AU2017330441A1 - Yieldable bearing block - Google Patents

Yieldable bearing block Download PDF

Info

Publication number
AU2017330441A1
AU2017330441A1 AU2017330441A AU2017330441A AU2017330441A1 AU 2017330441 A1 AU2017330441 A1 AU 2017330441A1 AU 2017330441 A AU2017330441 A AU 2017330441A AU 2017330441 A AU2017330441 A AU 2017330441A AU 2017330441 A1 AU2017330441 A1 AU 2017330441A1
Authority
AU
Australia
Prior art keywords
mine roof
bolt
bearing
bolting system
mine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2017330441A
Inventor
Dakota Faulkner
Lumin Ma
John C. Stankus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FCI Holdings Delaware Inc
Original Assignee
FCI Holdings Delaware Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FCI Holdings Delaware Inc filed Critical FCI Holdings Delaware Inc
Publication of AU2017330441A1 publication Critical patent/AU2017330441A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0086Bearing plates
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D20/00Setting anchoring-bolts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B31/00Screwed connections specially modified in view of tensile load; Break-bolts
    • F16B31/02Screwed connections specially modified in view of tensile load; Break-bolts for indicating the attainment of a particular tensile load or limiting tensile load

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

A mine roof bolting system including a bearing member having a first member, a second member spaced apart from the first member, and apertures defined through each of the first and second members, and a mine roof bolt extending through the apertures. When a load is applied to the mine roof bolting system, the bearing member yields or deforms. Also, a method for providing a roof support in an underground mine including providing the bearing member and inserting a mine roof bolt through the apertures of the bearing member and into a borehole in a mine roof, wherein the bearing member yields upon application of a load in excess of a predetermined load.

