AU2015264932A1 - Mesenchymal stem cells expressing TNF-alpha receptor - Google Patents

Mesenchymal stem cells expressing TNF-alpha receptor Download PDF

Info

Publication number
AU2015264932A1
AU2015264932A1 AU2015264932A AU2015264932A AU2015264932A1 AU 2015264932 A1 AU2015264932 A1 AU 2015264932A1 AU 2015264932 A AU2015264932 A AU 2015264932A AU 2015264932 A AU2015264932 A AU 2015264932A AU 2015264932 A1 AU2015264932 A1 AU 2015264932A1
Authority
AU
Australia
Prior art keywords
cells
mesenchymal stem
tnfri
stem cells
transfected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2015264932A
Inventor
Simon Bubnic
Diane Carter
Alla Danilkovitch
Michelle Marcelino
Rodney Monroy
Alicia Tyrell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mesoblast International SARL
Original Assignee
Mesoblast International SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2012216549A external-priority patent/AU2012216549B2/en
Application filed by Mesoblast International SARL filed Critical Mesoblast International SARL
Priority to AU2015264932A priority Critical patent/AU2015264932A1/en
Assigned to Mesoblast International Sarl reassignment Mesoblast International Sarl Amend patent request/document other than specification (104) Assignors: FB RICE
Publication of AU2015264932A1 publication Critical patent/AU2015264932A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Mesenchymal stem cells which express TNF-a receptor Type I in an amount of at least 13 pg/106 cells. Such mesenchymal stem cells inhibit the proliferation of lymphocytes and may be employed, in particular, in the treatment of graft-versus-host disease.

Description

MESENCHYMAL STEM CELLS EXPRESSING TNF-a RECEPTORS This is a divisional of AU 2012216549, which is a divisional of AU 2011202952. The present application claims priority based on application Serial No. 60/759,157, filed January 13, 2006, the contents of which are incorporated by 5 reference in their entirety. This invention relates to mesenchymal stem cells. More particularly, this invention relates to mesenchymal stem cells which express tumor necrosis factor alpha (TNF-a) receptors, and in particular, the tumor necrosis factor-alpha (TNF-a) receptor Type I (TNFRI), in an amount of at least 13 pg/10 6 cells. Such 10 mesenchymal stem cells inhibit lymphocyte proliferation. Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate readily into lineages including osteoblasts, myocytes, chondrocytes, and adipocytes (Pittenger, et al., Science, Vol. 284, pg. 143 (1999); Haynesworth, et al., gne, Vol. 13, pg. 69 (1992); Prockop, Science, Vol. 276, pg. 71 (1997)). In 15 vitro studies have demonstrated the capability of MSCs to differentiate into muscle (Wakitani, et al., Muscle Nerve, Vol. 18, pg. 1417 (1995)), neuronal-like precursors (Woodbury, et al., J. Neurosci. Res., Vol. 69, pg. 908 (2002); Sanchez-Ramos, et al., Exp. Neurol., Vol. 171 , pg. 109 (2001)), cardiomyocytes (Toma, et aL, Circulation, Vol. 105, pg. 93 (2002); Fakuda, Artif. Organs, Vol. 25, pg. 187 (2001)) 20 and possibly other cell types. In addition, MSCs have been shown to provide effective feeder layers for expansion of hematopoietic stem cells (Eaves, et al., Ann N.Y. Acad. Sci., Vol. 938, pg. 63 (2001); Wagers, et al., Gene Therapy, Vol. 9, pg. 606 (2002)). Recent studies with a variety of animal models have shown that MSCs may be useful in the repair or regeneration of damaged bone, cartilage, meniscus or 25 myocardial tissues (DeKok, et al., Clin. Oral Implants Res., Vol. 14, pg. 481 (2003)); Wu, et al., Transplantation, Vol. 75, pg. 679 (2003); Noel, et