AU2018202270B2 - Naphthalene isoxazoline invertebrate pest control agents - Google Patents

Naphthalene isoxazoline invertebrate pest control agents Download PDF

Info

Publication number
AU2018202270B2
AU2018202270B2 AU2018202270A AU2018202270A AU2018202270B2 AU 2018202270 B2 AU2018202270 B2 AU 2018202270B2 AU 2018202270 A AU2018202270 A AU 2018202270A AU 2018202270 A AU2018202270 A AU 2018202270A AU 2018202270 B2 AU2018202270 B2 AU 2018202270B2
Authority
AU
Australia
Prior art keywords
nhch
sme
chf
compound
nme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2018202270A
Other versions
AU2018202270A1 (en
Inventor
George Philip Lahm
Jeffrey Keith Long
Ming Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corteva Agriscience LLC
Original Assignee
Corteva Agriscience LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2013273726A external-priority patent/AU2013273726B2/en
Application filed by Corteva Agriscience LLC filed Critical Corteva Agriscience LLC
Priority to AU2018202270A priority Critical patent/AU2018202270B2/en
Publication of AU2018202270A1 publication Critical patent/AU2018202270A1/en
Application granted granted Critical
Publication of AU2018202270B2 publication Critical patent/AU2018202270B2/en
Priority to AU2019210623A priority patent/AU2019210623A1/en
Assigned to CORTEVA AGRISCIENCE LLC reassignment CORTEVA AGRISCIENCE LLC Request for Assignment Assignors: E. I. DU PONT DE NEMOURS AND COMPANY
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

Disclosed are compounds of Formula 1, wherein R 1 is halogen, C1 -C 2 haloalkyl or C1 -C 2 haloalkoxy; R2 is H, halogen or cyano; R 3 is H, halogen or CF3 ; R4 is H, C2 -C 7 alkylcarbonyl or C2-C 7 alkoxycarbonyl; and R 5 is C1 -C 6 alkyl or C1 -C 6 haloalkyl, each substituted with one substituent independently selected from hydroxy, C1 -C 6 alkoxy, C1 -C 6 alkylthio, Ci-C6 alkylsulfinyl, C 1-C 6 alkylsulfonyl, C2-C 7 alkylaminocarbonyl, C 3-C 9 dialkylaminocarbonyl, C2-C 7 haloalkylaminocarbonyl and C3-C 9 halodialkylaminocarbonyl. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound or a composition of the invention.

