ar g 805 810 815 Hi s Gl u As n Ar g Cy s Val Al a Leu Gl u Ar g Cy s Pr o Cy s Phe Hi s Gl n 820 825 830 Gl y Lys Gl u Ty r Al a Pr o Gl y Gl u Thr Val Lys Ile Gl y Cy s As n Thr
    Page 163
    2018203206 08 May 2018
    97047_1
    835 840 845
    Cys Val Cy s Ar g As p Ar g Lys 855 Tr p As n Cy s Thr As p 860 Hi s Val Cy s As p 850 Al a Thr Cy s Ser Thr Ile Gl y Met Al a Hi s Ty r Leu Thr Phe As p Gl y 865 870 875 880 Leu Lys Ty r Leu Phe Pr o Gl y Gl u Cy s Gl n Ty r Val Leu Val Gl n As p 885 890 895 Ty r Cy s Gl y Ser As n Pr o Gl y Thr Phe Ar g Ile Leu Val Gl y As n Lys 900 905 910 Gl y Cy s Ser Hi s Pr o Ser Val Lys Cy s Lys Lys Ar g Val Thr I l e Leu 915 920 925 Val Gl u Gl y Gl y Gl u Ile Gl u Leu Phe As p Gl y Gl u Val As n Val Lys 930 935 940 Ar g Pr o Met Lys As p Gl u Thr Hi s Phe Gl u Val Val Gl u Ser Gl y Ar g 945 950 955 960 Ty r I l e I l e Leu Leu Leu Gl y Lys Al a Leu Ser Val Val Tr p As p Ar g 965 970 975
    Page 164
    2018203206 08 May 2018
    97047_1
    Hi s Leu Ser I l e Ser Val Val Leu Lys Gl n Thr Tyr Gl n Gl u Lys Val 980 985 990
    Cys Gl y Leu Cys Gl y Asn Phe Asp Gl y Ile Gl n Asn Asn Asp Leu Thr 995 1000 1005
    Ser Ser 1010 As n Leu Gl n Val Gl u 1015 Gl u As p Pr o Val As p 1020 Phe Gl y As n Ser Tr p Lys Val Ser Ser Gl n Cy s Al a As p Thr Ar g Lys Val Pr o 1025 1030 1035 Leu As p Ser Ser Pr o Al a Thr Cy s Hi s As n As n Ile Met Lys Gl n 1040 1045 1050 Thr Met Val As p Ser Ser Cy s Ar g Ile Leu Thr Ser As p Val Phe 1055 1060 1065 Gl n As p Cy s As n Lys Leu Val As p Pr o Gl u Pr o Ty r Leu As p Val 1070 1075 1080 Cy s I l e Ty r As p Thr Cy s Ser Cy s Gl u Ser Ile Gl y As p Cy s Al a 1085 1090 1095 Cy s Phe Cy s As p Thr Ile Al a Al a Ty r Al a Hi s Val Cy s Al a Gl n
    Page 165
    2018203206 08 May 2018
    1100 1105 97047 _1 1110 Hi s Gl y Lys Val Val Thr Tr p Ar g Thr Al a Thr Leu Cy s Pr o Gl n 1115 1120 1125 Ser Cys Gl u Gl u Ar g As n Leu Ar g Gl u As n Gl y Ty r Gl u Cy s Gl u 1130 1135 1140 Tr p Ar g Ty r As n Ser Cy s Al a Pr o Al a Cy s Gl n Val Thr Cy s Gl n 1145 1150 1155 Hi s Pr o Gl u Pr o Leu Al a Cy s Pr o Val Gl n Cy s Val Gl u Gl y Cy s 1160 1165 1170 Hi s Al a Hi s Cy s Pr o Pr o Gl y Lys Ile Leu As p Gl u Leu Leu Gl n 1175 1180 1185 Thr Cy s Val As p Pr o Gl u As p Cy s Pr o Val Cy s Gl u Val Al a Gl y 1190 1195 1200 Ar g Ar g Phe Al a Ser Gl y Lys Lys Val Thr Leu As n Pr o Ser As p 1205 1210 1215 Pr o Gl u Hi s Cy s Gl n Ile Cy s Hi s Cy s As p Val Val As n Leu Thr 1220 1225 1230
    Page 166
    97047_1
    2018203206 08 May 2018
    Cys Gl u Al a Cys Gl n Gl u Pro 1235 1240 <210> 100 <211> 477 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> VWF- D' D3 pr ot ei n sequence 2 <400> 100
    Ser 1 Leu Ser Cys Ar g 5 Pr o Pr o Met Val Lys 10 Leu Val Cys Pr o Al a As p 15 As n Leu Ar g Al a Gl u Gl y Leu Gl u Cys Thr Lys Thr Cys Gl n As n Tyr 20 25 30 As p Leu Gl u Cys Met Ser Met Gl y Cys Val Ser Gl y Cys Leu Cys Pr o 35 40 45 Pr o Gl y Met Val Ar g Hi s Gl u As n Ar g Cys Val Al a Leu Gl u Ar g Cys 50 55 60 Pr o Cys Phe Hi s Gl n Gl y Lys Gl u Tyr Al a Pr o Gl y Gl u Thr Val Lys 65 70 75 80
    Page 167
    97047_1
    2018203206 08 May 2018
    I l e Gl y Cy s As n Thr 85 Cy s Val Cy s Ar g As p Ar g 90 Lys Tr p As n Cy s 95 Thr Asp Hi s Val Cy s As p Al a Thr Cy s Ser Thr Ile Gl y Met Al a Hi s Ty r 100 105 110 Leu Thr Phe As p Gl y Leu Lys Ty r Leu Phe Pr o Gl y Gl u Cy s Gl n Ty r 115 120 125 Val Leu Val Gl n As p Ty r Cy s Gl y Ser As n Pr o Gl y Thr Phe Ar g I l e 130 135 140 Leu Val Gl y As n Lys Gl y Cy s Ser Hi s Pr o Ser Val Lys Cy s Lys Lys 145 150 155 160 Ar g Val Thr I l e Leu Val Gl u Gl y Gl y Gl u Ile Gl u Leu Phe As p Gl y 165 170 175 Gl u Val As n Val Lys Ar g Pr o Met Lys As p Gl u Thr Hi s Phe Gl u Val 180 185 190 Val Gl u Ser Gl y Ar g Ty r Ile Ile Leu Leu Leu Gl y Lys Al a Leu Ser 195 200 205 Val Val Tr p As p Ar g Hi s Leu Ser Ile Ser Val Val Leu Lys Gl n Thr
    Page 168
    2018203206 08 May 2018
    97047_1
    210 215 220
    Ty r 225 Gl n Gl u Lys Val Cy s 230 Gl y Leu Cy s Gl y As n 235 Phe As p Gl y I l e Gl n 240 As n As n As p Leu Thr Ser Ser As n Leu Gl n Val Gl u Gl u As p Pr o Val 245 250 255 As p Phe Gl y As n Ser Tr p Lys Val Ser Ser Gl n Cy s Al a As p Thr Ar g 260 265 270 Lys Val Pr o Leu As p Ser Ser Pr o Al a Thr Cy s Hi s As n As n I l e Met 275 280 285 Lys Gl n Thr Met Val As p Ser Ser Cy s Ar g Ile Leu Thr Ser As p Val 290 295 300 Phe Gl n As p Cy s As n Lys Leu Val As p Pr o Gl u Pr o Ty r Leu As p Val 305 310 315 320 Cy s I l e Ty r As p Thr Cy s Ser Cy s Gl u Ser Ile Gl y As p Cy s Al a Cy s 325 330 335 Phe Cy s As p Thr Ile Al a Al a Ty r Al a Hi s Val Cy s Al a Gl n Hi s Gl y 340 345 350
    Page 169
    97047_1
    2018203206 08 May 2018
    Lys Val Val 355 Thr Tr p Ar g Thr Al a 360 Thr Leu Cys Pr o Gl n 365 Ser Cys Gl u Gl u Ar g As n Leu Ar g Gl u As n Gl y Tyr Gl u Cys Gl u Tr p Ar g Tyr As n 370 375 380 Ser Cys Al a Pr o Al a Cys Gl n Val Thr Cys Gl n Hi s Pr o Gl u Pr o Leu 385 390 395 400 Al a Cys Pr o Val Gl n Cys Val Gl u Gl y Cys Hi s Al a Hi s Cys Pr o Pr o 405 410 415 Gl y Lys I l e Leu As p Gl u Leu Leu Gl n Thr Cys Val As p Pr o Gl u As p 420 425 430 Cys Pr o Val Cys Gl u Val Al a Gl y Ar g Ar g Phe Al a Ser Gl y Lys Lys 435 440 445 Val Thr Leu As n Pr o Ser As p Pr o Gl u Hi s Cys Gl n I l e Cys Hi s Cys 450 455 460
    Asp Val Val Asn Leu Thr Cys Gl u Al a Cys Gl n Gl u Pro
    465
    470
    475 <210> 101
    Page 170
    2018203206 08 May 2018
    97047_1 <211> 2754 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> pSYN-FVI I I - 161 <400> 101
    Met 1 Gl n I l e Gl u Leu Ser 5 Thr Cys Phe Phe 10 Leu Cys Leu Leu Ar g 15 Phe Cys Phe Ser Al a Thr Ar g Ar g Tyr Tyr Leu Gl y Al a Val Gl u Leu Ser 20 25 30 Tr p As p Tyr Met Gl n Ser As p Leu Gl y Gl u Leu Pr o Val As p Al a Ar g 35 40 45 Phe Pr o Pr o Ar g Val Pr o Lys Ser Phe Pr o Phe As n Thr Ser Val Val 50 55 60 Tyr Lys Lys Thr Leu Phe Val Gl u Phe Thr As p Hi s Leu Phe As n I l e 65 70 75 80 Al a Lys Pr o Ar g Pr o Pr o Tr p Met Gl y Leu Leu Gl y Pr o Thr I l e Gl n 85 90 95 Al a Gl u Val Tyr As p Thr Val Val Ile Thr Leu Lys As n Met Al a Ser
    Page 171
    2018203206 08 May 2018
    100 105 97047_1 110 Hi s Pr o Val Ser Leu Hi s Al a Val Gl y Val Ser Tyr Tr p Lys Al a Ser 115 120 125 Gl u Gl y Al a Gl u Tyr As p As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p 130 135 140 As p Lys Val Phe Pr o Gl y Gl y Ser Hi s Thr Tyr Val Tr p Gl n Val Leu 145 150 155 160 Lys Gl u As n Gl y Pr o Met Al a Ser As p Pr o Leu Cys Leu Thr Tyr Ser 165 170 175 Tyr Leu Ser Hi s Val As p Leu Val Lys As p Leu As n Ser Gl y Leu I l e 180 185 190 Gl y Al a Leu Leu Val Cys Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr 195 200 205 Gl n Thr Leu Hi s Lys Phe Ile Leu Leu Phe Al a Val Phe As p Gl u Gl y 210 215 220 Lys Ser Tr p Hi s Ser Gl u Thr Lys As n Ser Leu Met Gl n As p Ar g As p 225 230 235 240
    Page 172
    97047 1
    2018203206 08 May 2018
    Al a Al a Ser Al a Ar g Al a 245 Tr p Pr o Lys Met 250 Hi s Thr Val As n Gl y 255 Tyr Val As n Ar g Ser Leu Pr o Gl y Leu Ile Gl y Cys Hi s Ar g Lys Ser Val 260 265 270 Tyr Tr p Hi s Val Ile Gl y Met Gl y Thr Thr Pr o Gl u Val Hi s Ser I l e 275 280 285 Phe Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser 290 295 300 Leu Gl u I l e Ser Pr o Ile Thr Phe Leu Thr Al a Gl n Thr Leu Leu Met 305 310 315 320 As p Leu Gl y Gl n Phe Leu Leu Phe Cys Hi s Ile Ser Ser Hi s Gl n Hi s 325 330 335 As p Gl y Met Gl u Al a Tyr Val Lys Val As p Ser Cys Pr o Gl u Gl u Pr o 340 345 350 Gl n Leu Ar g Met Lys As n As n Gl u Gl u Al a Gl u As p Tyr As p As p As p 355 360 365 Leu Thr As p Ser Gl u Met As p Val Val Ar g Phe As p As p As p As n Ser
    Page 173
    2018203206 08 May 2018
    97047_1
    370 375 380
    Pr o 385 Ser Phe I l e Gl n Ile 390 Ar g Ser Val Al a Lys 395 Lys Hi s Pr o Lys Thr 400 Tr p Val Hi s Tyr Ile Al a Al a Gl u Gl u Gl u As p Tr p As p Tyr Al a Pr o 405 410 415 Leu Val Leu Al a Pr o As p As p Ar g Ser Tyr Lys Ser Gl n Tyr Leu As n 420 425 430 As n Gly Pr o Gl n Ar g Ile Gl y Ar g Lys Tyr Lys Lys Val Ar g Phe Met 435 440 445 Al a Tyr Thr As p Gl u Thr Phe Lys Thr Ar g Gl u Al a I l e Gl n Hi s Gl u 450 455 460 Ser Gl y I l e Leu Gl y Pr o Leu Leu Tyr Gl y Gl u Val Gl y As p Thr Leu 465 470 475 480 Leu I l e I l e Phe Lys As n Gl n Al a Ser Ar g Pr o Tyr As n I l e Tyr Pr o 485 490 495 Hi s Gl y I l e Thr As p Val Ar g Pr o Leu Tyr Ser Ar g Ar g Leu Pr o Lys 500 505 510
    Page 174
    97047_1
    2018203206 08 May 2018
    Gl y Val Lys 515 Hi s Leu Lys Asp Phe 520 Pr o Ile Leu Pr o Gl y 525 Gl u I l e Phe Lys Tyr Lys Tr p Thr Val Thr Val Gl u As p Gl y Pr o Thr Lys Ser As p 530 535 540 Pr o Ar g Cys Leu Thr Ar g Ty r Ty r Ser Ser Phe Val As n Met Gl u Ar g 545 550 555 560 Asp Leu Al a Ser Gl y Leu Ile Gl y Pr o Leu Leu Ile Cy s Ty r Lys Gl u 565 570 575 Ser Val As p Gl n Ar g Gl y As n Gl n Ile Met Ser As p Lys Ar g As n Val 580 585 590 I l e Leu Phe Ser Val Phe As p Gl u As n Ar g Ser Tr p Ty r Leu Thr Gl u 595 600 605 As n I l e Gl n Ar g Phe Leu Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p 610 615 620 Pr o Gl u Phe Gl n Al a Ser As n Ile Met Hi s Ser Ile As n Gl y Ty r Val 625 630 635 640 Phe As p Ser Leu Gl n Leu Ser Val Cy s Leu Hi s Gl u Val Al a Ty r Tr p
    Page 175
    2018203206 08 May 2018
    97047_1
    645 650 655
    Ty r I l e Leu Ser 660 Ile Gl y Al a Gl n Thr 665 As p Phe Leu Ser Val 670 Phe Phe Ser Gl y Ty r Thr Phe Lys Hi s Lys Met Val Ty r Gl u As p Thr Leu Thr 675 680 685 Leu Phe Pr o Phe Ser Gl y Gl u Thr Val Phe Met Ser Met Gl u As n Pr o 690 695 700 Gl y Leu Tr p I l e Leu Gl y Cy s Hi s As n Ser As p Phe Ar g As n Ar g Gl y 705 710 715 720 Met Thr Al a Leu Leu Lys Val Ser Ser Cy s As p Lys As n Thr Gl y As p 725 730 735 Ty r Ty r Gl u As p Ser Ty r Gl u As p Ile Ser Al a Ty r Leu Leu Ser Lys 740 745 750 As n As n Al a I l e Gl u Pr o Ar g Ser Phe Ser Gl n As n Pr o Pr o Val Leu 755 760 765 Lys Ar g Hi s Gl n Ar g Gl u Ile Thr Ar g Thr Thr Leu Gl n Ser As p Gl n 770 775 780
    Page 176
    97047_1
    2018203206 08 May 2018
    Gl u 785 Gl u I l e Asp Tyr As p 790 As p Thr Ile Ser Val 795 Gl u Met Lys Lys Gl u 800 As p Phe As p I l e Tyr As p Gl u As p Gl u As n Gl n Ser Pr o Ar g Ser Phe 805 810 815 Gl n Lys Lys Thr Ar g Hi s Tyr Phe Ile Al a Al a Val Gl u Ar g Leu Tr p 820 825 830 As p Tyr Gl y Met Ser Ser Ser Pr o Hi s Val Leu Ar g As n Ar g Al a Gl n 835 840 845 Ser Gl y Ser Val Pr o Gl n Phe Lys Lys Val Val Phe Gl n Gl u Phe Thr 850 855 860 As p Gl y Ser Phe Thr Gl n Pr o Leu Tyr Ar g Gl y Gl u Leu As n Gl u Hi s 865 870 875 880 Leu Gl y Leu Leu Gl y Pr o Tyr Ile Ar g Al a Gl u Val Gl u As p As n I l e 885 890 895 Met Val Thr Phe Ar g As n Gl n Al a Ser Ar g Pr o Tyr Ser Phe Tyr Ser 900 905 910 Ser Leu I l e Ser Tyr Gl u Gl u As p Gl n Ar g Gl n Gl y Al a Gl u Pr o Ar g
    Page 177
    2018203206 08 May 2018
    915 920 97047_1 925 Lys As n Phe Val Lys Pr o As n Gl u Thr Lys Thr Tyr Phe Tr p Lys Val 930 935 940 Gl n Hi s Hi s Met Al a Pr o Thr Lys As p Gl u Phe As p Cys Lys Al a Tr p 945 950 955 960 Al a Tyr Phe Ser As p Val As p Leu Gl u Lys As p Val Hi s Ser Gl y Leu 965 970 975 I l e Gl y Pr o Leu Leu Val Cys Hi s Thr As n Thr Leu As n Pr o Al a Hi s 980 985 990 Gl y Ar g Gl n Val Thr Val Gl n Gl u Phe Al a Leu Phe Phe Thr I l e Phe
    995 1000 1005
    As p Gl u
    Thr Lys Ser Trp Tyr
    Phe Thr
    Gl u Asn Met
    Gl u Ar g As n
    1010
    1015
    1020
    Cys Arg
    Al a Pro Cys Asn Ile
    Gl n Met Gl u Asp Pr o
    Thr Phe Lys
    1025
    1030
    1035
    Gl u As n
    Tyr Arg Phe Hi s Al a
    I l e As n Gl y Ty r I l e
    Met Asp Thr
    1040
    1045
    1050
    Page 178
    97047_1
    2018203206 08 May 2018
    Leu Pr o 1055 Gl y Leu Val Met Al a 1060 Gl n As p Gl n Ar g Ile 1065 Ar g Tr p Ty r Leu Leu Ser Met Gl y Ser As n Gl u As n Ile Hi s Ser I l e Hi s Phe 1070 1075 1080 Ser Gl y Hi s Val Phe Thr Val Ar g Lys Lys Gl u Gl u Ty r Lys Met 1085 1090 1095 Al a Leu Ty r As n Leu Ty r Pr o Gl y Val Phe Gl u Thr Val Gl u Met 1100 1105 1110 Leu Pr o Ser Lys Al a Gl y Ile Tr p Ar g Val Gl u Cy s Leu I l e Gl y 1115 1120 1125 Gl u Hi s Leu Hi s Al a Gl y Met Ser Thr Leu Phe Leu Val Ty r Ser 1130 1135 1140 As n Lys Cy s Gl n Thr Pr o Leu Gl y Met Al a Ser Gl y Hi s I l e Ar g 1145 1150 1155 As p Phe Gl n Ile Thr Al a Ser Gl y Gl n Ty r Gl y Gl n Tr p Al a Pr o 1160 1165 1170 Lys Leu Al a Arg Leu Hi s Ty r Ser Gl y Ser Ile As n Al a Tr p Ser
    Page 179
    2018203206 08 May 2018
    1175 1180 97047 _1 1185 Thr Lys Gl u Pr o Phe Ser Tr p Ile Lys Val As p Leu Leu Al a Pr o 1190 1195 1200 Met I l e I l e Hi s Gl y Ile Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe 1205 1210 1215 Ser Ser Leu Tyr Ile Ser Gl n Phe Ile Ile Met Tyr Ser Leu As p 1220 1225 1230 Gl y Lys Lys Tr p Gl n Thr Tyr Ar g Gl y As n Ser Thr Gl y Thr Leu 1235 1240 1245 Met Val Phe Phe Gl y As n Val As p Ser Ser Gl y Ile Lys Hi s As n 1250 1255 1260 I l e Phe As n Pr o Pr o Ile Ile Al a Ar g Tyr Ile Ar g Leu Hi s Pr o 1265 1270 1275 Thr Hi s Tyr Ser Ile Ar g Ser Thr Leu Ar g Met Gl u Leu Met Gl y 1280 1285 1290 Cys As p Leu As n Ser Cys Ser Met Pr o Leu Gl y Met Gl u Ser Lys 1295 1300 1305
    Page 180
    97047_1
    2018203206 08 May 2018
    Al a I l e 1310 Ser As p Al a Gl n Ile 1315 Thr Al a Ser Ser Ty r 1320 Phe Thr As n Met Phe Al a Thr Tr p Ser Pr o Ser Lys Al a Ar g Leu Hi s Leu Gl n 1325 1330 1335 Gl y Ar g Ser As n Al a Tr p Ar g Pr o Gl n Val As n As n Pr o Lys Gl u 1340 1345 1350 Tr p Leu Gl n Val As p Phe Gl n Lys Thr Met Lys Val Thr Gl y Val 1355 1360 1365 Thr Thr Gl n Gl y Val Lys Ser Leu Leu Thr Ser Met Ty r Val Lys 1370 1375 1380 Gl u Phe Leu Ile Ser Ser Ser Gl n As p Gl y Hi s Gl n Tr p Thr Leu 1385 1390 1395 Phe Phe Gl n As n Gl y Lys Val Lys Val Phe Gl n Gl y As n Gl n As p 1400 1405 1410 Ser Phe Thr Pr o Val Val As n Ser Leu As p Pr o Pr o Leu Leu Thr 1415 1420 1425 Ar g Ty r Leu Ar g Ile Hi s Pr o Gl n Ser Tr p Val Hi s Gl n I l e Al a
    Page 181
    2018203206 08 May 2018
    1430 1435 97047 _1 1440 Leu Ar g Met Gl u Val Leu Gl y Cy s Gl u Al a Gl n As p Leu Ty r As p 1445 1450 1455 Lys Thr Hi s Thr Cy s Pr o Pr o Cy s Pr o Al a Pr o Gl u Leu Leu Gl y 1460 1465 1470 Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o Lys Pr o Lys As p Thr Leu 1475 1480 1485 Met I l e Ser Ar g Thr Pr o Gl u Val Thr Cy s Val Val Val As p Val 1490 1495 1500 Ser Hi s Gl u As p Pr o Gl u Val Lys Phe As n Tr p Ty r Val As p Gl y 1505 1510 1515 Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Ty r 1520 1525 1530 As n Ser Thr Ty r Ar g Val Val Ser Val Leu Thr Val Leu Hi s Gl n 1535 1540 1545 As p Tr p Leu As n Gl y Lys Gl u Ty r Lys Cy s Lys Val Ser As n Lys 1550 1555 1560
    Page 182
    97047_1
    2018203206 08 May 2018
    Al a Leu 1565 Pr o Al a Pr o Ile Gl u 1570 Lys Thr Ile Ser Lys 1575 Al a Lys Gl y Gl n Pr o Ar g Gl u Pr o Gl n Val Tyr Thr Leu Pr o Pr o Ser Ar g As p 1580 1585 1590 Gl u Leu Thr Lys As n Gl n Val Ser Leu Thr Cys Leu Val Lys Gl y 1595 1600 1605 Phe Tyr Pr o Ser As p Ile Al a Val Gl u Tr p Gl u Ser As n Gl y Gl n 1610 1615 1620 Pr o Gl u As n As n Tyr Lys Thr Thr Pr o Pr o Val Leu As p Ser As p 1625 1630 1635 Gl y Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val As p Lys Ser Ar g 1640 1645 1650 Tr p Gl n Gl n Gl y As n Val Phe Ser Cys Ser Val Met Hi s Gl u Al a 1655 1660 1665 Leu Hi s As n Hi s Tyr Thr Gl n Lys Ser Leu Ser Leu Ser Pr o Gl y 1670 1675 1680 Lys Ar g Ar g Ar g Ar g Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y
    Page 183
    2018203206 08 May 2018
    1685 1690 97047 _1 1695 Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y 1700 1705 1710 Ser Gl y Gl y Gl y Gl y Ser Ar g Lys Ar g Ar g Lys Ar g Ser Leu Ser 1715 1720 1725 Cy s Ar g Pr o Pr o Met Val Lys Leu Val Cy s Pr o Al a As p As n Leu 1730 1735 1740 Ar g Al a Gl u Gl y Leu Gl u Cy s Thr Lys Thr Cy s Gl n As n Ty r As p 1745 1750 1755 Leu Gl u Cy s Met Ser Met Gl y Cy s Val Ser Gl y Cy s Leu Cy s Pr o 1760 1765 1770 Pr o Gl y Met Val Ar g Hi s Gl u As n Ar g Cy s Val Al a Leu Gl u Ar g 1775 1780 1785 Cy s Pr o Cy s Phe Hi s Gl n Gl y Lys Gl u Ty r Al a Pr o Gl y Gl u Thr 1790 1795 1800 Val Lys I l e Gl y Cy s As n Thr Cy s Val Cy s Ar g As p Ar g Lys Tr p 1805 1810 1815
    Page 184
    97047_1
    2018203206 08 May 2018
    As n Cy s 1820 Thr As p Hi s Val Cy s 1825 As p Al a Thr Cy s Ser 1830 Thr I l e Gl y Met Al a Hi s Ty r Leu Thr Phe As p Gl y Leu Lys Ty r Leu Phe Pr o 1835 1840 1845 Gl y Gl u Cy s Gl n Ty r Val Leu Val Gl n As p Ty r Cy s Gl y Ser As n 1850 1855 1860 Pr o Gl y Thr Phe Ar g Ile Leu Val Gl y As n Lys Gl y Cy s Ser Hi s 1865 1870 1875 Pr o Ser Val Lys Cy s Lys Lys Ar g Val Thr Ile Leu Val Gl u Gl y 1880 1885 1890 Gl y Gl u I l e Gl u Leu Phe As p Gl y Gl u Val As n Val Lys Ar g Pr o 1895 1900 1905 Met Lys As p Gl u Thr Hi s Phe Gl u Val Val Gl u Ser Gl y Ar g Ty r 1910 1915 1920 I l e I l e Leu Leu Leu Gl y Lys Al a Leu Ser Val Val Tr p As p Ar g 1925 1930 1935 Hi s Leu Ser Ile Ser Val Val Leu Lys Gl n Thr Ty r Gl n Gl u Lys
    Page 185
    2018203206 08 May 2018
    1940 1945 97047 _1 1950 Val Cy s Gl y Leu Cy s Gl y As n Phe As p Gl y Ile Gl n As n As n As p 1955 1960 1965 Leu Thr Ser Ser As n Leu Gl n Val Gl u Gl u As p Pr o Val As p Phe 1970 1975 1980 Gl y As n Ser Tr p Lys Val Ser Ser Gl n Cy s Al a As p Thr Ar g Lys 1985 1990 1995 Val Pr o Leu As p Ser Ser Pr o Al a Thr Cy s Hi s As n As n I l e Met 2000 2005 2010 Lys Gl n Thr Met Val As p Ser Ser Cy s Ar g Ile Leu Thr Ser As p 2015 2020 2025 Val Phe Gl n As p Cy s As n Lys Leu Val As p Pr o Gl u Pr o Ty r Leu 2030 2035 2040 As p Val Cy s Ile Ty r As p Thr Cy s Ser Cy s Gl u Ser I l e Gl y As p 2045 2050 2055 Cy s Al a Al a Phe Cy s As p Thr Ile Al a Al a Ty r Al a Hi s Val Cy s 2060 2065 2070
    Page 186
    97047_1
    2018203206 08 May 2018
    Al a Gl n 2075 Hi s Gl y Lys Val Val 2080 Thr Tr p Ar g Thr Al a 2085 Thr Leu Cy s Pr o Gl n Ser Cy s Gl u Gl u Ar g As n Leu Ar g Gl u As n Gl y Ty r Gl u 2090 2095 2100 Al a Gl u Tr p Ar g Ty r As n Ser Cy s Al a Pr o Al a Cy s Gl n Val Thr 2105 2110 2115 Cy s Gl n Hi s Pr o Gl u Pr o Leu Al a Cy s Pr o Val Gl n Cy s Val Gl u 2120 2125 2130 Gl y Cy s Hi s Al a Hi s Cy s Pr o Pr o Gl y Lys Ile Leu As p Gl u Leu 2135 2140 2145 Leu Gl n Thr Cy s Val As p Pr o Gl u As p Cy s Pr o Val Cy s Gl u Val 2150 2155 2160 Al a Gl y Ar g Ar g Phe Al a Ser Gl y Lys Lys Val Thr Leu As n Pr o 2165 2170 2175 Ser As p Pr o Gl u Hi s Cy s Gl n Ile Cy s Hi s Cy s As p Val Val As n 2180 2185 2190 Leu Thr Cy s Gl u Al a Cy s Gl n Gl u Pr o Ile Ser Gl y Thr Ser Gl u
    Page 187
    97047_1
    2205
    2018203206 08 May 2018
    2195 2200 Ser Al a Thr Pr o Gl u Ser Gl y 2210 2215 Gl y Ser Gl u Thr Pr o Gl y Thr 2225 2230
    Pr o Gl y Ser Gl u Pr o Al a Thr Ser 2220
    Ser Gl u Ser Al a Thr Pr o Gl u Ser
    2235
    Gl y Pr o
    Gl y Ser Gl u Pr o Al a
    Thr Ser Gl y Ser Gl u
    Thr Pr o Gl y
    2240
    2245
    2250
    Thr Ser
    Gl u Ser Al a Thr Pr o
    Gl u Ser Gl y Pr o Gl y
    Thr Ser Thr
    2255
    2260
    2265
    Gl u Pr o
    Ser Gl u Gl y Ser Al a
    Pr o Gl y Ser Pr o Al a
    Gl y Ser Pr o
    2270
    2275
    2280
    Thr Ser
    Thr Gl u Gl u Gl y Thr
    Ser
    Gl u Ser Al a Thr
    Pr o Gl u Ser
    2285
    2290
    2295
    Gl y Pr o
    Gl y Ser Gl u Pr o Al a
    Thr Ser Gl y Ser Gl u
    Thr Pr o Gl y
    2300
    2305
    2310
    Thr Ser
    Gl u Ser Al a Thr Pr o
    Gl u Ser Gl y Pr o Gl y
    Ser Pr o Al a
    2315
    2320
    2325
    Page 188
    97047_1
    2018203206 08 May 2018
    Gl y Ser 2330 Pr o Thr Ser Thr Gl u 2335 Gl u Gl y Ser Pr o Al a 2340 Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser 2345 2350 2355 Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y 2360 2365 2370 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Gl u 2375 2380 2385 Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser 2390 2395 2400 Gl y Ser Gl u Thr Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u 2405 2410 2415 Thr Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y 2420 2425 2430 Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr 2435 2440 2445 Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Gl u Pr o Al a Thr Ser
    Page 189
    2018203206 08 May 2018
    97047_1
    2450 2455 2460
    Gly Ser 2465 Gl u Thr Pr o Gl y Thr 2470 Ser Gl u Ser Al a Thr 2475 Pr o Gl u Ser Gly Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o As p 2480 2485 2490 Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y 2495 2500 2505 Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Leu Val Pr o Ar g 2510 2515 2520 Gl y Ser Gl y Gl y As p Lys Thr Hi s Thr Cys Pr o Pr o Cys Pr o Al a 2525 2530 2535 Pr o Gl u Leu Leu Gl y Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o Lys 2540 2545 2550 Pr o Lys Asp Thr Leu Met Ile Ser Ar g Thr Pr o Gl u Val Thr Cys 2555 2560 2565 Val Val Val As p Val Ser Hi s Gl u As p Pr o Gl u Val Lys Phe As n
    2570 2575 2580
    Page 190
    97047_1
    2018203206 08 May 2018
    Tr p Tyr 2585 Val As p Gl y Val Gl u 2590 Val Hi s As n Al a Lys 2595 Thr Lys Pr o Arg Gl u Gl u Gl n Tyr As n Ser Thr Tyr Ar g Val Val Ser Val Leu 2600 2605 2610 Thr Val Leu Hi s Gl n As p Tr p Leu As n Gl y Lys Gl u Tyr Lys Cys 2615 2620 2625 Lys Val Ser As n Lys Al a Leu Pr o Al a Pr o Ile Gl u Lys Thr I l e 2630 2635 2640 Ser Lys Al a Lys Gl y Gl n Pr o Ar g Gl u Pr o Gl n Val Tyr Thr Leu 2645 2650 2655 Pr o Pr o Ser Ar g As p Gl u Leu Thr Lys As n Gl n Val Ser Leu Thr 2660 2665 2670 Cys Leu Val Lys Gl y Phe Tyr Pr o Ser As p Ile Al a Val Gl u Tr p 2675 2680 2685 Gl u Ser As n Gl y Gl n Pr o Gl u As n As n Tyr Lys Thr Thr Pr o Pr o 2690 2695 2700 Val Leu As p Ser As p Gl y Ser Phe Phe Leu Tyr Ser Lys Leu Thr
    Page 191
    2018203206 08 May 2018
    2705 2710 97047 _1 2715 Val As p Lys Ser Ar g Tr p Gl n Gl n Gl y As n Val Phe Ser Cys Ser 2720 2725 2730 Val Met Hi s Gl u Al a Leu Hi s As n Hi s Tyr Thr Gl n Lys Ser Leu 2735 2740 2745 Ser Leu Ser Pr o Gl y Lys
    2750 <210> 102 <211> 2242 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> pSYN- FVI I I - 170 pr ot ei n sequence <400> 102
    Ser 1 Leu Ser Cys Ar g 5 Pr o Pr o Met Val Lys 10 Leu Val Cys Pr o Al a 15 As p As n Leu Ar g Al a Gl u Gl y Leu Gl u Cys Thr Lys Thr Cys Gl n As n Tyr 20 25 30 As p Leu Gl u Cys Met Ser Met Gl y Cys Val Ser Gl y Cys Leu Cys Pr o
    Page 192
    2018203206 08 May 2018
    97047_1
    35 40 45
    Pr o Gl y 50 Met Val Ar g Hi s Gl u As n 55 Ar g Cy s Val Al a 60 Leu Gl u Ar g Cy s Pr o Cy s Phe Hi s Gl n Gl y Lys Gl u Ty r Al a Pr o Gl y Gl u Thr Val Lys 65 70 75 80 I l e Gl y Cy s As n Thr Cy s Val Cy s Ar g As p Ar g Lys Tr p As n Cy s Thr 85 90 95 As p Hi s Val Cy s As p Al a Thr Cy s Ser Thr Ile Gl y Met Al a Hi s Ty r 100 105 110 Leu Thr Phe As p Gl y Leu Lys Ty r Leu Phe Pr o Gl y Gl u Cy s Gl n Ty r 115 120 125 Val Leu Val Gl n As p Ty r Cy s Gl y Ser As n Pr o Gl y Thr Phe Ar g I l e 130 135 140 Leu Val Gl y As n Lys Gl y Cy s Ser Hi s Pr o Ser Val Lys Cy s Lys Lys 145 150 155 160 Ar g Val Thr I l e Leu Val Gl u Gl y Gl y Gl u Ile Gl u Leu Phe As p Gl y 165 170 175
    Page 193
    97047_1
    2018203206 08 May 2018
    Gl u Val As n Val 180 Lys Ar g Pr o Met Lys 185 As p Gl u Thr Hi s Phe 190 Gl u Val Val Gl u Ser Gl y Ar g Ty r Ile Ile Leu Leu Leu Gl y Lys Al a Leu Ser 195 200 205 Val Val Tr p As p Ar g Hi s Leu Ser Ile Ser Val Val Leu Lys Gl n Thr 210 215 220 Ty r Gl n Gl u Lys Val Cy s Gl y Leu Cy s Gl y As n Phe As p Gl y I l e Gl n 225 230 235 240 As n As n As p Leu Thr Ser Ser As n Leu Gl n Val Gl u Gl u As p Pr o Val 245 250 255 As p Phe Gl y As n Ser Tr p Lys Val Ser Ser Gl n Cy s Al a As p Thr Ar g 260 265 270 Lys Val Pr o Leu As p Ser Ser Pr o Al a Thr Cy s Hi s As n As n I l e Met 275 280 285 Lys Gl n Thr Met Val As p Ser Ser Cy s Ar g Ile Leu Thr Ser As p Val 290 295 300 Phe Gl n As p Cy s As n Lys Leu Val As p Pr o Gl u Pr o Ty r Leu As p Val
    Page 194
    2018203206 08 May 2018
    97047_1
    305 310 315 320
    Cys I l e Ty r As p Thr 325 Cys Ser Cys Gl u Ser 330 I l e Gl y As p Cy s Al a 335 Al a Phe Cys As p Thr Ile Al a Al a Tyr Al a Hi s Val Cys Al a Gl n Hi s Gl y 340 345 350 Lys Val Val Thr Tr p Ar g Thr Al a Thr Leu Cys Pr o Gl n Ser Cys Gl u 355 360 365 Gl u Ar g As n Leu Ar g Gl u As n Gl y Tyr Gl u Al a Gl u Tr p Ar g Tyr As n 370 375 380 Ser Cys Al a Pr o Al a Cys Gl n Val Thr Cys Gl n Hi s Pr o Gl u Pr o Leu 385 390 395 400 Al a Cys Pr o Val Gl n Cys Val Gl u Gl y Cys Hi s Al a Hi s Cys Pr o Pr o 405 410 415 Gl y Lys I l e Leu As p Gl u Leu Leu Gl n Thr Cys Val As p Pr o Gl u As p 420 425 430 Cys Pr o Val Cys Gl u Val Al a Gl y Ar g Ar g Phe Al a Ser Gl y Lys Lys 435 440 445
    Page 195
    97047_1
    2018203206 08 May 2018
    Val Thr Leu As n Pr o Ser As p Pr o Gl u Hi s Cy s Gl n I l e Cy s Hi s Cy s 450 455 460 As p Val Val As n Leu Thr Cy s Gl u Al a Cy s Gl n Gl u Pr o I l e Ser Gl y 465 470 475 480 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a 485 490 495 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u 500 505 510 Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y 515 52 0 525 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u 530 535 540 Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser 545 550 555 560 Thr Gl u Gl u Gl y Thr Ser Gl u Se r Al a Thr Pr o Gl u Ser Gl y Pr o Gl y 565 570 575 Ser Gl u Pr o Al a Thr Ser Gl y Se r Gl u Thr Pr o Gl y Thr Ser Gl u Ser
    Page 196
    2018203206 08 May 2018
    580 585 97047_1 590 Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser 595 600 605 Thr Gl u Gl u Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y 610 615 620 Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser 625 630 635 640 Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u 645 650 655 Ser Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y 660 665 670 Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Gl u Pr o Al a 675 680 685 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser 690 695 700 Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y 705 710 715 720
    Page 197
    97047_1
    2018203206 08 May 2018
    Thr Ser Thr Gl u Pr o 725 Ser Gl u Gl y Ser Al a 730 Pr o Gl y Ser Gl u Pr o 735 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u 740 745 750 Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o As p 755 760 765 Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser 770 775 780 Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Leu Val Pr o Ar g Gl y Ser 785 790 795 800 Gl y Gl y Al a Ser Al a Thr Ar g Ar g Tyr Tyr Leu Gl y Al a Val Gl u Leu 805 810 815 Ser Tr p As p Tyr Met Gl n Ser As p Leu Gl y Gl u Leu Pr o Val As p Al a 820 825 830 Ar g Phe Pr o Pr o Ar g Val Pr o Lys Ser Phe Pr o Phe As n Thr Ser Val 835 840 845 Val Tyr Lys Lys Thr Leu Phe Val Gl u Phe Thr As p Hi s Leu Phe As n
    Page 198
    2018203206 08 May 2018
    97047_1
    850 855 860
    I l e 865 Al a Lys Pr o Ar g Pr o 870 Pr o Tr p Met Gl y Leu 875 Leu Gl y Pr o Thr I l e 880 Gl n Al a Gl u Val Tyr As p Thr Val Val Ile Thr Leu Lys As n Met Al a 885 890 895 Ser Hi s Pr o Val Ser Leu Hi s Al a Val Gl y Val Ser Ty r Tr p Lys Al a 900 905 910 Ser Gl u Gl y Al a Gl u Tyr As p As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u 915 920 925 Asp As p Lys Val Phe Pr o Gl y Gl y Ser Hi s Thr Ty r Val Tr p Gl n Val 930 935 940 Leu Lys Gl u As n Gl y Pr o Met Al a Ser As p Pr o Leu Cy s Leu Thr Ty r 945 950 955 960 Ser Tyr Leu Ser Hi s Val As p Leu Val Lys As p Leu As n Ser Gl y Leu 965 970 975 I l e Gly Al a Leu Leu Val Cys Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys 980 985 990
    Page 199
    97047_1
    2018203206 08 May 2018
    Thr Gl n Thr Leu Hi s Lys Phe I l e Leu Leu Phe Al a Val Phe As p Gl u 995 1000 1005 Gl y Lys Ser Tr p Hi s Ser Gl u Thr Lys As n Ser Leu Met Gl n As p 1010 1015 1020 Ar g As p Al a Al a Ser Al a Ar g Al a Tr p Pr o Lys Met Hi s Thr Val 1025 1030 1035 As n Gl y Tyr Val As n Ar g Ser Leu Pr o Gl y Leu Ile Gl y Cy s Hi s 1040 1045 1050 Ar g Lys Ser Val Tyr Tr p Hi s Val Ile Gl y Met Gl y Thr Thr Pr o 1055 1060 1065 Gl u Val Hi s Ser Ile Phe Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g 1070 1075 1080 As n Hi s Ar g Gl n Al a Ser Leu Gl u Ile Ser Pr o Ile Thr Phe Leu 1085 1090 1095 Thr Al a Gl n Thr Leu Leu Met As p Leu Gl y Gl n Phe Leu Leu Phe 1100 1105 1110
    Cys Hi s
    I l e Ser Ser
    Hi s Gl n
    Hi s Asp Gl y Met Gl u
    Al a Tyr Val
    Page 200
    2018203206 08 May 2018
    1115 1120 97047 _1 1125 Lys Val As p Ser Cys Pr o Gl u Gl u Pr o Gl n Leu Ar g Met Lys As n 1130 1135 1140 As n Gl u Gl u Al a Gl u As p Tyr As p As p As p Leu Thr As p Ser Gl u 1145 1150 1155 Met As p Val Val Ar g Phe As p As p As p As n Ser Pr o Ser Phe I l e 1160 1165 1170 Gl n I l e Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr Tr p Val Hi s 1175 1180 1185 Tyr I l e Al a Al a Gl u Gl u Gl u As p Tr p As p Tyr Al a Pr o Leu Val 1190 1195 1200 Leu Al a Pr o As p As p Ar g Ser Tyr Lys Ser Gl n Tyr Leu As n As n 1205 1210 1215 Gl y Pr o Gl n Ar g Ile Gl y Ar g Lys Tyr Lys Lys Val Ar g Phe Met 1220 1225 1230 Al a Tyr Thr As p Gl u Thr Phe Lys Thr Ar g Gl u Al a I l e Gl n Hi s 1235 1240 1245
    Page 201
    97047_1
    2018203206 08 May 2018
    Gl u Ser 1250 Gl y Ile Leu Gl y Pr o 1255 Leu Leu Ty r Gl y Gl u 1260 Val Gl y As p Thr Leu Leu Ile Ile Phe Lys As n Gl n Al a Ser Ar g Pr o Ty r As n 1265 1270 1275 I l e Ty r Pr o Hi s Gl y Ile Thr As p Val Ar g Pr o Leu Ty r Ser Ar g 1280 1285 1290 Ar g Leu Pr o Lys Gl y Val Lys Hi s Leu Lys As p Phe Pr o I l e Leu 1295 1300 1305 Pr o Gl y Gl u Ile Phe Lys Ty r Lys Tr p Thr Val Thr Val Gl u As p 1310 1315 1320 Gl y Pr o Thr Lys Ser As p Pr o Ar g Cy s Leu Thr Ar g Ty r Ty r Ser 1325 1330 1335 Ser Phe Val As n Met Gl u Ar g As p Leu Al a Ser Gl y Leu I l e Gl y 1340 1345 1350 Pr o Leu Leu Ile Cy s Ty r Lys Gl u Ser Val As p Gl n Ar g Gl y As n 1355 1360 1365 Gl n I l e Met Ser As p Lys Ar g As n Val Ile Leu Phe Ser Val Phe
    Page 202
    2018203206 08 May 2018
    97047_1
    1370 1375 1380
    As p Gl u As n Ar g Ser Tr p Ty r Leu Thr Gl u As n Ile Gl n Ar g Phe 1385 1390 1395 Leu Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p Pr o Gl u Phe Gl n 1400 1405 1410 Al a Ser As n Ile Met Hi s Ser Ile As n Gl y Ty r Val Phe As p Ser 1415 1420 1425 Leu Gl n Leu Ser Val Cy s Leu Hi s Gl u Val Al a Ty r Tr p Ty r I l e 1430 1435 1440 Leu Ser I l e Gl y Al a Gl n Thr As p Phe Leu Ser Val Phe Phe Ser 1445 1450 1455 Gl y Ty r Thr Phe Lys Hi s Lys Met Val Ty r Gl u As p Thr Leu Thr 1460 1465 1470 Leu Phe Pr o Phe Ser Gl y Gl u Thr Val Phe Met Ser Met Gl u As n 1475 1480 1485 Pr o Gl y Leu Tr p Ile Le u Gl y Cy s Hi s As n Ser As p Phe Ar g As n
    1490 1495 1500
    Page 203
    97047_1
    2018203206 08 May 2018
    Ar g Gl y Met Thr Al a Leu Leu 1510 Lys Val Ser Ser Cy s 1515 As p Lys As n 1505 Thr Gl y As p Ty r Ty r Gl u As p Ser Ty r Gl u As p Ile Ser Al a Ty r 1520 1525 1530 Leu Leu Ser Lys As n As n Al a Ile Gl u Pr o Ar g Ser Phe Ser Gl n 1535 1540 1545 As n Pr o Pr o Val Leu Lys Ar g Hi s Gl n Ar g Gl u Ile Thr Ar g Thr 1550 1555 1560 Thr Leu Gl n Ser As p Gl n Gl u Gl u Ile As p Ty r As p As p Thr I l e 1565 1570 1575 Ser Val Gl u Met Lys Lys Gl u As p Phe As p Ile Ty r As p Gl u As p 1580 1585 1590 Gl u As n Gl n Ser Pr o Ar g Ser Phe Gl n Lys Lys Thr Ar g Hi s Ty r 1595 1600 1605 Phe I l e Al a Al a Val Gl u Ar g Leu Tr p As p Ty r Gl y Met Ser Ser 1610 1615 1620 Ser Pr o Hi s Val Leu Ar g As n Ar g Al a Gl n Ser Gl y Ser Val Pr o
    Page 204
    2018203206 08 May 2018
    1625 1630 97047 _1 1635 Gl n Phe Lys Lys Val Val Phe Gl n Gl u Phe Thr As p Gl y Ser Phe 1640 1645 1650 Thr Gl n Pr o Leu Ty r Ar g Gl y Gl u Leu As n Gl u Hi s Leu Gl y Leu 1655 1660 1665 Leu Gl y Pr o Ty r Ile Ar g Al a Gl u Val Gl u As p As n I l e Met Val 1670 1675 1680 Thr Phe Ar g As n Gl n Al a Ser Ar g Pr o Ty r Ser Phe Ty r Ser Ser 1685 1690 1695 Leu I l e Ser Ty r Gl u Gl u As p Gl n Ar g Gl n Gl y Al a Gl u Pr o Ar g 1700 1705 1710 Lys As n Phe Val Lys Pr o As n Gl u Thr Lys Thr Ty r Phe Tr p Lys 1715 1720 1725 Val Gl n Hi s Hi s Met Al a Pr o Thr Lys As p Gl u Phe As p Cy s Lys 1730 1735 1740 Al a Tr p Al a Ty r Phe Ser As p Val As p Leu Gl u Lys As p Val Hi s 1745 1750 1755
    Page 205
    97047_1
    2018203206 08 May 2018
    Ser Gl y 1760 Leu Ile Gl y Pr o Leu 1765 Leu Val Cy s Hi s Thr 1770 As n Thr Leu As n Pr o Al a Hi s Gl y Ar g Gl n Val Thr Val Gl n Gl u Phe Al a Leu 1775 1780 1785 Phe Phe Thr Ile Phe As p Gl u Thr Lys Ser Tr p Ty r Phe Thr Gl u 1790 1795 1800 As n Met Gl u Ar g As n Cy s Ar g Al a Pr o Cy s As n Ile Gl n Met Gl u 1805 1810 1815 As p Pr o Thr Phe Lys Gl u As n Ty r Ar g Phe Hi s Al a I l e As n Gl y 1820 1825 1830 Ty r I l e Met As p Thr Leu Pr o Gl y Leu Val Met Al a Gl n As p Gl n 1835 1840 1845 Ar g I l e Ar g Tr p Ty r Leu Leu Ser Met Gl y Ser As n Gl u As n I l e 1850 1855 1860 Hi s Ser I l e Hi s Phe Ser Gl y Hi s Val Phe Thr Val Ar g Lys Lys 1865 1870 1875 Gl u Gl u Ty r Lys Met Al a Leu Ty r As n Leu Ty r Pr o Gl y Val Phe
    Page 206
    2018203206 08 May 2018
    1880 1885 97047 _1 1890 Gl u Thr Val Gl u Met Leu Pr o Ser Lys Al a Gl y Ile Tr p Ar g Val 1895 1900 1905 Gl u Cys Leu Ile Gl y Gl u Hi s Leu Hi s Al a Gl y Met Ser Thr Leu 1910 1915 1920 Phe Leu Val Tyr Ser As n Lys Cys Gl n Thr Pr o Leu Gl y Met Al a 1925 1930 1935 Ser Gl y Hi s Ile Ar g As p Phe Gl n Ile Thr Al a Ser Gl y Gl n Tyr 1940 1945 1950 Gl y Gl n Tr p Al a Pr o Lys Leu Al a Ar g Leu Hi s Tyr Ser Gl y Ser 1955 1960 1965 I l e As n Al a Tr p Ser Thr Lys Gl u Pr o Phe Ser Tr p I l e Lys Val 1970 1975 1980 As p Leu Leu Al a Pr o Met Ile Ile Hi s Gl y Ile Lys Thr Gl n Gl y 1985 1990 1995 Al a Ar g Gl n Lys Phe Ser Ser Leu Tyr Ile Ser Gl n Phe I l e I l e 2000 2005 2010
    Page 207
    97047_1
    2018203206 08 May 2018
    Met Tyr 2015 Ser Leu As p Gl y Lys 2020 Lys Tr p Gl n Thr Tyr 2025 Ar g Gl y As n Ser Thr Gl y Thr Leu Met Val Phe Phe Gl y As n Val As p Ser Ser 2030 2035 2040 Gl y I l e Lys Hi s As n Ile Phe As n Pr o Pr o Ile Ile Al a Ar g Tyr 2045 2050 2055 I l e Ar g Leu Hi s Pr o Thr Hi s Tyr Ser Ile Ar g Ser Thr Leu Ar g 2060 2065 2070 Met Gl u Leu Met Gl y Cys As p Leu As n Ser Cys Ser Met Pr o Leu 2075 2080 2085 Gl y Met Gl u Ser Lys Al a Ile Ser As p Al a Gl n Ile Thr Al a Ser 2090 2095 2100 Ser Tyr Phe Thr As n Met Phe Al a Thr Tr p Ser Pr o Ser Lys Al a 2105 2110 2115 Ar g Leu Hi s Leu Gl n Gl y Ar g Ser As n Al a Tr p Ar g Pr o Gl n Val 2120 2125 2130 As n As n Pr o Lys Gl u Tr p Leu Gl n Val As p Phe Gl n Lys Thr Met
    Page 208
    97047_1
    2018203206 08 May 2018
    2135 Thr 2140 Gl n Gl y Val Lys 2145 Ser 2160 Leu Leu Thr Lys Val 2150 Gl y Val Thr Thr 2155 Ser Met Tyr Val Lys Gl u Phe Leu Ile Ser Ser Ser Gl n As p Gl y 2165 2170 2175 Hi s Gl n Tr p Thr Leu Phe Phe Gl n As n Gl y Lys Val Lys Val Phe 2180 2185 2190 Gl n Gl y As n Gl n As p Ser Phe Thr Pr o Val Val As n Ser Leu As p 2195 2200 2205 Pr o Pr o Leu Leu Thr Ar g Tyr Leu Ar g Ile Hi s Pr o Gl n Ser Tr p 2210 2215 2220 Val Hi s Gl n Ile Al a Leu Ar g Met Gl u Val Leu Gl y Cys Gl u Al a 2225 2230 2235
    Gl n Asp Leu Tyr 2240
    <210> 103 <211> 1959 <212> PRT
    Page 209
    2018203206 08 May 2018
    97047_1 <213> Artificial Sequence <220>
    <223> pSYN- FVI I I - 169 mat ur e Pr ot ei n sequence <400> 103
    Al a 1 Thr Ar g Ar g Tyr 5 Tyr Leu Gl y Al a Val 10 Gl u Leu Ser Tr p As p 15 Tyr Met Gl n Ser As p Leu Gl y Gl u Leu Pr o Val As p Al a Ar g Phe Pr o Pr o 20 25 30 Ar g Val Pr o Lys Ser Phe Pr o Phe As n Thr Ser Val Val Tyr Lys Lys 35 40 45 Thr Leu Phe Val Gl u Phe Thr As p Hi s Leu Phe As n I l e Al a Lys Pr o 50 55 60 Ar g Pr o Pr o Tr p Met Gl y Leu Leu Gl y Pr o Thr Ile Gl n Al a Gl u Val 65 70 75 80 Tyr As p Thr Val Val Ile Thr Leu Lys As n Met Al a Ser Hi s Pr o Val 85 90 95 Ser Leu Hi s Al a Val Gl y Val Ser Tyr Tr p Lys Al a Ser Gl u Gl y Al a 100 105 110
    Page 210
    97047_1
    2018203206 08 May 2018
    Gl u Ty r As p As p Gl n 115 Thr Ser Gl n Ar g Gl u 120 Lys Gl u As p As p 125 Lys Val Phe Pr o Gl y Gl y Ser Hi s Thr Ty r Val Tr p Gl n Val Leu Lys Gl u As n 130 135 140 Gl y Pr o Met Al a Ser As p Pr o Leu Cy s Leu Thr Ty r Ser Ty r Leu Ser 145 150 155 160 Hi s Val As p Leu Val Lys As p Leu As n Ser Gl y Leu I l e Gl y Al a Leu 165 170 175 Leu Val Cy s Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr Gl n Thr Leu 180 185 190 Hi s Lys Phe I l e Leu Leu Phe Al a Val Phe As p Gl u Gl y Lys Ser Tr p 195 200 205 Hi s Ser Gl u Thr Lys As n Ser Leu Met Gl n As p Ar g As p Al a Al a Ser 210 215 220 Al a Ar g Al a Tr p Pr o Lys Met Hi s Thr Val As n Gl y Ty r Val As n Ar g 225 230 235 240 Ser Leu Pr o Gl y Leu Ile Gl y Cy s Hi s Ar g Lys Ser Val Ty r Tr p Hi s
    Page 211
    2018203206 08 May 2018
    97047_1
    245 250 255
    Val I l e Gl y Met 260 Gl y Thr Thr Pr o Gl u 265 Val Hi s Ser I l e Phe 270 Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser Leu Gl u I l e 275 280 285 Ser Pr o I l e Thr Phe Leu Thr Al a Gl n Thr Leu Leu Met As p Leu Gl y 290 295 300 Gl n Phe Leu Leu Phe Cy s Hi s Ile Ser Ser Hi s Gl n Hi s As p Gl y Met 305 310 315 320 Gl u Al a Ty r Val Lys Val As p Ser Cy s Pr o Gl u Gl u Pr o Gl n Leu Ar g 325 330 335 Met Lys As n As n Gl u Gl u Al a Gl u As p Ty r As p As p As p Leu Thr As p 340 345 350 Ser Gl u Met As p Val Val Ar g Phe As p As p As p As n Ser Pr o Ser Phe 355 360 365 I l e Gl n I l e Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr Tr p Val Hi s 370 375 380
    Page 212
    97047_1
    2018203206 08 May 2018
    Tyr 385 I l e Al a Al a Gl u Gl u 390 Gl u As p Tr p Asp Tyr 395 Al a Pr o Leu Val Leu 400 Al a Pr o As p As p Ar g Ser Tyr Lys Ser Gl n Tyr Leu As n As n Gl y Pr o 405 410 415 Gl n Ar g I l e Gl y Ar g Lys Tyr Lys Lys Val Ar g Phe Met Al a Tyr Thr 420 425 430 As p Gl u Thr Phe Lys Thr Ar g Gl u Al a Ile Gl n Hi s Gl u Ser Gl y I l e 435 440 445 Leu Gl y Pr o Leu Leu Tyr Gl y Gl u Val Gl y As p Thr Leu Leu I l e I l e 450 455 460 Phe Lys As n Gl n Al a Ser Ar g Pr o Tyr As n Ile Tyr Pr o Hi s Gl y I l e 465 470 475 480 Thr As p Val Ar g Pr o Leu Tyr Ser Ar g Ar g Leu Pr o Lys Gl y Val Lys 485 490 495 Hi s Leu Lys As p Phe Pr o Ile Leu Pr o Gl y Gl u Ile Phe Lys Tyr Lys 500 505 510 Tr p Thr Val Thr Val Gl u As p Gl y Pr o Thr Lys Ser As p Pr o Ar g Cys
    Page 213
    2018203206 08 May 2018
    97047_1
    515 520 525
    Leu Thr 530 Arg Tyr Tyr Ser Ser 535 Phe Val As n Met Gl u 540 Ar g As p Leu Al a Ser Gl y Leu I l e Gl y Pr o Leu Leu Ile Cys Tyr Lys Gl u Ser Val As p 545 550 555 560 Gl n Ar g Gl y As n Gl n Ile Met Ser As p Lys Ar g As n Val I l e Leu Phe 565 570 575 Ser Val Phe As p Gl u As n Ar g Ser Tr p Tyr Leu Thr Gl u As n I l e Gl n 580 585 590 Arg Phe Leu Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p Pr o Gl u Phe 595 600 605 Gl n Al a Ser As n Ile Met Hi s Ser Ile As n Gl y Tyr Val Phe As p Ser 610 615 620 Leu Gl n Leu Ser Val Cys Leu Hi s Gl u Val Al a Tyr Tr p Tyr I l e Leu 625 630 635 640 Ser I l e Gl y Al a Gl n Thr As p Phe Leu Ser Val Phe Phe Ser Gl y Tyr 645 650 655
    Page 214
    97047_1
    2018203206 08 May 2018
    Thr Phe Lys Hi s Lys Met Val Tyr Gl u As p Thr Leu Thr Leu Phe Pr o 660 665 670 Phe Ser Gl y Gl u Thr Val Phe Met Ser Met Gl u As n Pr o Gl y Leu Tr p 675 680 685 I l e Leu Gl y Cys Hi s As n Ser As p Phe Ar g As n Ar g Gl y Met Thr Al a 690 695 700 Leu Leu Lys Val Ser Ser Cys As p Lys As n Thr Gl y As p Tyr Tyr Gl u 705 710 715 72 0 As p Ser Tyr Gl u As p Ile Ser Al a Tyr Leu Leu Ser Lys As n As n Al a 725 730 735 I l e Gl u Pr o Ar g Ser Phe Ser Gl n As n Gl y Al a Pr o Gl y Thr Ser Gl u 740 745 750 Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y 755 760 765 Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 770 775 780 Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u
    Page 215
    2018203206 08 May 2018
    97047_1
    785 790 795 800
    Se r Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u 805 810 815 Gl y Ser Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u 820 825 830 Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o 835 840 845 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 850 855 860 Gl u Ser Gl y Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u 86 5 870 875 880 Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Thr 885 890 895 Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 900 905 910 Gl u Ser Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 915 920 925
    Page 216
    97047_1
    2018203206 08 May 2018
    Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o 930 935 940 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y 94 5 950 955 960 Se r Gl u Thr Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u 965 970 975 Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr 980 98 5 990 Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y 995 1000 100 5
    Ser Gl u
    Thr Pr o Gl y Thr Ser
    Gl u Ser Al a Thr Pr o
    Gl u Ser Gl y
    1010
    1015
    1020
    Pr o Gl y
    Thr Ser Thr
    Gl u Pr o
    Ser Gl u Gl y Ser Al a
    Pr o Al a Ser
    1025
    1030
    1035
    Ser Pr o
    Pr o Val Leu Lys Ar g
    Hi s Gl n Al a Gl u
    Ile
    Thr Ar g Thr
    1040
    1045
    1050
    Thr Leu
    Gl n Ser Asp Gl n Gl u
    Gl u I l e As p Ty r As p
    As p Thr I l e
    Page 217
    2018203206 08 May 2018
    97047_1
    1055 1060 1065
    Ser Val 1070 Gl u Met Lys Lys Gl u 1075 As p Phe As p Ile Ty r 1080 As p Gl u As p Gl u As n Gl n Ser Pr o Ar g Ser Phe Gl n Lys Lys Thr Ar g Hi s Ty r 1085 1090 1095 Phe I l e Al a Al a Val Gl u Ar g Leu Tr p As p Ty r Gl y Met Ser Ser 1100 1105 1110 Ser Pr o Hi s Val Leu Ar g As n Ar g Al a Gl n Ser Gl y Ser Val Pr o 1115 1120 1125 Gl n Phe Lys Lys Val Val Phe Gl n Gl u Phe Thr As p Gl y Ser Phe 1130 1135 1140 Thr Gl n Pr o Leu Ty r Ar g Gl y Gl u Leu As n Gl u Hi s Leu Gl y Leu 1145 1150 1155 Leu Gl y Pr o Ty r Ile Ar g Al a Gl u Val Gl u As p As n I l e Met Val 1160 1165 1170
    Thr Phe
    Arg Asn Gl n Al a Ser
    Arg Pro Tyr Ser Phe
    Tyr Ser Ser
    1175
    1180
    1185
    Page 218
    97047_1
    2018203206 08 May 2018
    Leu I l e 1190 Ser Tyr Gl u Gl u As p 1195 Gl n Ar g Gl n Gl y Al a 1200 Gl u Pr o Ar g Lys As n Phe Val Lys Pr o As n Gl u Thr Lys Thr Tyr Phe Tr p Lys 1205 1210 1215 Val Gl n Hi s Hi s Met Al a Pr o Thr Lys As p Gl u Phe As p Cys Lys 1220 1225 1230 Al a Tr p Al a Tyr Phe Ser As p Val As p Leu Gl u Lys As p Val Hi s 1235 1240 1245 Ser Gl y Leu Ile Gl y Pr o Leu Leu Val Cys Hi s Thr As n Thr Leu 1250 1255 1260 As n Pr o Al a Hi s Gl y Ar g Gl n Val Thr Val Gl n Gl u Phe Al a Leu 1265 1270 1275 Phe Phe Thr Ile Phe As p Gl u Thr Lys Ser Tr p Tyr Phe Thr Gl u 1280 1285 1290 As n Met Gl u Ar g As n Cys Ar g Al a Pr o Cys As n Ile Gl n Met Gl u 1295 1300 1305 As p Pr o Thr Phe Lys Gl u As n Tyr Ar g Phe Hi s Al a I l e As n Gl y
    Page 219
    2018203206 08 May 2018
    1310 1315 97047 _1 1320 Ty r I l e Met As p Thr Leu Pr o Gl y Leu Val Met Al a Gl n As p Gl n 1325 1330 1335 Ar g I l e Ar g Tr p Ty r Leu Leu Ser Met Gl y Ser As n Gl u As n I l e 1340 1345 1350 Hi s Ser I l e Hi s Phe Ser Gl y Hi s Val Phe Thr Val Ar g Lys Lys 1355 1360 1365 Gl u Gl u Ty r Lys Met Al a Leu Ty r As n Leu Ty r Pr o Gl y Val Phe 1370 1375 1380 Gl u Thr Val Gl u Met Leu Pr o Ser Lys Al a Gl y Ile Tr p Ar g Val 1385 1390 1395 Gl u Cy s Leu Ile Gl y Gl u Hi s Leu Hi s Al a Gl y Met Ser Thr Leu 1400 1405 1410 Phe Leu Val Ty r Ser Asn Lys Cy s Gl n Thr Pr o Leu Gl y Met Al a 1415 1420 1425 Ser Gl y Hi s Ile Ar g As p Phe Gl n Ile Thr Al a Ser Gl y Gl n Ty r 1430 1435 1440
    Page 220
    97047_1
    2018203206 08 May 2018
    Gl y Gl n 1445 Tr p Al a Pr o Lys Leu 1450 Al a Ar g Leu Hi s Ty r 1455 Ser Gl y Ser I l e As n Al a Tr p Ser Thr Lys Gl u Pr o Phe Ser Tr p I l e Lys Val 1460 1465 1470 As p Leu Leu Al a Pr o Met Ile Ile Hi s Gl y Ile Lys Thr Gl n Gl y 1475 1480 1485 Al a Ar g Gl n Lys Phe Ser Ser Leu Ty r Ile Ser Gl n Phe I l e I l e 1490 1495 1500 Met Ty r Ser Leu As p Gl y Lys Lys Tr p Gl n Thr Ty r Ar g Gl y As n 1505 1510 1515 Ser Thr Gl y Thr Leu Met Val Phe Phe Gl y As n Val As p Ser Ser 1520 1525 1530 Gl y I l e Lys Hi s As n Ile Phe As n Pr o Pr o Ile Ile Al a Ar g Ty r 1535 1540 1545 I l e Ar g Leu Hi s Pr o Thr Hi s Ty r Ser Ile Ar g Ser Thr Leu Ar g 1550 1555 1560 Met Gl u Leu Met Gl y Cy s As p Leu As n Ser Cy s Ser Met Pr o Leu
    Page 221
    2018203206 08 May 2018
    1565 1570 97047 _1 1575 Gl y Met Gl u Ser Lys Al a Ile Ser As p Al a Gl n Ile Thr Al a Ser 1580 1585 1590 Ser Ty r Phe Thr As n Met Phe Al a Thr Tr p Ser Pr o Ser Lys Al a 1595 1600 1605 Ar g Leu Hi s Leu Gl n Gl y Ar g Ser As n Al a Tr p Ar g Pr o Gl n Val 1610 1615 1620 As n As n Pr o Lys Gl u Tr p Leu Gl n Val As p Phe Gl n Lys Thr Met 1625 1630 1635 Lys Val Thr Gl y Val Thr Thr Gl n Gl y Val Lys Ser Leu Leu Thr 1640 1645 1650 Ser Met Ty r Val Lys Gl u Phe Leu Ile Ser Ser Ser Gl n As p Gl y 1655 1660 1665 Hi s Gl n Tr p Thr Leu Phe Phe Gl n As n Gl y Lys Val Lys Val Phe 1670 1675 1680 Gl n Gl y As n Gl n As p Ser Phe Thr Pr o Val Val As n Ser Leu As p 1685 1690 1695
    Page 222
    97047_1
    2018203206 08 May 2018
    Pr o Pr o 1700 Leu Leu Thr Ar g Ty r 1705 Leu Ar g Ile Hi s Pr o 1710 Gl n Ser Tr p Val Hi s Gl n Ile Al a Leu Ar g Met Gl u Val Leu Gl y Cy s Gl u Al a 1715 1720 1725 Gl n As p Leu Ty r As p Lys Thr Hi s Thr Cy s Pr o Pr o Cy s Pr o Al a 1730 1735 1740 Pr o Gl u Leu Leu Gl y Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o Lys 1745 1750 1755 Pr o Lys As p Thr Leu Met Ile Ser Ar g Thr Pr o Gl u Val Thr Cy s 1760 1765 1770 Val Val Val As p Val Ser Hi s Gl u As p Pr o Gl u Val Lys Phe As n 1775 1780 1785 Tr p Ty r Val As p Gl y Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o 1790 1795 1800 Ar g Gl u Gl u Gl n Ty r As n Ser Thr Ty r Ar g Val Val Ser Val Leu 1805 1810 1815 Thr Val Leu Hi s Gl n As p Tr p Leu As n Gl y Lys Gl u Ty r Lys Cy s
    Page 223
    2018203206 08 May 2018
    97047_1
    1820 1825 1830
    Lys Val Ser As n Lys Al a Leu Pr o Al a Pr o Ile Gl u Lys Thr I l e 1835 1840 1845 Ser Lys Al a Lys Gl y Gl n Pr o Ar g Gl u Pr o Gl n Val Ty r Thr Leu 1850 1855 1860 Pr o Pr o Ser Ar g As p Gl u Leu Thr Lys As n Gl n Val Ser Leu Thr 1865 1870 1875 Cy s Leu Val Lys Gl y Phe Ty r Pr o Ser As p Ile Al a Val Gl u Tr p 1880 1885 1890 Gl u Ser As n Gl y Gl n Pr o Gl u As n As n Ty r Lys Thr Thr Pr o Pr o 1895 1900 1905 Val Leu As p Ser As p Gl y Ser Phe Phe Leu Ty r Ser Lys Leu Thr 1910 1915 1920 Val As p Lys Ser Ar g Tr p Gl n Gl n Gl y As n Val Phe Ser Cy s Ser 1925 1930 1935
    Val Met
    Hi s Gl u Al a Leu
    Hi s
    As n Hi s Ty r Thr Gl n
    Lys Ser Leu
    1940
    1945
    1950
    Page 224
    97047_1
    2018203206 08 May 2018
