AU2016102327A4 - Saw Blade Positioning Mechanism for Annular Sawing Machine - Google Patents

Saw Blade Positioning Mechanism for Annular Sawing Machine Download PDF

Info

Publication number
AU2016102327A4
AU2016102327A4 AU2016102327A AU2016102327A AU2016102327A4 AU 2016102327 A4 AU2016102327 A4 AU 2016102327A4 AU 2016102327 A AU2016102327 A AU 2016102327A AU 2016102327 A AU2016102327 A AU 2016102327A AU 2016102327 A4 AU2016102327 A4 AU 2016102327A4
Authority
AU
Australia
Prior art keywords
saw blade
protective case
annular
disposed
annular saw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2016102327A
Inventor
Pan-Chung Hsieh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lee Yeong Industrial Co Ltd
Original Assignee
LEE YEONG INDUSTRIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LEE YEONG INDUSTRIAL CO Ltd filed Critical LEE YEONG INDUSTRIAL CO Ltd
Priority to AU2016102327A priority Critical patent/AU2016102327A4/en
Application granted granted Critical
Publication of AU2016102327A4 publication Critical patent/AU2016102327A4/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sawing (AREA)

Abstract

A saw blade positioning mechanism (20) for an annular sawing machine (10) includes a protective case (30), two first driven wheels (40), two second driven wheels (50), and an adjustment component (60). The protective case (30) conceals a portion of an 5 annular saw blade (18). The first and second driven wheels (40, 50) are rotatably disposed at two opposing ends of the protective case (30) and abut against two opposing lateral sides of the annular saw blade (18), respectively. The adjustment component (60) is disposed at the protective case (30) to drive the protective case (30) to move in the radial direction of the annular saw blade (18) relative to the annular saw blade (18). The position 10 of the protective case (30) is adjusted with the adjustment component (60) such that the first and second driven wheels (40, 50) get positioned in place synchronously with displacement of the protective case (30). The protective case (30) can be demounted so that the first and second driven wheels (40, 50) are simultaneously removed and changed. C= C=