al., Curr. Opin. Investia. Drugs, Vol. 3, pg, 1000 (2002); Ballas, et al., J. Cell. Biochem. Supl., Vol. 38, pg. 20 (2002); Mackenzie, et al., Blood Cells Mol. Dis.. Vol. 27, pgs. 601-604 (2001)). Several investigators have used MSCs with encouraging results for transplantation 30 in animal disease models including osteogenesis imperfecta (Pereira, et al., Proc. Nat. Acad. Sci., Vol. 95, pg. 1142 (1998)), parkinsonism (Schwartz, et al., Hum Gene Ther., Vol. 10, pg. 2539 (1999)), spinal cord injury (Chopp, et al., Neuroreport, Vol. 11 , pg. 3001 (2000); Wu, et al., J. Neurosci. Res., Vol. 72, pg. 393 (2003)) and cardiac disorders (Tomita, et al., Circulation, Vol. 100, pg. 247 (1999). Shake, et al., 35 Ann. Thorac. Surg., Vol. 73, pg. 1919 (2002)). Importantly, promising results also have been reported in clinical trials for osteogenesis imperfecta
I
(Horowitz, et at, Blood, Vol. 97, pg. 1227 (2001); Horowitz, et al. Proc. Nat. Acad. Sc., Vol. 99, pg. 8932 (2002)) and enhanced engraftment of heterologous bone marrow transplants (Frassoni, et al., Int. Society for Cell Therapy, SA006 (abstract) (2002); Koc, et al:, J. Clin. Oncol., Vol. 18, pgs. 307-316 (2000)). 5 In addition, in vitro studies from different laboratories have shown that MSCs can inhibit T-cell proliferation either in mixed lymphocyte cultures or by other stimuli such as antigens and mitogens (Di Nicola, et al., Blood, Vol. 99, pgs. 3638-3843 (2002); Tse, et al., Transplantation, Vol. 75, pgs. 389-397 (2003); Aggarwal, et at, Blood, Vol. 105, pgs. 1815 1822 (2005)). Recent in vitro data demonstrate further that MSCs decrease the secretion 10 of pro-inflammatory cytokines, tumor necrosis factor-a (TNF-a), and interferon-y (IFN-y), and simultaneously increase production of anti-inflammatory cytokines Interleukin-10 (IL 10) and Interleukin-4 (IL-4) by immune cells. (Aggarwal, 2005). These results indicate that due to immunomodulatory and anti-inflammatory activities, MSCs can be beneficial for treatment of immunological responses which occur in graft-versus-host disease (GVHD), 15 solid organ transplantation, and autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. A clinical case report demonstrating the therapeutic effect of MSCs for acute GVHD supports strongly this hypothesis. (Le Blanc, et at., The Lancet, Vol. 363, .pgs. 1439-1441 (2004).) The TNF-a receptors are expressed on the surface of mesenchymal stem cells. 20 Accumulated data Indicate that TNF-a is an important regulator of mesenchymal stem cell function. Incubation of TNF-a with human mesenchymal stem cells in culture upregulates prostaglandin E2 (PGE 2 ) and keratinocyte growth factor (KGF) secretion, induces indoleamine 2,3 deoxygenase (IDO) enzyme activity and stimulates cell migration. TNF-a has been shown to be present at wound and inflammatory sites, especially in organs 25 targeted by graft-versus-host disease. (Koide, et al., Transplantation, Vol. 64, pgs. 518 524 (1997); Kuroiwa, et al., J. Clin. Invest., Vol. 107, pgs. 1365-1373 (2001); Deans, et al., ExD. Hematol., Vol. 28, pgs. 875-884 (2002); Ellison, et al., J. Clin. Immunol., Vol. 24, pgs. 197-211 (2004)). Thus, such data indicate that expression of TNF-a receptors by mesenchymal stem cells may be critical for immunosuppressive, immunomodulatory, anti 30 inflammatory, tissue-repairing, or wound-healing activities, as well as migration to sites of inflammation. There are two types of TNF-a receptors, or TNFRs: Type I (TNFRI), also known as p55, and Type II (TNFRII), also known as p75. (Tartaglia, et al., Proc. Nat. Acad. Sci, Vol. 