    Ser Leu Ser Pr o Gl y Lys 1955 <210> 104 <211> 1959 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> pSYN- FVI I I - 173 mat ur e Pr ot ei n <400> 104
    Al a Thr 1 Ar g Ar g Tyr 5 Tyr Leu Gl y Al a Val 10 Gl u Leu Ser Tr p As p 15 Tyr Met Gl n Ser As p Leu Gl y Gl u Leu Pr o Val As p Al a Ar g Phe Pr o Pr o 20 25 30 Ar g Val Pr o Lys Ser Phe Pr o Phe As n Thr Ser Val Val Tyr Lys Lys 35 40 45 Thr Leu Phe Val Gl u Phe Thr As p Hi s Leu Phe As n I l e Al a Lys Pr o 50 55 60 Ar g Pr o Pr o Tr p Met Gl y Leu Leu Gl y Pr o Thr Ile Gl n Al a Gl u Val 65 70 75 80
    Page 225
    97047_1
    2018203206 08 May 2018
    Tyr As p Thr Val Val 85 I l e Thr Leu Lys As n 90 Met Al a Ser Hi s Pr o 95 Val Ser Leu Hi s Al a Val Gl y Val Ser Tyr Tr p Lys Al a Ser Gl u Gl y Al a 100 105 110 Gl u Tyr As p As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p As p Lys Val 115 120 125 Phe Pr o Gl y Gl y Ser Hi s Thr Tyr Val Tr p Gl n Val Leu Lys Gl u As n 130 135 140 Gl y Pr o Met Al a Ser As p Pr o Leu Cys Leu Thr Tyr Ser Tyr Leu Ser 145 150 155 160 Hi s Val As p Leu Val Lys As p Leu As n Ser Gl y Leu I l e Gl y Al a Leu 165 170 175 Leu Val Cys Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr Gl n Thr Leu 180 185 190 Hi s Lys Phe I l e Leu Leu Phe Al a Val Phe As p Gl u Gl y Lys Ser Tr p 195 200 205 Hi s Ser Gl u Thr Lys As n Ser Leu Met Gl n As p Ar g As p Al a Al a Ser
    Page 226
    2018203206 08 May 2018
    97047_1
    210 215 220
    Al a Ar g Al a 225 Tr p Pr o Lys 230 Met Hi s Thr Val As n 235 Gl y Tyr Val As n Ar g 240 Ser Leu Pr o Gl y Leu Ile Gl y Cys Hi s Ar g Lys Ser Val Tyr Tr p Hi s 245 250 255 Val I l e Gl y Met Gl y Thr Thr Pr o Gl u Val Hi s Ser I l e Phe Leu Gl u 260 265 270 Gl y Hi s Thr Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser Leu Gl u I l e 275 280 285 Ser Pr o I l e Thr Phe Leu Thr Al a Gl n Thr Leu Leu Met As p Leu Gl y 290 295 300 Gl n Phe Leu Leu Phe Cys Hi s Ile Ser Ser Hi s Gl n Hi s As p Gl y Met 305 310 315 320 Gl u Al a Tyr Val Lys Val As p Ser Cys Pr o Gl u Gl u Pr o Gl n Leu Ar g 325 330 335 Met Lys As n As n Gl u Gl u Al a Gl u As p Tyr As p As p As p Leu Thr As p 340 345 350
    Page 227
    97047_1
    2018203206 08 May 2018
    Ser Gl u Met 355 As p Val Val Ar g Phe Asp Asp Asp Asn Ser Pr o Ser Phe 360 365 I l e Gl n I l e Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr Tr p Val Hi s 370 375 380 Tyr I l e Al a Al a Gl u Gl u Gl u As p Tr p As p Tyr Al a Pr o Leu Val Leu 385 390 395 400 Al a Pr o As p As p Ar g Ser Tyr Lys Ser Gl n Tyr Leu As n As n Gl y Pr o 405 410 415 Gl n Ar g I l e Gl y Ar g Lys Tyr Lys Lys Val Ar g Phe Met Al a Tyr Thr 420 425 430 As p Gl u Thr Phe Lys Thr Ar g Gl u Al a Ile Gl n Hi s Gl u Ser Gl y I l e 435 440 445 Leu Gl y Pr o Leu Leu Tyr Gl y Gl u Val Gl y As p Thr Leu Leu I l e I l e 450 455 460 Phe Lys As n Gl n Al a Ser Ar g Pr o Tyr As n Ile Tyr Pr o Hi s Gl y I l e 465 470 475 480 Thr As p Val Ar g Pr o Leu Tyr Ser Ar g Ar g Leu Pr o Lys Gl y Val Lys
    Page 228
    2018203206 08 May 2018
    97047_1
    485 490 495
    Hi s Leu Lys As p Phe 500 Pr o Ile Leu Pr o 505 Gl y Gl u I l e Phe Lys 510 Ty r Lys Tr p Thr Val Thr Val Gl u As p Gl y Pr o Thr Lys Ser As p Pr o Ar g Cy s 515 520 525 Leu Thr Ar g Ty r Ty r Ser Ser Phe Val As n Met Gl u Ar g As p Leu Al a 530 535 540 Ser Gl y Leu I l e Gl y Pr o Leu Leu Ile Cy s Ty r Lys Gl u Ser Val As p 545 550 555 560 Gl n Ar g Gl y As n Gl n Ile Met Ser As p Lys Ar g As n Val I l e Leu Phe 565 570 575 Ser Val Phe As p Gl u As n Ar g Ser Tr p Ty r Leu Thr Gl u As n I l e Gl n 580 585 590 Ar g Phe Leu Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p Pr o Gl u Phe 595 600 605 Gl n Al a Ser As n Ile Met Hi s Ser Ile As n Gl y Ty r Val Phe As p Ser 610 615 620
    Page 229
    97047_1
    2018203206 08 May 2018
    Leu 625 Gl n Leu Ser Val Cy s 630 Leu Hi s Gl u Val Al a 635 Ty r Tr p Ty r I l e Leu 640 Ser I l e Gl y Al a Gl n Thr As p Phe Leu Ser Val Phe Phe Ser Gl y Ty r 645 650 655 Thr Phe Lys Hi s Lys Met Val Ty r Gl u As p Thr Leu Thr Leu Phe Pr o 660 665 670 Phe Ser Gl y Gl u Thr Val Phe Met Ser Met Gl u As n Pr o Gl y Leu Tr p 675 680 685 I l e Leu Gl y Cy s Hi s As n Ser As p Phe Ar g As n Ar g Gl y Met Thr Al a 690 695 700 Leu Leu Lys Val Ser Ser Cy s As p Lys As n Thr Gl y As p Ty r Ty r Gl u 705 710 715 720 As p Ser Ty r Gl u As p Ile Ser Al a Ty r Leu Leu Ser Lys As n As n Al a 725 730 735 I l e Gl u Pr o Ar g Ser Phe Ser Gl n As n Gl y Al a Pr o Gl y Thr Ser Gl u 740 745 750 Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y
    Page 230
    2018203206 08 May 2018
    97047_1
    755 760 765
    Se r Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 770 775 780 Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u 78 5 790 795 800 Se r Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u 805 810 815 Gl y Ser Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u 820 825 830 Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o 835 840 845 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 850 855 860 Gl u Ser Gl y Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u 86 5 870 875 880 Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Thr 885 890 895
    Page 231
    97047_1
    2018203206 08 May 2018
    Gl u Pr o Ser Gl u 900 Gl y Ser Al a Pr o Gl y Thr 905 Ser Gl u Ser Al a 910 Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 915 920 925 Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o 930 935 940 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y 945 950 955 960 Ser Gl u Thr Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u 965 970 975 Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr 980 985 990 Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y 995 1000 1005
    Ser Gl u
    Thr Pr o Gl y Thr Ser
    Gl u Ser Al a Thr Pr o
    Gl u Ser Gl y
    1010
    1015
    1020
    Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Al a Ser
    Page 232
    2018203206 08 May 2018
    97047_1
    1025 1030 1035
    Ser Pr o 1040 Pr o Val Leu Lys Ar g 1045 Hi s Gl n Ar g Gl u Ile 1050 Thr Ar g Thr Thr Leu Gl n Ser As p Gl n Gl u Gl u Ile As p Tyr As p As p Thr I l e 1055 1060 1065 Ser Val Gl u Met Lys Lys Gl u As p Phe As p Ile Tyr As p Gl u As p 1070 1075 1080 Gl u As n Gl n Ser Pr o Ar g Ser Phe Gl n Lys Lys Thr Ar g Hi s Tyr 1085 1090 1095 Phe I l e Al a Al a Val Gl u Ar g Leu Tr p As p Tyr Gl y Met Ser Ser 1100 1105 1110 Ser Pr o Hi s Val Leu Ar g As n Ar g Al a Gl n Ser Gl y Ser Val Pr o 1115 1120 1125 Gl n Phe Lys Lys Val Val Phe Gl n Gl u Phe Thr As p Gl y Ser Phe 1130 1135 1140 Thr Gl n Pr o Leu Tyr Ar g Gl y Gl u Leu As n Gl u Hi s Leu Gl y Leu
    1145 1150 1155
    Page 233
    97047_1
    2018203206 08 May 2018
    Leu Gl y Pr o Tyr I l e Ar g Al a 1165 Gl u Val Gl u As p As n 1170 I l e Met Val 1160 Thr Phe Ar g As n Gl n Al a Ser Ar g Pr o Tyr Ser Phe Tyr Ser Ser 1175 1180 1185 Leu I l e Ser Tyr Gl u Gl u As p Gl n Ar g Gl n Gl y Al a Gl u Pr o Ar g 1190 1195 1200 Lys As n Phe Val Lys Pr o As n Gl u Thr Lys Thr Tyr Phe Tr p Lys 1205 1210 1215 Val Gl n Hi s Hi s Met Al a Pr o Thr Lys As p Gl u Phe As p Cys Lys 1220 1225 1230 Al a Tr p Al a Tyr Phe Ser As p Val As p Leu Gl u Lys As p Val Hi s 1235 1240 1245 Ser Gl y Leu Ile Gl y Pr o Leu Leu Val Cys Hi s Thr As n Thr Leu 1250 1255 1260 As n Pr o Al a Hi s Gl y Ar g Gl n Val Thr Val Gl n Gl u Phe Al a Leu 1265 1270 1275 Phe Phe Thr Ile Phe As p Gl u Thr Lys Ser Tr p Tyr Phe Thr Gl u
    Page 234
    2018203206 08 May 2018
    97047_1
    1280 1285 1290
    As n Met 1295 Gl u Ar g As n Cy s Ar g 1300 Al a Pr o Cy s As n Ile 1305 Gl n Met Gl u As p Pr o Thr Phe Lys Gl u As n Ty r Ar g Phe Hi s Al a I l e As n Gl y 1310 1315 1320 Ty r I l e Met As p Thr Leu Pr o Gl y Leu Val Met Al a Gl n As p Gl n 1325 1330 1335 Ar g I l e Ar g Tr p Ty r Leu Leu Ser Met Gl y Ser As n Gl u As n I l e 1340 1345 1350 Hi s Ser I l e Hi s Phe Ser Gl y Hi s Val Phe Thr Val Ar g Lys Lys 1355 1360 1365 Gl u Gl u Ty r Lys Met Al a Leu Ty r As n Leu Ty r Pr o Gl y Val Phe 1370 1375 1380 Gl u Thr Val Gl u Met Leu Pr o Ser Lys Al a Gl y Ile Tr p Ar g Val 1385 1390 1395 Gl u Cy s Leu Ile Gl y Gl u Hi s Leu Hi s Al a Gl y Met Ser Thr Leu
    1400 1405 1410
    Page 235
    97047 1
    2018203206 08 May 2018
    Phe Leu 1415 Val Tyr Ser As n Lys 1420 Cys Gl n Thr Pr o Leu 1425 Gl y Met Al a Ser Gl y Hi s Ile Ar g As p Phe Gl n Ile Thr Al a Ser Gl y Gl n Tyr 1430 1435 1440 Gl y Gl n Tr p Al a Pr o Lys Leu Al a Ar g Leu Hi s Tyr Ser Gl y Ser 1445 1450 1455 I l e As n Al a Tr p Ser Thr Lys Gl u Pr o Phe Ser Tr p I l e Lys Val 1460 1465 1470 As p Leu Leu Al a Pr o Met Ile Ile Hi s Gl y Ile Lys Thr Gl n Gl y 1475 1480 1485 Al a Ar g Gl n Lys Phe Ser Ser Leu Tyr Ile Ser Gl n Phe I l e I l e 1490 1495 1500 Met Tyr Ser Leu As p Gl y Lys Lys Tr p Gl n Thr Tyr Ar g Gl y As n 1505 1510 1515 Ser Thr Gl y Thr Leu Met Val Phe Phe Gl y As n Val As p Ser Ser 1520 1525 1530 Gl y I l e Lys Hi s As n Ile Phe As n Pr o Pr o Ile Ile Al a Ar g Tyr
    Page 236
    2018203206 08 May 2018
    1535 1540 97047 _1 1545 I l e Ar g Leu Hi s Pr o Thr Hi s Ty r Ser Ile Ar g Ser Thr Leu Ar g 1550 1555 1560 Met Gl u Leu Met Gl y Cy s As p Leu As n Ser Cy s Ser Met Pr o Leu 1565 1570 1575 Gl y Met Gl u Ser Lys Al a Ile Ser As p Al a Gl n Ile Thr Al a Ser 1580 1585 1590 Ser Ty r Phe Thr As n Met Phe Al a Thr Tr p Ser Pr o Ser Lys Al a 1595 1600 1605 Ar g Leu Hi s Leu Gl n Gl y Ar g Ser As n Al a Tr p Ar g Pr o Gl n Val 1610 1615 1620 As n As n Pr o Lys Gl u Tr p Leu Gl n Val As p Phe Gl n Lys Thr Met 1625 1630 1635 Lys Val Thr Gl y Val Thr Thr Gl n Gl y Val Lys Ser Leu Leu Thr 1640 1645 1650 Ser Met Ty r Val Lys Gl u Phe Leu Ile Ser Ser Ser Gl n As p Gl y 1655 1660 1665
    Page 237
    97047_1
    2018203206 08 May 2018
    Hi s Gl n 1670 Tr p Thr Leu Phe Phe 1675 Gl n As n Gl y Lys Val 1680 Lys Val Phe Gl n Gl y As n Gl n As p Ser Phe Thr Pr o Val Val As n Ser Leu As p 1685 1690 1695 Pr o Pr o Leu Leu Thr Ar g Ty r Leu Ar g Ile Hi s Pr o Gl n Ser Tr p 1700 1705 1710 Val Hi s Gl n Ile Al a Leu Ar g Met Gl u Val Leu Gl y Cy s Gl u Al a 1715 1720 1725 Gl n As p Leu Ty r As p Lys Thr Hi s Thr Cy s Pr o Pr o Cy s Pr o Al a 1730 1735 1740 Pr o Gl u Leu Leu Gl y Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o Lys 1745 1750 1755 Pr o Lys As p Thr Leu Met Ile Ser Ar g Thr Pr o Gl u Val Thr Cy s 1760 1765 1770 Val Val Val As p Val Ser Hi s Gl u As p Pr o Gl u Val Lys Phe As n 1775 1780 1785 Tr p Ty r Val As p Gl y Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o
    Page 238
    2018203206 08 May 2018
    97047_1
    1790 1795 1800
    Ar g Gl u 1805 Gl u Gl n Ty r As n Ser 1810 Thr Ty r Ar g Val Val 1815 Ser Val Leu Thr Val Leu Hi s Gl n As p Tr p Leu As n Gl y Lys Gl u Ty r Lys Cy s 1820 1825 1830 Lys Val Ser As n Lys Al a Leu Pr o Al a Pr o Ile Gl u Lys Thr I l e 1835 1840 1845 Ser Lys Al a Lys Gl y Gl n Pr o Ar g Gl u Pr o Gl n Val Ty r Thr Leu 1850 1855 1860 Pr o Pr o Ser Ar g As p Gl u Leu Thr Lys As n Gl n Val Ser Leu Thr 1865 1870 1875 Cy s Leu Val Lys Gl y Phe Ty r Pr o Ser As p Ile Al a Val Gl u Tr p 1880 1885 1890 Gl u Ser Asn Gl y Gl n Pr o Gl u As n As n Ty r Lys Thr Thr Pr o Pr o 1895 1900 1905 Val Leu As p Ser As p Gl y Ser Phe Phe Leu Ty r Ser Lys Leu Thr
    1910 1915 1920
    Page 239
    97047_1
    2018203206 08 May 2018
    Val As p 1925 Lys Ser Ar g Tr p Gl n 1930 Gl n Gl y As n Val Phe 1935 Ser Cys Ser Val Met Hi s Gl u Al a Leu Hi s As n Hi s Tyr Thr Gl n Lys Ser Leu 1940 1945 1950 Ser Leu Ser Pr o Gl y Lys
    1955 <210> 105 <211> 1984 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> FVI I I 195 pr ot ei n sequence <400> 105
    Met 1 Gl n I l e Gl u Leu Ser 5 Thr Cys Phe Phe 10 Leu Cys Leu Leu Ar g 15 Phe Cys Phe Ser Al a Thr Ar g Ar g Tyr Tyr Leu Gl y Al a Val Gl u Leu Ser 20 25 30 Tr p As p Tyr Met Gl n Ser As p Leu Gl y Gl u Leu Pr o Val As p Al a Ar g 35 40 45
    Page 240
    97047_1
    2018203206 08 May 2018
    Phe Pr o 50 Pr o Ar g Val Pr o Lys 55 Ser Phe Pr o Phe As n 60 Thr Ser Val Val Ty r Lys Lys Thr Leu Phe Val Gl u Phe Thr As p Hi s Leu Phe As n I l e 65 70 75 80 Al a Lys Pr o Ar g Pr o Pr o Tr p Met Gl y Leu Leu Gl y Pr o Thr I l e Gl n 85 90 95 Al a Gl u Val Ty r As p Thr Val Val Ile Thr Leu Lys As n Met Al a Ser 100 105 110 Hi s Pr o Val Ser Leu Hi s Al a Val Gl y Val Ser Ty r Tr p Lys Al a Ser 115 120 125 Gl u Gl y Al a Gl u Ty r As p As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p 130 135 140 As p Lys Val Phe Pr o Gl y Gl y Ser Hi s Thr Ty r Val Tr p Gl n Val Leu 145 150 155 160 Lys Gl u As n Gl y Pr o Met Al a Ser As p Pr o Leu Cy s Leu Thr Ty r Ser 165 170 175 Ty r Leu Ser Hi s Val As p Leu Val Lys As p Leu As n Ser Gl y Leu I l e
    Page 241
    2018203206 08 May 2018
    180 185 97047_1 190 Gl y Al a Leu Leu Val Cys Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr 195 200 205 Gl n Thr Leu Hi s Lys Phe Ile Leu Leu Phe Al a Val Phe As p Gl u Gl y 210 215 220 Lys Ser Tr p Hi s Ser Gl u Thr Lys As n Ser Leu Met Gl n As p Ar g As p 225 230 235 240 Al a Al a Ser Al a Ar g Al a Tr p Pr o Lys Met Hi s Thr Val As n Gl y Tyr 245 250 255 Val As n Ar g Ser Leu Pr o Gl y Leu Ile Gl y Cys Hi s Ar g Lys Ser Val 260 265 270 Tyr Tr p Hi s Val Ile Gl y Met Gl y Thr Thr Pr o Gl u Val Hi s Ser I l e 275 280 285 Phe Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser 290 295 300 Leu Gl u I l e Ser Pr o Ile Thr Phe Leu Thr Al a Gl n Thr Leu Leu Met 305 310 315 320
    Page 242
    97047_1
    2018203206 08 May 2018
    As p Leu Gl y Gl n Phe 325 Leu Leu Phe Cy s Hi s 330 Ile Ser Ser Hi s Gl n 335 Hi s As p Gl y Met Gl u Al a Ty r Val Lys Val As p Ser Cy s Pr o Gl u Gl u Pr o 340 345 350 Gl n Leu Ar g Met Lys As n As n Gl u Gl u Al a Gl u As p Ty r As p As p As p 355 360 365 Leu Thr As p Ser Gl u Met As p Val Val Ar g Phe As p As p As p As n Ser 370 375 380 Pr o Ser Phe I l e Gl n Ile Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr 385 390 395 400 Tr p Val Hi s Ty r Ile Al a Al a Gl u Gl u Gl u As p Tr p As p Ty r Al a Pr o 405 410 415 Leu Val Leu Al a Pr o As p As p Ar g Ser Ty r Lys Ser Gl n Ty r Leu As n 420 425 430 As n Gl y Pr o Gl n Ar g Ile Gl y Ar g Lys Ty r Lys Lys Val Ar g Phe Met 435 440 445 Al a Ty r Thr As p Gl u Thr Phe Lys Thr Ar g Gl u Al a I l e Gl n Hi s Gl u
    Page 243
    2018203206 08 May 2018
    97047_1
    450 455 460
    Ser 465 Gl y I l e Leu Gl y Pr o 470 Leu Leu Tyr Gl y Gl u 475 Val Gl y As p Thr Leu 480 Leu I l e I l e Phe Lys As n Gl n Al a Ser Ar g Pr o Tyr As n I l e Tyr Pr o 485 490 495 Hi s Gl y I l e Thr As p Val Ar g Pr o Leu Tyr Ser Ar g Ar g Leu Pr o Lys 500 505 510 Gl y Val Lys Hi s Leu Lys As p Phe Pr o Ile Leu Pr o Gl y Gl u I l e Phe 515 520 525 Lys Tyr Lys Tr p Thr Val Thr Val Gl u As p Gl y Pr o Thr Lys Ser As p 530 535 540 Pr o Ar g Cys Leu Thr Ar g Tyr Tyr Ser Ser Phe Val As n Met Gl u Ar g 545 550 555 560 As p Leu Al a Ser Gl y Leu Ile Gl y Pr o Leu Leu Ile Cys Tyr Lys Gl u 565 570 575 Ser Val As p Gl n Ar g Gl y As n Gl n Ile Met Ser As p Lys Ar g As n Val 580 585 590
    Page 244
    97047_1
    2018203206 08 May 2018
    I l e Leu Phe Ser 595 Val Phe As p Gl u As n 600 Ar g Ser Tr p Tyr 605 Leu Thr Gl u As n I l e Gl n Ar g Phe Leu Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p 610 615 620 Pr o Gl u Phe Gl n Al a Ser As n Ile Met Hi s Ser Ile As n Gl y Tyr Val 625 630 635 640 Phe As p Ser Leu Gl n Leu Ser Val Cys Leu Hi s Gl u Val Al a Tyr Tr p 645 650 655 Tyr I l e Leu Ser Ile Gl y Al a Gl n Thr As p Phe Leu Ser Val Phe Phe 660 665 670 Ser Gl y Tyr Thr Phe Lys Hi s Lys Met Val Tyr Gl u As p Thr Leu Thr 675 680 685 Leu Phe Pr o Phe Ser Gl y Gl u Thr Val Phe Met Ser Met Gl u As n Pr o 690 695 700 Gl y Leu Tr p I l e Leu Gl y Cys Hi s As n Ser As p Phe Ar g As n Ar g Gl y 705 710 715 720 Met Thr Al a Leu Leu Lys Val Ser Ser Cys As p Lys As n Thr Gl y As p
    Page 245
    2018203206 08 May 2018
    97047_1
    725 730 735
    Tyr Tyr Gl u Asp Ser 740 Tyr Gl u As p Ile 745 Ser Al a Tyr Leu Leu 750 Ser Lys As n As n Al a I l e Gl u Pr o Ar g Ser Phe Ser Gl n As n Pr o Pr o Val Leu 755 760 765 Lys Ar g Hi s Gl n Ar g Gl u Ile Thr Ar g Thr Thr Leu Gl n Gl y Al a Pr o 770 775 780 Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Al a Ser Pr o 785 790 795 800 Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 805 810 815 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 820 825 830 Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Thr Pr o Gl y 835 840 845 Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 850 855 860
    Page 246
    97047 1
    2018203206 08 May 2018
    Thr 865 Gl y Ser Pr o Gl y Al a 870 Ser Pr o Gl y Thr Ser 875 Ser Thr Gl y Ser Pr o 880 Gly Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Ser Ser Thr 885 890 895 Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a 900 905 910 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 915 920 925 Al a Ser Ser Ser Asp Gl n Gl u Gl u I l e As p Tyr As p As p Thr I l e Ser 930 935 940 Val Gl u Met Lys Lys Gl u As p Phe As p Ile Tyr As p Gl u As p Gl u As n 945 950 955 960 Gl n Ser Pr o Ar g Ser Phe Gl n Lys Lys Thr Ar g Hi s Tyr Phe I l e Al a 965 970 975 Al a Val Gl u Ar g Leu Tr p As p Tyr Gl y Met Ser Ser Ser Pr o Hi s Val 980 985 990 Leu Ar g Asn Ar g Al a Gl n Ser Gl y Ser Val Pr o Gl n Phe Lys Lys Val
    Page 247
    2018203206 08 May 2018
    97047_1
    995 1000 1005
    Val Phe 1010 Gl n Gl u Phe Thr As p 1015 Gl y Ser Phe Thr Gl n 1020 Pr o Leu Ty r Ar g Gl y Gl u Leu As n Gl u Hi s Leu Gl y Leu Leu Gl y Pr o Ty r I l e 1025 1030 1035 Ar g Al a Gl u Val Gl u As p As n Ile Met Val Thr Phe Ar g As n Gl n 1040 1045 1050 Al a Ser Ar g Pr o Ty r Ser Phe Ty r Ser Ser Leu Ile Ser Ty r Gl u 1055 1060 1065 Gl u As p Gl n Ar g Gl n Gl y Al a Gl u Pr o Ar g Lys As n Phe Val Lys 1070 1075 1080 Pr o As n Gl u Thr Lys Thr Ty r Phe Tr p Lys Val Gl n Hi s Hi s Met 1085 1090 1095 Al a Pr o Thr Lys As p Gl u Phe As p Cy s Lys Al a Tr p Al a Ty r Phe 1100 1105 1110 Ser As p Val As p Leu Gl u Lys As p Val Hi s Ser Gl y Leu I l e Gl y 1115 1120 1125
    Page 248
    97047_1
    2018203206 08 May 2018
    Pr o Leu 1130 Leu Val Cy s Hi s Thr 1135 As n Thr Leu As n Pr o 1140 Al a Hi s Gl y Ar g Gl n Val Thr Val Gl n Gl u Phe Al a Leu Phe Phe Thr I l e Phe 1145 1150 1155 As p Gl u Thr Lys Ser Tr p Ty r Phe Thr Gl u As n Met Gl u Ar g As n 1160 1165 1170 Cy s Ar g Gl y Al a Pr o Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y 1175 1180 1185 Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr 1190 1195 1200 Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a 1205 1210 1215 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 1220 1225 1230 Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a 1235 1240 1245 Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser
    Page 249
    97047_1
    1260
    2018203206 08 May 2018
    1250 1255 Pr o Al a Gl y Ser Pr o Thr Ser 1265 1270 Ser Pr o Thr Ser Thr Gl u Gl u 1280 1285
    Thr Gl u Gl u Gl y Ser Pr o Al a Gl y 1275
    Gl y Ser Pr o Al a Gl y Ser Pr o Thr 1290
    Ser Thr
    Gl u Gl u Gl y Thr Ser
    Gl u Ser Al a Thr Pr o
    Gl u Ser Gl y
    1295
    1300
    1305
    Pr o Gl y
    Thr Ser Thr
    Gl u Pr o
    Ser Gl u Gl y Ser Al a
    Pr o Gl y Al a
    1310
    1315
    1320
    Ser Ser
    Al a Pro Cys Asn I l e
    Gl n Met Gl u Asp Pr o
    Thr Phe Lys
    1325
    1330
    1335
    Gl u As n
    Tyr Arg Phe Hi s Al a
    I l e As n Gl y Ty r I l e
    Met Asp Thr
    1340
    1345
    1350
    Leu Pr o
    Gl y Leu Val Met Al a
    Gl n As p Gl n Ar g I l e
    Arg Trp Tyr
    1355
    1360
    1365
    Leu Leu
    Ser Met Gl y Ser Asn
    Gl u As n I l e Hi s
    Ser
    I l e Hi s Phe
    1370
    1375
    1380
    Page 250
    97047_1
    2018203206 08 May 2018
    Ser Gl y 1385 Hi s Val Phe Thr Val 1390 Ar g Lys Lys Gl u Gl u 1395 Tyr Lys Met Al a Leu Tyr As n Leu Tyr Pr o Gl y Val Phe Gl u Thr Val Gl u Met 1400 1405 1410 Leu Pr o Ser Lys Al a Gl y Ile Tr p Ar g Val Gl u Cys Leu I l e Gl y 1415 1420 1425 Gl u Hi s Leu Hi s Al a Gl y Met Ser Thr Leu Phe Leu Val Tyr Ser 1430 1435 1440 As n Lys Cys Gl n Thr Pr o Leu Gl y Met Al a Ser Gl y Hi s I l e Ar g 1445 1450 1455 As p Phe Gl n Ile Thr Al a Ser Gl y Gl n Tyr Gl y Gl n Tr p Al a Pr o 1460 1465 1470 Lys Leu Al a Ar g Leu Hi s Tyr Ser Gl y Ser Ile As n Al a Tr p Ser 1475 1480 1485 Thr Lys Gl u Pr o Phe Ser Tr p Ile Lys Val As p Leu Leu Al a Pr o 1490 1495 1500 Met I l e I l e Hi s Gl y Ile Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe
    Page 251
    2018203206 08 May 2018
    1505 1510 97047 _1 1515 Ser Ser Leu Ty r Ile Ser Gl n Phe Ile Ile Met Ty r Ser Leu As p 1520 1525 1530 Gl y Lys Lys Tr p Gl n Thr Ty r Ar g Gl y As n Ser Thr Gl y Thr Leu 1535 1540 1545 Met Val Phe Phe Gl y As n Val As p Ser Ser Gl y Ile Lys Hi s As n 1550 1555 1560 I l e Phe As n Pr o Pr o Ile Ile Al a Ar g Ty r Ile Ar g Leu Hi s Pr o 1565 1570 1575 Thr Hi s Ty r Ser Ile Ar g Ser Thr Leu Ar g Met Gl u Leu Met Gl y 1580 1585 1590 Cy s As p Leu As n Ser Cy s Ser Met Pr o Leu Gl y Met Gl u Ser Lys 1595 1600 1605 Al a I l e Ser As p Al a Gl n Ile Thr Al a Ser Ser Ty r Phe Thr As n 1610 1615 1620 Met Phe Al a Thr Tr p Ser Pr o Ser Lys Al a Ar g Leu Hi s Leu Gl n 1625 1630 1635
    Page 252
    97047 1
    2018203206 08 May 2018
    Gl y Ar g 1640 Ser As n Al a Tr p Ar g 1645 Pr o Gl n Val As n As n 1650 Pr o Lys Gl u Tr p Leu Gl n Val As p Phe Gl n Lys Thr Met Lys Val Thr Gl y Val 1655 1660 1665 Thr Thr Gl n Gl y Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys 1670 1675 1680 Gl u Phe Leu Ile Ser Ser Ser Gl n As p Gl y Hi s Gl n Tr p Thr Leu 1685 1690 1695 Phe Phe Gl n As n Gl y Lys Val Lys Val Phe Gl n Gl y As n Gl n As p 1700 1705 1710 Ser Phe Thr Pr o Val Val As n Ser Leu As p Pr o Pr o Leu Leu Thr 1715 1720 1725 Ar g Tyr Leu Ar g Ile Hi s Pr o Gl n Ser Tr p Val Hi s Gl n I l e Al a 1730 1735 1740 Leu Ar g Met Gl u Val Leu Gl y Cys Gl u Al a Gl n As p Leu Tyr As p 1745 1750 1755 Lys Thr Hi s Thr Cys Pr o Pr o Cys Pr o Al a Pr o Gl u Leu Leu Gl y
    Page 253
    2018203206 08 May 2018
    1760 1765 97047 _1 1770 Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o Lys Pr o Lys As p Thr Leu 1775 1780 1785 Met I l e Ser Ar g Thr Pr o Gl u Val Thr Cys Val Val Val As p Val 1790 1795 1800 Ser Hi s Gl u As p Pr o Gl u Val Lys Phe As n Tr p Tyr Val As p Gl y 1805 1810 1815 Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Tyr 1820 1825 1830 As n Ser Thr Tyr Ar g Val Val Ser Val Leu Thr Val Leu Hi s Gl n 1835 1840 1845 As p Tr p Leu As n Gl y Lys Gl u Tyr Lys Cys Lys Val Ser As n Lys 1850 1855 1860 Al a Leu Pr o Al a Pr o Ile Gl u Lys Thr Ile Ser Lys Al a Lys Gl y 1865 1870 1875 Gl n Pr o Ar g Gl u Pr o Gl n Val Tyr Thr Leu Pr o Pr o Ser Ar g As p 1880 1885 1890
    Page 254
    2018203206 08 May 2018
    97047 1
    Gl u Leu 1895 Thr Lys As n Gl n Val 1900 Ser Leu Thr Cy s Leu 1905 Val Lys Gl y Phe Ty r Pr o Ser As p Ile Al a Val Gl u Tr p Gl u Ser As n Gl y Gl n 1910 1915 1920 Pr o Gl u As n As n Ty r Lys Thr Thr Pr o Pr o Val Leu As p Ser As p 1925 1930 1935 Gl y Ser Phe Phe Leu Ty r Ser Lys Leu Thr Val As p Lys Ser Ar g 1940 1945 1950 Tr p Gl n Gl n Gl y As n Val Phe Ser Cy s Ser Val Met Hi s Gl u Al a 1955 1960 1965 Leu Hi s As n Hi s Ty r Thr Gl n Lys Ser Leu Ser Leu Ser Pr o Gl y 1970 1975 1980
    Lys <210> 106 <211> 2134 <212> PRT <213> Art i f i ci al Sequence
    Page 255
    2018203206 08 May 2018
    97047_1 <220>
    <223> FVIII 196 protein sequence <400> 106
    Met 1 Gl n I l e Gl u Leu 5 Ser Thr Cy s Phe Phe 10 Leu Cy s Leu Leu Ar g 15 Phe Cys Phe Ser Al a Thr Ar g Ar g Ty r Ty r Leu Gl y Al a Val Gl u Leu Ser 20 25 30 Tr p As p Ty r Met Gl n Ser As p Leu Gl y Gl u Leu Pr o Val Gl y Al a Pr o 35 40 45 Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Ser Ser Pr o 50 55 60 Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 65 70 75 80 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 85 90 95 Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Pr o 100 105 110 Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser
    Page 256
    2018203206 08 May 2018
    97047_1
    115 120 125
    Thr Gl y 130 Ser Pr o Gl y Ser Ser 135 Pr o Ser Al a Ser Thr 140 Gl y Thr Gl y Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Ser Ser Thr 145 150 155 160 Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a 165 170 175 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 180 185 190 Al a Ser Ser As p Al a Ar g Phe Pr o Pr o Ar g Val Pr o Lys Ser Phe Pr o 195 200 205 Phe As n Thr Ser Val Val Tyr Lys Lys Thr Leu Phe Val Gl u Phe Thr 210 215 220 As p Hi s Leu Phe As n Ile Al a Lys Pr o Ar g Pr o Pr o Tr p Met Gl y Leu 225 230 235 240
    Leu Gl y Pr o Thr
    I l e Gl n Al a Gl u
    Val
    Tyr Asp Thr Val
    Val
    I l e Thr
    245
    250
    255
    Page 257
    97047_1
    2018203206 08 May 2018
    Leu Lys As n Met 260 Al a Ser Hi s Pr o Val 265 Ser Leu Hi s Al a Val 270 Gl y Val Ser Ty r Tr p Lys Al a Ser Gl u Gl y Al a Gl u Ty r As p As p Gl n Thr Ser 275 280 285 Gl n Arg Gl u Lys Gl u As p As p Lys Val Phe Pr o Gl y Gl y Ser Hi s Thr 290 295 300 Ty r Val Tr p Gl n Val Leu Lys Gl u As n Gl y Pr o Met Al a Ser As p Pr o 305 310 315 320 Leu Cy s Leu Thr Ty r Ser Ty r Leu Ser Hi s Val As p Leu Val Lys As p 325 330 335 Leu As n Ser Gl y Leu Ile Gl y Al a Leu Leu Val Cy s Ar g Gl u Gl y Ser 340 345 350 Leu Al a Lys Gl u Lys Thr Gl n Thr Leu Hi s Lys Phe I l e Leu Leu Phe 355 360 365 Al a Val Phe As p Gl u Gl y Lys Ser Tr p Hi s Ser Gl u Thr Lys As n Ser 370 375 380 Leu Met Gl n As p Ar g As p Al a Al a Ser Al a Ar g Al a Tr p Pr o Lys Met
    Page 258
    2018203206 08 May 2018
    97047_1
    385 390 395 400
    Hi s Thr Val As n Gl y 405 Ty r Val As n Ar g Ser 410 Leu Pr o Gl y Leu I l e 415 Gl y Cy s Hi s Ar g Lys Ser Val Ty r Tr p Hi s Val Ile Gl y Met Gl y Thr Thr 420 425 430 Pr o Gl u Val Hi s Ser Ile Phe Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g 435 440 445 As n Hi s Ar g Gl n Al a Ser Leu Gl u Ile Ser Pr o Ile Thr Phe Leu Thr 450 455 460 Al a Gl n Thr Leu Leu Met As p Leu Gl y Gl n Phe Leu Leu Phe Cy s Hi s 465 470 475 480 I l e Ser Ser Hi s Gl n Hi s As p Gl y Met Gl u Al a Ty r Val Lys Val As p 485 490 495 Ser Cy s Pr o Gl u Gl u Pr o Gl n Leu Ar g Met Lys As n As n Gl u Gl u Al a 500 505 510 Gl u As p Ty r As p As p As p Leu Thr As p Ser Gl u Met As p Val Val Ar g 515 520 525
    Page 259
    97047_1
    2018203206 08 May 2018
    Phe Asp Asp Asp Asn Ser 530 Pr o 535 Ser Phe Ile Gl n Ile 540 Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr Tr p Val Hi s Ty r Ile Al a Al a Gl u Gl u Gl u 545 550 555 560 As p Tr p As p Ty r Al a Pr o Leu Val Leu Al a Pr o As p As p Ar g Ser Ty r 565 570 575 Lys Ser Gl n Ty r Leu As n As n Gl y Pr o Gl n Ar g Ile Gl y Ar g Lys Ty r 580 585 590 Lys Lys Val Ar g Phe Met Al a Ty r Thr As p Gl u Thr Phe Lys Thr Ar g 595 600 605 Gl u Al a I l e Gl n Hi s Gl u Ser Gl y Ile Leu Gl y Pr o Leu Leu Ty r Gl y 610 615 620 Gl u Val Gl y As p Thr Leu Leu Ile Ile Phe Lys As n Gl n Al a Ser Ar g 625 630 635 640 Pr o Ty r As n I l e Ty r Pr o Hi s Gl y Ile Thr As p Val Ar g Pr o Leu Ty r 645 650 655 Ser Ar g Ar g Leu Pr o Lys Gl y Val Lys Hi s Leu Lys As p Phe Pr o I l e
    Page 260
    2018203206 08 May 2018
    660 665 97047_1 670 Leu Pr o Gl y Gl u Ile Phe Lys Ty r Lys Tr p Thr Val Thr Val Gl u As p 675 680 685 Gl y Pr o Thr Lys Ser As p Pr o Ar g Cy s Leu Thr Ar g Ty r Ty r Ser Ser 690 695 700 Phe Val As n Met Gl u Ar g As p Leu Al a Ser Gl y Leu I l e Gl y Pr o Leu 705 710 715 720 Leu I l e Cy s Ty r Lys Gl u Ser Val As p Gl n Ar g Gl y As n Gl n I l e Met 725 730 735 Ser As p Lys Ar g As n Val Ile Leu Phe Ser Val Phe As p Gl u As n Ar g 740 745 750 Ser Tr p Ty r Leu Thr Gl u As n Ile Gl n Ar g Phe Leu Pr o As n Pr o Al a 755 760 765 Gl y Val Gl n Leu Gl u As p Pr o Gl u Phe Gl n Al a Ser As n I l e Met Hi s 770 775 780 Ser I l e As n Gl y Ty r Val Phe As p Ser Leu Gl n Leu Ser Val Cy s Leu 785 790 795 800
    Page 261
    97047_1
    2018203206 08 May 2018
    Hi s Gl u Val Al a Tyr 805 Tr p Tyr Ile Leu Ser 810 I l e Gl y Al a Gl n Thr 815 As p Phe Leu Ser Val Phe Phe Ser Gl y Tyr Thr Phe Lys Hi s Lys Met Val 820 825 830 Tyr Gl u As p Thr Leu Thr Leu Phe Pr o Phe Ser Gl y Gl u Thr Val Phe 835 840 845 Met Ser Met Gl u As n Pr o Gl y Leu Tr p Ile Leu Gl y Cys Hi s As n Ser 850 855 860 As p Phe Ar g As n Ar g Gl y Met Thr Al a Leu Leu Lys Val Ser Ser Cys 865 870 875 880 As p Lys As n Thr Gl y As p Tyr Tyr Gl u As p Ser Tyr Gl u As p I l e Ser 885 890 895 Al a Tyr Leu Leu Ser Lys As n As n Al a Ile Gl u Pr o Ar g Ser Phe Ser 900 905 910 Gl n As n Pr o Pr o Val Leu Lys Ar g Hi s Gl n Ar g Gl u I l e Thr Ar g Thr 915 920 925 Thr Leu Gl n Gl y Al a Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser
    Page 262
    2018203206 08 May 2018
    97047 1
    930 935 940 Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a 945 950 955 960 Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr 965 970 97 5 Ser Ser Thr Gl y Ser Pr o Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr 980 985 990 Gl y Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Al a 995 1000 100 5
    Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y 1010 1015 1020 Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 1025 1030 1035 Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser 1040 1045 1050 Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Al a 1055 1060 1065
    Page 263
    97047_1
    2018203206 08 May 2018
    Ser Pr o 1070 Gl y Thr Ser Ser Thr 1075 Gl y Ser Pr o Al a Ser 1080 Ser Ser As p Gl n Gl u Gl u Ile As p Tyr As p As p Thr Ile Ser Val Gl u Met Lys 1085 1090 1095 Lys Gl u As p Phe As p Ile Tyr As p Gl u As p Gl u As n Gl n Ser Pr o 1100 1105 1110 Ar g Ser Phe Gl n Lys Lys Thr Ar g Hi s Tyr Phe Ile Al a Al a Val 1115 1120 1125 Gl u Ar g Leu Tr p As p Tyr Gl y Met Ser Ser Ser Pr o Hi s Val Leu 1130 1135 1140 Ar g As n Ar g Al a Gl n Ser Gl y Ser Val Pr o Gl n Phe Lys Lys Val 1145 1150 1155 Val Phe Gl n Gl u Phe Thr As p Gl y Ser Phe Thr Gl n Pr o Leu Tyr 1160 1165 1170 Ar g Gl y Gl u Leu As n Gl u Hi s Leu Gl y Leu Leu Gl y Pr o Tyr I l e 1175 1180 1185 Ar g Al a Gl u Val Gl u As p As n Ile Met Val Thr Phe Ar g As n Gl n
    Page 264
    2018203206 08 May 2018
    97047_1
    1190 1195 1200
    Al a Ser 1205 Ar g Pr o Tyr Ser Phe 1210 Tyr Ser Ser Leu Ile 1215 Ser Tyr Gl u Gl u As p Gl n Ar g Gl n Gl y Al a Gl u Pr o Ar g Lys As n Phe Val Lys 1220 1225 1230 Pr o As n Gl u Thr Lys Thr Tyr Phe Tr p Lys Val Gl n Hi s Hi s Met 1235 1240 1245 Al a Pr o Thr Lys As p Gl u Phe As p Cys Lys Al a Tr p Al a Tyr Phe 1250 1255 1260 Ser As p Val As p Leu Gl u Lys As p Val Hi s Ser Gl y Leu I l e Gl y 1265 1270 1275 Pr o Leu Leu Val Cys Hi s Thr As n Thr Leu As n Pr o Al a Hi s Gl y 1280 1285 1290 Ar g Gl n Val Thr Val Gl n Gl u Phe Al a Leu Phe Phe Thr I l e Phe 1295 1300 1305 As p Gl u Thr Lys Ser Tr p Tyr Phe Thr Gl u As n Met Gl u Ar g As n
    1310 1315 1320
    Page 265
    97047_1
    2018203206 08 May 2018
    Cys Ar g 1325 Gl y Al a Pr o Thr Ser 1330 Gl u Ser Al a Thr Pr o 1335 Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr 1340 1345 1350 Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a 1355 1360 1365 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 1370 1375 1380 Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a 1385 1390 1395 Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser 1400 1405 1410 Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Ser Pr o Al a Gl y 1415 1420 1425 Ser Pr o Thr Ser Thr Gl u Gl u Gl y Ser Pr o Al a Gl y Ser Pr o Thr 1430 1435 1440 Ser Thr Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y
    Page 266
    2018203206 08 May 2018
    97047_1
    1445 1450 1455
    Pr o Gl y 1460 Thr Ser Thr Gl u Pr o 1465 Ser Gl u Gl y Ser Al a 1470 Pr o Gl y Al a Ser Ser Al a Pr o Cys As n Ile Gl n Met Gl u As p Pr o Thr Phe Lys 1475 1480 1485 Gl u As n Tyr Ar g Phe Hi s Al a Ile As n Gl y Tyr Ile Met As p Thr 1490 1495 1500 Leu Pr o Gl y Leu Val Met Al a Gl n As p Gl n Ar g Ile Ar g Tr p Tyr 1505 1510 1515 Leu Leu Ser Met Gl y Ser As n Gl u As n Ile Hi s Ser I l e Hi s Phe 1520 1525 1530 Ser Gl y Hi s Val Phe Thr Val Ar g Lys Lys Gl u Gl u Tyr Lys Met 1535 1540 1545 Al a Leu Tyr As n Leu Tyr Pr o Gl y Val Phe Gl u Thr Val Gl u Met 1550 1555 1560 Leu Pr o Ser Lys Al a Gl y Ile Tr p Ar g Val Gl u Cys Leu I l e Gl y
    1565 1570 1575
    Page 267
    97047_1
    2018203206 08 May 2018
    Gl u Hi s 1580 Leu Hi s Al a Gl y Met 1585 Ser Thr Leu Phe Leu 1590 Val Ty r Ser As n Lys Cy s Gl n Thr Pr o Leu Gl y Met Al a Ser Gl y Hi s I l e Ar g 1595 1600 1605 As p Phe Gl n Ile Thr Al a Ser Gl y Gl n Ty r Gl y Gl n Tr p Al a Pr o 1610 1615 1620 Lys Leu Al a Ar g Leu Hi s Ty r Ser Gl y Ser Ile As n Al a Tr p Ser 1625 1630 1635 Thr Lys Gl u Pr o Phe Ser Tr p Ile Lys Val As p Leu Leu Al a Pr o 1640 1645 1650 Met I l e I l e Hi s Gl y Ile Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe 1655 1660 1665 Ser Ser Leu Ty r Ile Ser Gl n Phe Ile Ile Met Ty r Ser Leu As p 1670 1675 1680 Gl y Lys Lys Tr p Gl n Thr Ty r Ar g Gl y As n Ser Thr Gl y Thr Leu 1685 1690 1695 Met Val Phe Phe Gl y As n Val As p Ser Ser Gl y Ile Lys Hi s As n
    Page 268
    2018203206 08 May 2018
    1700 1705 97047 _1 1710 I l e Phe As n Pr o Pr o Ile Ile Al a Ar g Ty r Ile Ar g Leu Hi s Pr o 1715 1720 1725 Thr Hi s Ty r Ser Ile Ar g Ser Thr Leu Ar g Met Gl u Leu Met Gl y 1730 1735 1740 Cy s As p Leu As n Ser Cy s Ser Met Pr o Leu Gl y Met Gl u Ser Lys 1745 1750 1755 Al a I l e Ser As p Al a Gl n Ile Thr Al a Ser Ser Ty r Phe Thr As n 1760 1765 1770 Met Phe Al a Thr Tr p Ser Pr o Ser Lys Al a Ar g Leu Hi s Leu Gl n 1775 1780 1785 Gl y Ar g Ser As n Al a Tr p Ar g Pr o Gl n Val As n As n Pr o Lys Gl u 1790 1795 1800 Tr p Leu Gl n Val As p Phe Gl n Lys Thr Met Lys Val Thr Gl y Val 1805 1810 1815 Thr Thr Gl n Gl y Val Lys Ser Leu Leu Thr Ser Met Ty r Val Lys 1820 1825 1830
    Page 269
    97047 1
    2018203206 08 May 2018
    Gl u Phe 1835 Leu Ile Ser Ser Ser 1840 Gl n As p Gl y Hi s Gl n 1845 Tr p Thr Leu Phe Phe Gl n As n Gl y Lys Val Lys Val Phe Gl n Gl y As n Gl n As p 1850 1855 1860 Ser Phe Thr Pr o Val Val As n Ser Leu As p Pr o Pr o Leu Leu Thr 1865 1870 1875 Arg Tyr Leu Ar g Ile Hi s Pr o Gl n Ser Tr p Val Hi s Gl n I l e Al a 1880 1885 1890 Leu Ar g Met Gl u Val Leu Gl y Cy s Gl u Al a Gl n As p Leu Ty r As p 1895 1900 1905 Lys Thr Hi s Thr Cys Pr o Pr o Cy s Pr o Al a Pr o Gl u Leu Leu Gl y 1910 1915 1920 Gly Pr o Ser Val Phe Leu Phe Pr o Pr o Lys Pr o Lys As p Thr Leu 1925 1930 1935 Met I l e Ser Ar g Thr Pr o Gl u Val Thr Cy s Val Val Val As p Val 1940 1945 1950 Ser Hi s Gl u Asp Pr o Gl u Val Lys Phe As n Tr p Ty r Val As p Gl y
    Page 270
    2018203206 08 May 2018
    1955 1960 97047 _1 1965 Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Tyr 1970 1975 1980 As n Ser Thr Tyr Ar g Val Val Ser Val Leu Thr Val Leu Hi s Gl n 1985 1990 1995 As p Tr p Leu As n Gl y Lys Gl u Tyr Lys Cys Lys Val Ser As n Lys 2000 2005 2010 Al a Leu Pr o Al a Pr o Ile Gl u Lys Thr Ile Ser Lys Al a Lys Gl y 2015 2020 2025 Gl n Pr o Ar g Gl u Pr o Gl n Val Tyr Thr Leu Pr o Pr o Ser Ar g As p 2030 2035 2040 Gl u Leu Thr Lys As n Gl n Val Ser Leu Thr Cys Leu Val Lys Gl y 2045 2050 2055 Phe Tyr Pr o Ser As p Ile Al a Val Gl u Tr p Gl u Ser As n Gl y Gl n 2060 2065 2070 Pr o Gl u As n As n Tyr Lys Thr Thr Pr o Pr o Val Leu As p Ser As p 2075 2080 2085
    Page 271
    97047_1
    2018203206 08 May 2018
    Gl y Ser 2090 Phe Phe Leu Ty r Ser 2095 Lys Leu Thr Val As p 2100 Lys Ser Ar g Tr p Gl n Gl n Gl y As n Val Phe Ser Cy s Ser Val Met Hi s Gl u Al a 2105 2110 2115 Leu Hi s As n Hi s Ty r Thr Gl n Lys Ser Leu Ser Leu Ser Pr o Gl y 2120 2125 2130
    Lys <210> 107 <211> 1984 <212> PRT <213> Artificial Sequence <220>
    <223> FVI I I 199 pr ot ei n sequence <400> 107
    Met Gl n Ile Gl u Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
    1 5 10 15
    Cys Phe Ser Al a Thr Arg Arg Tyr Tyr Leu Gl y Al a Val Gl u Leu Ser
    20 25 30
    Page 272
    97047_1
    2018203206 08 May 2018
    Tr p As p Tyr 35 Met Gl n Ser As p Leu Gl y Gl u 40 Leu Pr o Val 45 As p Al a Ar g Phe Pr o Pr o Ar g Val Pr o Lys Ser Phe Pr o Phe As n Thr Ser Val Val 50 55 60 Tyr Lys Lys Thr Leu Phe Val Gl u Phe Thr As p Hi s Leu Phe As n I l e 65 70 75 80 Al a Lys Pr o Ar g Pr o Pr o Tr p Met Gl y Leu Leu Gl y Pr o Thr I l e Gl n 85 90 95 Al a Gl u Val Tyr As p Thr Val Val Ile Thr Leu Lys As n Met Al a Ser 100 105 110 Hi s Pr o Val Ser Leu Hi s Al a Val Gl y Val Ser Tyr Tr p Lys Al a Ser 115 120 125 Gl u Gl y Al a Gl u Tyr As p As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p 130 135 140 As p Lys Val Phe Pr o Gl y Gl y Ser Hi s Thr Tyr Val Tr p Gl n Val Leu 145 150 155 160 Lys Gl u Asn Gl y Pr o Met Al a Ser As p Pr o Leu Cys Leu Thr Tyr Ser
    Page 273
    2018203206 08 May 2018
    97047_1
    165 170 175
    Tyr Leu Ser Hi s 180 Val As p Leu Val Lys 185 As p Leu As n Ser Gl y 190 Leu I l e Gl y Al a Leu Leu Val Cys Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr 195 200 205 Gl n Thr Leu Hi s Lys Phe Ile Leu Leu Phe Al a Val Phe As p Gl u Gl y 210 215 220 Lys Ser Tr p Hi s Ser Gl u Thr Lys As n Ser Leu Met Gl n As p Ar g As p 225 230 235 240 Al a Al a Ser Al a Ar g Al a Tr p Pr o Lys Met Hi s Thr Val As n Gl y Tyr 245 250 255 Val As n Ar g Ser Leu Pr o Gl y Leu Ile Gl y Cys Hi s Ar g Lys Ser Val 260 265 270 Tyr Tr p Hi s Val Ile Gl y Met Gl y Thr Thr Pr o Gl u Val Hi s Ser I l e 275 280 285 Phe Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser 290 295 300
    Page 274
    2018203206 08 May 2018
    97047 1
    Leu 305 Gl u I l e Ser Pr o I l e Thr 310 Phe Leu Thr Al a 315 Gl n Thr Leu Leu Met 320 Asp Leu Gl y Gl n Phe Leu Leu Phe Cys Hi s Ile Ser Ser Hi s Gl n Hi s 325 330 335 Asp Gly Met Gl u Al a Tyr Val Lys Val As p Ser Cy s Pr o Gl u Gl u Pr o 340 345 350 Gl n Leu Ar g Met Lys As n As n Gl u Gl u Al a Gl u As p Ty r As p As p As p 355 360 365 Leu Thr As p Ser Gl u Met As p Val Val Ar g Phe As p As p As p As n Ser 370 375 380 Pr o Ser Phe I l e Gl n Ile Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr 385 390 395 400 Tr p Val Hi s Tyr Ile Al a Al a Gl u Gl u Gl u As p Tr p As p Ty r Al a Pr o 405 410 415 Leu Val Leu Al a Pr o As p As p Ar g Ser Ty r Lys Ser Gl n Ty r Leu As n 420 425 430 As n Gl y Pr o Gl n Ar g Ile Gl y Ar g Lys Ty r Lys Lys Val Ar g Phe Met
    Page 275
    2018203206 08 May 2018
    97047_1
    435 440 445
    Al a Tyr 450 Thr As p Gl u Thr Phe Lys Thr 455 Ar g Gl u Al a 460 I l e Gl n Hi s Gl u Ser Gl y I l e Leu Gl y Pr o Leu Leu Tyr Gl y Gl u Val Gl y As p Thr Leu 465 470 475 480 Leu I l e I l e Phe Lys As n Gl n Al a Ser Ar g Pr o Tyr As n I l e Tyr Pr o 485 490 495 Hi s Gl y I l e Thr As p Val Ar g Pr o Leu Tyr Ser Ar g Ar g Leu Pr o Lys 500 505 510 Gl y Val Lys Hi s Leu Lys As p Phe Pr o Ile Leu Pr o Gl y Gl u I l e Phe 515 520 525 Lys Tyr Lys Tr p Thr Val Thr Val Gl u As p Gl y Pr o Thr Lys Ser As p 530 535 540 Pr o Ar g Cys Leu Thr Ar g Tyr Tyr Ser Ser Phe Val As n Met Gl u Ar g 545 550 555 560 As p Leu Al a Ser Gl y Leu Ile Gl y Pr o Leu Leu Ile Cys Tyr Lys Gl u 565 570 575
    Page 276
    2018203206 08 May 2018
    97047_1
    Ser Val As p Gl n 580 Ar g Gl y As n Gl n Ile 585 Met Ser As p Lys Ar g 590 As n Val I l e Leu Phe Ser Val Phe As p Gl u As n Ar g Ser Tr p Ty r Leu Thr Gl u 595 600 605 As n I l e Gl n Ar g Phe Leu Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p 610 615 620 Pr o Gl u Phe Gl n Al a Ser As n Ile Met Hi s Ser Ile As n Gl y Ty r Val 625 630 635 640 Phe As p Ser Leu Gl n Leu Ser Val Cy s Leu Hi s Gl u Val Al a Ty r Tr p 645 650 655 Ty r I l e Leu Ser Ile Gl y Al a Gl n Thr As p Phe Leu Ser Val Phe Phe 660 665 670 Ser Gl y Ty r Thr Phe Lys Hi s Lys Met Val Ty r Gl u As p Thr Leu Thr 675 680 685 Leu Phe Pr o Phe Ser Gl y Gl u Thr Val Phe Met Ser Met Gl u As n Pr o 690 695 700 Gl y Leu Tr p I l e Leu Gl y Cy s Hi s As n Ser As p Phe Ar g As n Ar g Gl y
    Page 277
    2018203206 08 May 2018
    97047_1
    705 710 715 720
    Met Thr Al a Leu Leu 725 Lys Val Ser Ser Cy s 730 As p Lys As n Thr Gl y 735 As p Ty r Ty r Gl u As p Ser Ty r Gl u As p Ile Ser Al a Ty r Leu Leu Ser Lys 740 745 750 Asn As n Al a I l e Gl u Pr o Ar g Ser Phe Ser Gl n As n Pr o Pr o Val Leu 755 760 765 Lys Ar g Hi s Gl n Al a Gl u Ile Thr Ar g Thr Thr Leu Gl n Gl y Al a Pr o 770 775 780 Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Al a Ser Pr o 785 790 795 800 Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 805 810 815 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 820 825 830 Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Thr Pr o Gl y 835 840 845
    Page 278
    2018203206 08 May 2018
    97047_1
    Ser Gl y Thr 850 Al a Ser Ser Ser 855 Pr o Gl y Al a Ser Pr o 860 Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 865 870 875 880 Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Ser Ser Thr 885 890 895 Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a 900 905 910 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 915 920 925 Al a Ser Ser Ser As p Gl n Gl u Gl u Ile As p Ty r As p As p Thr I l e Ser 930 935 940 Val Gl u Met Lys Lys Gl u As p Phe As p Ile Ty r As p Gl u As p Gl u As n 945 950 955 960 Gl n Ser Pr o Ar g Ser Phe Gl n Lys Lys Thr Ar g Hi s Ty r Phe I l e Al a 965 970 975 Al a Val Gl u Ar g Leu Tr p As p Ty r Gl y Met Ser Ser Ser Pr o Hi s Val
    Page 279
    980
    2018203206 08 May 2018
    97047_1
    985 990
    Leu Arg Asn Arg Al a Gl n Ser Gl y Ser Val Pro Gl n Phe 1 Lys Lys Val 995 1000 1005 Val Phe Gl n Gl u Phe 1010 Thr Asp Gl y Ser Phe 1015 Thr Gl n Pr o 1020 Leu Ty r Ar g Gl y Gl u Leu Asn 1025 Gl u Hi s Leu Gl y Leu 1030 Leu Gl y Pr o 1035 Ty r I l e Ar g Al a Gl u Val Gl u 1040 Asp Asn Ile Met Val 1045 Thr Phe Ar g 1050 As n Gl n Al a Ser Arg Pro Tyr 1055 Ser Phe Tyr Ser Ser 1060 Leu I l e Ser 1065 Ty r Gl u Gl u As p Gl n Ar g Gl n 1070 Gl y Al a Gl u Pr o Ar g 1075 Lys Asn Phe 1080 Val Lys Pr o Asn Gl u Thr Lys 1085 Thr Tyr Phe Trp Lys 1090 Val Gl n Hi s 1095 Hi s Met Al a Pr o Thr Lys Asp 1100 Gl u Phe Asp Cys Lys 1105 Al a Tr p Al a 1110 Ty r Phe
    Page 280
    2018203206 08 May 2018
    97047_1
    Ser As p 1115 Val As p Leu Gl u Lys 1120 As p Val Hi s Ser Gl y 1125 Leu I l e Gl y Pr o Leu Leu Val Cys Hi s Thr As n Thr Leu As n Pr o Al a Hi s Gl y 1130 1135 1140 Ar g Gl n Val Thr Val Gl n Gl u Phe Al a Leu Phe Phe Thr I l e Phe 1145 1150 1155 As p Gl u Thr Lys Ser Tr p Tyr Phe Thr Gl u As n Met Gl u Ar g As n 1160 1165 1170 Cys Ar g Gl y Al a Pr o Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y 1175 1180 1185 Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr 1190 1195 1200 Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a 1205 1210 1215 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 1220 1225 1230 Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a
    Page 281
    2018203206 08 May 2018
    97047 _1 1235 1240 1245 Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser 1250 1255 1260 Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Ser Pr o Al a Gl y 1265 1270 1275 Ser Pr o Thr Ser Thr Gl u Gl u Gl y Ser Pr o Al a Gl y Ser Pr o Thr 1280 1285 1290 Ser Thr Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y 1295 1300 1305 Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Al a 1310 1315 1320 Ser Ser Al a Pr o Cys As n Ile Gl n Met Gl u As p Pr o Thr Phe Lys 1325 1330 1335 Gl u Asn Tyr Ar g Phe Hi s Al a Ile As n Gl y Tyr Ile Met As p Thr 1340 1345 1350 Leu Pr o Gl y Leu Val Met Al a Gl n Asp Gl n Ar g Ile Ar g Tr p Tyr 1355 1360 1365
    Page 282
    2018203206 08 May 2018
    97047 1
    Leu Leu 1370 Ser Met Gl y Ser As n 1375 Gl u As n Ile Hi s Ser 1380 I l e Hi s Phe Ser Gl y Hi s Val Phe Thr Val Ar g Lys Lys Gl u Gl u Tyr Lys Met 1385 1390 1395 Al a Leu Tyr As n Leu Tyr Pr o Gl y Val Phe Gl u Thr Val Gl u Met 1400 1405 1410 Leu Pr o Ser Lys Al a Gl y Ile Tr p Ar g Val Gl u Cys Leu I l e Gl y 1415 1420 1425 Gl u Hi s Leu Hi s Al a Gl y Met Ser Thr Leu Phe Leu Val Tyr Ser 1430 1435 1440 Asn Lys Cys Gl n Thr Pr o Leu Gl y Met Al a Ser Gl y Hi s I l e Ar g 1445 1450 1455 As p Phe Gl n Ile Thr Al a Ser Gl y Gl n Tyr Gl y Gl n Tr p Al a Pr o 1460 1465 1470 Lys Leu Al a Ar g Leu Hi s Tyr Ser Gl y Ser Ile As n Al a Tr p Ser 1475 1480 1485 Thr Lys Gl u Pr o Phe Ser Tr p Ile Lys Val As p Leu Leu Al a Pr o
    Page 283
    2018203206 08 May 2018
    1490 1495 97047 _1 1500 Met I l e I l e Hi s Gl y Ile Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe 1505 1510 1515 Ser Ser Leu Tyr Ile Ser Gl n Phe Ile Ile Met Tyr Ser Leu As p 1520 1525 1530 Gly Lys Lys Tr p Gl n Thr Tyr Ar g Gl y As n Ser Thr Gl y Thr Leu 1535 1540 1545 Met Val Phe Phe Gl y As n Val As p Ser Ser Gl y Ile Lys Hi s As n 1550 1555 1560 I l e Phe As n Pr o Pr o Ile Ile Al a Ar g Tyr Ile Ar g Leu Hi s Pr o 1565 1570 1575 Thr Hi s Tyr Ser Ile Ar g Ser Thr Leu Ar g Met Gl u Leu Met Gl y 1580 1585 1590 Cys As p Leu As n Ser Cys Ser Met Pr o Leu Gl y Met Gl u Ser Lys 1595 1600 1605 Al a I l e Ser As p Al a Gl n Ile Thr Al a Ser Ser Tyr Phe Thr As n 1610 1615 1620
    Page 284
    97047_1
    2018203206 08 May 2018
    Met Phe 1625 Al a Thr Tr p Ser Pr o 1630 Ser Lys Al a Ar g Leu 1635 Hi s Leu Gl n Gl y Ar g Ser As n Al a Tr p Ar g Pr o Gl n Val As n As n Pr o Lys Gl u 1640 1645 1650 Tr p Leu Gl n Val As p Phe Gl n Lys Thr Met Lys Val Thr Gl y Val 1655 1660 1665 Thr Thr Gl n Gl y Val Lys Ser Leu Leu Thr Ser Met Ty r Val Lys 1670 1675 1680 Gl u Phe Leu Ile Ser Ser Ser Gl n As p Gl y Hi s Gl n Tr p Thr Leu 1685 1690 1695 Phe Phe Gl n As n Gl y Lys Val Lys Val Phe Gl n Gl y As n Gl n As p 1700 1705 1710 Ser Phe Thr Pr o Val Val As n Ser Leu As p Pr o Pr o Leu Leu Thr 1715 1720 1725 Ar g Ty r Leu Ar g Ile Hi s Pr o Gl n Ser Tr p Val Hi s Gl n I l e Al a 1730 1735 1740 Leu Ar g Met Gl u Val Leu Gl y Cy s Gl u Al a Gl n As p Leu Ty r As p
    Page 285
    2018203206 08 May 2018
    1745 1750 97047 _1 1755 Lys Thr Hi s Thr Cys Pr o Pr o Cys Pr o Al a Pr o Gl u Leu Leu Gl y 1760 1765 1770 Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o Lys Pr o Lys As p Thr Leu 1775 1780 1785 Met I l e Ser Ar g Thr Pr o Gl u Val Thr Cys Val Val Val As p Val 1790 1795 1800 Ser Hi s Gl u As p Pr o Gl u Val Lys Phe As n Tr p Tyr Val As p Gl y 1805 1810 1815 Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Tyr 1820 1825 1830 As n Ser Thr Tyr Ar g Val Val Ser Val Leu Thr Val Leu Hi s Gl n 1835 1840 1845 As p Tr p Leu As n Gl y Lys Gl u Tyr Lys Cys Lys Val Ser As n Lys 1850 1855 1860 Al a Leu Pr o Al a Pr o Ile Gl u Lys Thr Ile Ser Lys Al a Lys Gl y 1865 1870 1875
    Page 286
    97047_1
    2018203206 08 May 2018