Description

2016102327 27 Dec 2016 7533lnno P/00/009 Regulation 3.2
AUSTRALIA
Patents Act 1990
INNOVATION SPECIFICATION FOR AN INVENTION ENTITLED
Invention title: Machine Saw Blade Positioning Mechanism for Annular Sawing Name of Applicant: Lee Yeong Industrial Co., Ltd
Address for Service A.P.T. Patent and Trade Mark Attorneys PO Box 833 Blackwood, S.A. 5051
The invention is described in the following statement: 1
SAW BLADE POSITIONING MECHANISM FOR ANNULAR SAWING MACHINE 2016102327 27 Dec 2016
BACKGROUND OF THE INVENTION
[0001] 1. Field of the Invention 5 [0002] The present invention relates to annular sawing machines and, more particularly, to a saw blade positioning mechanism for an annular sawing machine.
[0003] 2. Description of the Prior Art [0004] An annular sawing machine is intended to cut stone and operated with a motor for driving an active wheel to rotate. The active wheel is engaged with an annular saw 10 blade to drive the annular saw blade to rotate together with the active wheel, thereby causing the annular saw blade to cut stone.
[0005] To be positioned in place during an assembly process, the annular saw blade is disposed between the active wheel and two driven wheels to allow the active wheel to exert an inward force on the annular saw blade and allow the two driven wheels to exert 15 an outward force on the annular saw blade. It is only when the two forces are in equilibrium that the annular saw blade rotates smoothly. However, according to the prior art, a repair performed on the annular saw blade not only entails demounting and mounting the two driven wheels separately, but also necessitates adjustment in the positions of the two driven wheels upon completion of the mounting process. If one of the 20 driven wheels is dislocated, the annular saw blade will rotate badly or even be predisposed to structural damage. In view of this, the annular saw blade disclosed in the prior art is confronted with two problems: complicated demounting and mounting processes, and low precision of assembly.
25 SUMMARY OF THE INVENTION 2 [0006] It is an objective of the present invention to provide a saw blade positioning mechanism for an annular sawing machine so that the annular sawing machine not only demonstrates high precision when assembled, but is also easy to demount and mount to the advantage of maintenance. 2016102327 27 Dec 2016 5 [0007] In order to achieve the above and other objectives, the present invention provides a saw blade positioning mechanism for an annular sawing machine. The annular sawing machine comprises a driving source, an annular saw blade, and an active wheel. The annular saw blade has a first lateral side and a second lateral side facing away from the first lateral side. The first lateral side has positioning annular grooves. The active 10 wheel is connected to the driving source and engaged with an annular surface of the annular saw blade such that the active wheel is driven by the driving source to drive the annular saw blade to rotate. The saw blade positioning mechanism of the present invention comprises a protective case, two opposing first driven wheels, two opposing second driven wheels, and an adjustment component. The protective case is movable in the radial 15 direction of the annular saw blade, movably mounted on an outer circumferential surface of the driving source, and adapted to conceal a portion of the annular saw blade. The two first driven wheels are rotatably disposed at the protective case, positioned to flank the active wheel, and insertedly engaged with the positioning annular grooves of the first lateral side of the annular saw blade; hence, the two first driven wheels are driven by the 20 annular saw blade to rotate. The two second driven wheels are rotatably disposed at the protective case, positioned to flank the active wheel, and abutting against the second lateral side of the annular saw blade; hence, the two second driven wheels are driven by the annular saw blade to rotate. The adjustment component is disposed at the protective case to drive the protective case to move in the radial direction of the annular saw blade 25 relative to the annular saw blade. 3 [0008] To mount the saw blade positioning mechanism, the position of the protective case is adjusted with the adjustment component such that the first and second driven wheels get positioned in place synchronously with displacement of the protective case. Hence, it is not necessary to adjust the driven wheels one by one. The annular sawing 2016102327 27 Dec 2016 5 machine demonstrates high precision when assembled. The protective case can be demounted so that the first and second driven wheels are simultaneously removed and changed, thereby enhancing the ease of demounting, mounting, and maintenance.
[0009] According to the present invention, the protective case has an active wheel recess and two guide shaft holes, with the active wheel recess adapted to contain the active 10 wheel and disposed between the two guide shaft holes, allowing the two guide shaft holes of the protective case to each movably fit around a guide shaft, with the two guide shafts fixed to the outer circumferential surface of the driving source. Hence, the protective case enhance the stability of operation by means of the two guide shafts.