2 88, pgs. 9292-9296 (1991).) Both types of TNF-a receptors are present on MSCs; however, TNFRI is the predominant type. (Vancheri, et al., Am. J. Respir. Cell Mol. Biol., Vol 22, pgs. 628-634 (2000); Debets, et al., Cytokine, Vol. 8, pgs. 80-88 (1996).) The invention now will be described with respect to the drawings wherein: 5 Figure 1 is a graph of the correlation between TNFRI expression and the ability of MSCs to inhibit PBMC proliferation in vitro; Figure 2 is a graph showing TNFRI expression by human mesenchymal stem cells stored at -80*C, -70 0 C, -60 0 C, and -50*C; Figure 3 is a graph showing TNFRI expression and the ability to inhibit PBMC 10 proliferation in vitro, of human mesenchymal stem cells stored at -80'C and -50OC; and Figure 4 is a graph showing TNFRI expression by human mesenchymal stem cells stored at -135*C or below, and then thawed and kept at room temperature for 6, 8, 24. or 32 hours. In accordance with an aspect of the present invention, there Is provided a 15 composition comprising mesenchymal stem cells. The mesenchymal stem cells express the TNF-d receptor Type I (TNFRI) In an amount effective to inhibit the proliferation of lymphocytes. In one embodiment, the mesenchymal stem cells express TNFRI in an amount of at least 13 pg/10 cells. In another embodiment, the mesenchymal stem cells express TNFRI in an amount of at least 15 pg/10 6 cells. In yet another embodiment, the 20 mesenchymal stem cells express TNFRI In an amount of at least 18 pg/10" cells. Although the scope of the present invention is not to be limited to any theoretical reasoning, Applicants have found that mesenchymal stem cells which express the TNF- d receptor Type I in an amount from at least 13 pg/10 6 cells inhibit the proliferation of lymphocytes. Such mesenchymal stem cells are particularly useful in inhibiting immune 25 responses, and more particularly such mesenchymal stem cells are useful in the treatment of graft-versus-host disease; solid organ transplant rejection such as, for example, heart transplant rejection, liver transplant rejection, pancreas transplant rejection, intestine transplant rejection, and kidney transplant rejection; and autoimmune diseases such as, for example, rheumatoid arthritis, multiple sclerosis, Type I diabetes, Crohn's disease, 30 Guillain-Barr6 syndrome, lupus erythematosus, myasthenia gravis, optic neuritis, psoriasis, Graves' disease, Hashimoto's disease, Ord's thyroiditis, aplastic anemia, Reiter's syndrome, autoimmune hepatitis, primary biliary cirrhosis, antiphospholipid antibody syndrome, opsoclonus myoclonus syndrome, temporal arteritis, acute disseminated 3 encephalomyelitis, Goodpasture's syndrome, Wegener's granulomatosis, coellac disease, pemphigus, polyarthritis, warm autoimmune hemolytic anemia, and scleroderma. In one embodiment, the mesenchymal stem cells are obtained from a mammal. The mammal may be a primate, including human and non-human primates. 5 The mesenchymal stem cells may be a homogeneous composition or may be a mixed cell population enriched in MSCs. Homogeneous mesenchymal stem cell compositions may be obtained by culturing adherent marrow or periosteal cells, and the mesenchymal stem cells may be identified by specific cell surface markers which are identified with unique monoclonal antibodies. A method for obtaining a cell population 10 enriched in mesenchymal stem cells is described, for example, In U.S. Patent No. 5,486,359. Alternative sources for mesenchymal stem cells include, but are not limited to, blood, skin, cord blood, muscle, fat, bone, and perichondrium. The