    Gl n Pr o 1880 Ar g Gl u Pr o Gl n Val 1885 Tyr Thr Leu Pr o Pr o 1890 Ser Ar g As p Gl u Leu Thr Lys As n Gl n Val Ser Leu Thr Cys Leu Val Lys Gl y 1895 1900 1905 Phe Tyr Pr o Ser As p Ile Al a Val Gl u Tr p Gl u Ser As n Gl y Gl n 1910 1915 1920 Pr o Gl u As n As n Tyr Lys Thr Thr Pr o Pr o Val Leu As p Ser As p 1925 1930 1935 Gl y Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val As p Lys Ser Ar g 1940 1945 1950 Tr p Gl n Gl n Gl y As n Val Phe Ser Cys Ser Val Met Hi s Gl u Al a 1955 1960 1965 Leu Hi s As n Hi s Tyr Thr Gl n Lys Ser Leu Ser Leu Ser Pr o Gl y 1970 1975 1980
    Lys <210> 108
    Page 287
    2018203206 08 May 2018
    97047_1 <211> 2134 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> FVI I I 201 pr ot ei n sequence <400> 108
    Met 1 Gl n I l e Gl u Leu 5 Ser Thr Cys Phe Phe 10 Leu Cys Leu Leu Ar g 15 Phe Cys Phe Ser Al a Thr Ar g Ar g Tyr Tyr Leu Gl y Al a Val Gl u Leu Ser 20 25 30 Tr p As p Tyr Met Gl n Ser As p Leu Gl y Gl u Leu Pr o Val Gl y Al a Pr o 35 40 45 Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Ser Ser Pr o 50 55 60 Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 65 70 75 80 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 85 90 95 Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Pr o
    Page 288
    2018203206 08 May 2018
    100 105 97047_1 110 Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 115 120 125 Thr Gl y Ser Pr o Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o 130 135 140 Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Ser Ser Thr 145 150 155 160 Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a 165 170 175 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 180 185 190 Al a Ser Ser As p Al a Ar g Phe Pr o Pr o Ar g Val Pr o Lys Ser Phe Pr o 195 200 205 Phe As n Thr Ser Val Val Ty r Lys Lys Thr Leu Phe Val Gl u Phe Thr 210 215 220 As p Hi s Leu Phe As n Ile Al a Lys Pr o Ar g Pr o Pr o Tr p Met Gl y Leu 225 230 235 240
    Page 289
    97047_1
    2018203206 08 May 2018
    Leu Gl y Pr o Thr Ile 245 Gl n Al a Gl u Val Ty r 250 As p Thr Val Val I l e 255 Thr Leu Lys As n Met Al a Ser Hi s Pr o Val Ser Leu Hi s Al a Val Gl y Val 260 265 270 Ser Ty r Tr p Lys Al a Ser Gl u Gl y Al a Gl u Ty r As p As p Gl n Thr Ser 275 280 285 Gl n Ar g Gl u Lys Gl u As p As p Lys Val Phe Pr o Gl y Gl y Ser Hi s Thr 290 295 300 Ty r Val Tr p Gl n Val Leu Lys Gl u As n Gl y Pr o Met Al a Ser As p Pr o 305 310 315 320 Leu Cy s Leu Thr Ty r Ser Ty r Leu Ser Hi s Val As p Leu Val Lys As p 325 330 335 Leu As n Ser Gl y Leu Ile Gl y Al a Leu Leu Val Cy s Ar g Gl u Gl y Ser 340 345 350 Leu Al a Lys Gl u Lys Thr Gl n Thr Leu Hi s Lys Phe I l e Leu Leu Phe 355 360 365 Al a Val Phe As p Gl u Gl y Lys Ser Tr p Hi s Ser Gl u Thr Lys As n Ser
    Page 290
    2018203206 08 May 2018
    97047_1
    370 375 380
    Leu 385 Met Gl n As p Ar g As p Al a Al a 390 Ser Al a Ar g 395 Al a Tr p Pr o Lys Met 400 Hi s Thr Val As n Gl y Ty r Val As n Ar g Ser Leu Pr o Gl y Leu I l e Gl y 405 410 415 Cy s Hi s Ar g Lys Ser Val Ty r Tr p Hi s Val Ile Gl y Met Gl y Thr Thr 420 425 430 Pr o Gl u Val Hi s Ser Ile Phe Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g 435 440 445 Asn Hi s Ar g Gl n Al a Ser Leu Gl u Ile Ser Pr o Ile Thr Phe Leu Thr 450 455 460 Al a Gl n Thr Leu Leu Met As p Leu Gl y Gl n Phe Leu Leu Phe Cy s Hi s 465 470 475 480 I l e Ser Ser Hi s Gl n Hi s As p Gl y Met Gl u Al a Ty r Val Lys Val As p 485 490 495 Ser Cy s Pr o Gl u Gl u Pr o Gl n Leu Ar g Met Lys As n As n Gl u Gl u Al a 500 505 510
    Page 291
    97047_1
    2018203206 08 May 2018
    Gl u As p Tyr 515 As p As p As p Leu Thr 520 As p Ser Gl u Met As p 525 Val Val Ar g Phe As p As p As p As n Ser Pr o Ser Phe Ile Gl n Ile Ar g Ser Val Al a 530 535 540 Lys Lys Hi s Pr o Lys Thr Tr p Val Hi s Tyr Ile Al a Al a Gl u Gl u Gl u 545 550 555 560 As p Tr p As p Tyr Al a Pr o Leu Val Leu Al a Pr o As p As p Ar g Ser Tyr 565 570 575 Lys Ser Gl n Tyr Leu As n As n Gl y Pr o Gl n Ar g Ile Gl y Ar g Lys Tyr 580 585 590 Lys Lys Val Ar g Phe Met Al a Tyr Thr As p Gl u Thr Phe Lys Thr Ar g 595 600 605 Gl u Al a I l e Gl n Hi s Gl u Ser Gl y Ile Leu Gl y Pr o Leu Leu Tyr Gl y 610 615 620 Gl u Val Gl y As p Thr Leu Leu Ile Ile Phe Lys As n Gl n Al a Ser Ar g 625 630 635 640 Pr o Tyr As n I l e Tyr Pr o Hi s Gl y Ile Thr As p Val Ar g Pr o Leu Tyr
    Page 292
    2018203206 08 May 2018
    97047_1
    645 650 655
    Ser Ar g Ar g Leu 660 Pr o Lys Gl y Val Lys 665 Hi s Leu Lys As p Phe 670 Pr o I l e Leu Pr o Gl y Gl u Ile Phe Lys Ty r Lys Tr p Thr Val Thr Val Gl u As p 675 680 685 Gl y Pr o Thr Lys Ser As p Pr o Ar g Cy s Leu Thr Ar g Ty r Ty r Ser Ser 690 695 700 Phe Val As n Met Gl u Ar g As p Leu Al a Ser Gl y Leu I l e Gl y Pr o Leu 705 710 715 720 Leu I l e Cy s Ty r Lys Gl u Ser Val As p Gl n Ar g Gl y As n Gl n I l e Met 725 730 735 Ser As p Lys Ar g As n Val Ile Leu Phe Ser Val Phe As p Gl u As n Ar g 740 745 750 Ser Tr p Ty r Leu Thr Gl u As n Ile Gl n Ar g Phe Leu Pr o As n Pr o Al a 755 760 765 Gl y Val Gl n Leu Gl u As p Pr o Gl u Phe Gl n Al a Ser As n I l e Met Hi s 770 775 780
    Page 293
    97047_1
    2018203206 08 May 2018
    Ser 785 I l e As n Gl y Tyr Val 790 Phe As p Ser Leu Gl n 795 Leu Ser Val Cys Leu 800 Hi s Gl u Val Al a Tyr Tr p Tyr Ile Leu Ser Ile Gl y Al a Gl n Thr As p 805 810 815 Phe Leu Ser Val Phe Phe Ser Gl y Tyr Thr Phe Lys Hi s Lys Met Val 820 825 830 Tyr Gl u As p Thr Leu Thr Leu Phe Pr o Phe Ser Gl y Gl u Thr Val Phe 835 840 845 Met Ser Met Gl u As n Pr o Gl y Leu Tr p Ile Leu Gl y Cys Hi s As n Ser 850 855 860 As p Phe Ar g As n Ar g Gl y Met Thr Al a Leu Leu Lys Val Ser Ser Cys 865 870 875 880 As p Lys As n Thr Gl y As p Tyr Tyr Gl u As p Ser Tyr Gl u As p I l e Ser 885 890 895 Al a Tyr Leu Leu Ser Lys As n As n Al a Ile Gl u Pr o Ar g Ser Phe Ser 900 905 910 Gl n As n Pr o Pr o Val Leu Lys Ar g Hi s Gl n Al a Gl u I l e Thr Ar g Thr
    Page 294
    97047_1
    2018203206 08 May 2018
    915 Gl y Al a Pr o 920 Gl y Ser 925 Ser Ser Thr Leu 930 Gl n Gl y Thr 935 Pr o Gl y Thr 940 Al a Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a 945 950 955 960 Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr 965 970 975 Ser Ser Thr Gl y Ser Pr o Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr 980 985 990 Gl y Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Al a 995 1000 1005 Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y 1010 1015 1020 Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 1025 1030 1035 Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser 1040 1045 1050
    Page 295
    97047_1
    2018203206 08 May 2018
    Pr o Gl y Ser Ser Thr Pr o Ser 1060 Gl y Al a Thr Gl y Ser 1065 Pr o Gl y Al a 1055 Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Al a Ser Ser Ser As p 1070 1075 1080 Gl n Gl u Gl u Ile As p Ty r As p As p Thr Ile Ser Val Gl u Met Lys 1085 1090 1095 Lys Gl u As p Phe As p Ile Ty r As p Gl u As p Gl u As n Gl n Ser Pr o 1100 1105 1110 Ar g Ser Phe Gl n Lys Lys Thr Ar g Hi s Ty r Phe Ile Al a Al a Val 1115 1120 1125 Gl u Ar g Leu Tr p As p Ty r Gl y Met Ser Ser Ser Pr o Hi s Val Leu 1130 1135 1140 Ar g As n Ar g Al a Gl n Ser Gl y Ser Val Pr o Gl n Phe Lys Lys Val 1145 1150 1155 Val Phe Gl n Gl u Phe Thr As p Gl y Ser Phe Thr Gl n Pr o Leu Ty r 1160 1165 1170 Ar g Gl y Gl u Leu As n Gl u Hi s Leu Gl y Leu Leu Gl y Pr o Ty r I l e
    Page 296
    2018203206 08 May 2018
    97047_1
    1175 1180 1185
    Arg Al a Gl u Val Gl u As p As n 1195 Ile Met Val Thr Phe 1200 Ar g As n Gl n 1190 Al a Ser Ar g Pr o Tyr Ser Phe Tyr Ser Ser Leu Ile Ser Tyr Gl u 1205 1210 1215 Gl u As p Gl n Ar g Gl n Gl y Al a Gl u Pr o Ar g Lys As n Phe Val Lys 1220 1225 1230 Pr o As n Gl u Thr Lys Thr Tyr Phe Tr p Lys Val Gl n Hi s Hi s Met 1235 1240 1245 Al a Pr o Thr Lys As p Gl u Phe As p Cys Lys Al a Tr p Al a Tyr Phe 1250 1255 1260 Ser As p Val Asp Leu Gl u Lys As p Val Hi s Ser Gl y Leu I l e Gl y 1265 1270 1275 Pr o Leu Leu Val Cys Hi s Thr As n Thr Leu As n Pr o Al a Hi s Gl y 1280 1285 1290 Ar g Gl n Val Thr Val Gl n Gl u Phe Al a Leu Phe Phe Thr I l e Phe
    1295 1300 1305
    Page 297
    97047_1
    2018203206 08 May 2018
    As p Gl u Thr Lys Ser Tr p Tyr 1315 Phe Thr Gl u As n Met 1320 Gl u Ar g As n 1310 Cys Ar g Gl y Al a Pr o Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y 1325 1330 1335 Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr 1340 1345 1350 Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a 1355 1360 1365 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 1370 1375 1380 Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a 1385 1390 1395 Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser 1400 1405 1410 Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Ser Pr o Al a Gl y 1415 1420 1425 Ser Pr o Thr Ser Thr Gl u Gl u Gl y Ser Pr o Al a Gl y Ser Pr o Thr
    Page 298
    97047_1
    2018203206 08 May 2018
    Ser
    Pr o
    Ser
    Gl u
    Leu
    Leu
    Ser
    Al a
    1430
    1435
    1440
    Thr Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y 1445 1450 1455
    Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Al a 1460 1465 1470
    Ser Al a Pro Cys Asn Ile Gl n Met Gl u Asp Pro Thr Phe Lys 1475 1480 1485
    Asn Tyr Arg Phe Hi s Al a Ile Asn Gl y Tyr I l e Met Asp Thr 1490 1495 1500
    Pro Gly Leu Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr 1505 1510 1515
    Leu Ser Met Gl y Ser As n Gl u As n I l e Hi s Ser I l e Hi s Phe 1520 1525 1530
    Gl y Hi s Val Phe Thr Val Arg Lys Lys Gl u Gl u Tyr Lys Met 1535 1540 1545
    Leu Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met
    1550 1555 1560
    Page 299
    97047 1
    2018203206 08 May 2018
    Leu Pr o 1565 Ser Lys Al a Gl y Ile 1570 Tr p Ar g Val Gl u Cys 1575 Leu I l e Gl y Gl u Hi s Leu Hi s Al a Gl y Met Ser Thr Leu Phe Leu Val Tyr Ser 1580 1585 1590 As n Lys Cys Gl n Thr Pr o Leu Gl y Met Al a Ser Gl y Hi s I l e Ar g 1595 1600 1605 As p Phe Gl n Ile Thr Al a Ser Gl y Gl n Tyr Gl y Gl n Tr p Al a Pr o 1610 1615 1620 Lys Leu Al a Ar g Leu Hi s Tyr Ser Gl y Ser Ile As n Al a Tr p Ser 1625 1630 1635 Thr Lys Gl u Pr o Phe Ser Tr p Ile Lys Val As p Leu Leu Al a Pr o 1640 1645 1650 Met I l e I l e Hi s Gl y Ile Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe 1655 1660 1665 Ser Ser Leu Tyr Ile Ser Gl n Phe Ile Ile Met Tyr Ser Leu As p 1670 1675 1680 Gl y Lys Lys Tr p Gl n Thr Tyr Ar g Gl y As n Ser Thr Gl y Thr Leu
    Page 300
    2018203206 08 May 2018
    1685 1690 97047 _1 1695 Met Val Phe Phe Gl y As n Val As p Ser Ser Gl y Ile Lys Hi s As n 1700 1705 1710 I l e Phe As n Pr o Pr o Ile Ile Al a Ar g Tyr Ile Ar g Leu Hi s Pr o 1715 1720 1725 Thr Hi s Tyr Ser Ile Ar g Ser Thr Leu Ar g Met Gl u Leu Met Gl y 1730 1735 1740 Cys As p Leu As n Ser Cys Ser Met Pr o Leu Gl y Met Gl u Ser Lys 1745 1750 1755 Al a I l e Ser As p Al a Gl n Ile Thr Al a Ser Ser Tyr Phe Thr As n 1760 1765 1770 Met Phe Al a Thr Tr p Ser Pr o Ser Lys Al a Ar g Leu Hi s Leu Gl n 1775 1780 1785 Gly Ar g Ser As n Al a Tr p Ar g Pr o Gl n Val As n As n Pr o Lys Gl u 1790 1795 1800 Tr p Leu Gl n Val As p Phe Gl n Lys Thr Met Lys Val Thr Gl y Val 1805 1810 1815
    Page 301
    97047_1
    2018203206 08 May 2018
    Thr Thr 1820 Gl n Gl y Val Lys Ser 1825 Leu Leu Thr Ser Met 1830 Tyr Val Lys Gl u Phe Leu Ile Ser Ser Ser Gl n Asp Gl y Hi s Gl n Tr p Thr Leu 1835 1840 1845 Phe Phe Gl n As n Gl y Lys Val Lys Val Phe Gl n Gl y As n Gl n As p 1850 1855 1860 Ser Phe Thr Pr o Val Val As n Ser Leu As p Pr o Pr o Leu Leu Thr 1865 1870 1875 Ar g Tyr Leu Ar g Ile Hi s Pr o Gl n Ser Tr p Val Hi s Gl n I l e Al a 1880 1885 1890 Leu Ar g Met Gl u Val Leu Gl y Cys Gl u Al a Gl n As p Leu Tyr As p 1895 1900 1905 Lys Thr Hi s Thr Cys Pr o Pr o Cys Pr o Al a Pr o Gl u Leu Leu Gl y 1910 1915 1920 Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o Lys Pr o Lys As p Thr Leu 1925 1930 1935 Met I l e Ser Ar g Thr Pr o Gl u Val Thr Cys Val Val Val As p Val
    Page 302
    2018203206 08 May 2018
    97047_1
    1940 1945 1950
    Ser Hi s 1955 Gl u As p Pr o Gl u Val 1960 Lys Phe As n Tr p Tyr 1965 Val As p Gl y Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Tyr 1970 1975 1980 As n Ser Thr Tyr Ar g Val Val Ser Val Leu Thr Val Leu Hi s Gl n 1985 1990 1995 As p Tr p Leu As n Gl y Lys Gl u Tyr Lys Cys Lys Val Ser As n Lys 2000 2005 2010 Al a Leu Pr o Al a Pr o Ile Gl u Lys Thr Ile Ser Lys Al a Lys Gl y 2015 2020 2025 Gl n Pr o Ar g Gl u Pr o Gl n Val Tyr Thr Leu Pr o Pr o Ser Ar g As p 2030 2035 2040 Gl u Leu Thr Lys As n Gl n Val Ser Leu Thr Cys Leu Val Lys Gl y 2045 2050 2055 Phe Tyr Pr o Ser As p Ile Al a Val Gl u Tr p Gl u Ser As n Gl y Gl n
    2060 2065 2070
    Page 303
    97047_1
    2018203206 08 May 2018
    Pr o Gl u 2075 As n As n Tyr Lys Thr 2080 Thr Pr o Pr o Val Leu 2085 As p Ser As p Gl y Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val As p Lys Ser Ar g 2090 2095 2100 Tr p Gl n Gl n Gl y As n Val Phe Ser Cys Ser Val Met Hi s Gl u Al a 2105 2110 2115 Leu Hi s As n Hi s Tyr Thr Gl n Lys Ser Leu Ser Leu Ser Pr o Gl y 2120 2125 2130
    Lys
    <210> 109 <211> 2128 <212> PRT <213> Ar t i f i ci al Sequence <220> <223> FVI I I 203 pr ot ei n sequence
    <400> 109
    Met Gl n I l e Gl u Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
    1 5 10 15
    Page 304
    97047_1
    2018203206 08 May 2018
    Cys Phe Ser Al a 20 Thr Arg Arg Tyr Tyr 25 Leu Gl y Al a Val Gl u 30 Leu Ser Tr p As p Tyr Met Gl n Ser As p Leu Gl y Gl u Leu Pr o Val As p Al a Ar g 35 40 45 Phe Pr o Pr o Ar g Val Pr o Lys Ser Phe Pr o Phe As n Thr Ser Val Val 50 55 60 Tyr Lys Lys Thr Leu Phe Val Gl u Phe Thr As p Hi s Leu Phe As n I l e 65 70 75 80 Al a Lys Pr o Ar g Pr o Pr o Tr p Met Gl y Leu Leu Gl y Pr o Thr I l e Gl n 85 90 95 Al a Gl u Val Tyr As p Thr Val Val Ile Thr Leu Lys As n Met Al a Ser 100 105 110 Hi s Pr o Val Ser Leu Hi s Al a Val Gl y Val Ser Tyr Tr p Lys Al a Ser 115 120 125 Gl u Gl y Al a Gl u Tyr As p As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p 130 135 140 As p Lys Val Phe Pr o Gl y Gl y Ser Hi s Thr Tyr Val Tr p Gl n Val Leu
    Page 305
    2018203206 08 May 2018
    97047_1
    145 150 155 160
    Lys Gl u As n Gl y Pr o 165 Met Al a Ser As p Pr o Leu 170 Cy s Leu Thr Ty r 175 Ser Ty r Leu Ser Hi s Val As p Leu Val Lys As p Leu As n Ser Gl y Leu I l e 180 185 190 Gl y Al a Leu Leu Val Cy s Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr 195 200 205 Gl n Thr Leu Hi s Lys Phe Ile Leu Leu Phe Al a Val Phe As p Gl u Gl y 210 215 220 Lys Ser Tr p Hi s Ser Gl u Thr Lys As n Ser Leu Met Gl n As p Ar g As p 225 230 235 240 Al a Al a Ser Al a Ar g Al a Tr p Pr o Lys Met Hi s Thr Val As n Gl y Ty r 245 250 255 Val As n Ar g Ser Leu Pr o Gl y Leu Ile Gl y Cy s Hi s Ar g Lys Ser Val 260 265 270 Ty r Tr p Hi s Val Ile Gl y Met Gl y Thr Thr Pr o Gl u Val Hi s Ser I l e 275 280 285
    Page 306
    97047_1
    2018203206 08 May 2018
    Phe Leu Gl u Gl y Hi s Thr Phe 295 Leu Val Ar g As n Hi s 300 Ar g Gl n Al a Ser 290 Leu Gl u I l e Ser Pr o Ile Thr Phe Leu Thr Al a Gl n Thr Leu Leu Met 305 310 315 320 As p Leu Gl y Gl n Phe Leu Leu Phe Cys Hi s Ile Ser Ser Hi s Gl n Hi s 325 330 335 As p Gl y Met Gl u Al a Tyr Val Lys Val As p Ser Cys Pr o Gl u Gl u Pr o 340 345 350 Gl n Leu Ar g Met Lys As n As n Gl u Gl u Al a Gl u As p Tyr As p As p As p 355 360 365 Leu Thr As p Ser Gl u Met As p Val Val Ar g Phe As p As p As p As n Ser 370 375 380 Pr o Ser Phe I l e Gl n Ile Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr 385 390 395 400 Tr p Val Hi s Tyr Ile Al a Al a Gl u Gl u Gl u As p Tr p As p Tyr Al a Pr o 405 410 415 Leu Val Leu Al a Pr o As p As p Ar g Ser Tyr Lys Ser Gl n Tyr Leu As n
    Page 307
    2018203206 08 May 2018
    970 47_1 420 425 430 As n Gl y Pr o Gl n Ar g Ile Gl y Ar g Lys Ty r Lys Lys Val Ar g Phe Met 435 440 445 Al a Ty r Thr As p Gl u Thr Phe Lys Thr Ar g Gl u Al a I l e Gl n Hi s Gl u 450 455 460 Ser Gl y I l e Leu Gl y Pr o Leu Leu Ty r Gl y Gl u Val Gl y As p Thr Leu 465 470 475 480 Leu I l e I l e Phe Lys As n Gl n Al a Ser Ar g Pr o Ty r As n I l e Ty r Pr o 485 490 495 Hi s Gl y I l e Thr As p Val Ar g Pr o Leu Ty r Ser Ar g Ar g Leu Pr o Lys 500 505 510 Gl y Val Lys Hi s Leu Lys As p Phe Pr o Ile Leu Pr o Gl y Gl u I l e Phe 515 520 525 Lys Ty r Lys Tr p Thr Val Thr Val Gl u As p Gl y Pr o Thr Lys Ser As p 530 535 540 Pr o Ar g Cy s Leu Thr Ar g Ty r Ty r Ser Ser Phe Val As n Met Gl u Ar g 545 550 555 560
    Page 308
    97047_1
    2018203206 08 May 2018
    As p Leu Al a Ser Gl y 565 Leu Ile Gl y Pr o Leu 570 Leu Ile Cy s Ty r Lys 575 Gl u Ser Val As p Gl n Ar g Gl y As n Gl n Ile Met Ser As p Lys Ar g As n Val 580 585 590 I l e Leu Phe Ser Val Phe As p Gl u As n Ar g Ser Tr p Ty r Leu Thr Gl u 595 600 605 As n I l e Gl n Ar g Phe Leu Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p 610 615 620 Pr o Gl u Phe Gl n Al a Ser As n Ile Met Hi s Ser Ile As n Gl y Ty r Val 625 630 635 640 Phe As p Ser Leu Gl n Leu Ser Val Cy s Leu Hi s Gl u Val Al a Ty r Tr p 645 650 655 Ty r I l e Leu Ser Ile Gl y Al a Gl n Thr As p Phe Leu Ser Val Phe Phe 660 665 670 Ser Gl y Ty r Thr Phe Lys Hi s Lys Met Val Ty r Gl u As p Thr Leu Thr 675 680 685 Leu Phe Pr o Phe Ser Gl y Gl u Thr Val Phe Met Ser Met Gl u As n Pr o
    Page 309
    2018203206 08 May 2018
    97047_1
    690 695 700
    Gl y 705 Leu Tr p I l e Leu Gl y 710 Cy s Hi s As n Ser As p 715 Phe Ar g As n Ar g Gl y 720 Met Thr Al a Leu Leu Lys Val Ser Ser Cy s As p Lys As n Thr Gl y As p 725 730 735 Ty r Ty r Gl u As p Ser Ty r Gl u As p Ile Ser Al a Ty r Leu Leu Ser Lys 740 745 750 As n As n Al a I l e Gl u Pr o Ar g Ser Phe Ser Gl n As n Gl y Al a Pr o Gl y 755 760 765 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a 770 775 780 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u 785 790 795 800 Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y 805 810 815 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u 820 825 830
    Page 310
    2018203206 08 May 2018
    Pr o
    Thr
    Ser
    865
    Al a
    Thr
    Thr
    Al a
    Ser
    945
    97047_1
    Ser Gl u Gl y Ser Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser 835 840 845
    Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y 850 855 860
    Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser 870 875 880
    Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser 885 890 895
    Gl u Gl u Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y 900 905 910
    Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser 915 920 925
    Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u 930 935 940
    Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y 950 955 960
    Ser
    Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Gl u Pr o Al a
    Page 311
    2018203206 08 May 2018
    965 Thr 970 Pr o Gl y Ser Pr o Al a Gl y Ser 985 975 Thr Ser Gl y Ser 980 Gl u Pr o Thr 990 Ser Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y 995 1000 1005 Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Gl u Pr o 1010 1015 1020 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr 1025 1030 1035 Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser 1040 1045 1050 Al a Pr o Al a Ser Ser Pr o Pr o Val Leu Lys Ar g Hi s Gl n Al a Gl u 1055 1060 1065 I l e Thr Ar g Thr Thr Leu Gl n Ser As p Gl n Gl u Gl u I l e As p Ty r 1070 1075 1080 As p As p Thr Ile Ser Val Gl u Met Ly s Ly s Gl u As p Phe As p I l e 1085 1090 1095
    Page 312
    97047_1
    2018203206 08 May 2018
    Tyr As p 1100 Gl u As p Gl u As n Gl n 1105 Ser Pr o Ar g Ser Phe 1110 Gl n Lys Lys Thr Ar g Hi s Tyr Phe Ile Al a Al a Val Gl u Ar g Leu Tr p As p Tyr 1115 1120 1125 Gly Met Ser Ser Ser Pr o Hi s Val Leu Ar g As n Ar g Al a Gl n Ser 1130 1135 1140 Gly Ser Val Pr o Gl n Phe Lys Lys Val Val Phe Gl n Gl u Phe Thr 1145 1150 1155 Asp Gl y Ser Phe Thr Gl n Pr o Leu Tyr Ar g Gl y Gl u Leu As n Gl u 1160 1165 1170 Hi s Leu Gl y Leu Leu Gl y Pr o Tyr Ile Ar g Al a Gl u Val Gl u As p 1175 1180 1185 As n I l e Met Val Thr Phe Ar g As n Gl n Al a Ser Ar g Pr o Tyr Ser 1190 1195 1200 Phe Tyr Ser Ser Leu Ile Ser Tyr Gl u Gl u As p Gl n Ar g Gl n Gl y 1205 1210 1215 Al a Gl u Pr o Ar g Lys As n Phe Val Lys Pr o As n Gl u Thr Lys Thr
    Page 313
    2018203206 08 May 2018
    1220 1225 97047 _1 1230 Tyr Phe Tr p Lys Val Gl n Hi s Hi s Met Al a Pr o Thr Lys As p Gl u 1235 1240 1245 Phe As p Cys Lys Al a Tr p Al a Tyr Phe Ser As p Val As p Leu Gl u 1250 1255 1260 Lys As p Val Hi s Ser Gl y Leu Ile Gl y Pr o Leu Leu Val Cys Hi s 1265 1270 1275 Thr As n Thr Leu As n Pr o Al a Hi s Gl y Ar g Gl n Val Thr Val Gl n 1280 1285 1290 Gl u Phe Al a Leu Phe Phe Thr Ile Phe As p Gl u Thr Lys Ser Tr p 1295 1300 1305 Tyr Phe Thr Gl u As n Met Gl u Ar g As n Cys Ar g Gl y Al a Pr o Thr 1310 1315 1320 Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a 1325 1330 1335 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 1340 1345 1350
    Page 314
    97047_1
    2018203206 08 May 2018
    Gl u Ser 1355 Gl y Pr o Gl y Ser Gl u 1360 Pr o Al a Thr Ser Gl y 1365 Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr 1370 1375 1380 Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser 1385 1390 1395 Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr 1400 1405 1410 Ser Thr Gl u Gl u Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u 1415 1420 1425 Gl u Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr 1430 1435 1440 Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u 1445 1450 1455 Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Al a Ser Ser Al a Pr o Cy s As n 1460 1465 1470 I l e Gl n Met Gl u As p Pr o Thr Phe Lys Gl u As n Ty r Ar g Phe Hi s
    Page 315
    2018203206 08 May 2018
    1475 1480 97047 _1 1485 Al a I l e As n Gl y Tyr Ile Met As p Thr Leu Pr o Gl y Leu Val Met 1490 1495 1500 Al a Gl n As p Gl n Ar g Ile Ar g Tr p Tyr Leu Leu Ser Met Gl y Ser 1505 1510 1515 As n Gl u As n Ile Hi s Ser Ile Hi s Phe Ser Gl y Hi s Val Phe Thr 1520 1525 1530 Val Ar g Lys Lys Gl u Gl u Tyr Lys Met Al a Leu Tyr As n Leu Tyr 1535 1540 1545 Pr o Gl y Val Phe Gl u Thr Val Gl u Met Leu Pr o Ser Lys Al a Gl y 1550 1555 1560 I l e Tr p Ar g Val Gl u Cys Leu Ile Gl y Gl u Hi s Leu Hi s Al a Gl y 1565 1570 1575 Met Ser Thr Leu Phe Leu Val Tyr Ser As n Lys Cys Gl n Thr Pr o 1580 1585 1590 Leu Gl y Met Al a Ser Gl y Hi s Ile Ar g As p Phe Gl n I l e Thr Al a 1595 1600 1605
    Page 316
    97047_1
    2018203206 08 May 2018
    Ser Gl y 1610 Gl n Tyr Gl y Gl n Tr p 1615 Al a Pr o Lys Leu Al a 1620 Ar g Leu Hi s Tyr Ser Gl y Ser Ile As n Al a Tr p Ser Thr Lys Gl u Pr o Phe Ser 1625 1630 1635 Tr p I l e Lys Val As p Leu Leu Al a Pr o Met Ile Ile Hi s Gl y I l e 1640 1645 1650 Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe Ser Ser Leu Tyr I l e Ser 1655 1660 1665 Gl n Phe I l e Ile Met Tyr Ser Leu As p Gl y Lys Lys Tr p Gl n Thr 1670 1675 1680 Tyr Ar g Gl y As n Ser Thr Gl y Thr Leu Met Val Phe Phe Gl y As n 1685 1690 1695 Val As p Ser Ser Gl y Ile Lys Hi s As n Ile Phe As n Pr o Pr o I l e 1700 1705 1710 I l e Al a Ar g Tyr Ile Ar g Leu Hi s Pr o Thr Hi s Tyr Ser I l e Ar g 1715 1720 1725 Ser Thr Leu Ar g Met Gl u Leu Met Gl y Cys As p Leu As n Ser Cys
    Page 317
    2018203206 08 May 2018
    9 7047 _1 1730 1735 1740 Ser Met Pr o Leu Gl y Met Gl u Ser Lys Al a Ile Ser As p Al a Gl n 1745 1750 1755 I l e Thr Al a Ser Ser Tyr Phe Thr As n Met Phe Al a Thr Tr p Ser 1760 1765 1770 Pr o Ser Lys Al a Ar g Leu Hi s Leu Gl n Gl y Ar g Ser As n Al a Tr p 1775 1780 1785 Ar g Pr o Gl n Val As n As n Pr o Lys Gl u Tr p Leu Gl n Val As p Phe 1790 1795 1800 Gl n Lys Thr Met Lys Val Thr Gl y Val Thr Thr Gl n Gl y Val Lys 1805 1810 1815 Ser Leu Leu Thr Ser Met Tyr Val Lys Gl u Phe Leu I l e Ser Ser 1820 1825 1830 Ser Gl n As p Gl y Hi s Gl n Tr p Thr Leu Phe Phe Gl n As n Gl y Lys 1835 1840 1845 Val Lys Val Phe Gl n Gl y As n Gl n As p Ser Phe Thr Pr o Val Val 1850 1855 1860
    Page 318
    97047_1
    2018203206 08 May 2018
    As n Ser 1865 Leu As p Pr o Pr o Leu 1870 Leu Thr Ar g Tyr Leu 1875 Ar g I l e Hi s Pr o Gl n Ser Tr p Val Hi s Gl n Ile Al a Leu Ar g Met Gl u Val Leu 1880 1885 1890 Gl y Cys Gl u Al a Gl n As p Leu Tyr As p Lys Thr Hi s Thr Cys Pr o 1895 1900 1905 Pr o Cys Pr o Al a Pr o Gl u Leu Leu Gl y Gl y Pr o Ser Val Phe Leu 1910 1915 1920 Phe Pr o Pr o Lys Pr o Lys As p Thr Leu Met Ile Ser Ar g Thr Pr o 1925 1930 1935 Gl u Val Thr Cys Val Val Val As p Val Ser Hi s Gl u As p Pr o Gl u 1940 1945 1950 Val Lys Phe As n Tr p Tyr Val As p Gl y Val Gl u Val Hi s As n Al a 1955 1960 1965 Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Tyr As n Ser Thr Tyr Ar g Val 1970 1975 1980 Val Ser Val Leu Thr Val Leu Hi s Gl n As p Tr p Leu As n Gl y Lys
    Page 319
    2018203206 08 May 2018
    1985 1990 97047 _1 1995 Gl u Tyr Lys Cys Lys Val Ser As n Lys Al a Leu Pr o Al a Pr o I l e 2000 2005 2010 Gl u Lys Thr Ile Ser Lys Al a Lys Gl y Gl n Pr o Ar g Gl u Pr o Gl n 2015 2020 2025 Val Tyr Thr Leu Pr o Pr o Ser Ar g As p Gl u Leu Thr Lys As n Gl n 2030 2035 2040 Val Ser Leu Thr Cys Leu Val Lys Gl y Phe Tyr Pr o Ser As p I l e 2045 2050 2055 Al a Val Gl u Tr p Gl u Ser As n Gl y Gl n Pr o Gl u As n As n Tyr Lys 2060 2065 2070 Thr Thr Pr o Pr o Val Leu As p Ser As p Gl y Ser Phe Phe Leu Tyr 2075 2080 2085 Ser Lys Leu Thr Val As p Lys Ser Ar g Tr p Gl n Gl n Gl y As n Val 2090 2095 2100 Phe Ser Cys Ser Val Met Hi s Gl u Al a Leu Hi s As n Hi s Tyr Thr 2105 2110 2115
    Page 320
    2018203206 08 May 2018
    97047_1
    Gl n Lys Ser Leu Ser Leu Ser Pr o Gl y Lys 2120 2125 <210> 110 <211> 2128 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> FVI I I 204 pr ot ei n sequence <400> 110
    Met 1 Gl n I l e Gl u Leu Ser 5 Thr Cys Phe Phe 10 Leu Cys Leu Leu Ar g 15 Phe Cys Phe Ser Al a Thr Ar g Ar g Tyr Tyr Leu Gl y Al a Val Gl u Leu Ser 20 25 30 Tr p As p Tyr Met Gl n Ser As p Leu Gl y Gl u Leu Pr o Val As p Al a Ar g 35 40 45 Phe Pr o Pr o Ar g Val Pr o Lys Ser Phe Pr o Phe As n Thr Ser Val Val 50 55 60 Tyr Lys Lys Thr Leu Phe Val Gl u Phe Thr As p Hi s Leu Phe As n I l e 65 70 75 80
    Page 321
    97047_1
    2018203206 08 May 2018
    Al a Lys Pr o Ar g Pr o Pr o Tr p 85 Met Gl y Leu 90 Leu Gl y Pr o Thr I l e 95 Gl n Al a Gl u Val Tyr As p Thr Val Val Ile Thr Leu Lys As n Met Al a Ser 100 105 110 Hi s Pr o Val Ser Leu Hi s Al a Val Gl y Val Ser Tyr Tr p Lys Al a Ser 115 120 125 Gl u Gl y Al a Gl u Tyr As p As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p 130 135 140 As p Lys Val Phe Pr o Gl y Gl y Ser Hi s Thr Tyr Val Tr p Gl n Val Leu 145 150 155 160 Lys Gl u As n Gl y Pr o Met Al a Ser As p Pr o Leu Cys Leu Thr Tyr Ser 165 170 175 Tyr Leu Ser Hi s Val As p Leu Val Lys As p Leu As n Ser Gl y Leu I l e 180 185 190 Gl y Al a Leu Leu Val Cys Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr 195 200 205 Gl n Thr Leu Hi s Lys Phe Ile Leu Leu Phe Al a Val Phe As p Gl u Gl y
    Page 322
    2018203206 08 May 2018
    97047_1
    210 215 220
    Lys 225 Ser Tr p Hi s Ser Gl u 230 Thr Lys As n Ser Leu 235 Met Gl n As p Ar g As p 240 Al a Al a Ser Al a Ar g Al a Tr p Pr o Lys Met Hi s Thr Val As n Gl y Tyr 245 250 255 Val As n Ar g Ser Leu Pr o Gl y Leu Ile Gl y Cys Hi s Ar g Lys Ser Val 260 265 270 Tyr Tr p Hi s Val Ile Gl y Met Gl y Thr Thr Pr o Gl u Val Hi s Ser I l e 275 280 285 Phe Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser 290 295 300 Leu Gl u I l e Ser Pr o Ile Thr Phe Leu Thr Al a Gl n Thr Leu Leu Met 305 310 315 320 As p Leu Gl y Gl n Phe Leu Leu Phe Cys Hi s Ile Ser Ser Hi s Gl n Hi s 325 330 335 As p Gl y Met Gl u Al a Tyr Val Lys Val As p Ser Cys Pr o Gl u Gl u Pr o 340 345 350
    Page 323
    97047_1
    2018203206 08 May 2018
    Gl n Leu Ar g 355 Met Lys As n As n Gl u 360 Gl u Al a Gl u Asp Tyr 365 As p As p As p Leu Thr As p Ser Gl u Met As p Val Val Ar g Phe As p As p As p As n Ser 370 375 380 Pr o Ser Phe I l e Gl n Ile Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr 385 390 395 400 Tr p Val Hi s Tyr Ile Al a Al a Gl u Gl u Gl u As p Tr p As p Tyr Al a Pr o 405 410 415 Leu Val Leu Al a Pr o As p Gl y Al a Pr o Thr Ser Thr Gl u Pr o Ser Gl u 420 425 430 Gl y Ser Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u 435 440 445 Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr 450 455 460 Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 465 470 475 480 Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o
    Page 324
    2018203206 08 May 2018
    97047_1
    485 490 495
    Gly Thr Ser Gl u 500 Ser Al a Thr Pr o Gl u 505 Ser Gl y Pr o Gl y Ser 510 Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u 515 520 525 Gl y Ser Al a Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 530 535 540 Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Gl u 545 550 555 560 Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Al a Ser Ser As p Ar g Ser Tyr 565 570 575 Lys Ser Gl n Tyr Leu As n As n Gl y Pr o Gl n Ar g Ile Gl y Ar g Lys Tyr 580 585 590 Lys Lys Val Ar g Phe Met Al a Tyr Thr As p Gl u Thr Phe Lys Thr Ar g 595 600 605 Gl u Al a I l e Gl n Hi s Gl u Ser Gl y Ile Leu Gl y Pr o Leu Leu Tyr Gl y 610 615 620
    Page 325
    97047_1
    2018203206 08 May 2018
    Gl u Val 625 Gl y As p Thr Leu 630 Leu Ile I l e Phe Lys Asn Gl n 635 Al a Ser Ar g 640 Pr o Tyr As n I l e Tyr Pr o Hi s Gl y Ile Thr As p Val Ar g Pr o Leu Tyr 645 650 655 Ser Ar g Ar g Leu Pr o Lys Gl y Val Lys Hi s Leu Lys As p Phe Pr o I l e 660 665 670 Leu Pr o Gl y Gl u Ile Phe Lys Tyr Lys Tr p Thr Val Thr Val Gl u As p 675 680 685 Gl y Pr o Thr Lys Ser As p Pr o Ar g Cys Leu Thr Ar g Tyr Tyr Ser Ser 690 695 700 Phe Val As n Met Gl u Ar g As p Leu Al a Ser Gl y Leu I l e Gl y Pr o Leu 705 710 715 720 Leu I l e Cys Tyr Lys Gl u Ser Val As p Gl n Ar g Gl y As n Gl n I l e Met 725 730 735 Ser As p Lys Ar g As n Val Ile Leu Phe Ser Val Phe As p Gl u As n Ar g 740 745 750 Ser Tr p Tyr Leu Thr Gl u As n Ile Gl n Ar g Phe Leu Pr o As n Pr o Al a
    Page 326
    2018203206 08 May 2018
    97047_1
    755 760 765
    Gl y Val 770 Gl n Leu Gl u As p Pr o 775 Gl u Phe Gl n Al a Ser 780 As n I l e Met Hi s Ser I l e As n Gl y Ty r Val Phe As p Ser Leu Gl n Leu Ser Val Cy s Leu 785 790 795 800 Hi s Gl u Val Al a Ty r Tr p Ty r Ile Leu Ser Ile Gl y Al a Gl n Thr As p 805 810 815 Phe Leu Ser Val Phe Phe Ser Gl y Ty r Thr Phe Lys Hi s Lys Met Val 820 825 830 Ty r Gl u As p Thr Leu Thr Leu Phe Pr o Phe Ser Gl y Gl u Thr Val Phe 835 840 845 Met Ser Met Gl u As n Pr o Gl y Leu Tr p Ile Leu Gl y Cy s Hi s As n Ser 850 855 860 As p Phe Ar g As n Ar g Gl y Met Thr Al a Leu Leu Lys Val Ser Ser Cy s 865 870 875 880 As p Lys As n Thr Gl y As p Ty r Ty r Gl u As p Ser Ty r Gl u As p I l e Ser 885 890 895
    Page 327
    97047_1
    2018203206 08 May 2018
    Al a Tyr Leu Leu Ser Ly s As n As n Al a Ile Gl u Pr o Ar g Se r Phe Ser 900 905 91 0 Gl n As n Gl y Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y 915 920 925 Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser 930 935 940 Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser 945 95 0 955 960 Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y 965 970 975 Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Pr o 980 985 99 0 Al a Gl y Ser Pr o Thr Se r Thr Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr 995 1000 10! 05
    Pro Gl u Ser Gl y Pro Gl y Ser Gl u 1010 1015
    Pr o Al a Thr
    Ser Gl y Ser Gl u 1020
    Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser
    Gl y Pr o Gl y
    Page 328
    2018203206 08 May 2018
    97047_1
    1025 1030 1035
    Ser Pr o 1040 Al a Gl y Ser Pr o Thr 1045 Ser Thr Gl u Gl u Gl y 1050 Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser 1055 1060 1065 Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser 1070 1075 1080 Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y 1085 1090 1095 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o 1100 1105 1110 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Gl u Pr o Al a Thr Ser 1115 1120 1125 Gl y Ser Gl u Thr Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr 1130 1135 1140 Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y
    1145 1150 1155
    Page 329
    97047_1
    2018203206 08 May 2018
    Thr Ser 1160 Thr Gl u Pr o Ser Gl u 1165 Gl y Ser Al a Pr o Gl y 1170 Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr 1175 1180 1185 Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser 1190 1195 1200 Al a Pr o Al a Ser Ser Pr o Pr o Val Leu Lys Ar g Hi s Gl n Al a Gl u 1205 1210 1215 I l e Thr Ar g Thr Thr Leu Gl n Ser As p Gl n Gl u Gl u I l e As p Tyr 1220 1225 1230 As p As p Thr Ile Ser Val Gl u Met Lys Lys Gl u As p Phe As p I l e 1235 1240 1245 Tyr As p Gl u As p Gl u As n Gl n Ser Pr o Ar g Ser Phe Gl n Lys Lys 1250 1255 1260 Thr Ar g Hi s Tyr Phe Ile Al a Al a Val Gl u Ar g Leu Tr p As p Tyr 1265 1270 1275 Gl y Met Ser Ser Ser Pr o Hi s Val Leu Ar g As n Ar g Al a Gl n Ser
    Page 330
    2018203206 08 May 2018
    1280 1285 97047 _1 1290 Gl y Ser Val Pr o Gl n Phe Lys Lys Val Val Phe Gl n Gl u Phe Thr 1295 1300 1305 As p Gl y Ser Phe Thr Gl n Pr o Leu Ty r Ar g Gl y Gl u Leu As n Gl u 1310 1315 1320 Hi s Leu Gl y Leu Leu Gl y Pr o Ty r Ile Ar g Al a Gl u Val Gl u As p 1325 1330 1335 As n I l e Met Val Thr Phe Ar g As n Gl n Al a Ser Ar g Pr o Ty r Ser 1340 1345 1350 Phe Ty r Ser Ser Leu Ile Ser Ty r Gl u Gl u As p Gl n Ar g Gl n Gl y 1355 1360 1365 Al a Gl u Pr o Ar g Lys As n Phe Val Lys Pr o As n Gl u Thr Lys Thr 1370 1375 1380 Ty r Phe Tr p Lys Val Gl n Hi s Hi s Met Al a Pr o Thr Lys As p Gl u 1385 1390 1395 Phe As p Cy s Lys Al a Tr p Al a Ty r Phe Ser As p Val As p Leu Gl u 1400 1405 1410
    Page 331
    97047_1
    2018203206 08 May 2018
    Lys As p 1415 Val Hi s Ser Gl y Leu 1420 Ile Gl y Pr o Leu Leu 1425 Val Cys Hi s Thr As n Thr Leu As n Pr o Al a Hi s Gl y Ar g Gl n Val Thr Val Gl n 1430 1435 1440 Gl u Phe Al a Leu Phe Phe Thr Ile Phe As p Gl u Thr Lys Ser Tr p 1445 1450 1455 Tyr Phe Thr Gl u As n Met Gl u Ar g As n Cys Ar g Al a Pr o Cys As n 1460 1465 1470 I l e Gl n Met Gl u As p Pr o Thr Phe Lys Gl u As n Tyr Ar g Phe Hi s 1475 1480 1485 Al a I l e As n Gl y Tyr Ile Met As p Thr Leu Pr o Gl y Leu Val Met 1490 1495 1500 Al a Gl n As p Gl n Ar g Ile Ar g Tr p Tyr Leu Leu Ser Met Gl y Ser 1505 1510 1515 As n Gl u As n Ile Hi s Ser Ile Hi s Phe Ser Gl y Hi s Val Phe Thr 1520 1525 1530 Val Ar g Lys Lys Gl u Gl u Tyr Lys Met Al a Leu Tyr As n Leu Tyr
    Page 332
    2018203206 08 May 2018
    1535 1540 97047 _1 1545 Pr o Gl y Val Phe Gl u Thr Val Gl u Met Leu Pr o Ser Lys Al a Gl y 1550 1555 1560 I l e Tr p Ar g Val Gl u Cy s Leu Ile Gl y Gl u Hi s Leu Hi s Al a Gl y 1565 1570 1575 Met Ser Thr Leu Phe Leu Val Ty r Ser As n Lys Cy s Gl n Thr Pr o 1580 1585 1590 Leu Gl y Met Al a Ser Gl y Hi s Ile Ar g As p Phe Gl n I l e Thr Al a 1595 1600 1605 Ser Gl y Gl n Ty r Gl y Gl n Tr p Al a Pr o Lys Leu Al a Ar g Leu Hi s 1610 1615 1620 Ty r Ser Gl y Ser Ile As n Al a Tr p Ser Thr Lys Gl u Pr o Phe Ser 1625 1630 1635 Tr p I l e Lys Val As p Leu Leu Al a Pr o Met Ile Ile Hi s Gl y I l e 1640 1645 1650 Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe Ser Ser Leu Ty r I l e Ser 1655 1660 1665
    Page 333
    97047_1
    2018203206 08 May 2018
    Gl n Phe 1670 I l e Ile Met Tyr Ser 1675 Leu As p Gl y Lys Lys 1680 Tr p Gl n Thr Tyr Ar g Gl y As n Ser Thr Gl y Thr Leu Met Val Phe Phe Gl y As n 1685 1690 1695 Val As p Ser Ser Gl y Ile Lys Hi s As n Ile Phe As n Pr o Pr o I l e 1700 1705 1710 I l e Al a Ar g Tyr Ile Ar g Leu Hi s Pr o Thr Hi s Tyr Ser I l e Ar g 1715 1720 1725 Ser Thr Leu Ar g Met Gl u Leu Met Gl y Cys As p Leu As n Ser Cys 1730 1735 1740 Ser Met Pr o Leu Gl y Met Gl u Ser Lys Al a Ile Ser As p Al a Gl n 1745 1750 1755 I l e Thr Al a Ser Ser Tyr Phe Thr As n Met Phe Al a Thr Tr p Ser 1760 1765 1770 Pr o Ser Lys Al a Ar g Leu Hi s Leu Gl n Gl y Ar g Ser As n Al a Tr p 1775 1780 1785 Ar g Pr o Gl n Val As n As n Pr o Lys Gl u Tr p Leu Gl n Val As p Phe
    Page 334
    2018203206 08 May 2018
    1790 1795 97047 _1 1800 Gl n Lys Thr Met Lys Val Thr Gl y Val Thr Thr Gl n Gl y Val Lys 1805 1810 1815 Ser Leu Leu Thr Ser Met Ty r Val Lys Gl u Phe Leu I l e Ser Ser 1820 1825 1830 Ser Gl n As p Gl y Hi s Gl n Tr p Thr Leu Phe Phe Gl n As n Gl y Lys 1835 1840 1845 Val Lys Val Phe Gl n Gl y As n Gl n As p Ser Phe Thr Pr o Val Val 1850 1855 1860 As n Ser Leu As p Pr o Pr o Leu Leu Thr Ar g Ty r Leu Ar g I l e Hi s 1865 1870 1875 Pr o Gl n Ser Tr p Val Hi s Gl n Ile Al a Leu Ar g Met Gl u Val Leu 1880 1885 1890 Gl y Cys Gl u Al a Gl n As p Leu Ty r As p Lys Thr Hi s Thr Cy s Pr o 1895 1900 1905 Pr o Cy s Pr o Al a Pr o Gl u Leu Leu Gl y Gl y Pr o Ser Val Phe Leu 1910 1915 1920
    Page 335
    97047_1
    2018203206 08 May 2018
    Phe Pr o 1925 Pr o Lys Pr o Ly s As p 1930 Thr Leu Met Ile Ser 1935 Ar g Thr Pr o Gl u Val Thr Cys Val Val Val As p Val Ser Hi s Gl u As p Pr o Gl u 1940 1945 1950 Val Lys Phe As n Tr p Tyr Val As p Gl y Val Gl u Val Hi s As n Al a 1955 1960 1965 Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Tyr As n Ser Thr Tyr Ar g Val 1970 1975 1980 Val Ser Val Leu Thr Val Leu Hi s Gl n As p Tr p Leu As n Gl y Lys 1985 1990 1995 Gl u Tyr Lys Cys Lys Val Ser As n Lys Al a Leu Pr o Al a Pr o I l e 2000 2005 2010 Gl u Lys Thr Ile Ser Lys Al a Lys Gl y Gl n Pr o Ar g Gl u Pr o Gl n 2015 2020 2025 Val Tyr Thr Leu Pr o Pr o Ser Ar g As p Gl u Leu Thr Lys As n Gl n 2030 2035 2040 Val Ser Leu Thr Cys Leu Val Lys Gl y Phe Tyr Pr o Ser As p I l e
    Page 336
    97047_1
    2018203206 08 May 2018
    2045 2050 2055 Al a Val Gl u Tr p Gl u Ser As n Gl y Gl n Pr o Gl u As n As n Tyr Lys 2060 2065 2070 Thr Thr Pr o Pr o Val Leu As p Ser As p Gl y Ser Phe Phe Leu Tyr 2075 2080 2085 Ser Lys Leu Thr Val As p Lys Ser Ar g Tr p Gl n Gl n Gl y As n Val 2090 2095 2100 Phe Ser Cys Ser Val Met Hi s Gl u Al a Leu Hi s As n Hi s Tyr Thr 2105 2110 2115
    Gl n Lys Ser Leu Ser Leu Ser Pr o Gl y Lys 2120 2125 <210> 111 <211> 2128 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> FVI I I 205 pr ot ei n sequence <400> 111
    Met Gl n Ile Gl u Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
    Page 337
    2018203206 08 May 2018
    97047_1
    1 5 10 15
    Cys Phe Ser Al a 20 Thr Ar g Ar g Tyr Tyr 25 Leu Gl y Al a Val Gl u 30 Leu Ser Tr p As p Tyr Met Gl n Gl y Al a Pr o Thr Ser Gl u Ser Al a Thr Pr o Gl u 35 40 45 Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y 50 55 60 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a 65 70 75 80 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u 85 90 95 Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y 100 105 110 Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Gl u Ser 115 120 125 Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser 130 135 140
    Page 338
    97047_1
    2018203206 08 May 2018
    Gl u 145 Thr Pr o Gl y Thr Ser 150 Gl u Ser Al a Thr Pr o 155 Gl u Ser Gl y Pr o Gl y 160 Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Ser Pr o Al a Gl y 165 170 175 Ser Pr o Thr Ser Thr Gl u Gl u Gl y Al a Ser Ser Ser As p Leu Gl y Gl u 180 185 190 Leu Pr o Val As p Al a Ar g Phe Pr o Pr o Ar g Val Pr o Lys Ser Phe Pr o 195 200 205 Phe Asn Thr Ser Val Val Tyr Lys Lys Thr Leu Phe Val Gl u Phe Thr 210 215 220 Asp Hi s Leu Phe As n Ile Al a Lys Pr o Ar g Pr o Pr o Tr p Met Gl y Leu 225 230 235 240 Leu Gl y Pr o Thr Ile Gl n Al a Gl u Val Tyr As p Thr Val Val I l e Thr 245 250 255 Leu Lys As n Met Al a Ser Hi s Pr o Val Ser Leu Hi s Al a Val Gl y Val 260 265 270 Ser Tyr Tr p Lys Al a Ser Gl u Gl y Al a Gl u Tyr As p As p Gl n Thr Ser
    Page 339
    2018203206 08 May 2018
    97047_1
    275 280 285
    Gl n Ar g Gl u Lys Gl u As p As p 295 Lys Val Phe Pr o Gl y Gl y Ser 300 Hi s Thr 290 Tyr Val Tr p Gl n Val Leu Lys Gl u As n Gl y Pr o Met Al a Ser As p Pr o 305 310 315 320 Leu Cys Leu Thr Tyr Ser Tyr Leu Ser Hi s Val As p Leu Val Lys As p 325 330 335 Leu As n Ser Gl y Leu Ile Gl y Al a Leu Leu Val Cys Ar g Gl u Gl y Ser 340 345 350 Leu Al a Lys Gl u Lys Thr Gl n Thr Leu Hi s Lys Phe I l e Leu Leu Phe 355 360 365 Al a Val Phe As p Gl u Gl y Lys Ser Tr p Hi s Ser Gl u Thr Lys As n Ser 370 375 380 Leu Met Gl n As p Ar g As p Al a Al a Ser Al a Ar g Al a Tr p Pr o Lys Met 385 390 395 400 Hi s Thr Val As n Gl y Tyr Val As n Ar g Ser Leu Pr o Gl y Leu I l e Gl y 405 410 415
    Page 340
    97047_1
    2018203206 08 May 2018
    Cys Hi s Ar g Lys 420 Ser Val Tyr Tr p Hi s 425 Val Ile Gl y Met Gl y 430 Thr Thr Pr o Gl u Val Hi s Ser Ile Phe Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g 435 440 445 As n Hi s Ar g Gl n Al a Ser Leu Gl u Ile Ser Pr o Ile Thr Phe Leu Thr 450 455 460 Al a Gl n Thr Leu Leu Met As p Leu Gl y Gl n Phe Leu Leu Phe Cys Hi s 465 470 475 480 I l e Ser Ser Hi s Gl n Hi s As p Gl y Met Gl u Al a Tyr Val Lys Val As p 485 490 495 Ser Cys Pr o Gl u Gl u Pr o Gl n Leu Ar g Met Lys As n As n Gl u Gl u Al a 500 505 510 Gl u As p Tyr As p As p As p Leu Thr As p Ser Gl u Met As p Val Val Ar g 515 520 525 Phe As p As p As p As n Ser Pr o Ser Phe Ile Gl n Ile Ar g Ser Val Al a 530 535 540 Lys Lys Hi s Pr o Lys Thr Tr p Val Hi s Tyr Ile Al a Al a Gl u Gl u Gl u
    Page 341
    2018203206 08 May 2018
    97047_1
    545 550 555 560
    As p Tr p As p Tyr Al a 565 Pr o Leu Val Leu Al a Pr o Asp Asp Ar g Ser Tyr 570 575 Lys Ser Gl n Tyr Leu As n As n Gl y Pr o Gl n Ar g Ile Gl y Ar g Lys Tyr 580 585 590 Lys Lys Val Ar g Phe Met Al a Tyr Thr As p Gl u Thr Phe Lys Thr Ar g 595 600 605 Gl u Al a I l e Gl n Hi s Gl u Ser Gl y Ile Leu Gl y Pr o Leu Leu Tyr Gl y 610 615 620 Gl u Val Gl y As p Thr Leu Leu Ile Ile Phe Lys As n Gl n Al a Ser Ar g 625 630 635 640 Pr o Tyr As n I l e Tyr Pr o Hi s Gl y Ile Thr As p Val Ar g Pr o Leu Tyr 645 650 655 Ser Ar g Ar g Leu Pr o Lys Gl y Val Lys Hi s Leu Lys As p Phe Pr o I l e 660 665 670 Leu Pr o Gl y Gl u Ile Phe Lys Tyr Lys Tr p Thr Val Thr Val Gl u As p 675 680 685
    Page 342
    97047_1
    2018203206 08 May 2018
    Gl y Pr o Thr 690 Lys Ser As p Pr o 695 Ar g Cys Leu Thr Ar g 700 Tyr Tyr Ser Ser Phe Val Asn Met Gl u Ar g As p Leu Al a Ser Gl y Leu I l e Gl y Pr o Leu 705 710 715 720 Leu I l e Cys Tyr Lys Gl u Ser Val As p Gl n Ar g Gl y As n Gl n I l e Met 725 730 735 Ser As p Lys Arg As n Val Ile Leu Phe Ser Val Phe As p Gl u As n Ar g 740 745 750 Ser Tr p Tyr Leu Thr Gl u As n Ile Gl n Ar g Phe Leu Pr o As n Pr o Al a 755 760 765 Gl y Val Gl n Leu Gl u As p Pr o Gl u Phe Gl n Al a Ser As n I l e Met Hi s 770 775 780 Ser I l e As n Gl y Tyr Val Phe As p Ser Leu Gl n Leu Ser Val Cys Leu 785 790 795 800 Hi s Gl u Val Al a Tyr Tr p Tyr Ile Leu Ser Ile Gl y Al a Gl n Thr As p 805 810 815 Phe Leu Ser Val Phe Phe Ser Gl y Tyr Thr Phe Lys Hi s Lys Met Val
    Page 343
    2018203206 08 May 2018
    820 825 97047_1 830 Ty r Gl u As p Thr Leu Thr Leu Phe Pr o Phe Ser Gl y Gl u Thr Val Phe 835 840 845 Met Ser Met Gl u As n Pr o Gl y Leu Tr p Ile Leu Gl y Cy s Hi s As n Ser 850 855 860 As p Phe Ar g As n Ar g Gl y Met Thr Al a Leu Leu Lys Val Ser Ser Cy s 865 870 875 880 As p Lys As n Thr Gl y As p Ty r Ty r Gl u As p Ser Ty r Gl u As p I l e Ser 885 890 895 Al a Ty r Leu Leu Ser Lys As n As n Al a Ile Gl u Pr o Ar g Ser Phe Ser 900 905 910 Gl n As n Gl y Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y 915 920 925 Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser 930 935 940 Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser 945 950 955 960
    Page 344
    2018203206 08 May 2018
    Gl y Ser Gl u Thr Pr o Gl y Thr Ser 965
    Pr o Gl y Thr Ser Thr Gl u Pr o Ser 980
    Al a Gl y Ser Pr o Thr Ser Thr Gl u 995 1000
    Pr o Gl u 1010 Ser Gl y Pr o Gl y Ser 1015 Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a 1025 1030 Ser Pr o Al a Gl y Ser Pr o Thr Ser 1040 1045 Gl y Ser Pr o Thr Ser Thr Gl u Gl u 1055 1060 Gl u Gl y Ser Al a Pr o Gl y Thr Ser 1070 1075 Gl y Pr o Gl y Thr Ser Gl u Ser Al a
    97047_1 Gl u Ser Al a Thr Pr o Gl u Ser Gl y 970 975
    Gl u Gl y Ser Al a Pr o Gl y Ser Pr o 985 990
    u Gl y Thr Ser Gl u Ser Al a Thr
    1005 Pr o Al a Thr Ser 1020 Gl y Ser Gl u Thr Pr o Gl u Ser 1035 Gl y Pr o Gl y Thr Gl u Gl u Gl y 1050 Ser Pr o Al a Gl y Thr Ser Thr 1065 Gl u Pr o Ser Gl u Ser Al a Thr 1080 Pr o Gl u Ser Thr Pr o Gl u Ser Gl y Pr o Gl y
    Page 345
    2018203206 08 May 2018
    1085 1090 97047_1 1095 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o 1100 1105 1110 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Gl u Pr o Al a Thr Ser 1115 1120 1125 Gl y Ser Gl u Thr Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr 1130 1135 1140 Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y 1145 1150 1155 Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Gl u Pr o 1160 1165 1170 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr 1175 1180 1185 Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser 1190 1195 1200
    Al a Pr o
    Al a Ser Ser
    Pr o Pr o
    Val Leu Lys Ar g Hi s
    Gl n Al a Gl u
    1205
    1210
    1215
    Page 346
    97047_1
    2018203206 08 May 2018
    I l e Thr Ar g Thr Thr Leu Gl n 1225 Ser As p Gl n Gl u Gl u 1230 I l e As p Ty r 1220 As p As p Thr Ile Ser Val Gl u Met Lys Lys Gl u As p Phe As p I l e 1235 1240 1245 Ty r As p Gl u As p Gl u As n Gl n Ser Pr o Ar g Ser Phe Gl n Lys Lys 1250 1255 1260 Thr Ar g Hi s Ty r Phe Ile Al a Al a Val Gl u Ar g Leu Tr p As p Ty r 1265 1270 1275 Gl y Met Ser Ser Ser Pr o Hi s Val Leu Ar g As n Ar g Al a Gl n Ser 1280 1285 1290 Gl y Ser Val Pr o Gl n Phe Lys Lys Val Val Phe Gl n Gl u Phe Thr 1295 1300 1305 As p Gl y Ser Phe Thr Gl n Pr o Leu Ty r Ar g Gl y Gl u Leu As n Gl u 1310 1315 1320 Hi s Leu Gl y Leu Leu Gl y Pr o Ty r Ile Ar g Al a Gl u Val Gl u As p 1325 1330 1335 As n I l e Met Val Thr Phe Ar g As n Gl n Al a Ser Ar g Pr o Ty r Ser
    Page 347
    2018203206 08 May 2018
    97047_1
    1340 1345 1350
    Phe Tyr Ser Ser Leu Ile Ser Tyr Gl u Gl u As p Gl n Ar g Gl n Gl y 1355 1360 1365 Al a Gl u Pr o Ar g Lys As n Phe Val Lys Pr o As n Gl u Thr Lys Th r 1370 1375 1380 Tyr Phe Tr p Lys Val Gl n Hi s Hi s Met Al a Pr o Thr Lys As p Gl u 1385 1390 1395 Phe As p Cys Lys Al a Tr p Al a Tyr Phe Ser As p Val As p Leu Gl u 1400 1405 1410 Lys As p Val Hi s Ser Gl y Leu Ile Gl y Pr o Leu Leu Val Cys Hi s 1415 1420 1425 Thr As n Thr Leu As n Pr o Al a Hi s Gl y Ar g Gl n Val Thr Val Gl n 1430 1435 1440 Gl u Phe Al a Leu Phe Phe Thr Ile Phe As p Gl u Thr Lys Ser Tr p 1445 1450 1455 Tyr Phe Thr Gl u As n Met Gl u Ar g As n Cys Ar g Al a Pr o Cys As n
    1460 1465 1470
    Page 348
    97047_1
    2018203206 08 May 2018
    I l e Gl n 1475 Met Gl u As p Pr o Thr 1480 Phe Lys Gl u As n Ty r 1485 Ar g Phe Hi s Al a I l e As n Gl y Tyr Ile Met As p Thr Leu Pr o Gl y Leu Val Met 1490 1495 1500 Al a Gl n Asp Gl n Ar g Ile Ar g Tr p Ty r Leu Leu Ser Met Gl y Ser 1505 1510 1515 As n Gl u As n Ile Hi s Ser Ile Hi s Phe Ser Gl y Hi s Val Phe Thr 1520 1525 1530 Val Ar g Lys Lys Gl u Gl u Ty r Lys Met Al a Leu Ty r As n Leu Ty r 1535 1540 1545 Pr o Gl y Val Phe Gl u Thr Val Gl u Met Leu Pr o Ser Lys Al a Gl y 1550 1555 1560 I l e Tr p Ar g Val Gl u Cys Leu Ile Gl y Gl u Hi s Leu Hi s Al a Gl y 1565 1570 1575 Met Ser Thr Leu Phe Leu Val Ty r Ser As n Lys Cy s Gl n Thr Pr o 1580 1585 1590 Leu Gl y Met Al a Ser Gl y Hi s Ile Ar g As p Phe Gl n I l e Thr Al a
