AU2017215225A1 - Fan impeller and fan using fan impeller - Google Patents

Fan impeller and fan using fan impeller Download PDF

Info

Publication number
AU2017215225A1
AU2017215225A1 AU2017215225A AU2017215225A AU2017215225A1 AU 2017215225 A1 AU2017215225 A1 AU 2017215225A1 AU 2017215225 A AU2017215225 A AU 2017215225A AU 2017215225 A AU2017215225 A AU 2017215225A AU 2017215225 A1 AU2017215225 A1 AU 2017215225A1
Authority
AU
Australia
Prior art keywords
rear wheel
wheel disc
blade
impeller
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2017215225A
Other versions
AU2017215225B2 (en
AU2017215225C1 (en
Inventor
Xuefei LIANG
Ge LIU
Yi Liu
Zhongqun Mao
Jiajie ZHOU
Yongding Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Fotile Kitchen Ware Co Ltd
Original Assignee
Ningbo Fotile Kitchen Ware Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Fotile Kitchen Ware Co Ltd filed Critical Ningbo Fotile Kitchen Ware Co Ltd
Publication of AU2017215225A1 publication Critical patent/AU2017215225A1/en
Publication of AU2017215225B2 publication Critical patent/AU2017215225B2/en
Application granted granted Critical
Publication of AU2017215225C1 publication Critical patent/AU2017215225C1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4253Fan casings with axial entry and discharge

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a fan impeller, comprising blades (2) and further comprising a rear disc (1), wherein blade bottoms (2) are installed on the surface of the rear disc (1) and are arranged sequentially along a peripheral direction of the rear disc; an outer edge (21) of the blade (2) is an air-outlet edge, and an included angle α between a projection (21a) of the outer edge (21) on the outer circumference of the rear wheel disc and the outer circumference normal (1a) of the rear disc (1) ranges from -60