amount of cellular TNF-a receptor, such as TNF-a receptor Type I, that is expressed in a culture of mesenchymal stem cells may be determined by methods known 15 to those skilled in the art. Such methods include, but are not limited to, quantitative assays such as quantitative ELISA assays, for example. It is to be understood, however, that the scope of the present invention is not to be limited to any particular method for determining the amount of TNF-a receptor. In one embodiment, the amount of TNF-a receptor expressed by a culture of 20 mesenchymal stem cells is determined by an ELISA assay. In such an assay, a cell lysate from a culture of mesenchymal stem cells is added to a well of an ELISA plate. The well may be coated with an antibody, either a monoclonal or a polyclonal antibody(ies), against the TNF-a receptor. The well then is washed, and then contacted with an antibody, either a monoclonal or a polyclonal antibody(ies) , against the TNF-a receptor. The antibody is 25 conjugated to an appropriate enzyme, such as horseradish peroxidase, for example. The well then may be incubated, and then is washed after the incubation period. The wells then are contacted with an appropriate substrate, such as one or more chromogens. Chromogens which may be employed include, but are not limited to, hydrogen peroxide and tetramethylbenzidine. After the substrate(s) is (are) added, the well is incubated for an 30 appropriate period of time. Upon completion of the incubation, a "stop" solution is added to the well in order to stop the reaction of the enzyme with the substrate(s). The optical density (OD) of the sample then is measured. The optical density of the sample is correlated to the optical 4 densities of samples containing known amounts of TNF-a receptor in order to determine the amount of TNF-a receptor expressed by the culture of mesenchymal stem cells being tested. Thus, the present invention provides for the selection of a population of 5 mesenchymal stem cells which express TNF-a receptor Type 1 in an amount of at least 13 pg/10 6 cells. Such selected mesenchymal stem cells then may be admixed with an appropriate pharmaceutical carrier for treatment of the diseases and disorders mentioned hereinabove. For example, the mesenchymal stem cells may be administered as a cell suspension including a pharmaceutically acceptable liquid medium for injection. 10 The mesenchymal stem cells of the present invention are administered to an animal in an amount effective to treat one or more of the above-mentioned diseases or disorders in the animal. The animal may be a mammal, and the mammal may be a primate, including human and non-human primates. The mesenchymal stem cells may be administered systemically, such as, for example, by intravenous, intraarterial, or 15 intraperitoneal administration. The exact dosage of mesenchymal stem cells to be administered is dependent upon a yariety of factors, including, but not limited to, the age, weight, and sex of the patient, the disease(s) or disorder(s) being treated, and the extent and severity thereof. The Invention now will be described with respect to the following examples; 20 however, the scope of the present invention is not intended to be limited thereby. Example I In order to investigate the role of TNFRI on the immunosuppressive hMSC activity, 25 hMSCs were transfected transiently by antisense TNFRI type oligonucleotides with the purpose to decrease TNFRI expression (Shen et al., J. Biol. Chem., Vol. 272, pgs. 3550 3553 (1997)). In order to reach different degrees of TNFRI expression inhibition, three different concentrations of oligonucleotides were used for transfection experiments. Non transfected MSCs and MSCs transfected with a sense oligonucleotide were used as 30 controls. TNFRI expression on hMSCs was analyzed in cell lysates by ELISA, and effect of reduction in TNFRI expression on hMSC capacity to Inhibit hPBMC proliferation In vitro was investigated. 