Description

NAPHTHALENE ISOXAZOLINE INVERTEBRATE PEST CONTROL AGENTS
The present Application is a Divisional Application from Australian Patent Application 5 No. 2016208330, which is in turn a Divisional Application from Australian Patent Application No. 2013273726, which is in turn a Divisional Application from Australian Patent Application No. 2008268614. The entire disclosures of Australian Patent Application No.’s 2016208330, 2013273726 and 2008268614 and their corresponding International Patent Application No. PCT/US2008/067576, are incorporated herein by reference.
FIELD OF THE INVENTION
This invention relates to certain isoxazolines and their compositions suitable for agronomic, nonagronomic and animal health uses, methods of their use for controlling invertebrate pests such as arthropods in both agronomic and nonagronomic environments, and for treatment of parasite infections in animals or infestations in the general environment.
BACKGROUND OF THE INVENTION
The control of invertebrate pests is extremely important in achieving high crop efficiency. Damage by invertebrate pests to growing and stored agronomic crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of invertebrate pests in forestry, greenhouse crops, ornamentals, nursery crops, 20 stored food and fiber products, livestock, household, turf, wood products, and public health is also important. Many products are commercially available for these purposes, but the need continues for new compounds that are more effective, less costly, less toxic, environmentally safer or have different sites of action.
The control of animal parasites in animal health is essential, especially in the areas of 25 food production and companion animals. Existing methods of treatment and parasite control are being compromised due to growing resistance to many current commercial parasiticides. The discovery of more effective ways to control animal parasites is therefore imperative.
PCT Patent Publication WO 05/085216 discloses isoxazoline derivatives of Formula i as insecticides
Figure AU2018202270B2_D0001
Figure AU2018202270B2_D0002
i
2018202270 12 Mar 2019 wherein, inter alia, each of A1, A2 and A3 are independently C or N; G is a benzene ring; W is O or S; and X is halogen or Cj-Cg haloalkyl.
The isoxazolines of the present invention are not disclosed in this publication.
SUMMARY OF THE INVENTION
This invention is directed to compounds of Formula 1 (including all stereoisomers) and compositions containing them and their use for controlling invertebrate pests:
Figure AU2018202270B2_D0003
O wherein
R1 is halogen, C4-C2 haloalkyl or C4-C2 haloalkoxy;
R2 is H, halogen or cyano;
R3 is H, halogen or CF3;
R4 is H, C2-C7 alkylcarbonyl or C2-C7 alkoxycarbonyl; and
R5 is Cj-Cg alkyl or Cj-Cg haloalkyl, each substituted with one substituent independently selected from hydroxy, Cj-Cg alkoxy, Cj-Cg alkylthio, Cj-Cg alkylsulfinyl, Cj-Cg alkylsulfonyl, C2-C7 alkylaminocarbonyl, C3-C9 dialkylaminocarbonyl, C2-C7 haloalkylaminocarbonyl and C3-C9 halodialkylaminocarbonyl.
This invention is also directed to a compound of Formula la, wherein
Figure AU2018202270B2_D0004
O la
2018202270 12 Mar 2019
R1 is halogen, C4-C2 haloalkyl or C4-C2 haloalkoxy;
R2 is H, halogen or cyano;
R3 is H, halogen or CF3;
R4 is H, C2-C7 alkylcarbonyl or C2-C7 alkoxycarbonyl; and
R5 is Cj-Cg alkyl or Cj-Cg haloalkyl, each substituted with one substituent independently selected from hydroxy, Cj-Cg alkoxy, Cj-Cg alkylthio, Cj-Cg alkylsulfinyl, Cj-Cg alkylsulfonyl, C2-C7 alkylaminocarbonyl, C3-C9 dialkylaminocarbonyl, C2-C7 haloalkylaminocarbonyl and C3-C9 halodialkylaminocarbonyl.
This invention is also directed to such compounds of Formula 1 (including all stereoisomers) and compositions containing them and their use for controlling invertebrate pests as described above, and further herein, provided that when R1 and R3 are Cl, and R2 and R4 are H, then R5 is other than CH2C(O)NHCH2CF3, CH2CH2OH or CH2CH2OCH3.
This invention also provides a composition comprising a compound of Formula 1 and 15 at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents. In one embodiment, this invention also provides a composition for controlling an invertebrate pest comprising a compound of Formula 1 (i.e. in a biologically effective amount) and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, said composition optionally 20 further comprising at least one additional biologically active compound or agent (i.e. in a biologically effective amount).
This invention further provides a spray composition for controlling an invertebrate pest comprising a compound of Formula 1 (i.e. in a biologically effective amount) or the composition described above, and a propellant. This invention also provides a bait 25 composition for controlling an invertebrate pest comprising a compound of Formula 1 (i.e. in a biologically effective amount) or the compositions described in the embodiments above, one or more food materials, optionally an attractant, and optionally a humectant.
This invention further provides a trap device for controlling an invertebrate pest comprising said bait composition and a housing adapted to receive said bait composition, 30 wherein the housing has at least one opening sized to permit the invertebrate pest to pass through the opening so the invertebrate pest can gain access to said bait composition from a location outside the housing, and wherein the housing is further adapted to be placed in or near a locus of potential or known activity for the invertebrate pest.
This invention provides a method for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound of Formula 1 (e.g., as a composition described herein). This invention also provides a method for controlling an invertebrate pest comprising contacting the invertebrate
4a
2018202270 12 Mar 2019 pest or its environment with a biologically effective amount of a compound as described herein, with the proviso that the method is not a method of treatment of the human or animal body. This invention also relates to such method wherein the invertebrate pest or its environment is contacted with a composition comprising a biologically effective amount of a 5 compound of Formula 1 and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, said composition optionally further comprising a biologically effective amount of at least one additional biologically active compound or agent.
This invention also provides a method for protecting a seed from an invertebrate pest 10 comprising contacting the seed with a biologically effective amount of a compound of Formula 1 (e.g., as a composition described herein). This invention also relates to the treated seed.
This invention further provides a method for treating, preventing, inhibiting and/or killing ecto- and/or endoparasites comprising administering to and/or on the animal a 15 parasiticidally effective amount of a compound of Formula 1 (e.g., as a composition described herein). This invention also relates to such method wherein a parasiticidally effective amount of a compound of Formula 1 (e.g., as a composition described herein) is administered to the environment (e.g., a stall or blanket) in which an animal resides.
This invention further provides compound as described herein for use in a method for 20 protecting an animal from an invertebrate parasitic pest, the method comprising administering to the animal a parasiticidally effective amount of the compound provided that when the animal is a mouse, the invertebrate parasitic pest is a flea, and the parasiticidally effective amount of the compound of Formula 1 is administered orally, then the compound of Formula 1 is other than 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-325 isoxazolyl]-N-[2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-l-naphthalenecarboxamide.
DETAILS OF THE INVENTION
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” “contains” or “containing,” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a composition, a mixture, process, method, article, or 30 apparatus that comprises a list of elements is not necessarily limited to only those elements
2018202270 29 Mar 2018 but may include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A 5 is false (or not present) and B is true (or present), and both A and B are true (or present).
Also, the indefinite articles “a” and “an” preceding an element or component of the invention are intended to be nonrestrictive regarding the number of instances (i.e. occurrences) of the element or component. Therefore “a” or “an” should be read to include one or at least one, and the singular word form of the element or component also includes the 10 plural unless the number is obviously meant to be singular.
As referred to in this disclosure, the term “invertebrate pest” includes arthropods, gastropods and nematodes of economic importance as pests. The term “arthropod” includes insects, mites, spiders, scorpions, centipedes, millipedes, pill bugs and symphylans. The term “gastropod” includes snails, slugs and other Stylommatophora. The term “nematode” 15 includes all of the helminths, such as roundworms, heartworms, and phytophagous nematodes (Nematoda), flukes (Tematoda), Acanthocephala, and tapeworms (Cestoda).
In the context of this disclosure “invertebrate pest control” means inhibition of invertebrate pest development (including mortality, feeding reduction, and/or mating disruption), and related expressions are defined analogously.
The term “agronomic” refers to the production of field crops such as for food and fiber and includes the growth of corn, soybeans and other legumes, rice, cereal (e.g., wheat, oats, barley, rye, rice, maize), leafy vegetables (e.g., lettuce, cabbage, and other cole crops), fruiting vegetables (e.g., tomatoes, pepper, eggplant, crucifers and cucurbits), potatoes, sweet potatoes, grapes, cotton, tree fruits (e.g., pome, stone and citrus), small fruit (berries, 25 cherries) and other specialty crops (e.g., canola, sunflower, olives).
The term “nonagronomic” refers to other than field crops, such as horticultural crops (e.g., greenhouse, nursery or ornamental plants not grown in a field), residential, agricultural, commercial and industrial structures, turf (e.g., sod farm, pasture, golf course, lawn, sports field, etc.), wood products, stored product, agro-forestry and vegetation management, public 30 health (i.e. human) and animal health (e.g., domesticated animals such as pets, livestock and poultry, undomesticated animals such as wildlife) applications.
Nonagronomic applications include protecting an animal from an invertebrate parasitic pest by administering a parasiticidally effective (i.e. biologically effective) amount of a compound of the invention, typically in the form of a composition formulated for veterinary 35 use, to the animal to be protected. As referred to in the present disclosure and claims, the terms “parasiticidal” and “parasiticidally” refers to observable effects on an invertebrate parasite pest to provide protection of an animal from the pest. Parasiticidal effects typically
2018202270 29 Mar 2018 relate to diminishing the occurrence or activity of the target invertebrate parasitic pest. Such effects on the pest include necrosis, death, retarded growth, diminished mobility or lessened ability to remain on or in the host animal, reduced feeding and inhibition of reproduction. These effects on invertebrate parasite pests provide control (including prevention, reduction 5 or elimination) of parasitic infestation or infection of the animal.
A parasite infestation refers to the presence of parasites in numbers that pose a risk to humans or animals. The infestation can be in the environment (e.g., in human or animal housing, bedding, and surrounding property or structures), on agricultural crops or other types of plants, or on the skin or fur of an animal. When the infestation is within an animal 10 (e.g., in the blood or other internal tissues), the term infestation is also intended to be synonymous with the term infection as that term is generally understood in the art, unless otherwise stated.
In the above recitations, the term “alkyl”, used either alone or in compound words such as “alkylthio” or “haloalkyl” includes straight-chain or branched alkyl, such as methyl, ethyl, 15 n-propyl, /-propyl, or the different butyl, pentyl or hexyl isomers.
“Alkoxy” includes, for example, methoxy, ethoxy, rz-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. “Alkylthio” includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. “Alkylsulfinyl” includes both enantiomers of an 20 alkylsulfinyl group. Examples of “alkylsulfinyl” include S(O)CH3, S(O)CH2CH3, S(O)CH2CH2CH3, S(O)CH(CH3)2 and the different butylsulfinyl, pentylsulfinyl and hexylsulfinyl isomers. Examples of “alkylsulfonyl” include S(O)2CH3, S(O)2CH2CH3, S(O)2CH2CH2CH3, S(O)2CH(CH3)2, and the different butylsulfonyl, pentylsulfonyl and hexylsulfonyl isomers. “Alkylamino” and “dialkylamino” are defined analogously to the 25 above examples.
The term “halogen”, either alone or in compound words such as “haloalkyl”, or when used in descriptions such as “alkyl substituted with halogen” includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as “haloalkyl”, or when used in descriptions such as “alkyl substituted with halogen” said alkyl may be partially or 30 fully substituted with halogen atoms which may be the same or different. Examples of “haloalkyl” or “alkyl substituted with halogen” include CF3, CH2C1, CH2CF3 and CC12CF3. The term “haloalkoxy” is defined analogously to the term “haloalkyl”. Examples of “haloalkoxy” include OCF3, OCH2CC13, OCH2CH2CHF2 and OCH2CF3.
“Alkylcarbonyl” denotes a straight-chain or branched alkyl moiety bonded to a C(O) 35 moiety. The chemical abbreviations C(O) and C(=O) as used herein represent a carbonyl moiety. Examples of “alkylcarbonyl” include C(O)CH3, C(O)CH2CH2CH3 and C(O)CH(CH3)2.
2018202270 29 Mar 2018 “Alkoxycarbonyl” denotes a straight-chain or branched alkyl moiety bonded to a CO2 moiety. The chemical abbreviations CO2 and C(=O)O as used herein represent an ester moiety. Examples of “alkoxycarbonyl” include CO2CH3, CO2CH2CH3, CO2CH2CH2CH3, CO2CH(CH3)2 and the different butoxy- or pentoxycarbonyl isomers.
“Alkylaminocarbonyl” denotes a straight-chain or branched alkyl moiety bonded to a C(O)NH moiety. The chemical abbreviations C(O)NH, C(=O)NH, C(O)N and C(=O)N as used herein represent an amide moiety (i.e. an aminocarbonyl group). Examples of “alkylaminocarbonyl” include C(O)NHCH3, C(O)NHCH2CH2CH3 and C(O)NHCH(CH3)2. “Dialkylaminocarbonyl” denotes two independent straight-chain or branched alkyl moieties bonded to a C(O)N moiety. Examples of “dialkylaminocarbonyl” include C(O)N(CH3)2 and C(O)N(CH3)(CH2CH3).
“Haloalkylaminocarbonyl” denotes a straight-chain or branched haloalkyl moiety bonded to a C(O)NH moiety, wherein “haloalkyl” is as defined above. Examples of “haloalkylaminocarbonyl” include C(O)NHCH2CF3 and C(O)NHCH2CH2CH2C1. “Halodialkylaminocarbonyl” denotes one straight-chain or branched alkyl moiety and one straight-chain or branched haloalkyl moiety bonded to a C(O)N moiety, or two independent straight-chain or branched haloalkyl moieties bonded to a C(O)N moiety, wherein “haloalkyl” is as defined above. Examples of “halodialkylaminocarbonyl” include C(O)N(CH2CH3)(CH2CH2C1) and C(O)N(CF2CF3)2. Examples of “C2 alkyl substituted with Cj alkylaminocarbonyl” include CH2CH2C(O)NHCH3 and CH(CH3)C(O)NHCH3.
When R5 is Cj-Cg alkyl or Cj-Cg haloalkyl, each further substituted with one group as defined in the Summary of the Invention, the carbon atom through which said alkyl or haloalkyl group is bonded to the remainder of Formula 1 is assigned the 1-position. An example of a C2 alkyl group substituted with a C3 haloalkylaminocarbonyl group attached at the 1-position of the C2 alkyl group is *CH(CH3)C(O)NHCH2CF3, wherein the asterisk denotes the 1-position.
The total number of carbon atoms in a substituent group is indicated by the “Cj-Cj” prefix where i and j are numbers from 1 to 9. For example, Cj-Cg alkylsulfonyl designates methylsulfonyl through hexylsulfonyl.
When a group contains a substituent which can be hydrogen, for example R4, then when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.
A wide variety of synthetic methods are known in the art to enable preparation of aromatic and nonaromatic heterocyclic rings and ring systems; for extensive reviews see the eight volume set of Comprehensive Heterocyclic Chemistry, A. R. Katritzky and C. W. Rees editors-in-chief, Pergamon Press, Oxford, 1984 and the twelve volume set of Comprehensive
2018202270 29 Mar 2018
Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees and E. F. V. Scriven editors-in-chief, Pergamon Press, Oxford, 1996.
Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers and atropisomers. One skilled in the art 5 will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers or as an optically active form. For 10 example, two possible enantiomers of Formula 1 are depicted as Formula la and Formula lb involving the isoxazoline chiral center identified with an asterisk (*). Analogously, other chiral centers are possible at, for example, R5.
Figure AU2018202270B2_D0005
o o la lb
Molecular depictions drawn herein follow standard conventions for depicting stereochemistry. To indicate stereoconfiguration, bonds rising from the plane of the drawing and towards the viewer are denoted by solid wedges wherein the broad end of the wedge is attached to the atom rising from the plane of the drawing towards the viewer. Bonds going below the plane of the drawing and away from the viewer are denoted by dashed wedges wherein the narrow end of the wedge is attached to the atom further away from the viewer. Constant width lines indicate bonds with a direction opposite or neutral relative to bonds shown with solid or dashed wedges; constant width lines also depict bonds in molecules or parts of molecules in which no particular stereoconfiguration is intended to be specified.
The more biologically active enantiomer is believed to be Formula la. Formula la has the (S') configuration at the chiral carbon and Formula lb has the (R) configuration at the chiral carbon.
This invention comprises racemic mixtures, for example, equal amounts of the enantiomers of Formulae la and lb. In addition, this invention includes compounds that are enriched compared to the racemic mixture in an enantiomer of Formula 1. Also included are
2018202270 29 Mar 2018 the essentially pure enantiomers of compounds of Formula 1, for example, Formula la and Formula lb.
When enantiomerically enriched, one enantiomer is present in greater amounts than the other, and the extent of enrichment can be defined by an expression of enantiomeric excess 5 (“ee”), which is defined as (2χ-1)·100 %, where x is the mole fraction of the dominant enantiomer in the mixture (e.g., an ee of 20 % corresponds to a 60:40 ratio of enantiomers).
Preferably the compositions of this invention have at least a 50 % enantiomeric excess; more preferably at least a 75 % enantiomeric excess; still more preferably at least a 90 % enantiomeric excess; and the most preferably at least a 94 % enantiomeric excess of the more 10 active isomer. Of particular note are enantiomerically pure embodiments of the more active isomer.
Compounds of Formula 1 can comprise additional chiral centers. For example, substituents and other molecular constituents such as R5 may themselves contain chiral centers. The more biologically active enantiomers of compounds wherein R5 contains the 15 CH(CH3)C(O)N moiety (e.g., compounds 94 and 106 of Index Table A) are believed to contain the (R) configuration at the chiral carbon. This invention comprises racemic mixtures as well as enriched and essentially pure stereoconfigurations at these additional chiral centers.
Compounds of this invention can exist as one or more conformational isomers due to 20 restricted rotation about the amide bond in Formula 1. This invention comprises mixtures of conformational isomers. In addition, this invention includes compounds that are enriched in one conformer relative to others.
Compounds of this invention may exist as one or more crystalline polymorphs. This invention comprises both individual polymorphs and mixtures of polymorphs, including 25 mixtures enriched in one polymorph relative to others.
Embodiments of the present invention as described in the Summary of the Invention include those described below. In the following Embodiments, reference to “a compound of Formula 1” includes the definitions of substituents specified in the Summary of the Invention unless further defined in the Embodiments.
Embodiment 1. A compound of Formula 1 wherein when R1 and R3 are Cl, and R2 and
R4 are H, then R5 is other than CH2C(O)NHCH2CF3, CH2CH2OH or CH2CH2OCH3.
Embodiment 2. A compound of Formula 1 wherein R1 is Cl, Br or CF3.
Embodiment 3. A compound of Embodiment 2 wherein R1 is Cl.
Embodiment 4. A compound of Embodiment 2 wherein R1 is Br.
Embodiment 5. A compound of Embodiment 2 wherein R1 is CF3.
Embodiment 6. A compound of Formula 1 wherein R2 is H, F or Cl.
ίο
2018202270 29 Mar 2018
Embodiment 7. A compound of Embodiment 6 wherein R2 is H.
Embodiment 8. A compound of Embodiment 6 wherein R2 is F.
Embodiment 9. A compound of Embodiment 6 wherein R2 is Cl. Embodiment 10. A compound of Formula 1 wherein R3 is H, Cl, Br or CF3.
Embodiment 11. A compound of Embodiment 10 wherein R3 is H.
Embodiment 12. A compound of Embodiment 10 wherein R3 is Cl. Embodiment 13. A compound of Embodiment 10 wherein R3 is Br. Embodiment 14. A compound of Embodiment 10 wherein R3 is CF3. Embodiment 15. A compound of Formula 1 wherein R4 is H.
Embodiment 16. A compound of Formula 1 wherein R5 is Cj-Cg alkyl or Cj-Cg haloalkyl, each substituted with one hydroxy or Cj-Cg alkoxy.
Embodiment 17. A compound of Formula 1 wherein R5 is Cj-Cg alkyl or Cj-Cg haloalkyl, each substituted with one Cj-Cg alkylthio, C|-Cg alkylsulfinyl or CjCg alkylsulfonyl.
Embodiment 18. A compound of Formula 1 wherein R5 is Cj-Cg alkyl or Cj-Cg haloalkyl, each substituted with one C2-C7 alkylaminocarbonyl, C3-C9 dialkylaminocarbonyl, C2-C7 haloalkylaminocarbonyl or C3-C9 halodialkylaminoc arbonyl.
Embodiment 19. A compound of Embodiment 18 wherein R5 is C j-Cg alkyl substituted with C2-C7 haloalkylaminocarbonyl.
Embodiment 20. A compound of Formula 1 or Embodiment 1 wherein R1 is F, Br, I, C1-C2 haloalkyl or C1-C2 haloalkoxy.
Embodiment 21. A compound of Formula 1 or Embodiment 1 wherein R1 is halogen.
Embodiment 22. A compound of Formula 1 or Embodiment 1 wherein R1 is Q-C2 haloalkyl.
Embodiment 23. A compound of Formula 1 or Embodiment 1 wherein R1 is C1-C2 haloalkoxy.
Embodiment 24. A compound of Embodiment 23 wherein R1 is OCF3.
Embodiment 25. A compound of Formula 1 or Embodiment 1 wherein R2 is halogen.
Embodiment 26. A compound of Formula 1 or Embodiment 1 wherein R2 is cyano.
Embodiment 27. A compound of Formula 1 or Embodiment 1 wherein R2 is H or F. Embodiment 28. A compound of Formula 1 or Embodiment 1 wherein R3 is halogen. Embodiment 29. A compound of Formula 1 or Embodiment 1 wherein R3 is H, F, Cl, Br or CF3.
Embodiment 30. A compound of Formula 1 or Embodiment 1 wherein R3 is Cl, Br or
CF3.
Embodiment 31. A compound of Embodiment 28 wherein R3 is F.
2018202270 29 Mar 2018
Embodiment 32. A compound of Formula 1 or Embodiment 1 wherein R4 is C2-C7 alkylcarbonyl.
Embodiment 33. A compound of Formula 1 or Embodiment 1 wherein R4 is C2-C7 alkoxycarbonyl.
Embodiment 34. A compound of Embodiment 32 wherein R4 is C(O)Me.
Embodiment 35. A compound of Embodiment 33 wherein R4 is CO2Me. Embodiment 36. A compound of Embodiment 33 wherein R4 is CO2(i-Bu). Embodiment 37. A compound of Formula 1 or Embodiment 1 wherein R5 is Cj-Cg alkyl substituted with one substituent independently selected from Cj-Cg alkylthio, Cj-Cf, alkylsulfinyl, Cj-C6 alkylsulfonyl, C2-C7 alkylaminocarbonyl and C2-C7 haloalkylaminocarbonyl.
Embodiment 38. A compound of Embodiment 37 wherein R5 is C4—C4 alkyl substituted with one Cj-C4 alkylthio, Cj-C4 alkylsulfinyl or Cj-C4 alkylsulfonyl.
Embodiment 39. A compound of Embodiment 38 wherein R5 is C2-C3 alkyl substituted with one Cj-C2 alkylthio, Cj-C2 alkylsulfinyl or Cj-C2 alkylsulfonyl.
Embodiment 40. A compound of Embodiment 39 wherein R5 is CH2CH2SCH3, CH2CH2S(O)CH3 or CH2CH2SO2CH3.
Embodiment 41. A compound of Embodiment 37 wherein R5 is Cj-C6 alkyl substituted with one C2-C7 alkylaminocarbonyl or C3-C7 haloalkylaminocarbonyl.
Embodiment 42. A compound of Embodiment 41 wherein the one C2-C7 alkylaminocarbonyl or C3-C7 haloalkylaminocarbonyl substituent is attached to 25 the Cj-Cg alkyl group at the 1-position.
Embodiment 43. A compound of Embodiment 42 wherein R5 is Cj-C4 alkyl substituted with C2-C4 alkylaminocarbonyl.
Embodiment 44. A compound of Embodiment 42 wherein R5 is Cj-C4 alkyl substituted with C3-C4 haloalkylaminocarbonyl.
Embodiment 45. A compound of Embodiment 44 wherein R5 is Cj-C2 alkyl substituted with C(O)NHCH2CF3.
Embodiments of this invention, including Embodiments 1-45 above as well as any other embodiments described herein, can be combined in any manner, and the descriptions of variables in the embodiments pertain not only to the compounds of Formula 1 but also to the 35 starting compounds and intermediate compounds useful for preparing the compounds of Formula 1. In addition, embodiments of this invention, including Embodiments 1-45 above
2018202270 29 Mar 2018 as well as any other embodiments described herein, and any combination thereof, pertain to the compositions and methods of the present invention.
Combinations of Embodiments 1—45 are illustrated by:
Embodiment A. A compound of Formula 1 wherein
R4 is H; and
R5 is Cj-Cg alkyl substituted with one C3-C7 haloalkylaminocarbonyl; provided that when R1 and R3 are Cl, and R2 and R4 are H, then R5 is other than CH2C(O)NHCH2CF3, CH2CH2OH or CH2CH2OCH3.
Embodiment B. A compound of Embodiment A wherein
R1 is Cl, Br or CF3;
R2 is H, F or Cl; and
R3 is H, Cl, Br or CF3.
Embodiment C. A compound of Embodiment B wherein
R2 is H.
Embodiment D. A compound of Embodiment C wherein
R1 and R3 are Cl.
Embodiment E. A compound of Embodiment C wherein
R1 and R3 are Br.
Embodiment F. A compound of Embodiment B wherein
R1 and R3 are Cl; and
R2 is F.
Embodiment G. A compound of Embodiment B wherein
R1, R2 and R3 are Cl.
Embodiment H. A compound of Embodiment C wherein
R1 is CF3; and
R3 is H.
Embodiment I. A compound of Embodiment C wherein
R1 and R3 are CF3.
Embodiment K. A compound of Formula 1 or Embodiment 1 wherein
R4 is H; and
R5 is Cj-Cg alkyl substituted with one substituent independently selected from Cj-Cg alkylthio, Cj-Cg alkylsulfinyl, Cj-C6 alkylsulfonyl, C2-C7 alkylaminocarbonyl and C2-C7 haloalkylaminocarbonyl.
Embodiment L. A compound Embodiment K wherein
R1 is Cl, Br or CF3;
R2 is H; and
R3 is H, F, Cl, Br or CF3.
2018202270 29 Mar 2018
Embodiment M. A compound Embodiment L wherein
R1 is CF3.
Embodiment N. A compound Embodiment M wherein
R3 is Cl, Br or CF3.
Embodiment O. A compound Embodiment N wherein
R5 is Cj-Cg alkyl substituted with one Co-Cj alkylaminocarbonyl or C3-C7 haloalkylaminocarbonyl.
Specific embodiments include compounds of Formula 1 selected from the group consisting of: 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A-(2hydroxyethyl)-1 -naphthalenecarboxamide, 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A-(2methoxyethyl)-1 -naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A-[2-oxo-2[(2,2,2-trifluoroethyl)amino] ethyl] -1 -naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A-[l,ldimethyl-2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-l -naphthalenecarboxamide, 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A-[2-[(lmethylethyl) amino] -2-oxoethyl] -1 -naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A-[2-[(2methylpropyl)amino]-2-oxoethyl] -1 -naphthalenecarboxamide, 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A-[2(ethylmethylamino)-2-oxoethyl] -1 -naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A-[2(ethylamino)-2-oxoethyl]-l -naphthalenecarboxamide,
7V-[2-[(2-chloroethyl)amino]-2-oxoethyl]-4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5(trifluoiOmethyl)-3-isoxazolyl]-l-naphthalenecarboxamide, 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A-[2-[(2fluoroethyl)amino] -2-oxoethyl] -1 -naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A-[2-oxo-2[(2,2,3,3,3-pentafluoropropyl)amino]ethyl]-l-naphthalenecarboxamide, 4-[4,5-dihydro-5-(3,4,5-trichlorophenyl)-5-(trifluoromethyl)-3-isoxazolyl]-A-[2(methylthio)ethyl] -1 -naphthalenecarboxamide, 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]JV-[2(methylthio)ethyl] -1 -naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A-[2(methylsulfinyl)ethyl] -1 -naphthalenecarboxamide,
2018202270 29 Mar 2018
4-[4,5-dihydro-5-(3,4,5-trichlorophenyl)-5-(trifluoromethyl)-3-isoxazolyl]-A-[2-oxo-2[(2,2,2-trifluoroethyl)amino] ethyl]-1-naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-jV-[2(methylsulfonyl)ethyl] -1 -naphthalenecarboxamide,
4-[5-(3,5-dibromophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-?/-[2(methylthio)ethyl] -1 -naphthalenecarboxamide,
4-[5-(3,5-dibromophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-JV-[2-oxo-2[(2,2,2-trifluoroethyl )amino] ethyl] -1 -naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-N-[(lR)-lmethyl-2-(methylthio)ethyl] -1 -naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-Ar-[l-methyl-3(methylthio)propyl] -1 -naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-jV-[3(methylthio)propylj -1 -naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-JV-[2-[(l,ldimethylethyl)amino]-2-oxoethyl]-l-naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A-[2-[(lethylpropyl)amino]-2-oxoethyl]-l-naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A-[l,ldimethyl-2-(methylthio)ethyl] -1 -naphthalenecarboxamide,
4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-TV-[(lR)-lmethyl-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-l-naphthalenecarboxamide, 4-[4,5-dihydro-5-(trifluoromethyl)-5-[3-(trifluoroniethyl)phenyl]-3-isoxazolyl]-/V-[2(methylthio)ethyl] -1 -naphthalenecarboxamide,
4-[4,5-dihydro-5-(trifluoromethyl)-5-[3-(trifluoromethyl)phenyl]-3-isoxazolyl]-Ar-[2oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-l-naphthalenecarboxamide,
4-[4,5-dihydro-5-(trifluoroniethyl)-5-[3-(trifluoromethyl)phenyl]-3-isoxazolyl]-2V-2(hydroxypropyl)-1 -naphthalenecarboxamide,
4-[(5S)-5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-7V-[(lA)1 -methyl-2-(methylthio)ethyl] -1 -naphthalenecarboxamide,
4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-JV[2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-l-naphthalenecarboxamide,
4-[4,5-dihydro-5-(trifluoroniethyl)-5-[3-(trifluoromethyl)phenyl]-3-isoxazolyl]-/V-[2[(1 -methylethyl)amino] -2-oxoethyl] -1 -naphthalenecarboxamide,
4-[4,5-dihydro-5-(trifluoromethyl)-5-[3-(trifluoromethyl)phenyl]-3-isoxazolyl]-A-[2(methylsulfonyl)ethyl] -1 -naphthalenecarboxamide,
4-[5-[3,5-bis(trifluoromethyl)phenyI]-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-/V15
2018202270 29 Mar 2018 [2- [(1 -methylethyl)amino] -2-oxoethyl] -1 -naphthalenecarboxamide, 4-[4,5-dihydro-5-(trifluoromethyl)-5-[3-(trifluoromethyl)phenyl]-3-isoxazolyl] JV-(3hydroxypropyl)-1 -naphthalenecarboxamide, and
4-[(5S)-5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-/V-[2-oxo2-[(2,2,2-trifluoroethyl)amino]ethyl]-l-naphthalenecarboxamide.
Further specific embodiments include compounds of Formula 1 selected from the group consisting of:
4-[5-[3-chloro-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] -7V-[2-(methylsulfonyl)ethyl] -1 -naphthalenecarboxamide,
4-[5-[3-bromo-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] JV-[2-(methylsulfonyl)ethyl]-1 -naphthalenecarboxamide, 4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-./V[2-(methylsulfonyl)ethyl]-l-naphthalenecarboxamide,
4-[5-[3-chloro-5-(trifluoromethyr)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] -A-[2-(methylamino)-2-oxoethyl] -1 -naphthalenecarboxamide, 4-[5-[3-chloro-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] -/V-[2-(ethylamino)-2-oxoethyl] -1 -naphthalenecarboxamide, 4-[5-[3-chloro-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] -N- [2-[ (1 -methylethyl)amino] -2-oxoethyl] -1 -naphthalenecarboxamide, 4-[5-[3-chloro-5-(trifluoiOmethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl]-/V-[2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-l-naphthalenecarboxamide, 4-[5-[3-bromo-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] -/V-[2-(methylamino)-2-oxoethyl] -1 -naphthalenecarboxamide, 4-[5-[3-bromo-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl]-AH2-(ethylamino)-2-oxoethyl]-l-naphthalenecarboxamide, 4-[5-[3-bromo-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] -N- [2-[(1 -methylethyl)amino] -2-oxoethyl] -1 -naphthalenecarboxamide, 4-[5-[3-bromo-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] JV-[2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-l -naphthalenecarboxamide, 4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-/V[2-(methylamino)-2-oxoethyl] -1 -naphthalenecarboxamide,
4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-jV[2-(ethylamino)-2-oxoethyl]-l-naphthalenecarboxamide,
4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-A[2-[( 1 -methylethyl)amino] -2-oxoethyl] -1 -naphthalenecarboxamide, 4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-iV[2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-l-naphthalenecarboxamide,
2018202270 29 Mar 2018
4-[5-[3-chloro-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl]-/V-[l-methyl-2-(methylamino)-2-oxoethyl]-l-naphthalenecarboxamide, 4-[5-[3-chloro-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] -7V-[2-(ethylamino)-1 -methyl-2-oxoethyl] -1 -naphthalenecarboxamide, 4-[5-[3-chloro-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] -N-[ 1 -methyl-2-[(1 -methylethyljamino] -2-oxoethyl]-1 naphthalenecarboxamide, 4-[5-[3-chloro-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] -7V-[ 1 -methyl-2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-l naphthalenecarboxamide, 4-[5-[3-bromo-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl]-/V-[l-methyl-2-(methylamino)-2-oxoethyl]-l-naphthalenecarboxamide, 4-[5-[3-bromo-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] -7V-[2-(ethylamino)-1 -methyl-2-oxoethyl] -1 -naphthalenecarboxamide, 4-[5-[3-bromo-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyr)-3isoxazolyl]-/V-[l-methyl-2-[(l-methylethyljamino]-2-oxoethyl]-1naphthalenecarboxamide, 4-[5-[3-bromo-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl]-JV-[1 -methyl-2-oxo-2-[(2,2,2-trifluoroethyl)amino] ethyl]-!naphthalenecarboxamide, 4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-7V[ 1 -methyl-2-(methylamino)-2-oxoethyl] -1 -naphthalenecarboxamide, 4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-/V[2-(ethylamino)-l-methyl-2-oxoethyl]-l-naphthalenecarboxamide, 4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-7V[ 1 -methyl-2- [(1 -methylethyljamino] -2-oxoethyl] -1 -naphthalenecarboxamide, and 4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoroniethyr)-3-isoxazolyl]-jV[l-methyl-2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-l-naphthalenecarboxamide.
Of note is that compounds of this invention are characterized by favorable metabolic and/or soil residual patterns and exhibit activity controlling a spectrum of agronomic and nonagronomic invertebrate pests.
Of particular note, for reasons of invertebrate pest control spectrum and economic importance, protection of agronomic crops from damage or injury caused by invertebrate pests by controlling invertebrate pests are embodiments of the invention. Compounds of this invention, because of their favorable translocation properties or systemicity in plants, also protect foliar or other plant parts which are not directly contacted with a compound of Formula 1 or a composition comprising the compound.
2018202270 29 Mar 2018
Also noteworthy as embodiments of the present invention are compositions comprising a compound of any of the preceding Embodiments, as well as any other embodiments described herein, and any combinations thereof, and at least one additional component selected from the group consisting of a surfactant, a solid diluent and a liquid diluent, said 5 compositions optionally further comprising at least one additional biologically active compound or agent.
Further noteworthy as embodiments of the present invention are compositions for controlling an invertebrate pest comprising a compound of any of the preceding Embodiments (i.e. in a biologically effective amount), as well as any other embodiments 10 described herein, and any combinations thereof, and at least one additional component selected from the group consisting of a surfactant, a solid diluent and a liquid diluent, said compositions optionally further comprising at least one additional biologically active compound or agent.
Further Embodiments of the present invention include:
Embodiment Al. A composition for protecting an animal from an invertebrate parasitic pest comprising a compound of Formula 1 and at least one veterinarily acceptable carrier, said composition optionally further comprising at least one additional parasiticidally active compound.
Embodiment A2. The composition of Embodiment Al wherein at least one additional 20 parasiticidally active compound is an anthelmintic.
Embodiment A3. The composition of Embodiment Al wherein at least one additional parasiticidally active compound is selected from the group consisting of macrocyclic lactones, benzimidazoles, salicylamides, substituted phenols, pyrimidines, cyclic depsipeptides, piperazine salts, nitroscanate, praziquantel and 25 imidazothiazoles.
Embodiment A4. The composition of Embodiment A3 wherein at least one additional parasiticidally active compound is selected from the group consisting of avermectins, milbemycins and spinosyns.
Embodiment A5. The composition of Embodiment Al wherein at least one additional 30 parasiticidally active compound is selected from the group consisting of abamectin, doramectin, emamectin, eprinomectin, ivermectin, selamectin, milbemycin, moxidectin and pyrantel.
Embodiment A6. The composition of Embodiment Al in a form for oral administration.
Embodiment A7. The composition of Embodiment Al in a form for topical administration.
2018202270 29 Mar 2018
Embodiment A8. The composition of Embodiment Al in a form for parenteral administration.
Embodiments of the invention further include methods for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically 5 effective amount of a compound of any of the preceding Embodiments (e.g., as a composition described herein). Of particular note is a method for protecting an animal comprising administering to the animal a parasiticidally effective amount of a compound of any of the preceding Embodiments (e.g., as a composition described herein).
Further Embodiments of the present invention include:
Embodiment Bl. The method for protecting an animal from an invertebrate parasitic pest comprising administering to the animal a parasiticidally effective amount of a compound of Formula 1 as described in the Summary of the Invention.
Embodiment B2. The method of Embodiment B l provided that when the animal is a mouse, the invertebrate parasitic pest is a flea, and the parasiticidally effective 15 amount of the compound of Formula 1 is administered orally, then the compound of Formula 1 is other than 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5(trifluoromethyl)-3-isoxazolyl]-2V-[2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-lnaphthalenecarboxamide.
Embodiment B3. The method of Embodiment Bl wherein the parasiticidally effective 20 amount of the compound of Formula 1 is administered orally.
Embodiment B4. The method of Embodiment Bl wherein the parasiticidally effective amount of the compound of Formula 1 is administered parenterally.
Embodiment B5. The method of Embodiment Bl wherein the parasiticidally effective amount of the compound of Formula 1 is administered by injection.
Embodiment B6. The method of Embodiment B1 wherein the parasiticidally effective amount of the compound of Formula 1 is administered topically.
Embodiment B7. The method of Embodiment Bl wherein the animal to be protected is a vertebrate.
Embodiment B8. The method of Embodiment B7 wherein the animal to be protected is 30 a mammal, avian or fish.
Embodiment B9. The method of Embodiment B8 wherein the animal to be protected is a human.
Embodiment B10. The method of Embodiment B8 wherein the animal to be protected is livestock.
Embodiment Bl 1. The method of Embodiment B8 wherein the animal to be protected is a canine.
2018202270 29 Mar 2018
Embodiment Bl la. The method of Embodiment B8 wherein the animal to be protected is a dog.
Embodiment B12. The method of Embodiment B8 wherein the animal to be protected is a feline.
Embodiment Bl2a. The method of Embodiment B8 wherein the animal to be protected is a cat.
Embodiment B13. The method of Embodiment Bl wherein the invertebrate parasitic pest is an ectoparasite.
Embodiment B14. The method of Embodiment Bl wherein the invertebrate parasitic 10 pest is an endoparasite or helminth.
Embodiment B l5. The method of Embodiment B1 wherein the invertebrate parasitic pest is an arthropod.
Embodiment B16. The method of Embodiment B1 wherein the invertebrate parasitic pest is a fly, mosquito, mite, tick, louse, flea, maggot, bed bug or kissing bug.
Embodiment B17. The method of Embodiment B16 wherein the invertebrate parasitic pest is a mosquito.
Embodiment Bl8. The method of Embodiment B16 wherein the invertebrate parasitic pest is a tick or mite.
Embodiment B19. The method of Embodiment B16 wherein the invertebrate parasitic 20 pest is a louse.
Embodiment B20. The method of Embodiment B16 wherein the invertebrate parasitic pest is a flea.
Embodiment B21. The method of Embodiment B16 wherein the invertebrate parasitic pest is a bed bug or kissing bug.
Embodiment B22. The method of Embodiment B16 wherein the animal is a cat or dog and the invertebrate parasitic pest is a flea, tick or mite.
Embodiment B23. The method of Embodiment B1 wherein the parasiticidally effective amount of a compound of Formula 1 is administered monthly or at a longer interval.
Embodiment B24. The method of Embodiment B23 wherein the parasiticidally effective amount of a compound of Formula 1 is administered once a month.
Embodiment B25. The method of Embodiment B23 wherein the parasiticidally effective amount of a compound of Formula 1 is administered once every six months.
The compounds of Formula 1 or any of Embodiments 1-45 or Embodiments A-O can be used for the protection of an animal from an invertebrate parasitic pest by oral, topical or parenteral administration of the compound.
2018202270 29 Mar 2018
Therefore, the invention is understood to include the compounds of Formula 1 or any of Embodiments 1^4-5 or Embodiments A-O (and compositions containing them) for use as an animal medicament, or more particularly a parasiticidal animal medicament. The animals to be protected are as defined in any of Embodiments B7-B12a. The invertebrate parasitic 5 pests are as defined in any of Embodiments B13-B21. The medicament may be in oral, topical or parenteral dosage forms.
The invention is also understood to include the use of compounds of Formula 1 or any of Embodiments 1-45 or Embodiments A-O in the manufacture of medicaments for the protection of an animal from a an invertebrate parasitic pest. The animals to be protected are 10 as defined in any of Embodiments B7-B12a. The invertebrate parasitic pests are as defined in any of Embodiments B13-B21. The medicament may be in oral, topical or parenteral dosage forms.
The invention is also understood to include compounds of Formula 1 or any of Embodiments 1-45 or Embodiments A-O for use in the manufacture of medicaments for the 15 protection of an animal from an invertebrate parasitic pest. The animals to be protected are as defined in any of Embodiments B7-B12a. The invertebrate parasitic pests are as defined in any of Embodiments B13-B21. The medicament may be in oral, topical or parenteral dosage forms.
The invention is also understood to include compounds of Formula 1 or any of 20 Embodiments 1-45 or Embodiments A-O packaged and presented for the protection of an animal from an invertebrate parasitic pest. The animals to be protected are as defined in any of Embodiments B7-B12a. The invertebrate parasitic pests are as defined in any of Embodiments B13-B21. The compounds of the invention may be packaged and presented as oral, topical or parenteral dosage forms.
The invention is also understood to include a process for manufacturing a composition for protecting an animal from an invertebrate parasitic pest characterized in that a compound of Claim 1 is admixed with at least one pharmaceutically or veterinarily acceptable carrier. The animals to be protected are as defined in any of Embodiments B7-B12a. The invertebrate parasitic pests are as defined in any of Embodiments B13-B21. The 30 compositions of the invention may be packaged and presented as oral, topical or parenteral dosage forms.
Embodiments of the invention also include a method for protecting a seed from an invertebrate pest comprising contacting the seed with a biologically effective amount of a compound of any of the preceding Embodiments (e.g., as a composition described herein).
Embodiments of the invention also include a composition comprising a compound of any of the preceding Embodiments, in the form of a soil drench liquid formulation. Embodiments of the invention further include methods for controlling an invertebrate pest
2018202270 29 Mar 2018 comprising contacting the soil with a liquid composition as a soil drench comprising a biologically effective amount of a compound of any of the preceding Embodiments.
Embodiments of the invention also include a spray composition for controlling an invertebrate pest comprising a compound of any of the preceding Embodiments (i.e. in a 5 biologically effective amount) and a propellant. Embodiments of the invention further include a bait composition for controlling an invertebrate pest comprising a compound of any of the preceding Embodiments (i.e. in a biologically effective amount), one or more food materials, optionally an attractant, and optionally a humectant. Embodiments of the invention also include a device for controlling an invertebrate pest comprising said bait 10 composition and a housing adapted to receive said bait composition, wherein the housing has at least one opening sized to permit the invertebrate pest to pass through the opening so the invertebrate pest can gain access to said bait composition from a location outside the housing, and wherein the housing is further adapted to be placed in or near a locus of potential or known activity for the invertebrate pest.
One or more of the following methods and variations as described in Schemes 1-10 can be used to prepare the compounds of Formula 1. The definitions of R1, R2, R3, R4 and R5 in the compounds of Formulae 1-15 below are as defined above in the Summary of the Invention unless otherwise noted.
Compounds of Formula 1 can be prepared by aminocarbonylation of aryl bromides, 20 iodides or triflates of Formula 2 wherein X is Br, I or OS(O)2CF3, with appropriately substituted amino compounds of Formula 3 as shown in Scheme 1.
Scheme 1
Figure AU2018202270B2_D0006
This reaction is typically carried out with an aryl bromide of Formula 2 wherein X is Br in the presence of a palladium catalyst under a CO atmosphere. The palladium catalysts used for the present method typically comprises palladium in a formal oxidation state of either 0 (i.e. Pd(0)) or 2 (i.e. Pd(II)). A wide variety of such palladium-containing compounds and 30 complexes are useful as catalysts for the present method. Examples of palladium-containing
2018202270 29 Mar 2018 compounds and complexes useful as catalysts in the method of Scheme 1 include PdCl2(PPh3)2 (bis(triphenylphosphine)palladium(II) dichloride), Pd(PPh3)4 (tetrakis(triphenylphosphine)palladium(O)), Pd(C5H7O2)2 (palladium(II) acetylacetonate), Pd2(dba)3 (tris(dibenzylideneacetone)dipalladium(O)), and PdCl2(dppf) [l,l'-bis(diphenyl5 phosphino)ferroceneJdichloropalladium(II). The method of Scheme 1 is generally conducted in a liquid phase, and therefore to be most effective the palladium catalyst preferably has good solubility in the liquid phase. Useful solvents include, for example, ethers such as 1,2dimethoxyethane, amides such as A,A-dimethylacetamide, and non-halogenated aromatic hydrocarbons such as toluene.
The method of Scheme 1 can be conducted over a wide range of temperatures, ranging from about 25 to about 150 °C. Of note are temperatures from about 60 to about 110 °C, which typically provide fast reaction rates and high product yields. The general methods and procedures for aminocarbonylation with an aryl bromide and an amine are well known in the literature; see, for example, H. Horino et al., Synthesis 1989, 715; and J. J. Li, G. W. Gribble, editors, Palladium in Heterocyclic Chemistry: A Guide for the Synthetic Chemist, 2000.
Compounds of Formula 1 can also be prepared by coupling carboxylic acids of Formula 4 with appropriately substituted amino compounds of Formula 3 as shown in Scheme 2.
Scheme 2
Figure AU2018202270B2_D0007
This reaction is generally carried out in the presence of a dehydrating coupling reagent such as dicyclohexylcarbodiimide, l-(3-dimethylaminopropyl)-3-ethylcarbodiimide, 1-propanephosphonic acid cyclic anhydride or carbonyl diimidazole in the presence of a base 25 such as triethylamine, pyridine, 4-(dimethylamino)pyridine or A,/V-diisopropylethylamine in an anhydrous aprotic solvent such as dichloromethane or tetrahydrofuran at a temperature typically between 25 and 70 °C.
Compounds of Formula 1 wherein R5 is Cj-Cg alkyl or Cj-Cg haloalkyl substituted with C2-C7 alkylaminocarbonyl, C3-C9 dialkylaminocarbonyl, C2-C7 haloalkylaminocarbonyl or C3-C9 halodialkylaminocarbonyl can also be prepared in a
2018202270 29 Mar 2018 stepwise manner by the following method. Coupling of the compounds of Formula 2 or the carboxylic acids of Formula 4 with amino esters by the general methods described for Schemes 1 and 2 yields ester intermediates. These ester intermediates are hydrolyzed to the corresponding carboxylic acids, which are then coupled with the appropriate amines to form 5 the abovementioned compounds of Formula 1. For example, see Synthesis Example 4 (Steps
C, D and E), Synthesis Example 5 (Steps B, C and D) and Synthesis Example 6.
Compounds of Formula 4 can be prepared by hydrolysis of esters of Formula 5, wherein R is methyl or ethyl, as shown in Scheme 3.
Scheme 3
Figure AU2018202270B2_D0008
R is methyl or ethyl
In the method of Scheme 3, the ester of Formula 5 is converted to the corresponding carboxylic acid of Formula 4 by general procedures well known in the art. For example, 15 treatment of a methyl or ethyl ester of Formula 5 with aqueous lithium hydroxide in tetrahydrofuran, followed by acidification yields the corresponding carboxylic acid of Formula 4.
Esters of Formula 5 can be prepared from compounds of Formula 2 by a method analogous to the method of Scheme 1 wherein an alcohol such as methanol or ethanol is 20 substituted for the amine. Alternatively, compounds of Formula 5 can be prepared by the reaction of styrenes of Formula 7 with oximes of Formula 6 as shown in Scheme 4.
Scheme 4
2018202270 29 Mar 2018
Figure AU2018202270B2_D0009
Figure AU2018202270B2_D0010
The method of Scheme 4 typically involves the chlorination of oximes of Formula 6 to form the hydroximoyl chlorides of Formula 6a. The intermediates of Formula 6a are 5 dehydrochlorinated under basic conditions to form nitrile oxides, which then undergo 1,3dipolar cycloaddition with styrenes of Formula 7 to afford compounds of Formula 5. In a typical procedure, a chlorinating reagent such as sodium hypochlorite, TV-chlorosuccinimide, or chloramine-T is combined with the oxime in the presence of the styrene. Depending on the reaction conditions, amine bases such as pyridine or triethylamine may be necessary to 10 facilitate the dehydrochlorination reaction. The reaction can be run in a wide variety of solvents including tetrahydrofuran, diethyl ether, methylene chloride, dioxane, and toluene with temperatures ranging from room temperature to the reflux temperature of the solvent. General procedures for cycloaddition of nitrile oxides with olefins are well documented in the chemical literature; for example, see Lee, Synthesis, 1982, 6, 508-509; Kanemasa et al., 15 Tetrahedron, 2000, 56, 1057-1064; EP 1,538,138-Al, as well as references cited within.
Compounds of Formula 2 can be prepared by the 1,3-dipolar cycloaddition of styrenes of Formula 7 with nitrile oxides derived from oximes of Formula 8 as shown in Scheme 5.
Scheme 5
2018202270 29 Mar 2018
Figure AU2018202270B2_D0011
chlorinating agent
------►
Figure AU2018202270B2_D0012
In the method of Scheme 5, the compounds of Formula 2, wherein X is as defined previously, are generated by contacting the compound of Formula 8 with a chlorinating reagent followed by the addition of a styrene of Formula 7. The method of Scheme 5 is conducted analogously to the method of Scheme 4 previously described.
The styrenes of Formula 7 can be prepared by the palladium-catalyzed coupling of aryl boronic acids of Formula 9 with the commercially available 2-bromo-3,3,3-trifluoropropene (Formula 10). General procedures for this method as shown in Scheme 6 are documented in the chemical literature; see Pan et al., J. Fluorine Chemistry, 1999, 95, 167-170. Other methods for preparing styrenes of Formula 7 are well known in the art.
Scheme 6
F
Figure AU2018202270B2_D0013
The oximes of Formula 6 can be prepared by the reaction of aldehydes of Formula 11, wherein R is as defined previously, with hydroxylamine as shown in Scheme 7. For example, see, Η. K. Jung et al. Bioorg. Med. Chem. 2004, 12, 3965. The aldehydes of Formula 11 can be prepared by a wide variety of methods known in the art; some of the aldehydes are known compounds.
Scheme 7
2018202270 29 Mar 2018
Figure AU2018202270B2_D0014
As shown in Scheme 8, the oximes of Formula 8, wherein X is as defined previously, can be prepared from the corresponding aldehydes of Formula 12 analogous to the method of Scheme 7.
Scheme 8
Figure AU2018202270B2_D0015
nh2oh
Figure AU2018202270B2_D0016
Compounds of Formula 12 are commercially available or known compounds, or they can be prepared by a wide variety of methods known in the art. For example, compounds of Formula 12 can be prepared by direct formylation of the corresponding aryl halides; see G. E. Boswell et al. J. Org. Chem. 1995, 65, 6592; or by reduction of the corresponding aryl esters, 15 see references P. R. Bernstein et al. Bioorg. Med. Chem. Lett. 2001, 2769 and L. W. Deady et al. Aust. J. Chem. 1989, 42, 1029.
Scheme 9 illustrates the preparation of intermediate acetates of Formula 14 from the corresponding methyl-substitituted compounds of Formula 13 (wherein X is as defined previously) by reaction with zV-bromosuccinimide (NBS) in the presence of 2,2’-azobis(220 methylpropionitrile) (AIBN) and sodium acetate. The intermediate acetates of Formula 14 are then converted to the aldehydes of Formula 12 by ester hydrolysis and oxidation.
Scheme 9
2018202270 29 Mar 2018
Figure AU2018202270B2_D0017
The compounds of Formula 13 are commercially available or known compounds, or 5 they can be prepared by a wide variety of methods known in the art.
An alternative method for preparing aldehydes of Formula 12 (wherein X is as defined previously) is shown in Scheme 10. The formyl group of Formula 12 can be introduced onto the naphthalene ring system by metallation of the bromide of Formula 15 followed by reaction of the lithium intermediate with ΛζΑ-dimethylformamide (DMF). For references to 10 this general method, see Synthesis, 2006, 293 and Bioorg. Med. Chem. 2004,12, 715.
Scheme 10
Figure AU2018202270B2_D0018
12
Examples of intermediates useful in the preparation of compounds of this invention are shown in Tables 1-1 through 1-6. The following abbreviations are used in the Tables which follow: Me means methyl, Et means ethyl, Z-Bu means -C(CH3)3, S(O) means sulfinyl, S(O)2 means sulfonyl, Ph means phenyl, C(O) means carbonyl and CHO means formyl.
2018202270 29 Mar 2018
TABLE I-1
Figure AU2018202270B2_D0019
R1 is Cl, Ra is H, R3 is Cl
gb Rb ώ
co2h CO2Me CO2Et CO2r-Bu CO2CH2Ph Br I
OH OMe OS(O)2CF3 nitro NH2 cyano Me
ch2ci CH2Br ch2oh CH2OC(O)Me CHO C(O)CH3
R1 is Cl, Ra is F and R3 is Cl
co2h CO2Me CO2Et CO2i-Bu CO2CH2Ph Br
OH OMe OS(O)2CF3 nitro nh2 cyano
ch2ci CH2Br ch2oh CH2OC(O)Me CHO C(O)CH3
R1 is Cl, Ra is Cl and R3 is Cl
gb Rb
co2h CO2Me CO2Et CO2t-Bu CO2CH2Ph Br
OH OMe OS(O)2CF3 nitro nh2 cyano
CHoCl CH2Br ch2oh CH2OC(O)Me CHO C(O)CH3
R1 is Br, Ra is H and R3 is Br
Rb
CO2H CO2Me CO2Et CO2t-Bu CO9CH9Ph Br
OH OMe OS(O)2CF3 nitro nh2 cyano
CH2C1 CH2Br ch2oh CH2OC(O)Me CHO C(O)CH3
R1 is CF3, Ra is H and R3 is F
Rb Rb Rb Rb Rb
CO2H CO2Me CO2Et CO2r-Bu CO2CH2Ph Bl- 1
OH OMe OS(O)2CF3 nitro NH2 ey ano Me
CH2C1 CH2Br ch2oh CH2OC(O)Me CHO C(O)CH3
Figure AU2018202270B2_D0020
2018202270 29 Mar 2018
R1 is CF3, Ra is H and R3 is Cl
R^ R^ Rb gb Rb
CO2H CO2Me CO2Et CO2i-Bu CO2CH2Ph Br I
OH OMe OS(O)2CF3 nitro nh2 cyano Me
CH2C1 CH2Br ch2oh CH2OC(O)Me CHO C(O)CH3
R1 is CF3, Ra is H and R3 is Br
r!z R^ R^ R^ R^ R^
co2h CO2Me CO2Et CO2i-Bu CO2CH2Ph Br
OH OMe OS(O)2CF3 nitro nh2 cyano
CH2C1 CH2Br ch2oh CH2OC(O)Me CHO C(O)CH3
Me
R1 is CF?, Ra is H and R3 is CF3
rJZ R^ Rb R^ R^
co2h CO2Me CO2Et CO2t-Bu CO2CH2Ph Br
OH OMe OS(O)2CF3 nitro nh2 cyano
CH2C1 CH2Br ch2oh CH2OC(O)Me CHO C(O)CH3
TABLE 1-2
Figure AU2018202270B2_D0021
Rb
I
Me
X R! X IU X
H CO2Me Cl CO2Me Br CO2Me
H CO2Et Cl CO2Et Br CO2Et
H COot-Bu Cl CO2i-Bu Br COoi-Bu
H CO2CH2Ph Cl CO2CH2Ph Br CO2CH2Ph
H CH2OC(O)Me Cl CH2OC(O)Me Br CH2OC(O)Me
H Br Cl Br Br Br
H I Cl I Br I
H OH Cl OH Br OH
2018202270 29 Mar 2018
X R^ X Ra X R^
H OMe Cl OMe Br OMe
H OS(O)2CF3 Cl OS(O)2CF3 Br OS(O)2CF3
H nitro Cl nitro Br nitro
H NH2 Cl NH2 Br nh2
H cyano Cl cyano Br cyano
H Me Cl Me Br Me
H CH2C1 Cl CH2Ci Br ch2ci
H CH2Br Cl CH2Br Br CH2Br
H CH2OH Cl ch2oh Br CH2OH
H OCH2Ph Cl OCH2Ph Br OCH2Ph
H C(O)Me Cl C(O)Me Br C(O)Me
H C(O)Et Cl C(O)Et Br C(O)Et
TABLE 1-3
Figure AU2018202270B2_D0022
Ra is CHO
R5
R5 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(;-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH ch2ch2ch2oh
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
R^
CH2C(O)NMe2 CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(LPr)
CH(Me)C(O)NH(LBu)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
2018202270 29 Mar 2018
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(/-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O )NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
Ra is CH=NOH
R5
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2S(O)(z?-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2S02OPr) iA
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3 CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
2018202270 29 Mar 2018
CH2CH2C(Me)2OH
CH2CH2SMe CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
Ra is C(C1)=NOH
R5
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(i-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
R5