Description

YIELDABLE BEARING BLOCK CROSS-REFERENCE TO RELATED APPLICATION [0001] This application claims priority to United States Provisional Patent Application No. 62/399,693 filed September 26, 2016, the disclosure of which is hereby incorporated in its entirety by reference.
BACKGROUND OF THE INVENTION
Field of the Invention [0002] The present invention relates to a mine roof bolting system, and more particularly, a mine roof bolting system including a bearing member that yields or deforms when subjected to a load.
Description of Related Art [0003] The roof of a mine is conventionally supported by tensioning the roof with mine bolts drilled in the mine roof that reinforce the unsupported rock formation behind the roof. Other structures may also be supported, such as walls or ribs of an underground mine; thus use of the term “roof’ herein is also applicable to other such structures. The end of the mine bolt may be anchored mechanically to the rock formation by engagement of an expansion assembly on the end of the bolt with the rock formation. Alternatively, the mine roof bolt may be adhesively bonded to the rock formation with a resin bonding material inserted into the bore hole into which the mine roof bolt is inserted. A combination of mechanical anchoring and resin bonding can also be employed by using both an expansion assembly and resin bonding material.
[0004] Cable bolts are used in the mining industry, and particularly, hard rock mining as they provide several advantages over conventional mine roof bolts, for example, ease of handling and installation. Cable bolts are substantially easier to fit into a borehole than the elongated rods of conventional rod bolt systems. Regardless of the height limitations in a mine, cable bolts may be adapted to boreholes of any length due to their flexibility. Moreover, the strength capacity of cables typically exceed that of conventional rod bolts. [0005] With certain mining conditions, particularly those found in hard rock mining, the rock formation in the mine roof is susceptible to movement or rock burst as a result of mine-induced seismicity, the excavation of perimeter rock, minor seismicities, and the like. Under dynamic loading caused by rock bursts, the conventional mine roof bolts described above are vulnerable to failure.
SUMMARY OF THE INVENTION
[0006] The present invention includes a simple, low cost, and easy to manufacture mine roof bolting system wherein at least a portion of the system deforms to absorb some of the dynamic loading caused by a rock burst or excessive load caused by squeezing ground.
[0007] The present invention is directed to a mine roof bolting system comprising a bearing member having a first member, a second member spaced apart from the first member, and apertures defined through each of the first and second members; and a mine roof bolt extending through the apertures. When a load is applied to the mine roof bolting system, the bearing member yields.
[0008] The present invention is also directed to a mine roof bolting system comprising a bearing member comprising a first member defining a first aperture, a second member spaced apart from the first member and defining a second aperture, and a web extending between the first member and the second member and thereby defining a gap between the first member and the second member; and a mine roof bolt extending through the first and second apertures of the bearing member.
[0009] The present invention is also directed to a method for providing a roof support in an underground mine. The method includes providing a bearing member as described above and inserting a mine roof bolt through the apertures of the bearing member and into a borehole in a mine roof. The bearing member is adapted to yield upon application of a load in excess of a predetermined load. The mine roof bolt may be a cable bolt, a solid bolt, an expandable (inflatable) bolt, or a hollow bolt. BRIEF DESCRIPTION OF THE DRAWINGS [0010] The present invention will now be described in further detail with reference to the accompanying figures, in which: [0011] FIG. 1 is a perspective view of a yieldable bearing member in accordance with the present invention; [0012] FIG. 2 is a cross-section view of the yieldable bearing member of FIG.l taken along line 2-2; [0013] FIG. 3 is a front elevation view of a mine roof bolting system including a bearing plate, the bearing member of FIG. 1, and a mine roof bolt; [0014] FIG. 4 is a front elevation view of a mine roof bolting system including the bearing member of FIG. 1 and a mine roof bolt; [0015] FIG. 5 is a perspective view of the bearing member of FIG. 1 after the bearing member has yielded; and [0016] FIG. 6 is a load deflection curve comparing yieldable bearing members made in accordance with the present invention.
DESCRIPTION OF THE INVENTION
[0017] The following description is provided to enable those skilled in the art to make and use the described embodiments contemplated for carrying out the invention. For purposes of the description hereinafter, the terms “upper”, “lower”, “vertical”, “horizontal”, “top”, “bottom”, “lateral”, “longitudinal”, and derivatives thereof relate to the invention as it is oriented in the drawing figures. It is to be understood that the specific devices illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the invention. Hence, specific dimension and other physical characteristics related to the embodiments disclosed herein are not to be understood as limiting.
[0018] FIGS. 1 and 2 illustrate a yieldable bearing member made in accordance with the present invention. The yieldable bearing member 10, also referred to herein as a yieldable bearing block, generally includes a first member 14, also referred to as a top member, a second member 16, also referred to as a bottom member, and at least one web 18, 20 extending between the top member 14 and the bottom member 16.