5 Human bone marrow-derived MSCs at Passage 5 from 7 different donors were used for analysis. Cells were obtained from bone marrow aspirates, and isolated using hespan. The cells then were cultured through Passage 5, and frozen in a standard cryopreservation solution containing 5% human serum albumin (HSA) and 10% dimethylsulfoxide in 5 Plasmalyte A. (Baxter) The cells were stored at -80 0 C prior to analysis. On the day of the experiment, the hMSCs were thawed, counted, and plated into 6-well tissue culture plates at 2.5 x 10 5 cells/well. After overnight incubation, cells were transfected with TNFRI sense or antisense oligonucleotides at concentrations of 1.25, 2.5 and 5 pg/mL according to the transfection reagent manufacturer's protocol (Invitrogen, the Cellfectin transfection reagent 10 product insert). At 24 hours post-transfection, the cells were collected from the plates. One group of cells was lysed, and expression of TNFRI in cell lysates was analyzed by ELISA according to the sTNFRI ELISA protocol (R&D Systems, product insert). TNFRI expression was expressed in pg of receptor per 1 x 10 6 cells. For the ELISA assay, 2.5x10 5 MSCs per well were lysed directly in wells using 250 15 pl/well of Cell Lytic-mammallan cell lysis/extraction reagent (Sigma, Catalog No. C-2978) containing a complete protein inhibitor cocktail (Roche). The cell lysates then were centrifuged for 10 minutes at 12,000-14,000 rpm in an Eppendorf centrifuge to remove insoluble material from the lysis buffer solution. The cell lysates then were collected in a new tube for use in the ELISA assay. 20 An alternative method of cell lysis, i.e., lysis of cell pellets in tubes, also was carried out for frozen cells and for cells collected from tissue culture plates or flasks. Both methods, direct cell lysis in culture plates and lysis of cell pellets in tubes, gave comparable results. A commercially available ELISA kit, Quantikine@, Human sTNFRI (Catalog No. DRT 25 100, R&D Systems) was used for the detection of TNFRI in cell lysates. This assay provides for the measurement of both soluble as well as cell-associated TNFRI (Qjwang, et al., Biochemistry, Vol. 36, pg. 6033 (1997).) The assay employs the quantitative sandwich enzyme immunoassay technique. The assay employs a microplate that includes wells that have been pre-coated with a monoclonal antibody specific for TNFRI. TNFRI present in 30 calibrator samples, quality control samples, or samples of MSC cell lysates is captured by the immobilized TNFRI antibody. After washing away any unbound substances, enzyme linked polyclonal antibodies specific for TNFRI Is added to the wells. Following a wash step to remove any unbound enzyme-linked antibody, a substrate solution was added to 6 the wells, and color develops in proportion to the amount of bound TNFRI. The color development then is stopped, and the intensity of the color Is measured using an ELISA reader. The details of the ELISA are given hereinbelow. 5 50pi of assay diluent HDI-7, a buffered protein base with preservative, were added to the wells of an ELISA plate. The wells were coated with a monoclonal antibody specific for TNFRI. 