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3 CH2C(O)NHCH2CH2C1 CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O )NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
R^
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(LPr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu) CH2C(O)N(Me)CH2CH2Cl CH2C(O)N(Me)CH2CHF2 CH2C(O)N(Me)CH2CF3 CH2C(O)N(Me)CH2CH2CF3 CH2C(O)N(Me)CH(Me)CF3 CH(Me)C(O)N(Me)CH2CH2Cl CH(Me)C(O)N(Me)CH2CHF2 CH(Me)C(O)N(Me)CH2CF3 CH(Me)C(O)N(Me)CH2CH2CF3
2018202270 29 Mar 2018
CH2CH2SEt
CH2CH2S(„-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
Figure AU2018202270B2_D0023
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(i-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me )C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(i-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr) l£
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me CH2CH2CH2S(O)Me CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O )Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
R5
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(i-Pr) CH(Me)C(O)NH(i-Bu) CH(Me)C(O)NH(s-Bu) CH2C(O)N(Me)CH2CH2Cl CH2C(O)N(Me)CH2CHF2 CH2C(O)N(Me)CH2CF3 CH2C(O)N(Me)CH2CH2CF3 CH2C(O)N(Me)CH(Me)CF3 CH(Me)C(O)N(Me)CH2CH2Cl CH(Me)C(O)N(Me)CH2CHF2 CH(Me)C(O)N(Me)CH2CF3 CH(Me)C(O)N(Me)CH2CH2CF3 CH(Me)C(O)N(Me)CH(Me)CF3 C(Me)2C(O)N(Me)CH2CH2Cl
2018202270 29 Mar 2018
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(i-Pr)
CH2C(O)NH(/-Bu)
CH2C(O)NH(s-Bu)
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O )NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
Figure AU2018202270B2_D0024
2018202270 29 Mar 2018
Ra R^ R3 R^ R^ R^
Me H CH2C1 co2h co2h co2h ch2oh CO2Me
Me C(O)Me ch2ci CO2Me co2h CO2Me ch2oh CO2Et
Me C(O)Et ch2ci COoEt co2h CO2Et CHO CO2Me
Me co2h CH2Br co2h C(O)C1 CO2Me CHO CO2Et
Me CO2Me CH2Br CO2Me C(O)C1 CO2Et
Me CO2Et CH2Br CO2Et
TABLE 1-5
Figure AU2018202270B2_D0025
R1 R^ R3 R1 R^ R1 R^ R^
Cl H Cl cf3 H Br Br N(CH2Ph)2 Br
Cl Cl Cl cf3 H cf3 cf3 N(CH2Ph)2 Cl
Cl F Cl Cl nh2 Cl cf3 N(CH2Ph)2 Br
Br H Br Br nh2 Br Cl NHC(O)Me Cl
cf3 H H cf3 nh2 Cl Br NHC(O)Me Br
cf3 H F cf3 nh2 Br cf3 NHC(O)Me Cl
cf3 H Cl Cl N(CH2Ph)2 Cl cf3 NHC(O)Me Br
2018202270 29 Mar 2018
TABLE 1-6
Figure AU2018202270B2_D0026
X is CH2
R1 Ra R3 R1 Ra R3
Cl H Cl Cl N(CH2Ph)2 Cl
Br H Br Br N(CH2Ph)2 Br
cf3 H H cf3 N(CH2Ph)2 H
cf3 H F cf3 N(CH2Ph)2 F
cf3 H Cl cf3 N(CH2Ph)2 Cl
cf3 H Br cf3 N(CH2Ph)2 Br
cf3 H cf3 cf3 N(CH2Ph)2 cf3
Cl nh2 Cl Cl NHC(0)Me Cl
Br nh2 Br Br NHC(O)Me Br
cf3 nh2 H cf3 NHC(0)Me H
cf3 nh2 F cf3 NHC(O)Me F
cf3 NH2 Cl cf3 NHC(O)Me Cl
cf3 nh2 Br cf3 NHC(O)Me Br
cf3 nh2 cf3 cf3 NHC(O)Me cf3
5 Cl Cl Cl Cl F Cl
It is recognized that some reagents
XisO
R1 Ra R3 R1 Ra R3
Cl H Cl Cl N(CH2Ph)2 Cl
Br H Br Br N(CH2Ph)2 Br
cf3 H H cf3 N(CH2Ph)2 H
cf3 H F cf3 N(CH2Ph)2 F
cf3 H Cl cf3 N(CH2Ph)2 Cl
cf3 H Br cf3 N(CH2Ph)2 Br
cf3 H cf3 cf3 N(CH2Ph)2 cf3
Cl nh2 Cl Cl NHC(O)Me Cl
Br nh2 Br Br NHC(O)Me Br
cf3 nh2 H cf3 NHC(O)Me H
cf3 nh2 F cf3 NHC(O)Me F
cf3 nh2 Cl cf3 NHC(O)Me Cl
cf3 nh2 Br cf3 NHC(O)Me Br
cf3 nh2 cf3 cf3 NHC(O)Me cf3
Cl Cl Cl Cl F Cl
reaction conditions described above for preparing compounds of Formula 1 may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in
2018202270 29 Mar 2018 detail to complete the synthesis of compounds of Formula 1. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula 1.
One skilled in the art will also recognize that compounds of Formula 1 and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.
Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Synthesis Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Steps in the following Synthesis Examples illustrate a procedure for each step in an overall synthetic transformation, and the starting material for each step may not have necessarily been prepared by a particular preparative run whose procedure is described in other Examples or Steps. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. NMR spectra are reported in ppm downfield from tetramethylsilane; “s” means singlet, “d” means doublet, “t” means triplet, “q” means quartet, “m” means multiplet, “dd” means doublet of doublets, “dt” means doublet of triplets, “br s” means broad singlet, and “br t” means broad triplet.
SYNTHESIS EXAMPLE 1
Preparation of 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-jV-[2(methyl thiojethyl] -1 -naphthalenecarboxamide
Step A: Preparation of methyl 4-[(hydroxyimino)methyl]-1 -naphthalenecarboxylate
A solution of hydroxylamine (1.33 mL, 50% in water) was added to a stirred solution of methyl 4-formyl-l-naphthalenecarboxylate (2.2 g, prepared as described in Journal of Medicinal Chemistry 2002, 45(26), 5755-5775) in methanol (50 mL). After stirring at room temperature for 2 h, the reaction mixture was concentrated under reduced pressure to provide the title compound as a pale yellow solid (2.55 g). JH NMR (CDCI3): δ 8.93 (d, 1H), 8.86 (s, 1H), 8.41 (d, 1H), 8.14 (d, 1H), 7.82 (d, 1H), 7.63 (m, 2H), 4.02 (s, 3H).
2018202270 29 Mar 2018
Step B: Preparation of methyl 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5(trifluoromethyl)-3-isoxazolyl] -1-naphthalenecarboxylate
A-Chlorosuccinimide (1.16 g, 8.72 mmol) was added to a stirred solution of methyl 4-[(hydroxyimino)methyl]-l-naphthalenecarboxylate (i.e. the product of Step A, 1.0 g, 4.36 mmol) in Α,/V-dimethylformamide (5.0 mL). This mixture was stirred for 1.5 h at room temperature, and then a solution of l,3-dichloro-5-[l-(trifluoromethyl)ethenyl]benzene (3.20 g, 13.1 mmol, prepared from commercially available 2-bromo-3,3,3-trifluoropropene by the method described in J. Fluorine Chem. 1999, 95, 167-170) and triethylamine (6.1 mL, 43.6 mmol) in A,7V-dimethylformamide (4.0 mL) was added. After stirring for an additional 2 h at 10 room temperature, the reaction mixture was diluted with water and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluted with ethyl acetate/hexanes to afford the title compound as a pale yellow oil (700 mg). !H NMR (CDC13): δ 8.88 (d, 1H), 8.80 (d, 1H), 8.10 (d, 1H), 7.68 (m, 2H), 7.55 15 (m, 3H), 7.46 (dd, 1H), 4.27 (d, 1H), 4.03 (s, 3H), 3.91 (d, 1H).
Step C: Preparation of 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] -1 -naphthalenecarboxylic acid
A solution of lithium hydroxide monohydrate (350 mg, 8.34 mmol) in water (10 mL) 20 was added to a stirred solution of methyl 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5(trifluoromethyl)-3-isoxazolyl]-l-naphthalenecarboxylate (i.e. the product of Step B, 650 mg, 1.39 mmol) in tetrahydrofuran (10 mL), followed by the addition of methanol (10 mL). The resulting mixture was stirred overnight at room temperature and then partitioned between water and diethyl ether. The aqueous layer was acidified with 6 N aqueous hydrochloric acid 25 to pH 2 and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over sodium sulfate, and concentrated under reduced pressure to provide the title compound as a white solid (450 mg). JH NMR (CDC13): δ 9.08 (d, 1H), 8.80 (d, 1H), 8.31 (d, 1H), 7.71 (m, 2H), 7.57 (m, 3H), 7.46 (dd, 1H), 4.28 (d, 1H), 3.91 (d, 1H).
Step D: Preparation of 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl] -N- [2-(methylthio)ethyl] -1 -naphthalenecarboxamide
Oxalyl chloride (0.24 mL) was added to a stirred suspension of 4-[5-(3,5dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-l-naphthalenecarboxylic acid (i.e. the product of Step C, 620 mg) in dichloromethane (20 mL), followed by the addition of 35 two drops of A,2V-dimethylformamide. The reaction mixture was stirred at room temperature for 1.5 h and then concentrated under vacuum. The residue was dissolved in dichloromethane (10 mL) and added to a stirred solution of 2-(methylthio)ethylamine (0.13 mL) and
2018202270 29 Mar 2018 triethylamine (0.38 mL) in dichloromethane (10 mL). The resulting reaction mixture was stirred at room temperature overnight. The reaction mixture was quenched with water and extracted with dichloromethane. The combined organic extracts were washed with brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified 5 by column chromatography on silica gel eluted with ethyl acetate/hexanes to provide the title compound (510 mg), a compound of this invention, as a white solid. JH NMR (CDCI3): δ 8.78 (d, 1H), 8.27 (d, 1H), 7.56-7.64 (m, 4H), 7.49 (d, 1H), 7.46 (dd, 1H), 7.40 (d, 1H), 6.57 (br t, 1H), 4.23 (d, 1H), 3.88 (d, IH), 3.71 (q, 2H), 2.79 (t, 2H), 2.15 (s, 3H).
SYNTHESIS EXAMPLE 2
Preparation of 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-N-[2(methylsulfinyl)ethylj -1 -naphthalenecarboxamide m-Chloroperoxybenzoic acid (47 mg, 70% purity) was added at -78 °C to a stirred solution of 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-N-[2(methylthio)ethylj-l-naphthalenecarboxamide (i.e. the product of Example 1, Step D, 15 100 mg) in dichloromethane (10 mL). The reaction mixture was stirred at -78 to -70 °C for
2.5 h, then quenched with saturated aqueous sodium bicarbonate and extracted with dichloromethane. The organic extract was washed with brine, dried over sodium sulfate, and concentrated under reduced pressure to provide the title compound (102 mg), a compound of this invention, as a white solid. 3Η NMR (CDCI3): δ 8.78 (d, 1H), 8.29 (d, 1H), 7.42-7.64 20 (m, 7H), 7.37 (br t, IH), 4.23 (d, 1H), 4.00 (q, 2H), 3.88 (d, 1H), 3.18 (dt, 1H), 2.89 (dt, 1H),
2.62 (s, 3H).
SYNTHESIS EXAMPLE 3
Preparation of 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-N-[2(methylsulfonyl)ethyl] -1 -naphthalenecarboxamide
H2O2 (0.056 mL, 30% in H2O) was added to a stirred solution of 4-[5-(3,5dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyi]-A'’-[2-(methylsulfinyl)ethyl]-lnaphthalenecarboxamide (i.e. the product of Example 2, 100 mg) in acetic acid (1.0 mL). The reaction mixture was stirred at 60 °C for 4 h, then cooled to room temperature, diluted with water, adjusted to pH 4 with 1.0 M aqueous NaOH solution, and extracted with chloroform.
The organic extract was washed with brine, dried over sodium sulfate, and concentrated under reduced pressure to provide the title compound (100 mg), a compound of this invention, as a white solid. JH NMR (CDC13): δ 8.80 (d, 1H), 8.29 (d, IH), 7.43-7.66 (m, 7H), 6.94 (br t, IH), 4.24 (d, 1H), 4.04 (q, 2H), 3.40 (t, 2H), 3.01 (s, 3H).
2018202270 29 Mar 2018
SYNTHESIS EXAMPLE 4
Preparation of 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-jV-[2oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-l -naphthalenecarboxamide
Step A: Preparation of 4-bromo-l-naphthalenecarboxaldehyde oxime
An aqueous solution of hydroxyl amine (1.25 mL, 50% in water) was added to a stirred solution of 4-bromo-l-naphthalenecarboxaldehyde (3.7 g, 15.7 mmol, prepared from commercially available 1,4-dibromonaphthalene by the method described in European Journal of Organic Chemistry 2006, 10, 2329-2335) in ethanol (30 mL). After stirring at 10 room temperature for 3 h, the reaction mixture was concentrated under reduced pressure to provide the title compound as a pale yellow solid (3.8 g). !H NMR (Me2S(O)-d6): δ 11.60 (s, 1H), 8.81 (s, 1H), 8.71 (d, 1H), 8.24 (d, 1H), 7.95 (d, 1H), 7.74 (m, 3H).
Step B: Preparation of 3-(4-bromo-l-naphthalenyl)-5-(3,5-dichlorophenyl)-4,515 dihydro-5-(trifluoromethyl)isoxazole iV-Chlorosuccinimide (1.70 g, 12.7 mmol) was added to a solution of 4-bromo-lnaphthalenecarboxaldehyde oxime (i.e. the product of Step A, 2.33 g, 9.3 mmol) in N,Ndimethylformamide (6.0 mL). The reaction mixture was stirred for 1 h at room temperature, and then a solution of l,3-dichloro-5-[l-(trifluoromethyl)ethenyl]benzene (2.70 g, 11.2 20 mmol, prepared from commercially available 2-bromo-3,3,3-trifluoropropene by the method described in J. Fluorine Chem. 1999, 95, 167-170) and triethylamine (4.5 mL, 32.0 mmol) in AQV-dimethylformamide (9.0 mL) was added. After stirring for an additional 2 h at room temperature, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic extract was washed with brine, dried over sodium sulfate, and concentrated 25 under reduced pressure. The residue was purified by chromatography on silica gel eluted with ethyl acetate/hexanes to afford the title compound as a white solid (2.9 g). JH NMR (CDC13): δ 8.87 (m, 1H), 8.32 (m, 1H), 7.77 (d, 1H), 7.66 (m, 2H), 7.55 (s, 2H), 7.46 (dd, 1H), 7.32 (d, 1H), 4.24 (d, 1H), 3.88 (d, 3H).
Step C: Preparation of A-[[4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-
3-isoxazolyl]-l-naphthalenyl]carbonyl]glycine methyl ester
A mixture of 3-(4-bromo-l-naphthalenyl)-5-(3,5-dichlorophenyl)-4,5-dihydro-5(trifluoromethyl)isoxazole (i.e. the product of Step B, 500 mg), [l,l’-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (82 mg), glycine methyl ester hydrochloride (514 mg) and triethylamine (2.8 mL) in toluene (10 mL) was purged with carbon monoxide for 15 minutes. The reaction mixture was stirred at 70 °C under a carbon monoxide atmosphere overnight. The mixture was then cooled to room temperature, filtered through a short pad of
2018202270 29 Mar 2018
Celite® diatomaceous filter aid, and rinsed with a small amount of ethyl acetate. The filtrate was concentrated under reduced pressure, and the residue was purified by chromatography on silica gel eluted with ethyl acetate/hexanes to provide the title compound as a white solid (310 mg). iH NMR (CDC13): δ 8.75 (d, 1H), 8.28 (d, 1H), 7.45-7.60 (m, 6H), 7.36 (d, 1H), 5 6.78 (br t, 1H), 4.26 (d, 2H), 4.21 (d, 1H), 3.87 (d, 1H), 3.80 (s, 3H).
Step D: Preparation of 2V-[[4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)3 -isoxazolyl] -1 -naphthalenyl] carbonyl] glycine
An aqueous solution of LiOH (300 mg, in 5 mL of H2O) was added to a stirred solution 10 of 2V-[[4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-lnaphthalenyl]carbonyl]glycine methyl ester (i.e. the product of Step C, 620 mg) in tetrahydrofuran (5 mL). After stirring at room temperature for 1 h, the reaction mixture was diluted with water and extracted with hexane. The aqueous layer was acidified with 6.0 N HC1 to pH 2, and a white precipitate formed. The aqueous mixture was extracted with ethyl 15 acetate. The organic extract was washed with brine, dried over sodium sulfate, and concentrated under reduced pressure to provide the title compound (600 mg) as a white solid. iH NMR (Me2S(O)-d6): 5 9.02 (t, 1H), 8.81 (d, 1H), 8.37 (d, 1H), 7.92 (d, 1H), 7.83 (t, 1H), 7.65-7.74 (m, 5H), 4.58 (d, 1H), 4.54 (d, 1H), 4.02 (d, 2H).
Step E: Preparation of 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl]-A-[2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-lnaphthalenecarboxamide
PS-Carbodiimide (0.53 g, 123 mmol/g, Argonaut Technologies, Inc.) was added to a stirred mixture of 7V-[[4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-325 isoxazolyl]-!-naphthalenyl]carbonyl]glycine (i.e. the product of Step D, 510 mg) and 2,2,2trifluoroethylamine (0.072 mL) in dichloromethane (3 mL) at room temperature. The mixture was stirred at room temperature for 5 h, then filtered and concentrated under reduced pressure. The residue was purified by column chromatography to provide the title compound (99 mg), a compound of this invention, as a white solid. NMR (CDCI3): δ 8.82 (d, 1H), 30 8.26 (d, 1H), 7.46-7.67 (m, 7H), 7.09 (m, 2H), 4.28 (d, 2H), 4.25 (d, 1H), 3.96 (m, 2H), 3.88 (d, 1H).
SYNTHESIS EXAMPLE 5
Preparation of 4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazoly 1 ]-/V-[2-oxo-2-|(2,2,2-trifluoroethyl)amino]ethyl]-l -naphthalenecarboxamide
2018202270 29 Mar 2018
Step A: Preparation of 5-[3,5-bis(trifluoromethyl)phenyl]-3-(4-bromo-lnaphthalenyl)-4,5-dihydro-5-(trifluoromethyl)isoxazole
A-Chlorosuccinimide (2.05 g, 15.5 mmol) was added to a solution of 4-bromo-lnaphthalenecarboxaldehyde oxime (i.e. the product of Example 4, Step A, 3.20 g, 12.8 mmol) 5 in AJV-dimethylformamide (20.0 mL). The reaction mixture was stirred for 1 h at room temperature, and then a solution of l,3-bis(trifluoromethyl)-5-[l(trifluoromethyl)ethenyl]benzene (5.13 g, 16.6 mmol, prepared according to the method described in J. Org. Chem. 1959, 24, 238-239) and triethylamine (5.4 mL, 38.4 mmol) in /VJV-dimethylformamide (10.0 mL) was added. After stirring for an additional 2 h at room 10 temperature, the reaction mixture was diluted with water and extracted with ethyl acetate.
The organic extract was washed with brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluted with ethyl acetate/hexanes to afford the title compound as a white solid (3.2 g). ΪΗ NMR (CDC13): δ 8.89 (m, 1H), 8.35 (m, 1H), 8.13 (s, 2H), 7.99 (s, 1H), 7.81 (d, 1H), 7.69 (m, 2H), 15 7.37 (d, 1H), 4.38 (d, 1H), 3.94 (d, 3H).
Step B: Preparation of /V-[[4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5(trifluoromethyl)-3-isoxazolyl]-l-naphthalenyl]carbonyl]glycine methyl ester
A mixture of 5-[3,5-bis(trifluoromethyl)phenyl]-3-(4-bromo-l-naphthalenyl)-4,520 dihydro-5-(trifluoromethyl)isoxazole (i.e. the product of Step A, 1.2 g), [l,l’-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (88 mg), glycine methyl ester hydrochloride (T.l g) and triethylamine (6.0 mL) in toluene (20 mL) was purged with carbon monoxide for 15 minutes. The reaction mixture was stirred at 70 °C under a carbon monoxide atmosphere overnight. The mixture was then cooled to room temperature, filtered through a short pad of 25 Celite® diatomaceous filter aid, and rinsed with a small amount of ethyl acetate. The filtrate was concentrated under reduced pressure, and the residue was purified by chromatography on silica gel eluted with ethyl acetate/hexanes to provide the title compound as a white solid (0.9 g). Ή NMR (CDCI3): δ 8.79 (d, 1H), 8.32 (d, 1H), 8.15 (s, 2H), 8.00 (s, 1H), 7.60 (m, 2H), 7.55 (d, 1H), 7.43 (d, 1H), 6.66 (br t, 1H), 4.36 (d, 1H), 4.29 (d, 2H), 3.94 (d, 1H), 3.82 (s, 30 3H).
Step C: Preparation of /V-[[4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5(trifluoromethyl)-3-isoxazolyl] -1 -naphthalenyl] carbonyl] glycine
An aqueous solution of LiOH (300 mg, in 10 mL of H2O) was added to a stirred solution of A-[[4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl]-!-naphthalenyl] carbonyl] glycine methyl ester (i.e. the product of Step B, 850 mg) in tetrahydro furan (10 mL). After stirring at room temperature for 1 h, the reaction mixture
2018202270 29 Mar 2018 was diluted with water and extracted with hexane. The aqueous layer was acidified with 6.0 N HC1 to pH 2, and a white precipitate formed. The aqueous mixture was extracted with ethyl acetate. The organic extract was washed with brine, dried over sodium sulfate, and concentrated under reduced pressure to provide the title compound (800 mg) as a white solid.
iH NMR (CDC13): δ 8.63 (d, 1H), 8.12 (d, 1H), 8.10 (s, 2H), 7.99 (s, 1H), 7.23-7.48 (m, 4H), 7.09 (br t, 1H), 4.20 (d, 1H), 4.19 (s, 2H), 3.83 (d, 1H).
Step D: Preparation of 4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5(trifluoromethyl)-3-isoxazolyl]-A-[2-oxo-2-[(2,2,210 trifluoroethyllamino] ethyl] -1 -naphthalenecarboxamide
PS-Carbodiimide (400 mg, 123 mmol/g, Argonaut Technologies, Inc.) was added to a stirred mixture of A-[[4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-
3-isoxazolyl]-l-naphthalenyl]carbonyl]glycine (i.e. the product of Step C, 140 mg) and 2,2,2trifluoroethylamine (0.038 mL) in dichloromethane (3 mL) at room temperature. The mixture 15 was stirred at room temperature overnight, then filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluted with ethyl acetate/hexanes to provide the title compound (115 mg), a compound of this invention, as a white solid. Ή NMR (CDC13): 6 8.77 (d, 1H), 8.16 (d, 1H), 8.13 (s, 2H), 8.01 (s, 1H), 7.51-7.60 (m, 3H), 7.46 (t, 1H), 7.42 (d, 1H), 7.33 (d, 1H), 4.31 (d, 1H), 4.23 (d, 2H), 3.8320 3.92 (m, 3H).
SYNTHESIS EXAMPLE 6
Preparation of 4-[5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3isoxazolyl]-N- [2- [(1 -methylethyl)amino] -2-oxoethyl] -1 -naphthalenecarboxamide
Trimethylacetyl chloride (0.078 mL) was added to a stirred mixture of 7V-[[4-[5-[3,525 bis(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-lnaphthalenyl]carbonyl]glycine (i.e. the product of Example 5, Step C, 307 mg) and pyridine (0.052 mL) in dichloromethane (6 mL) at room temperature. The mixture was stirred at room temperature for 2 h, and then isopropylamine (0.29 mL) and triethylamine (1.8 mL) were added. After stirring at room temperature for an additional 1 h, the reaction mixture was 30 concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluted with ethyl acetate/hexanes to provide the title compound (235 mg), a compound of this invention, as a white solid. JH NMR (CD3C(O)CD3): δ 8.92 (d, 1H), 8.49 (d, 1H), 8.38 (s, 2H), 8.26 (s, 1H), 7.88 (d, 1H), 7.84 (br t, 1H), 7.75 (d, 1H), 7.64-7.72 (m, 2H), 7.15 (br s, 1H), 4.74 (d, 1H), 4.65 (d, 1H), 4.09 (d, 2H), 1.15 (d, 6H).
2018202270 29 Mar 2018
By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 5 can be prepared. The following abbreviations are used in the Tables which follow: Me means methyl, Et means ethyl, z-Pr means CH(CH3)2, z-Bu means CH2CH(CH3)2, s-Bu means CH(CH3)CH2CH3, r-Bu means C(CH3)3, CN means 5 cyano, S(O) means sulfinyl, S(O)2 means sulfonyl, and C(O) means carbonyl (e.g., C(O)Me means methylcarbonyl). Amides represented as RC(O)NHR’ or RC(O)NR’R” are as defined previously in the Summary of the Invention.
TABLE 1
Figure AU2018202270B2_D0027
O
R1 is Cl, R2 is H and R3 is Cl
R5
R5 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2CH(CF3)OH
CH2C(Me)2OH
CH2C(CF3)(Me)OH
CH(Me)CH2OH
C(Me)2CH2OH
CH(Et)CH2OH
CH(z-Pr)CH2OH
CH(z-Bu)CH2OH
CH(Me)CH(CF3)OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2SO2(/-Pr)
CH7CH2SO2(z-Bii)
CH2CH2SO2(Z-Bu)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
C(Me)2CH2SO2Me
CH(Et)CH2SO2Me
CH(z-Pr)CH2SO2Me
CH(i-Bu)CH2SO2Me
CH2CH2CH2SOQMe
CH2CHqCH7 SO2Et
CH2CH2CH2SO2(z-Bu)
CH2CH2CH2SO2(f-Bu) r5
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(/-Pr)
CH2C(O)NH(n-Bu)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NH(z-Bu)
CH2C(O)NHCH2(z-Bu)
CH2C(O)NMe2 CH2C(O)NMe(Et)
CH2C(O)NEt2
CH2C(O)NMe(n-Pr)
CH2C(O)NMe(z-Pr)
CH2C(O)NMe(s-Bu) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr)
2018202270 29 Mar 2018
CH(Me)CH2CH2OH
C(Me)2CH2CH2OH
CH(z-Pr)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2S(/-P1)
CH2CH2S(z-Bu)
CH2CH2S(i-Bu)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
C(Me)2CH2SMe
CH(Et)CH2SMe
CH(z-Pr)CH2SMe
CH(z-Bu)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH2S(z-Bu)
CH2CH2CH2S(z-Bu)
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH(Et)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2S(O)(z-Pr)
CH2CH2S(O)(z-Bu)
CH2CH2S(O)(f-Bu)
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH(Et)CH2CH2SO2Me
CH2CH(Me)C.H2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NHCH2CH2F
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH(Me)F
CH2C(O)NHCH2C(Me)2F
CH2C(O)NH(CH2)2CH2F
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH2CHFCF3
CH2C(O)NHCH2CF2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH(CF3)2
CH2C(O)NHC(Me)2CF3
CH2C(O)NHCH2CH(Me)CF3
CH2C(O)NH(CH2)2CF2CF3
CH2C(O)NHCH2(CF2)2CF3
CH2C(O)NHCH(z-Pr)CF3
CH(Me)C(O)NHCH2CH2F
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH(Me)F
CH(Me)C(O )NHCH2C(Me)2F
CH(Me)C(O)NH(CH2)2CH2F
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH2CHFCF3
CH(Me)C(O)NHCH2CF2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH(CF3)2
CH(Me)C(O)NHC(Me)2CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(zz-Bu)
CH(Me)C(O)NH(z-Bu)
CH(Me)C(O)NH(,s-Bu)
CH(Me)C(O)NH(f-Bu)
CH(Me)(O)NHCH2(i-Bu)
C(Me)2C(O)NH(Me)
C(Me)2C(O)NH(Et)
C(Me)2C(O)NH(n-Pr)
C(Me)2C(O)NH(z-Pr)
C(Me)2C(O)NH(n-Bu)
C(Me)2C(O)NH(z-Bu)
C(Me)2C(O)NH(s-Bu)
C(Me)2C(O)NH(i-Bu)
C(Me)2C(O)NHCH2(i-B u)
CH2C(O)N(Me)CH2CH2F
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CH2F
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH2CF2CF3
CH2C(O)N(Me)CH(Me)CF3
CH2C(O)N(Me)CH(CF3)2
CH2C(O)N(Me)C(Me)2CF3
CH(Me)C(O)N(Me)CH2CH2F
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)(CH2)2CH2F
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH2CF2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH(CF3)2
CH(Me)C(O)N(Me)C(Me)2CF3
C(Me)2C(O)N(Me)CH2CH2F
C(Me)2C(O)N(Me)CH2CH2Cl
2018202270 29 Mar 2018
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
C(Me)2CH2S(O)Me
CH(Et)CH2S(O)Me
CH(i-Pr)CH2S(O)Me
CH(z-Bu)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH2S(O)(i-Bu)
CH2CH2CH2S(O)(Z-Bu)
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH(Et)CH2CH2S(O)Me
CH(Me)C(O)NH(CH2)2CF2CF3
CH(Me)C(O)NHCH2(CF2)2CF3
CH(Me)C(O)NHCH(/-Pr)CF3
C(Me)2C(O)NHCH2CH2F
C(Me)2C(O)NHCH2CH2Cl
C(Me)2C(O)NHCH2CHF2
C(Me)2C(O)NHCH2CF3
C(Me)2C(O)NHCH2CH(Me)F
C(Me)2C(O)NHCH2C(Me)2F
C(Me)2C(O)NH(CH2)2CH2F
C(Me)2C(O )NHCH2CH2CF3
C(Me)2C(O)NHCH2CHFCF3
C(Me)2C(O)NHCH2CF2CF3
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
R1 is Cl, R2 is F and R3 is Cl
ch2ch2oh CH2CH2SO2Me
CH2CH2OMe CH2CH2SO2Et
CH2CH2OEt CH2CH2SO2(zz-Pr)
CH2CH2O(z-Pr) CH2CH2SO2(z-Pr)
CH2CH(Me)OH CH2CH2SO2(z-Bu)
CH2CH(CF3)OH CH2CH2SO2(i-Bu)
CH2C(Me)2OH CH2CH(Me)SO2Me
CH2C(CF3)(Me)OH CH2CH(CF3)SO2Me
CH(Me)CH2OH CH2C(Me)2SO2Me
C(Me)2CH2OH CH(Me)CH2SO2Me
CH(Et)CH2OH C(Me)2CH2SO2Me
CH(i-Pr)CH2OH CH(Et)CH2SO2Me
CH(z-Bu)CH2OH CH(z-Pr)CH2SO2Me
CH(Me)CH(CF3)OH CH(z-Bu)CH2SO2Me
ch2ch2ch2oh CH2CH2CH2SO2Me
CH2CH2CH2OMe CH2CH2CH2SO2Et
CH2CH2CH2OEt CH2CH2CH2SO2(z-Bu)
CH2CH2CH(CF3)OH CH2CH2CH2SO2(i-Bu)
C(Me)2C(O)N(Me)CH2CHF2
C(Me)2C(O)N(Me)CH2CF3
C(Me)2C(O)N(Me)CH2CH2CH2F
C(Me)2C(O)N(Me)CH2CH2CF3
C(Me)2C(O)N(Me)CH2CF2CF3
C(Me)2C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH(CF3)2
C(Me)2C(O)N(Me)C(Me)2CF3
C(Me)2C(O)NHCH(Me)CF3
C(Me)2C(O)NHCH(CF3)2
C(Me)2C(O)NHC(Me)2CF3
C(Me)2C(O)NHCH2CH(Me)CF3
C(Me)2C(O)NH(CH2)2CF2CF3
C(Me)2C(O)NHCH2(CF2)2CF3
C(Me)2C(O)NHCH(z-Pr)CF3
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(/-Pr)
CH2C(O)NH(n-Bu)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NH(Z-Bu)
CH2C(O)NHCH2(Z-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH2C(O)NEt2
CH2C(O)NMe(zi-Pr)
CH2C(O)NMe(z-Pr)
CH2C(O)NMe(s-Bu)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(z?-Pr)
2018202270 29 Mar 2018
CH(Me)CH2CH2OH
C(Me)2CH2CH2OH
CH(z-Pr)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2S(/-P1)
CH2CH2S(z-Bu)
CH2CH2S(Z-Bu)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
C(Me)2CH2SMe
CH(Et)CH2SMe
CH(z-Pr)CH2SMe
CH(z-Bu)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH2S(z-Bu)
CH2CH2CH2S(z-Bu)
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH(Et)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2S(O)(z-Pr)
CH2CH2S(O)(z-Bu)
CH2CH2S(O)(z-Bu)
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH(Et)CH2CH2SO2Me
CH2CH(Me)C.H2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NHCH2CH2F
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH(Me)F
CH2C(O)NHCH2C(Me)2F
CH2C(O)NH(CH2)2CH2F
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH2CHFCF3
CH2C(O)NHCH2CF2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH(CF3)2
CH2C(O)NHC(Me)2CF3
CH2C(O)NHCH2CH(Me)CF3
CH2C(O)NH(CH2)2CF2CF3
CH2C(O)NHCH2(CF2)2CF3
CH2C(O)NHCH(z-Pr)CF3
CH(Me)C(O)NHCH2CH2F
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3 CH(Me)C(O)NHCH2CH(Me)F CH(Me)C(O )NHCH2C(Me)2F CH(Me)C(O)NH(CH2)2CH2F CH(Me)C(O)NHCH2CH2CF3 CH(Me)C(O)NHCH2CHFCF3
CH(Me)C(O)NHCH2CF2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH(CF3)2
CH(Me)C(O)NHC(Me)2CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(zz-Bu)
CH(Me)C(O)NH(z'-Bu)
CH(Me)C(O)NH(,s-Bu)
CH(Me)C(O)NH(f-Bu)
CH(Me)(O)NHCH2(i-Bu)
C(Me)2C(O)NH(Me)
C(Me)2C(O)NH(Et)
C(Me)2C(O)NH(n-Pr)
C(Me)2C(O)NH(z-Pr)
C(Me)2C(O)NH(n-Bu)
C(Me)2C(O)NH(z-Bu)
C(Me)2C(O)NH(s-Bu)
C(Me)2C(O)NH(i-Bu)
C(Me)2C(O)NHCH2(i-B u)
CH2C(O)N(Me)CH2CH2F
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CH2F
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH2CF2CF3
CH2C(O)N(Me)CH(Me)CF3
CH2C(O)N(Me)CH(CF3)2
CH2C(O)N(Me)C(Me)2CF3
CH(Me)C(O)N(Me)CH2CH2F
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)(CH2)2CH2F
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH2CF2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH(CF3)2
CH(Me)C(O)N(Me)C(Me)2CF3
C(Me)2C(O)N(Me)CH2CH2F
C(Me)2C(O)N(Me)CH2CH2Cl
2018202270 29 Mar 2018
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
C(Me)2CH2S(O)Me
CH(Et)CH2S(O)Me
CH(i-Pr)CH2S(O)Me
CH(LBu)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH2S(O)(LBu)
CH2CH2CH2S(O)(Z-Bu)
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH(Et)CH2CH2S(O)Me
CH(Me)C(O)NH(CH2)2CF2CF3
CH(Me)C(O)NHCH2(CF2)2CF3
CH(Me)C(O)NHCH(/-Pr)CF3
C(Me)2C(O)NHCH2CH2F
C(Me)2C(O)NHCH2CH2Cl
C(Me)2C(O)NHCH2CHF2
C(Me)2C(O)NHCH2CF3
C(Me)2C(O)NHCH2CH(Me)F
C(Me)2C(O)NHCH2C(Me)2F
C(Me)2C(O)NH(CH2)2CH2F
C(Me)2C(O )NHCH2CH2CF3
C(Me)2C(O)NHCH2CHFCF3
C(Me)2C(O)NHCH2CF2CF3
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
C(Me)2C(O)N(Me)CH2CHF2
C(Me)2C(O)N(Me)CH2CF3
C(Me)2C(O)N(Me)CH2CH2CH2F
C(Me)2C(O)N(Me)CH2CH2CF3
C(Me)2C(O)N(Me)CH2CF2CF3
C(Me)2C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH(CF3)2
C(Me)2C(O)N(Me)C(Me)2CF3
C(Me)2C(O)NHCH(Me)CF3
C(Me)2C(O)NHCH(CF3)2
C(Me)2C(O)NHC(Me)2CF3
C(Me)2C(O)NHCH2CH(Me)CF3
C(Me)2C(O)NH(CH2)2CF2CF3
C(Me)2C(O)NHCH2(CF2)2CF3
C(Me)2C(O)NHCH(z-Pr)CF3
R1 is Br, R2 is H and R3 is Br
R5
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2CH(CF3)OH
CH2C(Me)2OH
CH2C(CF3)(Me)OH
CH(Me)CH2OH
C(Me)2CH2OH
CH(Et)CH2OH
CH(z-Pr)CH2OH
CH(z-Bu)CH2OH
CH(Me)CH(CF3)OH
CH2CH2CH2OH
CH2CH?CH2OMe
R5
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(z?-Pr)
CH2CH2SO2(z-Pr)
CH2CH2SO2(z-Bu)
CH2CH2SO2(z-Bu)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
C(Me)2CH2SO2Me
CH(Et)CH2SO2Me
CH(z-Pr)CH2SO2Me
CH(z-Bu)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et r£
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(zz-Pr)
CH2C(O)NH(z-Pij
CH2C(O)NH(n-Bu)
CH2C(O)NH(z-Bu)
CH2C(O)NH(.s-Bu)
CH2C(O)NH(Z-Bu)
CH2C(O)NHCH2(z-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH2C(O)NEt2
CH2C(O)NMe(z?-Pr)
CH2C(O)NMe(z-Pr)
CH2C(O)NMe(s-Bu)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH2CH2CH2OEt
CH2CH2CH2SO2(z-Bu)
2018202270 29 Mar 2018
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
C(Me)2CH2CH2OH
CH(/-Pr)CH2CH2OH
CH2CH(Me)CH2OH
CH2C.(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2S(i'-Pr)
CH2CH2S(z-Bu)
CH2CH2S(Z-Bu)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
C(Me)2CH2SMe
CH(Et)CH2SMe
CH(z-Pr)CH2SMe
CH(/-Bu)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH2S(LBu)
CH2CH2CH2S(Z-Bu)
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH(Et)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2S(O)(z-Pr)
CH2CH2S(O)(LBu)
CH2CH2CH2SO2(i-Bu)
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3) SO2Me
CH(Me)CH2CH2SO2Me
CH(Et)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NHCH2CH2F
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH(Me)F
CH2C(O)NHCH2C(Me)2F
CH2C(O)NH(CH2)2CH2F
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH2CHFCF3
CH2C(O)NHCH2CF2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH(CF3)2
CH2C(O)NHC(Me)2CF3
CH2C(O)NHCH2CH(Me)CF3
CH2C(O)NH(CH2)2CF2CF3
CH2C(O)NHCH2(CF2)2CF3
CH2C(O)NHCH(z-Pr)CF3
CH(Me)C(O)NHCH2CH2F
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH(Me)F
CH(Me)C(O)NHCH2C(Me)2F
CH(Me)C(O)NH(CH2)2CH2F
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH2CHFCF3
CH(Me)C(O)NHCH2CF2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH(CF3 )2
CH(Me)C(O)NHC(Me)2CF3
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(/-Pr) CH(Me)C(O)NH(n-Bu)
CH(Me)C(O)NH(/-Bu)
CH(Me)C(O)NH(s-Bu)
CH(Me)C(O)NH(Z-Bu)
CH(Me)(O)NHCH2(i-Bu)
C(Me)2C(O)NH(Me) C(Me)2C(O)NH(Et)
C(Me)2C(O)NH(n-Pr)
C(Me)2C(O)NH(z-Pr)
C(Me)2C(O)NH(z?-Bu)
C(Me)2C(O)NH(z-Bu)
C(Me)2C(O)NH(s-Bu)
C(Me)2C(O)NH(i-Bu)
C(Me)2C(O)NHCH2(Z-B u)
CH2C(O)N(Me)CH2CH2F
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CH2F
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH2CF2CF3
CH2C(O)N(Me)CH(Me)CF3
CH2C(O)N(Me)CH(CF3)2
CH2C(O)N(Me)C(Me)2CF3
CH(Me)C(O)N(Me)CH2CH2F
CH(Me)C(O)N(Me)C.H2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)(CH2)2CH2F
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH2CF2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH(CF3)2
CH(Me)C(O)N(Me)C(Me)2CF3
C(Me)2C(O)N(Me)CH2CH2F
2018202270 29 Mar 2018
CH2CH2S(O)(Z-Bu)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
C(Me)2CH2S(O)Me
CH(Et)CH2S(O)Me
CH(z-Pr)CH2S(O)Me
CH(i-Bu)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH2S(O)(z-Bu)
CH2CH2CH2S(O)(z-Bu)
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH(Et)CH2CH2S(O)Me
CH(Me)C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NH(CH2)2CF2CF3
CH(Me)C(O)NHCH2(CF2)2CF3
CH(Me)C(O)NHCH(z-Pr)CF3
C(Me)2C(O)NHCH2CH2F
C(Me)2C(O)NHCH2CH2Cl
C(Me)2C(O)NHCH2CHF2
C(Me)2C(O)NHCH2CF3
C(Me)2C(O)NHCH2CH(Me)F
C(Me)2C(O)NHCH2C(Me)2F
C(Me)2C(O)NH(CH2)2CH2F
C(Me)2C(O)NHCH2CH2CF3
C(Me)2C(O)NHCH2CHFCF3
C(Me)2C(O)NHCH2CF2CF3
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CHF2
C(Me)2C(O)N(Me)CH2CF3
C(Me)2C(O)N(Me)CH2CH2CH2F
C(Me)2C(O)N(Me)CH2CH2CF3
C(Me)2C(O)N(Me)CH2CF2CF3
C(Me)2C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH(CF3)2
C(Me)2C(O)N(Me)C(Me)2CF3
C(Me)2C(O)NHCH(Me)CF3
C(Me)2C(O)NHCH(CF3)2
C(Me)2C(O)NHC(Me)2CF3
C(Me)2C(O)NHCH2CH(Me)CF3
C(Me)2C(O)NH(CH2)2CF2CF3
C(Me)2C(O)NHCH2(CF2)2CF3
C(Me)2C(O)NHCH(z-Pr)CF3
R1 is CF3, R2 is H and R3 is F
R5
R5
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2CH(CF3)OH
CH2C(Me)2OH
CH2C(CF3)(Me)OH
CH(Me)CH2OH
C(Me)2CH2OH
CH(Et)CH2OH
CH(z-Pr)CH2OH
CH(z-Bu)CH2OH
CH(Me)CH(CF3)OH ch2ch2ch2oh
CH?CH?CH?OMe
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2SO2(z-Pr)
CH2CH2SO2(z-Bu)
CH2CH2SO2(r-Bu)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
C(Me)2CH2SO2Me
CH(Et)CH2SO2Me
CH(z-Pr)CH2SO2Me
CH(z-Bu)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et r£
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pij
CH2C(O)NH(n-Bu)
CH2C(O)NH(z-Bu)
CH2C(O)NH(.s-Bu)
CH2C(O)NH(Z-Bu)
CH2C(O)NHCH2(z-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH2C(O)NEt2
CH2C(O)NMe(n-Pr)
CH2C(O)NMe(z-Pr)
CH2C(O)NMe(s-Bu)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH2CH2CH2OEt
CH2CH2CH2SO2(z-Bu)
2018202270 29 Mar 2018
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
C(Me)2CH2CH2OH
CH(z-Pr)CH2CH2OH
CH2CH(Me)CH2OH
CH2C.(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2S(i'-Pr)
CH2CH2S(i-Bu)
CH2CH2S(i-Bu)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
C(Me)2CH2SMe
CH(Et)CH2SMe
CH(z-Pr)CH2SMe
CH(/-Bu)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH2S(/-Bu)
CH2CH2CH2S(i-Bu)
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH(Et)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2S(O)(i-Pr)
CH2CH2S(O)(i-Bu)
CH2CH2CH2SO2(r-Bu)
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3) SO2Me
CH(Me)CH2CH2SO2Me
CH(Et)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NHCH2CH2F
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH(Me)F
CH2C(O)NHCH2C(Me)2F
CH2C(O)NH(CH2)2CH2F
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH2CHFCF3
CH2C(O)NHCH2CF2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH(CF3)2
CH2C(O)NHC(Me)2CF3
CH2C(O)NHCH2CH(Me)CF3
CH2C(O)NH(CH2)2CF2CF3
CH2C(O)NHCH2(CF2)2CF3
CH2C(O)NHCH(z-Pr)CF3
CH(Me)C(O)NHCH2CH2F
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH(Me)F
CH(Me)C(O)NHCH2C(Me)2F
CH(Me)C(O)NH(CH2)2CH2F
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH2CHFCF3
CH(Me)C(O)NHCH2CF2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH(CF3 )2
CH(Me)C(O)NHC(Me)2CF3
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(/-Pr)
CH(Me)C(O)NH(n-Bu)
CH(Me)C(O)NH(z-Bu)
CH(Me)C(O)NH(s-Bu)
CH(Me)C(O)NH(i-Bu)
CH(Me)(O)NHCH2(i-Bu)
C(Me)2C(O)NH(Me)
C(Me)2C(O)NH(Et)
C(Me)2C(O)NH(n-Pr)
C(Me)2C(O)NH(i-Pr)
C(Me)2C(O)NH(n-Bu)
C(Me)2C(O)NH(z-Bu)
C(Me)2C(O)NH(s-Bu)
C(Me)2C(O)NH(i-Bu)
C(Me)2C(O)NHCH2(Z-B u)
CH2C(O)N(Me)CH2CH2F
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CH2F
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH2CF2CF3
CH2C(O)N(Me)CH(Me)CF3
CH2C(O)N(Me)CH(CF3)2
CH2C(O)N(Me)C(Me)2CF3
CH(Me)C(O)N(Me)CH2CH2F
CH(Me)C(O)N(Me)C.H2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)(CH2)2CH2F
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH2CF2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH(CF3)2
CH(Me)C(O)N(Me)C(Me)2CF3
C(Me)2C(O)N(Me)CH2CH2F
2018202270 29 Mar 2018
CH2CH2S(O)(Z-Bu)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
C(Me)2CH2S(O)Me
CH(Et)CH2S(O)Me
CH(z-Pr)CH2S(O)Me
CH(i-Bu)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH2S(O)(z-Bu)
CH2CH2CH2S(O)(f-Bu)
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH(Et)CH2CH2S(O)Me
CH(Me)C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NH(CH2)2CF2CF3
CH(Me)C(O)NHCH2(CF2)2CF3
CH(Me)C(O)NHCH(z-Pr)CF3
C(Me)2C(O)NHCH2CH2F
C(Me)2C(O)NHCH2CH2Cl
C(Me)2C(O)NHCH2CHF2
C(Me)2C(O)NHCH2CF3
C(Me)2C(O)NHCH2CH(Me)F
C(Me)2C(O)NHCH2C(Me)2F
C(Me)2C(O)NH(CH2)2CH2F
C(Me)2C(O)NHCH2CH2CF3
C(Me)2C(O)NHCH2CHFCF3
C(Me)2C(O)NHCH2CF2CF3
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CHF2
C(Me)2C(O)N(Me)CH2CF3
C(Me)2C(O)N(Me)CH2CH2CH2F
C(Me)2C(O)N(Me)CH2CH2CF3
C(Me)2C(O)N(Me)CH2CF2CF3
C(Me)2C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH(CF3)2
C(Me)2C(O)N(Me)C(Me)2CF3
C(Me)2C(O)NHCH(Me)CF3
C(Me)2C(O)NHCH(CF3)2
C(Me)2C(O)NHC(Me)2CF3
C(Me)2C(O)NHCH2CH(Me)CF3
C(Me)2C(O)NH(CH2)2CF2CF3
C(Me)2C(O)NHCH2(CF2)2CF3
C(Me)2C(O)NHCH(z-Pr)CF3
R1 is CF3, R2 is H and R3 is Cl
r2
ch2ch2oh CH2CH2SO2Me CH2C(O)NH(Me)
CH2CH2OMe CH2CH2SO2Et CH2C(O)NH(Et)
CH2CH2OEt CH2CH2SO2(z?-Pr) CH2C(O)NH(zz-Pr)
CH2CH2O(z-Pr) CH2CH2SO2(z-Pr) CH2C(O)NH(z-Pij
CH2CH(Me)OH CH2CH2SO2(z-Bu) CH2C(O)NH(n-Bu)
CH2CH(CF3)OH CH2CH2SO2(z-Bu) CH2C(O)NH(z-Bu)
CH2C(Me)2OH CH2CH(Me)SO2Me CH2C(O)NH(.s-Bu)
CH2C(CF3)(Me)OH CH2CH(CF3)SO2Me CH2C(O)NH(Z-Bu)
CH(Me)CH2OH CH2C(Me)2SO2Me CH2C(O)NHCH2(z-Bu)
C(Me)2CH2OH CH(Me)CH2SO2Me CH2C(O)NMe2
CH(Et)CH2OH C(Me)2CH2SO2Me CH2C(O)NMe(Et)
CH(z-Pr)CH2OH CH(Et)CH2SO2Me CH2C(O)NEt2
CH(z-Bu)CH2OH CH(z-Pr)CH2SO2Me CH2C(O)NMe(z?-Pr)
CH(Me)CH(CF3)OH CH(z-Bu)CH2SO2Me CH2C(O)NMe(z-Pr)
ch2ch2ch2oh CH2CH2CH2SO2Me CH2C(O)NMe(s-Bu)
CH2CH2CH2OMe CH2CH2CH2SO2Et CH(Me)C(O)NH(Me)
CH2CH2CH2OEt CH2CH2CH2SO2(z-Bu) CH(Me)C(O)NH(Et)
2018202270 29 Mar 2018
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
C(Me)2CH2CH2OH
CH(z-Pr)CH2CH2OH
CH2CH(Me)CH2OH
CH2C.(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2S(i'-Pr)
CH2CH2S(i-Bu)
CH2CH2S(LBu)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
C(Me)2CH2SMe
CH(Et)CH2SMe
CH(z-Pr)CH2SMe
CH(LBu)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH2S(LBu)
CH2CH2CH2S(i-Bu)
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH(Et)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2S(O)(z-Pr)
CH2CH2S(O)(i-Bu)
CH2CH2CH2SO2(r-Bu)
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3) SO2Me
CH(Me)CH2CH2SO2Me
CH(Et)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NHCH2CH2F
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH(Me)F
CH2C(O)NHCH2C(Me)2F
CH2C(O)NH(CH2)2CH2F
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH2CHFCF3
CH2C(O)NHCH2CF2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH(CF3)2
CH2C(O)NHC(Me)2CF3
CH2C(O)NHCH2CH(Me)CF3
CH2C(O)NH(CH2)2CF2CF3
CH2C(O)NHCH2(CF2)2CF3
CH2C(O)NHCH(z-Pr)CF3
CH(Me)C(O)NHCH2CH2F
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH(Me)F
CH(Me)C(O)NHCH2C(Me)2F
CH(Me)C(O)NH(CH2)2CH2F
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH2CHFCF3
CH(Me)C(O)NHCH2CF2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH(CF3 )2
CH(Me)C(O)NHC(Me)2CF3
CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(zz-Bu) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu) CH(Me)C(O)NH(i-Bu) CH(Me)(O)NHCH2(i-Bu) C(Me)2C(O)NH(Me) C(Me)2C(O)NH(Et) C(Me)2C(O)NH(n-Pr) C(Me)2C(O)NH(z-Pr) C(Me)2C(O)NH(z?-Bu) C(Me)2C(O)NH(z-Bu) C(Me)2C(O)NH(s-Bu) C(Me)2C(O)NH(i-Bu) C(Me)2C(O)NHCH2(Z-B u) CH2C(O)N(Me)CH2CH2F CH2C(O)N(Me)CH2CH2Cl CH2C(O)N(Me)CH2CHF2 CH2C(O)N(Me)CH2CF3 CH2C(O)N(Me)CH2CH2CH2F CH2C(O)N(Me)CH2CH2CF3 CH2C(O)N(Me)CH2CF2CF3 CH2C(O)N(Me)CH(Me)CF3 CH2C(O)N(Me)CH(CF3)2 CH2C(O)N(Me)C(Me)2CF3 CH(Me)C(O)N(Me)CH2CH2F CH(Me)C(O)N(Me)C.H2CH2Cl CH(Me)C(O)N(Me)CH2CHF2 CH(Me)C(O)N(Me)CH2CF3 CH(Me)C(O)N(Me)(CH2)2CH2F CH(Me)C(O)N(Me)CH2CH2CF3 CH(Me)C(O)N(Me)CH2CF2CF3 CH(Me)C(O)N(Me)CH(Me)CF3 CH(Me)C(O)N(Me)CH(CF3)2 CH(Me)C(O)N(Me)C(Me)2CF3 C(Me)2C(O)N(Me)CH2CH2F
2018202270 29 Mar 2018
CH2CH2S(O)(i-Bu)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
C(Me)2CH2S(O)Me
CH(Et)CH2S(O)Me
CH(z-Pr)CH2S(O)Me
CH(i-Bu)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH2S(O)(z-Bu)
CH2CH2CH2S(O)(f-Bu)
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH(Et)CH2CH2S(O)Me
CH(Me)C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NH(CH2)2CF2CF3
CH(Me)C(O)NHCH2(CF2)2CF3
CH(Me)C(O)NHCH(z-Pr)CF3
C(Me)2C(O)NHCH2CH2F
C(Me)2C(O)NHCH2CH2Cl
C(Me)2C(O)NHCH2CHF2
C(Me)2C(O)NHCH2CF3
C(Me)2C(O)NHCH2CH(Me)F
C(Me)2C(O)NHCH2C(Me)2F
C(Me)2C(O)NH(CH2)2CH2F
C(Me)2C(O)NHCH2CH2CF3
C(Me)2C(O)NHCH2CHFCF3
C(Me)2C(O)NHCH2CF2CF3
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CHF2
C(Me)2C(O)N(Me)CH2CF3
C(Me)2C(O)N(Me)CH2CH2CH2F
C(Me)2C(O)N(Me)CH2CH2CF3
C(Me)2C(O)N(Me)CH2CF2CF3
C(Me)2C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH(CF3)2
C(Me)2C(O)N(Me)C(Me)2CF3
C(Me)2C(O)NHCH(Me)CF3
C(Me)2C(O)NHCH(CF3)2
C(Me)2C(O)NHC(Me)2CF3
C(Me)2C(O)NHCH2CH(Me)CF3
C(Me)2C(O)NH(CH2)2CF2CF3
C(Me)2C(O)NHCH2(CF2)2CF3
C(Me)2C(O)NHCH(z-Pr)CF3
R1 is CF3, R2 is H and R3 is Br
R^ R^
CH2CH2OH CH2CH2SO2Me CH2C(O)NH(Me)
CH2CH2OMe CH2CH2SO2Et CH2C(O)NH(Et)
CH2CH2OEt CH2CH2SO2(zz-Pr) CH2C(O)NH(zz-Pr)
CH2CH2O(z-Pr) CH2CH2SO2(z-Pr) CH2C(O)NH(z-Pr)
CH2CH(Me)OH CH2CH2SO2(z-Bu) CH2C(O)NH(n-Bu)
CH2CH(CF3)OH CH2CH2SO2(i-Bu) CH2C(O)NH(z-Bu)
CH2C(Me)2OH CH2CH(Me)SO2Me CH2C(0)NHO-Bu)
CH2C(CF3)(Me)OH CH2CH(CF3)SO2Me CH2C(O)NH(i-Bu)
CH(Me)CH2OH CH2C(Me)2SO2Me CH2C(O)NHCH2(?-Bu)
C(Me)2CH2OH CH(Me)CH2SO2Me CH2C(O)NMe2
CH(Et)CH2OH C(Me)2CH2SO2Me CH2C(O)NMe(Et)
CH(z'-Pr)CH2OH CH(Et)CH2SO2Me CH2C(O)NEt2
CH(z-Bu)CH2OH CH(z-Pr)CH2SO2Me CH2C(O)NMe(n-Pr)
CH(Me)CH(CF3)OH CH(z-Bu)CH2SO2Me CH2C(O)NMe(z-Pr)
ch2ch2ch2oh CH2CH2CH2SO2Me CH2C(O)NMe(s-Bu)
CH2CH2CH2OMe CH2CH2CH2SO2Et CH(Me)C(O)NH(Me)
2018202270 29 Mar 2018
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
C(Me)2CH2CH2OH
CH(/-Pr)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
Figure AU2018202270B2_D0028
CH2CH2S(n-Pr)
CH2CH2S(z-Pr)
CH2CH2S(z-Bu)
CH2CH2S(Z-Bu)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
C(Me)2CH2SMe
CH(Et)CH2SMe
CH(z-Pr)CH2SMe
CH(z-Bu)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH2S(i-Bu)
CH2CH2CH2S(Z-Bu)
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH(Et)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2S(O)(z-Pr)
CH2CH2CH2SO2(z-Bu)
CH2CH2CH2SO2(Z-Bu)
CH2CH2CH(Me) SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH(Et)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NHCH2CH2F
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH(Me)F
CH2C(O)NHCH2C(Me)2F
CH2C(O)NH(CH2)2CH2F
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH2CHFCF3
CH2C(O)NHCH2CF2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH(CF3)2
CH2C(O)NHC(Me)2CF3
CH2C(O)NHCH2CH(Me)CF3
CH2C(O)NH(CH2)2CF2CF3
CH2C(O)NHCH2(CF2)2CF3
CH2C(O)NHCH(z-Pr)CF3
CH(Me)C(O)NHCH2CH2F
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH(Me)F
CH(Me)C(O)NHCH2C(Me)2F
CH(Me)C(O)NH(CH2)2CH2F
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH2CHFCF3
CH(Me)C(O)NHCH2CF2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH(CF3)2
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(zz-Pr)
CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(zi-Bu)
CH(Me)C(O)NH(/-Bu)
CH(Me)C(O)NH(.s-Bu)
CH(Me)C(O)NH(Z-Bu)
CH(Me)(O)NHCH2(i-B u)
C(Me)2C(O)NH(Me)
C(Me)2C(O)NH(Et)
C(Me)2C(O)NH(n-Pr)
C(Me)2C(O)NH(z-Pr)
C(Me)2C(O)NH(n-Bu)
C(Me)2C(O)NH(z-Bu)
C(Me)2C(O)NH(s-Bu)
C(Me)2C(O).NH(i-Bu)
C(Me)2C(O)NHCH2(f-Bu)
CH2C(O)N(Me)CH2CH2F
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CH2F
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH2CF2CF3
CH2C(O)N(Me)CH(Me)CF3
CH2C(O)N(Me)CH(CF3)2
CH2C(O )N(Me)C(Me)2CF3
CH(Me)C(O)N(Me)CH2CH2F
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)(CH2)2CH2F
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH2CF2CF3
CH(Me)C(O)N(Me)CH(Me)CF3 CH(Me)C(O)N(Me)CH(CF3)2
CH(Me)C(O) N(Me)C(Me)2CF3
2018202270 29 Mar 2018
CH2CH2S(O)(z-Bu)
CH2CH2S(O)(i-Bu)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
C(Me)2CH2S(O)Me
CH(Et)CH2S(O)Me
CH(z-Pr)CH2S(O)Me
CH(z-Bu)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH2S(O)(z-Bu)
CH2CH2CH2S(O)(f-Bu)
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH(Et)CH2CH2S(O)Me
CH(Me)C(O)NHC(Me)2CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NH(CH2)2CF2CF3
CH(Me)C(O)NHCH2(CF2)2CF3
CH(Me)C(O)NHCH(z-Pr)CF3
C(Me)2C(O)NHCH2CH2F
C(Me)2C(O)NHCH2CH2Cl
C(Me)2C(O)NHCH2CHF2
C(Me)2C(O)NHCH2CF3
C(Me)2C(O)NHCH2CH(Me)F
C(Me)2C(O)NHCH2C(Me)2F
C(Me)2C(O)NH(CH2)2CH2F
C(Me)2C(O)NHCH2CH2CF3
C(Me)2C(O)NHCH2CHFCF3
C(Me)2C(O)NHCH2CF2CF3
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
C(Me)2C(O)N(Me)CH2CH2F
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CHF2
C(Me)2C(O)N(Me)CH2CF3
C(Me)2C(O)N(Me)CH2CH2CH2F
C(Me)2C(O)N(Me)CH2CH2CF3
C(Me)2C(O)N(Me)CH2CF2CF3
C(Me)2C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH(CF3 )2
C(Me)2C(O)N(Me)C(Me)2CF3
C(Me)2C(O)NHCH(Me)CF3
C(Me)2C(O)NHCH(CF3)2
C(Me)2C(O)NHC(Me)2CF3
C(Me)2C(O)NHCH2CH(Me)CF3
C(Me)2C(O)NH(CH2)2CF2CF3
C(Me)2C(O)NHCH2(CF2)2CF3
C(Me)2C(O)NHCH(z-Pr)CF3
R1 is CF?, R2 is H and R3 is CF
R^ R2
CH2CH2OH CH2CH2SO2Me
CH2CH2OMe CH2CH2SO2Et
CH2CH2OEt CH2CH2SO2(n-Pr)
CH2CH2O(z'-Pr) CH2CH2SO2(z-Pr)
CH2CH(Me)OH CH2CH2SO2(z-Bu)
CH2CH(CF3)OH CH2CH2SO2(f-Bu)
CH2C(Me)2OH CH2CH(Me)SO2Me
CH2C(CF3)(Me)OH CH2CH(CF3)SO2Me
CH(Me)CH2OH CH2C(Me)2SO2Me
C(Me)2CH2OH CH(Me)CH2SO2Me
CH(Et)CH2OH C(Me)2CH2SO2Me
CH(z-Pr)CH2OH CH(Et)CH2SO2Me
CH(z-Bu)CH2OH CH(z-Pr)CH2SO2Me
CH(Me)CH(CF3)OH CH(z-Bu)CH2SO2Me
ch2ch2ch2oh CH2CH2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(zi-Bu)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NH(Z-Bu)
CH2C(O)NHCH2(Z-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH2C(O)NEt2
CH2C(O)NMe(n-Pr)
CH2C(O)NMe(z-Pr)
CH2C(O)NMe(s-Bu)
2018202270 29 Mar 2018
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
C(Me)2CH2CH2OH
CH(z-Pr)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2S(z-Pr)
CH2CH2S(i-Bu)
CH2CH2S(i-Bu)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
C(Me)2CH2SMe
CH(Et)CH2SMe
CH(z-Pr)CH2SMe
CH(i-Bu)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH2S(z-Bu)
CH2CH2CH2S(i-Bu)
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH(Et)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2CH2SO2Et
CH2CH2CH2SO2(f-Bu)
CH2CH2CH2SO2(i-Bu)
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH(Et)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NHCH2CH2F
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH(Me)F
CH2C(O)NHCH2C(Me)2F
CH2C(O)NH(CH2)2CH2F
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH2CHFCF3
CH2C(O)NHCH2CF2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH(CF3)2
CH2C(O)NHC(Me)2CF3
CH2C(O)NHCH2CH(Me)CF3
CH2C(O)NH(CH2)2CF2CF3
CH2C(O)NHCH2(CF2)2CF3
CH2C(O)NHCH(z-Pr)CF3
CH(Me)C(O)NHCH2CH2F
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH(Me)F
CH(Me)C(O.)NHCH2C(Me)2F
CH(Me)C(O)NH(CH2)2CH2F
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH2CHFCF3
CH(Me)C(O )NHCH2CF2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(/-Pr)
CH(Me)C(O)NH(n-Bu)
CH(Me)C(O)NH(z-Bu)
CH(Me)C(O)NH(s-Bu)
CH(Me)C(O)NH(i-Bu)
CH(Me)(O)NHCH2(ftBu)
C(Me)2C(O)NH(Me)
C(Me)2C(O)NH(Et)
C(Me)2C(O)NH(n-Pr)
C(Me)2C(O)NH(z'-Pr)
C(Me)2C(O)NH(n-Bu)
C(Me)2C(O)NH(z-Bu)
C(Me)2C(O)NH(.s-Bu)
C(Me)2C(O)NH(Z-Bu)
C(Me)2C(O)NHCH2(i-Bu)
CH2C(O)N(Me)CH2CH2F
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CH2F
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH2CF2CF3
CH2C(O)N(Me)CH(Me)CF3
CH2C(O)N(Me)CH(CF3)2
CH2C(O)N(Me)C(Me)2CF3
CH(Me)C(O)N(Me)CH2CH2F
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O )N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3 CH(Me)C(O)N(Me)(CH2)2CH2F CH(Me)C(O)N(Me)CH2CH2CF3 CH(Me)C(O)N(Me)CH2CF2CF3 CH(Me)C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH( CF3 )2
2018202270 29 Mar 2018
CH2CH2S(O)(z-Pr)
CH2CH2S(O)(z-Bu)
CH2CH2S(O)(Z-Bu)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
C(Me)2CH2S(O)Me
CH(Et)CH2S(O)Me
CH(z-Pr)CH2S(O)Me
CH(z-Bu)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH2S(O)(z-Bu)
CH2CH2CH2S(O)(7-Bu)
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH(Et)CH2CH2S(O)Me
CH(Me)C(O)NHCH(CF3)2
CH(Me)C(O)NHC(Me)2CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NH(CH2)2CF2CF3
CH(Me)C(O)NHCH2(CF2)2CF3
CH(Me)C(O)NHCH(z-Pr)CF3
C(Me)2C(O)NHCH2CH2F
C(Me)2C(O)NHCH2CH2Cl
C(Me)2C(O)NHCH2CHF2
C(Me)2C(O,)NHCH2CF3
C(Me)2C(O)NHCH2CH(Me)F
C(Me)2C(O)NHCH2C(Me)2F
C(Me)2C(O)NH(CH2)2CH2F
C(Me)2C(O)NHCH2CH2CF3
C(Me)2C(O)NHCH2CHFCF3
C(Me)2C(O)NHCH2CF2CF3
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH(Me)C(O)N(Me)C(Me)2CF3
C(Me)2C(O)N(Me)CH2CH2F
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CHF2
C(Me)2C(O)N(Me)CH2CF3
C(Me)2C(O)N(Me)CH2CH2CH2F
C(Me)2C(O)N(Me)CH2CH2CF3
C(Me)2C(O)N(Me)CH2CF2CF3
C(Me)2C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH(CF3)2
C(Me)2C(O)N(Me)C(Me)2CF3
C(Me)2C(O)NHCH(Me)CF3
C(Me)2C(O)NHCH(CF3)2
C(Me)2C(O)NHC(Me)2CF3
C(Me)2C(O)NHCH2CH(Me)CF3
C(Me)2C(O)NH(CH2)2CF2CF3
C(Me)2C(O)NHCH2(CF2)2CF3
C(Me)2C(O)NHCH(z-Pr)CF3
TABLE 2
Figure AU2018202270B2_D0029
R1 is Cl, R2 and R3 are H
R5 [P r5
ch2ch2oh CH2CH2S(O)(zz-Pr) CH2C(O)NMe2
CH2CH2OMe CH2CH(Me)S(O)Me CH2C(O)NMe(Et)
CH2CH2OEt CH2CH(CF3)S(O)Me CH(Me)C(O)NH(Me)
CH2CH2O(z-Pr) CH2C(Me)2S(O)Me CH(Me)C(O)NH(Et)
2018202270 29 Mar 2018
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH ch2ch2ch2oh
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(z?-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(z-Bu)
CH(Me)C(O)NH(«-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH( Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
R1 is Cl, R2 is H and R3 is F
R3 R^
ch2ch2oh CH2CH2S(O)(n-Pr)
CH2CH2OMe CH2CH(Me)S(O)Me
CH2CH2OEt CH2CH(CF3)S(O)Me
CH2CH2O(z-Pr) CH2C(Me)2S(O)Me
CH2CH(Me)OH CH(Me)CH2S(O)Me
CH2C(Me)2OH CH2CH2CH2S(O)Me
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(zz-Pr) CH(Me)C(O)NH(z-Pr)
2018202270 29 Mar 2018
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3 )SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(LPr)
CH2C(O)NH(LBu)
CH2C(O)NH(tv-Bu)
CH(Me)C(O)NH(z-Bu)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N (Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(.Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3 CH(Me)C(O)N (Me)CH2CH2CF3 CH(Me)C(O)N(Me)CH(Me)CF3 C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2 CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
R1 and R2 are Cl, R3 is H
CH2CH2OH CH2CH2S(O)(zi-Pr)
CH2CH2OMe CH2CH(Me)S(O)Me
CH2CH2OEt CH2CH(CF3)S(O)Me
CH2CH2O(LPr) CH2C(Me)2S(O)Me
CH2CH(Me)OH CH(Me)CH2S(O)Me
CH2C(Me)2OH CH2CH2CH2S(O)Me
CH(Me)CH2OH CH2CH2CH2S(O)Et
CH2CH2CH2OH CH2CH2CH(Me)S(O)Me
Rzi
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(LPr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu)
2018202270 29 Mar 2018
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CHoCHoSMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(/-Pr)
CH2C(O)NH(LBu)
CH2C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
R1, R2 and R3 are Cl
Rr_ R^
ch2ch2oh CH2CH2S(O)(n-Pr) CH2C(O)NMe2
CH2CH2OMe CH2CH(Me)S(O)Me CH2C(O)NMe(Et)
CH2CH2OEt CH2CH(CF3)S(O)Me CH(Me)C(O)NH(Me)
CH2CH2O(z-Pr) CH2C(Me)2S(O)Me CH(Me)C(O)NH(Et)
CH2CH(Me)OH CH(Me)CH2S(O)Me CH(Me)C(O)NH(n-Pr)
CH2C(Me)2OH CH2CH2CH2S(O)Me CH(Me)C(O)NH(z-Pr)
CH(Me)CH2OH CH2CH2CH2S(O)Et CH(Me)C(O)NH(z-Bu)
ch2ch2ch2oh CH2CH2CH(Me)S(O)Me CH(Me)C(O)NH(s-Bu)
CH2CH2CH2OMe CH2CH2CH(CF3)S(O)Me CH2C(O)N(Me)CH2CH2Cl
CH2CH2CH2OEt CH(Me)CH2CH2S(O)Me CH2C(O)N(Me)CH2CHF2
2018202270 29 Mar 2018
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH?CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(w-Pr)
CH2C(O)NH(i-Pr)
CH2C(O)NH(/-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3 CH(Me)C(O)N(Me)CH2CH2Cl CH(Me)C(O )N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me )C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
R1 and R3 are Cl, R2 is cyano
R5
R5
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(i-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me lU
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(z-Bu)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
2018202270 29 Mar 2018
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(/-Pr)
CH2C(O)NH(/-Bu)
CH2C(O)NH(5-Bu)
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N (Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O) NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
R1 is Br, R2 and R3 are H
R5
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(i-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
Rzi
CH2CH2S(O)(ra-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
R^
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(z-Bu)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Ci
CH2C(O)N(Me)CH2CHF2
CH2C(O)N (Me)CH2CF3
CH2C(O)N(iMe)CH2CH2CF3 CH2C(O)N(Me)CH(Me)CF3 CH(Me)C(O)N(Me)CH2CH2Cl
2018202270 29 Mar 2018
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(/7-Pi)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(i-Pr)
CH2C(O)NH(i-Bu)
CH2C(O)NH(i-Bu)
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3 CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
R1 is Br, R2 is H and R3 is F
R5 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(i-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
R5
R3
CH2C(O)NMe2 CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(/-Pr) CH(Me)C(O)NH(i-Bu) CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2 CH2C(O)N(Me)CH2CF3 CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
2018202270 29 Mar 2018
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3 )SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(zi-Pr)
CH2C(O)NH(i-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
R1 is Br, R2 is H and R3 is Cl
R5
Figure AU2018202270B2_D0030
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(LPr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
C.H2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
R^
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(i-Pr)
CH(Me)C(O)NH(LBu)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
2018202270 29 Mar 2018
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me,)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3 )SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(w-Pr)
CH2C(O)NH(/-Pr)
CH2C(O)NH(EBu)
CH2C(O)NH(s-Bu)
R1 and R3 are Br, R2 is F
R5
R5
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1 CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(i-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3 )S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
Rz.
CH2C(O)NMe2 CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(z-Bu)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3 CH2C(O)N(Me)CH2CH2CF3 CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3 C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH(Me)CH2SO2Me
CH2CH(Me)SMe
CH2CH2CH2SO2Me
2018202270 29 Mar 2018
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(/-Bu)
CH2C(O)NH(s-Bu)
R1 is Br, R2 and R3 are Cl
R5
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(/-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH2S(O)(z7-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH2CH2CH2SO2Et
R^
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(7-Pr)
CH(Me)C(O)NH(i-Bu)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3 CH2C(O)N(Me)CH2CH2CF3 CH2C(O)N(Me)CH(Me)CF3 CH(Me)C(O)N(Me)CH2CH2Cl CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3 CH(Me)C(O)N(Me)CH2CH2CF3 CH(Me)C(O)N(Me)CH(Me)CF3 C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2CH2CH(Me)SO2Me
2018202270 29 Mar 2018
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(i-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(5'-Bu)
R1 and R3 are Br, R2 is Cl
R5 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(??-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
Figure AU2018202270B2_D0031
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me )C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2C(O)NMe2 CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(zz-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(.s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH(Me)CH2SMe
CH2CH2CH2SMe
2018202270 29 Mar 2018
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
R1 is CF2, R2 and R3 are H
R5
R5
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(i-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(zi-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3 )SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
R^
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(zz-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(.s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH2C(Me)2CH2SO2Me
2018202270 29 Mar 2018
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
R1 is OCF3, R2 is H and R3 is Br
R5
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(i-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH9CH9CH9SEt
CH2CH2CH(Me)SMe
CH2C(Me)2CH2SO2Me
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2C(O)NH(Me)
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(LPr)
CH2C(O)NH(i-Bu)
CH2C(O)NH(s-Bu)
R5
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me r2
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu) CH2C(O)N(Me)CH2CH2Cl CH2C(O)N(Me)CH2CHF2 CH2C(O)N(Me)CH2CF3 CH2C(O)N(Me)CH2CH2CF3 CH2C(O)N(Me)CH(Me)CF3 CH(Me)C(O)N(Me)CH2CH2Cl CH(Me)C(O)N(Me)CH2CHF2 CH(Me)C(O)N(Me)CH2CF3 CH(Me)C(O)N(Me)CH2CH2CF3 CH(Me)C(O)N(Me)CH(Me)CF3 C(Me)2C(O)N(Me)CH2CH2Cl C(Me)2C(O)N(Me)CH2CF3 CH2C(O)NHCH2CH2C1 CH2C(O)NHCH2CHF2 CH2C(O)NHCH2CF3 CH2C(O)NHCH2CH2CF3 CH2C(O)NHCH(Me)CF3 CH2C(O)NHCH2CH(Me)CF3 CH(Me)C(O)NHCH2CH2Cl CH(Me)C(O)NHCH2CHF2
CH2C(O)NH(Et)
2018202270 29 Mar 2018
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2C(O)NH(n-Pr)
CH2C(O)NH(i-Pr)
CH2C(O)NH(/-Bu)
CH2C(O)NH(s-Bu)
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
TABLE 3
Figure AU2018202270B2_D0032
Figure AU2018202270B2_D0033
R3 R3 R3
CH2CH2SMe CH2C(O)NH(Me) CH2C(O)NHCH2CH2C1
CH2CH2SEt CH2C(O)NH(Et) CH2C(O)NHCH2CHF2
CH2CH2S(n-Pr) CH2C(O)NH(n-Pr) CH2C(O)NHCH2CF3
CH2CH2CH2SMe CH2C(O)NH(z-Pr) CH2C(O)NHCH2CH2CF3
CH2CH2CH2SEt CH2C(O)NH(;-Bu) CH2C(O)NHCH(Me)CF3
CH2CH2S(O)Me CH2C(O)NH(s-Bu) CH2C(O)NHCH2CH(Me)CF3
CH2CH2S(O)Et CH2C(O)NMe2 CH(Me)C(O)NHCH2CH2Cl
CH2CH2S(O)(n-Pr) CH2C(O)NMe(Et) CH(Me)C(O)NHCH2CHF2
CH2CH2CH2S(O)Me CH(Me)C(O)NH(Me) CH(Me)C(O)NHCH2CF3
CH2CH2CH2S(O)Et CH(Me)C(O)NH(Et) CH(Me)C(O)NHCH2CH2CF3
CH2CH2SO2Me CH(Me)C(O)NH(zz-Pr) CH(Me)C(O)NHCH(Me)CF3
CH2CH2SO2Et CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2SO2(n-Pr) CH(Me)C(O)NH(z-Bu) CH2CH2CH2SO2Et
CH2CH2CH2SO2Me CH(Me)C(O)NH(s-Bu)
R1 is Cl, R2 is H, R3 is Cl, R4 is COoMe
R^
CH2CH2SMe CH2C(O)NH(Me) CH2C(O)NHCH2CH2C1
CH2CH2SEt CH2C(O)NH(Et) CH2C(O)NHCH2CHF2
CH2CH2S(h-Pt) CH2C(O)NH(n-Pr) CH2C(O)NHCH2CF3
2018202270 29 Mar 2018
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr) CH2CH2CH2S(O)Me CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
CH2C(O)NH(z-Pr)
CH2C(O)NH(i-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(.s-Bii)
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C( O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CHoCHoCH^SOoEt
R1 is Cl, R2 is H, R3 is Cl. R4 is CCblLBu)
R5 R5
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr) CH2C(O)NH(/-Pr)
CH2C(O)NH(/-Bu)
CH2C(O)NH(5-Bu)
CH2C(O)NMe2 CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et) CH(Me)C(O)NH(«-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu) βΐ
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
R1 is Cl, R2 is F, R3 is Cl, R4 is C(O)Me
R3
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2S(O)Me
R^