    Page 349
    2018203206 08 May 2018
    97047_1
    1595 1600 1605
    Ser Gl y 1610 Gl n Ty r Gl y Gl n Tr p 1615 Al a Pr o Lys Leu Al a 1620 Ar g Leu Hi s Ty r Ser Gl y Ser Ile As n Al a Tr p Ser Thr Lys Gl u Pr o Phe Ser 1625 1630 1635 Tr p I l e Lys Val As p Leu Leu Al a Pr o Met Ile Ile Hi s Gl y I l e 1640 1645 1650 Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe Ser Ser Leu Ty r I l e Ser 1655 1660 1665 Gl n Phe I l e Ile Met Ty r Ser Leu As p Gl y Lys Lys Tr p Gl n Thr 1670 1675 1680 Ty r Ar g Gl y As n Ser Thr Gl y Thr Leu Met Val Phe Phe Gl y As n 1685 1690 1695 Val As p Ser Ser Gl y Ile Lys Hi s As n Ile Phe As n Pr o Pr o I l e 1700 1705 1710 I l e Al a Ar g Ty r Ile Ar g Leu Hi s Pr o Thr Hi s Ty r Ser I l e Ar g
    1715 1720 1725
    Page 350
    97047_1
    2018203206 08 May 2018
    Ser Thr 1730 Leu Ar g Met Gl u Leu 1735 Met Gl y Cys As p Leu 1740 As n Ser Cys Ser Met Pr o Leu Gl y Met Gl u Ser Lys Al a Ile Ser As p Al a Gl n 1745 1750 1755 I l e Thr Al a Ser Ser Tyr Phe Thr As n Met Phe Al a Thr Tr p Ser 1760 1765 1770 Pr o Ser Lys Al a Ar g Leu Hi s Leu Gl n Gl y Ar g Ser As n Al a Tr p 1775 1780 1785 Ar g Pr o Gl n Val As n As n Pr o Lys Gl u Tr p Leu Gl n Val As p Phe 1790 1795 1800 Gl n Lys Thr Met Lys Val Thr Gl y Val Thr Thr Gl n Gl y Val Lys 1805 1810 1815 Ser Leu Leu Thr Ser Met Tyr Val Lys Gl u Phe Leu I l e Ser Ser 1820 1825 1830 Ser Gl n As p Gl y Hi s Gl n Tr p Thr Leu Phe Phe Gl n As n Gl y Lys 1835 1840 1845 Val Lys Val Phe Gl n Gl y As n Gl n As p Ser Phe Thr Pr o Val Val
    Page 351
    2018203206 08 May 2018
    1850 1855 97047 _1 1860 As n Ser Leu As p Pr o Pr o Leu Leu Thr Ar g Tyr Leu Ar g I l e Hi s 1865 1870 1875 Pr o Gl n Ser Tr p Val Hi s Gl n Ile Al a Leu Ar g Met Gl u Val Leu 1880 1885 1890 Gl y Cys Gl u Al a Gl n As p Leu Tyr As p Lys Thr Hi s Thr Cys Pr o 1895 1900 1905 Pr o Cys Pr o Al a Pr o Gl u Leu Leu Gl y Gl y Pr o Ser Val Phe Leu 1910 1915 1920 Phe Pr o Pr o Lys Pr o Lys As p Thr Leu Met Ile Ser Ar g Thr Pr o 1925 1930 1935 Gl u Val Thr Cys Val Val Val As p Val Ser Hi s Gl u As p Pr o Gl u 1940 1945 1950 Val Lys Phe As n Tr p Tyr Val As p Gl y Val Gl u Val Hi s As n Al a 1955 1960 1965 Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Tyr As n Ser Thr Tyr Ar g Val 1970 1975 1980
    Page 352
    97047_1
    2018203206 08 May 2018
    Val Ser 1985 Val Leu Thr Val Leu 1990 Hi s Gl n As p Tr p Leu 1995 As n Gl y Lys Gl u Ty r Lys Cy s Lys Val Ser As n Lys Al a Leu Pr o Al a Pr o I l e 2000 2005 2010 Gl u Lys Thr Ile Ser Lys Al a Lys Gl y Gl n Pr o Ar g Gl u Pr o Gl n 2015 2020 2025 Val Ty r Thr Leu Pr o Pr o Ser Ar g As p Gl u Leu Thr Lys As n Gl n 2030 2035 2040 Val Ser Leu Thr Cy s Leu Val Lys Gl y Phe Ty r Pr o Ser As p I l e 2045 2050 2055 Al a Val Gl u Tr p Gl u Ser As n Gl y Gl n Pr o Gl u As n As n Ty r Lys 2060 2065 2070 Thr Thr Pr o Pr o Val Leu As p Ser As p Gl y Ser Phe Phe Leu Ty r 2075 2080 2085 Ser Lys Leu Thr Val As p Lys Ser Ar g Tr p Gl n Gl n Gl y As n Val 2090 2095 2100 Phe Ser Cy s Ser Val Met Hi s Gl u Al a Leu Hi s As n Hi s Ty r Thr
    Page 353
    2018203206 08 May 2018
    97047_1
    2105 2110 2115
    Gl n Lys Ser Leu Ser Leu Ser Pr o Gl y Lys 2120 2125 <210> 112 <211> 2020 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> pSYN FVI I I 266 pr ot ei n sequence <400> 112
    Met Gl n I l e Gl u Le u Ser Thr Cys Phe Phe Leu Cys Leu Leu Ar g Phe 1 5 10 15 Cys Phe Ser Al a Th r Ar g Ar g Tyr Tyr Leu Gl y Al a Val Gl u Leu Ser 20 25 30 Tr p As p Tyr Met Gl n Gl y Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr 35 40 45 Ser Thr Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 50 55 60 Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Al a Ser Ser Ser
    Page 354
    2018203206 08 May 2018
    97047_1
    65 70 75 80
    As p Leu Gl y Gl u Leu 85 Pr o Val As p Al a Ar g 90 Phe Pr o Pr o Ar g Val 95 Pr o Lys Ser Phe Pr o Phe As n Thr Ser Val Val Ty r Lys Lys Thr Leu Phe 100 105 110 Val Gl u Phe Thr As p Hi s Leu Phe As n Ile Al a Lys Pr o Ar g Pr o Pr o 115 120 125 Tr p Met Gl y Leu Leu Gl y Pr o Thr Ile Gl n Al a Gl u Val Ty r As p Thr 130 135 140 Val Val I l e Thr Leu Lys As n Met Al a Ser Hi s Pr o Val Ser Leu Hi s 145 150 155 160 Al a Val Gl y Val Ser Ty r Tr p Lys Al a Ser Gl u Gl y Al a Gl u Ty r As p 165 170 175 As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p As p Lys Val Phe Pr o Gl y 180 185 190 Gl y Ser Hi s Thr Ty r Val Tr p Gl n Val Leu Lys Gl u As n Gl y Pr o Met 195 200 205
    Page 355
    97047_1
    2018203206 08 May 2018
    Al a Ser 210 As p Pr o Leu Cys Leu 215 Thr Tyr Ser Tyr Leu 220 Ser Hi s Val As p Leu Val Lys As p Leu As n Ser Gl y Leu Ile Gl y Al a Leu Leu Val Cys 225 230 235 240 Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr Gl n Thr Leu Hi s Lys Phe 245 250 255 I l e Leu Leu Phe Al a Val Phe As p Gl u Gl y Lys Ser Tr p Hi s Ser Gl u 260 265 270 Thr Lys As n Ser Leu Met Gl n As p Ar g As p Al a Al a Ser Al a Ar g Al a 275 280 285 Tr p Pr o Lys Met Hi s Thr Val As n Gl y Tyr Val As n Ar g Ser Leu Pr o 290 295 300 Gl y Leu I l e Gl y Cys Hi s Ar g Lys Ser Val Tyr Tr p Hi s Val I l e Gl y 305 310 315 320 Met Gl y Thr Thr Pr o Gl u Val Hi s Ser Ile Phe Leu Gl u Gl y Hi s Thr 325 330 335 Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser Leu Gl u I l e Ser Pr o I l e
    Page 356
    2018203206 08 May 2018
    970 47_1 340 345 350 Thr Phe Leu Thr Al a Gl n Thr Leu Leu Met As p Leu Gl y Gl n Phe Leu 355 360 365 Leu Phe Cys Hi s Ile Ser Ser Hi s Gl n Hi s As p Gl y Met Gl u Al a Tyr 370 375 380 Val Lys Val As p Ser Cys Pr o Gl u Gl u Pr o Gl n Leu Ar g Met Lys As n 385 390 395 400 As n Gl u Gl u Al a Gl u As p Tyr As p As p As p Leu Thr As p Ser Gl u Met 405 410 415 As p Val Val Ar g Phe As p As p As p As n Ser Pr o Ser Phe I l e Gl n I l e 420 425 430 Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr Tr p Val Hi s Tyr I l e Al a 435 440 445 Al a Gl u Gl u Gl u As p Tr p As p Tyr Al a Pr o Leu Val Leu Al a Pr o As p 450 455 460 As p Ar g Ser Tyr Lys Ser Gl n Tyr Leu As n As n Gl y Pr o Gl n Ar g I l e 465 470 475 480
    Page 357
    97047_1
    2018203206 08 May 2018
    Gl y Ar g Lys Tyr Lys 485 Lys Val Ar g Phe Met 490 Al a Tyr Thr As p Gl u 495 Thr Phe Lys Thr Ar g Gl u Al a Ile Gl n Hi s Gl u Ser Gl y I l e Leu Gl y Pr o 500 505 510 Leu Leu Tyr Gl y Gl u Val Gl y As p Thr Leu Leu Ile I l e Phe Lys As n 515 520 525 Gl n Al a Ser Ar g Pr o Tyr As n Ile Tyr Pr o Hi s Gl y I l e Thr As p Val 530 535 540 Ar g Pr o Leu Tyr Ser Ar g Ar g Leu Pr o Lys Gl y Val Lys Hi s Leu Lys 545 550 555 560 As p Phe Pr o I l e Leu Pr o Gl y Gl u Ile Phe Lys Tyr Lys Tr p Thr Val 565 570 575 Thr Val Gl u As p Gl y Pr o Thr Lys Ser As p Pr o Ar g Cys Leu Thr Ar g 580 585 590 Tyr Tyr Ser Ser Phe Val As n Met Gl u Ar g As p Leu Al a Ser Gl y Leu 595 600 605 I l e Gl y Pr o Leu Leu Ile Cys Tyr Lys Gl u Ser Val As p Gl n Ar g Gl y
    Page 358
    2018203206 08 May 2018
    97047_1
    610 615 620
    As n 625 Gl n I l e Met Ser As p 630 Lys Ar g As n Val Ile 635 Leu Phe Ser Val Phe 640 As p Gl u As n Ar g Ser Tr p Tyr Leu Thr Gl u As n Ile Gl n Ar g Phe Leu 645 650 655 Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p Pr o Gl u Phe Gl n Al a Ser 660 665 670 As n I l e Met Hi s Ser Ile As n Gl y Tyr Val Phe As p Ser Leu Gl n Leu 675 680 685 Ser Val Cys Leu Hi s Gl u Val Al a Tyr Tr p Tyr Ile Leu Ser I l e Gl y 690 695 700 Al a Gl n Thr As p Phe Leu Ser Val Phe Phe Ser Gl y Tyr Thr Phe Lys 705 710 715 720 Hi s Lys Met Val Tyr Gl u As p Thr Leu Thr Leu Phe Pr o Phe Ser Gl y 725 730 735 Gl u Thr Val Phe Met Ser Met Gl u As n Pr o Gl y Leu Tr p I l e Leu Gl y 740 745 750
    Page 359
    97047_1
    2018203206 08 May 2018
    Cys Hi s Asn Ser As p Phe Ar g As n Ar g Gl y Met Thr Al a Leu Leu Lys 755 760 76 5 Val Ser Ser Cys As p Lys As n Thr Gl y As p Tyr Tyr Gl u As p Ser Tyr 770 775 780 Gl u Asp I l e Ser Al a Tyr Leu Leu Ser Lys As n As n Al a I l e Gl u Pr o 785 790 795 800 Arg Ser Phe Ser Gl n As n Gl y Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr 805 810 815 Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr 820 825 830 Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u 835 840 84 5 Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr 850 855 860 Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a 865 870 875 880 Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser
    Page 360
    2018203206 08 May 2018
    97047 1
    Gl u Ser Al a Thr 900 885 Pr o 890 Ser 895 Ser Gl u Ser Gl y Pr o 905 Gl y Gl u Pr o Al a Thr 910 Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y 915 920 925 Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Ser Pr o 930 935 940 Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser 945 950 955 960 Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y 965 970 975 Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser 980 985 990 Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser 995 1000 1005 Gl y Ser Gl u Thr Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u 1010 1015 1020
    Page 361
    97047_1
    2018203206 08 May 2018
    Thr Pr o 1025 Gl y Ser Pr o Al a Gl y 1030 Ser Pr o Thr Ser Thr 1035 Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr 1040 1045 1050 Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Gl u Pr o Al a Thr Ser 1055 1060 1065 Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser 1070 1075 1080 Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Al a 1085 1090 1095 Ser Ser Pr o Pr o Val Leu Lys Ar g Hi s Gl n Al a Gl u I l e Thr Ar g 1100 1105 1110 Thr Thr Leu Gl n Ser As p Gl n Gl u Gl u Ile As p Tyr As p As p Thr 1115 1120 1125 I l e Ser Val Gl u Met Lys Lys Gl u As p Phe As p Ile Tyr As p Gl u 1130 1135 1140 Asp Gl u As n Gl n Ser Pr o Ar g Ser Phe Gl n Lys Lys Thr Ar g Hi s
    Page 362
    2018203206 08 May 2018
    1145 1150 97047 _1 1155 Tyr Phe I l e Al a Al a Val Gl u Ar g Leu Tr p As p Tyr Gl y Met Ser 1160 1165 1170 Ser Ser Pr o Hi s Val Leu Ar g As n Ar g Al a Gl n Ser Gl y Ser Val 1175 1180 1185 Pr o Gl n Phe Lys Lys Val Val Phe Gl n Gl u Phe Thr As p Gl y Ser 1190 1195 1200 Phe Thr Gl n Pr o Leu Tyr Ar g Gl y Gl u Leu As n Gl u Hi s Leu Gl y 1205 1210 1215 Leu Leu Gl y Pr o Tyr Ile Ar g Al a Gl u Val Gl u As p As n I l e Met 1220 1225 1230 Val Thr Phe Ar g As n Gl n Al a Ser Ar g Pr o Tyr Ser Phe Tyr Ser 1235 1240 1245 Ser Leu I l e Ser Tyr Gl u Gl u As p Gl n Ar g Gl n Gl y Al a Gl u Pr o 1250 1255 1260 Ar g Lys As n Phe Val Lys Pr o As n Gl u Thr Lys Thr Tyr Phe Tr p 1265 1270 1275
    Page 363
    2018203206 08 May 2018
    97047 1
    Lys Val 1280 Gl n Hi s Hi s Met Al a 1285 Pr o Thr Lys As p Gl u 1290 Phe As p Cys Lys Al a Tr p Al a Tyr Phe Ser As p Val As p Leu Gl u Lys As p Val 1295 1300 1305 Hi s Ser Gl y Leu Ile Gl y Pr o Leu Leu Val Cys Hi s Thr As n Thr 1310 1315 1320 Leu As n Pr o Al a Hi s Gl y Ar g Gl n Val Thr Val Gl n Gl u Phe Al a 1325 1330 1335 Leu Phe Phe Thr Ile Phe As p Gl u Thr Lys Ser Tr p Tyr Phe Thr 1340 1345 1350 Gl u As n Met Gl u Ar g As n Cys Ar g Al a Pr o Cys As n I l e Gl n Met 1355 1360 1365 Gl u As p Pr o Thr Phe Lys Gl u As n Tyr Ar g Phe Hi s Al a I l e As n 1370 1375 1380 Gl y Tyr I l e Met As p Thr Leu Pr o Gl y Leu Val Met Al a Gl n As p 1385 1390 1395 Gl n Ar g I l e Ar g Tr p Tyr Leu Leu Ser Met Gl y Ser As n Gl u As n
    Page 364
    2018203206 08 May 2018
    1400 1405 97047 _1 1410 I l e Hi s Ser Ile Hi s Phe Ser Gl y Hi s Val Phe Thr Val Ar g Lys 1415 1420 1425 Lys Gl u Gl u Ty r Lys Met Al a Leu Ty r As n Leu Ty r Pr o Gl y Val 1430 1435 1440 Phe Gl u Thr Val Gl u Met Leu Pr o Ser Lys Al a Gl y I l e Tr p Ar g 1445 1450 1455 Val Gl u Cy s Leu Ile Gl y Gl u Hi s Leu Hi s Al a Gl y Met Ser Thr 1460 1465 1470 Leu Phe Leu Val Ty r Ser As n Lys Cy s Gl n Thr Pr o Leu Gl y Met 1475 1480 1485 Al a Ser Gl y Hi s Ile Ar g As p Phe Gl n Ile Thr Al a Ser Gl y Gl n 1490 1495 1500 Ty r Gl y Gl n Tr p Al a Pr o Lys Leu Al a Ar g Leu Hi s Ty r Ser Gl y 1505 1510 1515 Ser I l e As n Al a Tr p Ser Thr Lys Gl u Pr o Phe Ser Tr p I l e Lys 1520 1525 1530
    Page 365
    97047_1
    2018203206 08 May 2018
    Val As p 1535 Leu Leu Al a Pr o Met 1540 Ile Ile Hi s Gl y Ile 1545 Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe Ser Ser Leu Ty r Ile Ser Gl n Phe I l e 1550 1555 1560 I l e Met Ty r Ser Leu As p Gl y Lys Lys Tr p Gl n Thr Ty r Ar g Gl y 1565 1570 1575 As n Ser Thr Gl y Thr Leu Met Val Phe Phe Gl y As n Val As p Ser 1580 1585 1590 Ser Gl y I l e Lys Hi s As n Ile Phe As n Pr o Pr o Ile I l e Al a Ar g 1595 1600 1605 Ty r I l e Ar g Leu Hi s Pr o Thr Hi s Ty r Ser Ile Ar g Ser Thr Leu 1610 1615 1620 Ar g Met Gl u Leu Met Gl y Cy s As p Leu As n Ser Cy s Ser Met Pr o 1625 1630 1635 Leu Gl y Met Gl u Ser Lys Al a Ile Ser As p Al a Gl n I l e Thr Al a 1640 1645 1650 Ser Ser Ty r Phe Thr As n Met Phe Al a Thr Tr p Ser Pr o Ser Lys
    Page 366
    2018203206 08 May 2018
    1655 1660 97047 _1 1665 Al a Ar g Leu Hi s Leu Gl n Gl y Ar g Ser As n Al a Tr p Ar g Pr o Gl n 1670 1675 1680 Val As n As n Pr o Lys Gl u Tr p Leu Gl n Val As p Phe Gl n Lys Thr 1685 1690 1695 Met Lys Val Thr Gl y Val Thr Thr Gl n Gl y Val Lys Ser Leu Leu 1700 1705 1710 Thr Ser Met Tyr Val Lys Gl u Phe Leu Ile Ser Ser Ser Gl n As p 1715 1720 1725 Gl y Hi s Gl n Tr p Thr Leu Phe Phe Gl n As n Gl y Lys Val Lys Val 1730 1735 1740 Phe Gl n Gl y As n Gl n As p Ser Phe Thr Pr o Val Val As n Ser Leu 1745 1750 1755 As p Pr o Pr o Leu Leu Thr Ar g Tyr Leu Ar g Ile Hi s Pr o Gl n Ser 1760 1765 1770 Tr p Val Hi s Gl n Ile Al a Leu Ar g Met Gl u Val Leu Gl y Cys Gl u 1775 1780 1785
    Page 367
    97047_1
    2018203206 08 May 2018
    Al a Gl n 1790 As p Leu Ty r As p Lys 1795 Thr Hi s Thr Cy s Pr o 1800 Pr o Cy s Pr o Al a Pr o Gl u Leu Leu Gl y Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o 1805 1810 1815 Lys Pr o Lys As p Thr Leu Met Ile Ser Ar g Thr Pr o Gl u Val Thr 1820 1825 1830 Cy s Val Val Val As p Val Ser Hi s Gl u As p Pr o Gl u Val Lys Phe 1835 1840 1845 As n Tr p Ty r Val As p Gl y Val Gl u Val Hi s As n Al a Lys Thr Lys 1850 1855 1860 Pr o Ar g Gl u Gl u Gl n Ty r As n Ser Thr Ty r Ar g Val Val Ser Val 1865 1870 1875 Leu Thr Val Leu Hi s Gl n As p Tr p Leu As n Gl y Lys Gl u Ty r Lys 1880 1885 1890 Cy s Lys Val Ser As n Lys Al a Leu Pr o Al a Pr o Ile Gl u Lys Thr 1895 1900 1905 I l e Ser Lys Al a Lys Gl y Gl n Pr o Ar g Gl u Pr o Gl n Val Ty r Thr
    Page 368
    97047_1
    2018203206 08 May 2018
    1910 1915 1920 Leu Pr o Pr o Ser Ar g As p Gl u Leu Thr Lys As n Gl n Val Ser Leu 1925 1930 1935 Thr Cys Leu Val Lys Gl y Phe Tyr Pr o Ser As p Ile Al a Val Gl u 1940 1945 1950 Tr p Gl u Ser As n Gl y Gl n Pr o Gl u As n As n Tyr Lys Thr Thr Pr o 1955 1960 1965 Pr o Val Leu As p Ser As p Gl y Ser Phe Phe Leu Tyr Ser Lys Leu 1970 1975 1980 Thr Val As p Lys Ser Ar g Tr p Gl n Gl n Gl y As n Val Phe Ser Cys 1985 1990 1995 Ser Val Met Hi s Gl u Al a Leu Hi s As n Hi s Tyr Thr Gl n Lys Ser 2000 2005 2010 Leu Ser Leu Ser Pr o Gl y Lys
    2015 2020 <210> 113 <211> 2056 <212> PRT
    Page 369
    2018203206 08 May 2018
    97047_1 <213> Art i f i ci al Sequence <220>
    <223> pSYN FVI I I 267 pr ot ei n sequence <400> 113
    Met 1 Gl n I l e Gl u Leu 5 Ser Thr Cy s Phe Phe 10 Leu Cy s Leu Leu Ar g 15 Phe Cy s Phe Ser Al a Thr Ar g Ar g Ty r Ty r Leu Gl y Al a Val Gl u Leu Ser 20 25 30 Tr p As p Ty r Met Gl n Gl y Al a Pr o Thr Ser Gl u Ser Al a Thr Pr o Gl u 35 40 45 Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y 50 55 60 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a 65 70 75 80 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u 85 90 95 Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y 100 105 110
    Page 370
    97047_1
    2018203206 08 May 2018
    Al a Ser Ser 115 Ser As p Leu Gl y Gl u 120 Leu Pr o Val As p Al a 125 Ar g Phe Pr o Pr o Ar g Val Pr o Lys Ser Phe Pr o Phe As n Thr Ser Val Val Tyr Lys 130 135 140 Lys Thr Leu Phe Val Gl u Phe Thr As p Hi s Leu Phe As n I l e Al a Lys 145 150 155 160 Pr o Ar g Pr o Pr o Tr p Met Gl y Leu Leu Gl y Pr o Thr I l e Gl n Al a Gl u 165 170 175 Val Tyr As p Thr Val Val Ile Thr Leu Lys As n Met Al a Ser Hi s Pr o 180 185 190 Val Ser Leu Hi s Al a Val Gl y Val Ser Tyr Tr p Lys Al a Ser Gl u Gl y 195 200 205 Al a Gl u Tyr As p As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p As p Lys 210 215 220 Val Phe Pr o Gl y Gl y Ser Hi s Thr Tyr Val Tr p Gl n Val Leu Lys Gl u 225 230 235 240 As n Gl y Pr o Met Al a Ser As p Pr o Leu Cys Leu Thr Tyr Ser Tyr Leu
    Page 371
    2018203206 08 May 2018
    97047_1
    245 250 255
    Ser Hi s Val Asp Leu Val 260 Lys As p Leu 265 As n Ser Gl y Leu I l e 270 Gl y Al a Leu Leu Val Cy s Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr Gl n Thr 275 280 285 Leu Hi s Lys Phe Ile Leu Leu Phe Al a Val Phe As p Gl u Gl y Lys Ser 290 295 300 Tr p Hi s Ser Gl u Thr Lys As n Ser Leu Met Gl n As p Ar g As p Al a Al a 305 310 315 320 Ser Al a Ar g Al a Tr p Pr o Lys Met Hi s Thr Val As n Gl y Ty r Val As n 325 330 335 Ar g Ser Leu Pr o Gl y Leu Ile Gl y Cy s Hi s Ar g Lys Ser Val Ty r Tr p 340 345 350 Hi s Val I l e Gl y Met Gl y Thr Thr Pr o Gl u Val Hi s Ser I l e Phe Leu 355 360 365 Gl u Gl y Hi s Thr Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser Leu Gl u 370 375 380
    Page 372
    97047_1
    2018203206 08 May 2018
    I l e 385 Ser Pr o I l e Thr Phe 390 Leu Thr Al a Gl n Thr 395 Leu Leu Met As p Leu 400 Gl y Gl n Phe Leu Leu Phe Cys Hi s Ile Ser Ser Hi s Gl n Hi s As p Gl y 405 410 415 Met Gl u Al a Tyr Val Lys Val As p Ser Cys Pr o Gl u Gl u Pr o Gl n Leu 420 425 430 Ar g Met Lys As n As n Gl u Gl u Al a Gl u As p Tyr As p As p As p Leu Thr 435 440 445 As p Ser Gl u Met As p Val Val Ar g Phe As p As p As p As n Ser Pr o Ser 450 455 460 Phe I l e Gl n I l e Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr Tr p Val 465 470 475 480 Hi s Tyr I l e Al a Al a Gl u Gl u Gl u As p Tr p As p Tyr Al a Pr o Leu Val 485 490 495 Leu Al a Pr o As p As p Ar g Ser Tyr Lys Ser Gl n Tyr Leu As n As n Gl y 500 505 510 Pr o Gl n Ar g I l e Gl y Ar g Lys Tyr Lys Lys Val Ar g Phe Met Al a Tyr
    Page 373
    2018203206 08 May 2018
    97047_1
    515 520 525
    Thr As p 530 Gl u Thr Phe Lys Thr 535 Ar g Gl u Al a Ile Gl n 540 Hi s Gl u Ser Gl y I l e Leu Gl y Pr o Leu Leu Ty r Gl y Gl u Val Gl y As p Thr Leu Leu I l e 545 550 555 560 I l e Phe Lys As n Gl n Al a Ser Ar g Pr o Ty r As n Ile Ty r Pr o Hi s Gl y 565 570 575 I l e Thr As p Val Ar g Pr o Leu Ty r Ser Ar g Ar g Leu Pr o Lys Gl y Val 580 585 590 Lys Hi s Leu Lys As p Phe Pr o Ile Leu Pr o Gl y Gl u I l e Phe Lys Ty r 595 600 605 Lys Tr p Thr Val Thr Val Gl u As p Gl y Pr o Thr Lys Ser As p Pr o Ar g 610 615 620 Cy s Leu Thr Ar g Ty r Ty r Ser Ser Phe Val As n Met Gl u Ar g As p Leu 625 630 635 640 Al a Ser Gl y Leu Ile Gl y Pr o Leu Leu Ile Cy s Ty r Lys Gl u Ser Val 645 650 655
    Page 374
    97047_1
    2018203206 08 May 2018
    As p Gl n Ar g Gl y 660 As n Gl n Ile Met Ser 665 As p Lys Ar g As n Val 670 I l e Leu Phe Ser Val Phe As p Gl u As n Ar g Ser Tr p Tyr Leu Thr Gl u As n I l e 675 680 685 Gl n Ar g Phe Leu Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p Pr o Gl u 690 695 700 Phe Gl n Al a Ser As n Ile Met Hi s Ser Ile As n Gl y Tyr Val Phe As p 705 710 715 720 Ser Leu Gl n Leu Ser Val Cys Leu Hi s Gl u Val Al a Tyr Tr p Tyr I l e 725 730 735 Leu Ser I l e Gl y Al a Gl n Thr As p Phe Leu Ser Val Phe Phe Ser Gl y 740 745 750 Tyr Thr Phe Lys Hi s Lys Met Val Tyr Gl u As p Thr Leu Thr Leu Phe 755 760 765 Pr o Phe Ser Gl y Gl u Thr Val Phe Met Ser Met Gl u As n Pr o Gl y Leu 770 775 780 Tr p I l e Leu Gl y Cys Hi s As n Ser As p Phe Ar g As n Ar g Gl y Met Thr
    Page 375
    2018203206 08 May 2018
    97047_1
    785 790 795 800
    Al a Leu Leu Lys Val Ser Ser Cys As p Lys As n Thr Gl y As p Tyr Tyr 805 810 815 Gl u As p Ser Tyr Gl u As p Ile Ser Al a Tyr Leu Leu Ser Lys As n As n 820 825 830 Al a I l e Gl u Pr o Ar g Ser Phe Ser Gl n As n Gl y Al a Pr o Gl y Thr Ser 835 840 845 Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser 850 855 860 Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y 86 5 870 875 880 Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser 885 890 895 Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser 900 905 910 Gl u Gl y Ser Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u 915 920 925
    Page 376
    97047_1
    2018203206 08 May 2018
    Gl u Gl y 930 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 935 940 Gl y Ser Gl u Pr o 945 Al a Thr Ser Gl y Ser 950 Gl u Thr Pr o Gl y Thr Ser Gl u 955 Ser Al a Thr 960 Pr o Gl u Ser Gl y Pr o 965 Gl y Ser Pr o Al a Gl y Ser Pr o Thr 970 Ser Thr 975 Gl u Gl u Gl y Ser Pr o 980 Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u 985 Gl y 990 Thr Ser Thr Gl u Pr o 995 Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr 1000 1005 Pr o Gl u 1010 Ser Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr 1015 1020 Pr o Gl u Ser Gl y Pr o 1025 Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser 1030 1035 Gl y Pr o Gl y Ser Gl u 1040 Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y 1045 1050 Ser Gl u Pr o
    Al a Thr
    Ser Gl y Ser Gl u Thr
    Pr o Gl y Ser Pr o Al a
    Gl y Ser Pr o
    Page 377
    2018203206 08 May 2018
    1055 1060 97047 _1 1065 Thr Ser Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser 1070 1075 1080 Al a Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y 1085 1090 1095 Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u 1100 1105 1110 Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser 1115 1120 1125 Gl u Gl y Ser Al a Pr o Al a Ser Ser Pr o Pr o Val Leu Lys Ar g Hi s 1130 1135 1140 Gl n Al a Gl u Ile Thr Ar g Thr Thr Leu Gl n Ser As p Gl n Gl u Gl u 1145 1150 1155 I l e As p Tyr As p As p Thr Ile Ser Val Gl u Met Lys Lys Gl u As p 1160 1165 1170 Phe As p I l e Tyr As p Gl u As p Gl u As n Gl n Ser Pr o Ar g Ser Phe 1175 1180 1185
    Page 378
    97047_1
    2018203206 08 May 2018
    Gl n Lys 1190 Lys Thr Ar g Hi s Tyr 1195 Phe Ile Al a Al a Val 1200 Gl u Ar g Leu Tr p As p Tyr Gl y Met Ser Ser Ser Pr o Hi s Val Leu Ar g As n Ar g 1205 1210 1215 Al a Gl n Ser Gl y Ser Val Pr o Gl n Phe Lys Lys Val Val Phe Gl n 1220 1225 1230 Gl u Phe Thr As p Gl y Ser Phe Thr Gl n Pr o Leu Tyr Ar g Gl y Gl u 1235 1240 1245 Leu As n Gl u Hi s Leu Gl y Leu Leu Gl y Pr o Tyr Ile Ar g Al a Gl u 1250 1255 1260 Val Gl u As p As n Ile Met Val Thr Phe Ar g As n Gl n Al a Ser Ar g 1265 1270 1275 Pr o Tyr Ser Phe Tyr Ser Ser Leu Ile Ser Tyr Gl u Gl u As p Gl n 1280 1285 1290 Ar g Gl n Gl y Al a Gl u Pr o Ar g Lys As n Phe Val Lys Pr o As n Gl u 1295 1300 1305 Thr Lys Thr Tyr Phe Tr p Lys Val Gl n Hi s Hi s Met Al a Pr o Thr
    Page 379
    2018203206 08 May 2018
    1310 1315 97047 _1 1320 Lys As p Gl u Phe As p Cys Lys Al a Tr p Al a Tyr Phe Ser As p Val 1325 1330 1335 As p Leu Gl u Lys As p Val Hi s Ser Gl y Leu Ile Gl y Pr o Leu Leu 1340 1345 1350 Val Cys Hi s Thr As n Thr Leu As n Pr o Al a Hi s Gl y Ar g Gl n Val 1355 1360 1365 Thr Val Gl n Gl u Phe Al a Leu Phe Phe Thr Ile Phe As p Gl u Thr 1370 1375 1380 Lys Ser Tr p Tyr Phe Thr Gl u As n Met Gl u Ar g As n Cys Ar g Al a 1385 1390 1395 Pr o Cys As n Ile Gl n Met Gl u As p Pr o Thr Phe Lys Gl u As n Tyr 1400 1405 1410 Ar g Phe Hi s Al a Ile As n Gl y Tyr Ile Met As p Thr Leu Pr o Gl y 1415 1420 1425 Leu Val Met Al a Gl n As p Gl n Ar g Ile Ar g Tr p Tyr Leu Leu Ser 1430 1435 1440
    Page 380
    97047_1
    2018203206 08 May 2018
    Met Gl y 1445 Ser As n Gl u As n Ile 1450 Hi s Ser Ile Hi s Phe 1455 Ser Gl y Hi s Val Phe Thr Val Ar g Lys Lys Gl u Gl u Ty r Lys Met Al a Leu Ty r 1460 1465 1470 As n Leu Ty r Pr o Gl y Val Phe Gl u Thr Val Gl u Met Leu Pr o Ser 1475 1480 1485 Lys Al a Gl y Ile Tr p Ar g Val Gl u Cy s Leu Ile Gl y Gl u Hi s Leu 1490 1495 1500 Hi s Al a Gl y Met Ser Thr Leu Phe Leu Val Ty r Ser As n Lys Cy s 1505 1510 1515 Gl n Thr Pr o Leu Gl y Met Al a Ser Gl y Hi s Ile Ar g As p Phe Gl n 1520 1525 1530 I l e Thr Al a Ser Gl y Gl n Ty r Gl y Gl n Tr p Al a Pr o Lys Leu Al a 1535 1540 1545 Ar g Leu Hi s Ty r Ser Gl y Ser Ile As n Al a Tr p Ser Thr Lys Gl u 1550 1555 1560 Pr o Phe Ser Tr p Ile Lys Val As p Leu Leu Al a Pr o Met I l e I l e
    Page 381
    2018203206 08 May 2018
    1565 1570 97047 _1 1575 Hi s Gl y I l e Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe Ser Ser Leu 1580 1585 1590 Tyr I l e Ser Gl n Phe Ile Ile Met Tyr Ser Leu As p Gl y Lys Lys 1595 1600 1605 Tr p Gl n Thr Tyr Ar g Gl y As n Ser Thr Gl y Thr Leu Met Val Phe 1610 1615 1620 Phe Gl y As n Val As p Ser Ser Gl y Ile Lys Hi s As n I l e Phe As n 1625 1630 1635 Pr o Pr o I l e Ile Al a Ar g Tyr Ile Ar g Leu Hi s Pr o Thr Hi s Tyr 1640 1645 1650 Ser I l e Ar g Ser Thr Leu Ar g Met Gl u Leu Met Gl y Cys As p Leu 1655 1660 1665 As n Ser Cys Ser Met Pr o Leu Gl y Met Gl u Ser Lys Al a I l e Ser 1670 1675 1680 As p Al a Gl n Ile Thr Al a Ser Ser Tyr Phe Thr As n Met Phe Al a 1685 1690 1695
    Page 382
    97047 1
    2018203206 08 May 2018
    Thr Tr p 1700 Ser Pr o Ser Lys Al a 1705 Ar g Leu Hi s Leu Gl n 1710 Gl y Ar g Ser As n Al a Tr p Ar g Pr o Gl n Val As n As n Pr o Lys Gl u Tr p Leu Gl n 1715 1720 1725 Val As p Phe Gl n Lys Thr Met Lys Val Thr Gl y Val Thr Thr Gl n 1730 1735 1740 Gl y Val Lys Ser Leu Leu Thr Ser Met Ty r Val Lys Gl u Phe Leu 1745 1750 1755 I l e Ser Ser Ser Gl n As p Gl y Hi s Gl n Tr p Thr Leu Phe Phe Gl n 1760 1765 1770 As n Gl y Lys Val Lys Val Phe Gl n Gl y As n Gl n As p Ser Phe Thr 1775 1780 1785 Pr o Val Val As n Ser Leu As p Pr o Pr o Leu Leu Thr Ar g Ty r Leu 1790 1795 1800 Ar g I l e Hi s Pr o Gl n Ser Tr p Val Hi s Gl n Ile Al a Leu Ar g Met 1805 1810 1815 Gl u Val Leu Gl y Cy s Gl u Al a Gl n As p Leu Ty r As p Lys Thr Hi s
    Page 383
    2018203206 08 May 2018
    1820 1825 97047 _1 1830 Thr Cys Pr o Pr o Cys Pr o Al a Pr o Gl u Leu Leu Gl y Gl y Pr o Ser 1835 1840 1845 Val Phe Leu Phe Pr o Pr o Lys Pr o Lys As p Thr Leu Met I l e Ser 1850 1855 1860 Ar g Thr Pr o Gl u Val Thr Cys Val Val Val As p Val Ser Hi s Gl u 1865 1870 1875 As p Pr o Gl u Val Lys Phe As n Tr p Tyr Val As p Gl y Val Gl u Val 1880 1885 1890 Hi s As n Al a Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Tyr As n Ser Thr 1895 1900 1905 Tyr Ar g Val Val Ser Val Leu Thr Val Leu Hi s Gl n As p Tr p Leu 1910 1915 1920 As n Gl y Lys Gl u Tyr Lys Cys Lys Val Ser As n Lys Al a Leu Pr o 1925 1930 1935 Al a Pr o I l e Gl u Lys Thr Ile Ser Lys Al a Lys Gl y Gl n Pr o Ar g 1940 1945 1950
    Page 384
    97047_1
    2018203206 08 May 2018
    Gl u Pr o 1955 Gl n Val Tyr Thr Leu 1960 Pr o Pr o Ser Ar g As p 1965 Gl u Leu Thr Lys As n Gl n Val Ser Leu Thr Cys Leu Val Lys Gl y Phe Tyr Pr o 1970 1975 1980 Ser As p I l e Al a Val Gl u Tr p Gl u Ser As n Gl y Gl n Pr o Gl u As n 1985 1990 1995 As n Tyr Lys Thr Thr Pr o Pr o Val Leu As p Ser As p Gl y Ser Phe 2000 2005 2010 Phe Leu Tyr Ser Lys Leu Thr Val As p Lys Ser Ar g Tr p Gl n Gl n 2015 2020 2025 Gl y As n Val Phe Ser Cys Ser Val Met Hi s Gl u Al a Leu Hi s As n 2030 2035 2040 Hi s Tyr Thr Gl n Lys Ser Leu Ser Leu Ser Pr o Gl y Lys 2045 2050 2055
    <210> 114 <211> 1834 <212> PRT <213> Art i f i ci al Sequence
    Page 385
    2018203206 08 May 2018
    97047_1 <220>
    <223> pSYN FVI I I 268 protei n sequence <400> 114
    Met 1 Gl n I l e Gl u Leu 5 Ser Thr Cy s Phe Phe 10 Leu Cy s Leu Leu Ar g 15 Phe Cy s Phe Ser Al a Thr Ar g Ar g Ty r Ty r Leu Gl y Al a Val Gl u Leu Ser 20 25 30 Tr p As p Ty r Met Gl n Gl y Al a Pr o Thr Ser Gl u Ser Al a Thr Pr o Gl u 35 40 45 Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y 50 55 60 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a 65 70 75 80 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u 85 90 95 Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y 100 105 110 Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Gl u Ser
    Page 386
    2018203206 08 May 2018
    97047_1
    115 120 125
    Al a Thr 130 Pr o Gl u Ser Gl y Pr o 135 Gl y Ser Gl u Pr o Al a 140 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y 145 150 155 160 Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Ser Pr o Al a Gl y 165 170 175 Ser Pr o Thr Ser Thr Gl u Gl u Gl y Al a Ser Ser Ser As p Leu Gl y Gl u 180 185 190 Leu Pr o Val As p Al a Ar g Phe Pr o Pr o Ar g Val Pr o Lys Ser Phe Pr o 195 200 205 Phe As n Thr Ser Val Val Tyr Lys Lys Thr Leu Phe Val Gl u Phe Thr 210 215 220 As p Hi s Leu Phe As n Ile Al a Lys Pr o Ar g Pr o Pr o Tr p Met Gl y Leu 225 230 235 240
    Leu Gl y Pr o Thr
    I l e Gl n Al a Gl u
    Val
    Tyr Asp Thr Val
    Val
    I l e Thr
    245
    250
    255
    Page 387
    97047_1
    2018203206 08 May 2018
    Leu Lys As n Met 260 Al a Ser Hi s Pr o Val 265 Ser Leu Hi s Al a Val 270 Gl y Val Ser Tyr Tr p Lys Al a Ser Gl u Gl y Al a Gl u Tyr As p As p Gl n Thr Ser 275 280 285 Gl n Ar g Gl u Lys Gl u As p As p Lys Val Phe Pr o Gl y Gl y Ser Hi s Thr 290 295 300 Tyr Val Tr p Gl n Val Leu Lys Gl u As n Gl y Pr o Met Al a Ser As p Pr o 305 310 315 320 Leu Cys Leu Thr Tyr Ser Tyr Leu Ser Hi s Val As p Leu Val Lys As p 325 330 335 Leu As n Ser Gl y Leu Ile Gl y Al a Leu Leu Val Cys Ar g Gl u Gl y Ser 340 345 350 Leu Al a Lys Gl u Lys Thr Gl n Thr Leu Hi s Lys Phe I l e Leu Leu Phe 355 360 365 Al a Val Phe As p Gl u Gl y Lys Ser Tr p Hi s Ser Gl u Thr Lys As n Ser 370 375 380 Leu Met Gl n As p Ar g As p Al a Al a Ser Al a Ar g Al a Tr p Pr o Lys Met
    Page 388
    2018203206 08 May 2018
    97047_1
    385 390 395 400
    Hi s Thr Val As n Gl y 405 Ty r Val As n Ar g Ser 410 Leu Pr o Gl y Leu I l e 415 Gl y Cy s Hi s Ar g Lys Ser Val Ty r Tr p Hi s Val Ile Gl y Met Gl y Thr Thr 420 425 430 Pr o Gl u Val Hi s Ser Ile Phe Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g 435 440 445 As n Hi s Ar g Gl n Al a Ser Leu Gl u Ile Ser Pr o Ile Thr Phe Leu Thr 450 455 460 Al a Gl n Thr Leu Leu Met As p Leu Gl y Gl n Phe Leu Leu Phe Cy s Hi s 465 470 475 480 I l e Ser Ser Hi s Gl n Hi s As p Gl y Met Gl u Al a Ty r Val Lys Val As p 485 490 495 Ser Cy s Pr o Gl u Gl u Pr o Gl n Leu Ar g Met Lys As n As n Gl u Gl u Al a 500 505 510 Gl u As p Ty r As p As p As p Leu Thr As p Ser Gl u Met As p Val Val Ar g 515 520 525
    Page 389
    97047_1
    2018203206 08 May 2018
    Phe Asp Asp Asp Asn Ser 530 Pr o 535 Ser Phe Ile Gl n Ile 540 Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr Tr p Val Hi s Ty r Ile Al a Al a Gl u Gl u Gl u 545 550 555 560 As p Tr p As p Ty r Al a Pr o Leu Val Leu Al a Pr o As p As p Ar g Ser Ty r 565 570 575 Lys Ser Gl n Ty r Leu As n As n Gl y Pr o Gl n Ar g Ile Gl y Ar g Lys Ty r 580 585 590 Lys Lys Val Ar g Phe Met Al a Ty r Thr As p Gl u Thr Phe Lys Thr Ar g 595 600 605 Gl u Al a I l e Gl n Hi s Gl u Ser Gl y Ile Leu Gl y Pr o Leu Leu Ty r Gl y 610 615 620 Gl u Val Gl y As p Thr Leu Leu Ile Ile Phe Lys As n Gl n Al a Ser Ar g 625 630 635 640 Pr o Ty r As n I l e Ty r Pr o Hi s Gl y Ile Thr As p Val Ar g Pr o Leu Ty r 645 650 655 Ser Ar g Ar g Leu Pr o Lys Gl y Val Lys Hi s Leu Lys As p Phe Pr o I l e
    Page 390
    2018203206 08 May 2018
    660 665 97047_1 670 Leu Pr o Gl y Gl u Ile Phe Lys Ty r Lys Tr p Thr Val Thr Val Gl u As p 675 680 685 Gl y Pr o Thr Lys Ser As p Pr o Ar g Cy s Leu Thr Ar g Ty r Ty r Ser Ser 690 695 700 Phe Val As n Met Gl u Ar g As p Leu Al a Ser Gl y Leu I l e Gl y Pr o Leu 705 710 715 720 Leu I l e Cy s Ty r Lys Gl u Ser Val As p Gl n Ar g Gl y As n Gl n I l e Met 725 730 735 Ser As p Lys Ar g As n Val Ile Leu Phe Ser Val Phe As p Gl u As n Ar g 740 745 750 Ser Tr p Ty r Leu Thr Gl u As n Ile Gl n Ar g Phe Leu Pr o As n Pr o Al a 755 760 765 Gl y Val Gl n Leu Gl u As p Pr o Gl u Phe Gl n Al a Ser As n I l e Met Hi s 770 775 780 Ser I l e As n Gl y Ty r Val Phe As p Ser Leu Gl n Leu Ser Val Cy s Leu 785 790 795 800
    Page 391
    97047_1
    2018203206 08 May 2018
    Hi s Gl u Val Al a Tyr 805 Trp Tyr I l e Leu Ser 810 Ile Gl y Al a Gl n Thr 815 As p Phe Leu Ser Val Phe Phe Ser Gl y Tyr Thr Phe Lys Hi s Lys Met Val 820 825 830 Tyr Gl u As p Thr Leu Thr Leu Phe Pr o Phe Ser Gl y Gl u Thr Val Phe 835 840 845 Met Ser Met Gl u As n Pr o Gl y Leu Tr p Ile Leu Gl y Cys Hi s As n Ser 850 855 860 As p Phe Ar g As n Ar g Gl y Met Thr Al a Leu Leu Lys Val Ser Ser Cys 865 870 875 880 As p Lys As n Thr Gl y As p Tyr Tyr Gl u As p Ser Tyr Gl u As p I l e Ser 885 890 895 Al a Tyr Leu Leu Ser Lys As n As n Al a Ile Gl u Pr o Ar g Ser Phe Ser 900 905 910 Gl n As n Pr o Pr o Val Leu Lys Ar g Hi s Gl n Al a Gl u I l e Thr Ar g Thr 915 920 925 Thr Leu Gl n Ser As p Gl n Gl u Gl u Ile As p Tyr As p As p Thr I l e Ser
    Page 392
    97047_1
    2018203206 08 May 2018
    930 935 940 Val Gl u Met Lys Lys Gl u As p Phe As p Ile Tyr As p Gl u As p Gl u As n 945 950 955 960 Gl n Ser Pr o Ar g Ser Phe Gl n Lys Lys Thr Ar g Hi s Tyr Phe I l e Al a 965 970 975 Al a Val Gl u Ar g Leu Tr p As p Tyr Gl y Met Ser Ser Ser Pr o Hi s Val 980 985 990 Leu Ar g As n Ar g Al a Gl n Ser Gl y Ser Val Pr o Gl n Phe Ly s Ly s Val 995 1000 10C 5
    Val Phe
    Gl n Gl u Phe Thr As p
    Gl y Ser Phe Thr Gl n
    Pro Leu Tyr
    1010
    1015
    1020
    Ar g Gl y
    Gl u Leu Asn Gl u
    Hi s
    Leu Gl y Leu Leu Gl y
    Pro Tyr I l e
    1025
    1030
    1035
    Ar g Al a
    Glu Val Glu Asp Asn
    I l e Met Val
    Thr Phe
    Ar g As n Gl n
    1040
    1045
    1050
    Al a Ser
    Arg Pro Tyr Ser Phe
    Tyr Ser Ser Leu I l e
    Ser Tyr Gl u
    1055
    1060
    1065
    Page 393
    97047_1
    2018203206 08 May 2018
    Gl u As p 1070 Gl n Ar g Gl n Gl y Al a 1075 Gl u Pr o Ar g Lys As n 1080 Phe Val Lys Pr o As n Gl u Thr Lys Thr Tyr Phe Tr p Lys Val Gl n Hi s Hi s Met 1085 1090 1095 Al a Pr o Thr Lys As p Gl u Phe As p Cys Lys Al a Tr p Al a Tyr Phe 1100 1105 1110 Ser As p Val As p Leu Gl u Lys As p Val Hi s Ser Gl y Leu I l e Gl y 1115 1120 1125 Pr o Leu Leu Val Cys Hi s Thr As n Thr Leu As n Pr o Al a Hi s Gl y 1130 1135 1140 Ar g Gl n Val Thr Val Gl n Gl u Phe Al a Leu Phe Phe Thr I l e Phe 1145 1150 1155 As p Gl u Thr Lys Ser Tr p Tyr Phe Thr Gl u As n Met Gl u Ar g As n 1160 1165 1170 Cys Ar g Al a Pr o Cys As n Ile Gl n Met Gl u As p Pr o Thr Phe Lys 1175 1180 1185 Gl u As n Tyr Ar g Phe Hi s Al a Ile As n Gl y Tyr Ile Met As p Thr
    Page 394
    2018203206 08 May 2018
    97047_1
    1190 1195 1200
    Leu Pr o 1205 Gl y Leu Val Met Al a 1210 Gl n As p Gl n Ar g Ile 1215 Ar g Tr p Tyr Leu Leu Ser Met Gl y Ser As n Gl u As n Ile Hi s Ser I l e Hi s Phe 1220 1225 1230 Ser Gl y Hi s Val Phe Thr Val Arg Lys Lys Gl u Gl u Tyr Lys Met 1235 1240 1245 Al a Leu Tyr As n Leu Tyr Pr o Gl y Val Phe Gl u Thr Val Gl u Met 1250 1255 1260 Leu Pr o Ser Lys Al a Gl y Ile Tr p Ar g Val Gl u Cys Leu I l e Gl y 1265 1270 1275 Gl u Hi s Leu Hi s Al a Gl y Met Ser Thr Leu Phe Leu Val Tyr Ser 1280 1285 1290 As n Lys Cys Gl n Thr Pr o Leu Gl y Met Al a Ser Gl y Hi s I l e Ar g 1295 1300 1305
    As p Phe
    Gl n I l e Thr
    Al a Ser
    Gly Gln Tyr Gly Gln
    Tr p Al a Pr o
    1310
    1315
    1320
    Page 395
    97047_1
    2018203206 08 May 2018
    Lys Leu 1325 Al a Ar g Leu Hi s Tyr 1330 Ser Gl y Ser Ile As n 1335 Al a Tr p Ser Thr Lys Gl u Pr o Phe Ser Tr p Ile Lys Val As p Leu Leu Al a Pr o 1340 1345 1350 Met I l e I l e Hi s Gl y Ile Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe 1355 1360 1365 Ser Ser Leu Tyr Ile Ser Gl n Phe Ile Ile Met Tyr Ser Leu As p 1370 1375 1380 Gl y Lys Lys Tr p Gl n Thr Tyr Ar g Gl y As n Ser Thr Gl y Thr Leu 1385 1390 1395 Met Val Phe Phe Gl y As n Val As p Ser Ser Gl y Ile Lys Hi s As n 1400 1405 1410 I l e Phe As n Pr o Pr o Ile Ile Al a Ar g Tyr Ile Ar g Leu Hi s Pr o 1415 1420 1425 Thr Hi s Tyr Ser Ile Ar g Ser Thr Leu Ar g Met Gl u Leu Met Gl y 1430 1435 1440 Cys As p Leu As n Ser Cys Ser Met Pr o Leu Gl y Met Gl u Ser Lys
    Page 396
    2018203206 08 May 2018
    1445 1450 97047 _1 1455 Al a I l e Ser As p Al a Gl n Ile Thr Al a Ser Ser Tyr Phe Thr As n 1460 1465 1470 Met Phe Al a Thr Tr p Ser Pr o Ser Lys Al a Ar g Leu Hi s Leu Gl n 1475 1480 1485 Gl y Ar g Ser As n Al a Tr p Ar g Pr o Gl n Val As n As n Pr o Lys Gl u 1490 1495 1500 Tr p Leu Gl n Val As p Phe Gl n Lys Thr Met Lys Val Thr Gl y Val 1505 1510 1515 Thr Thr Gl n Gl y Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys 1520 1525 1530 Gl u Phe Leu Ile Ser Ser Ser Gl n As p Gl y Hi s Gl n Tr p Thr Leu 1535 1540 1545 Phe Phe Gl n As n Gl y Lys Val Lys Val Phe Gl n Gl y As n Gl n As p 1550 1555 1560 Ser Phe Thr Pr o Val Val As n Ser Leu As p Pr o Pr o Leu Leu Thr 1565 1570 1575
    Page 397
    97047 1
    2018203206 08 May 2018
    Arg Tyr Leu Ar g Ile Hi s Pr o 1585 Gl n Ser Tr p Val Hi s 1590 Gl n I l e Al a 1580 Leu Ar g Met Gl u Val Leu Gl y Cy s Gl u Al a Gl n As p Leu Ty r As p 1595 1600 1605 Lys Thr Hi s Thr Cys Pr o Pr o Cy s Pr o Al a Pr o Gl u Leu Leu Gl y 1610 1615 1620 Gly Pr o Ser Val Phe Leu Phe Pr o Pr o Lys Pr o Lys As p Thr Leu 1625 1630 1635 Met I l e Ser Ar g Thr Pr o Gl u Val Thr Cy s Val Val Val As p Val 1640 1645 1650 Ser Hi s Gl u As p Pr o Gl u Val Lys Phe As n Tr p Ty r Val As p Gl y 1655 1660 1665 Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Ty r 1670 1675 1680 Asn Ser Thr Tyr Ar g Val Val Ser Val Leu Thr Val Leu Hi s Gl n 1685 1690 1695 Asp Tr p Leu As n Gl y Lys Gl u Ty r Lys Cy s Lys Val Ser As n Lys
    Page 398
    2018203206 08 May 2018
    97047_1
    1700 1705 1710
    Al a Leu 1715 Pr o Al a Pr o Ile Gl u 1720 Lys Thr Ile Ser Lys 1725 Al a Lys Gl y Gl n Pr o Ar g Gl u Pr o Gl n Val Tyr Thr Leu Pr o Pr o Ser Ar g As p 1730 1735 1740 Gl u Leu Thr Lys As n Gl n Val Ser Leu Thr Cys Leu Val Lys Gl y 1745 1750 1755 Phe Tyr Pr o Ser As p Ile Al a Val Gl u Tr p Gl u Ser As n Gl y Gl n 1760 1765 1770 Pr o Gl u As n As n Tyr Lys Thr Thr Pr o Pr o Val Leu As p Ser As p 1775 1780 1785 Gl y Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val As p Lys Ser Ar g 1790 1795 1800 Tr p Gl n Gl n Gl y As n Val Phe Ser Cys Ser Val Met Hi s Gl u Al a 1805 1810 1815 Leu Hi s As n Hi s Tyr Thr Gl n Lys Ser Leu Ser Leu Ser Pr o Gl y
    1820 1825 1830
    Page 399
    97047_1
    2018203206 08 May 2018
    Lys <210> 115 <211> 1762 <212> PRT <213> Artificial Sequence <220>
    <223> pSYN FVI I I 269 pr ot ei n sequence <400> 115
    Met 1 Gl n I l e Gl u Leu 5 Ser Thr Cys Phe Phe 10 Leu Cys Leu Leu Ar g 15 Phe Cys Phe Ser Al a Thr Ar g Ar g Tyr Tyr Leu Gl y Al a Val Gl u Leu Ser 20 25 30 Tr p As p Tyr Met Gl n Gl y Al a Pr o Thr Ser Gl u Ser Al a Thr Pr o Gl u 35 40 45 Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y 50 55 60 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a 65 70 75 80
    Page 400
    97047_1
    2018203206 08 May 2018
    Thr Ser Gl y Ser Gl u 85 Thr Pr o Gl y Thr Ser 90 Gl u Ser Al a Thr Pr o 95 Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y 100 105 110 Al a Ser Ser Ser As p Leu Gl y Gl u Leu Pr o Val As p Al a Ar g Phe Pr o 115 120 125 Pr o Ar g Val Pr o Lys Ser Phe Pr o Phe As n Thr Ser Val Val Tyr Lys 130 135 140 Lys Thr Leu Phe Val Gl u Phe Thr As p Hi s Leu Phe As n I l e Al a Lys 145 150 155 160 Pr o Ar g Pr o Pr o Tr p Met Gl y Leu Leu Gl y Pr o Thr I l e Gl n Al a Gl u 165 170 175 Val Tyr As p Thr Val Val Ile Thr Leu Lys As n Met Al a Ser Hi s Pr o 180 185 190 Val Ser Leu Hi s Al a Val Gl y Val Ser Tyr Tr p Lys Al a Ser Gl u Gl y 195 200 205 Al a Gl u Tyr As p As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p As p Lys
    Page 401
    2018203206 08 May 2018
    97047_1
    210 215 220
    Val 225 Phe Pr o Gl y Gl y Ser 230 Hi s Thr Tyr Val Tr p 235 Gl n Val Leu Lys Gl u 240 As n Gl y Pr o Met Al a Ser As p Pr o Leu Cys Leu Thr Tyr Ser Tyr Leu 245 250 255 Ser Hi s Val As p Leu Val Lys As p Leu As n Ser Gl y Leu I l e Gl y Al a 260 265 270 Leu Leu Val Cys Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr Gl n Thr 275 280 285 Leu Hi s Lys Phe Ile Leu Leu Phe Al a Val Phe As p Gl u Gl y Lys Ser 290 295 300 Tr p Hi s Ser Gl u Thr Lys As n Ser Leu Met Gl n As p Ar g As p Al a Al a 305 310 315 320 Ser Al a Ar g Al a Tr p Pr o Lys Met Hi s Thr Val As n Gl y Tyr Val As n 325 330 335 Ar g Ser Leu Pr o Gl y Leu Ile Gl y Cys Hi s Ar g Lys Ser Val Tyr Tr p 340 345 350
    Page 402
    97047_1
    2018203206 08 May 2018
    Hi s Val I l e 355 Gl y Met Gl y Thr Thr 360 Pr o Gl u Val Hi s Ser 365 I l e Phe Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser Leu Gl u 370 375 380 I l e Ser Pr o I l e Thr Phe Leu Thr Al a Gl n Thr Leu Leu Met As p Leu 385 390 395 400 Gl y Gl n Phe Leu Leu Phe Cys Hi s Ile Ser Ser Hi s Gl n Hi s As p Gl y 405 410 415 Met Gl u Al a Tyr Val Lys Val As p Ser Cys Pr o Gl u Gl u Pr o Gl n Leu 420 425 430 Ar g Met Lys As n As n Gl u Gl u Al a Gl u As p Tyr As p As p As p Leu Thr 435 440 445 As p Ser Gl u Met As p Val Val Ar g Phe As p As p As p As n Ser Pr o Ser 450 455 460 Phe I l e Gl n I l e Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr Tr p Val 465 470 475 480 Hi s Tyr I l e Al a Al a Gl u Gl u Gl u As p Tr p As p Tyr Al a Pr o Leu Val
    Page 403
    2018203206 08 May 2018
    97047_1
    485 490 495
    Leu Al a Pr o As p 500 As p Ar g Ser Tyr Lys 505 Ser Gl n Tyr Leu As n As n 510 Gl y Pr o Gl n Ar g I l e Gl y Ar g Lys Tyr Lys Lys Val Ar g Phe Met Al a Tyr 515 520 525 Thr As p Gl u Thr Phe Lys Thr Ar g Gl u Al a Ile Gl n Hi s Gl u Ser Gl y 530 535 540 I l e Leu Gl y Pr o Leu Leu Tyr Gl y Gl u Val Gl y As p Thr Leu Leu I l e 545 550 555 560 I l e Phe Lys As n Gl n Al a Ser Ar g Pr o Tyr As n Ile Tyr Pr o Hi s Gl y 565 570 575 I l e Thr As p Val Ar g Pr o Leu Tyr Ser Ar g Ar g Leu Pr o Lys Gl y Val 580 585 590 Lys Hi s Leu Lys As p Phe Pr o Ile Leu Pr o Gl y Gl u I l e Phe Lys Tyr 595 600 605 Lys Tr p Thr Val Thr Val Gl u As p Gl y Pr o Thr Lys Ser As p Pr o Ar g 610 615 620
    Page 404
    97047_1
    2018203206 08 May 2018
    Cy s 625 Leu Thr Ar g Ty r Ty r 630 Ser Ser Phe Val As n 635 Met Gl u Ar g As p Leu 640 Al a Ser Gl y Leu Ile Gl y Pr o Leu Leu Ile Cy s Ty r Lys Gl u Ser Val 645 650 655 As p Gl n Ar g Gl y As n Gl n Ile Met Ser As p Lys Ar g As n Val I l e Leu 660 665 670 Phe Ser Val Phe As p Gl u As n Ar g Ser Tr p Ty r Leu Thr Gl u As n I l e 675 680 685 Gl n Ar g Phe Leu Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p Pr o Gl u 690 695 700 Phe Gl n Al a Ser As n Ile Met Hi s Ser Ile As n Gl y Ty r Val Phe As p 705 710 715 720 Ser Leu Gl n Leu Ser Val Cy s Leu Hi s Gl u Val Al a Ty r Tr p Ty r I l e 725 730 735 Leu Ser I l e Gl y Al a Gl n Thr As p Phe Leu Ser Val Phe Phe Ser Gl y 740 745 750 Ty r Thr Phe Lys Hi s Lys Met Val Ty r Gl u As p Thr Leu Thr Leu Phe
    Page 405
    2018203206 08 May 2018
    97047_1
    755 760 765
    Pr o Phe Ser 770 Gl y Gl u Thr Val 775 Phe Met Ser Met Gl u 780 As n Pr o Gl y Leu Tr p I l e Leu Gl y Cys Hi s As n Ser As p Phe Ar g As n Ar g Gl y Met Thr 785 790 795 800 Al a Leu Leu Lys Val Ser Ser Cy s As p Lys As n Thr Gl y As p Ty r Ty r 805 810 815 Gl u As p Ser Tyr Gl u As p Ile Ser Al a Ty r Leu Leu Ser Lys As n As n 820 825 830 Al a I l e Gl u Pr o Ar g Ser Phe Ser Gl n As n Pr o Pr o Val Leu Lys Ar g 835 840 845 Hi s Gl n Al a Gl u Ile Thr Ar g Thr Thr Leu Gl n Ser As p Gl n Gl u Gl u 850 855 860 I l e As p Tyr As p As p Thr Ile Ser Val Gl u Met Lys Lys Gl u As p Phe 865 870 875 880 As p I l e Tyr As p Gl u As p Gl u As n Gl n Ser Pr o Ar g Ser Phe Gl n Lys 885 890 895
    Page 406
    2018203206 08 May 2018
    97047 1
    Lys Thr Ar g Hi s 900 Ty r Phe Ile Al a Al a 905 Val Gl u Ar g Leu Tr p 910 As p Ty r Gl y Met Ser Ser Ser Pr o Hi s Val Leu Ar g As n Ar g Al a Gl n Ser Gl y 915 920 925 Ser Val Pr o Gl n Phe Lys Lys Val Val Phe Gl n Gl u Phe Thr As p Gl y 930 935 940 Ser Phe Thr Gl n Pr o Leu Ty r Ar g Gl y Gl u Leu As n Gl u Hi s Leu Gl y 945 950 955 960 Leu Leu Gl y Pr o Ty r Ile Ar g Al a Gl u Val Gl u As p As n I l e Met Val 965 970 975 Thr Phe Ar g As n Gl n Al a Ser Ar g Pr o Ty r Ser Phe Ty r Ser Ser Leu 980 985 990 I l e Ser Ty r Gl u Gl u As p Gl n Ar g Gl n Gl y Al a Gl j Pro Arg Lys Asn 995 1000 1005
    Phe Val Lys Pro Asn Gl u Thr Lys Thr Tyr Phe Trp Lys Val Gl n 1010 1015 1020
    Hi s Hi s Met Al a Pro Thr Lys Asp Gl u Phe Asp Cys Lys Al a Trp
    Page 407
    2018203206 08 May 2018
    97047_1
    1025 1030 1035
    Al a Tyr 1040 Phe Ser As p Val As p 1045 Leu Gl u Lys As p Val 1050 Hi s Ser Gl y Leu I l e Gl y Pr o Leu Leu Val Cys Hi s Thr As n Thr Leu As n Pr o 1055 1060 1065 Al a Hi s Gl y Ar g Gl n Val Thr Val Gl n Gl u Phe Al a Leu Phe Phe 1070 1075 1080 Thr I l e Phe As p Gl u Thr Lys Ser Tr p Tyr Phe Thr Gl u As n Met 1085 1090 1095 Gl u Ar g As n Cys Ar g Al a Pr o Cys As n Ile Gl n Met Gl u As p Pr o 1100 1105 1110 Thr Phe Lys Gl u As n Tyr Ar g Phe Hi s Al a Ile As n Gl y Tyr I l e 1115 1120 1125 Met As p Thr Leu Pr o Gl y Leu Val Met Al a Gl n As p Gl n Ar g I l e 1130 1135 1140
    Ar g Tr p
    Tyr Leu Leu Ser Met
    Gl y Ser Asn Gl u Asn
    I l e Hi s Ser
    1145
    1150
    1155
    Page 408
    2018203206 08 May 2018
    97047_1
    I l e Hi s 1160 Phe Ser Gl y Hi s Val 1165 Phe Thr Val Ar g Lys 1170 Lys Gl u Gl u Tyr Lys Met Al a Leu Tyr As n Leu Tyr Pr o Gl y Val Phe Gl u Thr 1175 1180 1185 Val Gl u Met Leu Pr o Ser Lys Al a Gl y Ile Tr p Ar g Val Gl u Cys 1190 1195 1200 Leu I l e Gl y Gl u Hi s Leu Hi s Al a Gl y Met Ser Thr Leu Phe Leu 1205 1210 1215 Val Tyr Ser As n Lys Cys Gl n Thr Pr o Leu Gl y Met Al a Ser Gl y 1220 1225 1230 Hi s I l e Ar g As p Phe Gl n Ile Thr Al a Ser Gl y Gl n Tyr Gl y Gl n 1235 1240 1245 Tr p Al a Pr o Lys Leu Al a Ar g Leu Hi s Tyr Ser Gl y Ser I l e As n 1250 1255 1260 Al a Tr p Ser Thr Lys Gl u Pr o Phe Ser Tr p Ile Lys Val As p Leu 1265 1270 1275 Leu Al a Pr o Met Ile Ile Hi s Gl y Ile Lys Thr Gl n Gl y Al a Ar g
    Page 409
    2018203206 08 May 2018
    1280 1285 97047 _1 1290 Gl n Lys Phe Ser Ser Leu Tyr Ile Ser Gl n Phe Ile I l e Met Tyr 1295 1300 1305 Ser Leu As p Gl y Lys Lys Tr p Gl n Thr Tyr Ar g Gl y As n Ser Thr 1310 1315 1320 Gl y Thr Leu Met Val Phe Phe Gl y As n Val As p Ser Ser Gl y I l e 1325 1330 1335 Lys Hi s As n Ile Phe As n Pr o Pr o Ile Ile Al a Ar g Tyr I l e Ar g 1340 1345 1350 Leu Hi s Pr o Thr Hi s Tyr Ser Ile Ar g Ser Thr Leu Ar g Met Gl u 1355 1360 1365 Leu Met Gl y Cys As p Leu As n Ser Cys Ser Met Pr o Leu Gl y Met 1370 1375 1380 Gl u Ser Lys Al a Ile Ser As p Al a Gl n Ile Thr Al a Ser Ser Tyr 1385 1390 1395 Phe Thr As n Met Phe Al a Thr Tr p Ser Pr o Ser Lys Al a Ar g Leu 1400 1405 1410
    Page 410
    2018203206 08 May 2018
    97047 1