200p] of either calibrator samples (containing 500 pg/mI, 250 pg/ml, 125 pg/ml, 62.5 pg/ml, 31.25 pg/mI, 15.625 pg/ml, or 7.813 pg/mI of soluble human TNFRI), quality control samples (containing 45 pg/mI, 100 pg/mI, or 250 pg/mI of human TNFRI), or cell 10 lysates then were added to the wells. Prior to the addition of the calibration and quality control sample to the wells, such samples were treated with the Cell Lytic-mammalian cell lysis extraction agent (Sigma) and complete protein inhibitor cocktail (Roche) as hereinabove described. The plate then was covered with an adhesive strip, and incubated for 2 hours ± 10 minutes at room temperature. 15 The liquid then was decanted from each well by inverting the plate over a sink, and then the plate was washed three times. The plate is washed each time with 400 pt of a wash buffer added to each well. Residual liquid was removed by inverting the plate and blotting. 200 pi of soluble TNFRI polyclonal antibodies conjugated to horseradish peroxidase 20 then were added to each well. The plate then was incubated for 2 hours ± 10 minutes at room temperature. The liquid then was decanted from each well, and each well was washed three times with 400 pi of wash buffer as hereinabove described. 200 pl of a substrate solution of stabilized hydrogen peroxide and stabilized tetramethylbenzidine chromogen then were added to each well. The plate then was 25 incubated for 20 minutes ± 10 minutes at room temperature in the dark. 50 pl of a solution of 2N sulfuric acid then were added to each well. The optical density (OD) of each sample then was measured within 30 minutes with a 450 nm test and a 570 nm reference filter. The optical density values then were correlated to the amounts of TNFRI In the cell lysate samples. 30 Quantitation was achieved by comparing the signal from samples of MSC cell lysates to TNFRI standards assayed at the same time. Each ELISA run provided a calibration curve and included duplicate quality control samples plated in front and after test samples. Quality control samples were used for ELISA run validity assessment. 7 TNFRI expression data were expressed in picograms of receptor per 1x10P cells. The raw data (in pg/ml) reflect TNFRI in picograms per 1x10 6 cells (2.5x10 5 cells were lysed in 250 pl of the lysis reagent thus corresponding to x06 cells/mi). The ELISA values for the calibration samples are given in Table I below. Table 1. Calculations for ELISA run calibration standards heoretical Back Calculated Mean Calibrato Concentratio OD* OD Standard Calculated Concentration r a of values Mean Deviation Concentration for Standards %DFT* %CV* Sample alibratiors Value for Standards oS d s DT C (pg/mL) (pg/mL) St01 500 2.431 2.437 ).008 498.003 499.923 -0.015 0.3 2.443 501.842 St02 250 1.487 1.476 3.016 252.746 250.306 0.123 1.1 1.464 247.867 St03 125 0.804 0.815 ).015 122.64 124.447 -0.442 1.8 ).825 126.255 St04 62.5 .453 0.442 0.016 4.774 3.024 .839 .5 ).431 61.274 StO5 31.25 0.25 3.239 0.016 2.749 30.939 -0.996 6.8 ).227 29.128 St06 15.625 ).143 3.145 0.002 15.765 16.007 2.446 1.5 St.146 16.249 St07 7.813 .092 D.093 0.001 7.368 7.537 3.528 1.5 ).094 7 .706 *Note: OD - optical density; %DFT - % Difference from Theoretical; CV% - % Coefficient of Variance The ELISA values for the quality control samples are given in Table 2 below. Table 2. Calculations for ELISA run Qm lity Control (QC) samples Theoretical ack Calculated QC Concentrati OD* Standard ncnaoConcentration %DFT %CV* Samples: ons for QCsVaines Vau Deviation Corcs for QCs * pfL) Vae /or QCs (pg/mL) Front
C