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
R^
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
2018202270 29 Mar 2018
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z’-Bu) CH(Me)C(O)NH(s-Bu)
Figure AU2018202270B2_D0034
CH2CH2SMe
CH2CH2SEt
CH2CH2S(z?-Pr)
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(zz-Pr)
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(zz-Pr)
CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(z-Bu)
CH(Me)C(O)NH(s-Bu)
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C( O)NHCH2CH2C1
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
R1 is Cl, R2 is F, R3 is Cl, R4 is CO2(LBu)
R5
CH2CH2SMe
CH2CH2SEt
CH2CH2S(zz-Pr)
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(zz-Pr)
CH2CH2CH2S(O)Me
R5
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(zz-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
R^
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
2018202270 29 Mar 2018
CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
R1 is Br, R2 is H, R3 is Br, R4 is C(O)Me
R5 r5
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
R1 is Br, R2 is H, R3 is Br, R4 is CCLMe
R5 R5
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr) CH2CH2CH2S(O)Me CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu)
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(w-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(ABu)
CH2C(O)NH(s-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(?z-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(i-Bu) CH(Me)C(O)NH(s-Bu)
R^
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O) NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(/-Pij lU
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
2018202270 29 Mar 2018
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
R1 is Br, R2 is H, R3 is Br, R4 is COori-Bu)
R5 R5
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pij CH2CH2CH2SMe CH2CH2CH2SEt CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
CH(Me)C(O)NH(z-Bu)
CH(Me)C(O)NH(s-Bu)
CH2CH9CH2SO2Et
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(„-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(i-Bu) CH(Me)C(O)NH(s-Bu)
R^
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
R1 is CF3, R2 is H, R3 is F, R4 is C(O)Me
R^ R3
CH2CH2SMe CH2C(O)NH(Me)
CH2CH2SEt CH2C(O)NH(Et)
CH2CH2S(n-Pr) CH2C(O)NH(zz-Pr)
CH2CH2CH2SMe CH2C(O)NH(z-Pr)
CH2CH2CH2SEt CH2C(O)NH(z-Bu)
CH2CH2S(O)Me CH2C(O)NH(s-Bu)
CH2CH2S(O)Et CH2C(O)NMe2
CH2CH2S(O)(n-Pr) CH2C(O)NMe(Et)
CH2CH2CH2S(O)Me CH(Me)C(O)NH(Me)
CH2CH2CH2S(O)Et CH(Me)C(O)NH(Et)
CH2CH2SO2Me CH(Me)C(O)NH(n-Pr)
CH2CH2SO2Et CH(Me)C(O)NH(z-Pr)
CH2CH2SO2(n-Pr) CH(Me)C(O)NH(z-Bu)
CH2CH2CH2SO2Me CH(Me)C(O)NH(s-Bu)
R^
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH9CH9SO2Et
2018202270 29 Mar 2018
Figure AU2018202270B2_D0035
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr) CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
R1 is CF3, R2 is H, R3 is F, R4 is CO^H-Bu)
R3 r5
CH2CH2SMe
CH2CH2SEt
CH2CH2S(z?-Pr)
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(/-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(/-Bu)
CH(Me)C(O)NH(s-Bu)
R^
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z'-Pr)
CH2C(O)NH(/-Bu)
CH2C(O)NH(5-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(LBu) CH(Me)C(O)NH(s-Bu)
R^
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
R1 is CF2, R2 is H, R3 is Cl, R4 is C(O)Me l£ [A
CH2CH2SMe CH2C(O)NH(Me)
R^
CH2C(O)NHCH2CH2C1
2018202270 29 Mar 2018
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(f-Pr) CH(Me)C(O)NH(i-Bu) CH(Me)C(O)NH(s-Bu)
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
R1 is CF3, R2 is H, R3 is CL R4 is CCHMe
R5 R5
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(zi-Pr)
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(w-Pr)
CH2C(O)NH(i-Pr)
CH2C(O)NH(/-Bu) CH2C(O)NH(s-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(5-Bu) fizz
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
R1 is CF3, R2 is H, R3 is Cl, R4 is CO2(LBu)
R5
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2CH2SMe r5
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(Z7-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
2018202270 29 Mar 2018
CH2CH2CH2SEt
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et) CH(Me)C(O)NH(zz-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu)
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
R1 is CF3, R2 is FL R3 is Br, R4 is C(O)Me
Hzi R^
CH2CH2SMe CH2C(O)NH(Me)
CH2CH2SEt CH2C(O)NH(Et)
CH2CH2S(zz-Pr) CH2C(O)NH(n-Pr)
CH2CH2CH2SMe CH2C(O)NH(z-Pr)
CH2CH2CH2SEt CH2C(O)NH(z-Bu)
CH2CH2S(O)Me CH2C(O)NH(s-Bu)
CH2CH2S(O)Et CH2C(O)NMe2
CH2CH2S(O)(n-Pr) CH2C(O)NMe(Et)
CH2CH2CH2S(O)Me CH(Me)C(O)NH(Me)
CH2CH2CH2S(O)Et CH(Me)C(O)NH(Et)
CH2CH2SO2Me CH(Me)C(O)NH(n-Pr)
CH2CH2SO2Et CH(Me)C(O)NH(z-Pr)
CH2CH2SO2(n-Pr) CH(Me)C(O)NH(z-Bu)
CH2CH2CH2SO2Me CH(Me)C(O)NH(s-Bu)
R1 is CF3, R2 is H, R3 is Br, R4 is CO2Me
R^ R^
CH2CH2SMe CH2C(O)NH(Me)
CH2CH2SEt CH2C(O)NH(Et)
CH2CH2S(n-Pr) CH2C(O)NH(zz-Pr)
CH2CH2CH2SMe CH2C(O)NH(z-Pr)
CH2CH2CH2SEt CH2C(O)NH(z-Bu)
CH2CH2S(O)Me CH2C(O)NH(s-Bu)
CH2CH2S(O)Et CH2C(O)NMe2
CH2C(O)NHCH2CH2 Cl
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O )NHCH2CH2C1
CH(Me )C(O)NHCH2CHF2
CH(Me)C(O )NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
2018202270 29 Mar 2018
CH2CH2S(O)(n-Pr)
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu)
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
R1 is CF3, R2 is H, R3 is Br, R4 is CO2fl-Bu)
R3
CH2CH2SMe CH2C(O)NH(Me)
CH2CH2SEt CH2C(O)NH(Et)
CH2CH2S(n-Pr) CH2C(O)NH(n-Pr)
CH2CH2CH2SMe CH2C(O)NH(i-Pr)
CH2CH2CH2SEt CH2C(O)NH(z-Bu)
CH2CH2S(O)Me CH2C(O)NH(s-Bu)
CH2CH2S(O)Et CH2C(O)NMe2
CH2CH2S(O)(n-Pr) CH2C(O)NMe(Et)
CH2CH2CH2S(O)Me CH(Me)C(O)NH(Me)
CH2CH2CH2S(O)Et CH(Me)C(O)NH(Et)
CH2CH2SO2Me CH(Me)C(O)NH(n-Pr)
CH2CH2SO2Et CH(Me)C(O)NH(i-Pr)
CH2CH2SO2(n-Pr) CH(Me)C(O)NH(z-Bu)
CH2CH2CH2SO2Me CH(Me)C(O)NH(s-Bu)
R1 is CF3, R2 is H, R3 is CF3, R4 is C(O)Me
X.
R^
CH2CH2SMe CH2C(O)NH(Me)
CH2CH2SEt CH2C(O)NH(Et)
CH2CH2S(n-Pr) CH2C(O)NH(n-Pr)
CH2CH2CH2SMe CH2C(O)NH(i-Pr)
CH2CH2CH2SEt CH2C(O)NH(z-Bu)
CH2CH2S(O)Me CH2C(O)NH(s-Bu)
CH2CH2S(O)Et CH2C(O)NMe2
CH2CH2S(O)(n-Pr) CH2C(O)NMe(Et)
CH2CH2CH2S(O)Me CH(Me)C(O)NH(Me)
CH2CH2CH2S(O)Et CH(Me)C(O)NH(Et)
R3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me )C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH?CH9CH?SO?Et
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
2018202270 29 Mar 2018
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
R1 is CF3, R2 is H, R3 is CF3, R4 is COoMe
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH2CH2SO2Me
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(<-Pr)
CH(Me)C(O)NH(i-Bu)
CH(Me)C(O)NH(s-Bu)
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
R^
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(/-P1·)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(i-Bu) CH(Me)C(O)NH(s-Bu)
R2
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O )NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
Figure AU2018202270B2_D0036
R5
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Er
CH2CH2SO2Me
CH2CH2SO2Et
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(/'-Pr)
CH(Me)C(O)NH(i-Bu)
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2CH2SO2Et
CH2CH2SO2(n-Pr)
2018202270 29 Mar 2018
CH2CH2CH2SO2Me | CH(Me)C(O)NH(s-Bu)
TABLE 4
Figure AU2018202270B2_D0037
R1 is Cl, R2 is H and R3 is Cl r5 r5 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH ch2ch2ch2oh
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
R^
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
2018202270 29 Mar 2018
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(/-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(5-Bu)
R1 is Cl, R2 is F and R3 is Cl
R5 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
Figure AU2018202270B2_D0038
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me )C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2C(O)NMe2 CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(z-Bu)
CH(Me)C(O)NH(.s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2CH2CH2SMe
2018202270 29 Mar 2018
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
R1 is Br, R2 is H and R3 is Br
R5
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(zz-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z'-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
R5
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3 )SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
R^
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(zz-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(i-Bu) CH(Me)C(O)NH(.s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
2018202270 29 Mar 2018
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
R1 is CF3, R2 is H and R3 is F
R5
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(i-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH9CH9CH9SEt
CH2CH2CH(Me)SMe
CH2C(Me)2CH2SO2Me
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2C(O)NH(Me)
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(i-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
R5
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me r2
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu) CH2C(O)N(Me)CH2CH2Cl CH2C(O)N(Me)CH2CHF2 CH2C(O)N(Me)CH2CF3 CH2C(O)N(Me)CH2CH2CF3 CH2C(O)N(Me)CH(Me)CF3 CH(Me)C(O)N(Me)CH2CH2Cl CH(Me)C(O)N(Me)CH2CHF2 CH(Me)C(O)N(Me)CH2CF3 CH(Me)C(O)N(Me)CH2CH2CF3 CH(Me)C(O)N(Me)CH(Me)CF3 C(Me)2C(O)N(Me)CH2CH2Cl C(Me)2C(O)N(Me)CH2CF3 CH2C(O)NHCH2CH2C1 CH2C(O)NHCH2CHF2 CH2C(O)NHCH2CF3 CH2C(O)NHCH2CH2CF3 CH2C(O)NHCH(Me)CF3 CH2C(O)NHCH2CH(Me)CF3 CH(Me)C(O)NHCH2CH2Cl CH(Me)C(O)NHCH2CHF2
CH2C(O)NH(Et)
2018202270 29 Mar 2018
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
Figure AU2018202270B2_D0039
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(i-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH ch2ch2ch2oh
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(Z7-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2C(O)NH(n-Pr)
CH2C(O)NH(i-Pr)
CH2C(O)NH(ABu)
CH2C(O)NH(s-Bu)
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3 )SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(Z7-Pr)
CH2C(O)NH(z-Pr)
R3 CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(rt-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3 CH2C(O)N(Me)CH(Me)CF3 CH(Me)C(O)N(Me)CH2CH2Cl CH(Me)C(O)N(Me)CH2CHF2 CH(Me)C(O)N(Me)CH2CF3 CH(Me)C(O)N(Me)CH2CH2CF3 CH(Me)C(O)N(Me)CH(Me)CF3 C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3 CH2C(O)NHCH2CH2C1 CH2C(O)NHCH2CHF2 CH2C(O)NHCH2CF3 CH2C(O)NHCH2CH2CF3 CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3 CH(Me)C(O)NHCH2CH2CF3
2018202270 29 Mar 2018
CH2CH2S(O)Me
CH2CH2S(O)Et
-3χR5
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
R5
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(h-Pt)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
R^
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(z-Bti)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
2018202270 29 Mar 2018
R1 is CF3, R2 is H and R3 is CF3
R5 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(z?-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2C(Me)2CH2SO2Me
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
R5
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(M-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3 )SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
R2
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(rt-Pr) CH(Me)C(O)NH(LPr)
CH(Me)C(O)NH(z-Bu)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
2018202270 29 Mar 2018
TABLE 5
Figure AU2018202270B2_D0040
R1 is Cl, R2 is H and R3 is Cl
R5
R5 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(i-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
C.H2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2S(O)(n-Pr) CH2CH(Me)S(O)Me CH2CH(CF3)S(O)Me CH2C(Me)2S(O)Me CH(Me)CH2S(O)Me CH2CH2CH2S(O)Me CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me CHqCHo SOoMe
CH2CH2SO2Et
CH2CH2SO2(n-Pr) CH2CH(Me)SO2Me CH2CH(CF3)SO2Me CH2C(Me)2S0-)Me CH(Me)CH2SO2Me CH2CH2CH2SO2Me CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
R2
CH2C(O)NMe2 CH2C(O)NMe(Et) CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(/-Bu)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me )C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH2CH2CH2SMe
Figure AU2018202270B2_D0041
CH2CH2CH(Me)SMe
2018202270 29 Mar 2018
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
R1 is Cl, R2 is F and R3 is Cl
R5
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH ch2ch2ch2oh
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
Figure AU2018202270B2_D0042
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
R^
CH2C(O)NMe2 CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu) CH2C(O)N(Me)CH2CH2Cl CH2C(O)N( Me)CH2CHF2 CH2C(O)N(Me)CH2CF3 CH2C(O)N(Me)CH2CH2CF3 CH2C(O)N(Me)CH(Me)CF3 CH(Me)C(O)N(Me)CH2CH2Cl CH(Me)C(O)N(Me)CH2CHF2 CH(Me)C(O)N(Me)CH2CF3 CH(Me)C(O)N(Me)CH2CH2CF3 CH(Me)C(O)N(Me)CH(Me)CF3 C(Me)2C(O)N(Me)CH2CH2Cl C(Me)2C(O)N(Me)CH2CF3 CH2C(O)NHCH2CH2C1 CH2C(O)NHCH2CHF2 CH2C(O)NHCH2CF3 CH2C(O)NHCH2CH2CF3 CH2C(O)NHCH(Me)CF3 CH2C(O)NHCH2CH(Me)CF3 CH(Me)C(O)NHCH2CH2Cl
CH2CH2CH(CF3)SMe
CH2C(O)NH(Me)
2018202270 29 Mar 2018
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
R1 is Br, R2 is H and R3 is Br
R3 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
C.H2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
Figure AU2018202270B2_D0043
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3 )SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(«-Pr)
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me )CH2CHF2
CH(Me)C(O)N(Me)CH2CF3 CH(Me)C(O)N(Me)CH2CH2CF3 CH(Me)C(O)N(Me)CH(Me)CF3 C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
2018202270 29 Mar 2018
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
Figure AU2018202270B2_D0044
ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(i-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH ch2ch2ch2oh
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2C(Me)2CH2SO2Me
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2C(O)NH(i-Pr)
CH2C(O)NH(/-Bu)
CH2C(O)NH(s-Bu)
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me CH2CH2CH(CF3 )SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(i-Bu) r5
CH2C(O)NMe2
CH2C(O)NMe(Et) CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(i-Pr)
CH(Me)C(O)NH(i-Bu)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3 CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
2018202270 29 Mar 2018
CH2CH2S(O)Et
CH2C(O)NH(s-Bu)
CH(Me)C(O)NHCH2CH(Me)CF3
Figure AU2018202270B2_D0045
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(i-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH9CH2CH7SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu) r5
CH2C(O)NMe2
CH7C(O)NMe(Et) CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr) CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu)
CH2C(O)N (Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2 CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3 CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3 CH(Me)C(O)NHCH2CH2CF3 CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
2018202270 29 Mar 2018
R1 is CF3, R2 is H and R3 is Br
Figure AU2018202270B2_D0046
R5 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(/-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH ch2ch2ch2oh
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3 )SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(/-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me)
CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(z-Pr)
CH(Me)C(O)NH(/-Bu)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
R1 is CF3, R2 is H and R3 is CF3
2018202270 29 Mar 2018
R5 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe CH2CH2SEt
CH2CH2S(n-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
R2
CH2CH2S(O)(n-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(n-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(n-Pr)
CH2C(O)NH(i-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
R3
CH2C(O)NMe2
CH2C(O)NMe(Et)
CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et)
CH(Me)C(O)NH(n-Pr)
CH(Me)C(O)NH(i-Pr)
CH(Me)C(O)NH(/-Bu)
CH(Me)C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3
A compound of this invention will generally be used as an invertebrate pest control active ingredient in a composition, i.e. formulation, with at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, which
2018202270 29 Mar 2018 serves as a carrier. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature.
Useful formulations include both liquid and solid compositions. Liquid compositions include solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like, which optionally can be thickened into gels. The general types of aqueous liquid compositions are soluble concentrate, suspension concentrate, capsule suspension, concentrated emulsion, microemulsion and suspoemulsion. The general types of nonaqueous liquid compositions are emulsifiable concentrate, 10 microemulsifiable concentrate, dispersible concentrate and oil dispersion.
The general types of solid compositions are dusts, powders, granules, pellets, prills, pastilles, tablets, filled films (including seed coatings) and the like, which can be water-dispersible (“wettable”) or water-soluble. Films and coatings formed from filmforming solutions or flowable suspensions are particularly useful for seed treatment. Active 15 ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or “overcoated”). Encapsulation can control or delay release of the active ingredient. An emulsifiable granule combines the advantages of both an emulsifiable concentrate formulation and a dry granular formulation. High-strength compositions are primarily used as 20 intermediates for further formulation.
Sprayable formulations are typically extended in a suitable medium before spraying. Such liquid and solid formulations are formulated to be readily diluted in the spray medium, usually water. Spray volumes can range from about one to several thousand liters per hectare, but more typically are in the range from about ten to several hundred liters per 25 hectare. Sprayable formulations can be tank mixed with water or another suitable medium for foliar treatment by aerial or ground application, or for application to the growing medium of the plant. Liquid and dry formulations can be metered directly into drip irrigation systems or metered into the furrow during planting. Liquid and solid formulations can be applied onto seeds of crops and other desirable vegetation as seed treatments before planting to 30 protect developing roots and other subterranean plant parts and/or foliage through systemic uptake.
The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.
2018202270 29 Mar 2018
Water-Dispersible and Watersoluble Granules, Tablets and Powders
Oil Dispersions, Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)
Dusts
Granules and Pellets
High Strength Compositions
Solid diluents include,
Weight Percent
Active
Ingredient
0.001-90
1-50
1-25
90-99 for example,
Diluent
0-99.999
40-99
70-99
5-99.999
0-10 clays such as
Surfactant
0-15
0-50
0-5
0-15
0-2 bentonite, montmorillonite, attapulgite and kaolin, gypsum, cellulose, titanium dioxide, zinc oxide, starch, dextrin, sugars (e.g., lactose, sucrose), silica, talc, mica, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Typical solid diluents are described in Watkins et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey.
Liquid diluents include, for example, water, Ν,Ν-dimethylalkanamides (e.g., AUV-dimethylformamide), limonene, dimethyl sulfoxide, N-alkylpyrrolidones (e.g., N-methylpyrrolidinone), ethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, propylene carbonate, butylene carbonate, paraffins (e.g., white mineral oils, normal paraffins, isoparaffins), alkylbenzenes, alkylnaphthalenes, glycerine, glycerol triacetate, sorbitol, triacetin, aromatic hydrocarbons, dearomatized aliphatics, alkylbenzenes, alkylnaphthalenes, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, acetates such as isoamyl acetate, hexyl acetate, heptyl acetate, octyl acetate, nonyl acetate, tridecyl acetate and isobornyl acetate, other esters such as alkylated lactate esters, dibasic esters and γ-butyrolactone, and alcohols, which can be linear, branched, saturated or unsaturated, such as methanol, ethanol, «-propanol, isopropyl alcohol, «-butanol, isobutyl alcohol, «-hexanol, 2-ethylhexanol, «-octanol, decanol, isodecyl alcohol, isooctadecanol, cetyl alcohol, lauryl alcohol, tridecyl alcohol, oleyl alcohol, cyclohexanol, tetrahydrofurfuryl alcohol, diacetone alcohol and benzyl alcohol. Liquid diluents also include glycerol esters of saturated and unsaturated fatty acids (typically C5-C22), such as plant seed and fruit oils (e.g, oils of olive, castor, linseed, sesame, corn (maize), peanut, sunflower, grapeseed, safflower, cottonseed, soybean, rapeseed, coconut and palm kernel), animal-sourced fats (e.g., beef tallow, pork tallow, laid, cod liver oil, fish oil),
2018202270 29 Mar 2018 and mixtures thereof. Liquid diluents also include alkylated fatty acids (e.g., methylated, ethylated, butylated) wherein the fatty acids may be obtained by hydrolysis of glycerol esters from plant and animal sources, and can be purified by distillation. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950.
The solid and liquid compositions of the present invention often include one or more surfactants. When added to a liquid, surfactants (also known as “surface-active agents”) generally modify, most often reduce, the surface tension of the liquid. Depending on the nature of the hydrophilic and lipophilic groups in a surfactant molecule, surfactants can be useful as wetting agents, dispersants, emulsifiers or defoaming agents.
Surfactants can be classified as nonionic, anionic or cationic. Nonionic surfactants useful for the present compositions include, but are not limited to: alcohol alkoxylates such as alcohol alkoxylates based on natural and synthetic alcohols (which may be branched or linear) and prepared from the alcohols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof; amine ethoxylates, alkanolamides and ethoxylated alkanolamides; alkoxylated triglycerides such as ethoxylated soybean, castor and rapeseed oils; alkylphenol alkoxylates such as octylphenol ethoxylates, nonylphenol ethoxylates, dinonyl phenol ethoxylates and dodecyl phenol ethoxylates (prepared from the phenols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); block polymers prepared from ethylene oxide or propylene oxide and reverse block polymers where the terminal blocks are prepared from propylene oxide; ethoxylated fatty acids; ethoxylated fatty esters and oils; ethoxylated methyl esters; ethoxylated tri styrylphenol (including those prepared from ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); fatty acid esters, glycerol esters, lanolin-based derivatives, polyethoxylate esters such as polyethoxylated sorbitan fatty acid esters, polyethoxylated sorbitol fatty acid esters and polyethoxylated glycerol fatty acid esters; other sorbitan derivatives such as sorbitan esters; polymeric surfactants such as random copolymers, block copolymers, alkyd peg (polyethylene glycol) resins, graft or comb polymers and star polymers; polyethylene glycols (pegs); polyethylene glycol fatty acid esters; silicone-based surfactants; and sugar-derivatives such as sucrose esters, alkyl polyglycosides and alkyl polysaccharides.
Useful anionic surfactants include, but are not limited to: alkylaryl sulfonic acids and their salts; carboxylated alcohol or alkylphenol ethoxylates; diphenyl sulfonate derivatives; lignin and lignin derivatives such as lignosulfonates; maleic or succinic acids or their anhydrides; olefin sulfonates; phosphate esters such as phosphate esters of alcohol alkoxylates, phosphate esters of alkylphenol alkoxylates and phosphate esters of styryl phenol ethoxylates; protein-based surfactants; sarcosine derivatives; styryl phenol ether sulfate; sulfates and sulfonates of oils and fatty acids; sulfates and sulfonates of ethoxylated alkylphenols; sulfates of alcohols; sulfates of ethoxylated alcohols; sulfonates of amines and
2018202270 29 Mar 2018 amides such as AQV-alkyltaurates; sulfonates of benzene, cumene, toluene, xylene, and dodecyl and tridecylbenzenes; sulfonates of condensed naphthalenes; sulfonates of naphthalene and alkyl naphthalene; sulfonates of fractionated petroleum; sulfosuccinamates; and sulfosuccinates and their derivatives such as dialkyl sulfosuccinate salts.
Useful cationic surfactants include, but are not limited to: amides and ethoxylated amides; amines such as A-alkyl propanediamines, tripropylenetriamines and dipropylenetetramines, and ethoxylated amines, ethoxylated diamines and propoxylated amines (prepared from the amines and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); amine salts such as amine acetates and diamine salts; quaternary 10 ammonium salts such as quaternary salts, ethoxylated quaternary salts and diquaternary salts;
and amine oxides such as alkyldimethylamine oxides and bis-(2-hydroxyethyl)-alkylamine oxides.
Also useful for the present compositions are mixtures of nonionic and anionic surfactants or mixtures of nonionic and cationic surfactants. Nonionic, anionic and cationic 15 surfactants and their recommended uses are disclosed in a variety of published references including McCutcheon’s Emulsifiers and Detergents, annual American and International Editions published by McCutcheon’s Division, The Manufacturing Confectioner Publishing Co.; Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964; and A. S. Davidson and B. Milwidsky, Synthetic Detergents, Seventh Edition, 20 John Wiley and Sons, New York, 1987.
Compositions of this invention may also contain formulation auxiliaries and additives, known to those skilled in the art as formulation aids (some of which may be considered to also function as solid diluents, liquid diluents or surfactants). Such formulation auxiliaries and additives may control: pH (buffers), foaming during processing (antifoams such 25 polyorganosiloxanes), sedimentation of active ingredients (suspending agents), viscosity (thixotropic thickeners), in-container microbial growth (antimicrobials), product freezing (antifreezes), color (dyes/pigment dispersions), wash-off (film formers or stickers), evaporation (evaporation retardants), and other formulation attributes. Film formers include, for example, polyvinyl acetates, polyvinyl acetate copolymers, polyvinylpyrrolidone-vinyl 30 acetate copolymer, polyvinyl alcohols, polyvinyl alcohol copolymers and waxes. Examples of formulation auxiliaries and additives include those listed in McCutcheon’s Volume 2: Functional Materials, annual International and North American editions published by McCutcheon’s Division, The Manufacturing Confectioner Publishing Co.; and PCT Publication WO 03/024222.
The compound of Formula 1 and any other active ingredients are typically incorporated into the present compositions by dissolving the active ingredient in a solvent or by grinding in a liquid or dry diluent. Solutions, including emulsifiable concentrates, can be prepared by
2018202270 29 Mar 2018 simply mixing the ingredients. If the solvent of a liquid composition intended for use as an emulsifiable concentrate is water-immiscible, an emulsifier is typically added to emulsify the active-containing solvent upon dilution with water. Active ingredient slurries, with particle diameters of up to 2,000 pm can be wet milled using media mills to obtain particles with 5 average diameters below 3 pm. Aqueous slurries can be made into finished suspension concentrates (see, for example, U.S. 3,060,084) or further processed by spray drying to form water-dispersible granules. Dry formulations usually require dry milling processes, which produce average particle diameters in the 2 to 10 pm range. Dusts and powders can be prepared by blending and usually grinding (such as with a hammer mill or fluid-energy mill).
Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, “Agglomeration”, Chemical Engineering, December 4, 1967, pp 147-48, Perry’s Chemical Engineer’s Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.
For further information regarding the art of formulation, see T. S. Woods, “The Formulator’s Toolbox - Product Forms for Modern Agriculture” in Pesticide Chemistry and 20 Bioscience, The Food-Environment Challenge, T. Brooks and T. R. Roberts, Eds., Proceedings of the 9th International Congress on Pesticide Chemistry, The Royal Society of Chemistry, Cambridge, 1999, pp. 120-133. See also U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182;
U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1^4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; Hance et al., Weed Control Handbook, Sth Ed., Blackwell Scientific Publications, Oxford, 1989; and Developments in formulation technology, PJB Publications, Richmond, UK, 2000.
In the following Examples, all percentages are by weight and all formulations are 30 prepared in conventional ways. Compound numbers refer to compounds in Index Table A.
Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except where otherwise indicated.
100
2018202270 29 Mar 2018
Example A
High Strength Concentrate
Compound 1 98.5% silica aerogel 0.5% synthetic amorphous fine silica 1.0%
Example B
Wettable Powder
Compound 3 65.0% dodecylphenol polyethylene glycol ether 2.0% sodium ligninsulfonate 4.0% sodium silicoaluminate 6.0% montmorillonite (calcined) 23.0%
Example C
Granule
Compound 11 10.0% attapulgite granules (low volatile matter, 0.71/0.30 mm; 90.0%
U.S.S. No. 25-50 sieves)
Example D
Extruded Pellet
Compound 17 25.0% anhydrous sodium sulfate 10.0% crude calcium ligninsulfonate 5.0% sodium alkylnaphthalenesulfonate 1.0% calcium/magnesium bentonite 59.0%
Example E
Emulsifiable Concentrate
Compound 18 10.0% polyoxyethylene sorbitol hexoleate 20.0%
C6-C IQ fatty acid methyl ester 70.0%
Example F
Microemulsion
Compound 19 5.0% polyvinylpyrrolidone-vinyl acetate copolymer 30.0% alkylpolyglycoside 30.0% glyceryl monooleate 15.0% water 20.0%
101
2018202270 29 Mar 2018
Example G
Seed Treatment
Compound 26 20.00% polyvinylpyrrolidone-vinyl acetate copolymer 5.00% montan acid wax 5.00% calcium ligninsulfonate 1.00% polyoxyethylene/polyoxypropylene block copolymers 1.00% stearyl alcohol (POE 20) 2.00% polyorganosilane 0.20% colorant red dye 0.05% water 65.75%
Example H
Fertilizer Stick
Compound 28 2.5% pyrrolidone-styrene copolymer 4.8% tristyrylphenyl 16-ethoxylate 2.3% talc 0.8% corn starch 5.0%
Nitrophoska® Permanent 15-9-15 slow-release fertilizer 36.0% (BASF) kaolin 38.0% water 10.6%
Example I
High Strength Concentrate
Compound 37 98.5% silica aerogel 0.5% synthetic amorphous fine silica 1.0%
Example J
Wettable Powder
Compound 40 65.0% dodecylphenol polyethylene glycol ether 2.0% sodium ligninsulfonate 4.0% sodium silicoaluminate 6.0% montmorillonite (calcined) 23.0%
102
2018202270 29 Mar 2018
Example K
Granule
Compound 49 10.0% attapulgite granules (low volatile matter, 0.71/0.30 mm; 90.0%
U.S.S. No. 25-50 sieves)
Example L
Extruded Pellet
Compound 52 25.0%
anhydrous sodium sulfate 10.0%
crude calcium ligninsulfonate 5.0%
sodium alkylnaphthalenesulfonate 1.0%
calcium/magnesium bentonite 59.0%
Example M
Emulsifiable Concentrate
Compound 62 10.0%
polyoxyethylene sorbitol hexoleate 20.0%
Ce-C jQ fatty acid methyl ester 70.0%
Example N
Microemulsion
Compound 66 5.0%
polyvinylpyrrolidone-vinyl acetate copolymer 30.0%
alkylpolyglycoside 30.0%
glyceryl monooleate 15.0%
water 20.0%
Example O
Seed Treatment
Compound 94 20.00%
polyvinylpyrrolidone-vinyl acetate copolymer 5.00%
montan acid wax 5.00%
calcium ligninsulfonate 1.00%
polyoxyethylene/polyoxypropylene block copolymers 1.00%
stearyl alcohol (POE 20) 2.00%
polyorganosilane 0.20%
colorant red dye 0.05%
water 65.75%
103
2018202270 29 Mar 2018
Example P
Fertilizer Stick
Compound 95 pyrrolidone-styrene copolymer tristyrylphenyl 16-ethoxylate talc corn starch
Nitrophoska® Permanent 15-9-15 slow-release fertilizer (BASF) kaolin water
2.5%
4.8%
2.3%
0.8%
5.0%
36.0%
38.0%
10.6%
Compounds of this invention exhibit activity against a wide spectrum of invertebrate pests. These pests include invertebrates inhabiting a variety of environments such as, for 5 example, plant foliage, roots, soil, harvested crops or other foodstuffs, building structures or animal integuments. These pests include, for example, invertebrates feeding on foliage (including leaves, stems, flowers and fruits), seeds, wood, textile fibers or animal blood or tissues, and thereby causing injury or damage to, for example, growing or stored agronomic crops, forests, greenhouse crops, ornamentals, nursery crops, stored foodstuffs or fiber 10 products, or houses or other structures or their contents, or being harmful to animal health or public health. Those skilled in the art will appreciate that not all compounds are equally effective against all growth stages of all pests.
These present compounds and compositions are thus useful agronomically for protecting field crops from phytophagous invertebrate pests, and also nonagronomically for 15 protecting other horticultural crops and plants from phytophagous invertebrate pests. This utility includes protecting crops and other plants (i.e. both agronomic and nonagronomic) that contain genetic material introduced by genetic engineering (i.e. transgenic) or modified by mutagenesis to provide advantageous traits. Examples of such traits include tolerance to herbicides, resistance to phytophagous pests (e.g., insects, mites, aphids, spiders, nematodes, 20 snails, plant-pathogenic fungi, bacteria and viruses), improved plant growth, increased tolerance of adverse growing conditions such as high or low temperatures, low or high soil moisture, and high salinity, increased flowering or fruiting, greater harvest yields, more rapid maturation, higher quality and/or nutritional value of the harvested product, or improved storage or process properties of the harvested products. Transgenic plants can be modified to 25 express multiple traits. Examples of plants containing traits provided by genetic engineering or mutagenesis include varieties of corn, cotton, soybean and potato expressing an insecticidal Bacillus thuringiensis toxin such as YIELD GARD®, KNOCKOUT®,
104
2018202270 29 Mar 2018
STARLINK®, BOLLGARD®, NuCOTN® and NEWLEAF®, and herbicide-tolerant varieties of corn, cotton, soybean and rapeseed such as ROUNDUP READY®, LIBERTY LINK®, IMI®, STS® and CLEARFIELD®, as well as crops expressing A-acetyltransferase (GAT) to provide resistance to glyphosate herbicide, or crops containing the HRA gene providing 5 resistance to herbicides inhibiting acetolactate synthase (ALS). The present compounds and compositions may interact synergistically with traits introduced by genetic engineering or modified by mutagenesis, thus enhancing phenotypic expression or effectiveness of the traits or increasing the invertebrate pest control effectiveness of the present compounds and compositions. In particular, the present compounds and compositions may interact 10 synergistically with the phenotypic expression of proteins or other natural products toxic to invertebrate pests to provide greater-than-additive control of these pests.
Compositions of this invention can also optionally comprise plant nutrients, e.g., a fertilizer composition comprising at least one plant nutrient selected from nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, iron, copper, boron, manganese, zinc, 15 and molybdenum. Of note are compositions comprising at least one fertilizer composition comprising at least one plant nutrient selected from nitrogen, phosphorus, potassium, sulfur, calcium and magnesium. Compositions of the present invention which further comprise at least one plant nutrient can be in the form of liquids or solids. Of note are solid formulations in the form of granules, small sticks or tablets. Solid formulations comprising a fertilizer 20 composition can be prepared by mixing the compound or composition of the present invention with the fertilizer composition together with formulating ingredients and then preparing the formulation by methods such as granulation or extrusion. Alternatively solid formulations can be prepared by spraying a solution or suspension of a compound or composition of the present invention in a volatile solvent onto a previous prepared fertilizer 25 composition in the form of dimensionally stable mixtures, e.g., granules, small sticks or tablets, and then evaporating the solvent.
Examples of agronomic or nonagronomic invertebrate pests include eggs, larvae and adults of the order Lepidoptera, such as armyworms, cutworms, loopers, and heliothines in the family Noctuidae (e.g., pink stem borer (Sesamia inferens Walker), corn stalk borer 30 (Sesamia nonagrioides Lefebvre), southern armyworm (Spodoptera eridania Cramer), fall armyworm (Spodoptera fugiperda J. E. Smith), beet armyworm (Spodoptera exigua Hubner), cotton leafworm (Spodoptera littoralis Boisduval), yellowstriped armyworm (Spodoptera ornithogaUi Guenee), black cutworm (Agrotis ipsilon Hufnagel), velvetbean caterpillar (Anticarsia gemmatalis Hubner), green fruitworm (Lithophane antennata Walker), cabbage 35 armyworm (Barathra brassicae Linnaeus), soybean looper (Pseudoplusia includens Walker), cabbage looper (Trichoplusia ni Hubner), tobacco budworm (Heliothis virescens Fabricius)); borers, casebearers, webworms, coneworms, cabbageworms and skeletonizers from the
105
2018202270 29 Mar 2018 family Pyralidae (e.g., European corn borer (Ostrinia nubilalis Hubner), navel orangeworm (Amyelois transitella Walker), corn root webworm (Crambus caliginosellus Clemens), sod webworms (Pyralidae: Crambinae) such as sod worm (Herpetogramma licarsisalis Walker), sugarcane stem borer (Chilo infuscatellus Snellen), tomato small borer (Neoleucinodes 5 elegantalis Guenee), green leafroller (Cnaphalocerus medinalis), grape leaffolder (Desmia funeralis Hubner), melon worm (Diaphania nitidalis Stoll), cabbage center grub (Helluala hydralis Guenee), yellow stem borer (Scirpophaga incertulas Walker), early shoot borer (Scirpophaga infuscatellus Snellen), white stem borer (Scirpophaga innotata Walker), top shoot borer (Scirpophaga nivella Fabricius), dark-headed rice borer (Chilo polychrysus 10 Meyrick), cabbage cluster caterpillar (Crocidolomia binotalis English)); leafrollers, budworms, seed worms, and fruit worms in the family Tortricidae (e.g., codling moth (Cydia pomonella Linnaeus), grape berry moth (Endopiza viteana Clemens), oriental fruit moth (Grapholita molesta Busck), citrus false codling moth (Cryptophlebia leucotreta Meyrick), citrus borer (Ecdytolopha aurantiana Lima), redbanded leafroller (Argyrotaenia velutinana 15 Walker), obliquebanded leafroller (Choristoneura rosciceana Harris), light brown apple moth (Epiphyas postvittana Walker), European grape berry moth (Eupoecilia ambiguella Hubner), apple bud moth (Pandemis pyrusana Kearfott), omnivorous leafroller (Platynota stultana Walsingham), barred fruit-tree tortrix (Pandemis cerasana Hubner), apple brown tortrix (Pandemis heparana Denis & Schiffermuller)); and many other economically important 20 lepidoptera (e.g., diamondback moth (Plutella xylostella Linnaeus), pink bollworm (Pectinophora gossypiella Saunders), gypsy moth (Lymantria dispar Linnaeus), peach fruit borer (Carposina niponensis Walsingham), peach twig borer (Anarsia lineatelia Zeller), potato tuberworm (Phthorimaea operculella Zeller), spotted teniform leafminer (Lithocolletis blancardella Fabricius), Asiatic apple leafminer (Lithocolletis ringoniella Matsumura), rice 25 leaffolder (Lerodea eufala Edwards), apple leafminer (Leucoptera scitella Zeller)); eggs, nymphs and adults of the order Blattodea including cockroaches from the families Blattellidae and Blattidae (e.g., oriental cockroach (Blatta orientalis Linnaeus), Asian cockroach (Blatella asahinai Mizukubo), German cockroach (Blattella germanica Linnaeus), brownbanded cockroach (Supella longipalpa Fabricius), American cockroach (Periplaneta 30 americana Linnaeus), brown cockroach (Periplaneta brunnea Burmeister), Madeira cockroach (Leucophaea maderae Fabricius)), smoky brown cockroach (Periplaneta fuliginosa Service), Australian Cockroach (Periplaneta australasiae Fabr.), lobster cockroach (Nauphoeta cinerea Olivier) and smooth cockroach (Symploce pallens Stephens)); eggs, foliar feeding, fruit feeding, root feeding, seed feeding and vesicular tissue feeding 35 larvae and adults of the order Coleoptera including weevils from the families Anthribidae,
Bruchidae, and Curculionidae (e.g., boll weevil (Anthonomus grandis Boheman), rice water weevil (Lissorhoptrus oryzophilus Kuschel), granary weevil (Sitophilus granarius Linnaeus),
106
2018202270 29 Mar 2018 rice weevil (Sitophilus oryzae Linnaeus)), annual bluegrass weevil (Listronotus maculicoUis Dietz), bluegrass billbug (Sphenophorus parvidus Gyllenhal), hunting billbug (Sphenophorus venatus vestitus), Denver billbug (Sphenophorus cicatristriatus Fahraeus)); flea beetles, cucumber beetles, rootworms, leaf beetles, potato beetles, and leafminers in the family 5 Chrysomelidae (e.g., Colorado potato beetle (Leptinotarsa decemlineata Say), western corn rootworm (Diabrotica virgifera virgifera LeConte)); chafers and other beetles from the family Scarabaeidae (e.g., Japanese beetle (Popillia japonica Newman), oriental beetle (Anomala orientalis Waterhouse, Exomala orientalis (Waterhouse) Baraud), northern masked chafer (Cyclocephala borealis Arrow), southern masked chafer (Cyclocephala immaculata 10 Olivier or C. lurida Bland), dung beetle and white grub (Aphodius spp.), black turfgrass ataenius (Ataenius spretulus Haldeman), green June beetle (Cotinis nitida Linnaeus), Asiatic garden beetle (Maladera castanea Arrow), May/June beetles (Phyllophaga spp.) and European chafer (Rhizotrogus majalis Razoumowsky)); carpet beetles from the family Dermestidae; wireworms from the family Elateridae; bark beetles from the family Scolytidae 15 and flour beetles from the family Tenebrionidae. In addition, agronomic and nonagronomic pests include: eggs, adults and larvae of the order Dermaptera including earwigs from the family Forficulidae (e.g., European earwig (Forficula auricularia Linnaeus), black earwig (Chelisoches morio Fabricius)); eggs, immatures, adults and nymphs of the orders Hemiptera and Homoptera such as, plant bugs from the family Miridae, cicadas from the family 20 Cicadidae, leafhoppers (e.g. Empoasca spp.) from the family Cicadellidae, bed bugs (e.g.,
Cimex lectularius Linnaeus) from the family Cimicidae, planthoppers from the families Fulgoroidae and Delphacidae, treehoppers from the family Membracidae, psyllids from the family Psyllidae, whiteflies from the family Aleyrodidae, aphids from the family Aphididae, phylloxera from the family Phylloxeridae, mealybugs from the family Pseudococcidae, scales 25 from the families Coccidae, Diaspididae and Margarodidae, lace bugs from the family
Tingidae, stink bugs from the family Pentatomidae, chinch bugs (e.g., hairy chinch bug (Blissus leucopterus hirtus Montandon) and southern chinch bug (Blissus insularis Barber)) and other seed bugs from the family Lygaeidae, spittlebugs from the family Cercopidae squash bugs from the family Coreidae, and red bugs and cotton Stainers from the family 30 Pyrrhocoridae. Also included are eggs, larvae, nymphs and adults of the order Acari (mites) such as spider mites and red mites in the family Tetranychidae (e.g., European red mite (Panonychus ulmi Koch), two spotted spider mite (Tetranychus urticae Koch), McDaniel mite (Tetranychus mcdanieli McGregor)); flat mites in the family Tenuipalpidae (e.g., citrus flat mite (Brevipalpus lewisi McGregor)); rust and bud mites in the family Eriophyidae and 35 other foliar feeding mites and mites important in human and animal health, i.e. dust mites in the family Epidermoptidae, follicle mites in the family Demodicidae, grain mites in the family Glycyphagidae; ticks in the family Ixodidae, commonly known as hard ticks (e.g.,
107
2018202270 29 Mar 2018 deer tick (Ixodes scapularis Say), Australian paralysis tick (Ixodes holocyclus Neumann), American dog tick (Dermacentor variabilis Say), lone star tick (Amblyomma americanum Linnaeus), brown dog tick (Rhipicephalus sanguineus') and cattle ticks (e.g., Rhipicephalus annulatus and Rhipicephalus microplus)) and ticks in the family Argasidae, commonly 5 known as soft ticks (e.g., relapsing fever tick (Ornithodoros turicata), common fowl tick (Argas radiatus)); scab and itch mites in the families Psoroptidae, Pyemotidae, and Sarcoptidae; eggs, adults and immatures of the order Orthoptera including grasshoppers, locusts and crickets (e.g., migratory grasshoppers (e.g., Melanoplus sanguinipes Fabricius, M. differentialis Thomas), American grasshoppers (e.g., Schistocerca americana Drury), 10 desert locust (Schistocerca gregaria Forskal), migratory locust (Locusta migratoria
Linnaeus), bush locust (Zonocerus spp.), house cricket (Acheta domesticus Linnaeus), mole crickets (e.g., tawny mole cricket (Scapteriscus vicinus Scudder) and southern mole cricket (Scapteriscus borellii Giglio-Tos)); eggs, adults and immatures of the order Diptera including leafminers (e.g., Liriomyza spp. such as serpentine vegetable leafminer (Liriomyza sativae 15 Blanchard)), midges, fruit flies (Tephritidae), frit flies (e.g., Oscinella frit Linnaeus), soil maggots, house flies (e.g., Musca domestica Linnaeus), lesser house flies (e.g., Fannia canicularis Linnaeus, F. femoralis Stein), stable flies (e.g., Stomoxys calcitrans Linnaeus), face flies, horn flies, blow flies (e.g., Chrysomya spp., Phormia spp.), and other muscoid fly pests, horse flies (e.g., Tabanus spp.), bot flies (e.g., Gastrophilus spp., Oestrus spp.), cattle 20 grubs (e.g., Hypoderma spp.), deer flies (e.g., Chrysops spp.), keds (e.g., Melophagus ovinus
Linnaeus) and other Brachycera, mosquitoes (e.g., Aedes spp., Anopheles spp., Culex spp.), black flies (e.g., Prosimulium spp., Simulium spp.), biting midges, sand flies, sciarids, and other Nematocera; eggs, adults and immatures of the order Thysanoptera including onion thrips (Thrips tabaci Lindeman), flower thrips (Frankliniella spp.), and other foliar feeding 25 thrips; insect pests of the order Hymenoptera including ants of the Family Formicidae including the Florida carpenter ant (Camponotus floridanus Buckley), red carpenter ant (Camponotus ferrugineus Fabricius), black carpenter ant (Camponotus pennsylvanicus De Geer), white-footed ant (Technomyrmex albipes fr. Smith), big headed ants (Pheidole sp.), ghost ant (Tapinoma melanocephalum Fabricius); Pharaoh ant (Monomorium pharaonis 30 Linnaeus), little fire ant (Wasmannia auropunctata Roger), fire ant (Solenopsis geminata
Fabricius), red imported fire ant (Solenopsis invicta Buren), Argentine ant (Iridomyrmex humilis Mayr), crazy ant (Paratrechina longicornis Latreille), pavement ant (Tetramorium caespitum Linnaeus), cornfield ant (Lasius alienus Forster) and odorous house ant (Tapinoma sessile Say). Other Hymenoptera including bees (including carpenter bees), hornets, yellow 35 jackets, wasps, and sawflies (Neodiprion spp.; Cephus spp.); insect pests of the order Isoptera including termites in the Termitidae (e.g., Macrotermes sp., Odontotermes obesus Rambur), Kalotermitidae (e.g., Cryptotermes sp.), and Rhinotermitidae (e.g., Reticuliterm.es sp.,
108
2018202270 29 Mar 2018
Coptotermes sp., Heterotermes tenuis Hagen) families, the eastern subterranean termite {Reticulitermes flcivipes Kollar), western subterranean termite {Reticulitermes Hesperus Banks), Formosan subterranean termite {Coptotermes formosanus Shiraki), West Indian drywood termite {lncisitermes immigrans Snyder), powder post termite {Cryptotermes brevis 5 Walker), drywood termite {lncisitermes snyderi Light), southeastern subterranean termite {Reticulitermes virginicus Banks), western drywood termite {lncisitermes minor Hagen), arboreal termites such as Nasutitermes sp. and other termites of economic importance; insect pests of the order Thysanura such as silverfish {Lepisma saccharina Linnaeus) and firebrat {Thermobia domestica Packard); insect pests of the order Mallophaga and including the head 10 louse {Pediculus humanus capitis De Geer), body louse {Pediculus humanus Linnaeus), chicken body louse {Menacanthus stramineus Nitszch), dog biting louse {Trichodectes canis De Geer), fluff louse (Goniocotes gallinae De Geer), sheep body louse {Bovicola ovis Schrank), short-nosed cattle louse {Haematopinus eurysternus Nitzsch), long-nosed cattle louse {Linognathus vituli Linnaeus) and other sucking and chewing parasitic lice that attack 15 man and animals; insect pests of the order Siphonoptera including the oriental rat flea {Xenopsylla cheopis Rothschild), cat flea {Ctenocephalides fells Bouche), dog flea {Ctenocephalides canis Curtis), hen flea {Ceratophyllus gallinae Schrank), sticktight flea {Echidnophaga gallinacea Westwood), human flea {Pulex irritans Linnaeus) and other fleas afflicting mammals and birds. Additional arthropod pests covered include: spiders in the 20 order Araneae such as the brown recluse spider {Loxosceles reclusa Gertsch & Mulaik) and the black widow spider (Latrodectus mactans Fabricius), and centipedes in the order Scutigeromorpha such as the house centipede {Scutigera coleoptrata Linnaeus). Compounds of the present invention also have activity on members of the Classes Nematoda, Cestoda, Trematoda, and Acanthocephala including economically important members of the orders 25 Strongylida, Ascaridida, Oxyurida, Rhabditida, Spirurida, and Enoplida such as but not limited to economically important agricultural pests (i.e. root knot nematodes in the genus Meloidogyne, lesion nematodes in the genus Pratylenchus, stubby root nematodes in the genus Trichodorus, etc.) and animal and human health pests (i.e. all economically important flukes, tapeworms, and roundworms, such as Strongylus vulgaris in horses, Toxocara canis 30 in dogs, Haemonchus contortus in sheep, Dirofilaria immitis Leidy in dogs, Anoplocephala perfoliata in horses, Fasciola hepatica Linnaeus in ruminants, etc.).
Compounds of the invention show particularly high activity against pests in the order Lepidoptera (e.g., Alabama argillacea Hiibner (cotton leaf worm), Archips argyrospila Walker (fruit tree leaf roller), A. rosana Linnaeus (European leaf roller) and other Archips 35 species, Chilo suppressalis Walker (rice stem borer), Cnaphalocrosis medinalis Guenee (rice leaf roller), Crambus caliginosellus Clemens (corn root webworm), Crambus teterrellus Zincken (bluegrass webworm), Cydia pomonella Linnaeus (codling moth), Earias insulana
109
2018202270 29 Mar 2018
Boisduval (spiny bollworm), Earias vittella Fabricius (spotted bollworm), Helicoverpa armigera Hiibner (American bollworm), Helicoverpa z,ea Boddie (corn earworm), Heliothis virescens Fabricius (tobacco budworm), Herpeto gramma licarsisalis Walker (sod webworm), Lobesia botrana Denis & Schiffermuller (grape berry moth), Pectinophora gossypiella 5 Saunders (pink bollworm), Phyllocnistis citrella Stainton (citrus leafminer), Pieris brassicae Linnaeus (large white butterfly), Pieris rapae Linnaeus (small white butterfly), Plutella xylostella Linnaeus (diamondback moth), Spodoptera exigua Hiibner (beet armyworm), Spodoptera litura Fabricius (tobacco cutworm, cluster caterpillar), Spodoptera frugiperda J. E. Smith (fall armyworm), Trichoplusia ni Hiibner (cabbage looper) and Tata absoluta 10 Meyrick (tomato leafminer)).
Compounds of the invention also have significant activity on members from the order Homoptera including: Acyrthosiphon pisum Harris (pea aphid), Aphis craccivora Koch (cowpea aphid), Aphis fabae Scopoli (black bean aphid), Aphis gossypii Glover (cotton aphid, melon aphid), Aphis pomi De Geer (apple aphid), Aphis spiraecola Patch (spirea 15 aphid), Aulacorthum solani Kaltenbach (foxglove aphid), Chaetosiphon fragaefolii Cockerell (strawberry aphid), Diuraphis noxia Kurdjumov/Mordvilko (Russian wheat aphid), Dysaphis plantaginea Paaserini (rosy apple aphid), Eriosoma lanigerum Hausmann (woolly apple aphid), Hyalopterus pruni Geoffrey (mealy plum aphid), Lipaphis erysimi Kaltenbach (turnip aphid), Metopolophium dirrhodum Walker (cereal aphid), Macrosiphum euphorbiae Thomas 20 (potato aphid), Myzus persicae Sulzer (peach-potato aphid, green peach aphid), Nasonovia ribisnigri Mosley (lettuce aphid), Pemphigus spp. (root aphids and gall aphids), Rhopalosiphum maidis Fitch (corn leaf aphid), Rhopalosiphum padi Linnaeus (bird cherryoat aphid), Schizaphis graminum Rondani (greenbug), Sitobion avenae Fabricius (English grain aphid), Therioaphis maculata Buckton (spotted alfalfa aphid), Toxoptera aurantii 25 Boyer de Fonscolombe (black citrus aphid), and Toxoptera citricida Kirkaldy (brown citrus aphid); Adelges spp. (adelgids); Phylloxera devastatrix Pergande (pecan phylloxera); Bemisia tabaci Gennadius (tobacco whitefly, sweetpotato whitefly), Bemisia argentifolii Bellows & Perring (silverleaf whitefly), Dialeurodes citri Ashmead (citrus whitefly) and Trialeurodes vaporariorum Westwood (greenhouse whitefly); Empoasca fabae Harris (potato leafhopper), 30 Laodelphax striatellus Fallen (smaller brown planthopper), Macrolestes quadrilineatus Forbes (aster leafhopper), Nephotettix cinticeps Uhler (green leafhopper), Nephotettix nigropictus Stal (rice leafhopper), Nilaparvata lugens Stal (brown planthopper), Peregrinus maidis Ashmead (corn planthopper), Sogatella furcifera Horvath (white-backed planthopper), Sogatodes orizicola Muir (rice delphacid), Typhlocyba pomaria McAtee white apple 35 leafhopper, Erythroneoura spp. (grape leafhoppers); Magicidada septendecim Linnaeus (periodical cicada); Icerya purchasi Maskell (cottony cushion scale), Quadraspidiotus perniciosus Comstock (San Jose scale); Pianococcus citri Risso (citrus mealybug);
110
2018202270 29 Mar 2018
Pseudococcus spp. (other mealybug complex); Cacopsylla pyricola Foerster (pear psylla), Trioza diospyri Ashmead (persimmon psylla).
Compounds of this invention may also have activity on members from the order Hemiptera including: Acrosternum hilare Say (green stink bug), Anasa tristis De Geer 5 (squash bug), Blissus leucopterus leucopterus Say (chinch bug), Cimex lectularius Linnaeus (bed bug) Corythuca gossypii Fabricius (cotton lace bug), Cyrtopeltis modesta Distant (tomato bug), Dysdercus suturellus Herrich-Schaffer (cotton Stainer), Euchistus servus Say (brown stink bug), Euchistus variolarius Palisot de Beauvois (one-spotted stink bug), Graptosthetus spp. (complex of seed bugs), Leptoglossus corculus Say (leaf-footed pine seed 10 bug), Lygus lineolaris Palisot de Beauvois (tarnished plant bug), Nezara viridula Linnaeus (southern green stink bug), Oebalus pugnax Fabricius (rice stink bug), Oncopeltus fasciatus Dallas (large milkweed bug), Pseudatomoscelis seriatus Reuter (cotton fleahopper). Other insect orders controlled by compounds of the invention include Thysanoptera (e.g., Frankliniella occidentalis Pergande (western flower thrips), Scirthothrips citri Moulton 15 (citrus thrips), Sericothrips variabilis Beach (soybean thrips), and Thrips tabaci Lindeman (onion thrips); and the order Coleoptera (e.g., Leptinotarsa decemlineata Say (Colorado potato beetle), Epilachna varivestis Mulsant (Mexican bean beetle) and wireworms of the genera Agriotes, Athous or Limonius).
Note that some contemporary classification systems place Homoptera as a suborder 20 within the order Hemiptera.
Of note is use of compounds of this invention for controlling silverleaf whitefly (Bemisia argentifolii). Of note is use of compounds of this invention for controlling western flower thrip (FrankUniella occidentalis). Of note is use of compounds of this invention for controlling potato leafhopper (Empoasca fabae). Of note is use of compounds of this 25 invention for controlling corn planthopper (Peregrinus maidis). Of note is use of compounds of this invention for controlling cotton melon aphid (Aphis gossypii). Of note is use of compounds of this invention for controlling green peach aphid (Myzus persicae). Of note is use of compounds of this invention for controlling diamondback moth (Plutella xylostella). Of note is use of compounds of this invention for controlling fall armyworm 30 (Spodoptera frugiperda).
Compounds of this invention can also be mixed with one or more other biologically active compounds or agents including insecticides, fungicides, nematocides, bactericides, acaricides, herbicides, herbicide safeners, growth regulators such as insect molting inhibitors and rooting stimulants, chemosterilants, semiochemicals, repellents, attractants, pheromones, 35 feeding stimulants, other biologically active compounds or entomopathogenic bacteria, virus or fungi to form a multi-component pesticide giving an even broader spectrum of agronomic and nonagronomic utility. Thus the present invention also pertains to a composition
111
2018202270 29 Mar 2018 comprising a compound of Formula 1 (i.e. in a biologically effective amount), at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, and at least one additional biologically active compound or agent. For mixtures of the present invention, the other biologically active compounds or agents can be 5 formulated together with the present compounds, including the compounds of Formula 1, to form a premix, or the other biologically active compounds or agents can be formulated separately from the present compounds, including the compounds of Formula 1, and the two formulations combined together before application (e.g., in a spray tank) or, alternatively, applied in succession.
Examples of such biologically active compounds or agents with which compounds of this invention can be formulated are insecticides such as abamectin, acephate, acequinocyl, acetamiprid, acrinathrin, amidoflumet, amitraz, avermectin, azadirachtin, azinphos-methyl, bifenthrin, bifenazate, bistrifluron, borate, 3-bromo-l-(3-chloro-2-pyridinyl)-A-[4-cyano-2methyl-6-[(methylamino)carbonyl]phenyl]-lH-pyrazole-5-carboxamide, buprofezin, cadusafos, carbaryl, carbofuran, cartap, carzol, chlorantraniliprole, chlorfenapyr, chlorfluazuron, chlorpyrifos, chlorpyrifos-methyl, chromafenozide, clofentezin, clothianidin, cyflumetofen, cytluthrin, beta-cyfluthrin, cyhalothrin, gamma-cyhalothrin, lambdacyhalothrin, cypermethrin, alpha-cypermethrin, zeta-cypermethrin, cyromazine, deltamethrin, diafenthiuron, diazinon, dieldrin, diflubenzuron, dimefluthrin, dimehypo, dimethoate, 20 dinotefuran, diofenolan, emamectin, endosulfan, esfenvalerate, ethiprole, etofenprox, etoxazole, fenbutatin oxide, fenothiocarb, fenoxycarb, fenpropathrin, fenvalerate, fipronil, flonicamid, flubendiamide, flucythrinate, flufenerim, flufenoxuron, fluvalinate, tau-fluvalinate, fonophos, formetanate, fosthiazate, halofenozide, hexaflumuron, hexythiazox, hydramethylnon, imidacloprid, indoxacarb, insecticidal soaps, isofenphos, 25 lufenuron, malathion, metaflumizone, metaldehyde, methamidophos, methidathion, methiodicarb, methomyl, methoprene, methoxychlor, metofluthrin, monocrotophos, methoxyfenozide, nitenpyram, nithiazine, novaluron, noviflumuron, oxamyl, parathion, parathion-methyl, permethrin, phorate, phosalone, phosmet, phosphamidon, pirimicarb, profenofos, profluthrin, propargite, protrifenbute, pymetrozine, pyrafluprole, pyrethrin, 30 pyridaben, pyridalyl, pyrifluquinazon, pyriprole, pyriproxyfen, rotenone, ryanodine, spinetoram, spinosad, spirodiclofen, spiromesifen, spirotetramat, sulprofos, tebufenozide, tebufenpyrad, teflubenzuron, tefluthrin, terbufos, tetrachlorvinphos, tetramethrin, thiacloprid, thiamethoxam, thiodicarb, thiosultap-sodium, tolfenpyrad, tralomethrin, triazamate, trichlorfon, triflumuron, Bacillus thuringiensis delta-endotoxins, entomopathogenic bacteria, 35 entomopathogenic viruses and entomopathogenic fungi.