[0019] The top member 14 may be spaced apart from the bottom member 16 and may be substantially parallel to the bottom member 16. The top member 14 and the bottom member may each be in the form of a plate which may take any suitable shape including, but not limited to a rectangle, a square, a trapezoid, a parallelogram, a polygon, and a circle. The web 18, 20 may extend from a first side 14a of the top member 14 to a first side 16a of the bottom member 16. A second web 18, 20 may extend from a second side 14b of the top member 14 to a second side 16b of the bottom member 16. First sides 14a, 16a and second sides 14b, 16b each may include curved portions connecting the top member 14 and the bottom member 16. The top member 14, the bottom member 16, and the two webs 18, 20 may combine to define a central cavity 26 such that the yieldable bearing block 10 has a tubular configuration. The central cavity 26 extends along a central axis A from a first end 22 to a second end 24 of the yieldable bearing block 10 such that a gap 30 is formed between an interior surface 32 of the top member 14 and an interior surface 34 of the bottom member 16. The central cavity 26 may be open, or alternatively, may include a compressible material such as wood, plastic, hard rubber, aerated cement, or the like, to modify the loading/deformation properties of the yieldable bearing block 10.
[0020] In one embodiment, the webs 18, 20 may extend from respective sides 14a, 14b of the top member 14 to respective sides 16a, 16b of the bottom member 16 such that the webs 18, 20 are at right angles to the top member 14 and the bottom member 16. The top member 14 and the bottom member may have the same size and shape and two webs 18, 20 may be provided as shown in FIGS. 1 and 2. The top member 14, the bottom member 16, and the webs 18, 20 combine to define a central cavity 26 having a square or rectangular crosssection.
[0021] In another embodiment, the size and/or shape of top member 14 and the bottom member 16 may be different or the top member 14 may be offset from the bottom member 16 such that the webs 18, 20 are angled with respect to the top member 14 and the bottom member 16. Two webs 18, 20 may be provided such that the top member 14, the bottom member 16, and the webs 18, 20 combine to define a central cavity 26 having a cross-section that is a trapezoid or a parallelogram.
[0022] In a further embodiment, at least one of the top member 14, the bottom member 16, and the webs may be curved. Two webs 18, 20 may be provided such that the top member 14, the bottom member 16, and the webs 18, 20 combine to define a central cavity 26 having a cross-section that is a circle, an ellipse, or a truncated circle having two flat sides and two curved sides.
[0023] The yieldable bearing block 10 may have a length L measured along the central axis A from the first end 22 to the second end 24, a width W measured perpendicular to the central axis A between opposing webs 18, 20, and a height H measured perpendicular to the central axis A between the top member 14 and the bottom member 16. With particular reference to FIG. 2, an exterior surface 28 of the yieldable bearing block 10 and the central cavity 26 define a wall thickness 14' of the top member 14, a wall thickness 16' of the bottom member 16, and wall thicknesses 18' and 20' of the webs 18 and 20, respectively. The wall thickness 14', 16', 18', 20' of each wall 14, 16, 18, 20 may be equal to each other such that the yieldable bearing block 10 has a uniform wall thickness T or may be different from each other in order to provide different portions of the yieldable bearing block 10 with different mechanical properties. For example, the yieldable bearing block 10 may have a uniform wall thickness T of 5/16 inch or 3/8 inch. As is further discussed hereinafter, the length L, width W, height H, and wall thickness T of the yieldable bearing block 10 can be manufactured to provide specific yield and tensile properties for various underground mining conditions, for example, hard rock mining.
[0024] Apertures 36a, 36b for receiving a fastening mechanism, such as a mine roof bolt 38, are defined in the top member 14 and the bottom member 16 of the yieldable bearing block 10. The apertures 36a, 36b may be positioned substantially at each of the centers of the top member 14 and the bottom member 16. The apertures 36a, 36b may be dimensioned to receive an elongated body 40 of a mine roof bolt 38 (FIGS. 3 and 4). For example, the apertures 36a, 36b may be dimensioned to receive a mine roof bolt 38 having a diameter of 0.6 inch or 0.7 inch.
[0025] The yieldable bearing block 10 may be produced from any yieldable material having high strength, for example, steel or aluminum. The material may have a minimum yield strength of 46 ksi and a minimum tensile strength of 58 ksi. One such material is rectangular steel tube, for example, a rectangular tube made of ASTM A500-B steel.
[0026] The yieldable bearing block 10 can be used as part of a mine roof bolting system, such as a mine roof bolting system 100, shown in FIG. 3, including the yieldable bearing block 10, a bearing plate 42, and a mine roof bolt 38, or a mine roof bolting system 200, shown in FIG. 4, including the yieldable bearing block 10 and a mine roof bolt 38.
[0027] Referring to FIG. 5, the yieldable bearing block 10 is designed to yield, or deform, such that the gap 30 of the yieldable bearing block 10 is reduced when a predetermined load, for example, 15 tons or more or 20 tons or more, is applied to the mine roof bolting system 100 or the mine roof bolting system 200.
[0028] Referring to FIG. 3, the mine roof bolting system 100 includes the yieldable bearing block 10, the bearing plate 42, and the mine roof bolt 38. The bearing plate 42 may generally include a planar body 44 having a bearing surface 46 for engaging the mine roof R and a contact surface 48 for engaging the top member 14 of the yieldable bearing block 10. The bearing plate 42 may be made of commercial grade steel. An aperture 50 may be positioned substantially at the center of the planar body 44. The bearing plate 42 may optionally include one or more rib members 52 surrounding the aperture 50 and positioned between the aperture 50 and a peripheral edge 54 of the bearing plate 42. It should be appreciated that other bearing plates known in the art may be used in the system 100.