Description

Field of the Invention [0001] The present invention relates to a fan, and in particular to an impeller for a fan and a fan using the same.
Description of the Prior Art [0002] A fan is an important part of a range hood. An impeller for the fan realizes energy conversion, and the performance of the impeller directly influences the performance of the range hood. At present, conventional impellers for range hoods are usually formed by stamping flat plates which are then connected by buckling their two ends, and blades are generally machined into a circular arc in a uniform thickness. Since the rotation speed of the impeller generally exceeds 800 RPM, the actual fluid separation and reflux between blades is obvious. Moreover, since the impeller functions to pre-whirl gas and the gas will gradually change its direction in the process of flowing into the impeller to change its direction by 90°, the simple consistence in angle of an inlet and an outlet is disadvantageous for the actual performance of the impeller. In order to improve the fan efficiency, many improvements have been made to the structure of the impeller. However, these improvements are still limited to the binary flow technology, so that the efficiency improvement of the fan is limited, and the technical level of ordinary binary impellers will significantly influence the performance of the fan. Therefore, the defects of the binary impellers cannot be fundamentally overcome at present. In addition, if the structure of the impeller is not changed fundamentally, at the same air pressure, the overall structure of the fan is not compact enough and is relatively large in size. Accordingly, it is necessary to further improve the structure of the existing impellers and fans.
Summary of the Invention [0003] A first technical problem to be solved by the present invention is, in view of the prior art, to provide an impeller for a fan, which is novel in structure and good in aerodynamic performance.
[0004] A second technical problem to be solved by the present invention is, in view of the prior art, to provide a fan which is compact in structure and high in both fan efficiency and air pressure.
- 1 [0005] To solve the first technical problem, the impeller for a fan comprises: a plurality of blades, each blade has a top, a bottom, an outer edge, and an inner edge; and a rear wheel disc with a surface, a periphery, and a center, the plurality of blades mounted on the rear wheel disc, a first projection line being defined on the rear wheel disc and by the outer edge of each blade, a second projection line being defined on the rear wheel disc and by the inner edge of each blade; characterized in that, the outer edge of each blade is placed adjacent to the periphery of the rear wheel disc and the inner edge of each blade is adjacent to a center of the rear wheel disc, the bottom of each blade stands on the surface of the rear wheel disc, and is the plurality of blades are arranged one by one successively along a circumferential direction of the rear wheel disc; the outer edge of each blade is an air exit, and an angle a is defined between the first projection line of each outer edge and a radial line of the rear wheel disc and satisfies the following condition: -60°<a<60°; the inner edge of each blade is s an air intake, and an angle β is defined between the second projection line of each inner edge and the radial line of the rear wheel disc and satisfies the following condition: 20°<β<70°; an angle Θ is defined between a first connecting line connecting the outer edge of a blade and the center of the rear wheel disc and a second connecting line connecting the inner edge of a blade and the center of the rear wheel disc and satisfies the following condition: 10°<0<65°; and, a first vertical height hl of the top of each outer edge is less than a second vertical height h2 of the top of each inner edge. [0006] Preferably, the outer edge of each blade is disposed adjacent to the periphery of the rear wheel disc; the inner edge of each blade is slanted downwardly toward the center of the rear wheel disc; each blade has a bottom surface all of which are located in a same plane; and, each blade has a smooth top surface.
[0007] Preferably, a ratio of the first vertical height hl to the second vertical height h2 satisfies the following condition: 0.2<hl/h2<0.8.
[0008] In order to further improve the aerodynamic performance of the impeller, the angle a satisfies the following condition: -30°<a<30°; the angle β satisfies the following condition: 30°<β<60°; the angle 0 satisfies the following condition: 20°<0<45°; and, the ratio of the first vertical height hl to the second vertical height h2 satisfies the following condition: 0.4<hl/h2<0.6.
[0009] According to the size of the impeller and different parameter ranges, the number of blades may be different. Preferably, the plurality of blades comprise 10 to 50 blades. [0010] As a preferred solution of any one of the above solutions, the impeller for the fan further comprises a front cover covering the plurality of blades; a first arc segment and a
- 2 second arc segment that are jointed with each other from inside to outside are formed at an intersection of the front cover with a meridian plane of a rotating shaft of the impeller; and, a ratio of the radius R1 of the first arc segment to the radius R2 of the second arc segment satisfies the following condition: 0.1<Rl/R2<0.6.