Of note are insecticides such as abamectin, acetamiprid, acrinathrin, amitraz, avermectin, azadirachtin, bifenthrin, 3-bromo-l-(3-chloro-2-pyridinyl)JV-[4-cyano-2-methyl112
2018202270 29 Mar 2018
6-[(methylamino)carbonyl]phenyl]-177-pyrazole-5-carboxamide, buprofezin, cadusafos, carbaryl, cartap, chlorantraniliprole, chlorfenapyr, chlorpyrifos, clothianidin, cyfluthrin, betacyfluthrin, cyhalothrin, gamma-cyhalothrin, lambda-cyhalothrin, cypermethrin, alphacypermethrin, zeta-cypermethrin, cyromazine, deltamethrin, dieldrin, dinotefuran, 5 diofenolan, emamectin, endosulfan, esfenvalerate, ethiprole, etofenprox, etoxazole, fenothiocarb, fenoxycarb, fenvalerate, fipronil, flonicamid, flubendiamide, flufenoxuron, fluvalinate, formetanate, fosthiazate, hexaflumuron, hydramethylnon, imidacloprid, indoxacarb, lufenuron, metaflumizone, methiodicarb, methomyl, methoprene, methoxyfenozide, nitenpyram, nithiazine, novaluron, oxamyl, pymetrozine, pyrethrin, 10 pyridaben, pyridalyl, pyriproxyfen, ryanodine, spinetoram, spinosad, spirodiclofen, spiromesifen, spirotetramat, tebufenozide, tetramethrin, thiacloprid, thiamethoxam, thiodicarb, thiosultap-sodium, tralomethrin, triazamate, triflumuron, Bacillus thuringiensis delta-endotoxins, all strains of Bacillus thuringiensis and all strains of Nucleo polyhydrosis viruses.
One embodiment of biological agents for mixing with compounds of this invention include entomopathogenic bacteria such as Bacillus thuringiensis, and the encapsulated deltaendotoxins of Bacillus thuringiensis (e.g.. Cellcap, MPV, MPVII); entomopathogenic fungi such as green muscardine fungus; and entomopathogenic (both naturally occurring and genetically modified) viruses including baculovirus, nucleopolyhedro virus (NPV) such as 20 Helicoverpa zea nucleopolyhedrovirus (HzNPV), Anagraphci falcifera nucleopolyhedrovirus (AfNPV); and granulosis virus (GV) such as Cydia pomonella granulosis virus (CpGV).
Of particular note is such a combination where the other invertebrate pest control active ingredient belongs to a different chemical class or has a different site of action than the compound of Formula 1. In certain instances, a combination with at least one other 25 invertebrate pest control active ingredient having a similar spectrum of control but a different site of action will be particularly advantageous for resistance management. Thus, a composition of the present invention can further comprise at least one additional invertebrate pest control active ingredient having a similar spectrum of control but belonging to a different chemical class or having a different site of action. These additional biologically 30 active compounds or agents include, but are not limited to, sodium channel modulators such as bifenthrin, cypermethrin, cyhalothrin, lambda-cyhalothrin, cyfluthrin, beta-cyfluthrin, deltamethrin, dimefluthrin, esfenvalerate, fenvalerate, indoxacarb, metofluthrin, profluthrin, pyrethrin and tralomethrin; cholinesterase inhibitors such as chlorpyrifos, methomyl, oxamyl, thiodicarb and triazamate; neonicotinoids such as acetamiprid, clothianidin, dinotefuran, 35 imidacloprid, nitenpyram, nithiazine, thiacloprid and thiamethoxam; insecticidal macrocyclic lactones such as spinetoram, spinosad, abamectin, avermectin and emamectin; GABA (γ-aminobutyric acid)-gated chloride channel antagonists such as avermectin or blockers
113
2018202270 29 Mar 2018 such as ethiprole and fipronil; chitin synthesis inhibitors such as buprofezin, cyromazine, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron and triflumuron; juvenile hormone mimics such as diofenolan, fenoxycarb, methoprene and pyriproxyfen; octopamine receptor ligands such as amitraz; molting inhibitors and ecdysone agonists such as 5 azadirachtin, methoxyfenozide and tebufenozide; ryanodine receptor ligands such as ryanodine, anthranilic diamides such as chlorantraniliprole (see U.S. Patent 6,747,047, PCT Publications WO 2003/015518 and WO 2004/067528) and flubendiamide (see U.S. Patent 6,603,044); nereistoxin analogs such as cartap; mitochondrial electron transport inhibitors such as chlorfenapyr, hydramethylnon and pyridaben; lipid biosynthesis inhibitors such as 10 spirodiclofen and spiromesifen; cyclodiene insecticides such as dieldrin or endosulfan;
pyrethroids; carbamates; insecticidal ureas; and biological agents including nucleopolyhedro viruses (NPV), members of Bacillus thuringiensis, encapsulated delta-endotoxins of Bacillus thuringiensis, and other naturally occurring or genetically modified insecticidal viruses.
Further examples of biologically active compounds or agents with which compounds of 15 this invention can be formulated are: fungicides such as acibenzolar, aldimorph, amisulbrom, azaconazole, azoxystrobin, benalaxyl, benomyl, benthiavalicarb, benthiavalicarb-isopropyl, binomial, biphenyl, bitertanol, blasticidin-S, Bordeaux mixture (Tribasic copper sulfate), boscalid/nicobifen, bromuconazole, bupirimate, buthiobate, carboxin, carpropamid, captafol, captan, carbendazim, chloroneb, chlorothalonil, chlozolinate, clotrimazole, copper 20 oxychloride, copper salts such as copper sulfate and copper hydroxide, cyazofamid, cyflunamid, cymoxanil, cyproconazole, cyprodinil, dichlofluanid, diclocymet, diclomezine, dicloran, diethofencarb, difenoconazole, dimethomorph, dimoxystrobin, diniconazole, diniconazole-M, dinocap, discostrobin, dithianon, dodemoiph, dodine, econazole, etaconazole, edifenphos, epoxiconazole, ethaboxam, ethirimol, ethridiazole, famoxadone, 25 fenamidone, fenarimol, fenbuconazole, fencaramid, fenfuram, fenhexamide, fenoxanil, fenpiclonil, fenpropidin, fenpropimorph, fentin acetate, fentin hydroxide, ferbam, ferfurazoate, ferimzone, fluazinam, fludioxonil, flumetover, fluopicolide, fluoxastrobin, fluquinconazole, fluquinconazole, flusilazole, flusulfamide, flutolanil, flutriafol, folpet, fosetyl-aluminum, fuberidazole, furalaxyl, furametapyr, hexaconazole, hymexazole, 30 guazatine, imazalil, imibenconazole, iminoctadine, iodicarb, ipconazole, iprobenfos, iprodione, iprovalicarb, isoconazole, isoprothiolane, kasugamycin, kresoxim-methyl, mancozeb, mandipropamid, maneb, mapanipyrin, mefenoxam, mepronil, metalaxyl, metconazole, methasulfocarb, metiram, metominostrobin/fenominostrobin, mepanipyrim, metrafenone, miconazole, myclobutanil, neo-asozin (ferric methanearsonate), nuarimol, 35 octhilinone, ofurace, orysastrobin, oxadixyl, oxolinic acid, oxpoconazole, oxycarboxin, paclobutrazol, penconazole, pencycuron, penthiopyrad, perfurazoate, phosphonic acid, phthalide, picobenzamid, picoxystrobin, polyoxin, probenazole, prochloraz, procymidone,
114
2018202270 29 Mar 2018 propamocarb, propamocarb-hydrochloride, propiconazole, propineb, proquinazid, prothioconazole, pyraclostrobin, pryazophos, pyrifenox, pyrimethanil, pyrifenox, pyrolnitrine, pyroquilon, quinconazole, quinoxyfen, quintozene, silthiofam, simeconazole, spiroxamine, streptomycin, sulfur, tebuconazole, techrazene, tecloftalam, tecnazene, 5 tetraconazole, thiabendazole, thifluzamide, thiophanate, thiophanate-methyl, thiram, tiadinil, tolclofos-methyl, tolyfluanid, triadimefon, triadimenol, triarimol, triazoxide, tridemorph, trimoprhamide tricyclazole, trifloxystrobin, triforine, triticonazole, uniconazole, validamycin, vinclozolin, zineb, ziram, and zoxamide; nematocides such as aldicarb, imicyafos, oxamyl and fenamiphos; bactericides such as streptomycin; acaricides such as amitraz, 10 chinomethionat, chlorobenzilate, cyhexatin, dicofol, dienochlor, etoxazole, fenazaquin, fenbutatin oxide, fenpropathrin, fenpyroximate, hexythiazox, propargite, pyridaben and tebufenpyrad.
In certain instances, combinations of a compound of this invention with other biologically active (particularly invertebrate pest control) compounds or agents (i.e. active 15 ingredients) can result in a greater-than-additive (i.e. synergistic) effect. Reducing the quantity of active ingredients released in the environment while ensuring effective pest control is always desirable. When synergism of invertebrate pest control active ingredients occurs at application rates giving agronomically satisfactory levels of invertebrate pest control, such combinations can be advantageous for reducing crop production cost and 20 decreasing environmental load.
Compounds of this invention and compositions thereof can be applied to plants genetically transformed to express proteins toxic to invertebrate pests (such as Bacillus thuringiensis delta-endotoxins). Such an application may provide a broader spectrum of plant protection and be advantageous for resistance management. The effect of the exogenously applied invertebrate pest control compounds of this invention may be synergistic with the expressed toxin proteins.
General references for these agricultural protectants (i.e. insecticides, fungicides, nematocides, acaricides, herbicides and biological agents) include The Pesticide Manual, 13th Edition, C. D. S. Tomlin, Ed., British Crop Protection Council, Farnham, Surrey, U.K., 30 2003 and The BioPesticide Manual, 2nd Edition, L. G. Copping, Ed., British Crop Protection
Council, Farnham, Surrey, U.K., 2001.
For embodiments where one or more of these various mixing partners are used, the weight ratio of these various mixing partners (in total) to the compound of Formula 1 is typically between about 1:3000 and about 3000:1. Of note are weight ratios between about 35 1:300 and about 300:1 (for example ratios between about 1:30 and about 30:1). One skilled in the art can easily determine through simple experimentation the biologically effective amounts of active ingredients necessary for the desired spectrum of biological activity. It
115
2018202270 29 Mar 2018 will be evident that including these additional components can expand the spectrum of invertebrate pests controlled beyond the spectrum controlled by the compound of Formula 1 alone.
Table A lists specific combinations of a compound of Formula 1 with other invertebrate 5 pest control agents illustrative of the mixtures, compositions and methods of the present invention. The first column of Table A lists the specific invertebrate pest control agents (e.g., “Abamectin” in the first line). The second column of Table A lists the mode of action (if known) or chemical class of the invertebrate pest control agents. The third column of Table A lists embodiment(s) of ranges of weight ratios for rates at which the invertebrate pest 10 control agent can be applied relative to a compound of Formula 1 (e.g., “50:1 to 1:50” of abamectin relative to a compound of Formula 1 by weight). Thus, for example, the first line of Table A specifically discloses the combination of a compound of Formula 1 with abamectin can be applied in a weight ratio between 50:1 to 1:50. The remaining lines of Table A are to be construed similarly. Of further note Table A lists specific combinations of 15 a compound of Formula 1 with other invertebrate pest control agents illustrative of the mixtures, compositions and methods of the present invention and includes additional embodiments of weight ratio ranges for application rates.
Table A
Invertebrate Pest Control Agent Mode of Action or Chemical Class Typical Weight Ratio
Abamectin macrocyclic lactones 50:1 to 1:50
Acetamiprid neonicotinoids 150:1 to 1:200
Amitraz octopamine receptor ligands 200:1 to 1:100
Avermectin macrocyclic lactones 50:1 to 1:50
Azadirachtin ecdysone agonists 100:1 to 1:120
Beta-cyfluthrin sodium channel modulators 150:1 to 1:200
Bifenthrin sodium channel modulators 100:1 to 1:10
Buprofezin chitin synthesis inhibitors 500:1 to 1:50
Cartap nereistoxin analogs 100:1 to 1:200
Chlorantraniliprole ryanodine receptor ligands 100:1 to 1:120
Chlorfenapyr mitochondrial electron transport inhibitors 300:1 to 1:200
Chlorpyrifos cholinesterase inhibitors 500:1 to 1:200
Clothianidin neonicotinoids 100:1 to 1:400
Cyfluthrin sodium channel modulators 150:1 to 1:200
Cyhalothrin sodium channel modulators 150:1 to 1:200
Cypermethrin sodium channel modulators 150:1 to 1:200
116
2018202270 29 Mar 2018
Invertebrate Pest Control Agent Mode of Action or Chemical Class Typical Weight Ratio
Cyromazine chitin synthesis inhibitors 400:1 to 1:50
Deltamethrin sodium channel modulators 50:1 to 1:400
Dieldrin cyclodiene insecticides 200:1 to 1:100
Dinotefuran neonicotinoids 150:1 to 1:200
Diofenolan molting inhibitor 150:1 to 1:200
Emamectin macrocyclic lactones 50:1 to 1:10
Endosulfan cyclodiene insecticides 200:1 to 1:100
Esfenvalerate sodium channel modulators 100:1 to 1:400
Ethiprole GABA-regulated chloride channel blockers 200:1 to 1:100
Fenothiocarb 150:1 to 1:200
Fenoxycarb juvenile hormone mimics 500:1 to 1:100
Fenvalerate sodium channel modulators 150:1 to 1:200
Fipronil GABA-regulated chloride channel blockers 150:1 to 1:100
Flonicamid 200:1 to 1:100
Flubendiamide ryanodine receptor ligands 100:1 to 1:120
Flufenoxuron chitin synthesis inhibitors 200:1 to 1:100
Hexaflumuron chitin synthesis inhibitors 300:1 to 1:50
Hydramethylnon mitochondrial electron transport inhibitors 150:1 to 1:250
Imidacloprid neonicotinoids 1000:1 to 1:1000
Indoxacarb sodium channel modulators 200:1 to 1:50
Lambda-cyhalothrin sodium channel modulators 50:1 to 1:250
Lufenuron chitin synthesis inhibitors 500:1 to 1:250
Metaflumizone 200:1 to 1:200
Methomyl cholinesterase inhibitors 500:1 to 1:100
Methoprene juvenile hormone mimics 500:1 to 1:100
Methoxyfenozide ecdysone agonists 50:1 to 1:50
Nitenpyram neonicotinoids 150:1 to 1:200
Nithiazine neonicotinoids 150:1 to 1:200
Novaluron chitin synthesis inhibitors 500:1 to 1:150
Oxamyl cholinesterase inhibitors 200:1 to 1:200
Pymetrozine 200:1 to 1:100
Pyrethrin sodium channel modulators 100:1 to 1:10
117
2018202270 29 Mar 2018
Invertebrate Pest Control Agent Mode of Action or Chemical Class Typical Weight Ratio
Pyridaben mitochondrial electron transport inhibitors 200:1 to 1:100
Pyridalyl 200:1 to 1:100
Pyriproxyfen juvenile hormone mimics 500:1 to 1:100
Ryanodine ryanodine receptor ligands 100:1 to 1:120
Spinetoram macrocyclic lactones 150:1 to 1:100
Spinosad macrocyclic lactones 500:1 to 1:10
Spirodiclofen lipid biosynthesis inhibitors 200:1 to 1:200
Spiromesifen lipid biosynthesis inhibitors 200:1 to 1:200
Tebufenozide ecdysone agonists 500:1 to 1:250
Thiacloprid neonicotinoids 100:1 to 1:200
Thiamethoxam neonicotinoids 1250:1 to 1:1000
Thiodicarb cholinesterase inhibitors 500:1 to 1:400
Thiosultap-sodium 150:1 to 1:100
Tralomethrin sodium channel modulators 150:1 to 1:200
Triazamate cholinesterase inhibitors 250:1 to 1:100
Triflumuron chitin synthesis inhibitors 200:1 to 1:100
Bacillus thuringiensis biological agents 50:1 to 1:10
Bacillus thuringiensis delta-endotoxin biological agents 50:1 to 1:10
NPV (e.g., Gemstar) biological agents 50:1 to 1:10
(a) ryanodine receptor ligands 100:1 to 1:120
(a) 3-bromo-l-(3-chloro-2-pyridinyl)-/V-[4-cyano-2-methyl-6-[(methylamino)carbonyl]phenyl] -lH-pyrazole-5-carboxamide
Of note is the composition of the present invention wherein the at least one additional biologically active compound or agent is selected from the Invertebrate Pest Control Agents 5 listed in Table A above.
The weight ratios of a compound, including a compound of Formula 1, to the additional invertebrate pest control agent typically are between 1000:1 and 1:1000, with one embodiment being between 500:1 and 1:500, another embodiment being between 250:1 and 1:200 and another embodiment being between 100:1 and 1:50.
Fisted below in Table B are embodiments of specific compositions comprising a compound of Formula 1 (compound numbers refer to compounds in Index Table A) and an additional invertebrate pest control agent.
118
2018202270 29 Mar 2018
Table B
Mixture No. Comp. No. and Invertebrate Pest Control Agent
A-l 1 and Abamectin
A-2 1 and Acetamiprid
A-3 1 and Amitraz
A-4 1 and Avermectin
A-5 1 and Azadirachtin
A-6 1 and Beta-cyfluthrin
A-7 1 and Bifenthrin
A-8 1 and Buprofezin
A-9 1 and Cartap
A-10 1 and Chlorantraniliprole
A-ll 1 and Chlorfenapyr
A-12 1 and Chlorpyrifos
A-13 1 and Clothianidin
A-14 1 and Cyfluthrin
A-15 1 and Cyhalothrin
A-16 1 and Cypennethrin
A-17 1 and Cyromazine
A-18 1 and Deltamethrin
A-19 1 and Dieldrin
A-20 1 and Dinotefuran
A-21 1 and Diofenolan
A-22 1 and Emaniectin
A-23 1 and Endosulfan
A-24 1 and Esfenvalerate
A-25 1 and Ethiprole
A-26 1 and Fenothiocarb
A-27 1 and Fenoxycarb
A-28 1 and Fenvalerate
A-29 1 and Fipronil
A-30 1 and Flonicamid
A-31 1 and Flubendiamide
A-32 1 and Flufenoxuron
A-33 1 and Hexaflumuron
Mixture No. Comp. No. and Invertebrate Pest Control Agent
B-l 11 and Abamectin
B-2 11 and Acetamiprid
B-3 11 and Amitraz
B-4 11 and Avermectin
B-5 11 and Azadirachtin
B-6 11 and Beta-cyfluthrin
B-7 11 and Bifenthrin
B-8 11 and Buprofezin
B-9 11 and Cartap
B-10 11 and Chlorantraniliprole
B-1I 11 and Chlorfenapyr
B-12 11 and Chlorpyrifos
B-13 11 and Clothianidin
B-14 11 and Cyfluthrin
B-15 11 and Cyhalothrin
B-16 11 and Cypermethrin
B-17 11 and Cyromazine
B-18 11 and Deltamethrin
B-19 11 and Dieldrin
B-20 11 and Dinotefuran
B-21 11 and Diofenolan
B-22 11 and Emaniectin
B-23 11 and Endosulfan
B-24 11 and Esfenvalerate
B-25 11 and Ethiprole
B-26 11 and Fenothiocarb
B-27 11 and Fenoxycarb
B-28 11 and Fenvalerate
B-29 11 and Fipronil
B-30 11 and Flonicamid
B-31 11 and Flubendiamide
B-32 11 and Flufenoxuron
B-33 11 and Hexaflumuron
119
2018202270 29 Mar 2018
Mixture No. Comp. No. and Invertebrate Pest Control Agent Mixture No. Comp. No. and Invertebrate Pest Control Agent
A-34 1 and Hydramethylnon B-34 11 and Hydramethylnon
A-35 1 and Imidacloprid B-35 11 and Imidacloprid
A-36 1 and Indoxacarb B-36 11 and Indoxacarb
A-37 1 and Lambda-cyhalothrin B-37 11 and Lambda-cyhalothrin
A-38 1 and Lufenuron B-38 11 and Lufenuron
A-39 1 and Metaflumizone B-39 11 and Metaflumizone
A-40 1 and Methomyl B-40 11 and Methomyl
A-41 1 and Methoprene B-41 11 and Methoprene
A-42 1 and Methoxyfenozide B-42 11 and Methoxyfenozide
A-43 1 and Nitenpyram B-43 11 and Nitenpyram
A-44 1 and Nithiazine B-44 11 and Nithiazine
A-45 1 and Novaluron B-45 11 and Novaluron
A-46 1 and Oxamyl B-46 11 and Oxamyl
A-47 1 and Pymetrozine B-47 11 and Pymetrozine
A-48 1 and Pyrethrin B-48 11 and Pyrethrin
A-49 1 and Pyridaben B-49 11 and Pyridaben
A-50 1 and Pyridalyl B-50 11 and Pyridalyl
A-51 1 and Pyriproxyfen B-51 11 and Pyriproxyfen
A-52 1 and Ryanodine B-52 11 and Ryanodine
A-53 1 and Spinetoram B-53 11 and Spinetoram
A-54 1 and Spinosad B-54 11 and Spinosad
A-55 1 and Spirodiclofen B-55 11 and Spirodiclofen
A-56 1 and Spiromesifen B-56 11 and Spiromesifen
A-57 1 and Tebufenozide B-57 11 and Tebufenozide
A-58 1 and Thiacloprid B-58 11 and Thiacloprid
A-59 1 and Thiamethoxam B-59 11 and Thiamethoxam
A-60 1 and Thiodicarb B-60 11 and Thiodicarb
A-61 1 and Thiosultap-sodium B-61 11 and Thiosultap-sodium
A-62 1 and Tralomethrin B-62 11 and Tralomethrin
A-63 1 and Tri azamate B-63 11 and Triazamate
A-64 1 and Tritlumuron B-64 11 and Triflumuron
A-65 1 and Bacillus thuringiensis B-65 11 and Bacillus thuringiensis
A-66 1 and Bacillus thuringiensis B-66 11 and Bacillus thuringiensis
delta-endotoxin delta-endotoxin
A-67 1 and NPV (e.g., Gemstar) B-67 11 and NPV (e.g., Gemstar)
120
2018202270 29 Mar 2018
Mixture No. Comp. No. and
C-l 17 and
C-2 17 and
C-3 17 and
C-4 17 and
C-5 17 and
C-6 17 and
C-7 17 and
C-8 17 and
C-9 17 and
C-10 17 and
C-ll 17 and
C-12 17 and
C-13 17 and
C-14 17 and
C-l 5 17 and
C-l 6 17 and
C-17 17 and
C-18 17 and
C-19 17 and
C-20 17 and
C-21 17 and
C-22 17 and
C-23 17 and
C-24 17 and
C-25 17 and
C-26 17 and
C-27 17 and
C-28 17 and
C-29 17 and
C-30 17 and
C-31 17 and
C-32 17 and
C-33 17 and
C-34 17 and
C-35 17 and
Invertebrate Pest Control Agent
Abamectin
Acetamiprid
Amitraz
Avermectin
Azadirachtin
Beta-cyfluthrin
Bifenthrin
Buprofezin
Cartap
Chlorantraniliprole
Clilorfenapyr
Chlorpyrifos
Clothianidin
Cyfluthrin
Cyhalothrin
Cypermethrin
Cyromazine
Deltamethrin
Dieldrin
Dinotefuran
Diofenolan
Emamectin
Endosulfan
Esfenvalerate
Ethiprole
Fenothiocarb
Fenoxycarb
Fenvalerate
Fipronil
Flonicamid
Flubendiamide
Flufenoxuron
Hexaflumuron
Hydramethylnon
Imidacloprid
Mixture No. Comp. No. and
D-l 20 and
D-2 20 and
D-3 20 and
D-4 20 and
D-5 20 and
D-6 20 and
D-7 20 and
D-8 20 and
D-9 20 and
D-10 20 and
D-ll 20 and
D-l 2 20 and
D-13 20 and
D-14 20 and
D-l 5 20 and
D-16 20 and
D-l 7 20 and
D-18 20 and
D-19 20 and
D-20 20 and
D-21 20 and
D-22 20 and
D-23 20 and
D-24 20 and
D-25 20 and
D-26 20 and
D-27 20 and
D-28 20 and
D-29 20 and
D-30 20 and
D-31 20 and
D-32 20 and
D-33 20 and
D-34 20 and
D-35 20 and
Invertebrate Pest Control
Agent
Abamectin
Acetamiprid
Amitraz
Avermectin
Azadirachtin
Beta-cyfluthrin
Bifenthrin
Buprofezin
Cartap
Chlorantraniliprole
Chlorfenapyr
Chlorpyrifos
Clothianidin
Cyfluthrin
Cyhalothrin
Cypermethrin
Cyromazine
Deltamethrin
Dieldrin
Dinotefuran
Diofenolan
Emamectin
Endosulfan
Esfenvalerate
Ethiprole
Fenothiocarb
Fenoxycarb
Fenvalerate
Fipronil
Flonicamid
Flubendiamide
Flufenoxuron
Hexaflumuron
Hydramethylnon
Imidacloprid
121
2018202270 29 Mar 2018
Mixture No. Comp. No. and Invertebrate Pest Control Agent Mixture No. Comp. No. and Invertebrate Pest Control Agent
C-36 17 and Indoxacarb D-36 20 and Indoxacarb
C-37 17 and Lambda-cyhalothrin D-37 20 and Lambda-cyhalothrin
C-38 17 and Lufenuron D-38 20 and Lufenuron
C-39 17 and Metaflumizone D-39 20 and Metaflumizone
C-40 17 and Methomyl D-40 20 and Methomyl
C-41 17 and Methoprene D-41 20 and Methoprene
C-42 17 and Methoxyfenozide D-42 20 and Methoxyfenozide
C-43 17 and Nitenpyram D-43 20 and Nitenpyram
C-44 17 and Nithiazine D-44 20 and Nithiazine
C-45 17 and Novaluron D-45 20 and Novaluron
C-46 17 and Oxamyl D-46 20 and Oxamyl
C-47 17 and Pymetrozine D-47 20 and Pymetrozine
C-48 17 and Pyrethrin D-48 20 and Pyrethrin
C-49 17 and Pyridaben D-49 20 and Pyridaben
C-50 17 and Pyridalyl D-50 20 and Pyridalyl
C-51 17 and Pyriproxyfen D-51 20 and Pyriproxyfen
C-52 17 and Ryanodine D-52 20 and Ryanodine
C-53 17 and Spinetoram D-53 20 and Spinetoram
C-54 17 and Spinosad D-54 20 and Spinosad
C-55 17 and Spirodiclofen D-55 20 and Spirodiclofen
C-56 17 and Spiromesifen D-56 20 and Spiromesifen
C-57 17 and Tebufenozide D-57 20 and Tebufenozide
C-58 17 and Tliiacloprid D-58 20 and Thiacloprid
C-59 17 and Thiamethoxam D-59 20 and Thiamethoxam
C-60 17 and Thiodicarb D-60 20 and Thiodicarb
C-61 17 and Thiosultap-sodium D-61 20 and Thiosultap-sodium
C-62 17 and Tralomethrin D-62 20 and Tralomethrin
C-63 17 and Tri azamate D-63 20 and Triazamate
C-64 17 and Triflumuron D-64 20 and Triflumuron
C-65 17 and Bacillus thuringiensis D-65 20 and Bacillus thuringiensis
C-66 17 and Bacillus thuringiensis D-66 20 and Bacillus thuringiensis
delta-endotoxin delta-endotoxin
C-67 17 and NPV (e.g.. Gemstar) D-67 20 and NPV (e.g., Gemstar)
E-l 37 and Abamectin F-l 52 and Abamectin
E-2 37 and Acetamiprid F-2 52 and Acetamiprid
122
2018202270 29 Mar 2018
Mixture No. Comp. No. and Invertebrate Pest Control Agent
E-3 37 and Amitraz
E-4 37 and Avermectin
E-5 37 and Azadirachtin
E-6 37 and Beta-cyfluthrin
E-7 37 and Bifenthrin
E-8 37 and Buprofezin
E-9 37 and Cartap
E-10 37 and Chlorantraniliprole
E-ll 37 and Chlorfenapyr
E-12 37 and Chlorpyrifos
E-13 37 and Clothianidin
E-14 37 and Cyfluthrin
E-15 37 and Cyhalothrin
E-16 37 and Cypermethrin
E-17 37 and Cyromazine
E-18 37 and Deltamethrin
E-19 37 and Dieldrin
E-20 37 and Dinotefuran
E-21 37 and Diofenolan
E-22 37 and Emamectin
E-23 37 and Endosulfan
E-24 37 and Esfenvalerate
E-25 37 and Ethiprole
E-26 37 and Fenothiocarb
E-27 37 and Fenoxycarb
E-28 37 and Fenvalerate
E-29 37 and Fipronil
E-30 37 and Flonicamid
E-31 37 and Flubendiamide
E-32 37 and Flufenoxuron
E-33 37 and Hexaflumuron
E-34 37 and Hydramethylnon
E-35 37 and Imidacloprid
E-36 37 and Indoxacarb
E-37 37 and Lambda-cyhalothrin
Mixture No. Comp. No. and Invertebrate Pest Control Agent
F-3 52 and Amitraz
F-4 52 and Avermectin
F-5 52 and Azadirachtin
F-6 52 and Beta-cyfluthrin
F-7 52 and Bifenthrin
F-8 52 and Buprofezin
F-9 52 and Cartap
F-10 52 and Chlorantraniliprole
F-ll 52 and Chlorfenapyr
F-12 52 and Chlorpyrifos
F-13 52 and Clothianidin
F-14 52 and Cyfluthrin
F-15 52 and Cyhalothrin
F-16 52 and Cypermethrin
F-17 52 and Cyromazine
F-18 52 and Deltamethrin
F-19 52 and Dieldrin
F-20 52 and Dinotefuran
F-21 52 and Diofenolan
F-22 52 and Emamectin
F-23 52 and Endosulfan
F-24 52 and Esfenvalerate
F-25 52 and Ethiprole
F-26 52 and Fenothiocarb
F-27 52 and Fenoxycarb
F-28 52 and Fenvalerate
F-29 52 and Fipronil
F-30 52 and Flonicamid
F-31 52 and Flubendiamide
F-32 52 and Flufenoxuron
F-33 52 and Hexaflumuron
F-34 52 and Hydramethylnon
F-35 52 and Imidacloprid
F-36 52 and Indoxacarb
F-37 52 and Lambda-cyhalothrin
123
2018202270 29 Mar 2018
Mixture No. Comp. No. and Invertebrate Pest Control Agent Mixture No. Comp. No. and Invertebrate Pest Control Agent
E-38 37 and Lufenuron F-38 52 and Lufenuron
E-39 37 and Metaflumizone F-39 52 and Metaflumizone
E-40 37 and Methomyl F-40 52 and Methomyl
E-41 37 and Methoprene F-41 52 and Methoprene
E-42 37 and Methoxyfenozide F-42 52 and Methoxyfenozide
E-43 37 and Nitenpyram F-43 52 and Nitenpyram
E-44 37 and Nithiazine F-44 52 and Nithiazine
E-45 37 and Novaluron F-45 52 and Novaluron
E-46 37 and Oxamyl F-46 52 and Oxamyl
E-47 37 and Pymetrozine F-47 52 and Pymetrozine
E-48 37 and Pyrethrin F-48 52 and Pyrethrin
E-49 37 and Pyridaben F-49 52 and Pyridaben
E-50 37 and Pyridalyl F-50 52 and Pyridalyl
E-51 37 and Pyriproxyfen F-51 52 and Pyriproxyfen
E-52 37 and Ryanodine F-52 52 and Ryanodine
E-53 37 and Spinetoram F-53 52 and Spinetoram
E-54 37 and Spinosad F-54 52 and Spinosad
E-55 37 and Spirodiclofen F-55 52 and Spirodiclofen
E-56 37 and Spiromesifen F-56 52 and Spiromesifen
E-57 37 and Tebufenozide F-57 52 and Tebufenozide
E-58 37 and Thiacloprid F-58 52 and Thiacloprid
E-59 37 and Thiamethoxam F-59 52 and Thiamethoxam
E-60 37 and Thiodicarb F-60 52 and Thiodicarb
E-61 37 and Thiosultap-sodium F-61 52 and Thiosultap-sodium
E-62 37 and Tralomethrin F-62 52 and Tralomethrin
E-63 37 and Tri azamate F-63 52 and Triazamate
E-64 37 and Triflumuron F-64 52 and Triflumuron
E-65 37 and Bacillus thuringiensis F-65 52 and Bacillus thuringiensis
E-66 37 and Bacillus thuringiensis F-66 52 and Bacillus thu ringiensis
delta-endotoxin delta-endotoxin
E-67 37 and NPV (e.g., Gemstar) F-67 52 and NPV (e.g., Gemstar)
E-68 37 and (a) F-68 52 and (a)
G-l 62 and Abamectin H-l 94 and Abamectin
G-2 62 and Acetamiprid H-2 94 and Acetamiprid
G-3 62 and Amitraz H-3 94 and Amitraz
124
2018202270 29 Mar 2018
Mixture No. Comp. No. and Invertebrate Pest Control Agent
G-4 62 and Avermectin
G-5 62 and Azadirachtin
G-6 62 and Beta-cyfluthrin
G-7 62 and Bifenthrin
G-8 62 and Buprofezin
G-9 62 and Cartap
G-10 62 and Chlorantraniliprole
G-ll 62 and Chlorfenapyr
G-12 62 and Chlorpyrifos
G-13 62 and Clothianidin
G-14 62 and Cyfluthrin
G-15 62 and Cyhalothrin
G-16 62 and Cypermethrin
G-17 62 and Cyromazine
G-18 62 and Deltamethrin
G-19 62 and Dieldrin
G-20 62 and Dinotefuran
G-21 62 and Diofenolan
G-22 62 and Emamectin
G-23 62 and Endosulfan
G-24 62 and Esfenvalerate
G-25 62 and Ethiprole
G-26 62 and Fenothiocarb
G-27 62 and Fenoxycarb
G-28 62 and Fenvalerate
G-29 62 and Fipronil
G-30 62 and Flonicamid
G-31 62 and Flubendiamide
G-32 62 and Flufenoxuron
G-33 62 and Hexaflumuron
G-34 62 and Hydramethylnon
G-35 62 and Imidacloprid
G-36 62 and Indoxacarb
G-37 62 and Lambda-cvhalothrin
G-38 62 and Lufenuron
Mixture No. Comp. No. and Invertebrate Pest Control Agent
H-4 94 and Avermectin
H-5 94 and Azadirachtin
H-6 94 and Beta-cyfluthrin
H-7 94 and Bifenthrin
H-8 94 and Buprofezin
H-9 94 and Cartap
H-10 94 and Chlorantraniliprole
H-ll 94 and Chlorfenapyr
H-12 94 and Chlorpyrifos
H-13 94 and Clothianidin
H-14 94 and Cyfluthrin
H-15 94 and Cyhalothrin
H-16 94 and Cypermethrin
H-17 94 and Cyromazine
H-18 94 and Deltamethrin
H-19 94 and Dieldrin
H-20 94 and Dinotefuran
H-21 94 and Diofenolan
H-22 94 and Emamectin
H-23 94 and Endosulfan
H-24 94 and Esfenvalerate
H-25 94 and Ethiprole
H-26 94 and Fenothiocarb
H-27 94 and Fenoxycarb
H-28 94 and Fenvalerate
H-29 94 and Fipronil
H-30 94 and Flonicamid
H-31 94 and Flubendiamide
H-32 94 and Flufenoxuron
H-33 94 and Hexaflumuron
H-34 94 and Hydramethylnon
H-35 94 and Imidacloprid
H-36 94 and Indoxacarb
H-37 94 and Lambda-cyhalothrin
H-38 94 and Lufenuron
125
2018202270 29 Mar 2018
Mixture No. Comp. No. and Invertebrate Pest Control Agent Mixture No. Comp. No. and Invertebrate Pest Control Agent
G-39 62 and Metaflumizone H-39 94 and Metaflumizone
G-40 62 and Methomyl H-40 94 and Methomyl
G-41 62 and Methoprene H-41 94 and Methoprene
G-42 62 and Methoxyfenozide H-42 94 and Methoxyfenozide
G-43 62 and Nilenpyram H-43 94 and Nitenpyram
G-44 62 and Nithi azine H-44 94 and Nithi azine
G-45 62 and Novaluron H-45 94 and Novaluron
G-46 62 and Oxamyl H-46 94 and Oxamyl
G-47 62 and Pymetrozine H-47 94 and Pymetrozine
G-48 62 and Pyrethrin H-48 94 and Pyrethrin
G-49 62 and Pyridaben H-49 94 and Pyridaben
G-50 62 and Pyridalyl H-50 94 and Pyridalyl
G-51 62 and Pyriproxyfen H-51 94 and Pyriproxyfen
G-52 62 and Ryanodine H-52 94 and Ryanodine
G-53 62 and Spinetoram H-53 94 and Spinetoram
G-54 62 and Spinosad H-54 94 and Spinosad
G-55 62 and Spirodiclofen H-55 94 and Spirodiclofen
G-56 62 and Spiromesifen H-56 94 and Spiromesifen
G-57 62 and Tebufenozide H-57 94 and Tebufenozide
G-58 62 and Thiacloprid H-58 94 and Thiacloprid
G-59 62 and Thiamethoxam H-59 94 and Thiamethoxam
G-60 62 and Thiodicarb H-60 94 and Thiodicarb
G-61 62 and Thiosultap-sodium H-61 94 and Thiosultap-sodium
G-62 62 and Tralomethrin H-62 94 and Tralomethrin
G-63 62 and Tri azamate H-63 94 and Triazamate
G-64 62 and Triflumuron H-64 94 and Triflumuron
G-65 62 and Bacillus thuringiensis H-65 94 and Bacillus thuringiensis
G-66 62 and Bacillus thuringiensis H-66 94 and Bacillus thuringiensis
delta-endotoxin delta-endotoxin
G-67 62 and NPV (e.g., Gemstar) H-67 94 and NPV (e.g., Gemstar)
G-68 62 and (a) H-68 94 and (a)
(a) 3-bromo-l-(3-chloro-2-pyridinyl)-A'-[4-cyano-2-methyl-6-[(methylammo)carbonyl]phenyl]-lf/-pyrazole-5carboxamide
The specific mixtures listed in Table B typically combine a compound of Formula 1 with the other invertebrate pest agent in the ratios specified in Table A.
126
2018202270 29 Mar 2018
Invertebrate pests are controlled in agronomic and nonagronomic applications by applying one or more compounds of this invention, typically in the form of a composition, in a biologically effective amount, to the environment of the pests, including the agronomic and/or nonagronomic locus of infestation, to the area to be protected, or directly on the pests 5 to be controlled.
Thus the present invention comprises a method for controlling an invertebrate pest in agronomic and/or nonagronomic applications, comprising contacting the invertebrate pest or its environment with a biologically effective amount of one or more of the compounds of the invention, or with a composition comprising at least one such compound or a composition 10 comprising at least one such compound and a biologically effective amount of at least one additional biologically active compound or agent. Examples of suitable compositions comprising a compound of the invention and at least one additional biologically active compound or agent include granular compositions wherein the additional active compound is present on the same granule as the compound of the invention or on granules separate from 15 those of the compound of the invention.
To achieve contact with a compound or composition of the invention to protect a field crop from invertebrate pests, the compound or composition is typically applied to the seed of the crop before planting, to the foliage (e.g., leaves, stems, flowers, fruits) of crop plants, or to the soil or other growth medium before or after the crop is planted.
One embodiment of a method of contact is by spraying. Alternatively, a granular composition comprising a compound of the invention can be applied to the plant foliage or the soil. Compounds of this invention can also be effectively delivered through plant uptake by contacting the plant with a composition comprising a compound of this invention applied as a soil drench of a liquid formulation, a granular formulation to the soil, a nursery box 25 treatment or a dip of transplants. Of note is a composition of the present invention in the form of a soil drench liquid formulation. Also of note is a method for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound of the present invention or with a composition comprising a biologically effective amount of a compound of the present invention. Of further note is this method wherein the environment is soil and the composition is applied to the soil as a soil drench formulation. Of further note is that compounds of this invention are also effective by localized application to the locus of infestation. Other methods of contact include application of a compound or a composition of the invention by direct and residual sprays, aerial sprays, gels, seed coatings, microencapsulations, systemic uptake, baits, ear tags, boluses, foggers, fumigants, aerosols, dusts and many others. One embodiment of a method of contact is a dimensionally stable fertilizer granule, stick or tablet comprising a
127
2018202270 29 Mar 2018 compound or composition of the invention. The compounds of this invention can also be impregnated into materials for fabricating invertebrate control devices (e.g., insect netting).
Compounds of this invention are also useful in seed treatments for protecting seeds from invertebrate pests. In the context of the present disclosure and claims, treating a seed 5 means contacting the seed with a biologically effective amount of a compound of this invention, which is typically formulated as a composition of the invention. This seed treatment protects the seed from invertebrate soil pests and generally can also protect roots and other plant parts in contact with the soil of the seedling developing from the germinating seed. The seed treatment may also provide protection of foliage by translocation of the 10 compound of this invention or a second active ingredient within the developing plant. Seed treatments can be applied to all types of seeds, including those from which plants genetically transformed to express specialized traits will germinate. Representative examples include those expressing proteins toxic to invertebrate pests, such as Bacillus thuringiensis toxin or those expressing herbicide resistance such as glyphosate acetyltransferase, which provides 15 resistance to glyphosate.
One method of seed treatment is by spraying or dusting the seed with a compound of the invention (i.e. as a formulated composition) before sowing the seeds. Compositions formulated for seed treatment generally comprise a film former or adhesive agent. Therefore typically a seed coating composition of the present invention comprises a compound of 20 Formula 1, and a film former or adhesive agent. Seed can be coated by spraying a flowable suspension concentrate directly into a tumbling bed of seeds and then drying the seeds. Alternatively, other formulation types such as wetted powders, solutions, suspoemulsions, emulsifiable concentrates and emulsions in water can be sprayed on the seed. This process is particularly useful for applying film coatings on seeds. Various coating machines and 25 processes are available to one skilled in the art. Suitable processes include those listed in P.
Kosters et al., Seed Treatment: Progress and Prospects, 1994 BCPC Mongraph No. 57, and references listed therein.
The treated seed typically comprises a compound of the present invention in an amount from about 0.1 g to 1 kg per 100 kg of seed (i.e. from about 0.0001 to 1% by weight of the 30 seed before treatment). A flowable suspension formulated for seed treatment typically comprises from about 0.5 to about 70% of the active ingredient, from about 0.5 to about 30% of a film-forming adhesive, from about 0.5 to about 20% of a dispersing agent, from 0 to about 5% of a thickener, from 0 to about 5% of a pigment and/or dye, from 0 to about 2% of an antifoaming agent, from 0 to about 1% of a preservative, and from 0 to about 75% of a 35 volatile liquid diluent.
The compounds of this invention can be incorporated into a bait composition that is consumed by an invertebrate pest or used within a device such as a trap, bait station, and the
128
2018202270 29 Mar 2018 like. Such a bait composition can be in the form of granules which comprise (a) active ingredients, namely a compound of Formula 1; (b) one or more food materials; optionally (c) an attractant, and optionally (d) one or more humectants. Of note are granules or bait compositions which comprise between about 0.001-5% active ingredients, about 40-99% 5 food material and/or attractant; and optionally about 0.05-10% humectants, which are effective in controlling soil invertebrate pests at very low application rates, particularly at doses of active ingredient that are lethal by ingestion rather than by direct contact. Some food materials can function both as a food source and an attractant. Food materials include carbohydrates, proteins and lipids. Examples of food materials are vegetable flour, sugar, 10 starches, animal fat, vegetable oil, yeast extracts and milk solids. Examples of attractants are odorants and flavorants, such as fruit or plant extracts, perfume, or other animal or plant component, pheromones or other agents known to attract a target invertebrate pest. Examples of humectants, i.e. moisture retaining agents, are glycols and other polyols, glycerine and sorbitol. Of note is a bait composition (and a method utilizing such a bait 15 composition) used to control at least one invertebrate pest selected from the group consisting of ants, termites and cockroaches. A device for controlling an invertebrate pest can comprise the present bait composition and a housing adapted to receive the bait composition, wherein the housing has at least one opening sized to permit the invertebrate pest to pass through the opening so the invertebrate pest can gain access to the bait composition from a location 20 outside the housing, and wherein the housing is further adapted to be placed in or near a locus of potential or known activity for the invertebrate pest.
The compounds of this invention can be applied without other adjuvants, but most often application will be of a formulation comprising one or more active ingredients with suitable carriers, diluents, and surfactants and possibly in combination with a food depending 25 on the contemplated end use. One method of application involves spraying a water dispersion or refined oil solution of a compound of the present invention. Combinations with spray oils, spray oil concentrations, spreader stickers, adjuvants, other solvents, and synergists such as piperonyl butoxide often enhance compound efficacy. For nonagronomic uses such sprays can be applied from spray containers such as a can, a bottle or other 30 container, either by means of a pump or by releasing it from a pressurized container, e.g., a pressurized aerosol spray can. Such spray compositions can take various forms, for example, sprays, mists, foams, fumes or fog. Such spray compositions thus can further comprise propellants, foaming agents, etc. as the case may be. Of note is a spray composition comprising a compound or a composition of the present invention and a carrier. One 35 embodiment of such a spray composition comprises a compound or a composition of the present invention and a propellant. Representative propellants include, but are not limited to, methane, ethane, propane, butane, isobutane, butene, pentane, isopentane, neopentane,
129
2018202270 29 Mar 2018 pentene, hydrofluorocarbons, chlorofluorocarbons, dimethyl ether, and mixtures of the foregoing. Of note is a spray composition (and a method utilizing such a spray composition dispensed from a spray container) used to control at least one invertebrate pest selected from the group consisting of mosquitoes, black flies, stable flies, deer flies, horse flies, wasps, 5 yellow jackets, hornets, ticks, spiders, ants, gnats, and the like, including individually or in combinations.
Nonagronomic uses refer to invertebrate pest control in the areas other than fields of crop plants. Nonagronomic uses of the present compounds and compositions include control of invertebrate pests in stored grains, beans and other foodstuffs, and in textiles such as 10 clothing and carpets. Nonagronomic uses of the present compounds and compositions also include invertebrate pest control in ornamental plants, forests, in yards, along roadsides and railroad rights of way, and on turf such as lawns, golf courses and pastures. Nonagronomic uses of the present compounds and compositions also include invertebrate pest control in houses and other buildings which may be occupied by humans and/or companion, farm, 15 ranch, zoo or other animals. Nonagronomic uses of the present compounds and compositions also include the control of pests such as termites that can damage wood or other structural materials used in buildings.
Nonagronomic uses of the present compounds and compositions also include protecting human and animal health by controlling invertebrate pests that are parasitic or transmit 20 infectious diseases. The controlling of animal parasites includes controlling external parasites that are parasitic to the surface of the body of the host animal (e.g., shoulders, armpits, abdomen, inner part of the thighs) and internal parasites that are parasitic to the inside of the body of the host animal (e.g., stomach, intestine, lung, veins, under the skin, lymphatic tissue). External parasitic or disease-transmitting pests include, for example, 25 chiggers, ticks, lice, mosquitoes, flies, mites and fleas. Internal parasites include heartworms, hookworms and helminths. Compounds and compositions of the present invention are particularly suitable for combating external parasitic or disease-transmitting pests. Compounds and compositions of the present invention are suitable for systemic and/or nonsystemic control of infestation or infection by parasites on animals.
Compounds and compositions of the present invention are suitable for combating parasites that infest animal subjects including those in the wild, livestock and agricultural working animals. Livestock is the term used to refer (singularly or plurally) to a domesticated animal intentionally reared in an agricultural setting to make produce such as food or fiber, or for its labor; examples of livestock include cattle, sheep, goats, horses, pigs, 35 donkeys, camels, buffalo, rabbits, hens, turkeys, ducks and geese (e.g., raised for meat, milk, butter, eggs, fur, leather, feathers and/or wool). By combating parasites, fatalities and performance reduction (in terms of meat, milk, wool, skins, eggs, etc.) are reduced, so that
130
2018202270 29 Mar 2018 applying a composition comprising a compound of the present invention allows more economic and simple husbandry of animals.
Compounds and compositions of the present invention are especially suitable for combating parasites that infest companion animals and pets (e.g., dogs, cats, pet birds and 5 aquarium fish), research and experimental animals (e.g., hamsters, guinea pigs, rats and mice), as well as animals raised for/in zoos, wild habitats and/or circuses.
In an embodiment of this invention, the animal is preferably a vertebrate, and more preferably a mammal, avian or fish. In a particular embodiment, the animal subject is a mammal (including great apes, such as humans). Other mammalian subjects include 10 primates (e.g., monkeys), bovine (e.g., cattle or dairy cows), porcine (e.g., hogs or pigs), ovine (e.g., goats or sheep), equine (e.g., horses), canine (e.g., dogs), feline (e.g., house cats), camels, deer, donkeys, buffalos, antelopes, rabbits, and rodents (e.g., guinea pigs, squirrels, rats, mice, gerbils, and hamsters). Avians include Anatidae (swans, ducks and geese), Columbidae (e.g., doves and pigeons), Phasianidae (e.g., partridges, grouse and turkeys), 15 Thesienidae (e.g., domestic chickens), Psittacines (e.g., parakeets, macaws, and parrots), game birds, and ratites (e.g., ostriches).
Of particular note is the embodiment wherein the animals to be protected are domesticated dogs (i.e. Canis lupus familiaris) and domestic house cats (i.e. Felis catus).
Birds treated or protected by the inventive compounds can be associated with either 20 commercial or noncommercial aviculture. These include Anatidae, such as swans, geese, and ducks, Columbidae, such as doves and domestic pigeons, Phasianidae, such as partridge, grouse and turkeys, Thesienidae, such as domestic chickens, and Psittacines, such as parakeets, macaws, and parrots raised for the pet or collector market, among others.
For purposes of the present invention, the term fish shall be understood to include 25 without limitation, the Teleosti grouping of fish, i.e., teleosts. Both the Salmoniformes order (which includes the Salmonidae family) and the Perciformes order (which includes the Centrarchidae family) are contained within the Teleosti grouping. Examples of potential fish recipients include the Salmonidae, Serranidae, Sparidae, Cichlidae, and Centrarchidae, among others.
Other animals are also contemplated to benefit from the inventive methods, including marsupials (such as kangaroos), reptiles (such as farmed turtles), and other economically important domestic animals for which the inventive methods are safe and effective in treating or preventing parasite infection or infestation.
Examples of invertebrate parasitic pests controlled by administering a parasiticidally 35 effective amount of a compound of this invention to an animal to be protected include ectoparasites (arthropods, acarines, etc) and endoparasites (helminths, e.g., nematodes, trematodes, cestodes, acanthocephalans, etc.).
131
2018202270 29 Mar 2018
The disease or group of diseases described generally as helminthiasis is due to infection of an animal host with parasitic worms known as helminths. The term ‘helminths’ is meant to include nematodes, trematodes, cestodes and acanthocephalans. Helminthiasis is a prevalent and serious economic problem with domesticated animals such as swine, sheep, 5 horses, cattle, goats, dogs, cats and poultry.
Among the helminths, the group of worms described as nematodes causes widespread and at times serious infection in various species of animals. Nematodes that are contemplated to be treated by the compounds of this invention and by the inventive methods include, without limitation, the following genera: Acanthocheilonema, Aelurostrongylus, 10 Ancylostoma, Angiostrongylus, Ascaridia, Ascaris, Brugia, Bunostomum, Capillaria, Chabertia, Cooperia, Crenosoma, Dictyocaulus, Dioctophyme, Dipetalonema, Diphyllobothrium, Dirofilaria, Dracunculus, Enterobius, Filaroides, Haemonchus, Heterakis, Lagochilascaris, Loa, Mansonella, Muellerius, Necator, Nematodirus, Oesophagostomum, Ostertagia, Oxyuris, Parafilaria, Parascaris, Physaloptera, 15 Protostrongylus, Setaria, Spirocerca, Stephanofilaria, Strongyloides, Strongylus, Thelazia, Toxascaris, Toxocara, Trichinella, Trichonema, Trichostrongylus, Trichuris, Uncinaria and Wuchereria.
Of the above, the most common genera of nematodes infecting the animals referred to above are Haemonchus, Trichostrongylus, Ostertagia, Nematodirus, Cooperia, Ascaris, 20 Bunostomum, Oesophagostomum, Chabertia, Trichuris, Strongylus, Trichonema, Dictyocaulus, Capillaria, Heterakis, Toxocara, Ascaridia, Oxyuris, Ancylostoma, Uncinaria, Toxascaris and Parascaris. Certain of these, such as Nematodirus, Cooperia and Oesophagostomum attack primarily the intestinal tract while others, such as Haemonchus and Ostertagia, are more prevalent in the stomach while others such as Dictyocaulus are found in 25 the lungs. Still other parasites may be located in other tissues such as the heart and blood vessels, subcutaneous and lymphatic tissue and the like.
Trematodes that are contemplated to be treated by the compounds of this invention and by the inventive methods include, without limitation, the following genera: Alaria, Fasciola, Nanophyetus, Opisthorchis, Paragonimus and Schistosoma.
Cestodes that are contemplated to be treated by the compounds of this invention and by the inventive methods include, without limitation, the following genera: Diphyllobothrium, Diplydium, Spirometra and Taenia.
The most common genera of parasites of the gastrointestinal tract of humans are Ancylostoma, Necator, Ascaris, Strongyloides, Trichinella, Capillaria, Trichuris and 35 Enterobius. Other medically important genera of parasites which are found in the blood or other tissues and organs outside the gastrointestinal tract are the filarial worms such as
132
2018202270 29 Mar 2018
Wuchereria, Brugia, Onchocerca and Loa, as well as Dracunculus and extra intestinal stages of the intestinal worms Strongyloides and Trichinella.
Numerous other helminth genera and species are known to the art, and are also contemplated to be treated by the compounds of the invention. These are enumerated in great 5 detail in Textbook of Veterinary Clinical Parasitology, Volume 1, Helminths, E. J. L.
Soulsby, F. A. Davis Co., Philadelphia, Pa.; Helminths, Arthropods and Protozoa, (6th Edition of Monnig’s Veterinary Helminthology and Entomology), E. J. L. Soulsby, The Williams and Wilkins Co., Baltimore, Md.
The compounds of Formula 1 are effective against a number of animal ectoparasites 10 (e.g., arthropod ectoparasites of mammals and birds).
Insect and acarine pests include, e.g., biting insects such as flies and mosquitoes, mites, ticks, lice, fleas, true bugs, parasitic maggots, and the like.
Adult flies include, e.g., the horn fly or Haematobia irritans, the horse fly or Tabanus spp., the stable fly or Stomoxys calcitrans, the black fly or Simulium spp., the deer fly or 15 Chrysops spp., the louse fly or Melophagus ovinus, and the tsetse fly or Glossina spp. Parasitic fly maggots include, e.g., the bot fly {Oestrus ovis and Cuterebra spp.), the blow fly or Phoenicia spp., the screwworm or Cochliomyia hominivorax, the cattle grub or Hypoderma spp., the fleeceworm and the Gastrophilus of horses. Mosquitoes include, for example, Culex spp., Anopheles spp. and Aedes spp.
Mites include Mesostigmata spp. e.g., mesostigmatids such as the chicken mite,
Dermanyssus gallinae; itch or scab mites such as Sarcoptidae spp. for example, Sarcoptes scabiei; mange mites such as Psoroptidae spp. including Chorioptes bovis and Psoroptes ovis; chiggers e.g., Trombiculidae spp. for example the North American chigger, Trombicula alfreddugesi.
Ticks include, e.g., soft-bodied ticks including Argasidae spp. for example Argas spp.
and Ornithodoros spp.; hard-bodied ticks including Ixodidae spp., for example Rhipicephalus sanguineus, Dermacentor variabilis, Dermacentor andersoni, Amblyomma americanum, Ixodes scapularis and other Rhipicephalus spp. (including the former Boophilus genera).
Lice include, e.g., sucking lice, e.g., Menopon spp. and Bovicola spp.; biting lice, e.g., 30 Haematopinus spp., Linognathus spp. and Solenopotes spp.
Fleas include, e.g., Ctenocephalides spp., such as dog flea (Ctenocephalides canis) and cat flea (Ctenocephalides felis); Xenopsylla spp. such as oriental rat flea (Xenopsylla cheopis); and Pulex spp. such as human flea (Pulex irritans).
True bugs include, e.g., Cimicidae or e.g., the common bed bug (Cimex lectularius); 35 Triatominae spp. including triatomid bugs also known as kissing bugs; for example Rhodnius prolixus and Triatoma spp.
133
2018202270 29 Mar 2018
Generally, flies, fleas, lice, mosquitoes, gnats, mites, ticks and helminths cause tremendous losses to the livestock and companion animal sectors. Arthropod parasites also are a nuisance to humans and can vector disease-causing organisms in humans and animals.
Numerous other arthropod pests and ectoparasites are known to the art, and are also contemplated to be treated by the compounds of the invention. These are enumerated in great detail in Medical and Veterinary Entomology, D. S. Kettle, John Wiley & Sons, New York and Toronto; Control of Arthropod Pests of Livestock: A Review of Technology, R. O. Drummand, J. E. George, and S. E. Kunz, CRC Press, Boca Raton, Fla.
It is also contemplated that the compounds and compositions of this invention may be 10 effective against a number of protozoa endoparasites of animals, including those summarized by Table 1, as follows.
Table 1
Exemplary Parasitic Protozoa and Associated Human Diseases
Phylum Subphvlum Representative Genera Human Disease or Disorder
Sarcomastigophora (with flagella, pseudopodia, or both) Mastigophora (Flagella) Leishmania Visceral, cutaneous and mucocutaneous Infection
Trypansoma Sleeping sickness
Chagas' disease
Giardia Diarrhea
Trichomonas Vaginitis
Sarcodina (pseudopodia) Entamoeba Dysentery, liver Abscess
Dientamoeba Colitis
Naegleria and Acanthamoeba Central nervous system and corneal ulcers
Babesia Babesiesis
Apicomplexa (apical complex) Plasmodium Malaria
Isospora Diarrhea
Sarcocystis Diarrhea
Cryptosporidum Diarrhea
134
2018202270 29 Mar 2018
Toxoplasma Toxoplasmosis
Eimeria Chicken coccidiosis
Microspora Enterocytozoon Diarrhea
Ciliaphora (with cilia) Balantidium Dysentery
Unclassified Pneumocystis Pneumonia
In particular, the compounds of this invention are effective against ectoparasites including: flies such as Haematobia (Lyperosia) irritans (horn fly), Stomoxys calcitrans (stable fly), Simulium spp. (blackfly), Glossina spp. (tsetse flies), Hydrotaea irritans (head 5 fly), Musca autumnalis (face fly), Musca domestica (house fly), Morellia simplex (sweat fly), Tabanus spp. (horse fly), Hypoderma bovis, Hypoderma lineatum, Lucilia sericata, Lucilia cuprina (green blowfly), Calliphora spp. (blowfly), Protophormia spp., Oestrus ovis (nasal botfly), Culicoides spp. (midges), Hippobosca equine, Gastrophilus instestinalis, Gastrophilus haemorrhoidalis and Gastrophilus naslis', lice such as Bovicola (Damalinia) 10 bovis, Bovicola equi, Haematopinus asini, Felicola subrostratus, Heterodoxus spiniger, Lignonathus setosus and Trichodectes canis', keds such as Melophagus ovinus; mites such as Psoroptes spp., Sarcoptes scabei, Chorioptes bovis, Demodex equi, Cheyletiella spp., Notoedres cati, Trombicula spp. and Otodectes cyanotis (ear mites); ticks such as Ixodes spp., Boophilus spp., Rhipicephalus spp., Amblyomma spp., Dermacentor spp., Hyalomma 15 spp. and Haemaphysalis spp.; and fleas such as Ctenocephalides fells (cat flea) and Ctenocephalides canis (dog flea).
Biologically active compounds or agents useful in the compositions of the present invention include the organophosphate pesticides. This class of pesticides has very broad activity as insecticides and, in certain instances, anthelmintic activity. Organophosphate 20 pesticides include, e.g., dicrotophos, terbufos, dimethoate, diazinon, disulfoton, trichlorfon, azinphos-methyl, chlorpyrifos, malathion, oxydemeton-methyl, methamidophos, acephate, ethyl parathion, methyl parathion, mevinphos, phorate, carbofenthion and phosalone. It is also contemplated to include combinations of the inventive methods and compounds with carbamate-type pesticides, including, e.g., carbaryl, carbofuran, aldicarb, molinate, 25 methomyl, carbofuran, etc., as well as combinations with the organochlorine-type pesticides. It is further contemplated to include combinations with biological pesticides, including repellents, the pyrethrins (as well as synthetic variations thereof, e.g., allethrin, resmethrin, permethrin, tralomethrin), and nicotine, that is often employed as an acaricide. Other contemplated combinations are with miscellaneous pesticides including: Bacillus 30 thuringiensis, chlorobenzilate, formamidines (e.g., amitraz), copper compounds (e.g., copper
135
2018202270 29 Mar 2018 hydroxide and cupric oxychloride sulfate), cyfluthrin, cypermethrin, dicofol, endosulfan, esfenvalerate, fenvalerate, lambda-cyhalothrin, methoxychlor and sulfur.
Of note are additional biologically active compounds or agents selected from art-known anthelmintics, such as, for example, macrocyclic lactones (e.g., ivermectin, moxidectin, 5 milbemycin), benzimidazoles (e.g., albendazole, triclabendazole), salicylanilides (e.g., closantel, oxyclozanide), substituted phenols (e.g., nitroxynil), pyrimidines (e.g., pyrantel), imidazothiazoles (e.g., levamisole), cyclic depsipeptides (e.g., emodepside), piperazine salts, nitroscanate and praziquantel.
Other biologically active compounds or agents useful in the compositions of the present 10 invention can be selected from Insect Growth Regulators (IGRs) and Juvenile Hormone Analogues (JHAs) such as diflubenzuron, triflumuron, fluazuron, cyromazine, methoprene, etc., thereby providing both initial and sustained control of parasites (at all stages of insect development, including eggs) on the animal subject, as well as within the environment of the animal subject.
Of note are biologically active compounds or agents useful in the compositions of the present invention selected from the avermectin class of antiparasitic compounds. As stated above, the avermectin family of compounds includes very potent antiparasitic agents known to be useful against a broad spectrum of endoparasites and ectoparasites in mammals.
A preferred compound for use within the scope of the present invention is ivermectin.
Ivermectin is a semi-synthetic derivative of avermectin and is generally produced as a mixture of at least 80% 22,23-dihydroavermectin Bja and less than 20% 22,23dihydroavermectin Bp,. Ivermectin is disclosed in U.S. Patent No. 4,199,569.
Abamectin is an avermectin that is disclosed as avermectin B|a/Bp, in U.S. Patent No. 4,310,519. Abamectin contains at least 80% of avermectin Bja and not more than 20% of 25 avermectin Bp,.
Another preferred avermectin is doramectin, also known as 25-cyclohexyl-avermectin Bp The structure and preparation of doramectin is disclosed in U.S. Patent No. 5,089,480.
Another preferred avermectin is moxidectin. Moxidectin, also known as LL-F28249 alpha, is known from U.S. Patent No. 4,916,154.
Another preferred avermectin is selamectin. Selamectin is 25-cyclohexyl-25-de(lmethylpropyl)-5-deoxy-22,23-dihydro-5-(hydroxyimino)-avermectin B j monosaccharide.
Milbemycin, or B41, is a substance which is isolated from the fermentation broth of a milbemycin-producing strain of Streptomyces. The microorganism, the fermentation conditions and the isolation procedures are described in U.S. Patent Nos. 3,950,360 and 35 3,984,564.
Emamectin (4-deoxy-4-epi-methylaminoavermectin Bf), which can be prepared as described in U.S. Patent Nos. 5,288,710 and 5,399,717, is a mixture of two homologues, 4136
2018202270 29 Mar 2018 deoxy-4-epi-methylaminoavermectin Bja and 4”-deoxy-4-epi-methylaminoavermectin Βμ,. Preferably, a salt of emamectin is used. Non-limiting examples of salts of emamectin which may be used in the present invention include the salts described in U.S. Patent No. 5,288,710, e.g., salts derived from benzoic acid, substituted benzoic acid, benzenesulfonic acid, citric 5 acid, phosphoric acid, tartaric acid, maleic acid, and the like. Most preferably, the emamectin salt used in the present invention is emamectin benzoate.