[0010] According to the present invention, the protective case has a receiving recess, 15 and the adjustment component has a fixing plate, a knob, and two resilient elements, with the fixing plate movably disposed in the receiving recess of the protective case and having an adjustment screw hole, with the knob having a knob head and an adjustment screw connected to the knob head, with the knob head disposed outside the receiving recess of the protective case, with the adjustment screw screwed to the adjustment screw hole of the 20 fixing plate, wherein the adjustment screw has an end connected to the knob head and another end abutting against a wall of the receiving recess, wherein the two resilient elements each have an end abutting against the fixing plate and another end abutting against the wall of the receiving recess. With the adjustment screw being screwed to the adjustment screw hole of the fixing plate, the knob is rotated to drive the fixing plate to 25 move and thereby compress the two resilient elements; hence, the two resilient elements 4 push the protective case, causing the protective case to move in the radial direction of the annular saw blade. 2016102327 27 Dec 2016 [0011] According to the present invention, the protective case further has two opposing first fixing holes, and the fixing plate further has two opposing second fixing 5 holes which flank the adjustment screw hole, with the adjustment component having two fixing elements, wherein the two fixing elements each have an end insertedly disposed in a corresponding one of the first fixing holes of the protective case and another end fixed to a corresponding one of the second fixing holes of the fixing plate, wherein the two resilient elements fit around the fixing elements, respectively. Hence, the two resilient elements are 10 fixed in place by the two fixing elements, respectively.
[0012] Fine structures, features, assembly, and operation of the saw blade positioning mechanism provided by the present invention are illustrated by specific embodiments and described below. However, persons skilled in the art understand that the description and specific embodiments of the present invention are illustrative of the present invention 15 rather than restrictive of the claims of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] FIG. 1 is a perspective view of a saw blade positioning mechanism for an annular sawing machine according to the present invention; 20 [0014] FIG. 2 is a partial perspective view of the saw blade positioning mechanism according to the present invention; [0015] FIG. 3 is a perspective view of the saw blade positioning mechanism according to the present invention; [0016] FIG. 4 is a partial exploded view of the saw blade positioning mechanism 25 according to the present invention; 5 [0017] FIG. 5 is a partial top view of the saw blade positioning mechanism according to the present invention; and 2016102327 27 Dec 2016 [0018] FIG. 6 is a front view of the saw blade positioning mechanism according to the present invention. 5
DETAILED DESCRIPTION OF THE EMBODIMENT OF THE INVENTION
[0019] Referring to FIG. 1 and FIG. 2, an annular sawing machine 10 comprises a handle 12. The front end of the handle 12 is connected to a driving source 14. The front end of the driving source 14 is connected to an active wheel 16. The active wheel 16 is 10 engaged with an annular surface of an annular saw blade 18 such that the active wheel 16 is driven by the driving source 14 to rotate, thereby allowing the driving source 14 to drive the annular saw blade 18 to rotate together with the driving source 14. The annular saw blade 18 has a first lateral side 181 and a second lateral side 182 facing away from the first lateral side 181 (shown in FIG. 6). The first lateral side 181 has three equally spaced 15 positioning annular grooves 183.
[0020] Referring to FIG. 3 and FIG. 4, the present invention provides a saw blade positioning mechanism 20 which comprises a protective case 30, two opposing first driven wheels 40, two opposing second driven wheels 50, and an adjustment component 60.
[0021] The protective case 30 has a first case body 31 and a second case body 32. The 20 first case body 31 is disposed above the first lateral side 181 of the annular saw blade 18.
The second case body 32 is disposed below the second lateral side 182 of the annular saw blade 18. The first and second case bodies 31, 32 are connected head-to-head such that the protective case 30 is adapted to conceal a portion of the annular saw blade 18. Referring to FIG. 4, a receiving recess 33 is disposed centrally at the outer edge of the first case body 25 31. Two opposing first fixing holes 34 are disposed on the wall of the receiving recess 33.