[0011] Further preferably, a linear segment, which is disposed on an outer side of the second arc segment and smoothly jointed with the second arc segment, is further formed at the intersection of the front cover with the meridian plane of the rotating shaft of the impeller; and, a ratio of the length L of the linear segment to the radius R2 of the second arc segment satisfies the following condition: 0.1<L/R2<0.4. By providing the linear segment, it is convenient for machining the front cover, and the formation of a boundary layer at an end wall of the front cover can also be controlled.
[0012] To solve the second technical problem, the A fan using the impeller for a fan, comprises a volute, a motor and a wind inlet ring; characterized in that, the impeller for the fan is disposed inside the volute; the rear wheel disc of the impeller for the fan is disposed on an output shaft of the motor, and the wind inlet ring is disposed at a wind inlet of the fan and fitted with a front cover of the impeller for the fan.
[0013] In order to improve the fan efficiency, a distance δ between the rear wheel disc and the volute close to the rear wheel disc satisfies the following condition: 1 mm<d<10 mm.
[0014] In order to further improve the fan efficiency, the front cover is covered outside the wind inlet ring, and a vertical distance Δ between a front edge of the front cover and an outside wall of the wind inlet ring satisfies the following condition: 0.5 mm<A<5 mm. [0015] Compared with the prior art, the present invention has the following advantages: in the impeller for a fan, a plurality of blades are arranged one by one successively along a circumferential direction of a rear wheel disc; an angle defined between a projection line of the outer edge and the inner edge of a blade and the center of the rear wheel disc satisfies a certain parameter range; an angle defined between a first connecting line connecting the outer edge of a blade and the center of the rear wheel disc and a second connecting line connecting the inner edge of a blade and the center of the rear wheel disc and satisfies a certain parameter range; and, the inner edge of a blade is higher than the outer edge. The impeller for a fan is novel in structure and good in aerodynamic performance. The fan using this impeller is compact in structure, small in size, high in both fan efficiency and air pressure, and large in gradient of the generated negative pressure. When the fan is applied to a range hood, the escape of oil smoke can be prevented effectively, and the oil smoke
- 3 extraction rate of the range hood can be improved greatly.
Brief Description of the Drawings [0016] Fig. 1 is a perspective view of an impeller for a fan according to Embodiment 1 of the present invention;
[0017] Fig. 2 is a top view of the impeller for a fan shown in Fig. 1;
[0018] Fig. 3 is a side view of the impeller for a fan shown in Fig. 1;
[0019] Fig. 4 is a schematic structure view of backward inclination of an air exit of each blade according to Embodiment 1 of the present invention;
[0020] Fig. 5 is a schematic structure view of forward inclination of the air exit of the each blade according to Embodiment 1 of the present invention;
[0021] Fig. 6 is a schematic view of the projection of an air intake of each blade on a meridian plane of the impeller according to Embodiment 1 of the present invention;
[0022] Fig. 7 is a sectional view of the impeller for a fan shown in Fig. 1;
[0023] Fig. 8 is another sectional view of the impeller for a fan shown in Fig. 1;
[0024] Fig. 9 is a schematic view of the projection of each blade on the meridian plane of the impeller according to Embodiment 1 of the present invention;
[0025] Fig. 10 is a perspective view of a fan using the impeller according to Embodiment 1 of the present invention;
[0026] Fig. 11 is an exploded view of the fan shown in Fig. 10;
[0027] Fig. 12 is a sectional view of the fan shown in Fig. 10; and [0028] Fig. 13 is a s perspective view of an impeller for a fan according to Embodiment 2 of the present invention.
Detailed Description of the Preferred Embodiment [0029] To enable a further understanding of the present invention content of the invention herein, refer to the detailed description of the invention and the accompanying drawings below:
[0030] Fig. 1 - Fig. 3 show a preferred Embodiment 1 of an impeller for a fan according to the present invention. In this embodiment, the impeller for a fan is a closed impeller. The impeller comprises a plurality of blades 2, each blade 2 has a top, a bottom, an outer edge 21, and an inner edge 22; a rear wheel disc 1 with a surface, a periphery, and a center, the plurality of blades mounted on the rear wheel disc 1, a first projection line being defined on the rear wheel disc 1 and by the outer edge 21 of each blade 2, a second - 4 projection line being defined on the rear wheel disc 1 and by the inner edge 22 of each blade 2; and a front cover 3 covering the plurality of blades 2. The plurality of blades 2 are disposed between the rear wheel disc 1 and the front cover 3. The bottom of each blade 2 stands on the surface of the rear wheel disc 1.