Eprinomectin is chemically known as 4-epi-acetylamino-4-deoxy-avermectin Bp Eprinomectin was specifically developed to be used in all cattle classes and age groups. It was the first avermectin to show broad-spectrum activity against both endo- and ecto10 parasites while also leaving minimal residues in meat and milk. It has the additional advantage of being highly potent when delivered topically.
The composition of the present invention optionally comprises combinations of one or more of the following antiparasite compounds: imidazo[l,2-b]pyridazine compounds as described by U.S. Patent Application Publication No. 2005/0182059 Al; l-(4-mono and di15 halomethylsulphonylphenyl)-2-acylamino-3-fluoropropanol compounds, as described by U.S.
Patent No. 7,361,689; trifluoromethanesulfonanilide oxime ether derivatives, as described by U.S. Patent No. 7,312,248; and n-[(phenyloxy)phenyl]-1,1,1 -trifluoromethanesulfonamide and n-[(phenylsulfanyl)phenyl]-l,l,l-trifluoromethanesulfonamide derivatives, as described by PCT Patent Application Publication WO 2006/135648.
The compositions of the present invention may also further comprise a flukicide.
Suitable flukicides include, for example, triclabendazole, fenbendazole, albendazole, clorsulon and oxibendazole. It will be appreciated that the above combinations may further include combinations of antibiotic, antiparasitic and anti-fluke active compounds.
In addition to the above combinations, it is also contemplated to provide combinations of the inventive methods and compounds, as described herein, with other animal health remedies such as trace elements, anti-inflammatories, anti-infectives, hormones, dermatological preparations, including antiseptics and disinfectants, and immunobiologicals such as vaccines and antisera for the prevention of disease.
For example, such antinfectives include one or more antibiotics that are optionally co30 administered during treatment using the inventive compounds or methods, e.g., in a combined composition and/or in separate dosage forms. Art-known antibiotics suitable for this purpose include, for example, those listed herein below.
One useful antibiotic is florfenicol, also known as D-(threo)-1-(4methylsulfonylphenyl)-2-dichloroacetamido-3-fluoro-l-propanol. Another preferred antibiotic compound is D-(threo)-l-(4-methylsulfonylphenyl)-2-difluoroacetamido-3-fluoro1-propanol. Another useful antibiotic is thiamphenicol. Processes for the manufacture of these antibiotic compounds, and intermediates useful in such processes, are described in U.S.
137
2018202270 29 Mar 2018
Patent Nos. 4,31,857; 4,582,918; 4,973,750; 4,876,352; 5,227,494; 4,743,700; 5,567,844; 5,105,009; 5,382,673; 5,352,832; and 5,663,361. Other florfenicol analogs and/or prodrugs have been disclosed and such analogs also can be used in the compositions and methods of the present invention (see e.g., U.S. Patent Nos. 7,041,670 and 7,153,842).
Another useful antibiotic compound is tilmicosin. Tilmicosin is a macrolide antibiotic that is chemically defined as 20-dihydro-20-deoxy-20-(cA-3,5-dimethylpiperidin-l-yl)desmycosin and is disclosed in U.S. Patent No. 4,820,695.
Another useful antibiotic for use in the present invention is tulathromycin. Tulathromycin may be prepared in accordance with the procedures set forth in U.S. Patent 10 No. 6,825,327.
Further antibiotics for use in the present invention include the cephalosporins such as, for example, ceftiofur, cefquinome, etc. The concentration of the cephalosporin in the formulation of the present invention optionally varies between about 1 mg/mL to 500 mg/mL.
Another useful antibiotic includes the fluoroquinolones, such as, for example, enrofloxacin, danofloxacin, difloxacin, orbifloxacin and marbofloxacin. In the case of enrofloxacin, it may be administered in a concentration of about 100 mg/mL. Danofloxacin may be present in a concentration of about 180 mg/mL.
Other useful macrolide antibiotics include compounds from the class of ketolides, or, 20 more specifically, the azalides. Such compounds are described in, for example, U.S. Patent Nos. 6,514,945; 6,472,371; 6,270,768; 6,437,151; 6,271,255; 6,239,12; 5,958,888; 6,339,063; and 6,054,434.
Other useful antibiotics include the tetracyclines, particularly chlortetracycline and oxytetracycline. Other antibiotics may include β-lactams such as penicillins, e.g., penicillin, 25 ampicillin, amoxicillin, or a combination of amoxicillin with clavulanic acid or other beta lactamase inhibitors.
Nonagronomic applications in the veterinary sector are by conventional means such as by enteral administration in the form of, for example, tablets, capsules, drinks, drenching preparations, granulates, pastes, boli, feed-through procedures, or suppositories; or by 30 parenteral administration, such as by injection (including intramuscular, subcutaneous, intravenous, intraperitoneal) or implants; by nasal administration; by topical administration, for example, in the form of immersion or dipping, spraying, washing, coating with powder, or application to a small area of the animal, and through articles such as neck collars, ear tags, tail bands, limb bands or halters which comprise compounds or compositions of the 35 present invention.
Any of the compounds of the present invention, or a suitable combination of such compounds, may be administered directly to the animal subject and/or indirectly by applying
138
2018202270 29 Mar 2018 it to the local environment in which the animal dwells (such as bedding, enclosures, or the like). Direct administration includes contacting the skin, fur or feathers of a subject animal with the compounds, or by feeding or injecting the compounds into the animal.
The compounds of the present invention may be administered in a controlled release form, e.g., in a subcutaneous slow release formulation, or in the form of a controlled release device affixed to an animal such as a flea collar. Collars for the controlled release of an insecticide agent for long term protection against flea infestation in a companion animal are art-known, and are described, for example, by U.S. Patent Nos. 3,852,416; 4,224,901; 5,555,848; and 5,184,573.
Typically a parasiticidal composition according to the present invention comprises a mixture of a compound of Formula 1 with one or more pharmaceutically or veterinarily acceptable carriers comprising excipients and auxiliaries selected with regard to the intended route of administration (e.g., oral, topical or parenteral administration such as injection) and in accordance with standard practice. In addition, a suitable carrier is selected on the basis of compatibility with the one or more active ingredients in the composition, including such considerations as stability relative to pH and moisture content. Therefore of note is a composition for protecting an animal from an invertebrate parasitic pest comprising a compound of the invention (i.e. in a parasiticidally effective amount) and at least one veterinarily acceptable carrier.
For parenteral administration including intravenous, intramuscular and subcutaneous injection, a compound of the present invention can be formulated in suspension, solution or emulsion in oily or aqueous vehicles, and may contain adjuncts such as suspending, stabilizing and/or dispersing agents. The compounds of the present invention may also be formulated for bolus injection or continuous infusion. Pharmaceutical compositions for injection include aqueous solutions preferably in physiologically compatible buffers containing other excipients or auxiliaries as are known in the art of pharmaceutical formulation. Additionally, suspensions of the active compounds may be prepared in a lipophilic vehicle. Suitable lipophilic vehicles include fatty oils such as sesame oil, synthetic fatty acid esters such as ethyl oleate and triglycerides, or materials such as liposomes.
Aqueous injection suspensions may contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile, pyrogen-free water, before use.
In addition to the formulations described supra, the compounds of the present invention may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example, subcutaneously or intramuscularly) or by
139
2018202270 29 Mar 2018 intramuscular or subcutaneous injection. The compounds of the present invention may be formulated for this route of administration with suitable polymeric or hydrophobic materials (e.g., in an emulsion with a pharmacologically acceptable oil).
For administration by inhalation, the compounds of the present invention can be 5 delivered in the form of an aerosol spray using a pressurized pack or a nebulizer and a suitable propellant, e.g., without limitation, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane or carbon dioxide. In the case of a pressurized aerosol, the dosage unit may be controlled by providing a valve to deliver a metered amount. Capsules and cartridges of, for example, gelatin for use in an inhaler or insufflator may be formulated 10 containing a powder mix of the compound and a suitable powder base such as lactose or starch.
Compounds of the present invention have been discovered to have favorable pharmacokinetic and pharmacodynamic properties providing systemic availability from oral administration and ingestion. Therefore after ingestion by the animal to be protected, 15 parasiticidally effective concentrations of compounds of the invention in the bloodstream protect the treated animal from blood-sucking pests such as fleas, ticks and lice. Therefore of note is a composition for protecting an animal from an invertebrate parasite pest in a form for oral administration (i.e. comprising, in addition to a parasiticidally effective amount of a compound of the invention, one or more earners selected from binders and fillers suitable for 20 oral administration and feed concentrate carriers).
For oral administration in the form of solutions (the most readily available form for absorption), emulsions, suspensions, pastes, gels, capsules, tablets, boluses, powders, granules, rumen-retention and feed/water/lick blocks, a compound of the present invention can be formulated with binders/fillers known in the art to be suitable for oral administration 25 compositions, such as sugars and sugar derivatives (e.g., lactose, sucrose, mannitol, sorbitol), starch (e.g., maize starch, wheat starch, rice starch, potato starch), cellulose and derivatives (e.g., methylcellulose, carboxymethylcellulose, ethylhydroxycellulose), protein derivatives (e.g., zein, gelatin), and synthetic polymers (e.g., polyvinyl alcohol, polyvinylpyrrolidone). If desired, lubricants (e.g., magnesium stearate), disintegrating agents (e.g., cross-linked 30 polyvinylpyrrolidinone, agar, alginic acid) and dyes or pigments can be added. Pastes and gels often also contain adhesives (e.g., acacia, alginic acid, bentonite, cellulose, xanthan gum, colloidal magnesium aluminum silicate) to aid in keeping the composition in contact with the oral cavity and not being easily ejected.
A preferred embodiment is a composition formulated into a chewable and/or edible 35 product (e.g., a chewable treat or edible tablet). Such a product would ideally have a taste, texture and/or aroma favored by the animal to be protected so as to facilitate oral administration of the compound of Formula 1.
140
2018202270 29 Mar 2018
If the parasiticidal compositions are in the form of feed concentrates, the carrier is typically selected from high-performance feed, feed cereals or protein concentrates. Such feed concentrate-containing compositions can, in addition to the parasiticidal active ingredients, comprise additives promoting animal health or growth, improving quality of 5 meat from animals for slaughter or otherwise useful to animal husbandry. These additives can include, for example, vitamins, antibiotics, chemotherapeutics, bacteriostats, fungistats, coccidiostats and hormones.
The compounds of Formula 1 may also be formulated in rectal compositions such as suppositories or retention enemas, using, e.g., conventional suppository bases such as cocoa 10 butter or other glycerides.
Formulations for topical administration are typically in the form of a powder, cream, suspension, spray, emulsion, foam, paste, aerosol, ointment, salve or gel. More typically a topical formulation is a water-soluble solution, which can be in the form of a concentrate that is diluted before use. Parasiticidal compositions suitable for topical administration typically 15 comprise a compound of the present invention and one or more topically suitable carriers. In applications of a parasiticidal composition topically to the exterior of an animal as a line or spot (i.e. “spot-on” treatment), the active ingredient migrates over the surface of the animal to cover most or all of its external surface area. As a result, the treated animal is particularly protected from invertebrate pests that feed off the epidermis of the animal such as ticks, fleas 20 and lice. Therefore formulations for topical localized administration often comprise at least one organic solvent to facilitate transport of the active ingredient over the skin and/or penetration into the epidermis of the animal. Carriers in such formulations include propylene glycol, paraffins, aromatics, esters such as isopropyl myristate, glycol ethers, alcohols such as ethanol, n-propanol, 2-octyl dodecanol or oleyl alcohol; solutions in esters of 25 monocarboxylic acids, such as isopropyl myristate, isopropyl palmitate, lauric acid oxalic ester, oleic acid oleyl ester, oleic acid decyl ester, hexyl laurate, oleyl oleate, decyl oleate, caproic acid esters of saturated fatty alcohols of C^-Cjg chain length; solutions of esters of dicarboxylic acids, such as dibutyl phthalate, diisopropyl isophthalate, adipic acid diisopropyl ester, di-n-butyl adipate or solutions of esters of aliphatic acids, e.g., glycols. It may be 30 advantageous for a crystallization inhibitor or a dispersant known from the pharmaceutical or cosmetic industry also to be present.
A pour-on formulation may also be prepared for control of parasites in an animal of agricultural value. The pour-on formulations of this invention can be in the form of a liquid, powder, emulsion, foam, paste, aerosol, ointment, salve or gel. Typically, the pour-on 35 formulation is liquid. These pour-on formulations can be effectively applied to sheep, cattle, goats, other ruminants, camelids, pigs and horses. The pour-on formulation is typically applied by pouring in one or several lines or in a spot-on the dorsal midline (back) or
141
2018202270 29 Mar 2018 shoulder of an animal. More typically, the formulation is applied by pouring it along the back of the animal, following the spine. The formulation can also be applied to the animal by other conventional methods, including wiping an impregnated material over at least a small area of the animal, or applying it using a commercially available applicator, by means of a syringe, 5 by spraying or by using a spray race. The pour-on formulations include a carrier and can also include one or more additional ingredients. Examples of suitable additional ingredients are stabilizers such as antioxidants, spreading agents, preservatives, adhesion promoters, active solubilisers such as oleic acid, viscosity modifiers, UV blockers or absorbers, and colourants. Surface active agents, including anionic, cationic, non-ionic and ampholytic surface active 10 agents, can also be included in these formulations.
The formulations of this invention typically include an antioxidant, such as BHT (butylated hydroxytoluene). The antioxidant is generally present in amounts of at 0.1-5% (wt/vol). Some of the formulations require a solubilizer, such as oleic acid, to dissolve the active agent, particularly if spinosad is used. Common spreading agents used in these pour-on 15 formulations include isopropyl myristate, isopropyl palmitate, caprylic/capric acid esters of saturated C^-Cjg fatty alcohols, oleic acid, oleyl ester, ethyl oleate, triglycerides, silicone oils and dipropylene glycol methyl ether. The pour-on formulations of this invention are prepared according to known techniques. When the pour-on formulation is a solution, the parasiticide/insecticide is mixed with the earner or vehicle, using heat and stirring if required.
Auxiliary or additional ingredients can be added to the mixture of active agent and carrier, or they can be mixed with the active agent prior to the addition of the carrier. If the pour-on formulation is an emulsion or suspension, the formulations can be similarly prepared using known techniques.
Other delivery systems for relatively hydrophobic pharmaceutical compounds can be 25 employed. Liposomes and emulsions are well-known examples of delivery vehicles or carriers for hydrophobic drugs. In addition, organic solvents such as dimethylsulfoxide can be used, if needed.
For agronomic applications, the rate of application required for effective control (i.e. “biologically effective amount”) will depend on such factors as the species of invertebrate to 30 be controlled, the pest’s life cycle, life stage, its size, location, time of year, host crop or animal, feeding behavior, mating behavior, ambient moisture, temperature, and the like. Under normal circumstances, application rates of about 0.01 to 2 kg of active ingredients per hectare are sufficient to control pests in agronomic ecosystems, but as little as 0.0001 kg/hectare may be sufficient or as much as 8 kg/hectare may be required. For 35 nonagronomic applications, effective use rates will range from about 1.0 to 50 mg/square meter but as little as 0.1 mg/square meter may be sufficient or as much as 150 mg/square
142
2018202270 29 Mar 2018 meter may be required. One skilled in the art can easily determine the biologically effective amount necessary for the desired level of invertebrate pest control.
In general for veterinary use, a compound of Formula 1 is administered in a parasiticidally effective amount to an animal to be protected from invertebrate parasite pests.
A parasiticidally effective amount is the amount of active ingredient needed to achieve an observable effect diminishing the occurrence or activity of the target invertebrate parasite pest. One skilled in the art will appreciate that the parasitically effective dose can vary for the various compounds and compositions of the present invention, the desired parasitical effect and duration, the target invertebrate pest species, the animal to be protected, the mode 10 of application and the like, and the amount needed to achieve a particular result can be determined through simple experimentation.
For oral, subcutaneous or spot-on administration to homeothermic animals, a dose of a compound of the present invention administered at suitable intervals typically ranges from about 0.01 mg/kg to about 100 mg/kg, and preferably from about 0.01 mg/kg to about 30 15 mg/kg of animal body weight. For other topical (e.g., dermal) administration, including dips and sprays, a dose typically contains from about 0.01 ppm to about 150,000 ppm, more typically from about 0.01 ppm to about 100,000 ppm, preferably from about 0.01 ppm to about 5,000 ppm, and most preferably from about 0.01 ppm to about 3,000 ppm, of a compound of the present invention.
Suitable intervals for the administration of compounds of the present invention to homeothermic animals range from about daily to about yearly. Of note are administration intervals ranging from about weekly to about once every 6 months. Of particular note are monthly adminstration intervals (i.e. administering the compound to the animal once every month).
The following Tests demonstrate the control efficacy of compounds of this invention on specific pests. “Control efficacy” represents inhibition of invertebrate pest development (including mortality) that causes significantly reduced feeding. The pest control protection afforded by the compounds is not limited, however, to these species. See Index Tables A-D for compound descriptions. The following abbreviations are used in the Index Tables which 30 follow: Pr is CH2CH2CH3, LPr is CH(CH3)2 and z-Bu is CH2CH(CH3)2. (R) or (S) denotes the absolute chirality of the asymmetric carbon center. The abbreviation “Ex.” stands for “Example” and is followed by a number indicating in which synthesis example the compound is prepared.
143
2018202270 29 Mar 2018
INDEX TABLE A
Figure AU2018202270B2_D0047
Compound r! r2 m.D. (°C)
1 (Ex. 4) Cl H Cl CH2C(O)NHCH2CF3
2 Cl H Cl (5)-CH(z-Pr)C(O)NHCH2CF3 *
3 Cl H Cl (5)-CH(CH3 )C(O)NHCH2CF3
4 Cl H Cl C(CH3)2C(O)NHCH2CF3
5 Cl H Cl CH2C(O)NHCH(CH3)2
6 Cl H Cl CH2C(O)NHCH2CH(CH3 )2
7 Cl H Cl CH2C(O)N(CH3 )CH2CH3
8 Cl H Cl CH2C(O)NHCH2CH3
9 Cl H Cl CH2CH2C(O)NHCH2CF3 *
10 Cl H Cl CH2C(O)NHCH2CH2C1 *
11 Cl H Cl CH2CH2OH *
12 Cl H Cl CH2C(O)NHCH2CH2F *
13 Cl H Cl CH2C(O)NHCH2CF2CF2CF3
14 Cl H Cl CH2C(O)NHCH2CF2CF3 *
15 Cl Cl Cl CH2CH2SCH3
16 Cl H Cl (R)-CH(CH3)C(O)NHCH2CF3 *
17 (Ex. 1) Cl H Cl ch2ch2sch3
18 (Ex. 2) Cl H Cl CH2CH2S(O)CH3
19 Cl Cl Cl CH2C(O)NHCH2CF3
20 (Ex. 3) Cl H Cl CH2CH2S(O)2CH3
21 Br H Br ch2ch2sch3
22 Cl H Cl ch2ch2ch2sch3
23 Br H Br CH2C(O)NHCH2CF3
24 Cl H Cl CH2C(O)NHC(CH3)3
25 Cl H Cl CH2C(O)NHCH(CH2CH3)2
26 Cl H Cl CH(CH3 )CH2CH2SCH3 *
144
2018202270 29 Mar 2018
Compound r! R? R3 m.p. (°C)
27 Cl H Cl C(CH3)2CH2SCH3
28 Cl H Cl ch2ch2och3
29 Cl H Cl (7?)-CH(CH3)CH2SCH3 *
30 Cl H Cl CH(CH3)CH2SCH3
31 Cl H Cl (Z?)-CH(CH3)CH2OH
32 Cl H Cl C(CH3)2CH2OH
33 Cl H Cl (R)-CH(CH3)C(O)NH(i-Pr) *
34 cf3 H H ch2ch2sch3
35 cf3 H H CH2C(O)NHCH2CF3
36 cf3 H H CH2CH(OH)CH3
37 (Ex. 5) cf3 H cf3 CH2C(O)NHCH2CF3
38 cf3 H H CH2C(O)NHCH(CH3)2
39 cf3 H H CH2CH2S(O)2CH3
40 (Ex. 6) cf3 H cf3 CH2C(O)NHCH(CH3)2
41 cf3 H H CH(CH3)CH2OH Λ
42 cf3 H H ch2ch2ch2oh
43 cf3 H H CH2C(CH3)2OH
44 cf3 H H CH2CH2CH(OH)CH3 *
45 cf3 H H CH2C(OH)(CF3)CH3
46 cf3 H H CH(CH2CH3)CH2OH *
47 cf3 H H CH(CH3)CH2OCH3
48 cf3 H H ch2ch2ch2sch2ch3
49 cf3 H cf3 CH2CH2S(O)2CH3
50 cf3 H Br ch2ch2sch3 *
51 cf3 H H ch2ch2sch2ch3 ί-ί
52 cf3 H Br CH2C(O)NHCH2CF3
53 cf3 H Br CH2C(O)NHCH(CH3)2 *
54 cf3 H Br CH2CH2S(O)2CH3
55 cf3 H H CH2CH2SCH(CH3)2 *
56 cf3 H H CH2CH2CH2SCH(CH3)2
57 cf3 H H CH2CH2SC(CH3)3 *
58 cf3 H cf3 ch2ch2sch3 *
59 cf3 H cf3 CH(CH3)CH2SCH3 *
60 cf3 H cf3 (R)-CH(CH3)CH2SCH3
61 cf3 H H CH2C(CH3)2CH2OH
62 cf3 H Cl CH2C(O)NHCH2CF3 106-108
145
2018202270 29 Mar 2018
Compound r! R? R3 m.p. (°C)
63 cf3 H Cl CH2C(O)NHCH(CH3)2
64 cf3 H H CH2CH(OH)CH2CH3
65 cf3 H Cl ch2ch2sch3 *
66 cf3 H Cl CH2CH2S(O)2CH3
67 cf3 H cf3 CH2CH(OH)CH3
68 cf3 H cf3 CH(CH3)CH2OH
69 cf3 H cf3 ch2ch2oh *
70 Br H H CH2C(O)NHCH2CF3
71 ocf3 H H ch2ch2sch3
72 ocf3 H H CH2C(O)NHCH2CF3
73 f H F CH2C(O)NHCH2CF3
74 f H H CH2C(O)NHCH2CF3
75 F H F CH2C(O)NHCH(CH3)2
76 F H H CH2C(O)NHCH(CH3)2
77 F H F ch2ch2sch3 156-160
78 F H H ch2ch2sch3 146-150
79 cf3 H cf3 CH2CH2S(O)CH3
80 F H F CH2CH2S(O)2CH3 171-175
81 F H H CH2CH2S(O)2CH3 152-156
82 Cl H Cl ch2oh *
83 CF3 H cf3 (R)-CH(CH3)C(O)NH(z-Pr)
84 cf3 H cf3 (R)-CH(CH3)C(O)NHPr
85 cf3 H cf3 CH(CH3)C(O)NHCH2CF3 95-96
86 cf3 H cf3 CH(CH3)C(O)NHCH3 145-146
87 cf3 H cf3 CH(CH3)C(O)NH(LPr) 162-163
88 cf3 H cf3 CH(CH3)C(O) nhch2ch3 168-170
89 cf3 H cf3 CH(CH3)C(O)NHPr 135-136
90 cf3 H cf3 CH(CH3)C(O)NH(i-Bu) 83-84
91 cf3 H cf3 CH2C(O)NHCH(CF3)CH3 101-102
92 cf3 H cf3 ch2ch2sch2ch3
93 cf3 H cf3 (R)-CH(CH3)C(O)NH(LBu) *
94 cf3 H cf3 (R)-CH(CH3)C(O)NHCH2CF3 *
95 cf3 H cf3 (R)-CH(CH3)C(O)NHCH3 *
96 cf3 H cf3 (R)-CH(CH3)C(O)NHCH2CH3
97 cf3 H cf3 (R)-CH(CH3)C(O)NHCH2C(CH3)3
98 cf3 H cf3 CH2CH2S(O)CH2CH3
146
2018202270 29 Mar 2018
Compound r! R? R3 m.p. (°C)
99 cf3 H cf3 CH2CH2S(O)2CH2CH3
100 cf3 H cf3 CH2C(O)NHCH2CH3 92-97
101 cf3 H Cf3 CH2C(O)NHCH2CH2CH3 *
102 cf3 H Cf 3 CH2C(O)NH(z-Bu) 94-99
103 cf3 H cf3 CH2C(O)NHCH2C(CH3)3 102-105
104 cf3 H cf3 (5)-CH2C(O)NHCH(CF3)CH3 100-105
105 cf3 H cf3 CH2C(O)NHCH3 *
106 cf3 H Cl (7?)-CH(CH3)C(O)NHCH2CF3
107 cf3 H Cl (7?)-CH(CH3)C(O)NH(z-Pr)
108 cf3 H Cl (fl)-CH(CH3)C(O)NHPr
109 cf3 H Cl (/?)-CH(CH3)C(O)NHCH3
110 cf3 H Cl (Z?)-CH(CH3)C(O)NHCH2CH3
111 cf3 H Cl (R)-CH(CH3)C(O)NH(z-Bu)
112 cf3 H Cl (/?)-CH(CH3)C(O)NHCH2C(CH3)3
113 cf3 H Cl CH2C(O)NHCH(CF3)CH3 101-102
114 cf3 H Cl CH2CH2S(O)CH3 78-79
115 cf3 H Cl CH(CH3)C(O)NHCH(CF3 )CH3 96-97
116 cf3 H Cl CH2C(O)NHCH3 95-96
117 cf3 H Cl CH2C(O)NHPr 101-102
118 cf3 H Cl CH2C(O)NH(/-Bu) 99-100
119 cf3 H Cl CH2C(O)NHCH2CH3 182-183
120 cp3 H Cl CH2C(O)NHCH2C(CH3 )3 101-102
121 cf3 H cf3 CH(CH3)C(O)NHCH(CF3)CH3 93-94
122 Cl H Cl CH2C(O)NHCH(CF3 )CH3 99-100
123 Cl H Cl CH(CH3)C(O)NHCH(CF3)CH3 118-119
124 cf3 H CP3 CH(CH3)C(O)NHCH2C(CH3 )3 96-98
125 cf3 H Cl CH(CH3)C(O)NHCH3 104-105
126 cf3 H Cl CH(CH3)C(O)NHCH2CH3 85-86
127 cf3 H Cl CH(CH3)C(O)NHCH2CF3 90-92
128 cp3 H Cl CH(CH3)C(O)NH(z-Pr) 93-94
129 CP3 H Cl CH(CH3)C(O)NHPr 84-85
130 CP3 H Cl CH(CH3)C(O)NH(z-Bu) 143-144
131 cf3 H Cl CH(CH3)C(O)NHCH2C(CH3 )3 91-92
132 cf3 H F ch2ch2sch3
133 cf3 H F CH2CH2S(O)CH3
134 cf3 H F CH2CH2S(O)2CH3
147
2018202270 29 Mar 2018
Compound r! R? R3 m.p. (°C)
135 cf3 H F CH2C(O)NHCH2CF3
136 ocf3 H Cl CH2C(O)NHCH2CF3
137 cf3 H F (R)-CH(CH3)C(O)NHCH2CH3 *
138 cf3 H F (7?)-CH(CH3)C(O)NHCH3
139 cf3 H F (R)-CH(CH3)C(O)NHCH2CF3 *
140 cf3 H Br (R)-CH(CH3)C(O)NHCH2CF3
141 cf3 H Br (R)-CH(CH3)C(O)NHCH3 *
142 cf3 H Br (R)-CH(CH3)C(O)NHCH2CH3
143 cf3 H Br CH2C(O)NHCH3
144 cf3 H Br CH2C(O)NHCH2CH3
145 cf3 H cf3 CH2C(O)NHCH2CH2C1
See Index Table D for NMR data.
* See synthesis example for NMR data.
Figure AU2018202270B2_D0048
Compound r1 R? R^ Ri m.p, (°C)
173 Cl H Cl (R)-CH(CH3)CH2SCH3 84-86
174 Cl H Cl CH2C(O)NHCH2CF3
* See Index Table D for 1H NMR data.
148
2018202270 29 Mar 2018
Compound
INDEX TABLE C
Figure AU2018202270B2_D0049
Compound r1 Ri rJ. m.p. (°C)
176 Cl H Cl (A)-CH(CH3)CH2SCH3 *
177 Cl H Cl CH2C(O)NHCH2CF3 *
* See Index Table D for NMR data.
INDEX TABLE D ' H NMR Data (CDCI3 solution unless indicated otherwise)3 δ 8.82 (d, 1H), 8.22 (d, 1H), 7.44-7.67 (m, 7H), 6.96 (br t, 1H), 6.82 (d, 1H), 4.67 (t, 1H), 4.23 (d, 1H), 4.07 (m, 1H), 3.83 (m, 2H), 2.26 (m, 1H). 1.09 (d, 3H), 1.08 (d, 3H).
δ 8.81 (d, 1H), 8.22 (d, 1H), 7.41-7.66 (m, 7H), 7.21 (br t, 1H), 6.82 (m, 1H), 4.88 (m, 1H). 4.23 (d, 1H), 3.94 (m, 2H), 3.87 (d, 1H), 1.56 (d, 3H).
δ 8.77 (d, 1H), 8.17 (d, 1H), 7.39-7.67 (m, 7H), 6.63 (br s, 1H), 4.24 (d, 1H), 3.98 (m, 2H), 3.88 (d, 1H), 1.74 (s, 6H).
δ 8.83 (d, 1H), 8.30 (d, 1H), 7.46-7.67 (m, 7H), 7.1 (br s, 1H), 6.20 (br s, 1H), 4.25 (d, 1H), 4.17 (d, 2H). 4.10 (m, 1H), 3.89 (d, 1H), 1.19 (d, 6H).
δ 8.83 (d, 1H), 8.31 (d, 1H), 7.46-7.67 (m, 7H), 7.08 (br s, 1H), 6.35 (br s, 1H), 4.26 (d, 1H), 4.22 (d, 2H), 3.89 (d, 1H), 3.14 (t, 2H), 0.93 (d, 3H).
δ 8.85 (d, 1H), 8.38 (d, 1H), 7.46-7.70 (m, 7H), 7.20 (m, 1H), 4.37 & 4.33 (d, 2H), 4.27 (d, 1H), 3.91 (d, 1H), 3.49 & 3.39 (q, 2H), 3.04 & 3.00 (s, 3H), 1.27 & 1.16 (t, 3H).
δ 8.83 (d, 1H), 8.30 (d, 1H), 7.45-7.67 (m, 7H), 7.06 (br s, 1H), 6.26 (br s, 1H), 4.25 (d. 1H), 4.19 (d, 2H), 3.88 (d, 1H), 3.34 (m, 2H), 1.17 (t, 3H).
δ 8.75 (d, 1H), 8.14 (d, 1H), 7.46-7.59 (m, 5H), 7.37 (d, 1H), 7.32 (d, 1H), 7.02 (brt, 1H), 6.97 (br t, 1H), 4.21 (d, 1H), 3.71-3.88 (m, 5H), 2.64 (t, 2H).
δ 8.83 (d, 1H), 8.32 (d, 1H), 7.46-7.68 (m, 7H), 6.97 (br s, 1H), 6.72 (br s, 1H), 4.26 (d, 1H), 4.24 (d, 2H), 3.89 (d, 1H). 3.65 (m. 4H).
149
2018202270 29 Mar 2018 δ 8.65 (d, 1H), 8.08 (d, IH), 7.55 (s, 2H), 7.44-7.52 (m, 7H), 7.27 (d, IH), 7.19 (d, IH), 6.93 (brt IH), 4.16 (d, IH), 3.81 (d, IH), 3.73 (s, br, 2H), 3.53 (m, 2H), 3.27 (br s IH).
δ 8.82 (d, IH), 8.30 (d, IH), 7.46-7.67 (m, 7H), 6.98 (br s, IH), 6.65 (br s, IH), 4.58 (t, IH), 4.46 (t, IH), 4.25 (d, IH), 4.24 (d, 2H), 3.88 (d, IH), 3.67 (q, 2H), 3.60 (q, 2H).
δ 8.82 (d, IH), 8.24 (d, IH), 7.44-7.67 (m, 7H), 7.15 (m, 2H), 4.29 (d, 2H). 4.23 (d, IH), 4.04 (dt, 2H), 3.87 (d, IH).
δ 8.80 (d, IH), 8.22 (d, IH), 7.41-7.65 (m, 7H), 7.30 (t, IH), 7.23 (t, IH), 4.27 (d, 2H), 4.23 (d, IH), 3.98 (dt, 2H), 3.87 (d, IH).
δ 8.76 (d, IH), 8.26 (d, IH), 7.70 (s, 2H), 7.59 (m, 2H), 7.47 (d, IH), 7.39 (d, IH), 6.60 (br t, IH),
4.23 (d, IH), 3.87 (d, IH), 3.71 (q, 2H), 2.78 (t, 2H), 2.15 (s, 3H).
δ 8.80 (d, IH), 8.19 (d, IH). 7.39-7.66 (m, 7H), 7.31 (t, IH), 6.92 (m, IH), 4.90 (m, IH). 4.23 (d, IH), 3.93 (m, 2H), 3.87 (d, IH), 1.56 (d, 3H).
δ 8.80 (d, IH), 8.25 (d, IH), 7.69 (s, 2H), 7.63 (m, 2H), 7.54 (d, IH), 7.44 (d, IH), 7.19 (brt, IH).
7.14 (br t. IH), 4.28 (d, 2H), 4.24 (d, IH), 3.94 (m, 2H), 3.87 (d, IH).
δ 8.74 (d, IH), 8.22 (d, IH), 7.76 (s, 2H), 7.56 (in, 3H), 7.42 (d, IH), 7.33 (d, IH), 6.69 (br t, IH),
4.21 (d, IH), 3.87 (d, IH), 3.67 (q, 2H), 2.76 (t, 2H), 2.14 (s. 3H).
δ 8.81 (d, IH), 8.26 (d, IH), 7.46-7.67 (m, 7H), 6.32 (br t, IH), 4.25 (d, IH), 3.90 (d, IH), 3.65 (q, 2H), 2.64 (t, 2H), 2.13 (s, 3H). 1.99 (m, 2H).
δ 8.78 (d, IH), 8.20 (d, IH), 7.34-7.76 (m, 9H), 4.25 (d, 2H), 4.21 (d, IH), 3.89 (lit, 2H), 3.85 (d, IH).
δ 8.84 (d, IH), 8.31 (d, IH), 7.46-7.66 (m, 7H), 7.05 (t, IH), 6.08 (d, IH), 4.25 (d, IH), 4.14 (d, 2H), 3.89 (d, IH), 1.38 (s, 9H).
δ 8.83 (d, IH), 8.30 (d, IH), 7.46-7.66 (m, 7H), 7.18 (t, IH), 6.17 (d, IH), 4.25 (d, IH), 4.22 (d, 2H), 3.88 (d, IH), 3.80 (m, IH), 1.57 (m, 2H), 1.40 (m, 2H), 0.90 (t, 6H).
δ 8.80 (d, IH), 8.25 (d, IH), 7.46-7.67 (m, 7H), 6.04 (d, IH), 4.43 (m, IH), 4.24 (d, IH), 3.88 (d, IH), 2.64 (dt, 2H), 2.14 (s, 3H), 1.91 (q, 2H), 1.34 (d, 3H).
δ 8.81 (d, IH), 8.34 (d, IH), 7.46-7.66 (tn, 7H), 6.02 (br s IH), 4.24 (d, IH), 3.88 (d, IH), 3.14 (s, 2H), 2.21 (s, 3H), 1.58 (s, 6H).
δ 8.65 (d, IH), 8.08 (d, IH), 7.55 (s, 2H), 7.445-7.52 (m, 7H), 7.27 (d, IH), 7.19 (d, IH), 6.93 (br t IH), 4.16 (d, IH), 3.81 (d, IH), 3.73 (s, br, 2H), 3.53 (m, 2H), 3.27 (br s IH).
δ 8.79 (d, IH), 8.30 (d, IH), 7.44-7.66 (in, 7H), 6.18 (d, IH), 4.52 (m, IH), 4.25 (d, IH), 3.88 (d, IH), 2.79 (m, 2H), 2.21 (s, 3H), 1.40 (d, 3H).
δ 8.81 (d, IH), 8.32 (d, IH), 7.46-7.67 (m, 7H), 6.13 (d, IH), 4.52 (m, IH), 4.25 (d, IH), 3.88 (d, IH), 2.79 (m, 2H), 2.21 (s, 3H), 1.40 (d, 3H).
δ 8.78 (d, IH), 8.24 (d, IH), 7.40-7.64 (m, 7H), 6.31 (d, IH), 4.37 (m, IH), 4.23 (d, IH), 3.86 (d, IH), 3.83 (m, IH), 3.66 (m, IH), 2.65 (br t IH), 1.32 (d, 3H).
150
2018202270 29 Mar 2018 δ 8.81 (d, IH), 8.23 (d, 1H), 7.46-7.68 (m, 7H), 6.09 (s, IH), 4.31 (t, IH), 4.24 (d, 1H), 3.88 (d, 1H), 3.78 (d, 2H), 1.47 (s, 6H).
δ 8.82 (d, IH), 8.26 (d, IH), 7.43-7.66 (m, 7H), 7.00 (br t, 1H), 6.33 (br d, IH), 4.77 (m, 1H),
4.24 (d, IH), 4.07 (m, IH), 3.88 (d, IH), 1.54 (d, 3H), 1.18 (d, 6H).
δ 8.91 (d, IH), 8.3 (m, IH), 7.9 (m, IH), 7.85 (m, IH), 7.7-7.6 (m, 5H), 7.54 (d, IH). 6.39 (br s, IH), 4.32 (d, IH), 3.95 (d, IH), 3.78 (m, 2H), 2.83 (m, 2H), 2.17 (s, 3H).
δ 8.82 (d, IH), 8.25 (d, IH), 7.93 (s, IH), 7.87 (d, IH), 7.74 (d, IH), 7.59-7.66 (m, 3H), 7.56 (d, IH), 7.47 (d, IH), 7.13 (br t, IH), 7.09 (br t, IH), 4.30 (d, IH), 4.28 (d, 2H), 3.95 (m, 2H), 3.93 (d, IH).
δ 8.90 (d, IH), 8.28 (d, IH), 7.92 (s, IH), 7.88 (m, IH), 7.72 (m, IH), 7.65-7.5 (m, 4H), 7.48 (m, IH), 7.45 (m, IH), 6.46 (br s, IH), 4.32 (d, IH), 4.1 (m, IH), 3.94 (d, IH), 3.77 (m, IH), 3.4 (m, IH), 1.3 (t, 3H).
δ 8.84 (d, IH), 8.32 (d, IH), 7.93 (s, IH), 7.87 (d, IH), 7.73 (d. IH), 7.63 (m, 4H), 7.50 (d, IH), 7.01 (br t. IH), 6.05 (br d, IH), 4.32 (d, IH), 4.17 (d. IH). 3.94 (d, IH), 1.19 (d, IH).
δ (CD3C(O)CD3) 8.90 (d, IH), 8.40 (d, IH), 8.1-8.0 (m, 3H), 7.9-7.8 (m, 3H), 7.7-7.6 (m, 3H),
4.65 (d, IH), 4.45 (d, IH), 3.97 (m, 2H), 3.53 (m, 2H), 3.07 (s, 3H).
δ (CD3C(O)CD3) 8.85 (d, IH), 8.3 (d, IH), 8.06 (s, IH), 8.01 (d, IH), 7.85 (m, IH), 7.8 (m, IH), 7.75 (m, IH), 7.7-7.5 (m, 3H), 4.59 (d, IH). 4.40 (d, IH), 4.25 (m, IH), 4.1 (br s, IH). 3.82 (m, 2H), 1.25 (d, 2H).
δ (CD3C(O)CD3) 8.9 (d, IH), 8.38 (d, IH), 8.1-8.0 (m, 2H), 7.9-7.78 (m, 4H), 7.7-7.6 (m, 3H), 4.63 (d, IH), 4.49 (d, IH), 3.8 (m, IH), 3.7 (m, 2H), 3.6 (m, 2H), 1.9-1.8 (m, 2H).
δ (CD3S(O)CD3) 8.9 (d, IH), 8.5 (m, IH), 8.22 (d, IH), 8.0-7.9 (m, 4H), 7.8 (m, IH), 7.7-7.6 (m 3H), 4.6 (d, IH), 4.38-4.32 (m, 2H), 3.4-3.3 (m, 2H, partially obscured by H2O band), 1.19 (s, 6H).
δ (CD3C(O)CD3) 8.92 (d, IH), 8.38 (d, IH), 8.1-8.0 (m, 2H), 7.9-7.78 (m, 4H), 7.7-7.6 (m, 3H), 4.63 (d, IH), 4. 46 (d, IH), 3.95 (m, IH). 3.70 (m, IH), 3.52 (m, IH), 2.8 (br s, IH). 1.8 (m, IH),
1.66 (m, IH), 1.20 (d, 3H).
δ 8.78 (d, IH), 8.2 (d, IH), 7.92 (s, IH), 7.86 (m, IH), 7.72 (m, IH), 7.68-7.52 (m, 3H), 7.5 (m, IH), 7.4 (m, IH), 6.68 (br s, IH), 4.4 (br s, IH), 4.28 (d, IH), 3.9 (d, IH), 3.75-3.85 (m, 2H), 1.44 (s, 3H).
δ (CD3C(O)CD3) 8.9 (d, IH), 8.38 (d, IH), 8.05 (m, 2H), 7.88 (m, IH), 7.82-7.78 (m, 2H), 7.77.6 (m, 3H), 7.47 (br d, IH), 4.61 (d, IH), 4.43 (d, IH), 4.16 (m, IH), 4.0 (m, IH), 3.7 (m, 2H), 1.78 (m, IH), 1.59 (m, IH), 1.03 (t, 3H).
δ (CD3C(O)CD3) 8.9 (d, IH), 8.38 (d, IH), 8.05 (m, 2H), 7.9-7.8 (m, 3H), 7.7-7.6 (m, 3H), 7.5 (br d, IH), 4.62 (d, IH), 4.5 (d, IH), 4.42 (m. IH), 3.58 (m, IH), 3.46 (m, IH), 3.37 (s, 3H), 1.22 (d, 3H).
151
2018202270 29 Mar 2018 δ (CD3C(O)CD3) 8.91 (m, 1H), 8.35 (m, 1H), 8.04-8.08 (m, 2H), 7.78-7.90 (m, 4H), 7.62-7.71 (m, 3H), 4.64 (d, 1H), 4.48 (d, 1H), 3.60 (m, 2H), 2.68 (m, 2H), 2.57 (m, 2H), 1.97 (m, 2H), 1.23 (t, 3H).
§ 8.81 (d, 1H), 8.30 (d, 1H), 8.14 (s, 2H), 8.00 (s, 1H), 7.63 (m, 2H), 7.58 (d, 1H), 7.46 (d, 1H),
6.93 (br t, 1H), 4.36 (d, 1H), 4.05 (q, 2H), 3.94 (d, 1H), 3.41 (t, 2H), 3.01 (s, 3H).
δ 8.73 (d, 1H), 8.20 (d, 1H), 8.03 (s, 1H). 7.87 (s, 2H), 7.55 (m, 2H), 7.39 (d, 1H), 7.32 (d, 1H),
6.75 (br t, 1H), 4.26 (d, 1H), 3.89 (d, 1H), 3.66 (q, 2H), 2.75 (t, 2H), 2.13 (s, 3H).
δ (CD3C(O)CD3) 8.92 (m, 1H), 8.41 (m, 1H), 8.05-8.07 (m, 2H), 7.63-7.90 (m, 7H), 4.64 (d,
1H), 4.48 (d, 1H), 3.68 (m, 2H), 2.86 (m, 2H), 2.64 (q, 2H), 1.27 (t, 3H).
δ 8.78 (d, 1H), 8.19 (d, 1H), 8.02 (s, 1H), 7.87 (m, 2H), 7.35-7.63 (m, 6H), 4.28 (d, 1H), 4.25 (d, 2H), 3.89 (m, 3H).
δ (CD3C(O)CD3) 8.91 (d, 1H), 8.48 (d, 1H), 8.22 (s, 1H). 8.07 (s, 2H), 7.89 (br t. 1H), 7.86 (d,
1H), 7.73 (d. 1H), 7.66 (m, 2H), 7.17 (br d, 1H), 4.66 (d, 1H), 4.56 (d, 1H), 4.09 (d, 2H), 4.03 (m, 1H), 1.14 (d, 6H).
δ 8.77 (d, 1H), 8.25 (d, 1H), 8.02 (s, 1H), 7.87 (s, 2H), 7.58 (m, 2H), 7.51 (d, 1H), 7.39 (d. 1H),
7.07 (br t, 1H), 4.27 (d, 1H), 3.99 (q, 2H), 3.37 (t, 2H), 2.99 (s, 3H).
δ (CD3C(O)CD3) 8.91 (m, 1H), 8.40 (m, 1H), 8.04-8.08 (m, 2H), 7.62-7.90 (m, 7H), 4.64 (d,
1H), 4.47 (d, 1H), 3.65 (m, 2H), 3.07 (m, 1H), 2.86 (m, 2H), 1.26 (d, 6H).
δ (CD3C(O)CD3) 8.91 (m, 1H), 8.35 (m, 1H), 8.04-8.07 (m, 2H), 7.61-7.91 (m, 7H), 4.63 (d,
1H), 4.47 (d, 1H), 3.59 (m, 2H), 2.97 (m, 1H), 2.69 (m, 2H), 1.95 (m, 2H), 1.24 (d, 6H).
δ (CD3C(O)CD3) 8.92 (m, 1H), 8.41 (m, 1H), 8.04-8.08 (m, 2H), 7.62-7.90 (m, 7H), 4.64 (d.
1H), 4.48 (d, 1H), 3.64 (m, 2H), 2.90 (m, 2H), 1.36 (s, 9H).
δ 8.82 (d, 1H), 8.31 (d, 1H), 8.14 (s, 2H), 8.00 (s, 1H), 7.64 (m, 2H), 7.56 (d, 1H), 7.49 (d, 1H),
6.47 (br t, 1H), 4.37 (d, 1H), 3.95 (d, 1H). 3.75 (q, 2H), 2.81 (t, 2H), 2.16 (s, 3H).
δ 8.82 (d, 1H), 8.33 (d, 1H). 8.14 (s, 2H), 8.00 (s, 1H), 7.65 (m, 2H), 7.58 (d, 1H), 7.50 (d, 1H),
6.11 (brd, 1H), 4.53 (m, 1H), 4.37 (d, 1H), 3.94 (d, 1H), 2.79 (m, 2H), 2.21 (s, 3H), 1.41 (d, 3H).
§ 8.81 (d, 1H), 8.32 (d, 1H), 8.14 (s, 2H), 8.00 (s, 1H), 7.64 (m, 2H), 7.56 (d, 1H). 7.48 (d, 1H),
6.15 (br d, 1H), 4.52 (m, 1H), 4.37 (d, 1H), 3.94 (d, 1H), 2.79 (m, 2H), 2.21 (s, 3H), 1.40 (d, 3H).
δ (CD3C(O)CD3) 8.91 (m, 1H), 8.35 (m, 1H), 8.0-8.08 (m, 3H), 7.80-7.91 (m, 3H), 7.65-7.75 (m, 3H), 4.65 (d, 1H), 4.50 (d, 1H), 4.23 (t, 1H), 3.40 (m, 2H), 3.34 (m, 2H), 0.97 (s, 6H).
δ (CD3C(O)CD3) 8.92 (d, 1H), 8.50 (d, 1H), 8.08 (s, 1H), 8.03 (s, 1H), 7.95 (s, 1H), 7.88 (d, 1H),
7.85 (br t, 1H), 7.75 (d, 1H), 7.67 (m, 2H), 7.15 (br s, 1H). 4.67 (d, 1H), 4.57 (d, 1H), 4.09 (d, 2H), 4.05 (m, 1H), 1.15 (d, 6H).
δ (CD3C(O)CD3) 8.91 (m, 1H), 8.38 (m, 1H), 8.04-8.08 (m, 2H), 7.62-7.90 (m, 7H), 4.64 (d,
1H), 4.48 (d, 1H), 4.04 (m, 1H), 3.76 (m, 1H), 3.62 (m, 1H), 3.42 (m, 1H), 1.60 (m, 1H), 1.51 (m,
1H), 1.01 (t, 3H).
152
2018202270 29 Mar 2018 § 8.80 (d, 1H), 8.29 (d, IH), 7.87 (s, IH), 7.82 (s, 1H), 7.72 (s, 1H), 7.62 (m, 2H), 7.53 (d, IH),
7.45 (d, 1H), 6.51 (br t, 1H), 4.30 (d, IH), 3.91 (d, 1H), 3.74 (q, 2H), 2.80 (t, 2H), 2.16 (s, 3H).
§ 8.80 (d, IH), 8.29 (d, IH), 7.87 (s, IH), 7.81 (s, IH), 7.72 (s, IH), 7.55-7.66 (m, 3H), 7.45 (d,
IH), 6.98 (br t. IH), 4.29 (d, IH), 4.04 (m, 2H), 3.91 (d, IH), 3.41 (dd, 2H), 3.01 (s, 3H).
δ 8.70 (m, IH), 8.12-8.19 (m, 3H), 8.01 (s. IH), 7.23-7.57 (m, 4H), 6.87 (br m, IH), 4.27 (d, IH),
4.05 (m, IH), 3.88 (d, IH), 3.67 (m, IH), 3.5 (brm, IH), 3.32 (m, IH), 1.25 (d, 3H).
δ 8.62 (m, IH), 8.14 (s, 2H), 8.05 (m, IH), 8.02 (s, IH), 7.09-7.49 (m, 4H), 6.85 (br m, IH), 4.24 (d, IH), 4.18 (br m, IH), 3.86 (d, IH), 3.67 (m, IH), 3.42-3.62 (br m, 2H), 1.24 (d, 3H).
δ 8.84 (m, IH), 8.32 (m, IH), 8.14 (s, 2H), 8.00 (s, IH), 7.50-7.70 (m, 4H), 6.47 (br m. IH), 4.38 (d, IH), 3.95 (d, IH), 3.92 (m, 2H), 3.74 (m, 2H).
δ 8.78 (d, IH), 8.24-8.12 (m, IH), 8.18 (s, IH), 7.82 (s, IH), 7.66-7.30 (m, 9H), 4.29-4.18 (m, 3H), 3.95-3.84 (m, 3H).
δ 8.84-8.74 (m, IH), 8.34-8.17 (m, IH), 7.64-7.29 (m, 8H), 6.61 (s, IH), 4.34-3.81 (m, 2H), 3.71 (q, 2H), 2.79 (t, 2H), 2.15 (s, 3H).
δ 8.80 (d, IH), 8.30-8.17 (m, IH), 7.67-7.49 (m, 7H), 7.44 (d, IH), 7.32-7.19 (m, 2H), 4.35-4.15 (m, 3H), 4.01-3.82 (m, 3H).
δ 8.82 (m, IH), 8.33 (m, IH), 8.14 (s, 2H), 8.00 (s, IH), 7.46-7.68 (m, 4H), 7.29 (br m, IH), 4.36 (d, IH), 4.05 (m, 2H), 3.94 (d, IH), 3.21 (m, IH), 2.93 (m, IH), 2.65 (s, 3H).
δ 8.80 (m, IH), 8.27 (m, IH), 7.64-7.52 (m, 5H), 7.45-7.40 (m, 2H), 7.13 (m, IH), 5.01 (m, 2H),
4.20 (m, IH), 3.88 (m, 2H).
δ 8.83 (m, IH), 8.26 (m, IH), 8.14 (s, 2H), 8.00 (s. IH), 7.43-7.66 (m, 4H), 7.04 (t, IH), 6.34 (br d, IH), 4.77 (m, IH), 4.35 (d, IH), 4.06 (m, IH), 3.92 (d, IH), 1.54 (d, 3H), 1.18 (d, 6H).
δ 8.82 (d, IH), 8.24 (d, IH), 8.14 (s, 2H), 8.00 (s, IH), 7.40-7.65 (m, 4H), 7.09 (br t, IH), 6.61 (br
s. IH), 4.82 (m, IH), 4.34 (d, IH), 3.92 (d, IH), 3.25 (m, 2H), 1.55 (m, 5H), 0.92 (t, 3H).
δ 8.77 (m, IH), 8.25 (m, IH), 8.15 (s, 2H), 8.00 (s, IH), 7.36-7.62 (m, 4H), 6.67 (br m, IH), 4.34 (d, IH), 3.93 (d, IH), 3.68 (m. 2H), 2.81 (m, 2H), 2.58 (m, 2H), 1.29 (t, 3H).
§ 8.81 (m, IH), 8.24 (m, IH), 8.13 (s, 2H), 8.01 (s. IH), 7.39-7.65 (m, 4H), 7.10 (m, IH), 6.67 (m, IH), 4.84 (m, IH), 4.34 (d, IH), 3.92 (d, IH), 3.12 (m, 2H), 1.78 (m, IH), 1.56 (d, 3H), 0.91 (d, 6H).
§ 8.80 (m, IH), 8.19 (m, IH), 8.13 (s, 2H), 8.01 (s, IH), 7.30-7.65 (m, 5H), 6.95 (m, IH), 4.90 (m, IH), 4.33 (d, IH), 3.91 (m, 3H), 1.57 (d, 3H).
§ 8.82 (d, IH), 8.25 (d, IH), 8.14 (s, 2H), 8.00 (s. IH), 7.42-7.65 (m, 4H), 7.01 (br s, IH), 6.51 (br s, IH), 4.79 (m, IH), 4.35 (d, IH), 3.92 (d, IH), 2.87& 2.86 (s, 3H), 1.55 (d, 3H).
§ 8.82 (d, IH), 8.26 (d, IH), 8.14 (s, 2H), 8.00 (s, IH), 7.43-7.66 (m. 4H), 7.00 (br s, IH), 6.44 (br s, IH), 4.78 (m, IH). 4.36 (d, IH), 3.93 (d, IH), 3.33 (m, 2H), 1.55 (d, 3H), 1.17 (t, 3H).
153
2018202270 29 Mar 2018 § 8.82 (d, 1H), 8.26 (d, IH), 8.14 (s, 2H), 8.00 (s, 1H), 7.41-7.66 (m, 4H), 7.05 (br t, 1H), 6.61 (br t. 1H), 4.87 (m, IH), 4.35 (m, 1H), 3.92 (d, 1H), 3.16 (m, 1H), 3.04 (m, 1H), 1.57 (d, 3H), 0.92 (s, 9H).
δ (CD3C(O)CD3) 8.89 (m, 1H), 8.40 (s, 2H), 8.29-8.36 (m, 2H), 8.26 (s, 1H), 7.80 (m, 1H), 7.58-
7.67 (m, 3H), 4.72 (d. 1H), 4.62 (d, 1H), 3.85 (m, 2H), 3.13 (m, 1H), 2.91 (m, 1H), 2.81 (m, 1H),
2.67 (m, 1H), 1.21 (t, 3H).
δ (CD3C(O)CD3) 8.92 (m, 1H), 8.42 (m, IH), 8.37 (s, 2H), 8.26 (s, IH), 7.97 (br s, IH), 7.88 (d, 1H), 7.75 (d, 1H), 7.63-7.73 (m, 2H), 4.74 (d, 1H), 4.64 (d, 1H), 3.96 (m, 2H), 3.49 (m, 2H), 3.19 (m, 2H), 1.36 (t, 3H).
106 δ 8.78 (m, IH), 8.18 (m, 1H), 7.87 (s, IH), 7.82 (s. 1H), 7.72 (s. 1H), 7.33-7.65 (m, 5H), 6.97 (m, 1H), 4.91 (m, 1H), 4.28 (d, 1H), 3.86-3.99 (m, 3H), 1.56 (d, 3H).
107 δ 8.82 (d, 1H), 8.27 (d, 1H), 7.87 (s, 1H), 7.82 (s, IH), 7.72 (s, IH), 7.45-7.65 (m, 4H), 6.96 (m. 1H), 6.24 (m, 1H), 4.75 (m, 1H). 4.30 (d, IH), 4.10 (m, IH), 3.91 (d, IH), 1.54 (d, 3H), 1.20 (d, 6H).
108 δ 8.82 (d. IH), 8.26 (d, IH), 7.87 (s, IH), 7.82 (s, IH), 7.72 (s, IH), 7.42-7.66 (m, 4H), 7.02 (br s, IH), 6.52 (br s, IH), 4.81 (m, IH), 4.29 (d, IH), 3.90 (d, IH), 3.25 (m, 2H), 1.56 (m, 5H), 0.92 (t, 3H).
109 δ 8.83 (d, IH), 8.27 (d, IH), 7.87 (s, IH), 7.81 (s, IH), 7.72 (s, IH), 7.45-7.67 (m, 4H). 6.88 (br s, IH), 6.34 (br s, IH), 4.78 (m, IH), 4.30 (d, IH), 3.91 (d, IH), 2.89 & 2.87 (s, 3H), 1.55 (d, 3H).
110 δ 8.82 (d, IH), 8.26 (d, IH), 7.87 (s, IH), 7.82 (s, IH), 7.72 (s, IH), 7.43-7.66 (m, 4H), 6.98 (br s, IH), 6.44 (br s, IH), 4.79 (m, IH), 4.29 (d, IH), 3.90 (d, IH), 3.33 (m, 2H), 1.55 (d, 3H), 1.17 (t, 3H).
H l δ 8.82 (d, IH), 8.24 (d, IH), 7.87 (s, IH), 7.81 (s, IH), 7.72 (s, IH), 7.41-7.65 (m, 4H), 7.08 (brt, IH), 6.65 (br t, IH), 4.84 (m, IH). 4.29 (d, IH), 3.89 (d, IH), 3.12 (m, 2H), 1.55 (d. 3H), 0.91 (d, 6H).
112 δ 8.82 (m, IH), 8.24 (m, IH). 7.87 (s, IH), 7.82 (s, IH), 7.72 (s, IH), 7.40-7.65 (m, 4H), 7.10 (br t, IH), 6.68 (br t, IH), 4.88 (m, IH), 4.28 (d, IH), 3.89 (d, IH), 3.17 (dd, IH), 3.03 (dd, IH), 1.57 (d, 3H), 0.91 (s, 9H).
132 δ (CD3C(O)CD3) 8.90 (m, IH). 8.41 (m, IH), 7.62-7.93 (m, 8H), 4.65 (d, IH), 4.52 (d, IH), 3.69 (m, 2H), 2.81 (m, 2H), 2.17 (s, 3H).
133 δ (CD3C(O)CD3) 8.88 (m, IH), 8.36 (m, IH), 8.26 (s, IH), 7.58-7.88 (m, 7H), 4.63 (d. IH), 4.51 (d, IH), 3.86 (m, 2H), 3.16 (m, IH), 2.94 (m, IH), 2.58 (s, 3H).
134 δ (CD3C(O)CD3) 8.91 (m, IH), 8.42 (m, IH), 7.63-8.0 (m, 8H). 4.66 (d, IH), 4.53 (d, IH), 3.98 (m, 2H), 3.52 (m, 2H), 3.08 (s, 3H).
135 δ (CD3C(O)CD3) 8.91 (m, IH), 8.50 (m, IH), 8.04 (br m, IH), 7.64-8.0 (m, 8H), 4.67 (d, IH),
4.54 (d, IH), 4.25 (m, 2H). 4.02-4.11 (m, 2H).
154
2018202270 29 Mar 2018
136 δ 8.81 (d, IH), 8.25 (d, 1H), 7.71-7.53 (m, 4H), 7.45 (d, 2H), 7.35 (s, 1H), 7.20-7.08 (m, 2H), 4.32-4.22 (m, 3H), 4.00-3.82 (m, 3H).
137 δ 8.78 (m, IH), 8.20 (m, IH), 7.77 (s, 1H), 7.32-7.65 (m. 7H), 6.94 (br m, IH), 4.80 (m, 1H), 4.27 (d, IH), 3.88 (d, IH), 3.28 (m, 2H), 1.50 (t, 3H), 1.12 (m, 3H).
138 δ 8.76 (m, IH), 8.18 (m, IH). 7.72 (s, IH), 7.31-7.64 (m, 7H), 7.04 (br m, IH), 4.81 (m, IH), 4.26 (d, IH), 3.88 (d, IH), 2.79 (m, 3H) 1.49 (m, 3H).
139 δ 8.75 (m, IH), 8.13 (m, IH), 7.71 (s, IH), 7.30-7.64 (m, 7H), 7.11 (br m, IH), 4.88 (m, IH), 4.26 (d, IH), 3.83-3.96 (m, 3H), 1.52 (d, 3H).
140 § 8.79 (m, IH), 8.18 (m, IH), 8.02 (s, IH), 7.87 (m, 2H), 7.36-7.64 (m, 5H), 7.02 (m, IH), 4.90 (m, IH), 4.27 (d, IH), 3.85-3.98 (m, 3H), 1.54 (d, 3H).
141 δ 8.81 (d, IH), 8.23 (d, IH). 8.02 (s, IH), 7.87 (s, 2H), 7.37-7.63 (m, 4H), 7.12 (br t, IH), 6.69 (br s, IH), 4.81 (m, IH), 4.28 (d, IH), 3.88 (d, IH), 2.84 (s. 3H), 1.54 (d, 3H).
142 § 8.78 (d, IH), 8.19 (d, IH), 8.02 (s, IH), 7.87 (s, 2H), 7.32-7.62 (m, 5H), 6.96 (br s, IH), 4.82 (m, IH), 4.26 (d, IH), 3.89 (d, IH), 3.26 (m, 2H), 1.52 (d, 3H), 1.11 (t, 3H).
143 δ (CD3C(O)CD3) 8.90 (m. IH), 8.47 (in, IH), 8.23 (s, IH), 8.08 (s, 2H), 7.59-7.84 (m, 4H), 7.42 (br m. IH), 6.87 (br m, IH), 4.65 (d, IH), 4.55 (d, IH), 4.12 (m, 2H), 2.75 (d, 3H).
144 δ (CD3C(O)CD3) 8.92 (m, IH), 8.51 (m, IH), 8.22 (s, IH), 8.06-8.10 (m, 2H), 7.85-7.93 (m, 2H), 7.63-7.80 (m, 3H), 7.31 (br m, IH), 4.68 (d, IH), 4.57 (d, IH), 4.11 (m, 2H), 3.29(m, 2H). 1.12(1, 3H).
145 δ (CD3C(O)CD3) 8.89 (m, IH), 8.46 (m, IH), 8.40 (s, 2H), 8.25 (s, IH), 8.07 (m, IH), 7.59-7.83 (m, 5H), 4.71 (d, IH), 4.62 (d, IH), 4.17 (m, 2H), 3.65 (m, 2H), 3.58 (m, 2H).
173 δ 8.77 (d, IH), 8.27 (d, IH), 7.56-7.63 (m, 4H), 7.51 (d, IH), 7.46 (dd, IH), 7.41 (d, IH), 6.24 (d, IH), 4.50 (m, IH), 4.23 (d, IH), 3.87 (d, IH), 2.77 (m, 2H), 2.20 (s, 3H), 1.39 (d, 3H).
174 δ 8.82 (d, IH), 8.26 (d, IH), 7.56-7.68 (m, 5H), 7.46 (m, 2H), 7.04 (br s, 2H), 4.28 (d, 2H), 4.24 (d, IH), 3.96 (m, 2H), 3.88 (d, IH).
176 δ 8.82 (d, IH), 8.35 (d, IH), 7.62-7.69 (m, 2H), 7.60 (d, IH), 7.56 (d, 2H), 7.51 (d. IH), 7.46 (dd, IH), 6.06 (d, IH), 4.54 (m. IH), 4.26 (d, IH), 3.89 (d, IH), 2.80 (m, 2H), 2.21 (s, 3H), 1.41 (d, 3H).
177 δ 8.81 (d, IH), 8.24 (d, IH), 7.54-7.67 (m, 5H), 7.46 (in, 2H), 7.19 (br t, IH), 7.13 (br t, IH), 4.28 (d, 2H), 4.24 (d, IH), 3.95 (m, 2H), 3.88 (d, IH).
a hl NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet, (d)-doublet, (t)-triplet, (q)-quartet, (dd)-doublet of doublets, (dt)-doublet of triplets, (br)-broad peaks, (in)-multiplet.
155
2018202270 29 Mar 2018
BIOLOGICAL EXAMPLES OF THE INVENTION
TESTA
For evaluating control of diamondback moth (Plutella xylostella) the test unit consisted of a small open container with a 12-14-day-old radish plant inside. This was pre-infested 5 with about 50 neonate larvae that were dispensed into the test unit via corncob grits using a bazooka inoculator. The larvae moved onto the test plant after being dispensed into the test unit.
Test compounds were formulated using a solution containing 10% acetone, 90% water and 300 ppm X-77™ Spreader Lo-Foam Formula non-ionic surfactant containing 10 alkylarylpolyoxyethylene, free fatty acids, glycols and isopropanol (Loveland Industries, Inc. Greeley, Colorado, USA). The formulated compounds were applied in 1 mL of liquid through a SUJ2 atomizer nozzle with 1/8 JJ custom body (Spraying Systems Co. Wheaton, Illinois, USA) positioned 1.27 cm (0.5 inches) above the top of each test unit. All experimental compounds in these tests were sprayed at 50 ppm, and the test was replicated 15 three times. After spraying of the formulated test compound, each test unit was allowed to dry for 1 h and then a black, screened cap was placed on top. The test units were held for 6 days in a growth chamber at 25 °C and 70% relative humidity. Plant feeding damage was then visually assessed based on foliage consumed, and a pest mortality rating was also counted and calculated for each test unit.
Of the compounds of Formula 1 tested the following provided very good to excellent levels of control efficacy (20% or less feeding damage or 80% or more mortality): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143 and 144.
TEST B
For evaluating control of fall army worm (Spodoptera frugiperda) the test unit consisted of a small open container with a 4-5-day-old corn (maize) plant inside. This was pre-infested (using a core sampler) with 10—15 1-day-old larvae on a piece of insect diet. Test compounds were formulated and sprayed at 50 ppm as described for Test A and replicated three times. After spraying, the test units were maintained in a growth chamber and then the control 35 efficacy was rated for each test unit as described for Test A.
Of the compounds of Formula 1 tested the following provided very good to excellent levels of control efficacy (20% or less feeding damage or 80% or more mortality): 1, 4, 5, 6,
156
2018202270 29 Mar 2018
7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 79, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136,
137, 138, 139, 140, 141, 142, 143 and 144.
TESTC
For evaluating control of potato leafhopper (Empoasca fabae) through contact and/or systemic means, the test unit consisted of a small open container with a 5-6-day-old Soleil 10 bean plant (primary leaves emerged) inside. White sand was added to the top of the soil, and one of the primary leaves was excised prior to application. Test compounds were formulated and sprayed as described for Test A. All experimental compounds in these tests were sprayed at 250 or 50 ppm as noted, and the test was replicated three times. After spraying, the test units were allowed to dry for 1 h before they were post-infested with 5 potato 15 leafhoppers (18- to 21-day-old adults). A black, screened cap was placed on the top of the cylinder. The test units were held for 6 days in a growth chamber at 19—21 °C and 50-70% relative humidity. The control efficacy of each test compound was then visually assessed by insect mortality.
Of the compounds of Formula 1 tested at 250 ppm, the following provided very good to 20 excellent levels of control efficacy (80% or more mortality): 3, 4, 5, 7, 8, 10, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 45, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 71, 72, 79, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
131, 132, 133, 134 and 135.
Of the compounds of Formula 1 tested at 50 ppm, the following provided very good to excellent levels of control efficacy (80% or more mortality): 3, 4, 5, 7, 8, 10, 12, 13, 14,15,
16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 45, 47, 48, 49, 50,51,
52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 65, 66, 71, 72, 79, 83, 84, 85, 86, 87, 88, 89, 90, 91,92,
93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143 and 144.
TESTD
For evaluating control of corn planthopper (Peregrinus maidis) through contact and/or 35 systemic means, the test unit consisted of a small open container with a 3-4-day-old maize plant (spike) inside. White sand was added to the top of the soil prior to application. Test compounds were formulated and sprayed at 250 ppm and replicated three times as described
157
2018202270 29 Mar 2018 for Test A. After spraying, the test units were allowed to dry for 1 h before they were postinfested with 10-20 corn planthoppers (18- to 20-day-old nymphs) by sprinkling them onto the sand with a salt shaker. A black, screened cap was placed on the top of the cylinder. The test units were held for 6 days in a growth chamber at 19-21 °C and 50-70% relative 5 humidity. Each test unit was then visually assessed for insect mortality.
Of the compounds tested, the following resulted in at least 80% mortality: 4, 16, 21, 33, 50, 63, 65, 67, 68, 88, 95, 96, 100, 105, 106, 107, 108, 109, 110, 119, 125, 126, 129, 132, 137, 138, 139, 140, 141 and 142.
TESTE
For evaluating control of the western flower thrips (Frankliniella occidentalis) through contact and/or systemic means, the test unit consisted of a small open container with a 5-7day-old Soleil Bean plant inside. Test compounds were formulated and sprayed as described for Test A. All experimental compounds in these tests were sprayed at 250 or 50 ppm as noted, and the test was replicated three times. After spraying, the test units were allowed to dry for 1 h, 22-27 adult thrips were added to each unit and then a black, screened cap was placed on top. The test units were held for 6 days at 25 °C and 45-55% relative humidity. A mortality rating was assessed along with a plant damage rating for each test unit.
Of the compounds of Formula 1 tested at 250 ppm, the following provided very good to excellent levels of control efficacy (20% or less feeding damage or 80% or more mortality): 20 1, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 65, 66, 67, 73, 77, 79, 80, 83, 84, 85, 86, 87, 88, 92, 94, 95, 96, 106, 107, 108, 109, 110, 111, 112, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134 and 135.
Of the compounds of Formula 1 tested at 50 ppm, the following provided very good to excellent levels of control efficacy (20% or less feeding damage or 80% or more mortality): 1, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 44, 47, 49, 50, 51, 52, 53, 54, 58, 59, 60, 62, 63, 65, 66, 67, 79, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 30 107, 108, 109, 110, 111, 117, 119, 120, 122, 123, 125, 126, 127, 128, 129, 130, 132, 133,
134, 136, 137, 138, 139, 140, 141, 142, 143 and 144.
TESTF
For evaluating control of green peach aphid (Myzus persicae) through contact and/or systemic means, the test unit consisted of a small open container with a 12-15-day-old radish 35 plant inside. This was pre-infested by placing on a leaf of the test plant 30-40 aphids on a piece of leaf excised from a culture plant (cut-leaf method). The larvae moved onto the test
158
2018202270 29 Mar 2018 plant as the leaf piece desiccated. After pre-infestation, the soil of the test unit was covered with a layer of sand.
Test compounds were formulated and sprayed as described for Test A. All experimental compounds in these tests were sprayed at 250 ppm, and the test was replicated 5 three times. After spraying of the formulated test compound, each test unit was allowed to dry for 1 h and then a black, screened cap was placed on top. The test units were held for 6 days in a growth chamber at 19-21 °C and 50-70% relative humidity. Each test unit was then visually assessed for insect mortality.
Of the compounds tested, the following resulted in at least 80% mortality: 1, 4, 5, 6, 7, 10 8, 10, 12, 15, 16, 19, 21, 22, 23, 27, 30, 33, 34, 35, 37, 38, 40, 47, 50, 52, 53, 54, 58, 60, 62,
63, 65, 66, 67, 68, 79, 83, 86, 88, 89, 91, 92, 94, 95, 96, 98, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 113, 114, 116, 117, 118, 119, 122, 125, 126, 127, 128, 129, 130, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143 and 144.
TESTG
For evaluating control of cotton melon aphid (Aphis gossypii) through contact and/or systemic means, the test unit consisted of a small open container with a 6-7-day-old cotton plant inside. This was pre-infested with 30-40 insects on a piece of leaf according to the cutleaf method described for Test F, and the soil of the test unit was covered with a layer of sand.
Test compounds were formulated and sprayed at 250 ppm and the test was replicated three times. After spraying, the test units were maintained in a growth chamber and then visually rated assessed for insect mortality
Of the compounds tested, the following resulted in at least 80% mortality: 1, 8, 10, 19, 21, 23, 30, 33, 34, 38, 40, 47, 50, 52, 53, 55, 58, 60, 63, 65, 67, 68, 69, 79, 84, 88, 95, 96, 25 100, 101, 106, 107, 108, 109, 110, 117, 119, 125, 126, 132, 133, 135, 137, 138, 139, 141,
142, 143 and 144.
TESTH
For evaluating control of silverleaf whitefly (Bemisia tabaci), the test unit consisted of a 14—21-day-old cotton plant grown in Redi-earth® media (Scotts Co.) with at least two true 30 leaves infested with 2nd and 3rd instar nymphs on the underside of the leaves.
Test compounds were formulated in no more than 2 mF of acetone and then diluted with water to 25-30 mF. The formulated compounds were applied using a flat fan airassisted nozzle (Spraying Systems 122440) at 10 psi (69 kPa). Plants were sprayed to run-off on a turntable sprayer (patent publication EP-110617-Al). All experimental compounds in 35 this screen were sprayed at 250 ppm and replicated three times. After spraying of the test compound, the test units were held for 6 days in a growth chamber at 50-60% relative
159
2018202270 29 Mar 2018 humidity and 28 °C daytime and 24 °C nighttime temperature. Then the leaves were removed and then dead and live nymphs were counted to calculate percent mortality.
Of the compounds tested, the following resulted in at least 80% mortality: 1, 7, 8, 16, 33, 35, 40, 47, 52, 53, 62, 63, 65, 67, 68, 70, 84, 85, 86, 88, 89, 94, 95, 96, 100, 101, 106, 5 107, 108, 109, 110, 117, 119, 122, 125, 126, 127, 129, 135, 136, 137, 139, 140, 141 and 142.
TESTI
For evaluating control of the cat flea (Ctenocephalides fells), a CD-I® mouse (about 30 g, male, obtained from Charles River Laboratories, Wilmington, MA) was orally dosed with a test compound in an amount of 10 mg/kg solubilized in propylene glycol/glycerol formal 10 (60:40). Two hours after oral administration of the test compound, approximately 8 to 16 adult fleas were applied to each mouse. The fleas were then evaluated for mortality 48 hours after flea application to the mouse.
Of the compounds tested, the following resulted in at least 50% mortality: 1, 4, 5, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 34, 35, 36, 37, 38, 39, 40, 41,
42, 44, 49, 50, 52, 53, 54, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 75, 79, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
110, 111, 113, 114, 115, 116, 117, 118, 125, 126, 127, 128, 129, 132, 133, 135, 136, 137,
138, 139, 140, 141, 142, 165, 168, 170, 172, 173, 174 and 177.
TEST J
For evaluating control of the cat flea (Ctenocephalides felis), a CD-I® mouse (about 30 g, male, obtained from Charles River Laboratories, Wilmington, MA) was orally dosed with a test compound in an amount of 10 mg/kg solubilized in propylene glycol/glycerol formal (60:40). Twenty-four hours after oral administration of the test compound, approximately 8 to 16 adult fleas were applied to each mouse. The fleas were then evaluated for mortality 48 25 hours after flea application to the mouse.
Of the compounds tested, the following resulted in at least 50% mortality: 1, 4, 5, 11, 12, 15, 16, 17, 18, 19, 20, 21, 23, 27, 29, 30, 34, 35, 37, 40, 49, 50, 52, 53, 54, 58, 60, 62, 63, 65, 66, 68, 70, 79, 83, 84, 85, 86, 87, 88, 89, 91, 92, 95, 96, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114, 116, 125, 126, 127, 128, 132, 133, 135, 136, 137, 30 138, 140, 141, 142, 173, 174 and 177
TESTK
For evaluating control of the cat flea (Ctenocephalides felis), a CD-I® mouse (about 30 g, male, obtained from Charles River Laboratories, Wilmington, MA) was subcutaneously dosed with a test compound in an amount of 10 mg/kg solubilized in propylene 35 glycol/glycerol formal (60:40). Two hours after administration of the test compound, approximately 8 to 16 adult fleas were applied to each mouse. The fleas were then evaluated for mortality 48 hours after flea application to the mouse.
160
2018202270 29 Mar 2018
Of the compounds tested, the following resulted in at least 50% mortality: 1, 4 and 11.
TESTL
For evaluating control of the cat flea (Ctenocephalides felis), a test compound was solubilized in acetone/water (75:25) to a final test concentration of 500 ppm. Then 20 pL of 5 the 500 ppm solution was applied to filter paper in the bottom of a tube. The tube was allowed to dry for 3 h, after which time approximately 10 adult fleas were added to the tube and the tube was capped. The fleas were evaluated for mortality 48 hours later.
Of the compounds tested, the following resulted in at least 50% mortality: 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 28, 34, 35, 37, 40, 52, 58, 62 and 66.
TEST M
For evaluating control of the relapsing fever tick (Ornithodoros turicata), a test compound was solubilized in propylene glycol/glycerol formal (60:40) and then diluted in bovine blood to a final test concentration of 30 ppm. The treated blood was placed in a tube, and the top of the tube was covered with a membrane. Approximately 5 Ornithodoros 15 turicata nymphs were placed on the membrane and allowed to feed on the treated blood until fully engorged. The ticks were then evaluated for mortality 48 hours later.
Of the compounds tested, the following resulted in at least 50% mortality: 1, 5, 15, 16 and 20.
TESTN
For evaluating control of the cat flea (Ctenocephalides felis), a six-month-old or older beagle was infested with 100 adult fleas. One day later, the beagle was orally dosed with a test compound in an amount of 2.5 mg/kg solubilized in propylene glycol/glycerol formal (60:40). The dog was infested again with 100 adult fleas 6, 13, 20 and 27 days after the oral administration of the test compound. The dog was combed one day after the oral 25 administration of the test compound, and again one day after each of the subsequent infestations (i.e. 7, 14, 21 and 28 days after oral administration of the test compound) to remove the fleas. The collected fleas were counted and evaluated for mortality.
Of the compounds tested, the following resulted in at least 90% mortality through 29 days: 1, 37, 40, 49, 52, 58, 62, 66 and 94.
TESTO
For evaluating control of the American dog tick (Dermacentor variabilis), a six-monthold or older beagle was orally dosed with a test compound in an amount of 2.5 mg/kg solubilized in propylene glycol/glycerol formal (60:40). The dog was then infested with 50 adult American dog ticks 2, 9, 16, 23 and 30 days after the oral adminstration of the test 35 compound. The dog was combed 2 days after each infestation (i.e. 4, 11, 18, 25 and 32 days after oral adminstration of the test compound) to remove the ticks. The collected ticks were counted and evaluated for mortality.
161
2018202270 29 Mar 2018
Of the compounds tested, the following resulted in at least 90% mortality through 32 days: 1, 37 and 62.