[0029] The mine roof bolting system 100 may be installed in a mine roof R to provide support to a rock formation. The mine roof bolt 38 is inserted through the apertures 36 of the yieldable bearing block 10 and the aperture 50 of the bearing plate 42 and into a borehole B. The mine roof bolt 38 may be a solid bolt, such as a solid rebar bolt or smooth bar bolt, a cable bolt, an expandable (inflatable) bolt, a hollow bolt, or any other mine roof bolt designed for supporting rock strata as is known in the art. A drive end 60 of the mine roof bolt 38 may include a drive head that does not tension the bolt or may include a tensioning system. Suitable tensioning systems include an externally threaded bolt with a tensioning nut optionally having a shear pin or breakout portion or the like threaded thereon, a barrel and wedge assembly on a cable bolt or other drive heads as are known in the art for installing mine roof bolts.
[0030] By way of example, the mine roof bolt 38 may be a cable bolt formed of a selected length of a flexible multi-strand steel cable 56 having an anchor end portion 58 and a drive end portion 60 including a barrel and wedge assembly 61a and a drive nut 61b. Between the anchor end portion 58 and the drive end portion 60, the cable 56 is flexible and extends a length as determined by the length of the borehole B in the rock formation. A stiffening tube 57 may enclose the flexible multi-strand steel cable 56 at a proximal end thereof, adjacent the barrel and wedge assembly 61a. A washer 62 may optionally be placed between the bottom member 16 of the yieldable bearing block 10 and the barrel and wedge assembly 61a such that the yieldable bearing block 10 does not directly contact the barrel and wedge assembly 61a.
[0031] When the mine roof bolting system 100 experiences loading due to a shift in the surrounding rock strata, the yieldable bearing block 10 yields, or deforms, such that the gap 30 of the yieldable bearing block 10 is reduced. As the yieldable bearing block 10 yields, the mine roof bolting system 100 absorbs some of the dynamic load such that the mine roof system 100 can support a greater load than a comparable system not including the yieldable bearing block 10.
[0032] Referring to FIG. 4, the mine roof bolting system 200 includes the yieldable bearing block 10 and a mine roof bolt 38. The mine roof bolting system 200 is substantially the same as the mine roof bolting system 100, but does not include the bearing plate 42. Instead, the top member 14 of the yieldable bearing block 10 directly engages the mine roof R such that the yieldable bearing block 10 serves a dual function, acting as both the yieldable bearing block 10 and the bearing plate 42. For example, in the mine roof bolting system 200, the yieldable bearing block 10 may be at least 36 square inches.
[0033] When the mine roof system 200 experiences loading due to natural forces of the mine, the yieldable bearing block 10 yields, or deforms, such that the gap 30 of the yieldable bearing block 10 is reduced. As the yieldable bearing block 10 yields, the mine roof bolting system 100 absorbs some of the dynamic load such that mine roof system 200 can support a greater load than a comparable system not including the yieldable bearing block 10.
[0034] The following tests were conducted to demonstrate the general principles of the present invention. The invention should not be considered to be limited to the specific tests presented herein.
EXAMPLES
[0035] Ten yieldable bearing blocks 10 having a rectangular cross-section and various lengths L, widths W, heights H, and wall thicknesses T, were tested to determine a maximum load and a maximum yield (i.e., maximum deflection) that each of the ten yieldable bearing blocks 10 could withstand prior to failure. A load was applied to the top member 14 of the yieldable bearing blocks 10 using a rod having a 1.75 inch diameter to simulate the housing of a mine roof bolt having a 0.6 inch diameter. The maximum load and deflection achieved before the gap between the top member 14 and the bottom member 16 is at least partially closed as the top member 14 and the bottom member 16 move toward one another under the load as shown in FIG. 5 was measured. The results of the tests are shown below in Table 1.
Table 1 Test results showing maximum load and deflection
[0036] Load deflection curves comparing the results of the yieldable bearing blocks of Tests 9 and 10 having a length of 3.5 inches and a length of 3 inches, respectively, are shown in FIG. 6. The results shown in FIG.6 demonstrate that a load up to a predetermined load (e.g., about 25 tons for Test 9 at a length of 3 inches and about 20 tons for Test 10 at a length of 3.5 inches) can be applied before maximum deflection is achieved. A mine roof support system incorporating the yieldable bearing block of the present invention can withstand an added load (e.g., 20-25 tons as shown in Tests 9 and 10), allowing the system to yield upon application of the load.
[0037] The yieldable bearing block provided herein provides an easy to manufacture and low cost system for increasing the load for which a mine roof bolting system can support. The systems disclosed herein are particularly advantageous in hard rock mining under which dynamic loading is caused by squeezing and rock bursts.
[0038] While embodiments of the yieldable bearing block are shown in the accompanying figures and described hereinabove in detail, other embodiments will be apparent to, and readily made by, those skilled in the art without departing from the scope and spirit of the invention. Accordingly, the foregoing description is intended to be illustrative rather than restrictive. The disclosure described hereinabove is defined by the appended claims and all changes to the disclosure that fall within the meaning and the range of equivalency of the claims are to be embraced within its scope.