[0031] In this embodiment, the plurality of blades 2 comprise 10 to 50 blades. The bottom of each blade 2 stands on the surface of the rear wheel disc 1 and the plurality of blades 2 are arranged one by one successively along a circumferential direction of the rear wheel disc 1. The surface of the rear wheel disc 1 is of a planar structure, and each blade 2 has a bottom surface 23 all of which are located in a same plane. The outer edges 21 of each blade 2 disposed adjacent to the periphery of the rear wheel disc 1, that is, the outer edge 21 of each blade is not slanted inward or outward relative to the rear wheel disc 1, and the inner edge 22 of each blade 2 is slanted downwardly toward the center of the rear wheel disc 1.
[0032] The outer edge 21 of each blade 2 is an air exit, and an angle a is defined between the first projection line 21a of each outer edge 21 and a radial line of the rear wheel disc 1 and satisfies the following condition: -60°<a<60°, preferably -30°<a<30°. The direction shown by the arrows in Figs. 4 and 5 is a direction of rotation of the impeller. As shown in Fig. 4, the angle a of the outer edge 21 is positive; and, as shown in Fig. 5, the angle a of the outer edge 21 is negative. In this embodiment, a=0°, that is, the angle of the air exit of each blade is 0°. As shown in Fig. 6, the inner edge 22 of each blade 2 is s an air intake, and an angle β is defined between the second projection line 22a of each inner edge 22 and the radial line of the rear wheel disc 1 and satisfies the following condition: 20°<β<70°. In order to further improve the aerodynamic performance, the included angle β satisfies the following condition: 30°<β<60°. In addition, as shown in Fig. 7, an angle θ is defined between a first connecting line LI connecting the outer edge of a blade and the center of the rear wheel disc 1 and a second connecting line L2 connecting the inner edge of a blade and the center of the rear wheel disc 1 and satisfies the following condition: 10θ<θ<65°, preferably 20°<θ<45°.
[0033] As shown in Fig. 8, the front cover 3 is of a trumpet mouth structure which expands outward from the middle. Specifically, a first arc segment 31, a second arc segment 32 and a linear segment 33 that are smoothly jointed with each other from inside to outside are formed at an intersection of the front cover 3 with a meridian plane of a rotating shaft of the impeller. A ratio of the radius R1 of the first arc segment 31 to the radius R2 of the second arc segment 32 satisfies the following condition: 0.1<Rl/R2<0.6; - 5 and a ratio of the length L of the linear segment 33 to the radius R2 of the second arc segment 32 satisfies the following condition: 0.1<L/R2<0.4. After the above structural parameters are used in the front cover 3, the aerodynamic performance of the impeller may be better. In addition, by the linear segment 33, it is convenient for machining the front cover, and the formation of a boundary layer at an end wall of the front cover can also be controlled.
[0034] As shown in Fig. 8 and Fig. 9, a first vertical height hl of the top Pl of each outer edge 21 is less than a second vertical height h2 of the top P2 of each inner edge 22, and a ratio of the first vertical height hl to the second vertical height h2 satisfies the following condition: 0.2<hl/h2<0.8, preferably 0.4<hl/h2<0.6. Furthermore, each blade 2 has a smooth top surface 24 which is sunken inward in its center, and the top surface 24 is between the top of the inner edges 22 and the top of the outer edges 21.
[0035] Fig. 10 - Fig. 12 show a preferred embodiment of a fan using the impeller for a fan according to Embodiment 1 of the present invention. In this embodiment, the fan comprises a volute 4, a motor 5 and a wind inlet ring 6. The impeller for the fan is disposed inside the volute 4. The rear wheel disc 1 of the impeller for the fan is disposed on an output shaft of the motor 5 and locked by a nut 7. The wind inlet ring 6 is disposed at a wind inlet of the fan. The front cover 3 is covered outside the wind inlet ring 6, and a wind outlet hood 8 is disposed at the wind outlet of the fan.
[0036] In order to improve the fan efficiency, in this embodiment, a distance δ between the rear wheel disc 1 and a wall 41 close to the rear wheel disc 1 satisfies the following condition: 1 mm<6<10 mm; and, a vertical distance Δ between a front edge of the front cover 3 and an outside wall of the wind inlet ring 6 satisfies the following condition: 0.5 mm<A<5 mm. The tests show that the fan efficiency is maximized after the structural parameters of the fan are within the above numerical ranges.
[0037] Embodiment 2:
[0038] Fig. 13 shows Embodiment 2 of the impeller for a fan according to the present invention. In this embodiment, the impeller for a fan is an open impeller. The impeller comprises a rear wheel disc 1 and a plurality of blades 2. Compared with the impeller for a fan in Embodiment 1, in this impeller, the front cover is omitted. The remaining structure is the same as the structure in Embodiment 1 and will not be repeated here.
[0039] The foregoing description merely shows preferred embodiments of the present invention. It should be noted that various modifications or improvements may be made to - 6 the present invention by a person of ordinary skill in the art without departing from the principle of the present invention, for example, the blades of the impeller may be of a planar structure, and these modifications or improvements shall fall into the protection scope of the present invention.