0 1 45 0.366 0.372 0.008 50.991 51.938 15.417 2.3 0.378 52.884 QC02 100 0.753 0.733 0.028 113.944 110.572 10.572 3.9 __. 0.713 107.2 .. 8 03 50 1.503 1.509 0.008 256.165 257.454 2.982 0.6 1.515 258,742 ack Cs QC01 45 0-315 0.332 0.024 42.964 45.638 1.418 7.2 0.349 48.312 02 100 0.7 12 0.698 0.021 107.033 104.609 4.609 2.9 0.683 |102.185 C03 250 1547 1.558 0.015 265.671 267.967 7.187 1 1___ 1.568 | 1270.263 1 1 L *Note: OD - optical density; %DFT - % Difference from Theoretical; CV% - % Coefficient of Variance Based on the ELISA values for the calibration and quality control samples shown in Tables 1 and 2 hereinabove, TNFRI expression in pg per 1x108 cells for samples of mesenchymal stem cells from the donors was determined. As described hereinabove, the mesenchymal stem cells from each donor were non-transfected. or transfected with a TNFRI sense or antisense oligonucleotide at a concentration of 1.25, 2.5. or 5 pg/ml. The ELISA values and the amount of TNFRI expressed by each of the mesenchymal stem cell samples from each of the donors are given in Table 3 below. Ibible 3. Calculations for ELISA run test samples Calculated Mean ample desiti oncentrati Concentratio %CV enor Smldecrpton- gaus ca o P alues alue nI/mL) pg/mL) 1x10 6 cells Control 0.385 .384 0.001 3.989 53.831 53.831 0.4 non-transfected cells) .383 53.674 control oligo-0.278 D.266 0.018 37.15 35.186 35.186 6.7 trasfcted cells 50233.2 ;L. 253 3.221 trol oligo .348 0.352 0.006 48.155 48.785 48.785 1.6 infected cells 2.5 9.415 ug/mL 356 _ _ _ _ _ Control olig .386 .378 0.012 54.147 52.806 52.806 3.2 transfected cells 1 .369 51.464 ag/mnL36 TNFRI anti-sense 0.117 0.113 0.006 11.533 10.79 10.79 .7 ligo-transfected cells 5 g/mL.10 10.047 IRI anti-sense .254 .245 0.013 33.378 31.962 31.962 5.2 9 ligo-transfected cells 0.236 30.546 2.5 jg/mL TNFRI anti-sense 0.321 .311 0.015 43.07 42.257 42-257 4,8 oligo-transfected cells 0.607 1.25 pIg/mL I m I Control 0.368 .367 .002 1.306 51.07 51.07 0.6 non-transfected cells) .365 50.833 Control oligo 0.226 .219 0.01 8.97 27,866 27.866 4.5 ansfected cells 5 .212 6.761 Control oligo- 0293 .272 0.03 39.507 36.128 36.128 11.2 tansfected cells 2.5 .25 32.749 | tg/mL ontrol oligo 0 308 0.286 ).032 41.864 38.329 38.329 11.1 ansfected cells 12 263 34.793 g/mLt _______ __ NFRI anti-sensc 0.123 0.114 0.013 12.517 10.949 10.949 11.8 Ligo-transfected cells 5 0.104 9.382 TNFRI anti-sense 0.269 0.243 0.037 35.736 31.565 31.565 15.5 ligo-transfeoted cells . 2.5 ~.gmL 0.2 16 27.393 TNFRI anti-sense 0.313 0.303 0.014 42.65 41.078 41.078 4.7 oligo-transfected cel1i0.293 39.507 1.25 gg/mL Control .377 0.38 0.004 52.726 53.2 53.2 1.1 (non-transfected cells) 0.383 53.674 Control oligo- O.251 0.249 0.003 32.907 32.592 32.592 1.1 transfected cells 5 0.247 2277 4g/mL 2 2.7 Control oligo-0.338 0.315 0.033 6581 42.887 42.887 10.6 transfeoted cells 2.5 0.291 39.193 g/mL 0.29 Control olgo .356 0.347 .013 49.415 47919 47.919 39 14 "ansfccted cells 1.25 46.424 914 g/xL 0.3 6I2 RI anti-sense 0.11 0.104 0.008 10.378 9.379 9.379 .2 ligo-transfected cells 5 g/,L0.098 8.379 TNFRI anti-sense 0.211 .206 0.008 26.603 25.733 25.733 .8 oligo-transfected cells 4.864 2.5 p/mL0 TNFRI anti-sense 0.3 0.294 0.008 40.607 39.664 9.664 2.9 ligo-transfected cells 1.25 pg/mL 0.288 38.22 15 Control 6.475 0.469 Z.009 68.284 67.246 67.246 10 non-transfected cells 0.462 56.209 Control oligo- .278 0.279 0.001 37.15 37.308 37.308 0.5 transfected cells 5028 37.465 g/mL control oligo- 0.34 .343 0,004 46.896 47.289 47.289 1 tsfected cells 2. Hg/mL 0.345 7.683 _____ ___ Control oligo .419 0.413 .009 59.37 58.34 58.34 2.2 sfected cells 1.2 0.406 57.31 pg/mL 4673 RI anti-sense 0.13 0.125 0.007 13.658 12.842 12842 5.7 oligo-transfected cells 5 . 