Two opposing guide shaft holes 36 are disposed centrally at the inner edge of the first case 6 body 31. The two guide shaft holes 36 are not only axially parallel to the first fixing holes 34 but also parallel to the radial direction of the annular saw blade 18. The two guide shaft holes 36 of the protective case 30 each movably fit around a guide shaft 37. Two guide shafts 37 are fixed to the outer circumferential surface of the driving source 14, as shown 5 in FIG. 1 and FIG. 2, such that the protective case 30 can move in the axial direction of the two guide shafts 37 (i.e., the radial direction of the annular saw blade 18) relative to the annular saw blade 18. An active wheel recess 38 is disposed centrally at the inner edge of the second case body 32 and between the two guide shaft holes 36 of the first case body 31 to contain the active wheel 16. 2016102327 27 Dec 2016 10 [0022] The two first driven wheels 40 are mounted at two ends of the first case body 31 of the protective case 30, respectively, to flank the active wheel 16. The two first driven wheels 40 are insertedly engaged with the positioning annular grooves 183 of the first lateral side 181 of the annular saw blade 18, as shown in FIGs. 1, 2 and 6. The protective case 30 undergoes a displacement to exert an outward force on the annular saw 15 blade 18; hence, the annular saw blade 18 is positioned between the active wheel 16 and the two first driven wheels 40. Accordingly, in the course of its rotation, the annular saw blade 18 drives the two first driven wheels 40 to rotate.
[0023] The two second driven wheels 50 are mounted at two ends of the second case body 32 of the protective case 30, respectively, to flank the active wheel 16. The two 20 second driven wheels 50 abut against the second lateral side 182 of the annular saw blade 18, as shown in FIG. 6; hence, the two second driven wheels 50 not only lend support to the annular saw blade 18, but are also driven by the annular saw blade 18 to therefore rotate together with the annular saw blade 18.
[0024] The adjustment component 60 has a fixing plate 61 and a knob 64, as shown in 25 FIG. 4 and FIG. 5. The fixing plate 61 is disposed in the receiving recess 33 of the first case body 31 of the protective case 30. The fixing plate 61 has two second fixing holes 62 7 and an adjustment screw hole 63 disposed between the two second fixing holes 62. The knob 64 has a knob head 65 and an adjustment screw 66. One end of the knob head 65 is disposed outside the receiving recess 33 of the first case body 31 of the protective case 30. The other end of the knob head 65 is disposed in the receiving recess 33 of the first case 5 body 31 of the protective case 30. The adjustment screw 66 is screwed to the adjustment screw hole 63 of the fixing plate 61 and prevented from separating from the fixing plate 61 by a fastener 67. One end of the adjustment screw 66 is connected to the knob head 65. The other end of the adjustment screw 66 abuts against the wall of the receiving recess 33 of the first case body 31 of the protective case 30. The adjustment component 60 further 10 has two fixing elements 68 and two resilient elements 69. The two fixing elements 68 each have one end insertedly disposed in a corresponding one of the first fixing holes 34 of the protective case 30. The two fixing elements 68 each have the other end inserted disposed in and fixed to a corresponding one of the second fixing holes 62 of the fixing plate 61. The two resilient elements 69 fit around the fixing elements 68, respectively. The two 2016102327 27 Dec 2016 15 resilient elements 69 each have one end abutting against the fixing plate 61. The two resilient elements 69 each have the other end abutting against the wall of the receiving recess 33 of the protective case 30. With the adjustment screw 66 being screwed to the adjustment screw hole 63 of the fixing plate 61, the knob 64 is rotated to drive the fixing plate 61 to move in the axial direction of the adjustment screw 66 and thereby compress 20 the two resilient elements 69; hence, the two resilient elements 69 push the protective case 30, causing the protective case 30 to move in the radial direction of the annular saw blade 18.
[0025] To repair the saw blade positioning mechanism 20, a user demounts the two guide shafts 37 from the outer circumferential surface of the driving source 14 and then 25 removes the protective case 30 and the first and second driven wheels 40, 50. In doing so, not only can the user change just a damaged part, but the demounting process is also easy 8 and convenient, thereby enhancing the ease of maintenance. Upon completion of maintenance, the user mounts the protective case 30 on the driving source 14 by means of the two guide shafts 37, adjusts the position of the protective case 30 by means of the adjustment component 60 to ensure that the two first driven wheels 40 are insertedly 5 engaged with the positioning annular grooves 183 of the annular saw blade 18 firmly, and exerts an outward force on the annular saw blade 18 to finalize the positioning of the annular saw blade 18. At this point in time, the two second driven wheels 50 adjust their own positions in response to the displacement of the protective case 30, so as to support the annular saw blade 18. Hence, the aforesaid assembly and adjustment are done in one 10 step (by contrast, the prior art discloses mounting and adjusting the driven wheels one by one), so as to not only enhance the ease of demounting, mounting, and maintenance, but also enable the annular sawing machine to demonstrate high precision when assembled. 2016102327 27 Dec 2016 9