Claims (13)

  1. Claims
    1. An impeller for a fan, comprising:
    a plurality of blades (2), each blade (2) has a top, a bottom, an outer edge (21), and an inner edge (22); and a rear wheel disc (1) with a surface, a periphery, and a center, the plurality of blades mounted on the rear wheel disc (1), a first projection line being defined on the rear wheel disc (1) and by the outer edge (21) of each blade (2), a second projection line being defined on the rear wheel disc (1) and by the inner edge (22) of each blade (2);
    characterized in that, the outer edge (21) of each blade (2) is placed adjacent to the periphery of the rear wheel disc (1) and the inner edge (22) of each blade (2) is adjacent to a center of the rear wheel disc (1), the bottom of each blade (2) stands on the surface of the rear wheel disc (1), and the plurality of blades (2) are arranged one by one successively along a circumferential direction of the rear wheel disc (1);
    the outer edge (21) of each blade (2) is an air exit, and an angle a is defined between the first projection line (21a) of each outer edge (21) and a radial line of the rear wheel disc (1) and satisfies the following condition: -60°<a<60°;
    the inner edge (22) of each blade (2) is s an air intake, and an angle β is defined between the second projection line (22a) of each inner edge (22) and the radial line of the rear wheel disc (1) and satisfies the following condition: 20°<β<70°;
    an angle Θ is defined between a first connecting line (LI) connecting the outer edge of a blade and the center of the rear wheel disc (1) and a second connecting line (L2) connecting the inner edge of a blade and the center of the rear wheel disc (1) and satisfies the following condition: 10°<θ<65°; and, a first vertical height hl of the top (Pl) of each outer edge (21) is less than a second vertical height h2 of the top (P2) of each inner edge (22).
  2. 2. The impeller according to claim 1, characterized in that, the outer edge (21) of each blade (2) is disposed adjacent to the periphery of the rear wheel disc (1);
    the inner edge (22) of each blade (2) is slanted downwardly toward the center of the rear wheel disc (1);
    each blade (2) has a bottom surface (23) all of which are located in a same plane; and, each blade (2) has a smooth top surface (24).
  3. 3. The impeller according to claim 1, characterized in that, a ratio of the first vertical height hl to the second vertical height h2 satisfies the following condition: 0.2<hl/h2<0.8.
    - 8 4. The impeller according to claim 3, characterized in that, the angle a satisfies the following condition: -30°<a<30°; the angle β satisfies the following condition: 30°<β<60°;
    the angle Θ satisfies the following condition: 20°<0<45°; and, the ratio of the first vertical height hl to the second vertical height h2 satisfies the following condition: 0.4<hl/h2<0.6.
    5. The impeller according to claim 1, characterized in that, the plurality of blades (2) comprise 10 to 50 blades.
    6. The impeller according to claim 1, further comprising: a front cover (3) covering the plurality of blades (2);
    a first arc segment (31) and a second arc segment (32) that are jointed with each other from inside to outside are formed at an intersection of the front cover (3) with a meridian plane of a rotating shaft of the impeller; and, a ratio of the radius R1 of the first arc segment (31) to the radius R2 of the second arc segment (32) satisfies the following condition: 0.1<Rl/R2<0.6.
    7. The impeller according to claim 6, characterized in that, a linear segment (33), which is disposed on an outer side of the second arc segment (32) and smoothly jointed with the second arc segment (32), is formed at the intersection of the front cover (3) with the meridian plane of the rotating shaft of the impeller; and, a ratio of the length L of the linear segment (33) to the radius R2 of the second arc segment (32) satisfies the following condition: 0.1<L/R2<0.4.
    8. A fan using the impeller according to claim 6, comprising a volute (4), a motor (5) and a wind inlet ring (6);
    characterized in that, the impeller for the fan is disposed inside the volute (4);
    the rear wheel disc (1) of the impeller for the fan is disposed on an output shaft of the motor (5); and, the wind inlet ring (6) is disposed at a wind inlet of the fan and fitted with a front cover (3) of the impeller for the fan.
    9. The fan according to claim 8, characterized in that, a distance δ between the rear wheel disc (1) and a wall of the volute (41) close to the rear wheel disc (1) satisfies the following condition: 1 mm<8<10 mm.
    - 9 10. The fan according to claim 8, characterized in that, the front cover (3) is covered outside the wind inlet ring (6), and a vertical distance Δ between a front edge of the front cover (3) and an outside wall of the wind inlet ring (6) satisfies the following condition: 0.5 mm<A<5 mm.
    - 10 1/13
    FIG.1
    2/13
    FIG.2
    3/13
    FIG.3
  4. 4/13
    FIG.4
  5. 5/13
    FIG.5
  6. 6/13
    FIG.6
  7. 7/13
    FIG.7
  8. 8/13
    FIG.8
  9. 9/13
    FIG.9
  10. 10/13
    FIG.10
  11. 11/13
    FIG.11
  12. 12/13
    FIG.12
  13. 13/13
    FIG.13
AU2017215225A 2016-02-01 2017-01-24 Fan impeller and fan using fan impeller Active AU2017215225C1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610072261.3 2016-02-01
CN201610072261.3A CN107023509B (en) 2016-02-01 2016-02-01 Fan impeller and fan adopting same
PCT/CN2017/000133 WO2017133370A1 (en) 2016-02-01 2017-01-24 Fan impeller and fan using fan impeller

Publications (3)

Publication Number Publication Date
AU2017215225A1 true AU2017215225A1 (en) 2018-08-16
AU2017215225B2 AU2017215225B2 (en) 2020-01-02
AU2017215225C1 AU2017215225C1 (en) 2020-04-02

Family

ID=59500558

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2017215225A Active AU2017215225C1 (en) 2016-02-01 2017-01-24 Fan impeller and fan using fan impeller

Country Status (5)