    Hi s Leu 1415 Gl n Gl y Ar g Ser As n 1420 Al a Tr p Ar g Pr o Gl n 1425 Val As n As n Pr o Lys Gl u Tr p Leu Gl n Val As p Phe Gl n Lys Thr Met Lys Val 1430 1435 1440 Thr Gl y Val Thr Thr Gl n Gl y Val Lys Ser Leu Leu Thr Ser Met 1445 1450 1455 Ty r Val Lys Gl u Phe Leu Ile Ser Ser Ser Gl n As p Gl y Hi s Gl n 1460 1465 1470 Tr p Thr Leu Phe Phe Gl n As n Gl y Lys Val Lys Val Phe Gl n Gl y 1475 1480 1485 As n Gl n As p Ser Phe Thr Pr o Val Val As n Ser Leu As p Pr o Pr o 1490 1495 1500 Leu Leu Thr Arg Ty r Leu Ar g Ile Hi s Pr o Gl n Ser Tr p Val Hi s 1505 1510 1515 Gl n I l e Al a Leu Ar g Met Gl u Val Leu Gl y Cy s Gl u Al a Gl n As p 1520 1525 1530 Leu Ty r As p Lys Thr Hi s Thr Cy s Pr o Pr o Cy s Pr o Al a Pr o Gl u
    Page 411
    2018203206 08 May 2018
    1535 1540 97047 _1 1545 Leu Leu Gly Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o Lys Pr o Lys 1550 1555 1560 As p Thr Leu Met Ile Ser Ar g Thr Pr o Gl u Val Thr Cys Val Val 1565 1570 1575 Val As p Val Ser Hi s Gl u As p Pr o Gl u Val Lys Phe As n Tr p Ty r 1580 1585 1590 Val As p Gl y Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o Ar g Gl u 1595 1600 1605 Gl u Gl n Tyr As n Ser Thr Tyr Ar g Val Val Ser Val Leu Thr Val 1610 1615 1620 Leu Hi s Gl n As p Tr p Leu As n Gl y Lys Gl u Tyr Lys Cy s Lys Val 1625 1630 1635 Ser As n Lys Al a Leu Pr o Al a Pr o Ile Gl u Lys Thr I l e Ser Lys 1640 1645 1650 Al a Lys Gl y Gl n Pr o Ar g Gl u Pr o Gl n Val Tyr Thr Leu Pr o Pr o 1655 1660 1665
    Page 412
    2018203206 08 May 2018
    97047_1
    Ser Ar g 1670 As p Gl u Leu Thr Lys 1675 As n Gl n Val Ser Leu 1680 Thr Cys Leu Val Lys Gl y Phe Tyr Pr o Ser As p Ile Al a Val Gl u Tr p Gl u Ser 1685 1690 1695 As n Gl y Gl n Pr o Gl u As n As n Tyr Lys Thr Thr Pr o Pr o Val Leu 1700 1705 1710 As p Ser As p Gl y Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val As p 1715 1720 1725 Lys Ser Arg Tr p Gl n Gl n Gl y As n Val Phe Ser Cys Ser Val Met 1730 1735 1740 Hi s Gl u Al a Leu Hi s As n Hi s Tyr Thr Gl n Lys Ser Leu Ser Leu 1745 1750 1755
    Ser Pr o Gl y Lys 1760 <210> 116 <211> 1726 <212> PRT <213> Artificial Sequence
    Page 413
    2018203206 08 May 2018
    97047_1 <220>
    <223> pSYNFVI I I 271 protein sequence <400> 116
    Met 1 Gl n I l e Gl u Leu 5 Ser Thr Cys Phe Phe 10 Leu Cys Leu Leu Ar g 15 Phe Cys Phe Ser Al a Thr Ar g Ar g Tyr Tyr Leu Gl y Al a Val Gl u Leu Ser 20 25 30 Tr p As p Tyr Met Gl n Gl y Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr 35 40 45 Ser Thr Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 50 55 60 Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Al a Ser Ser Ser 65 70 75 80 As p Leu Gl y Gl u Leu Pr o Val As p Al a Ar g Phe Pr o Pr o Ar g Val Pr o 85 90 95 Lys Ser Phe Pr o Phe As n Thr Ser Val Val Tyr Lys Lys Thr Leu Phe 100 105 110 Val Gl u Phe Thr As p Hi s Leu Phe As n Ile Al a Lys Pr o Ar g Pr o Pr o
    Page 414
    2018203206 08 May 2018
    97047_1
    115 120 125
    Tr p Met Gl y Leu Leu Gl y Pr o 135 Thr Ile Gl n Al a Gl u 140 Val Tyr As p Thr 130 Val Val I l e Thr Leu Lys As n Met Al a Ser Hi s Pr o Val Ser Leu Hi s 145 150 155 160 Al a Val Gl y Val Ser Tyr Tr p Lys Al a Ser Gl u Gl y Al a Gl u Tyr As p 165 170 175 As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p As p Lys Val Phe Pr o Gl y 180 185 190 Gl y Ser Hi s Thr Tyr Val Tr p Gl n Val Leu Lys Gl u As n Gl y Pr o Met 195 200 205 Al a Ser As p Pr o Leu Cys Leu Thr Tyr Ser Tyr Leu Ser Hi s Val As p 210 215 220 Leu Val Lys As p Leu As n Ser Gl y Leu Ile Gl y Al a Leu Leu Val Cys 225 230 235 240
    Arg Gl u Gl y Ser
    Leu Al a Lys Gl u
    Lys Thr Gl n Thr
    Leu Hi s Ly s Phe
    245
    250
    255
    Page 415
    2018203206 08 May 2018
    97047_1
    I l e Leu Leu Phe 260 Al a Val Phe As p Gl u 265 Gl y Lys Ser Tr p Hi s 270 Ser Gl u Thr Lys As n Ser Leu Met Gl n As p Ar g As p Al a Al a Ser Al a Ar g Al a 275 280 285 Tr p Pr o Lys Met Hi s Thr Val As n Gl y Tyr Val As n Ar g Ser Leu Pr o 290 295 300 Gl y Leu I l e Gl y Cys Hi s Ar g Lys Ser Val Tyr Tr p Hi s Val I l e Gl y 305 310 315 320 Met Gl y Thr Thr Pr o Gl u Val Hi s Ser Ile Phe Leu Gl u Gl y Hi s Thr 325 330 335 Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser Leu Gl u I l e Ser Pr o I l e 340 345 350 Thr Phe Leu Thr Al a Gl n Thr Leu Leu Met As p Leu Gl y Gl n Phe Leu 355 360 365 Leu Phe Cys Hi s Ile Ser Ser Hi s Gl n Hi s As p Gl y Met Gl u Al a Tyr 370 375 380 Val Lys Val As p Ser Cys Pr o Gl u Gl u Pr o Gl n Leu Ar g Met Lys As n
    Page 416
    2018203206 08 May 2018
    97047_1
    385 390 395 400
    As n Gl u Gl u Al a Gl u 405 As p Tyr Asp Asp Asp Leu Thr 410 As p Ser Gl u 415 Met As p Val Val Ar g Phe As p As p As p As n Ser Pr o Ser Phe I l e Gl n I l e 420 425 430 Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr Tr p Val Hi s Tyr I l e Al a 435 440 445 Al a Gl u Gl u Gl u As p Tr p As p Tyr Al a Pr o Leu Val Leu Al a Pr o As p 450 455 460 As p Ar g Ser Tyr Lys Ser Gl n Tyr Leu As n As n Gl y Pr o Gl n Ar g I l e 465 470 475 480 Gl y Ar g Lys Tyr Lys Lys Val Ar g Phe Met Al a Tyr Thr As p Gl u Thr 485 490 495 Phe Lys Thr Ar g Gl u Al a Ile Gl n Hi s Gl u Ser Gl y I l e Leu Gl y Pr o 500 505 510 Leu Leu Tyr Gl y Gl u Val Gl y As p Thr Leu Leu Ile I l e Phe Lys As n 515 520 525
    Page 417
    2018203206 08 May 2018
    97047 1
    Gl n Al a 530 Ser Ar g Pro Tyr As n 535 Ile Tyr Pr o Hi s Gl y 540 I l e Thr As p Val Ar g Pr o Leu Tyr Ser Ar g Ar g Leu Pr o Lys Gl y Val Lys Hi s Leu Lys 545 550 555 560 As p Phe Pr o I l e Leu Pr o Gl y Gl u Ile Phe Lys Tyr Lys Tr p Thr Val 565 570 575 Thr Val Gl u As p Gl y Pr o Thr Lys Ser As p Pr o Ar g Cys Leu Thr Ar g 580 585 590 Tyr Tyr Ser Ser Phe Val As n Met Gl u Ar g As p Leu Al a Ser Gl y Leu 595 600 605 I l e Gly Pr o Leu Leu Ile Cys Tyr Lys Gl u Ser Val As p Gl n Ar g Gl y 610 615 620 As n Gl n I l e Met Ser As p Lys Ar g As n Val Ile Leu Phe Ser Val Phe 625 630 635 640 As p Gl u As n Ar g Ser Tr p Tyr Leu Thr Gl u As n Ile Gl n Ar g Phe Leu 645 650 655 Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p Pr o Gl u Phe Gl n Al a Ser
    Page 418
    2018203206 08 May 2018
    660 665 97047_1 670 As n I l e Met Hi s Ser Ile As n Gl y Ty r Val Phe As p Ser Leu Gl n Leu 675 680 685 Ser Val Cy s Leu Hi s Gl u Val Al a Ty r Tr p Ty r Ile Leu Ser I l e Gl y 690 695 700 Al a Gl n Thr As p Phe Leu Ser Val Phe Phe Ser Gl y Ty r Thr Phe Lys 705 710 715 720 Hi s Lys Met Val Ty r Gl u As p Thr Leu Thr Leu Phe Pr o Phe Ser Gl y 725 730 735 Gl u Thr Val Phe Met Ser Met Gl u As n Pr o Gl y Leu Tr p I l e Leu Gl y 740 745 750 Cy s Hi s As n Ser As p Phe Ar g As n Ar g Gl y Met Thr Al a Leu Leu Lys 755 760 765 Val Ser Ser Cy s As p Lys As n Thr Gl y As p Ty r Ty r Gl u As p Ser Ty r 770 775 780 Gl u As p I l e Ser Al a Ty r Leu Leu Ser Lys As n As n Al a I l e Gl u Pr o 785 790 795 800
    Page 419
    2018203206 08 May 2018
    97047 1
    Ar g Ser Phe Ser Gl n As n 805 Pr o Pr o Val Leu 810 Lys Ar g Hi s Gl n Al a 815 Gl u I l e Thr Ar g Thr Thr Leu Gl n Ser As p Gl n Gl u Gl u I l e As p Tyr As p 820 825 830 As p Thr I l e Ser Val Gl u Met Lys Lys Gl u As p Phe As p I l e Tyr As p 835 840 845 Gl u As p Gl u As n Gl n Ser Pr o Ar g Ser Phe Gl n Lys Lys Thr Ar g Hi s 850 855 860 Tyr Phe I l e Al a Al a Val Gl u Ar g Leu Tr p As p Tyr Gl y Met Ser Ser 865 870 875 880 Ser Pr o Hi s Val Leu Ar g As n Ar g Al a Gl n Ser Gl y Ser Val Pr o Gl n 885 890 895 Phe Lys Lys Val Val Phe Gl n Gl u Phe Thr As p Gl y Ser Phe Thr Gl n 900 905 910 Pr o Leu Tyr Ar g Gl y Gl u Leu As n Gl u Hi s Leu Gl y Leu Leu Gl y Pr o 915 920 925 Tyr I l e Ar g Al a Gl u Val Gl u As p As n Ile Met Val Thr Phe Ar g As n
    Page 420
    2018203206 08 May 2018
    97047_1
    930 935 940
    Gl n 945 Al a Ser Ar g Pr o Tyr 950 Ser Phe Tyr Ser Ser 955 Leu I l e Ser Tyr Gl u 960 Gl u As p Gl n Ar g Gl n Gl y Al a Gl u Pr o Ar g Lys As n Phe Val Lys Pr o 965 970 975 As n Gl u Thr Lys Thr Tyr Phe Tr p Lys Val Gl n Hi s Hi s Met Al a Pr o 980 985 990 Thr Lys As p Gl u Phe As p Cys Lys Al a Tr p Al a Ty r Phe Ser As p Val
    995 1000 1005 Asp Leu Gl u Lys Asp Val Hi s Ser Gl y Leu I l e Gl y Pr o Leu Leu 1010 1015 1020 Val Cys Hi s Thr Asn Thr Leu As n Pr o Al a Hi s Gl y Ar g Gl n Val 1025 1030 1035 Thr Val Gl n Gl u Phe Al a Leu Phe Phe Thr I l e Phe As p Gl u Thr 1040 1045 1050 Lys Ser Trp Tyr Phe Thr Gl u Asn Met Gl u Arg Asn Cys Arg Al a 1055 1060 1065
    Page 421
    2018203206 08 May 2018
    97047_1
    Pr o Cys As n Ile Gl n Met Gl u As p Pr o Thr Phe Lys Gl u As n Tyr 1070 1075 1080 Ar g Phe Hi s Al a Ile As n Gl y Tyr Ile Met As p Thr Leu Pr o Gl y 1085 1090 1095 Leu Val Met Al a Gl n As p Gl n Ar g Ile Ar g Tr p Tyr Leu Leu Ser 1100 1105 1110 Met Gl y Ser As n Gl u As n Ile Hi s Ser Ile Hi s Phe Ser Gl y Hi s 1115 1120 1125 Val Phe Thr Val Ar g Lys Lys Gl u Gl u Tyr Lys Met Al a Leu Tyr 1130 1135 1140 As n Leu Tyr Pr o Gl y Val Phe Gl u Thr Val Gl u Met Leu Pr o Ser 1145 1150 1155 Lys Al a Gl y Ile Tr p Ar g Val Gl u Cys Leu Ile Gl y Gl u Hi s Leu 1160 1165 1170 Hi s Al a Gl y Met Ser Thr Leu Phe Leu Val Tyr Ser As n Lys Cys 1175 1180 1185 Gl n Thr Pr o Leu Gl y Met Al a Ser Gl y Hi s Ile Ar g As p Phe Gl n
    Page 422
    2018203206 08 May 2018
    1190 1195 97047 _1 1200 I l e Thr Al a Ser Gl y Gl n Tyr Gl y Gl n Tr p Al a Pr o Lys Leu Al a 1205 1210 1215 Ar g Leu Hi s Tyr Ser Gl y Ser Ile As n Al a Tr p Ser Thr Lys Gl u 1220 1225 1230 Pr o Phe Ser Tr p Ile Lys Val As p Leu Leu Al a Pr o Met I l e I l e 1235 1240 1245 Hi s Gl y I l e Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe Ser Ser Leu 1250 1255 1260 Tyr I l e Ser Gl n Phe Ile Ile Met Tyr Ser Leu As p Gl y Lys Lys 1265 1270 1275 Tr p Gl n Thr Tyr Ar g Gl y As n Ser Thr Gl y Thr Leu Met Val Phe 1280 1285 1290 Phe Gl y As n Val As p Ser Ser Gl y Ile Lys Hi s As n I l e Phe As n 1295 1300 1305 Pr o Pr o I l e Ile Al a Ar g Tyr Ile Ar g Leu Hi s Pr o Thr Hi s Tyr 1310 1315 1320
    Page 423
    2018203206 08 May 2018
    97047_1
    Ser I l e 1325 Ar g Ser Thr Leu Ar g 1330 Met Gl u Leu Met Gl y 1335 Cy s As p Leu As n Ser Cy s Ser Met Pr o Leu Gl y Met Gl u Ser Lys Al a I l e Ser 1340 1345 1350 As p Al a Gl n Ile Thr Al a Ser Ser Ty r Phe Thr As n Met Phe Al a 1355 1360 1365 Thr Tr p Ser Pr o Ser Lys Al a Ar g Leu Hi s Leu Gl n Gl y Ar g Ser 1370 1375 1380 As n Al a Tr p Ar g Pr o Gl n Val As n As n Pr o Lys Gl u Tr p Leu Gl n 1385 1390 1395 Val As p Phe Gl n Lys Thr Met Lys Val Thr Gl y Val Thr Thr Gl n 1400 1405 1410 Gl y Val Lys Ser Leu Leu Thr Ser Met Ty r Val Lys Gl u Phe Leu 1415 1420 1425 I l e Ser Ser Ser Gl n As p Gl y Hi s Gl n Tr p Thr Leu Phe Phe Gl n 1430 1435 1440 As n Gl y Lys Val Lys Val Phe Gl n Gl y As n Gl n As p Ser Phe Thr
    Page 424
    2018203206 08 May 2018
    1445 1450 97047 _1 1455 Pr o Val Val As n Ser Leu As p Pr o Pr o Leu Leu Thr Ar g Ty r Leu 1460 1465 1470 Ar g I l e Hi s Pr o Gl n Ser Tr p Val Hi s Gl n Ile Al a Leu Ar g Met 1475 1480 1485 Gl u Val Leu Gl y Cy s Gl u Al a Gl n As p Leu Ty r As p Lys Thr Hi s 1490 1495 1500 Thr Cy s Pr o Pr o Cy s Pr o Al a Pr o Gl u Leu Leu Gl y Gl y Pr o Ser 1505 1510 1515 Val Phe Leu Phe Pr o Pr o Lys Pr o Lys As p Thr Leu Met I l e Ser 1520 1525 1530 Ar g Thr Pr o Gl u Val Thr Cy s Val Val Val As p Val Ser Hi s Gl u 1535 1540 1545 As p Pr o Gl u Val Lys Phe As n Tr p Ty r Val As p Gl y Val Gl u Val 1550 1555 1560 Hi s As n Al a Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Ty r As n Ser Thr 1565 1570 1575
    Page 425
    2018203206 08 May 2018
    97047_1
    Ty r Ar g 1580 Val Val Ser Val Leu 1585 Thr Val Leu Hi s Gl n 1590 As p Tr p Leu As n Gl y Lys Gl u Ty r Lys Cy s Lys Val Ser As n Lys Al a Leu Pr o 1595 1600 1605 Al a Pr o I l e Gl u Lys Thr Ile Ser Lys Al a Lys Gl y Gl n Pr o Ar g 1610 1615 1620 Gl u Pr o Gl n Val Ty r Thr Leu Pr o Pr o Ser Ar g As p Gl u Leu Thr 1625 1630 1635 Lys As n Gl n Val Ser Leu Thr Cy s Leu Val Lys Gl y Phe Ty r Pr o 1640 1645 1650 Ser As p I l e Al a Val Gl u Tr p Gl u Ser As n Gl y Gl n Pr o Gl u As n 1655 1660 1665 As n Ty r Lys Thr Thr Pr o Pr o Val Leu As p Ser As p Gl y Ser Phe 1670 1675 1680 Phe Leu Ty r Ser Lys Leu Thr Val As p Lys Ser Ar g Tr p Gl n Gl n 1685 1690 1695 Gl y As n Val Phe Ser Cy s Ser Val Met Hi s Gl u Al a Leu Hi s As n
    Page 426
    2018203206 08 May 2018
    1700
    97047_1
    1705 1710
    His Tyr Thr Gl n Lys Ser Leu Ser Leu Ser Pro Gly Lys 1715 1720 1725
    <210> 117 <211> 1901 <212> PRT <213> Ar t i f i ci al Sequence <220> <223> pSYN FVI I I pr ot ei n sequence 272
    <400> 117
    Met Gl n I l e Gl u Leu Ser Thr Cys Phe Phe Le u Cys Leu Leu Ar g Ph e 1 5 10 15 Cys Phe Ser Al a Thr Ar g Ar g Tyr Tyr Leu Gl y Al a Val Gl u Leu Se r 20 25 30 Tr p As p Tyr Met Gl n Gl y Al a Pr o Thr Ser Gl u Ser Al a Thr Pr o Gl u 35 40 45 Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y 50 55 60 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a
    Page 427
    2018203206 08 May 2018
    97047_1
    65 70 75 80
    Thr Ser Gl y Ser Gl u 85 Thr Pr o Gl y Thr Ser 90 Gl u Ser Al a Thr Pr o 95 Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y 100 105 110 Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Gl u Ser 115 120 125 Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser 130 135 140 Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y 145 150 155 160 Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Ser Pr o Al a Gl y 165 170 175 Ser Pr o Thr Ser Thr Gl u Gl u Gl y Al a Ser Ser Ser As p Leu Gl y Gl u 180 185 190 Leu Pr o Val Asp Al a Ar g Phe Pr o Pr o Ar g Val Pr o Lys Ser Phe Pr o 195 200 205
    Page 428
    97047_1
    2018203206 08 May 2018
    Phe As n 210 Thr Ser Val Val Tyr 215 Lys Lys Thr Leu Phe 220 Val Gl u Phe Thr As p Hi s Leu Phe As n Ile Al a Lys Pr o Ar g Pr o Pr o Tr p Met Gl y Leu 225 230 235 240 Leu Gl y Pr o Thr Ile Gl n Al a Gl u Val Tyr As p Thr Val Val I l e Thr 245 250 255 Leu Lys As n Met Al a Ser Hi s Pr o Val Ser Leu Hi s Al a Val Gl y Val 260 265 270 Ser Tyr Tr p Lys Al a Ser Gl u Gl y Al a Gl u Tyr As p As p Gl n Thr Ser 275 280 285 Gl n Ar g Gl u Lys Gl u As p As p Lys Val Phe Pr o Gl y Gl y Ser Hi s Thr 290 295 300 Tyr Val Tr p Gl n Val Leu Lys Gl u As n Gl y Pr o Met Al a Ser As p Pr o 305 310 315 320 Leu Cys Leu Thr Tyr Ser Tyr Leu Ser Hi s Val As p Leu Val Lys As p 325 330 335 Leu As n Ser Gl y Leu Ile Gl y Al a Leu Leu Val Cys Ar g Gl u Gl y Ser
    Page 429
    2018203206 08 May 2018
    970 47_1 340 345 350 Leu Al a Lys Gl u Lys Thr Gl n Thr Leu Hi s Lys Phe I l e Leu Leu Phe 355 360 365 Al a Val Phe As p Gl u Gl y Lys Ser Tr p Hi s Ser Gl u Thr Lys As n Ser 370 375 380 Leu Met Gl n As p Ar g As p Al a Al a Ser Al a Ar g Al a Tr p Pr o Lys Met 385 390 395 400 Hi s Thr Val As n Gl y Ty r Val As n Ar g Ser Leu Pr o Gl y Leu I l e Gl y 405 410 415 Cy s Hi s Ar g Lys Ser Val Ty r Tr p Hi s Val Ile Gl y Met Gl y Thr Thr 420 425 430 Pr o Gl u Val Hi s Ser Ile Phe Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g 435 440 445 Asn Hi s Ar g Gl n Al a Ser Leu Gl u Ile Ser Pr o Ile Thr Phe Leu Thr 450 455 460 Al a Gl n Thr Leu Leu Met As p Leu Gl y Gl n Phe Leu Leu Phe Cy s Hi s 465 470 475 480
    Page 430
    97047_1
    2018203206 08 May 2018
    I l e Ser Ser Hi s Gl n 485 Hi s As p Gl y Met Gl u 490 Al a Tyr Val Lys Val 495 As p Ser Cys Pr o Gl u Gl u Pr o Gl n Leu Ar g Met Lys As n As n Gl u Gl u Al a 500 505 510 Gl u As p Tyr As p As p As p Leu Thr As p Ser Gl u Met As p Val Val Ar g 515 520 525 Phe As p As p As p As n Ser Pr o Ser Phe Ile Gl n Ile Ar g Ser Val Al a 530 535 540 Lys Lys Hi s Pr o Lys Thr Tr p Val Hi s Tyr Ile Al a Al a Gl u Gl u Gl u 545 550 555 560 Asp Tr p As p Tyr Al a Pr o Leu Val Leu Al a Pr o As p As p Ar g Ser Tyr 565 570 575 Lys Ser Gl n Tyr Leu As n As n Gl y Pr o Gl n Ar g Ile Gl y Ar g Lys Tyr 580 585 590 Lys Lys Val Ar g Phe Met Al a Tyr Thr As p Gl u Thr Phe Lys Thr Ar g 595 600 605 Gl u Al a I l e Gl n Hi s Gl u Ser Gl y Ile Leu Gl y Pr o Leu Leu Tyr Gl y
    Page 431
    2018203206 08 May 2018
    97047_1
    610 615 620
    Gl u 625 Val Gl y As p Thr Leu 630 Leu Ile Ile Phe Lys 635 As n Gl n Al a Ser Ar g 640 Pr o Ty r As n I l e Ty r Pr o Hi s Gl y Ile Thr As p Val Ar g Pr o Leu Ty r 645 650 655 Ser Ar g Ar g Leu Pr o Lys Gl y Val Lys Hi s Leu Lys As p Phe Pr o I l e 660 665 670 Leu Pr o Gl y Gl u Ile Phe Lys Ty r Lys Tr p Thr Val Thr Val Gl u As p 675 680 685 Gl y Pr o Thr Lys Ser As p Pr o Ar g Cy s Leu Thr Ar g Ty r Ty r Ser Ser 690 695 700 Phe Val As n Met Gl u Ar g As p Leu Al a Ser Gl y Leu I l e Gl y Pr o Leu 705 710 715 720 Leu I l e Cy s Ty r Lys Gl u Ser Val As p Gl n Ar g Gl y As n Gl n I l e Met 725 730 735 Ser As p Lys Ar g As n Val Ile Leu Phe Ser Val Phe As p Gl u As n Ar g 740 745 750
    Page 432
    97047_1
    2018203206 08 May 2018
    Ser Tr p Tyr 755 Leu Thr Gl u As n I l e Gl n Ar g 760 Phe Leu Pr o 765 As n Pr o Al a Gl y Val Gl n Leu Gl u As p Pr o Gl u Phe Gl n Al a Ser As n I l e Met Hi s 770 775 780 Ser I l e As n Gl y Tyr Val Phe As p Ser Leu Gl n Leu Ser Val Cys Leu 785 790 795 800 Hi s Gl u Val Al a Tyr Tr p Tyr Ile Leu Ser Ile Gl y Al a Gl n Thr As p 805 810 815 Phe Leu Ser Val Phe Phe Ser Gl y Tyr Thr Phe Lys Hi s Lys Met Val 820 825 830 Tyr Gl u As p Thr Leu Thr Leu Phe Pr o Phe Ser Gl y Gl u Thr Val Phe 835 840 845 Met Ser Met Gl u As n Pr o Gl y Leu Tr p Ile Leu Gl y Cys Hi s As n Ser 850 855 860 Asp Phe Ar g As n Ar g Gl y Met Thr Al a Leu Leu Lys Val Ser Ser Cys 865 870 875 880 As p Lys As n Thr Gl y As p Tyr Tyr Gl u As p Ser Tyr Gl u As p I l e Ser
    Page 433
    2018203206 08 May 2018
    97047_1
    885 890 895
    Al a Tyr Leu Leu Ser Ly s As n As n Al a Ile Gl u Pr o Ar g Se r Phe Ser 900 905 91 0 Gl n As n Gl y Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y 915 920 925 Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser 930 935 940 Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser 945 95 0 955 960 Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y 965 970 975 Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Pr o 980 985 99 0
    Al a Gl y Ser
    Pr o Thr Ser Thr
    Gl u
    Gl u Gl y Thr Ser Gl u Ser Al a Thr
    995
    1000
    1005
    Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u
    1010 1015 1020
    Page 434
    97047_1
    2018203206 08 May 2018
    Thr Pr o 1025 Gl y Thr Ser Gl u Ser 1030 Al a Thr Pr o Gl u Ser 1035 Gl y Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Ser Pr o Al a 1040 1045 1050 Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser 1055 1060 1065 Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser 1070 1075 1080 Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y 1085 1090 1095 Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o 1100 1105 1110 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Gl u Pr o Al a Thr Ser 1115 1120 1125 Gl y Ser Gl u Thr Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr 1130 1135 1140 Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y
    Page 435
    2018203206 08 May 2018
    1145 1150 97047 _1 1155 Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Gl u Pr o 1160 1165 1170 Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr 1175 1180 1185 Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser 1190 1195 1200 Al a Pr o Al a Ser Ser Pr o Pr o Val Leu Lys Ar g Hi s Gl n Al a Gl u 1205 1210 1215 I l e Thr Ar g Thr Thr Leu Gl n Ser As p Gl n Gl u Gl u I l e As p Tyr 1220 1225 1230 As p As p Thr Ile Ser Val Gl u Met Lys Lys Gl u As p Phe As p I l e 1235 1240 1245 Tyr As p Gl u As p Gl u As n Gl n Ser Pr o Ar g Ser Phe Gl n Lys Lys 1250 1255 1260 Thr Ar g Hi s Tyr Phe Ile Al a Al a Val Gl u Ar g Leu Tr p As p Tyr 1265 1270 1275
    Page 436
    97047_1
    2018203206 08 May 2018
    Gly Met 1280 Ser Ser Ser Pr o Hi s 1285 Val Leu Ar g As n Ar g 1290 Al a Gl n Ser Gly Ser Val Pr o Gl n Phe Lys Lys Val Val Phe Gl n Gl u Phe Thr 1295 1300 1305 Asp Gl y Ser Phe Thr Gl n Pr o Leu Tyr Ar g Gl y Gl u Leu As n Gl u 1310 1315 1320 Hi s Leu Gl y Leu Leu Gl y Pr o Tyr Ile Ar g Al a Gl u Val Gl u As p 1325 1330 1335 Asn I l e Met Val Thr Phe Ar g As n Gl n Al a Ser Ar g Pr o Tyr Ser 1340 1345 1350 Phe Tyr Ser Ser Leu Ile Ser Tyr Gl u Gl u As p Gl n Ar g Gl n Gl y 1355 1360 1365 Al a Gl u Pr o Ar g Lys As n Phe Val Lys Pr o As n Gl u Thr Lys Thr 1370 1375 1380 Tyr Phe Tr p Lys Val Gl n Hi s Hi s Met Al a Pr o Thr Lys As p Gl u 1385 1390 1395 Phe As p Cys Lys Al a Tr p Al a Tyr Phe Ser As p Val As p Leu Gl u
    Page 437
    2018203206 08 May 2018
    97047_1
    1400 1405 1410
    Lys As p 1415 Val Hi s Ser Gl y Leu 1420 Ile Gl y Pr o Leu Leu 1425 Val Cys Hi s Thr As n Thr Leu As n Pr o Al a Hi s Gl y Ar g Gl n Val Thr Val Gl n 1430 1435 1440 Gl u Phe Al a Leu Phe Phe Thr Ile Phe As p Gl u Thr Lys Ser Tr p 1445 1450 1455 Tyr Phe Thr Gl u As n Met Gl u Ar g As n Cys Ar g Al a Pr o Cys As n 1460 1465 1470 I l e Gl n Met Gl u As p Pr o Thr Phe Lys Gl u As n Tyr Ar g Phe Hi s 1475 1480 1485 Al a I l e As n Gl y Tyr Ile Met As p Thr Leu Pr o Gl y Leu Val Met 1490 1495 1500 Al a Gl n As p Gl n Ar g Ile Ar g Tr p Tyr Leu Leu Ser Met Gl y Ser 1505 1510 1515 As n Gl u As n Ile Hi s Ser Ile Hi s Phe Ser Gl y Hi s Val Phe Thr
    1520 1525 1530
    Page 438
    97047_1
    2018203206 08 May 2018
    Val Ar g 1535 Lys Lys Gl u Gl u Ty r 1540 Lys Met Al a Leu Ty r 1545 As n Leu Ty r Pr o Gl y Val Phe Gl u Thr Val Gl u Met Leu Pr o Ser Lys Al a Gl y 1550 1555 1560 I l e Tr p Ar g Val Gl u Cy s Leu Ile Gl y Gl u Hi s Leu Hi s Al a Gl y 1565 1570 1575 Met Ser Thr Leu Phe Leu Val Ty r Ser As n Lys Cy s Gl n Thr Pr o 1580 1585 1590 Leu Gl y Met Al a Ser Gl y Hi s Ile Ar g As p Phe Gl n I l e Thr Al a 1595 1600 1605 Ser Gl y Gl n Ty r Gl y Gl n Tr p Al a Pr o Lys Leu Al a Ar g Leu Hi s 1610 1615 1620 Ty r Ser Gl y Ser Ile As n Al a Tr p Ser Thr Lys Gl u Pr o Phe Ser 1625 1630 1635 Tr p I l e Lys Val As p Leu Leu Al a Pr o Met Ile Ile Hi s Gl y I l e 1640 1645 1650 Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe Ser Ser Leu Ty r I l e Ser
    Page 439
    2018203206 08 May 2018
    1655 1660 97047 _1 1665 Gl n Phe I l e Ile Met Tyr Ser Leu As p Gl y Lys Lys Tr p Gl n Thr 1670 1675 1680 Tyr Ar g Gl y As n Ser Thr Gl y Thr Leu Met Val Phe Phe Gl y As n 1685 1690 1695 Val As p Ser Ser Gl y Ile Lys Hi s As n Ile Phe As n Pr o Pr o I l e 1700 1705 1710 I l e Al a Ar g Tyr Ile Ar g Leu Hi s Pr o Thr Hi s Tyr Ser I l e Ar g 1715 1720 1725 Ser Thr Leu Ar g Met Gl u Leu Met Gl y Cys As p Leu As n Ser Cys 1730 1735 1740 Ser Met Pr o Leu Gl y Met Gl u Ser Lys Al a Ile Ser As p Al a Gl n 1745 1750 1755 I l e Thr Al a Ser Ser Tyr Phe Thr As n Met Phe Al a Thr Tr p Ser 1760 1765 1770 Pr o Ser Lys Al a Ar g Leu Hi s Leu Gl n Gl y Ar g Ser As n Al a Tr p 1775 1780 1785
    Page 440
    97047_1
    2018203206 08 May 2018
    Ar g Pr o 1790 Gl n Val As n As n Pr o 1795 Lys Gl u Tr p Leu Gl n 1800 Val As p Phe Gl n Lys Thr Met Lys Val Thr Gl y Val Thr Thr Gl n Gl y Val Lys 1805 1810 1815 Ser Leu Leu Thr Ser Met Tyr Val Lys Gl u Phe Leu I l e Ser Ser 1820 1825 1830 Ser Gl n As p Gl y Hi s Gl n Tr p Thr Leu Phe Phe Gl n As n Gl y Lys 1835 1840 1845 Val Lys Val Phe Gl n Gl y As n Gl n As p Ser Phe Thr Pr o Val Val 1850 1855 1860 As n Ser Leu As p Pr o Pr o Leu Leu Thr Ar g Tyr Leu Ar g I l e Hi s 1865 1870 1875 Pr o Gl n Ser Tr p Val Hi s Gl n Ile Al a Leu Ar g Met Gl u Val Leu 1880 1885 1890
    Gl y Cys
    Gl u Al a Gl n Asp Leu
    Tyr
    1895
    1900 <210> 118
    Page 441
    2018203206 08 May 2018
    97047_1 <211> 1515 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> pSYN VWF 031 pr ot ei n sequence <400> 118
    Met 1 I l e Pr o Al a Ar g 5 Phe Al a Gl y Val Leu 10 Leu Al a Leu Al a Leu 15 I l e Leu Pr o Gl y Thr Leu Cy s Al a Gl u Gl y Thr Ar g Gl y Ar g Ser Ser Thr 20 25 30 Al a Ar g Cy s Ser Leu Phe Gl y Ser As p Phe Val As n Thr Phe As p Gl y 35 40 45 Ser Met Ty r Ser Phe Al a Gl y Ty r Cy s Ser Ty r Leu Leu Al a Gl y Gl y 50 55 60 Cy s Gl n Lys Ar g Ser Phe Ser Ile Ile Gl y As p Phe Gl n As n Gl y Lys 65 70 75 80 Ar g Val Ser Leu Ser Val Ty r Leu Gl y Gl u Phe Phe As p I l e Hi s Leu 85 90 95 Phe Val As n Gl y Thr Val Thr Gl n Gl y As p Gl n Ar g Val Ser Met Pr o
    Page 442
    2018203206 08 May 2018
    100 105 97047_1 110 Tyr Al a Ser Lys Gl y Leu Tyr Leu Gl u Thr Gl u Al a Gl y Tyr Tyr Lys 115 120 125 Leu Ser Gl y Gl u Al a Tyr Gl y Phe Val Al a Ar g Ile As p Gl y Ser Gl y 130 135 140 As n Phe Gl n Val Leu Leu Ser As p Ar g Tyr Phe As n Lys Thr Cys Gl y 145 150 155 160 Leu Cys Gl y As n Phe As n Ile Phe Al a Gl u As p As p Phe Met Thr Gl n 165 170 175 Gl u Gl y Thr Leu Thr Ser As p Pr o Tyr As p Phe Al a As n Ser Tr p Al a 180 185 190 Leu Ser Ser Gl y Gl u Gl n Tr p Cys Gl u Ar g Al a Ser Pr o Pr o Ser Ser 195 200 205 Ser Cys As n I l e Ser Ser Gl y Gl u Met Gl n Lys Gl y Leu Tr p Gl u Gl n 210 215 220 Cys Gl n Leu Leu Lys Ser Thr Ser Val Phe Al a Ar g Cys Hi s Pr o Leu 225 230 235 240
    Page 443
    97047_1
    2018203206 08 May 2018
    Val As p Pr o Gl u Pr o 245 Phe Val Al a Leu Cy s 250 Gl u Lys Thr Leu Cy s 255 Gl u Cy s Al a Gl y Gl y Leu Gl u Cy s Al a Cy s Pr o Al a Leu Leu Gl u Ty r Al a 260 265 270 Ar g Thr Cy s Al a Gl n Gl u Gl y Met Val Leu Ty r Gl y Tr p Thr As p Hi s 275 280 285 Ser Al a Cy s Ser Pr o Val Cy s Pr o Al a Gl y Met Gl u Ty r Ar g Gl n Cy s 290 295 300 Val Ser Pr o Cy s Al a Ar g Thr Cy s Gl n Ser Leu Hi s I l e As n Gl u Met 305 310 315 320 Cy s Gl n Gl u Ar g Cy s Val As p Gl y Cy s Ser Cy s Pr o Gl u Gl y Gl n Leu 325 330 335 Leu As p Gl u Gl y Leu Cy s Val Gl u Ser Thr Gl u Cy s Pr o Cy s Val Hi s 340 345 350 Ser Gl y Lys Ar g Ty r Pr o Pr o Gl y Thr Ser Leu Ser Ar g As p Cy s As n 355 360 365 Thr Cy s I l e Cy s Ar g As n Ser Gl n Tr p Ile Cy s Ser As n Gl u Gl u Cy s
    Page 444
    2018203206 08 May 2018
    97047_1
    370 375 380
    Pr o 385 Gl y Gl u Cy s Leu Val 390 Thr Gl y Gl n Ser Hi s 395 Phe Lys Ser Phe As p 400 As n Ar g Ty r Phe Thr Phe Ser Gl y Ile Cy s Gl n Ty r Leu Leu Al a Ar g 405 410 415 As p Cy s Gl n As p Hi s Ser Phe Ser Ile Val Ile Gl u Thr Val Gl n Cy s 420 425 430 Al a As p As p Ar g As p Al a Val Cy s Thr Ar g Ser Val Thr Val Ar g Leu 435 440 445 Pr o Gl y Leu Hi s As n Ser Leu Val Lys Leu Lys Hi s Gl y Al a Gl y Val 450 455 460 Al a Met As p Gl y Gl n As p Ile Gl n Leu Pr o Leu Leu Lys Gl y As p Leu 465 470 475 480 Ar g I l e Gl n Hi s Thr Val Thr Al a Ser Val Ar g Leu Ser Ty r Gl y Gl u 485 490 495 As p Leu Gl n Met As p Tr p As p Gl y Ar g Gl y Ar g Leu Leu Val Lys Leu 500 505 510
    Page 445
    97047_1
    2018203206 08 May 2018
    Ser Pr o Val 515 Tyr Al a Gl y Lys Thr 520 Cys Gl y Leu Cys Gl y 525 As n Tyr As n Gl y As n Gl n Gl y As p As p Phe Leu Thr Pr o Ser Gl y Leu Al a Gl u Pr o 530 535 540 Arg Val Gl u As p Phe Gl y As n Al a Tr p Lys Leu Hi s Gl y As p Cys Gl n 545 550 555 560 As p Leu Gl n Lys Gl n Hi s Ser As p Pr o Cys Al a Leu As n Pr o Ar g Met 565 570 575 Thr Ar g Phe Ser Gl u Gl u Al a Cys Al a Val Leu Thr Ser Pr o Thr Phe 580 585 590 Gl u Al a Cys Hi s Ar g Al a Val Ser Pr o Leu Pr o Tyr Leu Ar g As n Cys 595 600 605 Ar g Tyr As p Val Cys Ser Cys Ser As p Gl y Ar g Gl u Cys Leu Cys Gl y 610 615 620 Al a Leu Al a Ser Tyr Al a Al a Al a Cys Al a Gl y Ar g Gl y Val Ar g Val 625 630 635 640 Al a Tr p Ar g Gl u Pr o Gl y Ar g Cys Gl u Leu As n Cys Pr o Lys Gl y Gl n
    Page 446
    2018203206 08 May 2018
    97047_1
    645 650 655
    Val Tyr Leu Gl n 660 Cys Gl y Thr Pro Cys Asn 665 Leu Thr Cys Ar g 670 Ser Leu Ser Tyr Pr o As p Gl u Gl u Cys As n Gl u Al a Cys Leu Gl u Gl y Cys Phe 675 680 685 Cys Pr o Pr o Gl y Leu Tyr Met As p Gl u Ar g Gl y As p Cys Val Pr o Lys 690 695 700 Al a Gl n Cys Pr o Cys Tyr Tyr As p Gl y Gl u Ile Phe Gl n Pr o Gl u As p 705 710 715 720 I l e Phe Ser As p Hi s Hi s Thr Met Cys Tyr Cys Gl u As p Gl y Phe Met 725 730 735 Hi s Cys Thr Met Ser Gl y Val Pr o Gl y Ser Leu Leu Pr o As p Al a Val 740 745 750 Leu Ser Ser Pr o Leu Ser Hi s Ar g Ser Lys Ar g Ser Leu Ser Cys Ar g 755 760 765 Pr o Pr o Met Val Lys Leu Val Cys Pr o Al a As p As n Leu Ar g Al a Gl u 770 775 780
    Page 447
    97047 1
    2018203206 08 May 2018
    Gl y 785 Leu Gl u Cy s Thr Lys 790 Thr Cys Gl n As n Tyr 795 As p Leu Gl u Cys Met 800 Ser Met Gl y Cys Val Ser Gl y Cys Leu Cys Pr o Pr o Gl y Met Val Ar g 805 810 815 Hi s Gl u As n Ar g Cys Val Al a Leu Gl u Ar g Cys Pr o Cys Phe Hi s Gl n 820 825 830 Gl y Lys Gl u Tyr Al a Pr o Gl y Gl u Thr Val Lys Ile Gl y Cys As n Thr 835 840 845 Cys Val Cys Ar g As p Ar g Lys Tr p As n Cys Thr As p Hi s Val Cys As p 850 855 860 Al a Thr Cys Ser Thr Ile Gl y Met Al a Hi s Tyr Leu Thr Phe As p Gl y 865 870 875 880 Leu Lys Tyr Leu Phe Pr o Gl y Gl u Cys Gl n Tyr Val Leu Val Gl n As p 885 890 895 Tyr Cys Gl y Ser As n Pr o Gl y Thr Phe Ar g Ile Leu Val Gl y As n Lys 900 905 910 Gl y Cys Ser Hi s Pr o Ser Val Lys Cys Lys Lys Ar g Val Thr I l e Leu
    Page 448
    97047_1
    2018203206 08 May 2018
    915
    920
    925
    Val Gl u Gl y Gl y Gl u I l e Gl u Leu Phe Asp Gl y Gl u Val Asn Val Lys 930 935 940
    Ar g Pr o Met Lys Asp Gl u Thr Hi s Phe Gl u Val Val Gl u Ser Gl y Ar g 945 950 955 960
    Tyr Ile Ile Leu Leu Leu Gly Lys Ala Leu Ser Val Val Trp Asp Arg 965 970 975
    Hi s Leu Ser I l e Ser Val Val Leu Lys Gl n Thr Tyr Gl n Gl u Lys Val 980 985 990
    Cys Gl y Leu Cys Gl y Asn Phe Asp Gl y Ile Gl n Asn Asn Asp Leu Thr 995 1000 1005
    Ser Ser Asn Leu Gl n Val Gl u Gl u Asp Pro Val Asp Phe Gl y Asn 1010 1015 1020
    Ser Trp Lys Val Ser Ser Gl n Cys Ala Asp Thr Arg Lys Val Pro 1025 1030 1035
    Leu Asp Ser Ser Pro Al a Thr Cys Hi s Asn Asn I l e Met Lys Gl n
    1040 1045 1050
    Page 449
    97047_1
    2018203206 08 May 2018
    Thr Met 1055 Val As p Ser Ser Cy s 1060 Ar g Ile Leu Thr Ser 1065 As p Val Phe Gl n As p Cy s As n Lys Leu Val As p Pr o Gl u Pr o Ty r Leu As p Val 1070 1075 1080 Cy s I l e Ty r As p Thr Cy s Ser Cy s Gl u Ser Ile Gl y As p Cy s Al a 1085 1090 1095 Al a Phe Cy s As p Thr Ile Al a Al a Ty r Al a Hi s Val Cy s Al a Gl n 1100 1105 1110 Hi s Gl y Lys Val Val Thr Tr p Ar g Thr Al a Thr Leu Cy s Pr o Gl n 1115 1120 1125 Ser Cy s Gl u Gl u Ar g As n Leu Ar g Gl u As n Gl y Ty r Gl u Al a Gl u 1130 1135 1140 Tr p Ar g Ty r As n Ser Cy s Al a Pr o Al a Cy s Gl n Val Thr Cy s Gl n 1145 1150 1155 Hi s Pr o Gl u Pr o Leu Al a Cy s Pr o Val Gl n Cy s Val Gl u Gl y Cy s 1160 1165 1170 Hi s Al a Hi s Cy s Pr o Pr o Gl y Lys Ile Leu As p Gl u Leu Leu Gl n
    Page 450
    97047_1
    2018203206 08 May 2018
    1175
    1180
    1185
    Thr Cys Val Asp Pro Gl u Asp Cys Pro Val Cys Gl u Val Al a Gl y 1190 1195 1200
    Arg Arg Phe Ala Ser Gly Lys Lys Val Thr Leu Asn Pro Ser Asp 1205 1210 1215
    Pro Gl u Hi s Cys Gl n Ile Cys Hi s Cys Asp Val Val Asn Leu Thr 1220 1225 1230
    Cys Gl u Ala Cys Gl n Gl u Pro Ile Ser Gly Gly Gly Gly Ser Gly 1235 1240 1245
    Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y 1250 1255 1260
    Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Leu Val Pr o Ar g Gl y Ser 1265 1270 1275
    Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Asp Lys Thr Hi s Thr 1280 1285 1290
    Cys Pro Pro Cys Pro Al a Pro Gl u Leu Leu Gly Gly Pro Ser Val
    1295 1300 1305
    Page 451
    97047_1
    2018203206 08 May 2018
    Phe Leu 1310 Phe Pr o Pr o Lys Pr o 1315 Lys As p Thr Leu Met 1320 I l e Ser Ar g Thr Pr o Gl u Val Thr Cys Val Val Val As p Val Ser Hi s Gl u As p 1325 1330 1335 Pr o Gl u Val Lys Phe As n Tr p Tyr Val As p Gl y Val Gl u Val Hi s 1340 1345 1350 As n Al a Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Tyr As n Ser Thr Tyr 1355 1360 1365 Ar g Val Val Ser Val Leu Thr Val Leu Hi s Gl n As p Tr p Leu As n 1370 1375 1380 Gl y Lys Gl u Tyr Lys Cys Lys Val Ser As n Lys Al a Leu Pr o Al a 1385 1390 1395 Pr o I l e Gl u Lys Thr Ile Ser Lys Al a Lys Gl y Gl n Pr o Ar g Gl u 1400 1405 1410 Pr o Gl n Val Tyr Thr Leu Pr o Pr o Ser Ar g As p Gl u Leu Thr Lys 1415 1420 1425 As n Gl n Val Ser Leu Thr Cys Leu Val Lys Gl y Phe Tyr Pr o Ser
    Page 452
    97047_1
    2018203206 08 May 2018
    As p 1430 I l e 1445 Al a 1435 Gl n 1440 Val Gl u Tr p Gl u 1450 Ser As n Gl y Pr o 1455 Gl u As n As n Tyr Lys Thr Thr Pr o Pr o Val Leu As p Ser As p Gl y Ser Phe Phe 1460 1465 1470 Leu Tyr Ser Lys Leu Thr Val As p Lys Ser Ar g Tr p Gl n Gl n Gl y 1475 1480 1485 As n Val Phe Ser Cys Ser Val Met Hi s Gl u Al a Leu Hi s As n Hi s 1490 1495 1500 Tyr Thr Gl n Lys Ser Leu Ser Leu Ser Pr o Gl y Lys 1505 1510 1515
    <210> 119 <211> 1778 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> pSYN VWF 034 pr ot ei n sequence <400> 119
    Met I l e Pr o Al a Ar g Phe Al a Gl y Val Leu Leu Al a Leu Al a Leu I l e
    Page 453
    2018203206 08 May 2018
    97047_1
    1 5 10 15
    Leu Pr o Gl y Thr 20 Leu Cys Al a Gl u Gl y Thr 25 Ar g Gl y Ar g Ser 30 Ser Thr Al a Ar g Cys Ser Leu Phe Gl y Ser As p Phe Val As n Thr Phe As p Gl y 35 40 45 Ser Met Tyr Ser Phe Al a Gl y Tyr Cys Ser Tyr Leu Leu Al a Gl y Gl y 50 55 60 Cys Gl n Lys Ar g Ser Phe Ser Ile Ile Gl y As p Phe Gl n As n Gl y Lys 65 70 75 80 Ar g Val Ser Leu Ser Val Tyr Leu Gl y Gl u Phe Phe As p I l e Hi s Leu 85 90 95 Phe Val As n Gl y Thr Val Thr Gl n Gl y As p Gl n Ar g Val Ser Met Pr o 100 105 110 Tyr Al a Ser Lys Gl y Leu Tyr Leu Gl u Thr Gl u Al a Gl y Tyr Tyr Lys 115 120 125 Leu Ser Gl y Gl u Al a Tyr Gl y Phe Val Al a Ar g Ile As p Gl y Ser Gl y 130 135 140
    Page 454
    97047_1
    2018203206 08 May 2018
    As n 145 Phe Gl n Val Leu Leu 150 Ser As p Ar g Tyr Phe 155 As n Lys Thr Cys Gl y 160 Leu Cys Gl y As n Phe As n Ile Phe Al a Gl u As p As p Phe Met Thr Gl n 165 170 175 Gl u Gl y Thr Leu Thr Ser As p Pr o Tyr As p Phe Al a As n Ser Tr p Al a 180 185 190 Leu Ser Ser Gl y Gl u Gl n Tr p Cys Gl u Ar g Al a Ser Pr o Pr o Ser Ser 195 200 205 Ser Cys As n I l e Ser Ser Gl y Gl u Met Gl n Lys Gl y Leu Tr p Gl u Gl n 210 215 220 Cys Gl n Leu Leu Lys Ser Thr Ser Val Phe Al a Ar g Cys Hi s Pr o Leu 225 230 235 240 Val As p Pr o Gl u Pr o Phe Val Al a Leu Cys Gl u Lys Thr Leu Cys Gl u 245 250 255 Cys Al a Gl y Gl y Leu Gl u Cys Al a Cys Pr o Al a Leu Leu Gl u Tyr Al a 260 265 270 Ar g Thr Cys Al a Gl n Gl u Gl y Met Val Leu Tyr Gl y Tr p Thr As p Hi s
    Page 455
    2018203206 08 May 2018
    97047_1
    275 280 285
    Ser Al a Cys Ser Pr o Val Cys Pr o Al a Gl y Met Gl u Tyr Ar g Gl n Cys 290 295 300 Val Ser Pr o Cys Al a Ar g Thr Cy s Gl n Ser Leu Hi s I l e As n Gl u Met 305 310 315 320 Cys Gl n Gl u Ar g Cys Val As p Gl y Cys Ser Cys Pr o Gl u Gl y Gl n Leu 325 330 335 Leu As p Gl u Gl y Leu Cys Val Gl u Ser Thr Gl u Cys Pr o Cys Val Hi s 340 345 350 Ser Gl y Lys Ar g Tyr Pr o Pr o Gl y Thr Ser Leu Ser Ar g As p Cys As n 355 36 0 365 Thr Cys I l e Cys Ar g As n Ser Gl n Tr p Ile Cys Ser As n Gl u Gl u Cys 370 375 380 Pr o Gl y Gl u Cys Leu Val Thr Gl y Gl n Ser Hi s Phe Lys Ser Phe As p 385 390 395 400 As n Ar g Tyr Phe Thr Phe Ser Gl y Ile Cys Gl n Tyr Leu Leu Al a Ar g 405 410 415
    Page 456
    97047_1
    2018203206 08 May 2018
    As p Cy s Gl n As p 420 Hi s Ser Phe Ser Ile 425 Val Ile Gl u Thr Val 430 Gl n Cy s Al a As p As p Ar g As p Al a Val Cy s Thr Ar g Ser Val Thr Val Ar g Leu 435 440 445 Pr o Gl y Leu Hi s As n Ser Leu Val Lys Leu Lys Hi s Gl y Al a Gl y Val 450 455 460 Al a Met As p Gl y Gl n As p Ile Gl n Leu Pr o Leu Leu Lys Gl y As p Leu 465 470 475 480 Ar g I l e Gl n Hi s Thr Val Thr Al a Ser Val Ar g Leu Ser Ty r Gl y Gl u 485 490 495 As p Leu Gl n Met As p Tr p As p Gl y Ar g Gl y Ar g Leu Leu Val Lys Leu 500 505 510 Ser Pr o Val Ty r Al a Gl y Lys Thr Cy s Gl y Leu Cy s Gl y As n Ty r As n 515 520 525 Gl y As n Gl n Gl y As p As p Phe Leu Thr Pr o Ser Gl y Leu Al a Gl u Pr o 530 535 540 Ar g Val Gl u As p Phe Gl y As n Al a Tr p Lys Leu Hi s Gl y As p Cy s Gl n
    Page 457
    2018203206 08 May 2018
    97047_1
    545 550 555 560
    As p Leu Gl n Lys Gl n Hi s Ser As p Pr o Cys Al a Leu As n Pr o Ar g Met 565 570 575 Thr Ar g Phe Ser Gl u Gl u Al a Cys Al a Val Leu Thr Ser Pr o Thr Phe 580 585 590 Gl u Al a Cys Hi s Ar g Al a Val Ser Pr o Leu Pr o Tyr Leu Ar g As n Cys 595 600 605 Ar g Tyr As p Val Cys Se r Cys Ser As p Gl y Ar g Gl u Cys Leu Cys Gl y 610 615 620 Al a Leu Al a Ser Tyr Al a Al a Al a Cys Al a Gl y Ar g Gl y Val Ar g Val 625 63 0 635 640 Al a Tr p Ar g Gl u Pr o Gl y Ar g Cys Gl u Leu As n Cys Pr o Lys Gl y Gl n 645 650 655 Val Tyr Leu Gl n Cys Gl y Thr Pr o Cys As n Leu Thr Cys Ar g Ser Leu 660 665 670 Ser Tyr Pr o As p Gl u Gl u Cys As n Gl u Al a Cys Leu Gl u Gl y Cys Phe 675 680 685
    Page 458
    97047_1
    2018203206 08 May 2018
    Cys Pr o Pr o 690 Gl y Leu Tyr Met 695 As p Gl u Ar g Gl y Asp Cys 700 Val Pr o Lys Al a Gl n Cys Pr o Cys Tyr Tyr As p Gl y Gl u Ile Phe Gl n Pr o Gl u As p 705 710 715 720 I l e Phe Ser As p Hi s Hi s Thr Met Cys Tyr Cys Gl u As p Gl y Phe Met 725 730 735 Hi s Cys Thr Met Ser Gl y Val Pr o Gl y Ser Leu Leu Pr o As p Al a Val 740 745 750 Leu Ser Ser Pr o Leu Ser Hi s Ar g Ser Lys Ar g Ser Leu Ser Cys Ar g 755 760 765 Pr o Pr o Met Val Lys Leu Val Cys Pr o Al a As p As n Leu Ar g Al a Gl u 770 775 780 Gl y Leu Gl u Cys Thr Lys Thr Cys Gl n As n Tyr As p Leu Gl u Cys Met 785 790 795 800 Ser Met Gl y Cys Val Ser Gl y Cys Leu Cys Pr o Pr o Gl y Met Val Ar g 805 810 815 Hi s Gl u As n Ar g Cys Val Al a Leu Gl u Ar g Cys Pr o Cys Phe Hi s Gl n
    Page 459
    2018203206 08 May 2018
    820 825 97047_1 830 Gl y Lys Gl u Ty r Al a Pr o Gl y Gl u Thr Val Lys Ile Gl y Cy s As n Thr 835 840 845 Cy s Val Cy s Ar g As p Ar g Lys Tr p As n Cy s Thr As p Hi s Val Cy s As p 850 855 860 Al a Thr Cy s Ser Thr Ile Gl y Met Al a Hi s Ty r Leu Thr Phe As p Gl y 865 870 875 880 Leu Lys Ty r Leu Phe Pr o Gl y Gl u Cy s Gl n Ty r Val Leu Val Gl n As p 885 890 895 Ty r Cy s Gl y Ser As n Pr o Gl y Thr Phe Ar g Ile Leu Val Gl y As n Lys 900 905 910 Gl y Cy s Ser Hi s Pr o Ser Val Lys Cy s Lys Lys Ar g Val Thr I l e Leu 915 920 925 Val Gl u Gl y Gl y Gl u Ile Gl u Leu Phe As p Gl y Gl u Val As n Val Lys 930 935 940 Arg Pr o Met Lys As p Gl u Thr Hi s Phe Gl u Val Val Gl u Ser Gl y Ar g 945 950 955 960
    Page 460
    2018203206 08 May 2018
    97047_1
    Tyr Ile Ile Leu Leu Leu Gly Lys Ala Leu Ser Val Val Trp Asp Arg 965 970 975
    Hi s Leu Ser I l e Ser Val Val Leu Lys Gl n Thr Tyr Gl n Gl u Lys Val 980 985 990
    Cys Gl y Leu Cys Gl y Asn Phe Asp Gl y Ile Gl n Asn Asn Asp Leu Thr 995 1000 1005
    Ser Ser Asn Leu Gl n Val Gl u Gl u Asp Pro Val Asp Phe Gl y Asn 1010 1015 1020
    Ser Trp Lys Val Ser Ser Gl n Cys Ala Asp Thr Arg Lys Val Pro 1025 1030 1035
    Leu Asp Ser Ser Pro Al a Thr Cys Hi s Asn Asn I l e Met Lys Gl n 1040 1045 1050
    Thr Met Val Asp Ser Ser Cys Arg I l e Leu Thr Ser Asp Val Phe 1055 1060 1065
    Gl n Asp Cys Asn Lys Leu Val Asp Pro Gl u Pro Tyr Leu Asp Val 1070 1075 1080
    Cys I l e Tyr Asp Thr Cys Ser Cys Gl u Ser I l e Gl y Asp Cys Al a
    Page 461
    2018203206 08 May 2018
    97047_1
    1085 1090 1095
    Al a Phe 1100 Cy s As p Thr I l e Al a 1105 Al a Ty r Al a Hi s Val 1110 Cy s Al a Gl n Hi s Gl y Lys Val Val Thr Tr p Ar g Thr Al a Thr Leu Cy s Pr o Gl n 1115 1120 1125 Ser Cy s Gl u Gl u Ar g As n Leu Ar g Gl u As n Gl y Ty r Gl u Al a Gl u 1130 1135 1140 Tr p Ar g Ty r Asn Ser Cy s Al a Pr o Al a Cy s Gl n Val Thr Cy s Gl n 1145 1150 1155 Hi s Pr o Gl u Pr o Leu Al a Cy s Pr o Val Gl n Cy s Val Gl u Gl y Cy s 1160 1165 1170 Hi s Al a Hi s Cy s Pr o Pr o Gl y Lys Ile Leu As p Gl u Leu Leu Gl n 1175 1180 1185 Thr Cy s Val As p Pr o Gl u As p Cy s Pr o Val Cy s Gl u Val Al a Gl y 1190 1195 1200 Ar g Ar g Phe Al a Ser Gl y Lys Lys Val Thr Leu As n Pr o Ser As p
    1205 1210 1215
    Page 462
    2018203206 08 May 2018
    Pr o
    Cys
    Thr
    Gl u
    Gl y
    Gl u
    Ser
    Thr
    97047_1
    Gl u Hi s Cys Gl n Ile Cys Hi s Cys Asp Val Val Asn Leu Thr 1220 1225 1230
    Gl u Al a Cys Gl n Gl u Pro Ile Ser Gl y Thr Ser Gl u Ser Al a 1235 1240 1245
    Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser 1250 1255 1260
    Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 1265 1270 1275
    Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser 1280 1285 1290
    Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Thr Gl u Pr o 1295 1300 1305
    Gl u Gl y Ser Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser 1310 1315 1320
    Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 1325 1330 1335
    Gl y
    Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser
    Page 463
    2018203206 08 May 2018
    97047_1
    1340 1345 1350
    Gl u Ser 1355 Al a Thr Pr o Gl u Ser 1360 Gl y Pr o Gl y Ser Pr o 1365 Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser 1370 1375 1380 Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 1385 1390 1395 Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser 1400 1405 1410 Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser Gl u Ser Al a 1415 1420 1425 Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser 1430 1435 1440 Gl u Thr Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o 1445 1450 1455 Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser
    1460 1465 1470
    Page 464
    97047 1
    2018203206 08 May 2018
    Thr Gl u 1475 Pr o Ser Gl u Gl y Ser 1480 Al a Pr o Gl y Thr Ser 1485 Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser 1490 1495 1500 Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 1505 1510 1515 Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o As p I l e Gl y 1520 1525 1530 Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Leu Val Pr o Ar g Gl y 1535 1540 1545 Ser Gl y Gl y As p Lys Thr Hi s Thr Cy s Pr o Pr o Cy s Pr o Al a Pr o 1550 1555 1560 Gl u Leu Leu Gl y Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o Lys Pr o 1565 1570 1575 Lys As p Thr Leu Met Ile Ser Ar g Thr Pr o Gl u Val Thr Cy s Val 1580 1585 1590 Val Val As p Val Ser Hi s Gl u As p Pr o Gl u Val Lys Phe As n Tr p
    Page 465
    2018203206 08 May 2018
    1595 1600 97047 _1 1605 Tyr Val As p Gl y Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o Ar g 1610 1615 1620 Gl u Gl u Gl n Tyr As n Ser Thr Tyr Ar g Val Val Ser Val Leu Thr 1625 1630 1635 Val Leu Hi s Gl n As p Tr p Leu As n Gl y Lys Gl u Tyr Lys Cys Lys 1640 1645 1650 Val Ser As n Lys Al a Leu Pr o Al a Pr o Ile Gl u Lys Thr I l e Ser 1655 1660 1665 Lys Al a Lys Gl y Gl n Pr o Ar g Gl u Pr o Gl n Val Tyr Thr Leu Pr o 1670 1675 1680 Pr o Ser Ar g As p Gl u Leu Thr Lys As n Gl n Val Ser Leu Thr Cys 1685 1690 1695 Leu Val Lys Gl y Phe Tyr Pr o Ser As p Ile Al a Val Gl u Tr p Gl u 1700 1705 1710 Ser As n Gl y Gl n Pr o Gl u As n As n Tyr Lys Thr Thr Pr o Pr o Val 1715 1720 1725
    Page 466
    97047_1
    2018203206 08 May 2018
    Leu As p 1730 Ser As p Gl y Ser Phe 1735 Phe Leu Tyr Ser Lys 1740 Leu Thr Val As p Lys Ser Arg Tr p Gl n Gl n Gl y As n Val Phe Ser Cys Ser Val 1745 1750 1755 Met Hi s Gl u Al a Leu Hi s As n Hi s Tyr Thr Gl n Lys Ser Leu Ser 1760 1765 1770 Leu Ser Pr o Gl y Lys
    1775 <210> 120 <211> 1565 <212> PRT <213> Artificial Sequence <220>
    <223> pSYN VWF 036 pr ot ei n sequence <400> 120
    Met I l e Pr o Al a Ar g Phe Al a Gl y Val Leu Leu Al a Leu Al a Leu I l e 1 5 10 15
    Leu Pr o Gl y Thr Leu Cy s Al a Gl u Gl y Thr Ar g Gl y Ar g Ser Ser Thr 20 25 30
    Page 467
    97047_1
    2018203206 08 May 2018
    Al a Ar g Cy s Ser Leu Phe Gl y Ser 40 Asp Phe Val As n Thr 45 Phe As p Gl y 35 Ser Met Ty r Ser Phe Al a Gl y Ty r Cy s Ser Ty r Leu Leu Al a Gl y Gl y 50 55 60 Cy s Gl n Lys Ar g Ser Phe Ser Ile Ile Gl y As p Phe Gl n As n Gl y Lys 65 70 75 80 Ar g Val Ser Leu Ser Val Ty r Leu Gl y Gl u Phe Phe As p I l e Hi s Leu 85 90 95 Phe Val As n Gl y Thr Val Thr Gl n Gl y As p Gl n Ar g Val Ser Met Pr o 100 105 110 Ty r Al a Ser Lys Gl y Leu Ty r Leu Gl u Thr Gl u Al a Gl y Ty r Ty r Lys 115 120 125 Leu Ser Gl y Gl u Al a Ty r Gl y Phe Val Al a Ar g Ile As p Gl y Ser Gl y 130 135 140 As n Phe Gl n Val Leu Leu Ser As p Ar g Ty r Phe As n Lys Thr Cy s Gl y 145 150 155 160 Leu Cy s Gl y As n Phe As n Ile Phe Al a Gl u As p As p Phe Met Thr Gl n
    Page 468
    2018203206 08 May 2018
    97047_1
    165 170 175
    Gl u Gl y Thr Leu 180 Thr Ser As p Pr o Tyr 185 As p Phe Al a As n Ser 190 Tr p Al a Leu Ser Ser Gl y Gl u Gl n Tr p Cys Gl u Ar g Al a Ser Pr o Pr o Ser Ser 195 200 205 Ser Cys As n I l e Ser Ser Gl y Gl u Met Gl n Lys Gl y Leu Tr p Gl u Gl n 210 215 220 Cys Gl n Leu Leu Lys Ser Thr Ser Val Phe Al a Ar g Cys Hi s Pr o Leu 225 230 235 240 Val As p Pr o Gl u Pr o Phe Val Al a Leu Cys Gl u Lys Thr Leu Cys Gl u 245 250 255 Cys Al a Gl y Gl y Leu Gl u Cys Al a Cys Pr o Al a Leu Leu Gl u Tyr Al a 260 265 270 Ar g Thr Cys Al a Gl n Gl u Gl y Met Val Leu Tyr Gl y Tr p Thr As p Hi s 275 280 285 Ser Al a Cys Ser Pr o Val Cys Pr o Al a Gl y Met Gl u Tyr Ar g Gl n Cys 290 295 300
    Page 469
    97047_1
    2018203206 08 May 2018
    Val 305 Ser Pr o Cy s Al a Ar g 310 Thr Cy s Gl n Ser Leu 315 Hi s I l e As n Gl u Met 320 Cy s Gl n Gl u Ar g Cy s Val As p Gl y Cy s Ser Cy s Pr o Gl u Gl y Gl n Leu 325 330 335 Leu As p Gl u Gl y Leu Cy s Val Gl u Ser Thr Gl u Cy s Pr o Cy s Val Hi s 340 345 350 Ser Gl y Lys Ar g Ty r Pr o Pr o Gl y Thr Ser Leu Ser Ar g As p Cy s As n 355 360 365 Thr Cy s I l e Cy s Ar g As n Ser Gl n Tr p Ile Cy s Ser As n Gl u Gl u Cy s 370 375 380 Pr o Gl y Gl u Cy s Leu Val Thr Gl y Gl n Ser Hi s Phe Lys Ser Phe As p 385 390 395 400 As n Ar g Ty r Phe Thr Phe Ser Gl y Ile Cy s Gl n Ty r Leu Leu Al a Ar g 405 410 415 As p Cy s Gl n As p Hi s Ser Phe Ser Ile Val Ile Gl u Thr Val Gl n Cy s 420 425 430 Al a As p As p Ar g As p Al a Val Cy s Thr Ar g Ser Val Thr Val Ar g Leu
    Page 470
    2018203206 08 May 2018
    97047_1
    435 440 445
    Pr o Gl y 450 Leu Hi s As n Ser Leu 455 Val Lys Leu Lys Hi s 460 Gl y Al a Gl y Val Al a Met As p Gl y Gl n As p Ile Gl n Leu Pr o Leu Leu Lys Gl y As p Leu 465 470 475 480 Ar g I l e Gl n Hi s Thr Val Thr Al a Ser Val Ar g Leu Ser Tyr Gl y Gl u 485 490 495 As p Leu Gl n Met As p Tr p As p Gl y Ar g Gl y Ar g Leu Leu Val Lys Leu 500 505 510 Ser Pr o Val Tyr Al a Gl y Lys Thr Cys Gl y Leu Cys Gl y As n Tyr As n 515 520 525 Gl y As n Gl n Gl y As p As p Phe Leu Thr Pr o Ser Gl y Leu Al a Gl u Pr o 530 535 540 Ar g Val Gl u As p Phe Gl y As n Al a Tr p Lys Leu Hi s Gl y As p Cys Gl n 545 550 555 560 As p Leu Gl n Lys Gl n Hi s Ser As p Pr o Cys Al a Leu As n Pr o Ar g Met 565 570 575
    Page 471
    97047_1
    2018203206 08 May 2018
    Thr Ar g Phe Ser 580 Gl u Gl u Al a Cys Al a 585 Val Leu Thr Ser Pr o 590 Thr Phe Gl u Al a Cys 595 Hi s Ar g Al a Val Ser 600 Pr o Leu Pr o Tyr Leu 605 Ar g As n Cys Ar g Tyr 610 As p Val Cys Ser Cys 615 Ser As p Gl y Ar g Gl u 620 Cys Leu Cys Gl y Al a 625 Leu Al a Ser Tyr Al a 630 Al a Al a Cys Al a Gl y 635 Ar g Gl y Val Ar g Val 640 Al a Tr p Ar g Gl u Pr o 645 Gl y Ar g Cys Gl u Leu 650 As n Cys Pr o Lys Gl y 655 Gl n Val Tyr Leu Gl n 660 Cys Gl y Thr Pr o Cys 665 As n Leu Thr Cys Ar g 670 Ser Leu Ser Tyr Pr o 675 As p Gl u Gl u Cys As n 680 Gl u Al a Cys Leu Gl u 685 Gl y Cys Phe Cys Pr o 690 Pr o Gl y Leu Tyr Met 695 As p Gl u Ar g Gl y As p 700 Cys Val Pr o Lys Al a Gl n Cys Pr o Cys Tyr Tyr As p Gl y Gl u Ile Phe Gl n Pr o Gl u As p