Claims (15)

  1. THE INVENTION CLAIMED IS:
    1. A mine roof bolting system comprising: a bearing member including a first member, a second member spaced apart from the first member, and apertures defined through each of the first and second members; and a mine roof bolt extending through the apertures, wherein when a load is applied to the mine roof bolting system, the bearing member yields.
  2. 2. The mine roof bolting system of claim 1, wherein a gap is provided between the first member and the second member and wherein when a predetermined load is applied to the mine roof bolting system, the gap is reduced.
  3. 3. The mine roof bolting system of claim 2, wherein the gap provided between the first member and the second member is at least 1 inch.
  4. 4. The mine roof bolting system of claim 1, wherein the bearing member comprises a rectangular steel tube.
  5. 5. The mine roof bolting system of claim 1, wherein the mine roof bolt is a cable bolt, a solid bolt, an expandable bolt, or a hollow bolt.
  6. 6. The mine roof bolting system of claim 1, further comprising a bearing plate having a bearing surface for contacting rock strata, a contact surface positioned opposite the bearing surface for engaging the bearing member, and an aperture defined through the bearing plate.
  7. 7. A mine roof bolting system comprising: a bearing member comprising: a first member defining a first aperture; a second member spaced apart from the first member and defining a second aperture; and a web extending between the first member and the second member and thereby defining a gap between the first member and the second member; and a mine roof bolt extending through the first and second apertures of the bearing member.
  8. 8. The mine roof bolting system of claim 7, wherein the mine roof bolt is a cable bolt, a solid bolt, an expandable bolt, or a hollow bolt.
  9. 9. The mine roof bolting system of claim 7, further comprising a bearing plate comprising a bearing surface for contacting the mine roof, a contact surface for contacting the bearing member, and an aperture through which the mine roof bolt extends.
  10. 10. The mine roof bolting system of claim 7, wherein the first member is substantially parallel to the second member.
  11. 11. The mine roof bolting system of claim 7, further comprising another web extending between the first member and the second member, the two webs being spaced apart by the gap.
  12. 12. The bearing member of claim 11, wherein, when taken together, the first member, the second member, the first web, and the second web define a central cavity.
  13. 13. A method for providing a roof support in an underground mine, the method comprising the steps of: providing a bearing member including a first member, a second member spaced apart from the first member, and apertures defined through each of the first and second members; and inserting a mine roof bolt through the apertures of the bearing member and into a borehole in a mine roof, wherein the bearing member yields upon application of a load in excess of a predetermined load.
  14. 14. The method for providing a roof support of claim 13, wherein the mine roof bolt is a cable bolt, a solid bolt, an expandable bolt, or a hollow bolt.
  15. 15. The method for providing a roof support of claim 13, further comprising positioning a bearing plate in between the mine roof and the yieldable bearing member.
AU2017330441A 2016-09-26 2017-09-25 Yieldable bearing block Abandoned AU2017330441A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662399693P 2016-09-26 2016-09-26
US62/399,693 2016-09-26
PCT/US2017/053192 WO2018058021A1 (en) 2016-09-26 2017-09-25 Yieldable bearing block

Publications (1)

Publication Number Publication Date
AU2017330441A1 true AU2017330441A1 (en) 2019-04-11

Family

ID=61691095

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2017330441A Abandoned AU2017330441A1 (en) 2016-09-26 2017-09-25 Yieldable bearing block

Country Status (4)

Country Link
US (1) US20190178083A1 (en)
AU (1) AU2017330441A1 (en)
CA (1) CA3038082A1 (en)
WO (1) WO2018058021A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110924999A (en) * 2019-12-12 2020-03-27 山东里能鲁西矿业有限公司 Anchor-withdrawing yielding device
CN111255492B (en) * 2020-01-15 2021-04-09 中国矿业大学 Method for evaluating support performance of anchor net cable at roadway side