Country Link
US (1) US20190010955A1 (en)
CN (1) CN107023509B (en)
AU (1) AU2017215225C1 (en)
CA (1) CA3013253C (en)
WO (1) WO2017133370A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108869358B (en) * 2018-07-09 2023-09-01 广东美的环境电器制造有限公司 Fan with fan body
CN109595186B (en) * 2018-12-07 2023-09-19 佛山市南海九洲普惠风机有限公司 High-efficiency fan
CN109707666B (en) * 2019-03-13 2021-07-27 河北华晟环保设备科技有限公司 Super-high power type fan impeller
US10905585B1 (en) 2020-02-21 2021-02-02 Robert Sabin Respiratory therapeutic electric heat source face mask
CN114607624A (en) * 2022-03-16 2022-06-10 惠州市艾美珈磁电技术股份有限公司 Volute centrifugal fan
CN116928135B (en) * 2023-09-18 2023-12-19 绍兴智新机电科技有限公司 High-efficient low noise fan is used to unmanned street sweeper

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5328332A (en) * 1993-05-25 1994-07-12 Chiang Swea T Wheel fan of range hood
WO1999058857A1 (en) * 1998-05-13 1999-11-18 Matsushita Electric Industrial Co., Ltd. Electric blower and vacuum cleaner using it
US7597541B2 (en) * 2005-07-12 2009-10-06 Robert Bosch Llc Centrifugal fan assembly
JP5879103B2 (en) * 2011-11-17 2016-03-08 株式会社日立製作所 Centrifugal fluid machine
CN202350157U (en) * 2011-12-12 2012-07-25 台达电子工业股份有限公司 Extraction hood impeller and extraction hood applying extraction hood impeller
CN203655701U (en) * 2013-05-27 2014-06-18 伊莱克斯(杭州)家用电器有限公司 Impeller of range hood
CN203374524U (en) * 2013-06-28 2014-01-01 中国北车集团大连机车研究所有限公司 Centrifuging fan set for high speed EMU traction motor cooling
CN204082659U (en) * 2014-08-06 2015-01-07 宁波方太厨具有限公司 A kind of centrifugal blower of range hood
CN104165158B (en) * 2014-08-06 2016-09-21 宁波方太厨具有限公司 A kind of centrifugal blower of range hood
CN104632700B (en) * 2015-02-06 2017-01-11 浙江理工大学 Dual-impeller device of centrifugal blower
CN205401224U (en) * 2016-02-01 2016-07-27 宁波方太厨具有限公司 Fan wheel and adopt fan of this impeller

Also Published As

Publication number Publication date
WO2017133370A1 (en) 2017-08-10
CA3013253A1 (en) 2017-08-10
AU2017215225B2 (en) 2020-01-02
AU2017215225C1 (en) 2020-04-02
CN107023509A (en) 2017-08-08
US20190010955A1 (en) 2019-01-10
CA3013253C (en) 2020-12-01
CN107023509B (en) 2020-08-11

Similar Documents

Publication Publication Date Title
AU2017215225B2 (en) Fan impeller and fan using fan impeller
EP2975269B1 (en) Centrifugal compressor
WO2017133371A1 (en) Ceiling-mounted exhaust hood
TWI503484B (en) Centrifugal fan
CN104235072B (en) Centrifugal blower and air purifier with centrifugal blower
CN106122090B (en) Axial-flow windwheel and axial flow blower
JP2004506141A (en) Centrifugal fan
CN208804046U (en) Centrifugal blower and range hood
TWI414681B (en) Impeller
CN205977816U (en) Water conservancy diversion circle, centrifugal fan and air conditioner
CN205401224U (en) Fan wheel and adopt fan of this impeller
JPH05149297A (en) Centrifugal fan
JP5192060B2 (en) compressor
CN110857789A (en) Fume exhaust fan
CN114718904A (en) Pneumatic structure, compressor, dust catcher
JP6019701B2 (en) Turbocharger
CN109707644A (en) Axis galvanic electricity machine and air processor with it
CN220791571U (en) Impeller and fan capable of reducing turbulence
CN219035115U (en) Mixed flow wind wheel, wind wheel assembly, mixed flow fan and fan
CN209483639U (en) Centrifugal fan
JP7348500B2 (en) turbo fan
JP5892640B2 (en) Chamber structure attached to the inlet of a multiblade fan
TWM536702U (en) Multi-blade fan
CN201582175U (en) Anti-backflow structure of centrifugal fan
TWI667417B (en) Multi-wing fan

Legal Events

Date Code Title Description
DA2 Applications for amendment section 104

Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 18 DEC 2019

DA3 Amendments made section 104

Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT FILED 18 DEC 2019

FGA Letters patent sealed or granted (standard patent)