    Page 472
    2018203206 08 May 2018
    97047_1
    705 710 715 720
    I l e Phe Ser Asp Hi s 725 Hi s Thr Met Cys Tyr 730 Cys Gl u As p Gl y Phe 735 Met Hi s Cys Thr Met Ser Gl y Val Pr o Gl y Ser Leu Leu Pr o As p Al a Val 740 745 750 Leu Ser Ser Pr o Leu Ser Hi s Ar g Ser Lys Ar g Ser Leu Ser Cys Ar g 755 760 765 Pr o Pr o Met Val Lys Leu Val Cys Pr o Al a As p As n Leu Ar g Al a Gl u 770 775 780 Gly Leu Gl u Cys Thr Lys Thr Cys Gl n As n Tyr As p Leu Gl u Cys Met 785 790 795 800 Ser Met Gl y Cys Val Ser Gl y Cys Leu Cys Pr o Pr o Gl y Met Val Ar g 805 810 815 Hi s Gl u Asn Ar g Cys Val Al a Leu Gl u Ar g Cys Pr o Cys Phe Hi s Gl n 820 825 830 Gl y Lys Gl u Tyr Al a Pr o Gl y Gl u Thr Val Lys Ile Gl y Cys As n Thr 835 840 845
    Page 473
    97047_1
    2018203206 08 May 2018
    Cys Val Cys Ar g As p Ar g Lys 855 Trp Asn Cys Thr As p 860 Hi s Val Cys As p 850 Al a Thr Cys Ser Thr Ile Gl y Met Al a Hi s Tyr Leu Thr Phe As p Gl y 865 870 875 880 Leu Lys Tyr Leu Phe Pr o Gl y Gl u Cys Gl n Tyr Val Leu Val Gl n As p 885 890 895 Tyr Cys Gl y Ser As n Pr o Gl y Thr Phe Ar g Ile Leu Val Gl y As n Lys 900 905 910 Gl y Cys Ser Hi s Pr o Ser Val Lys Cys Lys Lys Ar g Val Thr I l e Leu 915 920 925 Val Gl u Gl y Gl y Gl u Ile Gl u Leu Phe As p Gl y Gl u Val As n Val Lys 930 935 940 Ar g Pr o Met Lys As p Gl u Thr Hi s Phe Gl u Val Val Gl u Ser Gl y Ar g 945 950 955 960 Tyr I l e I l e Leu Leu Leu Gl y Lys Al a Leu Ser Val Val Tr p As p Ar g 965 970 975 Hi s Leu Ser I l e Ser Val Val Leu Lys Gl n Thr Tyr Gl n Gl u Lys Val
    Page 474
    980
    2018203206 08 May 2018
    97047_1
    985 990
    Cys Gl y Leu Cys Gl y Asn Phe Asp Gl y I l e Gl n Asn Asn Asp Leu Thr 995 1000 1005
    Ser Ser 1010 As n Leu Gl n Val Gl u 1015 Gl u As p Pr o Val As p 1020 Phe Gl y As n Ser Tr p Lys Val Ser Ser Gl n Cys Al a As p Thr Ar g Lys Val Pr o 1025 1030 1035 Leu As p Ser Ser Pr o Al a Thr Cys Hi s As n As n Ile Met Lys Gl n 1040 1045 1050 Thr Met Val As p Ser Ser Cys Ar g Ile Leu Thr Ser As p Val Phe 1055 1060 1065 Gl n As p Cys As n Lys Leu Val As p Pr o Gl u Pr o Tyr Leu As p Val 1070 1075 1080 Cys I l e Tyr As p Thr Cys Ser Cys Gl u Ser Ile Gl y As p Cys Al a 1085 1090 1095 Al a Phe Cys As p Thr Ile Al a Al a Tyr Al a Hi s Val Cys Al a Gl n 1100 1105 1110
    Page 475
    97047_1
    2018203206 08 May 2018
    Hi s Gl y 1115 Lys Val Val Thr Tr p 1120 Ar g Thr Al a Thr Leu 1125 Cy s Pr o Gl n Ser Cy s Gl u Gl u Ar g As n Leu Ar g Gl u As n Gl y Ty r Gl u Al a Gl u 1130 1135 1140 Tr p Ar g Ty r As n Ser Cy s Al a Pr o Al a Cy s Gl n Val Thr Cy s Gl n 1145 1150 1155 Hi s Pr o Gl u Pr o Leu Al a Cy s Pr o Val Gl n Cy s Val Gl u Gl y Cy s 1160 1165 1170 Hi s Al a Hi s Cy s Pr o Pr o Gl y Lys Ile Leu As p Gl u Leu Leu Gl n 1175 1180 1185 Thr Cy s Val As p Pr o Gl u As p Cy s Pr o Val Cy s Gl u Val Al a Gl y 1190 1195 1200 Ar g Ar g Phe Al a Ser Gl y Lys Lys Val Thr Leu As n Pr o Ser As p 1205 1210 1215 Pr o Gl u Hi s Cy s Gl n Ile Cy s Hi s Cy s As p Val Val As n Leu Thr 1220 1225 1230 Cy s Gl u Al a Cy s Gl n Gl u Pr o Ile Ser Gl y Gl y Gl y Gl y Ser Gl y
    Page 476
    97047_1
    2018203206 08 May 2018
    1235
    1240
    1245
    Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y 1250 1255 1260
    Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y 1265 1270 1275
    Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y 1280 1285 1290
    Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y 1295 1300 1305
    Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Leu 1310 1315 1320
    Val Pr o Ar g Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser 1325 1330 1335
    Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu 1340 1345 1350
    Gl y Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o Lys Pr o Lys Asp Thr
    1355 1360 1365
    Page 477
    97047_1
    2018203206 08 May 2018
    Leu Met 1370 I l e Ser Ar g Thr Pr o 1375 Gl u Val Thr Cys Val 1380 Val Val As p Val Ser Hi s Gl u As p Pr o Gl u Val Lys Phe As n Tr p Tyr Val As p 1385 1390 1395 Gl y Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o Ar g Gl u Gl u Gl n 1400 1405 1410 Tyr As n Ser Thr Tyr Ar g Val Val Ser Val Leu Thr Val Leu Hi s 1415 1420 1425 Gl n As p Tr p Leu As n Gl y Lys Gl u Tyr Lys Cys Lys Val Ser As n 1430 1435 1440 Lys Al a Leu Pr o Al a Pr o Ile Gl u Lys Thr Ile Ser Lys Al a Lys 1445 1450 1455 Gl y Gl n Pr o Ar g Gl u Pr o Gl n Val Tyr Thr Leu Pr o Pr o Ser Ar g 1460 1465 1470 As p Gl u Leu Thr Lys As n Gl n Val Ser Leu Thr Cys Leu Val Lys 1475 1480 1485 Gl y Phe Tyr Pr o Ser As p Ile Al a Val Gl u Tr p Gl u Ser As n Gl y
    Page 478
    2018203206 08 May 2018
    1490 1495 97047 _1 1500 Gl n Pr o Gl u As n As n Tyr Lys Thr Thr Pr o Pr o Val Leu As p Ser 1505 1510 1515 As p Gl y Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val As p Lys Ser 1520 1525 1530 Ar g Tr p Gl n Gl n Gl y As n Val Phe Ser Cys Ser Val Met Hi s Gl u 1535 1540 1545 Al a Leu Hi s As n Hi s Tyr Thr Gl n Lys Ser Leu Ser Leu Ser Pr o 1550 1555 1560
    Gl y Lys 1565 <210> 121 <211> 247 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> pSYN Fc-015 protein sequence <400> 121
    Met Gl u Thr Asp Thr Leu Leu Leu Tr p Val Leu Leu Leu Tr p Val Pr o
    Page 479
    97047_1
    2018203206 08 May 2018
    1 5 10 15 Gl y Ser Thr Gl y As p Lys Thr Hi s Thr Cy s Pr o Pr o Cy s Pr o Al a Pr o 20 25 30 Gl u Leu Leu Gl y Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o Lys Pr o Lys 35 40 45 Asp Thr Leu Met Ile Ser Ar g Thr Pr o Gl u Val Thr Cy s Val Val Val 50 55 60 Asp Val Ser Hi s Gl u As p Pr o Gl u Val Lys Phe As n Tr p Ty r Val As p 65 70 75 80 Gl y Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Ty r 85 90 95 As n Ser Thr Ty r Ar g Val Val Ser Val Leu Thr Val Leu Hi s Gl n As p 100 105 110 Tr p Leu As n Gl y Lys Gl u Ty r Lys Cys Lys Val Ser As n Lys Al a Leu 115 120 125 Pr o Al a Pr o I l e Gl u Lys Thr Ile Ser Lys Al a Lys Gl y Gl n Pr o Ar g 130 135 140
    Page 480
    97047_1
    2018203206 08 May 2018
    Gl u 145 Pr o Gl n Val Tyr Thr 150 Leu Pr o Pr o Ser Ar g 155 As p Gl u Leu Thr Lys 160 As n Gl n Val Ser Leu Thr Cys Leu Val Lys Gl y Phe Tyr Pr o Ser As p 165 170 175 I l e Al a Val Gl u Tr p Gl u Ser As n Gl y Gl n Pr o Gl u As n As n Tyr Lys 180 185 190 Thr Thr Pr o Pr o Val Leu As p Ser As p Gl y Ser Phe Phe Leu Tyr Ser 195 200 205 Lys Leu Thr Val As p Lys Ser Ar g Tr p Gl n Gl n Gl y As n Val Phe Ser 210 215 220 Cys Ser Val Met Hi s Gl u Al a Leu Hi s As n Hi s Tyr Thr Gl n Lys Ser 225 230 235 240
    Leu Ser Leu Ser
    Pr o Gl y Lys
    245
    <210> 122 <211> 33 <212> PRT <213> Art i f i ci al Sequence
    Page 481
    2018203206 08 May 2018
    97047_1 <220>
    <223> pol ypept i de
    <400> 122 Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y 1 5 10 15
    Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Leu Val Pr o Ar g Gl y Ser Gl y 20 25 30
    Gl y <210> 123 <211> 1240 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> VWF-D1D2DD3 <400> 123
    Met I l e Pr o Al a Ar g Phe Al a Gl y Val Leu Leu Al a Leu Al a Leu I l e
    1 5 10 15
    Leu Pr o Gl y Thr Leu Cy s Al a Gl u Gl y Thr Ar g Gl y Ar g Ser Ser Thr
    20 25 30
    Page 482
    97047_1
    2018203206 08 May 2018
    Al a Arg Cys Ser Leu Phe Gl y Ser 40 Asp Phe Val As n Thr 45 Phe As p Gl y 35 Ser Met Tyr Ser Phe Al a Gl y Tyr Cys Ser Tyr Leu Leu Al a Gl y Gl y 50 55 60 Cys Gl n Lys Ar g Ser Phe Ser Ile Ile Gl y As p Phe Gl n As n Gl y Lys 65 70 75 80 Ar g Val Ser Leu Ser Val Tyr Leu Gl y Gl u Phe Phe As p I l e Hi s Leu 85 90 95 Phe Val As n Gl y Thr Val Thr Gl n Gl y As p Gl n Ar g Val Ser Met Pr o 100 105 110 Tyr Al a Ser Lys Gl y Leu Tyr Leu Gl u Thr Gl u Al a Gl y Tyr Tyr Lys 115 120 125 Leu Ser Gl y Gl u Al a Tyr Gl y Phe Val Al a Ar g Ile As p Gl y Ser Gl y 130 135 140 As n Phe Gl n Val Leu Leu Ser As p Ar g Tyr Phe As n Lys Thr Cys Gl y 145 150 155 160 Leu Cys Gl y As n Phe As n Ile Phe Al a Gl u As p As p Phe Met Thr Gl n
    Page 483
    2018203206 08 May 2018
    97047_1
    165 170 175
    Gl u Gl y Thr Leu 180 Thr Ser As p Pr o Tyr 185 As p Phe Al a As n Ser 190 Tr p Al a Leu Ser Ser Gl y Gl u Gl n Tr p Cys Gl u Ar g Al a Ser Pr o Pr o Ser Ser 195 200 205 Ser Cys As n I l e Ser Ser Gl y Gl u Met Gl n Lys Gl y Leu Tr p Gl u Gl n 210 215 220 Cys Gl n Leu Leu Lys Ser Thr Ser Val Phe Al a Ar g Cys Hi s Pr o Leu 225 230 235 240 Val As p Pr o Gl u Pr o Phe Val Al a Leu Cys Gl u Lys Thr Leu Cys Gl u 245 250 255 Cys Al a Gl y Gl y Leu Gl u Cys Al a Cys Pr o Al a Leu Leu Gl u Tyr Al a 260 265 270 Ar g Thr Cys Al a Gl n Gl u Gl y Met Val Leu Tyr Gl y Tr p Thr As p Hi s 275 280 285 Ser Al a Cys Ser Pr o Val Cys Pr o Al a Gl y Met Gl u Tyr Ar g Gl n Cys 290 295 300
    Page 484
    97047 1
    2018203206 08 May 2018
    Val 305 Ser Pr o Cy s Al a Ar g 310 Thr Cy s Gl n Ser Leu 315 Hi s I l e As n Gl u Met 320 Cy s Gl n Gl u Ar g Cy s Val As p Gl y Cy s Ser Cy s Pr o Gl u Gl y Gl n Leu 325 330 335 Leu As p Gl u Gl y Leu Cy s Val Gl u Ser Thr Gl u Cy s Pr o Cy s Val Hi s 340 345 350 Ser Gl y Lys Ar g Ty r Pr o Pr o Gl y Thr Ser Leu Ser Ar g As p Cy s As n 355 360 365 Thr Cy s I l e Cy s Ar g As n Ser Gl n Tr p Ile Cy s Ser As n Gl u Gl u Cy s 370 375 380 Pr o Gl y Gl u Cy s Leu Val Thr Gl y Gl n Ser Hi s Phe Lys Ser Phe As p 385 390 395 400 As n Ar g Ty r Phe Thr Phe Ser Gl y Ile Cy s Gl n Ty r Leu Leu Al a Ar g 405 410 415 As p Cy s Gl n As p Hi s Ser Phe Ser Ile Val Ile Gl u Thr Val Gl n Cy s 420 425 430 Al a As p As p Ar g As p Al a Val Cy s Thr Ar g Ser Val Thr Val Ar g Leu
    Page 485
    2018203206 08 May 2018
    97047_1
    435 440 445
    Pr o Gl y 450 Leu Hi s As n Ser Leu 455 Val Lys Leu Lys Hi s 460 Gl y Al a Gl y Val Al a Met As p Gl y Gl n As p Ile Gl n Leu Pr o Leu Leu Lys Gl y As p Leu 465 470 475 480 Ar g I l e Gl n Hi s Thr Val Thr Al a Ser Val Ar g Leu Ser Tyr Gl y Gl u 485 490 495 As p Leu Gl n Met As p Tr p As p Gl y Ar g Gl y Ar g Leu Leu Val Lys Leu 500 505 510 Ser Pr o Val Tyr Al a Gl y Lys Thr Cys Gl y Leu Cys Gl y As n Tyr As n 515 520 525 Gl y As n Gl n Gl y As p As p Phe Leu Thr Pr o Ser Gl y Leu Al a Gl u Pr o 530 535 540 Ar g Val Gl u As p Phe Gl y As n Al a Tr p Lys Leu Hi s Gl y As p Cys Gl n 545 550 555 560 As p Leu Gl n Lys Gl n Hi s Ser As p Pr o Cys Al a Leu As n Pr o Ar g Met 565 570 575
    Page 486
    97047_1
    2018203206 08 May 2018
    Thr Ar g Phe Ser 580 Gl u Gl u Al a Cy s Al a 585 Val Leu Thr Ser Pr o 590 Thr Phe Gl u Al a Cy s 595 Hi s Ar g Al a Val Ser 600 Pr o Leu Pr o Ty r Leu 605 Ar g As n Cy s Ar g Ty r 610 As p Val Cy s Ser Cy s 615 Ser As p Gl y Ar g Gl u 620 Cy s Leu Cy s Gl y Al a 625 Leu Al a Ser Ty r Al a 630 Al a Al a Cy s Al a Gl y 635 Ar g Gl y Val Ar g Val 640 Al a Tr p Ar g Gl u Pr o 645 Gl y Ar g Cy s Gl u Leu 650 As n Cy s Pr o Lys Gl y 655 Gl n Val Ty r Leu Gl n 660 Cy s Gl y Thr Pr o Cy s 665 As n Leu Thr Cy s Ar g 670 Ser Leu Ser Ty r Pr o 675 As p Gl u Gl u Cy s As n 680 Gl u Al a Cy s Leu Gl u 685 Gl y Cy s Phe Cy s Pr o 690 Pr o Gl y Leu Ty r Met 695 As p Gl u Ar g Gl y As p 700 Cy s Val Pr o Lys Al a Gl n Cy s Pr o Cy s Ty r Ty r As p Gl y Gl u Ile Phe Gl n Pr o Gl u As p
    Page 487
    2018203206 08 May 2018
    97047_1
    705 710 715 720
    I l e Phe Ser As p Hi s 725 Hi s Thr Met Cys Tyr 730 Cys Gl u As p Gl y Phe 735 Met Hi s Cys Thr Met Ser Gl y Val Pr o Gl y Ser Leu Leu Pr o As p Al a Val 740 745 750 Leu Ser Ser Pr o Leu Ser Hi s Ar g Ser Lys Ar g Ser Leu Ser Cys Ar g 755 760 765 Pr o Pr o Met Val Lys Leu Val Cys Pr o Al a As p As n Leu Ar g Al a Gl u 770 775 780 Gl y Leu Gl u Cys Thr Lys Thr Cys Gl n As n Tyr As p Leu Gl u Cys Met 785 790 795 800 Ser Met Gl y Cys Val Ser Gl y Cys Leu Cys Pr o Pr o Gl y Met Val Ar g 805 810 815 Hi s Gl u As n Ar g Cys Val Al a Leu Gl u Ar g Cys Pr o Cys Phe Hi s Gl n 820 825 830 Gl y Lys Gl u Tyr Al a Pr o Gl y Gl u Thr Val Lys Ile Gl y Cys As n Thr 835 840 845
    Page 488
    97047_1
    2018203206 08 May 2018
    Cys Val Cy s Ar g As p Ar g Lys 855 Tr p As n Cy s Thr As p 860 Hi s Val Cy s As p 850 Al a Thr Cy s Ser Thr Ile Gl y Met Al a Hi s Ty r Leu Thr Phe As p Gl y 865 870 875 880 Leu Lys Ty r Leu Phe Pr o Gl y Gl u Cy s Gl n Ty r Val Leu Val Gl n As p 885 890 895 Ty r Cy s Gl y Ser As n Pr o Gl y Thr Phe Ar g Ile Leu Val Gl y As n Lys 900 905 910 Gl y Cy s Ser Hi s Pr o Ser Val Lys Cy s Lys Lys Ar g Val Thr I l e Leu 915 920 925 Val Gl u Gl y Gl y Gl u Ile Gl u Leu Phe As p Gl y Gl u Val As n Val Lys 930 935 940 Ar g Pr o Met Lys As p Gl u Thr Hi s Phe Gl u Val Val Gl u Ser Gl y Ar g 945 950 955 960 Ty r I l e I l e Leu Leu Leu Gl y Lys Al a Leu Ser Val Val Tr p As p Ar g 965 970 975 Hi s Leu Ser I l e Ser Val Val Leu Lys Gl n Thr Ty r Gl n Gl u Lys Val
    Page 489
    980
    2018203206 08 May 2018
    97047_1
    985 990
    Cys Gl y Leu Cys Gl y Asn Phe Asp Gl y Ile Gl n Asn Asn Asp Leu Thr 995 1000 1005
    Ser Ser 1010 As n Leu Gl n Val Gl u 1015 Gl u As p Pr o Val As p 1020 Phe Gl y As n Ser Tr p Lys Val Ser Ser Gl n Cys Al a As p Thr Ar g Lys Val Pr o 1025 1030 1035 Leu As p Ser Ser Pr o Al a Thr Cys Hi s As n As n Ile Met Lys Gl n 1040 1045 1050 Thr Met Val As p Ser Ser Cys Ar g Ile Leu Thr Ser As p Val Phe 1055 1060 1065 Gl n As p Cys As n Lys Leu Val As p Pr o Gl u Pr o Tyr Leu As p Val 1070 1075 1080 Cys I l e Tyr As p Thr Cys Ser Cys Gl u Ser Ile Gl y As p Cys Al a 1085 1090 1095 Cys Phe Cys As p Thr Ile Al a Al a Tyr Al a Hi s Val Cys Al a Gl n 1100 1105 1110
    Page 490
    97047_1
    2018203206 08 May 2018
    Hi s Gl y 1115 Lys Val Val Thr Tr p 1120 Ar g Thr Al a Thr Leu 1125 Cys Pr o Gl n Ser Cys Gl u Gl u Ar g As n Leu Ar g Gl u As n Gl y Tyr Gl u Cys Gl u 1130 1135 1140 Tr p Ar g Tyr As n Ser Cys Al a Pr o Al a Cys Gl n Val Thr Cys Gl n 1145 1150 1155 Hi s Pr o Gl u Pr o Leu Al a Cys Pr o Val Gl n Cys Val Gl u Gl y Cys 1160 1165 1170 Hi s Al a Hi s Cys Pr o Pr o Gl y Lys Ile Leu As p Gl u Leu Leu Gl n 1175 1180 1185 Thr Cys Val As p Pr o Gl u As p Cys Pr o Val Cys Gl u Val Al a Gl y 1190 1195 1200 Ar g Ar g Phe Al a Ser Gl y Lys Lys Val Thr Leu As n Pr o Ser As p 1205 1210 1215 Pr o Gl u Hi s Cys Gl n Ile Cys Hi s Cys As p Val Val As n Leu Thr 1220 1225 1230 Cys Gl u Al a Cys Gl n Gl u Pr o
    Page 491
    97047_1
    2018203206 08 May 2018
    1235 1240 <210> 124 <211> 477 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> VWF- D D3 <400> 124
    Ser 1 Leu Ser Cys Ar g 5 Pr o Pr o Met As n Leu Ar g Al a 20 Gl u Gl y Leu Gl u As p Leu Gl u 35 Cys Met Ser Met Gl y 40 Pr o Gl y 50 Met Val Ar g Hi s Gl u 55 As n Pr o 65 Cys Phe Hi s Gl n Gl y 70 Lys Gl u I l e Gl y Cys As n Thr Cys Val Cys
    Val Lys 10 Leu Val Cys Pr o Al a 15 As p Cys 25 Thr Lys Thr Cys Gl n 30 As n Tyr Cys Val Ser Gl y Cys 45 Leu Cys Pr o Ar g Cys Val Al a 60 Leu Gl u Ar g Cys Tyr Al a Pr o 75 Gl y Gl u Thr Val Lys 80 Ar g As p Ar g Lys Tr p As n Cys Thr
    Page 492
    2018203206 08 May 2018
    97047_1
    85 90 95
    As p Hi s Val Cys 100 As p Al a Thr Cys Ser 105 Thr Ile Gl y Met Al a 110 Hi s Tyr Leu Thr Phe As p Gl y Leu Lys Tyr Leu Phe Pr o Gl y Gl u Cys Gl n Tyr 115 120 125 Val Leu Val Gl n As p Tyr Cys Gl y Ser As n Pr o Gl y Thr Phe Ar g I l e 130 135 140 Leu Val Gl y As n Lys Gl y Cys Ser Hi s Pr o Ser Val Lys Cys Lys Lys 145 150 155 160 Ar g Val Thr I l e Leu Val Gl u Gl y Gl y Gl u Ile Gl u Leu Phe As p Gl y 165 170 175 Gl u Val As n Val Lys Ar g Pr o Met Lys As p Gl u Thr Hi s Phe Gl u Val 180 185 190 Val Gl u Ser Gl y Ar g Tyr Ile Ile Leu Leu Leu Gl y Lys Al a Leu Ser 195 200 205 Val Val Tr p As p Ar g Hi s Leu Ser Ile Ser Val Val Leu Lys Gl n Thr 210 215 220
    Page 493
    97047_1
    2018203206 08 May 2018
    Ty r 225 Gl n Gl u Lys Val Cy s 230 Gl y Leu Cy s Gl y As n 235 Phe As p Gl y I l e Gl n 240 As n As n As p Leu Thr Ser Ser As n Leu Gl n Val Gl u Gl u As p Pr o Val 245 250 255 As p Phe Gl y As n Ser Tr p Lys Val Ser Ser Gl n Cy s Al a As p Thr Ar g 260 265 270 Lys Val Pr o Leu As p Ser Ser Pr o Al a Thr Cy s Hi s As n As n I l e Met 275 280 285 Lys Gl n Thr Met Val As p Ser Ser Cy s Ar g Ile Leu Thr Ser As p Val 290 295 300 Phe Gl n As p Cy s As n Lys Leu Val As p Pr o Gl u Pr o Ty r Leu As p Val 305 310 315 320 Cy s I l e Ty r As p Thr Cy s Ser Cy s Gl u Ser Ile Gl y As p Cy s Al a Cy s 325 330 335 Phe Cy s As p Thr Ile Al a Al a Ty r Al a Hi s Val Cy s Al a Gl n Hi s Gl y 340 345 350 Lys Val Val Thr Tr p Ar g Thr Al a Thr Leu Cy s Pr o Gl n Ser Cy s Gl u
    Page 494
    2018203206 08 May 2018
    355 360 97047_1 365 Gl u Ar g As n Leu Ar g Gl u As n Gl y Tyr Gl u Cys Gl u Tr p Ar g Tyr As n 370 375 380 Ser Cys Al a Pr o Al a Cys Gl n Val Thr Cys Gl n Hi s Pr o Gl u Pr o Leu 385 390 395 400 Al a Cys Pr o Val Gl n Cys Val Gl u Gl y Cys Hi s Al a Hi s Cys Pr o Pr o 405 410 415 Gl y Lys I l e Leu As p Gl u Leu Leu Gl n Thr Cys Val As p Pr o Gl u As p 420 425 430 Cys Pr o Val Cys Gl u Val Al a Gl y Ar g Ar g Phe Al a Ser Gl y Lys Lys 435 440 445 Val Thr Leu As n Pr o Ser As p Pr o Gl u Hi s Cys Gl n I l e Cys Hi s Cys 450 455 460
    Asp Val Val Asn Leu Thr Cys Gl u Al a Cys Gl n Gl u Pro
    465
    470
    475 <210> 125 <211> 5055 <212> DNA
    Page 495
    2018203206 08 May 2018
    97047_1 <213> Artificial Sequence <220>
    <223> pSYNFVI I I 010
    <400> 125 at gcaaat ag agct ct ccac ct gct t ct t t ct gt gcct t t t gcgat t ct g ct t t agt gcc 60 accagaagat act acct ggg t gcagt ggaa ct gt cat ggg act at at gca aagt gat ct c 120 ggt gagct gc ct gt ggacgc aagat t t cct cct agagt gc caaaat ct t t t ccat t caac 180 acct cagt cg t gt acaaaaa gact ct gt 11 gt agaat t ca cggat cacct 111 caacat c 240 gct aagccaa ggccaccct g gat gggt ct g ct aggt cct a ccat ccaggc tgaggtttat 300 gat acagt gg t cat t acact t aagaacat g gct t cccat c ct gt cagt ct t cat gct gt t 360 ggt gt at cct act ggaaagc tt ctgaggga gct gaat at g at gat cagac cagt caaagg 420 gagaaagaag at gat aaagt ct t ccct ggt ggaagccat a cat at gt ct g gcaggt cct g 480 aaagagaat g gt ccaat ggc ct ct gaccca ct gt gcct t a cct act cat a t ct t t ct cat 540 gt ggacct gg t aaaagact t gaat t caggc ct cat t ggag ccct act agt at gt agagaa 600 gggagt ct gg ccaaggaaaa gacacagacc 11 gcacaaat 11 at act act t t t t gct gt a 660 t t t gat gaag ggaaaagt t g gcact cagaa acaaagaact cct t gat gca ggat agggat 720 gct gcat ct g ct cgggcct g gcct aaaat g cacacagt ca at ggt t at gt aaacaggt ct 780 ct gccaggt c t gat t ggat g ccacaggaaa t cagt ct at t ggcat gt gat t ggaat gggc 840
    Page 496
    2018203206 08 May 2018
    accact cct g aagt gcact c aat at t cct c 97047_1 gaaggt caca cat t t ct t gt gaggaaccat 900 cgccaggcgt cct t ggaaat ct cgccaat a act t t cct t a ct gct caaac act ct t gat g 960 gacct t ggac agt t t ct act gt t t t gt cat at ct ct t ccc accaacat ga t ggcat ggaa 1020 gct t at gt ca aagt agacag ct gt ccagag gaaccccaac t acgaat gaa aaat aat gaa 1080 gaagcggaag act at gat ga t gat ct t act gat t ct gaaa t ggat gt ggt caggt t t gat 1140 gat gacaact ct cct t cct t t at ccaaat t cgct cagt t g ccaagaagca t cct aaaact 1200 t gggt acat t acat t gct gc t gaagaggag gact gggact at gct ccct t agt cct cgcc 1260 cccgat gaca gaagt t at aa aagt caat at t t gaacaat g gccct cagcg gat t ggt agg 1320 aagt acaaaa aagt ccgat t t at ggcat ac acagat gaaa cct t t aagac t cgt gaagct 1380 at t cagcat g aat caggaat ct t gggacct t t act t t at g gggaagt t gg agacacact g 1440 t t gat t at at t t aagaat ca agcaagcaga ccat at aaca t ct accct ca cggaat cact 1500 gat gt ccgt c ct t t gt at t c aaggagat t a ccaaaaggt g t aaaacat t t gaaggat t t t 1560 ccaat t ct gc caggagaaat at t caaat at aaat ggacag t gact gt aga agat gggcca 1620 act aaat cag at cct cggt g cct gacccgc t at t act ct a gt t t cgt t aa t at ggagaga 1680 gat ct agct t caggact cat t ggccct ct c ct cat ct gct acaaagaat c t gt agat caa 1740 agaggaaacc agat aat gt c agacaagagg aat gt cat cc t gt t t t ct gt at t t gat gag 1800 aaccgaagct ggt acct cac agagaat at a caacgct 11 c t ccccaat cc agct ggagt g 1860
    Page 497
    2018203206 08 May 2018
    cagct t gagg at ccagagt t ccaagcct cc 97047_1 aacat cat gc acagcat caa tggct at gtt 1920 t t t gat agt t t gcagt t gt c agt t t gt t t g cat gaggt gg cat act ggt a cat t ct aagc 1980 at t ggagcac agact gact t cct t t ct gt c 11 ct t ct ct g gat at acct t caaacacaaa 2040 at ggt ct at g aagacacact caccct at t c ccat t ct cag gagaaact gt ct t cat gt cg 2100 at ggaaaacc caggt ct at g gat t ct gggg t gccacaact cagact t t cg gaacagaggc 2160 at gaccgcct t act gaaggt 11 ct agt t gt gacaagaaca ct ggt gat t a t t acgaggac 2220 agt t at gaag at at t t cagc at act t gct g agt aaaaaca at gccat t ga accaagaagc 2280 t t ct ct caaa acccaccagt ct t gaaacgc cat caacggg aaat aact cg t act act ct t 2340 cagt cagat c aagaggaaat t gact at gat gat accat at cagt t gaaat gaagaaggaa 2400 gat t t t gaca t t t at gat ga ggat gaaaat cagagccccc gcagct t t ca aaagaaaaca 2460 cgacact at t t t at t gct gc agt ggagagg ct ct gggat t at gggat gag t agct cccca 2520 cat gt t ct aa gaaacagggc t cagagt ggc agt gt ccct c agt t caagaa agt t gt t t t c 2580 caggaat t t a ct gat ggct c ct 11 act cag ccct t at acc gt ggagaact aaat gaacat 2640 t t gggact cc t ggggccat a t at aagagca gaagt t gaag at aat at cat ggt aact t t c 2700 agaaat cagg cct ct cgt cc ct at t cct t c t at t ct agcc 11 at 11 ct t a t gaggaagat 2760 cagaggcaag gagcagaacc t agaaaaaac 111 gt caagc ct aat gaaac caaaact t ac 2820 t t t t ggaaag t gcaacat ca t at ggcaccc act aaagat g agt t t gact g caaagcct gg 2880
    Page 498
    2018203206 08 May 2018
    gct t at 11 ct ct gat gt t ga cct ggaaaaa 97047_1 gat gt gcact caggcct gat t ggacccct t 2940 ct ggt ct gcc acact aacac act gaaccct gct cat ggga gacaagt gac agt acaggaa 3000 t t t gct ct gt t t t t caccat ct t t gat gag accaaaagct ggt act t cac t gaaaat at g 3060 gaaagaaact gcagggct cc ct gcaat at c cagat ggaag at cccact t t t aaagagaat 3120 t at cgct t cc at gcaat caa t ggct acat a at ggat acac t acct ggct t agt aat ggct 3180 caggat caaa ggat t cgat g gt at ct gct c agcat gggca gcaat gaaaa cat ccat t ct 3240 at t cat t t ca gt ggacat gt gt t cact gt a cgaaaaaaag aggagt at aa aat ggcact g 3300 t acaat ct ct at ccaggt gt 1111 gagaca gt ggaaat gt t accat ccaa agct ggaat t 3360 t ggcgggt gg aat gcct t at t ggcgagcat ct acat gct g ggat gagcac act t t t t ct g 3420 gt gt acagca at aagt gt ca gact cccct g ggaat ggct t ct ggacacat t agagat t t t 3480 cagat t acag ct t caggaca at at ggacag t gggccccaa agct ggccag act t cat t at 3540 t ccggat caa t caat gcct g gagcaccaag gagccct t t t ct t ggat caa ggt ggat ct g 3600 t t ggcaccaa t gat t at t ca cggcat caag acccagggt g cccgt cagaa gt t ct ccagc 3660 ct ct acat ct ct cagt t t at cat cat gt at agt ct t gat g ggaagaagt g gcagact t at 3720 cgaggaaat t ccact ggaac ct t aat ggt c t t ct t t ggca at gt ggat t c at ct gggat a 3780 aaacacaat a t t t t t aaccc t ccaat t at t gct cgat aca t ccgt t t gca cccaact cat 3840 t at agcat t c gcagcact ct t cgcat ggag tt gat gggct gt gat t t aaa t agt t gcagc 3900
    Page 499
    2018203206 08 May 2018
    at gccat t gg gaat ggagag t aaagcaat a 97047_1 t cagat gcac agat t act gc t t cat cct ac 3960 t t t accaat a t gt t t gccac ct ggt ct cct t caaaagct c gact t cacct ccaagggagg 4020 agt aat gcct ggagacct ca ggt gaat aat ccaaaagagt ggct gcaagt ggact t ccag 4080 aagacaat ga aagt cacagg agt aact act cagggagt aa aat ct ct gct t accagcat g 4140 t at gt gaagg agt t cct cat ct ccagcagt caagat ggcc at cagt ggac t ct ct t t t t t 4200 cagaat ggca aagt aaaggt 1111 caggga aat caagact cct t cacacc t gt ggt gaac 4260 t ct ct agacc caccgt t act gact cgct ac ct t cgaat t c acccccagag t t gggt gcac 4320 cagat t gccc t gaggat gga ggt t ct gggc t gcgaggcac aggacct ct a cgacaaaact 4380 cacacat gcc caccgt gccc agct ccagaa ct cct gggcg gaccgt cagt ct t cct ct t c 4440 cccccaaaac ccaaggacac cct cat gat c t cccggaccc ct gaggt cac at gcgt ggt g 4500 gt ggacgt ga gccacgaaga ccct gaggt c aagt t caact ggt acgt gga cggcgt ggag 4560 gt gcat aat g ccaagacaaa gccgcgggag gagcagt aca acagcacgt a ccgt gt ggt c 4620 agcgt cct ca ccgt cct gca ccaggact gg ct gaat ggca aggagt acaa gt gcaaggt c 4680 t ccaacaaag ccct cccagc ccccat cgag aaaaccat ct ccaaagccaa agggcagccc 4740 cgagaaccac aggt gt acac cct gccccca t cccgggat g agct gaccaa gaaccaggt c 4800 agcct gacct gcct ggt caa aggct t ct at cccagcgaca t cgccgt gga gt gggagagc 4860 aat gggcagc cggagaacaa ct acaagacc acgcct cccg t gt t ggact c cgacggct cc 4920
    Page 500
    2018203206 08 May 2018
    97047_1
    11 ct t cct ct acagcaagct caccgt ggac aagagcaggt ggcagcaggg gaacgtcttc t cat gct ccg t gat gcat ga ggctctgcac aaccact aca cgcagaagag cct ct ccct g t ct ccgggt a aat ga <210> 126 <211> 1684 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> pSYNFVI I I 010 <400> 126
    4980
    5040
    5055
    Met 1 Gl n I l e Gl u Leu 5 Ser Thr Cy s Phe Phe Leu 10 Cy s Leu Leu Ar g 15 Phe Cy s Phe Ser Al a Thr Ar g Ar g Ty r Ty r Leu Gl y Al a Val Gl u Leu Ser 20 25 30 Tr p As p Ty r Met Gl n Ser As p Leu Gl y Gl u Leu Pr o Val As p Al a Ar g 35 40 45 Phe Pr o Pr o Ar g Val Pr o Lys Ser Phe Pr o Phe As n Thr Ser Val Val 50 55 60 Ty r Lys Lys Thr Leu Phe Val Gl u Phe Thr As p Hi s Leu Phe As n I l e
    Page 501
    97047_1
    65 70 75 80
    2018203206 08 May 2018
    Al a Lys Pr o Ar g Pr o 85 Pr o Tr p Met Gl y Leu 90 Leu Gl y Pr o Thr I l e 95 Gl n Al a Gl u Val Tyr As p Thr Val Val Ile Thr Leu Lys As n Met Al a Ser 100 105 110 Hi s Pr o Val Ser Leu Hi s Al a Val Gl y Val Ser Tyr Tr p Lys Al a Ser 115 120 125 Gl u Gl y Al a Gl u Tyr As p As p Gl n Thr Ser Gl n Ar g Gl u Lys Gl u As p 130 135 140 As p Lys Val Phe Pr o Gl y Gl y Ser Hi s Thr Tyr Val Tr p Gl n Val Leu 145 150 155 160 Lys Gl u As n Gl y Pr o Met Al a Ser As p Pr o Leu Cys Leu Thr Tyr Ser 165 170 175 Tyr Leu Ser Hi s Val As p Leu Val Lys As p Leu As n Ser Gl y Leu I l e 180 185 190 Gl y Al a Leu Leu Val Cys Ar g Gl u Gl y Ser Leu Al a Lys Gl u Lys Thr 195 200 205
    Page 502
    97047_1
    2018203206 08 May 2018
    Gl n Thr Leu Hi s Lys Phe Ile 215 Leu Leu Phe Al a Val 220 Phe As p Gl u Gl y 210 Lys Ser Tr p Hi s Ser Gl u Thr Lys As n Ser Leu Met Gl n As p Ar g As p 225 230 235 240 Al a Al a Ser Al a Ar g Al a Tr p Pr o Lys Met Hi s Thr Val As n Gl y Tyr 245 250 255 Val As n Ar g Ser Leu Pr o Gl y Leu Ile Gl y Cys Hi s Ar g Lys Ser Val 260 265 270 Tyr Tr p Hi s Val Ile Gl y Met Gl y Thr Thr Pr o Gl u Val Hi s Ser I l e 275 280 285 Phe Leu Gl u Gl y Hi s Thr Phe Leu Val Ar g As n Hi s Ar g Gl n Al a Ser 290 295 300 Leu Gl u I l e Ser Pr o Ile Thr Phe Leu Thr Al a Gl n Thr Leu Leu Met 305 310 315 320 As p Leu Gl y Gl n Phe Leu Leu Phe Cys Hi s Ile Ser Ser Hi s Gl n Hi s 325 330 335 As p Gl y Met Gl u Al a Tyr Val Lys Val As p Ser Cys Pr o Gl u Gl u Pr o
    Page 503
    2018203206 08 May 2018
    970 47_1 340 345 350 Gl n Leu Ar g Met Lys As n As n Gl u Gl u Al a Gl u As p Ty r As p As p As p 355 360 365 Leu Thr As p Ser Gl u Met As p Val Val Ar g Phe As p As p As p As n Ser 370 375 380 Pr o Ser Phe I l e Gl n Ile Ar g Ser Val Al a Lys Lys Hi s Pr o Lys Thr 385 390 395 400 Tr p Val Hi s Ty r Ile Al a Al a Gl u Gl u Gl u As p Tr p As p Ty r Al a Pr o 405 410 415 Leu Val Leu Al a Pr o As p As p Ar g Ser Ty r Lys Ser Gl n Ty r Leu As n 420 425 430 As n Gl y Pr o Gl n Ar g Ile Gl y Ar g Lys Ty r Lys Lys Val Ar g Phe Met 435 440 445 Al a Ty r Thr As p Gl u Thr Phe Lys Thr Ar g Gl u Al a I l e Gl n Hi s Gl u 450 455 460 Ser Gl y I l e Leu Gl y Pr o Leu Leu Ty r Gl y Gl u Val Gl y As p Thr Leu 465 470 475 480
    Page 504
    97047_1
    2018203206 08 May 2018
    Leu I l e I l e Phe Lys 485 As n Gl n Al a Ser Ar g 490 Pro Tyr As n I l e Tyr 495 Pr o Hi s Gl y I l e Thr As p Val Ar g Pr o Leu Tyr Ser Ar g Ar g Leu Pr o Lys 500 505 510 Gl y Val Lys Hi s Leu Lys As p Phe Pr o Ile Leu Pr o Gl y Gl u I l e Phe 515 520 525 Lys Tyr Lys Tr p Thr Val Thr Val Gl u As p Gl y Pr o Thr Lys Ser As p 530 535 540 Pr o Ar g Cys Leu Thr Ar g Tyr Tyr Ser Ser Phe Val As n Met Gl u Ar g 545 550 555 560 As p Leu Al a Ser Gl y Leu Ile Gl y Pr o Leu Leu Ile Cys Tyr Lys Gl u 565 570 575 Ser Val As p Gl n Ar g Gl y As n Gl n Ile Met Ser As p Lys Ar g As n Val 580 585 590 I l e Leu Phe Ser Val Phe As p Gl u As n Ar g Ser Tr p Tyr Leu Thr Gl u 595 600 605 As n I l e Gl n Ar g Phe Leu Pr o As n Pr o Al a Gl y Val Gl n Leu Gl u As p
    Page 505
    2018203206 08 May 2018
    97047_1
    610 615 620
    Pr o 625 Gl u Phe Gl n Al a Ser 630 As n Ile Met Hi s Ser 635 Ile As n Gl y Ty r Val 640 Phe As p Ser Leu Gl n Leu Ser Val Cy s Leu Hi s Gl u Val Al a Ty r Tr p 645 650 655 Ty r I l e Leu Ser Ile Gl y Al a Gl n Thr As p Phe Leu Ser Val Phe Phe 660 665 670 Ser Gl y Ty r Thr Phe Lys Hi s Lys Met Val Ty r Gl u As p Thr Leu Thr 675 680 685 Leu Phe Pr o Phe Ser Gl y Gl u Thr Val Phe Met Ser Met Gl u As n Pr o 690 695 700 Gl y Leu Tr p I l e Leu Gl y Cy s Hi s As n Ser As p Phe Ar g As n Ar g Gl y 705 710 715 720 Met Thr Al a Leu Leu Lys Val Ser Ser Cy s As p Lys As n Thr Gl y As p 725 730 735 Ty r Ty r Gl u As p Ser Ty r Gl u As p Ile Ser Al a Ty r Leu Leu Ser Lys 740 745 750
    Page 506
    97047_1
    2018203206 08 May 2018
    As n As n Al a 755 I l e Gl u Pr o Ar g Ser 760 Phe Ser Gl n As n Pr o 765 Pr o Val Leu Lys Ar g Hi s Gl n Ar g Gl u Ile Thr Ar g Thr Thr Leu Gl n Ser As p Gl n 770 775 780 Gl u Gl u I l e As p Tyr As p As p Thr Ile Ser Val Gl u Met Lys Lys Gl u 785 790 795 800 As p Phe As p I l e Tyr As p Gl u As p Gl u As n Gl n Ser Pr o Ar g Ser Phe 805 810 815 Gl n Lys Lys Thr Ar g Hi s Tyr Phe Ile Al a Al a Val Gl u Ar g Leu Tr p 820 825 830 As p Tyr Gl y Met Ser Ser Ser Pr o Hi s Val Leu Ar g As n Ar g Al a Gl n 835 840 845 Ser Gl y Ser Val Pr o Gl n Phe Lys Lys Val Val Phe Gl n Gl u Phe Thr 850 855 860 As p Gl y Ser Phe Thr Gl n Pr o Leu Tyr Ar g Gl y Gl u Leu As n Gl u Hi s 865 870 875 880 Leu Gl y Leu Leu Gl y Pr o Tyr Ile Ar g Al a Gl u Val Gl u As p As n I l e
    Page 507
    97047_1
    2018203206 08 May 2018
    885 890 895 Met Val Thr Phe Ar g As n Gl n Al a Ser Ar g Pr o Tyr Ser Phe Tyr Ser 900 905 910 Ser Leu I l e Ser Ty r Gl u Gl u As p Gl n Ar g Gl n Gl y Al a Gl u Pr o Ar g 915 920 925 Lys Asn Phe Val Lys Pro Asn Gl u Thr Lys Thr Tyr Phe Trp Lys Val 930 935 940 Gl n Hi s Hi s Met Al a Pr o Thr Lys Asp Gl u Phe Asp Cys Lys Al a Tr p 945 950 955 960 Al a Tyr Phe Ser Asp Val Asp Leu Gl u Ly s As p Val Hi s Ser Gl y Leu 965 970 975 I l e Gl y Pr o Leu Leu Val Cy s Hi s Thr As n Thr Leu As n Pr o Al a Hi s 980 985 990 Gl y Ar g Gl n Val Thr Val Gl n Gl u Phe Al a Leu Phe Phe Thr I l e Phe 995 1000 1005
    Asp Gl u Thr Lys Ser Trp Tyr Phe Thr Gl u Asn Met Gl u Arg Asn
    1010 1015 1020
    Page 508
    97047_1
    2018203206 08 May 2018
    Cys Ar g 1025 Al a Pro Cys Asn Ile 1030 Gl n Met Gl u As p Pr o 1035 Thr Phe Lys Gl u As n Tyr Ar g Phe Hi s Al a Ile As n Gl y Tyr Ile Met As p Thr 1040 1045 1050 Leu Pr o Gl y Leu Val Met Al a Gl n As p Gl n Ar g Ile Ar g Tr p Tyr 1055 1060 1065 Leu Leu Ser Met Gl y Ser As n Gl u As n Ile Hi s Ser I l e Hi s Phe 1070 1075 1080 Ser Gl y Hi s Val Phe Thr Val Ar g Lys Lys Gl u Gl u Tyr Lys Met 1085 1090 1095 Al a Leu Tyr As n Leu Tyr Pr o Gl y Val Phe Gl u Thr Val Gl u Met 1100 1105 1110 Leu Pr o Ser Lys Al a Gl y Ile Tr p Ar g Val Gl u Cys Leu I l e Gl y 1115 1120 1125 Gl u Hi s Leu Hi s Al a Gl y Met Ser Thr Leu Phe Leu Val Tyr Ser 1130 1135 1140 As n Lys Cys Gl n Thr Pr o Leu Gl y Met Al a Ser Gl y Hi s I l e Ar g
    Page 509
    2018203206 08 May 2018
    97047_1
    1145 1150 1155
    As p Phe 1160 Gl n Ile Thr Al a Ser 1165 Gl y Gl n Tyr Gl y Gl n 1170 Tr p Al a Pr o Lys Leu Al a Ar g Leu Hi s Tyr Ser Gl y Ser Ile As n Al a Tr p Ser 1175 1180 1185 Thr Lys Gl u Pr o Phe Ser Tr p Ile Lys Val As p Leu Leu Al a Pr o 1190 1195 1200 Met I l e I l e Hi s Gl y Ile Lys Thr Gl n Gl y Al a Ar g Gl n Lys Phe 1205 1210 1215 Ser Ser Leu Tyr Ile Ser Gl n Phe Ile Ile Met Tyr Ser Leu As p 1220 1225 1230 Gl y Lys Lys Tr p Gl n Thr Tyr Ar g Gl y As n Ser Thr Gl y Thr Leu 1235 1240 1245 Met Val Phe Phe Gl y As n Val As p Ser Ser Gl y Ile Lys Hi s As n 1250 1255 1260
    I l e Phe
    As n Pr o Pr o I l e I l e
    Al a Arg Tyr Ile Arg
    Leu Hi s Pr o
    1265
    1270
    1275
    Page 510
    97047_1
    2018203206 08 May 2018
    Thr Hi s 1280 Tyr Ser Ile Ar g Ser 1285 Thr Leu Ar g Met Gl u 1290 Leu Met Gl y Cys As p Leu As n Ser Cys Ser Met Pr o Leu Gl y Met Gl u Ser Lys 1295 1300 1305 Al a I l e Ser As p Al a Gl n Ile Thr Al a Ser Ser Tyr Phe Thr As n 1310 1315 1320 Met Phe Al a Thr Tr p Ser Pr o Ser Lys Al a Ar g Leu Hi s Leu Gl n 1325 1330 1335 Gl y Ar g Ser As n Al a Tr p Ar g Pr o Gl n Val As n As n Pr o Lys Gl u 1340 1345 1350 Tr p Leu Gl n Val As p Phe Gl n Lys Thr Met Lys Val Thr Gl y Val 1355 1360 1365 Thr Thr Gl n Gl y Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys 1370 1375 1380 Gl u Phe Leu Ile Ser Ser Ser Gl n As p Gl y Hi s Gl n Tr p Thr Leu 1385 1390 1395 Phe Phe Gl n As n Gl y Lys Val Lys Val Phe Gl n Gl y As n Gl n As p
    Page 511
    2018203206 08 May 2018
    9 7047 _1 1400 1405 1410 Ser Phe Thr Pr o Val Val As n Ser Leu As p Pr o Pr o Leu Leu Thr 1415 1420 1425 Ar g Tyr Leu Ar g Ile Hi s Pr o Gl n Ser Tr p Val Hi s Gl n I l e Al a 1430 1435 1440 Leu Ar g Met Gl u Val Leu Gl y Cys Gl u Al a Gl n As p Leu Tyr As p 1445 1450 1455 Lys Thr Hi s Thr Cys Pr o Pr o Cys Pr o Al a Pr o Gl u Leu Leu Gl y 1460 1465 1470 Gl y Pr o Ser Val Phe Leu Phe Pr o Pr o Lys Pr o Lys As p Thr Leu 1475 1480 1485 Met I l e Ser Ar g Thr Pr o Gl u Val Thr Cys Val Val Val As p Val 1490 1495 1500 Ser Hi s Gl u As p Pr o Gl u Val Lys Phe As n Tr p Tyr Val As p Gl y 1505 1510 1515 Val Gl u Val Hi s As n Al a Lys Thr Lys Pr o Ar g Gl u Gl u Gl n Tyr 1520 1525 1530
    Page 512
    97047_1
    2018203206 08 May 2018
    As n Ser 1535 Thr Tyr Ar g Val Val 1540 Ser Val Leu Thr Val 1545 Leu Hi s Gl n As p Tr p Leu As n Gl y Lys Gl u Tyr Lys Cys Lys Val Ser As n Lys 1550 1555 1560 Al a Leu Pr o Al a Pr o Ile Gl u Lys Thr Ile Ser Lys Al a Lys Gl y 1565 1570 1575 Gl n Pr o Ar g Gl u Pr o Gl n Val Tyr Thr Leu Pr o Pr o Ser Ar g As p 1580 1585 1590 Gl u Leu Thr Lys As n Gl n Val Ser Leu Thr Cys Leu Val Lys Gl y 1595 1600 1605 Phe Tyr Pr o Ser As p Ile Al a Val Gl u Tr p Gl u Ser As n Gl y Gl n 1610 1615 1620 Pr o Gl u As n As n Tyr Lys Thr Thr Pr o Pr o Val Leu As p Ser As p 1625 1630 1635 Gl y Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val As p Lys Ser Ar g 1640 1645 1650 Tr p Gl n Gl n Gl y As n Val Phe Ser Cys Ser Val Met Hi s Gl u Al a
    Page 513
    2018203206 08 May 2018
    97047_1
    1655 1660 1665
    Leu Hi s As n Hi s Ty r Thr Gl n Ly s Ser Leu Ser Leu Ser Pr o Gl y 1670 1675 1680
    Lys <210> 127 <211> 78 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AE72 XTEN <400> 127
    Gl y Al a Pr o Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser
    1 5 10 15
    Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a
    20 25 30
    Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u
    Thr
    Pr o Gl y Thr Ser
    Gl u Ser Al a
    Thr
    Pr o Gl u Ser
    Gl y Pr o Gl y Thr
    Page 514
    2018203206 08 May 2018
    97047_1
    50 55 60
    Ser Thr Gl u Pr o Ser Gl u Gl y Ser 65 70 <210> 128 <211> 144 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AE144_2A <400> 128
    Thr Ser Thr Gl u Pr o Ser Gl u Gl y 1 5
    Ser Pr o Thr Ser Thr Gl u Gl u Gl y 20
    Ser Al a Pr o Gl y Thr Ser Thr Gl u 35 40
    Thr Ser Gl u Ser Al a Thr Pr o Gl u
    50 55
    Pr o Ser Gl u Gl y Ser Al a Pr o Gl y
    Al a Pr o Gl y Al a Ser Ser 75
    Ser Al a Pr o Gl y Ser Pr o Al a Gl y 10 15
    Thr Ser Thr Gl u Pr o Ser Gl u Gl y 25 30
    Pr o Ser Gl u Gl y Ser Al a Pr o Gl y 45
    Ser Gl y Pr o Gl y Thr Ser Thr Gl u 60
    Thr Ser Gl u Ser Al a Thr Pr o Gl u
    Page 515
    2018203206 08 May 2018
    970 47_1 65 70 75 Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o 85 90 95 Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr 10 0 105 110 Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 115 12 0 125 Ser Gl y Pr o Gl y Thr Ser Gl u Se r Al a Thr Pr o Gl u Ser Gl y Pr o
    130 135 140
    Gl y
    Gl u
    Gl u
    Gl y <210> 129 <211> 144 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AE144_3B <400> 129 Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Gl u 1 5 10 15
    Ser
    Al a Thr
    Pr o Gl u Ser Gl y Pr o Gl y
    Ser
    Gl u Pr o Al a
    Thr Ser Gl y
    Ser
    Page 516
    2018203206 08 May 2018
    97047_1
    20 25 30
    Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y 35 40 45
    Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr Gl u 50 55 60
    Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y 65 70 75 80
    Ser Al a Pr o Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y 85 90 95
    Thr Ser Thr
    Gl u Pr o Ser
    100
    Gl u Gl y Ser
    Al a Pr o Gl y Thr
    Ser Thr
    Gl u
    105
    110
    Pr o Ser
    Gl u Gl y Ser 115
    Al a Pr o Gl y Ser 120
    Pr o Al a Gl y Ser Pr o Thr Ser 125
    Thr Gl u Gl u Gl y Thr
    Ser
    Thr
    Gl u Pr o Ser
    130
    135
    Gl u Gl y Ser 140
    Al a Pr o Gl y
    <210> 130 <211> 144 <212> PRT
    Page 517
    97047_1
    2018203206 08 May 2018 <213> Ar t i f i ci al Sequence <220>
    <223> AE144_4A <400> 130
    Thr Ser Gl u Ser Al a Thr Pr o 1 5 Thr Ser Gl y Ser Gl u Thr Pr o 20 Ser Gl y Pr o Gl y Ser Gl u Pr o 35 Thr Ser Gl u Ser Al a Thr Pr o 50 55 Pr o Ser Gl u Gl y Ser Al a Pr o 65 70 Ser Gl y Pr o Gl y Ser Pr o Al a 85 Ser Pr o Al a Gl y Ser Pr o Thr
    100
    Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o 10 15 Gl y Thr Ser Gl u Ser Al a Thr Pr o 25 30 Al a Thr Ser Gl y Ser Gl u Thr Pr o 40 45 Gl u Ser Gl y Pr o Gl y Thr Ser Thr 60 Gl y Thr Ser Gl u Ser Al a Thr Pr o 75 Gl y Ser Pr o Thr Ser Thr Gl u Gl u 90 95 Se r Thr Gl u Gl u Gl y Ser Pr o Al a 105 110
    Al a
    Gl u
    Gl y
    Gl u
    Gl u
    Gl y
    Gl y
    Page 518
    2018203206 08 May 2018
    Ser Pr o Thr 115 Ser Thr Ser Gl y 130 Pr o Gl y Thr
    97047 1
    Gl u Gl u Gl y 120 Thr Ser Ser Thr Gl u Pr o Ser 135
    Gl u Ser Al a Thr
    125
    Gl u Gl y Ser Al a 140
    Pr o Gl u
    Pr o Gl y <210> 131 <211> 144 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AE144_5A <400> 131
    Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u 1 5 10
    Pr o Al a
    Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr
    Pr o Gl u
    Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr
    Pr o Gl y
    Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Thr Ser
    Thr Gl u
    Page 519
    97047_1
    2018203206 08 May 2018
    Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser 65 70 75 80 Thr Gl u Gl u Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y 85 90 95 Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser 100 105 110 Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser 115 120 125 Thr Gl u Gl u Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y 130 135 140 <210> 132 <211> 144 <212> PRT <213> Art i f i ci al Sequence <220> <223> AE144 _6B <400> 132 Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Thr Ser Gl u Ser 1 5 10 15
    Page 520
    97047_1
    2018203206 08 May 2018
    Al a Thr Pr o Gl u 20 Ser Gl y Pr o Gl y Thr 25 Ser Gl u Ser Al a Thr 30 Pr o Ser Gl y Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o Gl u Ser Gl y Pr o 35 40 45 Ser Gl u Pr o Al a Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Gl u Pr o 50 55 60 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Ser Pr o Al a Gl y Ser Pr o Thr 65 70 75 Thr Gl u Gl u Gl y Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 85 90 95 Thr Ser Thr Gl u Pr o Ser Gl u Gl y Ser Al a Pr o Gl y Ser Gl u Pr o 100 105 110 Thr Ser Gl y Ser Gl u Thr Pr o Gl y Thr Ser Gl u Ser Al a Thr Pr o 115 120 125
    Gl u
    Gl y
    Al a
    Ser
    Gl y
    Al a
    Gl u
    Ser Gl y Pr o Gl y Thr Ser Thr
    Gl u Pr o Ser
    Gl u Gl y Ser Al a Pr o
    Gl y
    130
    135
    140 <210> 133
    Page 521
    2018203206 08 May 2018
    97047_1 <211> 144 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AG144_A <400> 133
    Gl y 1 Al a Ser Pr o Gl y 5 Thr Ser Ser Thr Gl y 10 Ser Pr o Gl y Ser Ser 15 Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Ser Ser Pr o Ser Al a Ser Thr 20 25 30 Gl y Thr Gl y Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o 35 40 45 Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Pr o 50 55 60 Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 65 70 75 80 Thr Gl y Ser Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o 85 90 95 Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Thr Pr o Gl y
    Page 522
    97047_1
    2018203206 08 May 2018
    100 105 110 Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 115 120 125 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 130 135 140
    <210> 134 <211> 144 <212> PRT <213> Artificial Sequence <220>
    <223> AG144_B <400> 134
    Gl y 1 Thr Pr o Gl y Ser 5 Gl y Thr Al a Ser Ser 10 Ser Pr o Gl y Ser Ser 15 Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 20 25 30 Thr Gl y Ser Pr o Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o 35 40 45 Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Pr o
    Page 523
    97047_1
    2018203206 08 May 2018
    50 55 60 Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Ser Ser Pr o Ser Al a Ser Thr 65 70 75 80 Gl y Thr Gl y Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o 85 90 95 Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Al a Ser Pr o 100 105 110 Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 115 120 125 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 130 135 140
    <210> 135 <211> 144 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AG144_C <400> 135
    Gl y Thr Pr o Gl y Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Al a Ser Pr o
    Page 524
    2018203206 08 May 2018
    97047_1
    1 5 10 15
    Gl y Thr Ser Ser 20 Thr Gl y Ser Pr o Gl y 25 Al a Ser Pr o Gl y Thr 30 Ser Ser Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 35 40 45 Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Thr Pr o Gl y 50 55 60 Ser Gl y Thr Al a Ser Ser Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 65 70 75 80 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 85 90 95 Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o Gl y Ser Ser Thr 100 105 110 Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Thr Pr o Ser Gl y Al a 115 120 125 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 130 135 140
    Page 525
    97047_1
    2018203206 08 May 2018 <210> 136 <211> 144 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AG144_F <400> 136
    Gl y 1 Ser Ser Pr o Ser 5 Al a Ser Thr Gl y Thr 10 Gl y Pr o Gl y Ser Ser 15 Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 20 25 30 Thr Gl y Ser Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser Thr Gl y Ser Pr o 35 40 45 Gl y Ser Ser Thr Pr o Ser Gl y Al a Thr Gl y Ser Pr o Gl y Ser Ser Pr o 50 55 60 Ser Al a Ser Thr Gl y Thr Gl y Pr o Gl y Al a Ser Pr o Gl y Thr Ser Ser 65 70 75 80 Thr Gl y Ser Pr o Gl y Ser Ser Pr o Ser Al a Ser Thr Gl y Thr Gl y Pr o 85 90 95
    Page 526
    97047_1
    2018203206 08 May 2018
    Gl y Thr
    Pr o Gl y Ser
    100
    Pr o Ser Gl y Al a Thr
    115
    Thr Gl y Ser
    130
    Gl y Thr Al a Ser
    Gl y Ser
    Pr o Gl y Al a Ser
    135
    Ser
    Ser
    Pr o Gl y Ser Ser Thr
    105
    110
    Pr o Gl y Ser Ser Thr
    120
    Pr o Gl y Thr Ser
    Pr o Ser Gl y Al a
    125
    Ser Thr
    Gl y Ser
    Pr o
    140 <210> 137 <211> 288 <212> PRT <213> Art i f i ci al Sequence <220>
    <223> AE288_2 <400> 137
    Gl y Ser Pr o Al a Gl y Ser Pr o Thr Ser Thr Gl u Gl u Gl y Thr Ser Gl u 1 5 10 15
    Ser Al a Thr Pr o Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o Al a Thr Ser Gl y
    Ser Gl u Thr
    Pr o Gl y Thr
    Ser Gl u Ser
    Al a Thr Pr o
    Gl u Ser Gl y Pr o 45
    Page 527
    2018203206 08 May 2018
    Gl y Thr 50 Ser Thr Gl u Pr o Ser 55 Gl u 65 Pr o Ser Gl u Gl y Ser 70 Al a Gl y Ser Al a Pr o Gl y 85 Thr Ser Gl y Thr Ser Thr 100 Gl u Pr o Ser Gl u Pr o Ser 115 Gl u Gl y Ser Al a Ser Thr 130 Gl u Gl u Gl y Thr Ser 135 Gl y 145 Thr Ser Gl u Ser Al a 150 Thr Al a Thr Ser Gl y Ser 165 Gl u Thr Gl u Ser Gl y Pr o Gl y Ser Gl u
    97047_1
    Gl y Ser Al a Pr o Gl y Thr Ser Thr 60
    Gl y Thr Ser Thr Gl u Pr o Ser Gl u 75 80
    Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 90 95
    Gl y Ser Al a Pr o Gl y Thr Ser Thr 105 110
    Gl y Ser Pr o Al a Gl y Ser Pr o Thr 125
    Gl u Pr o Ser Gl u Gl y Ser Al a Pr o 140
    Gl u Ser Gl y Pr o Gl y Ser Gl u Pr o 155 160
    Gl y Thr Ser Gl u Ser Al a Thr Pr o 170 175
    Al a Thr Ser Gl y Ser Gl u Thr Pr o
    Page 528
    97047_1
    2018203206 08 May 2018
    180 Gl y Thr Ser Gl u Ser Al a Thr Pr o 195 200 Gl u Pro Ser Gl u Gl y Ser Al a Pr o 210 215 Gl u Ser Gl y Pr o Gl y Ser Pr o Al a 225 230 Gl y Ser Pr o Al a Gl y Ser Pr o Thr 245 Gl y Ser Pr o Thr Ser Thr Gl u Gl u 260 Gl u Ser Gl y Pr o Gl y Thr Ser Thr 275 280 <210> 138 <211> 20 <212> PRT <213> Art i f i ci al Sequence <220> <223> l i nker
    18 5 190 Gl u Ser Gl y Pr o Gl y Thr Ser Thr 205 Gl y Thr Ser Gl u Ser Al a Thr Pr o 22 0 Gl y Ser Pr o Th r Ser Thr Gl u Gl u 235 240 Se r Thr Gl u Gl u Gl y Ser Pr o Al a 250 255 Gl y Thr Ser Gl u Ser Al a Thr Pr o 26 5 270 Gl u Pr o Ser Gl u Gl y Ser Al a Pr o
    285
    Page 529
    97047 1
    2018203206 08 May 2018
    <400> 138 Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y 1 5 10 15
    Gl y Gl y Gl y Ser 20
    <210> 139 <211> 5 <212> PRT <213> Art i f i ci al Sequence
    <220> <223> l i nker
    <220> <221> REPEAT <222> (1). . (5) <223> May be repeated 1 to 10 times <400> 139 Gl y Gl y Gl y Gl y Ser 1 5
    <210> 140 <211> 6 <212> PRT
    Page 530
    2018203206 08 May 2018
    97047_1 <213> Art i f i ci al Sequence <220>
    <223> l i nker <220>
    <221> REPEAT <222> (2)..(6) <223> May be r epeat ed 1 t o 10 t i mes <400> 140
    Ser Gl y Gl y Gl y Gl y Ser
    1 5
    Page 531
AU2018203206A 2012-07-11 2018-05-08 Factor VIII Complex With XTEN and Von Willebrand Factor Protein, and Uses Thereof Active AU2018203206B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018203206A AU2018203206B2 (en) 2012-07-11 2018-05-08 Factor VIII Complex With XTEN and Von Willebrand Factor Protein, and Uses Thereof
AU2020264355A AU2020264355A1 (en) 2012-07-11 2020-11-05 Factor VIII complex with XTEN and von Willebrand factor protein, and uses thereof
AU2022252703A AU2022252703B2 (en) 2012-07-11 2022-10-10 Factor VIII complex with XTEN and von Willebrand factor protein, and uses thereof