Claims (20)

1. A compound of Formula la,
5 wherein
R1 is halogen, Ci~C2 haloalkyl or Cj-C2 haloalkoxy;
R2 is H, halogen or cyano;
R3 is H, halogen or CF3;
R4 is H, C2-C7 alkylcarbonyl or C2-C7 alkoxycarbonyl; and
10 R5 is Cj-Cg alkyl or Cj-Cg haloalkyl, each substituted with one substituent independently selected from hydroxy, Cj-Cg alkoxy, Cj-Cg alkylthio, Cj-Cg alkylsulfinyl, Cj-Cg alkylsulfonyl, C2-C7 alkylaminocarbonyl, C3-C9 dialkylaminocarbonyl, C2-C7 haloalkylaminocarbonyl and C3-C9 halodialkylaminocarbonyl.
15
2. A compound of Claim 1 wherein
R4 is H; and
R5 is C^-Cg alkyl substituted with C2-C7 haloalkylaminocarbonyl.
3. A compound of Claim 2 wherein
R1 is Cl, Br or CF3;
20 R2 is H, F or Cl; and
R3 is H, Cl, Br or CF3.
4. A compound of Claim 3 wherein
R1 is CF3.
5. A compound of Claim 4 wherein
25 R3 is Cl, Br or CF3.
6. A compound having the formula:
163
2018202270 12 Mar 2019 or said compounds wherein the stereochemical configuration at the carbon marked with * is
S, wherein:
R4 is H, R1 is Cl, R2 is H, R3 is Cl and R5 is selected from one of the groups in following
10 table:
R5 R5 R5 CH2CH2SO2Me CH2C(O)NH(Me) CH2CH2SO2Et CH2C(O)NH(Et) CH2CH2OEt CH2CH2SO2(«-Pr) CH2C(O)NH(«-Pr) CH2CH2O(z-Pr) CH2CH2SO2(z-Pr) CH2C(O)NH(z-Pr) CH2CH(Me)OH CH2CH2SO2(z-Bu) CH2C(O)NH(h-Bu) CH2CH(CF3)OH CH2CH2SO2(7-Bu) CH2C(O)NH(z-Bu) CH2C(Me)2OH CH2CH(Me)SO2Me CH2C(O)NH(s-Bu) CH2C(CF3)(Me)OH CH2CH(CF3)SO2Me CH2C(O)NH(Z-Bu) CH(Me)CH2OH CH2C(Me)2SO2Me CH2C(O)NHCH2(z-Bu) C(Me)2CH2OH CH(Me)CH2SO2Me CH2C(O)NMe2 CH(Et)CH2OH C(Me)2CH2SO2Me CH2C(O)NMe(Et) CH(z-Pr)CH2OH CH(Et)CH2SO2Me CH2C(O)NEt2 CH(z-Bu)CH2OH CH(z-Pr)CH2SO2Me CH2C(O)NMe(«-Pr) CH(Me)CH(CF3)OH CH(z-Bu)CH2SO2Me CH2C(O)NMe(z-Pr) ch2ch2ch2oh CH2CH2CH2SO2Me CH2C(O)NMe(s-Bu) CH2CH2CH2OMe CH2CH2CH2SO2Et CH(Me)C(O)NH(Me) CH2CH2CH2OEt CH2CH2CH2SO2(z-Bu) CH(Me)C(O)NH(Et) CH2CH2CH(CF3)OH CH2CH2CH2SO2(7-Bu) CH(Me)C(O)NH(«-Pr) CH(Me)CH2CH2OH CH2CH2CH(Me)SO2Me CH(Me)C(O)NH(z-Pr) C(Me)2CH2CH2OH CH2CH2CH(CF3)SO2Me CH(Me)C(O)NH(«-Bu) CH(z-Pr)CH2CH2OH CH(Me)CH2CH2SO2Me CH(Me)C(O)NH(z-Bu) CH2CH(Me)CH2OH CH(Et)CH2CH2SO2Me CH(Me)C(O)NH(s-Bu) CH2C(Me)2CH2OH CH2CH(Me)CH2SO2Me CH(Me)C(O)NH(Z-Bu) CH2CH2CH(Me)OH CH2C(Me)2CH2SO2Me CH(Me)(O)NHCH2(Z-Bu) CH2CH2C(Me)2OH CH2C(O)NHCH2CH2F C(Me)2C(O)NH(Me) CH2CH2SMe CH2C(O)NHCH2CH2C1 C(Me)2C(O)NH(Et) CH2CH2SEt CH2C(O)NHCH2CHF2 C(Me)2C(O)NH(«-Pr)
164
2018202270 12 Mar 2019
CH2CH2S(/i-Pr)
CH2CH2S(i-Pr)
CH2CH2S(z-Bu)
CH2CH2S(/-Bu)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
C(Me)2CH2SMe
CH(Et)CH2SMe
CH(z-Pr)CH2SMe
CH(z-Bu)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH2S(z-Bu)
CH2CH2CH2S(z-Bu)
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH(Et)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(/i-Pr)
CH2CH2S(O)(z-Pr)
CH2CH2S(O)(z-Bu)
CH2CH2S(O)(z-Bu)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
C(Me)2CH2S(O)Me
CH(Et)CH2S(O)Me
CH(z-Pr)CH2S(O)Me
CH(z-Bu)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2C(O)NHCH2CH(Me)F
CH2C(O)NHCH2C(Me)2F
CH2C(O)NH(CH2)2CH2F
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH2CHFCF3
CH2C(O)NHCH2CF2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH(CF3)2
CH2C(O)NHC(Me)2CF3
CH2C(O)NHCH2CH(Me)CF3
CH2C(O)NH(CH2)2CF2CF3
CH2C(O)NHCH2(CF2)2CF3
CH2C(O)NHCH(z-Pr)CF3
CH(Me)C(O)NHCH2CH2F
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH(Me)F
CH(Me)C(O)NHCH2C(Me)2F
CH(Me)C(O)NH(CH2)2CH2F
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH2CHFCF3
CH(Me)C(O)NHCH2CF2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH(CF3)2
CH(Me)C(O)NHC(Me)2CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NH(CH2)2CF2CF3
CH(Me)C(O)NHCH2(CF2)2CF3
CH(Me)C(O)NHCH(z-Pr)CF3
C(Me)2C(O)NHCH2CH2F
C(Me)2C(O)NHCH2CH2Cl
C(Me)2C(O)NHCH2CHF2
C(Me)2C(O)NHCH2CF3
C(Me)2C(O)NHCH2CH(Me)F
C(Me)2C(O)NHCH2C(Me)2F
C(Me)2C(O)NH(z-Pr)
C(Me)2C(O)NH(«-Bu)
C(Me)2C(O)NH(z-Bu)
C(Me)2C(O)NH(s-Bu)
C(Me)2C(O)NH(z-Bu)
C(Me)2C(O)NHCH2(z-Bu)
CH2C(O)N(Me)CH2CH2F
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CH2F
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH2CF2CF3
CH2C(O)N(Me)CH(Me)CF3
CH2C(O)N(Me)CH(CF3)2
CH2C(O)N(Me)C(Me)2CF3
CH(Me)C(O)N(Me)CH2CH2F
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)(CH2)2CH2F
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH2CF2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH(CF3)2
CH(Me)C(O)N(Me)C(Me)2CF3
C(Me)2C(O)N(Me)CH2CH2F
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CHF2
C(Me)2C(O)N(Me)CH2CF3
C(Me)2C(O)N(Me)CH2CH2CH2F
C(Me)2C(O)N(Me)CH2CH2CF3
C(Me)2C(O)N(Me)CH2CF2CF3
C(Me)2C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH(CF3)2
C(Me)2C(O)N(Me)C(Me)2CF3
C(Me)2C(O)NHCH(Me)CF3
165
2018202270 12 Mar 2019
CH2CH2CH2S(O)Et
CH2CH2CH2S(O)(z-Bu)
CH2CH2CH2S(O)(z-Bu)
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH(Et)CH2CH2S(O)Me
C(Me)2C(O)NH(CH2)2CH2F
C(Me)2C(O)NHCH2CH2CF3
C(Me)2C(O)NHCH2CHFCF3
C(Me)2C(O)NHCH2CF2CF3
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
C(Me)2C(O)NHCH(CF3)2
C(Me)2C(O)NHC(Me)2CF3
C(Me)2C(O)NHCH2CH(Me)CF3
C(Me)2C(O)NH(CH2)2CF2CF3
C(Me)2C(O)NHCH2(CF2)2CF3
C(Me)2C(O)NHCH(z-Pr)CF3 or wherein:
R4 is H, R1 is Cl, R2 is F, R3 is Cl, or
R4 is H, R1 is Br, R2 is H and R3 is Br, or
5 R4 is H, R1 is CF3, R2 is H and R3 is F, or
R4 is H, R1 is CF3, R2 is H and R3 is CF3; and
R5 is selected from one of the groups in following table:
R5 R5 R5 ch2ch2oh CH2CH2SO2Me CH2C(O)NH(Me) CH2CH2OMe CH2CH2SO2Et CH2C(O)NH(Et) CH2CH2OEt CH2CH2SO2(«-Pr) CH2C(O)NH(n-Pr) CH2CH2O(z-Pr) CH2CH2SO2(/-Pr) CH2C(O)NH(z-Pr) CH2CH(Me)OH CH2CH2SO2(z-Bu) CH2C(O)NH(«-Bu) CH2CH(CF3)OH CH2CH2SO2(z-Bu) CH2C(O)NH(z-Bu) CH2C(Me)2OH CH2CH(Me)SO2Me CH2C(O)NH(s-Bu) CH2C(CF3)(Me)OH CH2CH(CF3)SO2Me CH2C(O)NH(Z-Bu) CH(Me)CH2OH CH2C(Me)2SO2Me CH2C(O)NHCH2(Z-Bu) C(Me)2CH2OH CH(Me)CH2SO2Me CH2C(O)NMe2 CH(Et)CH2OH C(Me)2CH2SO2Me CH2C(O)NMe(Et) CH(z-Pr)CH2OH CH(Et)CH2SO2Me CH2C(O)NEt2 CH(z-Bu)CH2OH CH(z-Pr)CH2SO2Me CH2C(O)NMe(n-Pr) CH(Me)CH(CF3)OH CH(z-Bu)CH2SO2Me CH2C(O)NMe(z-Pr) ch2ch2ch2oh CH2CH2CH2SO2Me CH2C(O)NMe(s-Bu) CH2CH2CH2OMe CH2CH2CH2SO2Et CH(Me)C(O)NH(Me) CH2CH2CH2OEt CH2CH2CH2SO2(z-Bu) CH(Me)C(O)NH(Et) CH2CH2CH(CF3)OH CH2CH2CH2SO2(z-Bu) CH(Me)C(O)NH(n-Pr) CH(Me)CH2CH2OH CH2CH2CH(Me)SO2Me CH(Me)C(O)NH(z-Pr) C(Me)2CH2CH2OH CH2CH2CH(CF3)SO2Me CH(Me)C(O)NH(n-Bu) CH(z-Pr)CH2CH2OH CH(Me)CH2CH2SO2Me CH(Me)C(O)NH(z-Bu) CH2CH(Me)CH2OH CH(Et)CH2CH2SO2Me CH(Me)C(O)NH(s-Bu) CH2C(Me)2CH2OH CH2CH(Me)CH2SO2Me CH(Me)C(O)NH(Z-Bu)
166
2018202270 12 Mar 2019
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(«-Pr)
CH2CH2S(i-Pr)
CH2CH2S(i-Bu)
CH2CH2S(7-Bu)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
C(Me)2CH2SMe
CH(Et)CH2SMe
CH(i-Pr)CH2SMe
CH(z-Bu)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH2S(i-Bu)
CH2CH2CH2S(aBu)
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH(Et)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(«-Pr)
CH2CH2S(O)(i-Pr)
CH2CH2S(O)(i-Bu)
CH2CH2S(O)(/-Bu)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
C(Me)2CH2S(O)Me
CH2C(Me)2CH2SO2Me
CH2C(O)NHCH2CH2F
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH(Me)F
CH2C(O)NHCH2C(Me)2F
CH2C(O)NH(CH2)2CH2F
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH2CHFCF3
CH2C(O)NHCH2CF2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH(CF3)2
CH2C(O)NHC(Me)2CF3
CH2C(O)NHCH2CH(Me)CF3
CH2C(O)NH(CH2)2CF2CF3
CH2C(O)NHCH2(CF2)2CF3
CH2C(O)NHCH(i-Pr)CF3
CH(Me)C(O)NHCH2CH2F
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH(Me)F
CH(Me)C(O)NHCH2C(Me)2F
CH(Me)C(O)NH(CH2)2CH2F
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH2CHFCF3
CH(Me)C(O)NHCH2CF2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH(CF3)2
CH(Me)C(O)NHC(Me)2CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NH(CH2)2CF2CF3
CH(Me)C(O)NHCH2(CF2)2CF3
CH(Me)C(O)NHCH(i-Pr)CF3
C(Me)2C(O)NHCH2CH2F
C(Me)2C(O)NHCH2CH2Cl
CH(Me)(O)NHCH2(/-Bu)
C(Me)2C(O)NH(Me) C(Me)2C(O)NH(Et)
C(Me)2C(O)NH(«-Pr)
C(Me)2C(O)NH(i-Pr)
C(Me)2C(O)NH(«-Bu)
C(Me)2C(O)NH(i-Bu)
C(Me)2C(O)NH(s-Bu)
C(Me)2C(O)NH(z-Bu)
C(Me)2C(O)NHCH2(/-Bu)
CH2C(O)N(Me)CH2CH2F
CH2C(O)N(Me)CH2CH2Cl
CH2C(O)N(Me)CH2CHF2
CH2C(O)N(Me)CH2CF3
CH2C(O)N(Me)CH2CH2CH2F
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH2CF2CF3
CH2C(O)N(Me)CH(Me)CF3
CH2C(O)N(Me)CH(CF3)2
CH2C(O)N(Me)C(Me)2CF3
CH(Me)C(O)N(Me)CH2CH2F
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N(Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3
CH(Me)C(O)N(Me)(CH2)2CH2F
CH(Me)C(O)N(Me)CH2CH2CF3
CH(Me)C(O)N(Me)CH2CF2CF3
CH(Me)C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH(CF3)2
CH(Me)C(O)N(Me)C(Me)2CF3
C(Me)2C(O)N(Me)CH2CH2F
C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CHF2
C(Me)2C(O)N(Me)CH2CF3
C(Me)2C(O)N(Me)CH2CH2CH2F
C(Me)2C(O)N(Me)CH2CH2CF3
C(Me)2C(O)N(Me)CH2CF2CF3
167
2018202270 12 Mar 2019
CH(Et)CH2S(O)Me
CH(z-Pr)CH2S(O)Me
CH(z-Bu)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH2S(O)(z-Bu)
CH2CH2CH2S(O)(Z-Bu)
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH(Et)CH2CH2S(O)Me
C(Me)2C(O)NHCH2CHF2
C(Me)2C(O)NHCH2CF3
C(Me)2C(O)NHCH2CH(Me)F
C(Me)2C(O)NHCH2C(Me)2F
C(Me)2C(O)NH(CH2)2CH2F
C(Me)2C(O)NHCH2CH2CF3
C(Me)2C(O)NHCH2CHFCF3
C(Me)2C(O)NHCH2CF2CF3
C(Me)2C(O)N(Me)CH(Me)CF3
C(Me)2C(O)N(Me)CH(CF3)2
C(Me)2C(O)N(Me)C(Me)2CF3
C(Me)2C(O)NHCH(Me)CF3
C(Me)2C(O)NHCH(CF3)2
C(Me)2C(O)NHC(Me)2CF3
C(Me)2C(O)NHCH2CH(Me)CF3
C(Me)2C(O)NH(CH2)2CF2CF3
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me or wherein:
R4 is H, Ri is CF3, R2 is H and R3 is Cl, or
R4 is H, Ri is CF3, R2 is H and R3 is Br; and
5 R5 is selected from one of the groups in following table
C(Me)2C(O)NHCH2(CF2)2CF3
C(Me)2C(O)NHCH(z-Pr)CF3
R5 R5 R5 CH2CH2OH CH2CH2SO2Me C(Me)2C(O)NHCH(Me)CF3 CH2CH2OMe CH2CH2SO2Et C(Me)2C(O)NHCH(CF3)2 CH2CH2OEt CH2CH2SO2(«-Pr) C(Me)2C(O)NHC(Me)2CF3 CH2CH2O(z-Pr) CH2CH2SO2(z-Pr) C(Me)2C(O)NHCH2CH(Me)CF3 CH2CH(Me)OH CH2CH2SO2(z-Bu) C(Me)2C(O)NH(CH2)2CF2CF3 CH2CH(CF3)OH CH2CH2SO2(Z-Bu) C(Me)2C(O)NHCH2(CF2)2CF3 CH2C(Me)2OH CH2CH(Me)SO2Me C(Me)2C(O)NHCH(z-Pr)CF3 CH2C(CF3)(Me)OH CH2CH(CF3)SO2Me CH(Me)CH2OH CH2C(Me)2SO2Me C(Me)2CH2OH CH(Me)CH2SO2Me CH(Et)CH2OH C(Me)2CH2SO2Me CH(z-Pr)CH2OH CH(Et)CH2SO2Me CH(z-Bu)CH2OH CH(z-Pr)CH2SO2Me CH(Me)CH(CF3)OH CH(z-Bu)CH2SO2Me CH2CH2CH2OH CH2CH2CH2SO2Me CH2CH2CH2OMe CH2CH2CH2SO2Et CH2CH2CH2OEt CH2CH2CH2SO2(z-Bu) CH2CH2CH(CF3)OH CH2CH2CH2SO2(Z-Bu) CH(Me)CH2CH2OH CH2CH2CH(Me)SO2Me C(Me)2CH2CH2OH CH2CH2CH(CF3)SO2Me CH(z-Pr)CH2CH2OH CH(Me)CH2CH2SO2Me
168
2018202270 12 Mar 2019
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(«-Pr)
CH2CH2S(/-Pr)
CH2CH2S(/-Bu)
CH2CH2S(LBu)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
C(Me)2CH2SMe
CH(Et)CH2SMe
CH(z-Pr)CH2SMe
CH(z-Bu)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH2S(z-Bu)
CH2CH2CH2S(z-Bu)
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH(Et)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2S(O)(«-Pr)
CH2CH2S(O)(z-Pr)
CH2CH2S(O)(z-Bu)
CH2CH2S(O)(z-Bu)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Et)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NHCH2CH2F
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH(Me)F
CH2C(O)NHCH2C(Me)2F
CH2C(O)NH(CH2)2CH2F
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH2CHFCF3
CH2C(O)NHCH2CF2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH(CF3)2
CH2C(O)NHC(Me)2CF3
CH2C(O)NHCH2CH(Me)CF3
CH2C(O)NH(CH2)2CF2CF3
CH2C(O)NHCH2(CF2)2CF3
CH2C(O)NHCH(z-Pr)CF3
CH(Me)C(O)NHCH2CH2F
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH(Me)F
CH(Me)C(O)NHCH2C(Me)2F
CH(Me)C(O)NH(CH2)2CH2F
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH2CHFCF3
CH(Me)C(O)NHCH2CF2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH(CF3)2
CH(Me)C(O)NHC(Me)2CF3
CH(Me)C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NH(CH2)2CF2CF3
CH(Me)C(O)NHCH2(CF2)2CF3
CH(Me)C(O)NHCH(z-Pr)CF3
169
2018202270 12 Mar 2019
CH(Me)CH2S(O)Me
C(Me)2CH2S(O)Me
CH(Et)CH2S(O)Me
CH(z-Pr)CH2S(O)Me
CH(z-Bu)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH2S(O)(z-Bu)
CH2CH2CH2S(O)(z-Bu)
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH(Et)CH2CH2S(O)Me
C(Me)2C(O)NHCH2CH2F
C(Me)2C(O)NHCH2CH2Cl
C(Me)2C(O)NHCH2CHF2
C(Me)2C(O)NHCH2CF3
C(Me)2C(O)NHCH2CH(Me)F
C(Me)2C(O)NHCH2C(Me)2F
C(Me)2C(O)NH(CH2)2CH2F
C(Me)2C(O)NHCH2CH2CF3
C(Me)2C(O)NHCH2CHFCF3
C(Me)2C(O)NHCH2CF2CF3
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me or wherein:
R4 is H, R1 is Cl, R2 and R3 are H, or
R4 is H, R1 is Cl, R2 is H and R3 is F, or
5 R4 is H, R1 and R2 are Cl and R3 is H, or
R4 is H, R1 and R3 are Cl, R2 is cyano, or
R4 is H, R1 is Br, R2 is H and R3 is F, or
R4 is H, R1 and R3 are Br, R2 is F; and
R5 is selected from one of the groups in following table
R5 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH ch2ch2ch2oh CH2CH2CH2OMe CH2CH2CH2OEt CH2CH2CH(CF3)OH CH(Me)CH2CH2OH CH2CH(Me)CH2OH CH2C(Me)2CH2OH CH2CH2CH(Me)OH
R5
CH2CH2S(O)(«-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(«-Pr)
R5
170
2018202270 12 Mar 2019
CH2CH2C(Me)2OH
CH2CH2SMe CH2CH2SEt CH2CH2S(«-Pr) CH2CH(Me)SMe CH2CH(CF3)SMe CH2C(Me)2SMe CH(Me)CH2SMe CH2CH2CH2SMe CH2CH2CH2SEt CH2CH2CH(Me)SMe CH2CH2CH(CF3)SMe CH(Me)CH2CH2SMe CH2CH(Me)CH2SMe CH2C(Me)2CH2SMe CH2CH2S(O)Me CH2CH2S(O)Et
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2 CH2C(O)NHCH2CF3 CH2C(O)NHCH2CH2CF3 CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3 or wherein:
R4 is H, Rl, R2 and R3 are Cl, or
R5 is selected from one of the groups in following table
R5 ch2ch2oh
CH2CH2OMe
CH2CH2OEt
CH2CH2O(/-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH ch2ch2ch2oh CH2CH2CH2OMe CH2CH2CH2OEt CH2CH2CH(CF3)OH
R5
CH2CH2S(O)(«-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
R5
CH2C(O)NMe2 CH2C(O)NMe(Et) CH(Me)C(O)NH(Me) CH(Me)C(O)NH(Et) CH(Me)C(O)NH(«-Pr) CH(Me)C(O)NH(z-Pr) CH(Me)C(O)NH(z-Bu) CH(Me)C(O)NH(s-Bu) CH2C(O)N(Me)CH2CH2Cl CH2C(O)N(Me)CH2CHF2 CH2C(O)N(Me)CH2CF3
171
2018202270 12 Mar 2019
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(«-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
CH2CH2SO2Et
CH2CH2SO2(«-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me
CH2C(O)NH(Me)
CH2C(O)NH(Et)
CH2C(O)NH(«-Pr)
CH2C(O)NH(z-Pr)
CH2C(O)NH(z-Bu)
CH2C(O)NH(s-Bu)
CH2C(O)N(Me)CH2CH2CF3
CH2C(O)N(Me)CH(Me)CF3
CH(Me)C(O)N(Me)CH2CH2Cl
CH(Me)C(O)N (Me)CH2CHF2
CH(Me)C(O)N(Me)CH2CF3 CH(Me)C(O)N(Me)CH2CH2CF3 CH(Me)C(O)N(Me)CH(Me)CF3 C(Me)2C(O)N(Me)CH2CH2Cl
C(Me)2C(O)N(Me)CH2CF3
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CHF2
CH2C(O)NHCH2CF3
CH2C(O)NHCH2CH2CF3
CH2C(O)NHCH(Me)CF3
CH2C(O)NHCH2CH(Me)CF3
CH(Me)C(O)NHCH2CH2Cl
CH(Me)C(O)NHCH2CHF2
CH(Me)C(O)NHCH2CF3
CH(Me)C(O)NHCH2CH2CF3
CH(Me)C(O)NHCH(Me)CF3
CH(Me)C(O)NHCH2CH(Me)CF3 or wherein R4 is H, R1 is OCF3, R2 is H and R3 is Br and R5 is selected from one of the groups in following table
R5
CH2CH2OH
CH2CH2OMe
CH2CH2OEt
CH2CH2O(z-Pr)
CH2CH(Me)OH
CH2C(Me)2OH
CH(Me)CH2OH
CH2CH2CH2OH
CH2CH2CH2OMe
CH2CH2CH2OEt
CH2CH2CH(CF3)OH
CH(Me)CH2CH2OH
CH2CH(Me)CH2OH
R5
CH2CH2S(O)(«-Pr)
CH2CH(Me)S(O)Me
CH2CH(CF3)S(O)Me
CH2C(Me)2S(O)Me
CH(Me)CH2S(O)Me
CH2CH2CH2S(O)Me
CH2CH2CH2S(O)Et
CH2CH2CH(Me)S(O)Me
CH2CH2CH(CF3)S(O)Me
CH(Me)CH2CH2S(O)Me
CH2CH(Me)CH2S(O)Me
CH2C(Me)2CH2S(O)Me
CH2CH2SO2Me
R5
172
2018202270 12 Mar 2019
CH2C(Me)2CH2OH
CH2CH2CH(Me)OH
CH2CH2C(Me)2OH
CH2CH2SMe
CH2CH2SEt
CH2CH2S(«-Pr)
CH2CH(Me)SMe
CH2CH(CF3)SMe
CH2C(Me)2SMe
CH(Me)CH2SMe
CH2CH2CH2SMe
CH2CH2CH2SEt
CH2CH2CH(Me)SMe
CH2CH2CH(CF3)SMe
CH(Me)CH2CH2SMe
CH2CH(Me)CH2SMe
CH2C(Me)2CH2SMe
CH2CH2S(O)Me
CH2CH2S(O)Et
CH2CH2SO2Et
CH2CH2SO2(«-Pr)
CH2CH(Me)SO2Me
CH2CH(CF3)SO2Me
CH2C(Me)2SO2Me
CH(Me)CH2SO2Me
CH2CH2CH2SO2Me
CH2CH2CH2SO2Et
CH2CH2CH(Me)SO2Me
CH2CH2CH(CF3)SO2Me
CH(Me)CH2CH2SO2Me
CH2CH(Me)CH2SO2Me
CH2C(Me)2CH2SO2Me or wherein R4 is H and R1, R2, R3 and R5 are defined as in the following table
Compound R1 R2 R3 R5 2 Cl H Cl (S)-CH(Z-Pr)C(O)NHCH2CF3 3 Cl H Cl (S)-CH(CH3)C(O)NHCH2CF3 9 Cl H Cl CH2CH2C(O)NHCH2CF3 16 Cl H Cl (A)-CH(CH3)C(O)NHCH2CF3 25 Cl H Cl CH2C(O)NHCH(CH2CH3)2 29 Cl H Cl (A)-CH(CH3)CH2SCH3 31 Cl H Cl (A)-CH(CH3)CH2OH 45 cf3 H H CH2C(OH)(CF3)CH3 46 cf3 H H CH(CH2CH3)CH2OH 47 cf3 H H CH(CH3)CH2OCH3
or wherein:
5 R1 is Cl, R2 is H, R3 is Cl, R4 is C(O)Me, or
R1 is Cl, R2 is H, R3 is Cl, R4 is CO2Me, or R1 is Cl, R2 is H, R3 is Cl, R4 is CO2(t-Bu), or R1 is Cl, R2 is F, R3 is Cl, R4 is C(O)Me, or
173
2018202270 12 Mar 2019
R1 is Cl, R2 is F, R3 is Cl, R4 is CChMe, or
R1 is Cl, R2 is F, R3 is Cl, R4 is CO2(t-Bu), or R1 is Br, R2 is H, R3 is Br, R4 is C(O)Me, or
R1
R1
R1
R1
R1
R1
R1
R1 is Br, R2 is H, R3 is Br, R4 is CChMe, or is Br, R2 is H, R3 is Br, R4 is CO2(t-Bu), or is CF3, R2 is H, R3 is F, R4 is C(O)Me, or is CF3, R2 is H, R3 is F, R4 is CChMe, or is CF3, R2 is H, R3 is F, R4 is CO2(t-Bu), or is CF3, R2 is H, R3 is CF3, R4 is C(O)Me, or is CF3, R2 is H, R3 is CF3, R4 is CO2Me, or is CF3, R2 is H, R3 is CF3, R4 is CO2(t-Bu); and
R5 is defined in the following table
R5
R5
CH2CH2SMe
CH2CH2SO2Me
CH2C(O)NH(i-Pr)
R5
CH2C(O)NHCH2CH2C1
CH2C(O)NHCH2CF3
7. A compound according to claim 1 or claim 6 having the formula:
wherein R1 is Cl, R2 is H and R3 is Cl, or
R1 is Cl, R2 is F and R3 is Cl, or
R1 is Br, R2 is H and R3 is Br, or
25 R1 is CF3, R2 is H and R3 is F, or
R1 is CF3, R2 is H and R3 is CF3; and
R5 is selected from one of the groups in following table
R5 R5 R5 ch2ch2oh CH2CH2OMe CH2CH2SMe CH(Me)CH2CH2SMe CH2CH2SO2Me CH2C(O)NH(i-Pr) CH2C(O)NHCH2CH2C1 CH2C(O)NHCH2CF3
or wherein R1 and R3 are Cl, R2 is H and R5 is (7?)-CH(CH3)CH2SCH3.
174
2018202270 12 Mar 2019
8. A composition for controlling an invertebrate pest comprising a compound of any one of Claims 1 to 7 and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, said composition optionally further comprising at least one additional biologically active compound or agent.
5
9. The composition of Claim 8 wherein the at least one additional biologically active compound or agent is selected from the group consisting of abamectin, acephate, acequinocyl, acetamiprid, acrinathrin, amidoflumet, amitraz, avermectin, azadirachtin, azinphos-methyl, bifenthrin, bifenazate, bistrifluron, borate, 3-bromo-1-(3-chloro-2pyridinyl)-V-[4-cyano-2-methyl-6-[(methylamino)carbonyl]phenyl]-l//-pyrazole-510 carboxamide, buprofezin, cadusafos, carbaryl, carbofuran, cartap, carzol, chlorantraniliprole, chlorfenapyr, chlorfluazuron, chlorpyrifos, chlorpyrifos-methyl, chromafenozide, clofentezin, clothianidin, cyflumetofen, cyfluthrin, beta-cyfluthrin, cyhalothrin, gammacyhalothrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, zeta-cypermethrin, cyromazine, deltamethrin, diafenthiuron, diazinon, dieldrin, diflubenzuron, dimefluthrin,
15 dimehypo, dimethoate, dinotefuran, diofenolan, emamectin, endosulfan, esfenvalerate, ethiprole, etofenprox, etoxazole, fenbutatin oxide, fenothiocarb, fenoxycarb, fenpropathrin, fenvalerate, fipronil, flonicamid, flubendiamide, flucythrinate, flufenerim, flufenoxuron, fluvalinate, tau-fluvalinate, fonophos, formetanate, fosthiazate, halofenozide, hexaflumuron, hexythiazox, hydramethylnon, imidacloprid, indoxacarb, insecticidal soaps, isofenphos,
20 lufenuron, malathion, metaflumizone, metaldehyde, methamidophos, methidathion, methiodicarb, methomyl, methoprene, methoxychlor, metofluthrin, monocrotophos, methoxyfenozide, nitenpyram, nithiazine, novaluron, noviflumuron, oxamyl, parathion, parathion-methyl, permethrin, phorate, phosalone, phosmet, phosphamidon, pirimicarb, profenofos, profluthrin, propargite, protrifenbute, pymetrozine, pyrafluprole, pyrethrin,
25 pyridaben, pyridalyl, pyrifluquinazon, pyriprole, pyriproxyfen, rotenone, ryanodine, spinetoram, spinosad, spirodiclofen, spiromesifen, spirotetramat, sulprofos, tebufenozide, tebufenpyrad, teflubenzuron, tefluthrin, terbufos, tetrachlorvinphos, tetramethrin, thiacloprid, thiamethoxam, thiodicarb, thiosultap-sodium, tolfenpyrad, tralomethrin, triazamate, trichlorfon, triflumuron, Bacillus thuringiensis delta-endotoxins, entomopathogenic bacteria,
30 entomopathogenic viruses and entomopathogenic fungi.
10. The composition of Claim 8 wherein the at least one additional biologically active compound or agent is selected from the group consisting of abamectin, acetamiprid, acrinathrin, amitraz, avermectin, azadirachtin, bifenthrin, 3-bromo-1-(3-chloro-2-p yridinyl)A-[4-cyano-2-methyl-6-[(methylamino)carbonyl]phenyl]-l/7-pyrazole-5-carboxamide,
35 buprofezin, cadusafos, carbaryl, cartap, chlorantraniliprole, chlorfenapyr, chlorpyrifos, clothianidin, cyfluthrin, beta-cyfluthrin, cyhalothrin, gamma-cyhalothrin, lambdacyhalothrin, cypermethrin, alpha-cypermethrin, zeta-cypermethrin, cyromazine,
175
2018202270 12 Mar 2019 deltamethrin, dieldrin, dinotefuran, diofenolan, emamectin, endosulfan, esfenvalerate, ethiprole, etofenprox, etoxazole, fenothiocarb, fenoxycarb, fenvalerate, fipronil, flonicamid, flubendiamide, flufenoxuron, fluvalinate, formetanate, fosthiazate, hexaflumuron, hydramethylnon, imidacloprid, indoxacarb, lufenuron, metaflumizone, methiodicarb,
5 methomyl, methoprene, methoxyfenozide, nitenpyram, nithiazine, novaluron, oxamyl, pymetrozine, pyrethrin, pyridaben, pyridalyl, pyriproxyfen, ryanodine, spinetoram, spinosad, spirodiclofen, spiromesifen, spirotetramat, tebufenozide, tetramethrin, thiacloprid, thiamethoxam, thiodicarb, thiosultap-sodium, tralomethrin, triazamate, triflumuron, Bacillus thuringiensis delta-endotoxins, all strains of Bacillus thuringiensis and all strains of Nucleo
10 polyhydrosis viruses.
11. A composition comprising a compound of any one of Claims 1 to 7 and at least one veterinarily acceptable carrier, said composition optionally further comprising at least one additional parasiticidally active compound.
12. The composition of Claim 11 wherein the at least one additional parasiticidally 15 active compound is an anthelmintic.
13. The composition of Claim 11 wherein the at least one additional parasiticidally active compound is selected from the group consisting of abamectin, doramectin, emamectin, eprinomectin, ivermectin, selamectin, milbemycin, moxidectin and pyrantel.
14. The composition of any one of Claims 11 to 13 in a form for oral administration, 20 topical administration, or parenteral administration.
15. A method for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound of any one of Claims 1 to 7, with the proviso that the method is not a method of treatment of the human or animal body.
25
16. A compound of any one of Claims 1 to 7 for use in a method for protecting an animal from an invertebrate parasitic pest, the method comprising administering to the animal a parasiticidally effective amount of the compound provided that when the animal is a mouse, the invertebrate parasitic pest is a flea, and the parasiticidally effective amount of the compound of Formula 1 is administered orally, then the compound of Formula 1 is other
30 than 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-N-[2-oxo-2[(2,2,2-trifhioroethyl)amino]ethyl]-1 -naphthalenecarboxamide.
17. The compound for use according to Claims 16 wherein the parasiticidally effective amount of a compound of Formula 1 is administered orally, parenterally, by injection or topically.
176
2018202270 12 Mar 2019
18. The compound for use according to Claim 16 wherein the animal to be protected is a mammal, avian or fish; or wherein the animal to be protected is livestock, a canine or a feline; and/or wherein the invertebrate parasitic pest is an ectoparasite or an arthropod.
19. The compound for use according to Claim 16 wherein the invertebrate parasitic
5 pest is a fly, mosquito, mite, tick, louse, flea, maggot, bed bug or kissing bug.
20. The compound for use according to Claim 16 wherein the animal is a cat or dog and the invertebrate parasitic pest is a flea, tick or mite.
AU2018202270A 2007-06-26 2018-03-29 Naphthalene isoxazoline invertebrate pest control agents Active AU2018202270B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2018202270A AU2018202270B2 (en) 2007-06-26 2018-03-29 Naphthalene isoxazoline invertebrate pest control agents
AU2019210623A AU2019210623A1 (en) 2007-06-26 2019-08-01 Naphthalene isoxazoline invertebrate pest control agents