Claims (4)

  1. WHAT IS CLAIMED IS:
    1. A saw blade positioning mechanism for an annular sawing machine, the annular sawing machine comprising a driving source, an annular saw blade, and an active wheel, with the annular saw blade having a first lateral side and a second lateral side facing away from the first lateral side, with the first lateral side having positioning annular grooves, with the active wheel connected to the driving source and engaged with an annular surface of the annular saw blade, the saw blade positioning mechanism comprising: a protective case movable in a radial direction of the annular saw blade, disposed on an outer circumferential surface of the driving source, and adapted to conceal a portion of the annular saw blade; two first driven wheels rotatably disposed at the protective case, positioned to flank the active wheel, and insertedly engaged with the positioning annular grooves of the first lateral side of the annular saw blade; two second driven wheels rotatably disposed at the protective case, positioned to flank the active wheel, and abutting against the second lateral side of the annular saw blade; and an adjustment component disposed at the protective case to drive the protective case to move in the radial direction of the annular saw blade relative to the annular saw blade.
  2. 2. The saw blade positioning mechanism for an annular sawing machine according to claim 1, wherein the protective case has an active wheel recess and two guide shaft holes, with the active wheel recess adapted to contain the active wheel and disposed between the two guide shaft holes, allowing the two guide shaft holes of the protective case to each movably fit around a guide shaft, with the two guide shafts fixed to the outer circumferential surface of the driving source.
  3. 3. The saw blade positioning mechanism for an annular sawing machine according to claim 2, wherein the protective case has a receiving recess, and the adjustment component has a fixing plate, a knob, and two resilient elements, with the fixing plate movably disposed in the receiving recess of the protective case and having an adjustment screw hole, with the knob having a knob head and an adjustment screw connected to the knob head, with the knob head disposed outside the receiving recess of the protective case, with the adjustment screw screwed to the adjustment screw hole of the fixing plate, wherein the adjustment screw has an end connected to the knob head and another end abutting against a wall of the receiving recess, wherein the two resilient elements each have an end abutting against the fixing plate and another end abutting against the wall of the receiving recess.
  4. 4. The saw blade positioning mechanism for an annular sawing machine according to claim 3, wherein the protective case further has two opposing first fixing holes, and the fixing plate further has two opposing second fixing holes which flank the adjustment screw hole, with the adjustment component having two fixing elements, wherein the two fixing elements each have an end insertedly disposed in a corresponding one of the first fixing holes of the protective case and another end fixed to a corresponding one of the second fixing holes of the fixing plate, wherein the two resilient elements fit around the fixing elements, respectively.
AU2016102327A 2016-12-27 2016-12-27 Saw Blade Positioning Mechanism for Annular Sawing Machine Active AU2016102327A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2016102327A AU2016102327A4 (en) 2016-12-27 2016-12-27 Saw Blade Positioning Mechanism for Annular Sawing Machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2016102327A AU2016102327A4 (en) 2016-12-27 2016-12-27 Saw Blade Positioning Mechanism for Annular Sawing Machine

Publications (1)

Publication Number Publication Date
AU2016102327A4 true AU2016102327A4 (en) 2017-02-02

Family

ID=57908630

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2016102327A Active AU2016102327A4 (en) 2016-12-27 2016-12-27 Saw Blade Positioning Mechanism for Annular Sawing Machine

Country Status (1)

Country Link
AU (1) AU2016102327A4 (en)

Similar Documents

Publication Publication Date Title
US9050663B2 (en) Hand-held power tool with a quick-clamping device for a working element
EP3345728B1 (en) Hand-held tool and clamping device thereof
US10434585B2 (en) Saw blade positioning mechanism for annular sawing machine
CN101003125A (en) Mounting system for grinding wheels and the like
KR102414014B1 (en) Cutting wheel disassembling and assembling device
GB2454873A (en) Power Hand Tool
GB2558555A (en) Saw blade positioning mechanism for annular sawing machine
EP3769914B1 (en) Grinding head for floor grinding machine and method of setting a belt tensioner
AU2016102327A4 (en) Saw Blade Positioning Mechanism for Annular Sawing Machine
JP6378800B2 (en) Workpiece processing equipment
WO2006043170A3 (en) A machining head for machine tools with a shaft with low thermal expansion coefficient
KR20150062293A (en) A Deburring machine
JP2006321476A (en) Improved tool for easily mounting tire to rim
KR20120103504A (en) Grinding machine for optical glass and associated method of grinding
JP2011067896A (en) Chucking device of wheel lathe for railway vehicle
US7569006B1 (en) Tool pots mounting structure for a tool magazine
JP6411985B2 (en) Rotating shaft support device with adjusting mechanism
KR100653511B1 (en) Turret tool apparatus adjustable the forward and backward positions of drive shaft which drive the driven-tool
KR200490083Y1 (en) Tool change driving apparatus of synchronous cutting machine
CN210731198U (en) Knife flywheel device and silicon steel sheet cutting machine using same
US6866078B1 (en) Sliding carriage for vertical blind
KR200372048Y1 (en) High speed cutting machine for horizontal adjusting angle
CN206254338U (en) The positioning mechanism for saw blade of trepan machine
CN110605432A (en) Knife flywheel device and silicon steel sheet cutting machine using same
FR3061448A3 (en) SAW BLADE POSITIONING MECHANISM FOR CIRCULAR SAW MACHINE

Legal Events

Date Code Title Description
FGI Letters patent sealed or granted (innovation patent)