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US201261670401P 2012-07-11 2012-07-11
US61/670,401 2012-07-11
US201361759819P 2013-02-01 2013-02-01
US61/759,819 2013-02-01
US201361801544P 2013-03-15 2013-03-15
US201361801504P 2013-03-15 2013-03-15
US61/801,544 2013-03-15
US61/801,504 2013-03-15
US201361827158P 2013-05-24 2013-05-24
US61/827,158 2013-05-24
US201361840811P 2013-06-28 2013-06-28
US61/840,811 2013-06-28
PCT/US2013/049989 WO2014011819A2 (en) 2012-07-11 2013-07-10 Factor viii complex with xten and von willebrand factor protein, and uses thereof
AU2013290173A AU2013290173B2 (en) 2012-07-11 2013-07-10 Factor VIII complex with XTEN and von Willebrand Factor protein, and uses thereof
AU2018203206A AU2018203206B2 (en) 2012-07-11 2018-05-08 Factor VIII Complex With XTEN and Von Willebrand Factor Protein, and Uses Thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2013290173A Division AU2013290173B2 (en) 2012-07-11 2013-07-10 Factor VIII complex with XTEN and von Willebrand Factor protein, and uses thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2020264355A Division AU2020264355A1 (en) 2012-07-11 2020-11-05 Factor VIII complex with XTEN and von Willebrand factor protein, and uses thereof