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60/937,285 2007-06-26
AU2013273726A AU2013273726B2 (en) 2007-06-26 2013-12-19 Naphthalene isoxazoline invertebrate pest control agents
AU2016208330A AU2016208330A1 (en) 2007-06-26 2016-07-27 Naphthalene isoxazoline invertebrate pest control agents
AU2018202270A AU2018202270B2 (en) 2007-06-26 2018-03-29 Naphthalene isoxazoline invertebrate pest control agents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2016208330A Division AU2016208330A1 (en) 2007-06-26 2016-07-27 Naphthalene isoxazoline invertebrate pest control agents

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2019210623A Division AU2019210623A1 (en) 2007-06-26 2019-08-01 Naphthalene isoxazoline invertebrate pest control agents

Publications (2)

Publication Number Publication Date
AU2018202270A1 AU2018202270A1 (en) 2018-04-26
AU2018202270B2 true AU2018202270B2 (en) 2019-05-02

Family

ID=56740612

Family Applications (3)

Application Number Title Priority Date Filing Date
AU2016208330A Abandoned AU2016208330A1 (en) 2007-06-26 2016-07-27 Naphthalene isoxazoline invertebrate pest control agents
AU2018202270A Active AU2018202270B2 (en) 2007-06-26 2018-03-29 Naphthalene isoxazoline invertebrate pest control agents
AU2019210623A Withdrawn AU2019210623A1 (en) 2007-06-26 2019-08-01 Naphthalene isoxazoline invertebrate pest control agents

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU2016208330A Abandoned AU2016208330A1 (en) 2007-06-26 2016-07-27 Naphthalene isoxazoline invertebrate pest control agents

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2019210623A Withdrawn AU2019210623A1 (en) 2007-06-26 2019-08-01 Naphthalene isoxazoline invertebrate pest control agents

Country Status (1)

Country Link
AU (3) AU2016208330A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731512A1 (en) * 2004-03-05 2006-12-13 Nissan Chemical Industries, Ltd. Isoxazoline-substituted benzamide compound and noxious organism control agent
WO2007079162A1 (en) * 2005-12-30 2007-07-12 E. I. Du Pont De Nemours And Company Isoxazolines for controlling invertebrate pests
WO2008154528A2 (en) * 2007-06-13 2008-12-18 E. I. Du Pont De Nemours And Company Isoxazoline insecticides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731512A1 (en) * 2004-03-05 2006-12-13 Nissan Chemical Industries, Ltd. Isoxazoline-substituted benzamide compound and noxious organism control agent
WO2007079162A1 (en) * 2005-12-30 2007-07-12 E. I. Du Pont De Nemours And Company Isoxazolines for controlling invertebrate pests
WO2008154528A2 (en) * 2007-06-13 2008-12-18 E. I. Du Pont De Nemours And Company Isoxazoline insecticides

Also Published As

Publication number Publication date
AU2016208330A1 (en) 2016-08-11
AU2018202270A1 (en) 2018-04-26
AU2019210623A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
CA2684632C (en) Naphthalene isoxazoline invertebrate pest control agents
US8871941B2 (en) 8-bromo-5-quinolinecarboxaldehyde oxime
EP1966195B1 (en) 5-aryl isoxazolines for controlling invertebrate pests
US20120122679A1 (en) Mesoionic pesticides
CA2684671A1 (en) Isoxazoline insecticides
AU2018202270B2 (en) Naphthalene isoxazoline invertebrate pest control agents
AU2013273726B2 (en) Naphthalene isoxazoline invertebrate pest control agents
AU2012204113A1 (en) Isoxazolines for controlling invertebrate pests

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
PC Assignment registered

Owner name: CORTEVA AGRISCIENCE LLC

Free format text: FORMER OWNER(S): E. I. DU PONT DE NEMOURS AND COMPANY