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US840791A (en) * 1905-11-14 1907-01-08 Commercial Firm Carl Spiegel Spring-washer.
US2476561A (en) * 1945-03-17 1949-07-19 Pedersen Norman Lind Locking device
US2725843A (en) * 1951-06-01 1955-12-06 Francis A E Koski Sag indicator
US2675044A (en) * 1952-05-08 1954-04-13 Illinois Tool Works Nut and washer assembly
US2930605A (en) * 1958-07-31 1960-03-29 Union Spring And Mfg Co Spring and holder assembly
US3111655A (en) * 1960-09-09 1963-11-19 Joseph F Kotarsky Mine roof warning device
GB950552A (en) * 1961-08-22 1964-02-26 William George Burton Mcclean Improvements in or relating to visual warning devices for indicating loss of tensionin bolts
US3153973A (en) * 1962-03-06 1964-10-27 Michael T Marietta Pad for shielding an exposed end of a fastener
US3362737A (en) * 1965-06-17 1968-01-09 Westinghouse Electric Corp Fastening arrangement
GB1213734A (en) * 1968-05-28 1970-11-25 Jack Victor Haig Trigg An improved tensile member
US3631910A (en) * 1969-11-24 1972-01-04 Maruyama Mfg Co Spring washer
US3826128A (en) * 1973-02-01 1974-07-30 Us Interior Surface deformation indicating apparatus
US4138198A (en) * 1977-07-18 1979-02-06 General Motors Corporation Tapered shank ball stud assembly with collapsible washer
US4170163A (en) * 1977-07-27 1979-10-09 Modulus Corporation Visual indicator
US4217849A (en) * 1978-12-21 1980-08-19 Brown Larry L Mine roof warning indicator
US4954018A (en) * 1985-06-06 1990-09-04 Jim Walter Resources, Inc. Yield tube bolt assembly
CA2111996A1 (en) * 1992-12-22 1994-06-23 Mark Howell Mine support system
US5556234A (en) * 1995-05-02 1996-09-17 Jennmar Corporation Mine roof bolt assembly
US6227784B1 (en) * 1999-08-17 2001-05-08 Federal-Mogul World Wide, Inc. Fastener assembly with vibration isolating features
US6860688B2 (en) * 2001-06-15 2005-03-01 Danley Construction Products Pty Ltd Lockable nut system
US6296429B1 (en) * 2000-06-16 2001-10-02 The Eastern Company Mine roof tension nut having improved frangible qualities
WO2002018103A1 (en) * 2000-08-28 2002-03-07 John Paul Mckelvey Inflatable tensioning device
DE10217284B4 (en) * 2002-04-12 2005-06-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for controlling screw connections
US7090437B2 (en) * 2002-08-07 2006-08-15 Pinkleton Michael A Modular helical anchor
DE10336154B4 (en) * 2003-08-07 2006-09-21 Bochumer Eisenhütte Heintzmann GmbH & Co. KG Parallel belt girder, especially for track extension and tunnel construction
US20120082515A1 (en) * 2010-10-01 2012-04-05 Fci Holdings Delaware, Inc. Roof and Rib Support Having Reverse C-Channel
AU2013202781A1 (en) * 2012-02-22 2013-09-05 Fci Holdings Delaware, Inc. Fibreglass roof and rib plate
US20140072372A1 (en) * 2012-09-13 2014-03-13 Thomas J. Vosbikian Tandem Plate for Friction Rock Stabilizer
SE539285C2 (en) * 2013-02-07 2017-06-20 Rock Solutions North AB rock bolt
US9151158B2 (en) * 2013-11-21 2015-10-06 Shane Chiappone Roof bolt installation tool
US10408250B2 (en) * 2017-02-08 2019-09-10 The Boeing Company Load-indicating washer

Also Published As

Publication number Publication date
US20190178083A1 (en) 2019-06-13
CA3038082A1 (en) 2018-03-29
WO2018058021A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
US10472845B2 (en) Fastener
BRPI0720592B1 (en) ROCK CABIN TO BE APPLIED BY TREADING ON A RUBBER SURFACE HOLE
US6390735B1 (en) Apparatus and method for a yieldable tendon mine support
US20200063556A1 (en) Friction rock bolt
US6715961B2 (en) Method of supporting mine walls and installing a mine stopping
KR200387370Y1 (en) Gradient buttressing materials for temporary soil sheathing with rotatable connecting bracket
US20190178083A1 (en) Yieldable Bearing Block
US20080219775A1 (en) Bolt assembly
US6578342B2 (en) Barrier cable end bracket assembly
KR101059945B1 (en) Multi-step compressive anchor and manufacturing method thereof
KR101489387B1 (en) End supporting multi micro pile and method for constructing the same
US3815467A (en) Anchoring assembly
KR20140094178A (en) tensile device for tensile angle adjustment and easy to re-tensile
WO2007123668A2 (en) Roof bolt plate
CA1201896A (en) Method and apparatus for reinforcing and consolidating earth structures
RU2674038C1 (en) Friction rock stabiliser
KR101445369B1 (en) Soil Nailing Device Using Connector and Construction Method Using the Same
US4523881A (en) Lateral force system and support for supporting mine roofs
US20150056023A1 (en) Mine roof and rib support
KR100873738B1 (en) The earth anchor
KR101017412B1 (en) Permanent anchor of friction bearing pressure type and constructing method thereof
CN113914648A (en) Building reinforcing structure and reinforcing method thereof
KR101030341B1 (en) Ground reinforcing apparatus to be expanded bidirectionally and constructing method thereof
KR101298020B1 (en) Special prestressed method
KR102178057B1 (en) Rock bolt end-cap apparatus for resin construction of tunnel

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period