Publications (2)

Publication Number Publication Date
AU2018203206A1 true AU2018203206A1 (en) 2018-05-24
AU2018203206B2 AU2018203206B2 (en) 2020-08-06

Family

ID=49916682

Family Applications (4)

Application Number Title Priority Date Filing Date
AU2013290173A Active AU2013290173B2 (en) 2012-07-11 2013-07-10 Factor VIII complex with XTEN and von Willebrand Factor protein, and uses thereof
AU2018203206A Active AU2018203206B2 (en) 2012-07-11 2018-05-08 Factor VIII Complex With XTEN and Von Willebrand Factor Protein, and Uses Thereof
AU2020264355A Abandoned AU2020264355A1 (en) 2012-07-11 2020-11-05 Factor VIII complex with XTEN and von Willebrand factor protein, and uses thereof
AU2022252703A Active AU2022252703B2 (en) 2012-07-11 2022-10-10 Factor VIII complex with XTEN and von Willebrand factor protein, and uses thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU2013290173A Active AU2013290173B2 (en) 2012-07-11 2013-07-10 Factor VIII complex with XTEN and von Willebrand Factor protein, and uses thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
AU2020264355A Abandoned AU2020264355A1 (en) 2012-07-11 2020-11-05 Factor VIII complex with XTEN and von Willebrand factor protein, and uses thereof
AU2022252703A Active AU2022252703B2 (en) 2012-07-11 2022-10-10 Factor VIII complex with XTEN and von Willebrand factor protein, and uses thereof

Country Status (31)

Country Link
US (3) US10138291B2 (en)
EP (3) EP4269431A1 (en)
JP (5) JP6603128B2 (en)
KR (2) KR102329315B1 (en)
CN (2) CN110054699A (en)
AR (1) AR091735A1 (en)
AU (4) AU2013290173B2 (en)
BR (1) BR112015000267B1 (en)
CA (1) CA2878679A1 (en)
CL (1) CL2015000060A1 (en)
CO (1) CO7170123A2 (en)
CY (1) CY1122729T1 (en)
DK (1) DK2882450T3 (en)
EA (2) EA201792485A3 (en)
ES (1) ES2770501T3 (en)
HK (1) HK1211228A1 (en)
HR (1) HRP20200007T1 (en)
HU (1) HUE047088T2 (en)
IL (1) IL236412B (en)
LT (1) LT2882450T (en)
MX (1) MX2015000397A (en)
NZ (1) NZ703366A (en)
PH (1) PH12015500039A1 (en)
PL (1) PL2882450T3 (en)
PT (1) PT2882450T (en)
RS (1) RS59876B1 (en)
SG (3) SG10201701037WA (en)
SI (1) SI2882450T1 (en)
TW (1) TWI667258B (en)
UA (1) UA116632C2 (en)
WO (1) WO2014011819A2 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2748314C (en) * 2009-02-03 2018-10-02 Amunix Operating Inc. Extended recombinant polypeptides and compositions comprising same
WO2011028229A1 (en) 2009-08-24 2011-03-10 Amunix Operating Inc. Coagulation factor ix compositions and methods of making and using same
PT2804623T (en) 2012-01-12 2019-11-18 Bioverativ Therapeutics Inc Chimeric factor viii polypeptides and uses thereof
CA2864126A1 (en) 2012-02-15 2013-08-22 Biogen Idec Ma Inc. Recombinant factor viii proteins
LT3564260T (en) 2012-02-15 2023-01-10 Bioverativ Therapeutics Inc. Factor viii compositions and methods of making and using same
EP3404105A1 (en) 2012-07-06 2018-11-21 Bioverativ Therapeutics Inc. Cell line expressing single chain factor viii polypeptides and uses thereof
BR112015000267B1 (en) 2012-07-11 2023-01-24 Bioverativ Therapeutics Inc. CHIMERIC PROTEINS, AND PHARMACEUTICAL COMPOSITION
FI2956477T4 (en) 2013-02-15 2024-04-24 Bioverativ Therapeutics Inc Optimized factor viii gene
SG11201505926VA (en) 2013-03-15 2015-09-29 Biogen Ma Inc Factor ix polypeptide formulations
EP2796145B1 (en) 2013-04-22 2017-11-01 CSL Ltd. A covalent complex of von willebrand factor and faktor viii linked by a disulphide bridge
NZ713904A (en) * 2013-06-28 2022-02-25 Bioverativ Therapeutics Inc Thrombin cleavable linker with xten and its uses thereof
TW202003554A (en) 2013-08-14 2020-01-16 美商百歐維拉提夫治療公司 Factor VIII-XTEN fusions and uses thereof
CN116621991A (en) 2014-01-10 2023-08-22 比奥贝拉蒂治疗公司 Factor VIII chimeric proteins and uses thereof
DK3265489T3 (en) * 2015-03-06 2019-07-15 CSL Behring Lengnau AG CONNECTIONS FOR IMPROVING THE HALF TIME OF VON WILLEBRAND FACTOR
DK3297656T3 (en) * 2015-05-22 2020-03-09 CSL Behring Lengnau AG Truncated von Willebrand Factor polypeptides for the treatment of haemophilia
EA201890423A1 (en) 2015-08-03 2018-07-31 Биовератив Терапьютикс Инк. SLIGHT PROTEINS OF THE FACTOR IX, METHODS OF THEIR RECEPTION AND APPLICATION
BR112018002838A2 (en) 2015-08-12 2019-01-15 Cell Machines Inc coagulation factor complex, kit, treatment method
CN108135968A (en) 2015-08-28 2018-06-08 阿穆尼克斯运营公司 Chimeric polyeptides assembly and its preparation and application
JP6851381B6 (en) 2016-01-07 2021-04-21 ツェー・エス・エル・ベーリング・レングナウ・アクチエンゲゼルシャフト Mutant cleavage type von Will brand factor
PL3411478T3 (en) 2016-02-01 2022-10-03 Bioverativ Therapeutics Inc. Optimized factor viii genes
ES2938890T3 (en) 2016-05-20 2023-04-17 Octapharma Ag Glycosylated VWF fusion proteins with improved pharmacokinetics
WO2017222337A1 (en) 2016-06-24 2017-12-28 재단법인 목암생명과학연구소 Chimera protein comprising fviii and vwf factors, and use thereof
CN106279437B (en) * 2016-08-19 2017-10-31 安源医药科技(上海)有限公司 Hyperglycosylated human coagulation factor VIII fusion proteins and preparation method thereof and purposes
CN107759697B (en) 2016-08-19 2023-03-24 安源医药科技(上海)有限公司 Method for producing fusion protein
US10738338B2 (en) 2016-10-18 2020-08-11 The Research Foundation for the State University Method and composition for biocatalytic protein-oligonucleotide conjugation and protein-oligonucleotide conjugate
TW201828975A (en) 2016-11-11 2018-08-16 瑞士商Csl貝林重組技能公司 Truncated von Willebrand factor polypeptides for treating hemophilia
JP2020504082A (en) 2016-11-11 2020-02-06 ツェー・エス・エル・ベーリング・レングナウ・アクチエンゲゼルシャフト Truncated von Willebrand factor polypeptide for extravascular administration in the treatment or prevention of blood clotting disorders
MX2019006446A (en) 2016-12-02 2019-12-11 Bioverativ Therapeutics Inc Methods of inducing immune tolerance to clotting factors.
EP3548066A1 (en) 2016-12-02 2019-10-09 Bioverativ Therapeutics Inc. Methods of treating hemophilic arthropathy using chimeric clotting factors
KR20190112763A (en) 2017-01-31 2019-10-07 바이오버라티브 테라퓨틱스 인크. Factor IX Fusion Proteins and Methods of Making and Using the Same
GB201707139D0 (en) * 2017-05-04 2017-06-21 Imp Innovations Ltd Polypeptides
SG11202000764RA (en) 2017-08-09 2020-02-27 Bioverativ Therapeutics Inc Nucleic acid molecules and uses thereof
CA3085950A1 (en) 2017-12-21 2019-06-27 Amunix Pharmaceuticals, Inc. Release segments and binding compositions comprising same
SG11202010767SA (en) 2018-05-18 2020-11-27 Bioverativ Therapeutics Inc Methods of treating hemophilia a
BR112021002017A2 (en) 2018-08-09 2021-05-11 Bioverativ Therapeutics Inc. nucleic acid molecules and their uses for non-viral gene therapy
EP3881078A1 (en) 2018-11-15 2021-09-22 Quantum-Si Incorporated Methods and compositions for protein sequencing
JP2022514465A (en) 2018-12-06 2022-02-14 バイオベラティブ セラピューティクス インコーポレイテッド Use of lentiviral vector expressing factor IX
US10654911B1 (en) 2019-04-02 2020-05-19 Beijing Neoletix Biological Technology Co., Ltd. Vector co-expressing truncated von Willebrand factor and factor VIII
BR112021025426A2 (en) * 2019-06-19 2022-06-21 Bioverativ Therapeutics Inc Recombinant factor viii-fc for the treatment of hemophilia and low bone mineral density
CN112175088B (en) * 2019-07-02 2023-03-28 江苏晟斯生物制药有限公司 FIX fusion proteins, conjugates and uses thereof
CN114364796B (en) * 2019-09-02 2023-07-11 甘李药业股份有限公司 Chimeric proteins
BR112022009217A2 (en) 2019-11-13 2022-08-02 Amunix Pharmaceuticals Inc BAR-CODE XTEN POLYPEPTIDES AND COMPOSITIONS THEREOF, AND METHODS FOR PRODUCING AND USING THEM
CN116925237A (en) 2019-12-31 2023-10-24 北京质肽生物医药科技有限公司 Fusion proteins of GLP-1 and GDF15 and conjugates thereof
CN115322794A (en) 2020-01-11 2022-11-11 北京质肽生物医药科技有限公司 Conjugates of fusion proteins of GLP-1 and FGF21
KR20230012052A (en) * 2020-05-20 2023-01-25 퀀텀-에스아이 인코포레이티드 Methods and compositions for protein sequencing
EP4222176A4 (en) 2020-09-30 2024-02-28 Beijing QL Biopharmaceutical Co., Ltd. Polypeptide conjugates and methods of uses
EP4358938A1 (en) 2021-06-23 2024-05-01 Bioverativ Therapeutics Inc. Formulations of factor viii chimeric proteins and uses thereof
CN113862301A (en) * 2021-08-25 2021-12-31 上海交通大学医学院附属瑞金医院 VWF propeptide expression vector and preparation method and application thereof
WO2024168279A2 (en) 2023-02-10 2024-08-15 Amunix Pharmaceuticals, Inc. Compositions targeting prostate-specific membrane antigen (psma) and methods for making and using the same

Family Cites Families (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4215051A (en) 1979-08-29 1980-07-29 Standard Oil Company (Indiana) Formation, purification and recovery of phthalic anhydride
US4713339A (en) 1983-01-19 1987-12-15 Genentech, Inc. Polycistronic expression vector construction
US4757006A (en) 1983-10-28 1988-07-12 Genetics Institute, Inc. Human factor VIII:C gene and recombinant methods for production
US4965199A (en) 1984-04-20 1990-10-23 Genentech, Inc. Preparation of functional human factor VIII in mammalian cells using methotrexate based selection
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4965188A (en) 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US5981216A (en) 1985-04-01 1999-11-09 Alusuisse Holdings A.G. Transformed myeloma cell-line and a process for the expression of a gene coding for a eukaryotic polypeptide employing same
ES8801674A1 (en) 1985-04-12 1988-02-16 Genetics Inst Novel procoagulant proteins.
KR910006424B1 (en) 1985-08-21 1991-08-24 인코텍스 비.브이 Method of manufacturing knitted briefs
WO1987004187A1 (en) 1986-01-03 1987-07-16 Genetics Institute, Inc. METHOD FOR PRODUCING FACTOR VIII:c-TYPE PROTEINS
US5595886A (en) 1986-01-27 1997-01-21 Chiron Corporation Protein complexes having Factor VIII:C activity and production thereof
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US5610278A (en) 1986-06-24 1997-03-11 Novo Nordisk A/S Process for producing a coagulation active complex of factor VIII fragments
US4912040A (en) 1986-11-14 1990-03-27 Genetics Institute, Inc. Eucaryotic expression system
DE3883899T3 (en) 1987-03-18 1999-04-22 Sb2, Inc., Danville, Calif. CHANGED ANTIBODIES.
CA1331157C (en) 1987-04-06 1994-08-02 Randal J. Kaufman Method for producing factor viii:c-type proteins
US6060447A (en) 1987-05-19 2000-05-09 Chiron Corporation Protein complexes having Factor VIII:C activity and production thereof
US5171844A (en) 1987-06-12 1992-12-15 Gist-Brocades N.W. Proteins with factor viii activity: process for their preparation using genetically-engineered cells and pharmaceutical compositions containing them
US6346513B1 (en) 1987-06-12 2002-02-12 Baxter Trading Gmbh Proteins with factor VIII activity: process for their preparation using genetically-engineered cells and pharmaceutical compositions containing them
DE3720246A1 (en) 1987-06-19 1988-12-29 Behringwerke Ag FACTOR VIII: C-LIKE MOLECULE WITH COAGULATION ACTIVITY
FR2619314B1 (en) 1987-08-11 1990-06-15 Transgene Sa FACTOR VIII ANALOG, PREPARATION METHOD AND PHARMACEUTICAL COMPOSITION CONTAINING THE SAME
US4994371A (en) 1987-08-28 1991-02-19 Davie Earl W DNA preparation of Christmas factor and use of DNA sequences
US6780613B1 (en) 1988-10-28 2004-08-24 Genentech, Inc. Growth hormone variants
US5004803A (en) 1988-11-14 1991-04-02 Genetics Institute, Inc. Production of procoagulant proteins
SE465222C5 (en) 1989-12-15 1998-02-10 Pharmacia & Upjohn Ab A recombinant human factor VIII derivative and process for its preparation
US5846951A (en) 1991-06-06 1998-12-08 The School Of Pharmacy, University Of London Pharmaceutical compositions
IE922437A1 (en) 1991-07-25 1993-01-27 Idec Pharma Corp Recombinant antibodies for human therapy
US6376463B1 (en) 1992-04-07 2002-04-23 Emory University Modified factor VIII
US5364771A (en) 1992-04-07 1994-11-15 Emory University Hybrid human/porcine factor VIII
US5859204A (en) 1992-04-07 1999-01-12 Emory University Modified factor VIII
US6037452A (en) 1992-04-10 2000-03-14 Alpha Therapeutic Corporation Poly(alkylene oxide)-Factor VIII or Factor IX conjugate
US5563045A (en) 1992-11-13 1996-10-08 Genetics Institute, Inc. Chimeric procoagulant proteins
SE504074C2 (en) 1993-07-05 1996-11-04 Pharmacia Ab Protein preparation for subcutaneous, intramuscular or intradermal administration
US5643575A (en) 1993-10-27 1997-07-01 Enzon, Inc. Non-antigenic branched polymer conjugates
GB9422383D0 (en) 1994-11-05 1995-01-04 Wellcome Found Antibodies
US6818439B1 (en) 1994-12-30 2004-11-16 Chiron Corporation Methods for administration of recombinant gene delivery vehicles for treatment of hemophilia and other disorders
US6485726B1 (en) 1995-01-17 2002-11-26 The Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of therapeutics
US6086875A (en) 1995-01-17 2000-07-11 The Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of immunogens
US6030613A (en) 1995-01-17 2000-02-29 The Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of therapeutics
US6121022A (en) 1995-04-14 2000-09-19 Genentech, Inc. Altered polypeptides with increased half-life
US5739277A (en) 1995-04-14 1998-04-14 Genentech Inc. Altered polypeptides with increased half-life
US6096871A (en) 1995-04-14 2000-08-01 Genentech, Inc. Polypeptides altered to contain an epitope from the Fc region of an IgG molecule for increased half-life
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
SE9503380D0 (en) 1995-09-29 1995-09-29 Pharmacia Ab Protein derivatives
US6458563B1 (en) 1996-06-26 2002-10-01 Emory University Modified factor VIII
CA2262405A1 (en) 1996-08-02 1998-02-12 Bristol-Myers Squibb Company A method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis
WO1998023289A1 (en) 1996-11-27 1998-06-04 The General Hospital Corporation MODULATION OF IgG BINDING TO FcRn
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
CA2225189C (en) 1997-03-06 2010-05-25 Queen's University At Kingston Canine factor viii gene, protein and methods of use
GB9722131D0 (en) 1997-10-20 1997-12-17 Medical Res Council Method
US6528624B1 (en) 1998-04-02 2003-03-04 Genentech, Inc. Polypeptide variants
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
US6242195B1 (en) 1998-04-02 2001-06-05 Genentech, Inc. Methods for determining binding of an analyte to a receptor
JP2002510481A (en) 1998-04-02 2002-04-09 ジェネンテック・インコーポレーテッド Antibody variants and fragments thereof
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
CA2341029A1 (en) 1998-08-17 2000-02-24 Abgenix, Inc. Generation of modified molecules with increased serum half-lives
EP1006183A1 (en) 1998-12-03 2000-06-07 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Recombinant soluble Fc receptors
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
PL209786B1 (en) 1999-01-15 2011-10-31 Genentech Inc Variant of mother polypeptide containing Fc region, polypeptide containing variant of Fc region with altered affinity of Fc gamma receptor binding (Fc R), polypeptide containing variant of Fc region with altered affinity of Fc gamma neonatal receptor binding (Fc Rn), composition, isolated nucleic acid, vector, host cell, method for obtaining polypeptide variant, the use thereof and method for obtaining region Fc variant
US7829085B2 (en) 1999-07-14 2010-11-09 Life Sciences Research Partners Vzw Methods of treating hemostasis disorders using antibodies binding the C1 domain of factor VIII
EP1278544A4 (en) 2000-04-12 2004-08-18 Human Genome Sciences Inc Albumin fusion proteins
EP1335931B1 (en) 2000-05-16 2005-12-21 Lipoxen Technologies Limited Derivatisation of proteins in aqueous solution
GB0029407D0 (en) 2000-12-01 2001-01-17 Affitech As Product
EP1355919B1 (en) 2000-12-12 2010-11-24 MedImmune, LLC Molecules with extended half-lives, compositions and uses thereof
CA2440582A1 (en) 2001-03-09 2002-10-03 Dyax Corp. Serum albumin binding moieties
US20080194481A1 (en) 2001-12-21 2008-08-14 Human Genome Sciences, Inc. Albumin Fusion Proteins
EP2277910A1 (en) 2001-12-21 2011-01-26 Human Genome Sciences, Inc. Albumin fusion proteins
KR101271635B1 (en) 2001-12-21 2013-06-12 휴먼 게놈 사이언시즈, 인코포레이티드 Albumin fusion proteins
US20040002587A1 (en) 2002-02-20 2004-01-01 Watkins Jeffry D. Fc region variants
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
KR20040088572A (en) 2002-03-01 2004-10-16 이뮤노메딕스, 인코오포레이티드 Bispecific antibody point mutations for enhancing rate of clearance
CN101143221A (en) 2002-03-15 2008-03-19 布赖汉姆妇女医院 Central airway administration for systemic delivery of therapeutics
ATE536188T1 (en) 2002-08-14 2011-12-15 Macrogenics Inc FCGAMMARIIB-SPECIFIC ANTIBODIES AND METHODS OF USE THEREOF
WO2004027901A2 (en) 2002-09-17 2004-04-01 Diffusion Science, Inc. Electrochemical generation, storage and reaction of hydrogen and oxygen using gas permeable catalyst-coated hollow microspheres
ES2562177T3 (en) 2002-09-27 2016-03-02 Xencor Inc. Optimized Fc variants and methods for their generation
EP1562972B1 (en) 2002-10-15 2010-09-08 Facet Biotech Corporation ALTERATION OF FcRn BINDING AFFINITIES OR SERUM HALF-LIVES OF ANTIBODIES BY MUTAGENESIS
GB2395337B (en) 2002-11-14 2005-12-28 Gary Michael Wilson Warning Unit
ES2897506T3 (en) 2003-01-09 2022-03-01 Macrogenics Inc Identification and modification of antibodies with variant Fc regions and methods of using them
US7041635B2 (en) 2003-01-28 2006-05-09 In2Gen Co., Ltd. Factor VIII polypeptide
CA2788505C (en) 2003-02-26 2018-09-04 Nektar Therapeutics Polymer-factor viii moiety conjugates
KR100851263B1 (en) 2003-02-28 2008-08-08 가부시키가이샤 구라레 Curable resin composition
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US7348004B2 (en) 2003-05-06 2008-03-25 Syntonix Pharmaceuticals, Inc. Immunoglobulin chimeric monomer-dimer hybrids
PL2298347T3 (en) 2003-05-06 2016-03-31 Bioverativ Therapeutics Inc Clotting factor chimeric proteins for treatment of a hemostatic disorder
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
WO2005016974A1 (en) 2003-08-12 2005-02-24 Lipoxen Technologies Limited Sialic acid derivatives for protein derivatisation and conjugation
GB0324368D0 (en) 2003-10-17 2003-11-19 Univ Cambridge Tech Polypeptides including modified constant regions
US7211559B2 (en) 2003-10-31 2007-05-01 University Of Maryland, Baltimore Factor VIII compositions and methods
JP2008504002A (en) 2003-11-12 2008-02-14 バイオジェン・アイデック・エムエイ・インコーポレイテッド Neonatal Fc receptor (FcRn) binding polypeptide variants, dimeric Fc binding proteins, and methods related thereto
US20050249723A1 (en) 2003-12-22 2005-11-10 Xencor, Inc. Fc polypeptides with novel Fc ligand binding sites
CN1918178B (en) 2004-01-12 2012-08-22 应用分子进化公司 Fc region variants
WO2005092925A2 (en) 2004-03-24 2005-10-06 Xencor, Inc. Immunoglobulin variants outside the fc region
WO2005123780A2 (en) 2004-04-09 2005-12-29 Protein Design Labs, Inc. Alteration of fcrn binding affinities or serum half-lives of antibodies by mutagenesis
WO2006085967A2 (en) 2004-07-09 2006-08-17 Xencor, Inc. OPTIMIZED ANTI-CD20 MONOCONAL ANTIBODIES HAVING Fc VARIANTS
EP2940043A1 (en) 2004-07-15 2015-11-04 Xencor, Inc. Optimized fc variants
US7566701B2 (en) 2004-09-07 2009-07-28 Archemix Corp. Aptamers to von Willebrand Factor and their use as thrombotic disease therapeutics
WO2006047350A2 (en) 2004-10-21 2006-05-04 Xencor, Inc. IgG IMMUNOGLOBULIN VARIANTS WITH OPTIMIZED EFFECTOR FUNCTION
WO2006071801A2 (en) * 2004-12-27 2006-07-06 Baxter International Inc Polymer-von willebrand factor-conjugates
EP1924596A4 (en) 2005-08-12 2009-07-29 Human Genome Sciences Inc Albumin fusion proteins
US7846445B2 (en) * 2005-09-27 2010-12-07 Amunix Operating, Inc. Methods for production of unstructured recombinant polymers and uses thereof
EP1996937A4 (en) 2006-03-06 2009-04-08 Amunix Inc Genetic packages and uses thereof
EP3896090B1 (en) 2006-06-14 2022-01-12 CSL Behring GmbH Proteolytically cleavable fusion protein comprising a blood coagulation factor
US9187532B2 (en) 2006-07-21 2015-11-17 Novo Nordisk A/S Glycosylation of peptides via O-linked glycosylation sequences
KR20090064453A (en) 2006-09-14 2009-06-18 휴먼 게놈 사이언시즈, 인코포레이티드 Albumin fusion proteins
JP2010505874A (en) 2006-10-03 2010-02-25 ノヴォ ノルディスク アー/エス Purification method for polypeptide conjugates
CN101600448B (en) 2006-10-04 2015-11-25 诺和诺德公司 The sugar of the PEGization that glycerol connects and glycopeptide
KR101542752B1 (en) * 2006-12-22 2015-08-10 체에스엘 베링 게엠베하 Modified coagulation factors with prolonged in vivo half-life
EP1935430A1 (en) 2006-12-22 2008-06-25 CSL Behring GmbH Modified coagulation factors with prolonged in vivo half-life
PL2173890T3 (en) 2007-06-21 2011-07-29 Univ Muenchen Tech Biological active proteins having increased in vivo and/or vitro stability
AU2008287340A1 (en) 2007-08-15 2009-02-19 Amunix, Inc. Compositions and methods for modifying properties of biologically active polypeptides
CN101965409A (en) 2007-11-01 2011-02-02 罗切斯特大学 Recombinant factor VIII with stability of increase
WO2009062100A1 (en) * 2007-11-09 2009-05-14 Baxter International Inc. Modified recombinant factor viii and von willebrand factor and methods of use
BRPI0821474B8 (en) 2007-12-28 2021-05-25 Baxalta GmbH stable liquid pharmaceutical formulation
KR101507718B1 (en) * 2008-06-24 2015-04-10 체에스엘 베링 게엠베하 Factor VIII, von Willebrand factor or complexes thereof with prolonged in vivo half-life
CA2744340A1 (en) 2008-11-24 2010-05-27 Bayer Healthcare Llc Method of determining pegylated blood coagulation factor activity in a silica-based activated partial thromboplastin time assay
CA2748314C (en) * 2009-02-03 2018-10-02 Amunix Operating Inc. Extended recombinant polypeptides and compositions comprising same
US8680050B2 (en) 2009-02-03 2014-03-25 Amunix Operating Inc. Growth hormone polypeptides fused to extended recombinant polypeptides and methods of making and using same
US8703717B2 (en) 2009-02-03 2014-04-22 Amunix Operating Inc. Growth hormone polypeptides and methods of making and using same
DE202010018378U1 (en) 2009-04-10 2016-04-07 Tufts Medical Center, Inc. PAR-1 activation by metalloproteinase-1 (MMP-1)
CA2764108A1 (en) 2009-06-08 2010-12-16 Amunix Operating Inc. Glucose-regulating polypeptides and methods of making and using same
ES2643641T3 (en) 2009-06-08 2017-11-23 Amunix Operating Inc. Growth hormone polypeptides and methods of production and use thereof
KR20120061898A (en) 2009-08-20 2012-06-13 체에스엘 베링 게엠베하 Albumin fused coagulation factors for non-intravenous administration in the therapy and prophylactic treatment of bleeding disorders
WO2011028229A1 (en) 2009-08-24 2011-03-10 Amunix Operating Inc. Coagulation factor ix compositions and methods of making and using same
WO2011028344A2 (en) 2009-08-25 2011-03-10 Amunix Operating Inc. Interleukin-1 receptor antagonist compositions and methods of making and using same
EP2499165B1 (en) * 2009-11-13 2016-09-14 Grifols Therapeutics Inc. Von willebrand factor (vwf)-containing preparations, and methods, kits, and uses related thereto
CA2782424C (en) 2009-12-06 2021-07-27 Biogen Idec Hemophilia Inc. Factor viii-fc chimeric and hybrid polypeptides, and methods of use thereof
US9493543B2 (en) 2010-02-16 2016-11-15 Novo Nordisk A/S Factor VIII fusion protein
EP2536753B1 (en) * 2010-02-16 2017-12-20 Novo Nordisk A/S Factor viii molecules with reduced vwf binding
MX2012013381A (en) 2010-05-20 2013-02-21 Allergan Inc Degradable clostridial toxins.
US9611310B2 (en) 2010-07-09 2017-04-04 Bioverativ Therapeutics Inc. Systems for factor VIII processing and methods thereof
US20130216513A1 (en) 2010-07-09 2013-08-22 Biogen Idec Hemophilia Inc. Chimeric Clotting Factors
US20130017997A1 (en) 2010-08-19 2013-01-17 Amunix Operating Inc. Factor VIII Compositions and Methods of Making and Using Same
PT2804623T (en) 2012-01-12 2019-11-18 Bioverativ Therapeutics Inc Chimeric factor viii polypeptides and uses thereof
CA2864126A1 (en) 2012-02-15 2013-08-22 Biogen Idec Ma Inc. Recombinant factor viii proteins
LT3564260T (en) 2012-02-15 2023-01-10 Bioverativ Therapeutics Inc. Factor viii compositions and methods of making and using same
BR112015000267B1 (en) 2012-07-11 2023-01-24 Bioverativ Therapeutics Inc. CHIMERIC PROTEINS, AND PHARMACEUTICAL COMPOSITION
NZ713904A (en) 2013-06-28 2022-02-25 Bioverativ Therapeutics Inc Thrombin cleavable linker with xten and its uses thereof
US20160229903A1 (en) 2013-06-28 2016-08-11 Biogen Ma Inc. Thrombin cleavable linker
CN116621991A (en) 2014-01-10 2023-08-22 比奥贝拉蒂治疗公司 Factor VIII chimeric proteins and uses thereof
SG11202010767SA (en) * 2018-05-18 2020-11-27 Bioverativ Therapeutics Inc Methods of treating hemophilia a

Also Published As

Publication number Publication date
WO2014011819A2 (en) 2014-01-16
US20220056108A1 (en) 2022-02-24
SI2882450T1 (en) 2020-02-28
PH12015500039A1 (en) 2015-03-16
AU2013290173A1 (en) 2015-01-22
EA201590198A1 (en) 2015-06-30
EP2882450B1 (en) 2019-11-27
WO2014011819A3 (en) 2014-03-06
JP7022165B2 (en) 2022-02-17
CO7170123A2 (en) 2015-01-28
BR112015000267B1 (en) 2023-01-24
LT2882450T (en) 2020-03-25
AU2018203206B2 (en) 2020-08-06
PT2882450T (en) 2020-02-19
ES2770501T3 (en) 2020-07-01
HUE047088T2 (en) 2020-04-28
US10138291B2 (en) 2018-11-27
TWI667258B (en) 2019-08-01
KR20150036510A (en) 2015-04-07
DK2882450T3 (en) 2020-02-24
EP2882450A2 (en) 2015-06-17
KR102403545B1 (en) 2022-05-30
TW201414749A (en) 2014-04-16
PL2882450T3 (en) 2020-06-29
JP2018102323A (en) 2018-07-05
CN104661674A (en) 2015-05-27
SG10201913893XA (en) 2020-03-30
EP4269431A1 (en) 2023-11-01
EP2882450A4 (en) 2016-06-22
IL236412A0 (en) 2015-02-26
EP3674410A1 (en) 2020-07-01
EA201792485A2 (en) 2018-08-31
EA201792485A3 (en) 2019-03-29
HRP20200007T1 (en) 2020-03-20
AR091735A1 (en) 2015-02-25
KR20210143931A (en) 2021-11-29
AU2022252703B2 (en) 2024-09-05
JP6603128B2 (en) 2019-11-06
SG11201500045RA (en) 2015-02-27
US11091534B2 (en) 2021-08-17
KR102329315B1 (en) 2021-11-19
AU2020264355A1 (en) 2020-12-03
JP2023166024A (en) 2023-11-17
US20150266943A1 (en) 2015-09-24
HK1211228A1 (en) 2016-05-20
SG10201701037WA (en) 2017-03-30
JP2020078352A (en) 2020-05-28
CA2878679A1 (en) 2014-01-16
CL2015000060A1 (en) 2015-08-28
RS59876B1 (en) 2020-03-31
JP2022000471A (en) 2022-01-04
NZ703366A (en) 2018-03-23
MX2015000397A (en) 2015-11-23
CY1122729T1 (en) 2021-03-12
CN110054699A (en) 2019-07-26
AU2022252703A1 (en) 2022-11-10
JP2015527882A (en) 2015-09-24
EA029685B1 (en) 2018-04-30
IL236412B (en) 2020-10-29
UA116632C2 (en) 2018-04-25
AU2013290173B2 (en) 2018-02-15
BR112015000267A2 (en) 2018-03-06
US20190169267A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
US20220056108A1 (en) Factor viii complex with xten and von willebrand factor protein, and uses thereof
AU2016202875B2 (en) Chimeric Factor VIII Polypeptides and Uses Thereof
KR102409250B1 (en) Factor viii chimeric proteins and uses thereof
US10548953B2 (en) Factor VIII-XTEN fusions and uses thereof
KR102110736B1 (en) Factor viii chimeric and hybrid polypeptides, and methods of use thereof
AU2017214378A1 (en) Optimized Factor VIII genes
CA2913078A1 (en) Thrombin cleavable linker with xten and its uses thereof
KR20210020030A (en) How to treat hemophilia A
EA042955B1 (en) METHOD FOR TREATMENT OF DISEASE OR CONDITION ASSOCIATED WITH BLEEDING USING FACTOR VIII COMPLEX WITH XTEN AND VON WILLEBRAND FACTOR PROTEIN AND ITS APPLICATION

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period
NB Applications allowed - extensions of time section 223(2)

Free format text: THE TIME IN WHICH TO REQUEST EXAMINATION HAS BEEN EXTENDED TO 15 AUG 2018

PC1 Assignment before grant (sect. 113)

Owner name: BIOVERATIV THERAPEUTICS INC.

Free format text: FORMER APPLICANT(S): AMUNIX OPERATING INC.; BIOVERATIV THERAPEUTICS INC.

FGA Letters patent sealed or granted (standard patent)