0.12 12.025 FRI anti-sense 0.253 0.262 0.012 33.221 34.557 34.557 4.6 oligo-transfected cell 2.5.27 35.893 TNFRI anti-sense 0.377 0.381 0.005 52.726 53.279 53.279 1.3 oligo-transfected cell 1.25 pg/mL 0.384 53.831 ontrol .260 0.255 0.008 40.591 39.632 39.632 .1 non-transfected cells) .249 38.672 ontrol oligo. 0. 191 0.184 0.010 28.560 27.339 27.339 .4 transfected cells 50.177 26.117 g/mL Control oligo 0.216 0,209 0.009 32.919 31.786 31.786 4.4 transfected cells 2.5 .203 30.653 Control olig .222 0.222 0.000 33.965 33.965 3.965 .0 fected cells 1.2 .222 33.965 TNFRI anti-sense 107 .106 0.001 13.620 13.620 1.3 ligo-transfected cells 50.105 13.441 TNFRI anti-sense 0.206 0.187 027 1.176 7.860 27.860 14.4 oligo-transfected cells 0.168 24.544 2.5 pg/mlrL TNFRI anti-sense ).213 0.212 P.001 32.396 32.222 32.222 0.7 oligo-transfected cells 2 2.048 1.25 phg/mL 0.211 ontrol .249 .249 .001 1.244 1.148 1.148 0.3 non-transfected cells) .248 41.053 Control oligo .149 0.136 Q.018 22.401 19.981 19.981 13.5 ansfected cells 50.123 17.560 p!g/mL 11 A Control oligo- .246 .231 0.022 40.672 37.732 37.732 9.5 rnsfected cells 2.50.215 34.792 Control oligo- D.263 .253 3.015 43.915 41.913 41.913 5.9 ansfected cells 1.25 WaI L .242 39.911 NFRI anti-sens .071 .068 0.004 7.917 7.361 7.361 6.2 ligo-transfected cells 5 065 6.805 pWmL.65605 _____ ___ INFRI anti-sens .142 0.142 .000 21,096 21.096 21.096 0.0 tigo-transfected cell 2.Spg/ml, .142 21.096 TNFRI anti-sen .193 0.179 0.021 30.644 7.24 7.924 11.5 oligo-transfected cells 1.25 pg/L .164 25.204 ontrol .211 0.209 .003 34.037 33.659 33.659 1.4 non-transfected cells) 207 33.282 ontrol oligo-,.134 .134 .01 19.606 19.513 19.513 .5 sfected cells 5 pm3.133 19.420 Control oligo- .195 .188 -. 011 31.020 29.611 9.611 5.7 aanfected cells 2.5 gmL .180 28.201 Control oligo-.207 0.192 0.022 33.282 30.366 38.329 11.4 fected cells 1.25 1 Hg/mL 0176 27.451 1 TNFRI anti-sense 0.087 0.080 0.010 10.882 9.585 9.585 12.4 aligo-transfected cells 5 - 073 8.288 ug/mL 0 8 TNFRI anti-sense .156 .135 0.030 23.708 19-706 19.706 2.6 aligo-transfected cells 2.5 pg/nL 13 15.703 TNFRI anti-sense D208 0.174 .048 33.470 .7.097 27.097 27.6 ligo-transfected cells 140 20.723 1.25 &g/mL.10_____ ___ *Note: OD - optical density; SD - Standard Deviation; CV% - % Coefficient of Variance From the above data shown in Table 3, the mean TNFRI expression, in picograms per 1x1 0 cells, was determined for non-transfected (control) mesenchymal stem cells, as well as mesenchymal stem cells transfected with 1.25, 2.5, or 5 p/lmi of antisense or sense oligonucleotides. The mean TNFRI expression values are given in Table 4 below. 12 Table 4 TNFRI expression by hMSCs transfected with anti-sense and control (sense) oligonucleotides: summary for 7 tested hMSC donors TNFRY expression in pg per 1x10 6 cells Mean for hMSC donor #: 486 13 4 007 14 15 23 7 donors SD Control (non transfected cells) * 34 4 51 53 67 40 48.57 11.09 TNFRI anti-sense oligo-transfected cells 5 gfmL 7 10 11 11 9 13 14 10.71 2.36 INFRI anti-sense ligo-transfected -ells 2.5 pg/mL 21 20 32 32 26 35 28 27.71 5.74 INFRI anti-sense oligo-transfected ;ellsl.25 g/mL 28 27 42 41 40 53 32 37.57 9.22 Control (sense) ligo-transfected ,ells 5 pg/mL 20 20 35 28 33 37 27 28.57 6.85 Control (sense) oligo-transfected cells 2.5 gg/mL 38 30 49 36 43 47 32 39.29 .30 Control (sense) oligo-transfected cells 1.25 pg/mL 42 30 53 38 48 58 34 43.29 10.21 * Note: These values represent mean TNFRI numbers (from table 3, column 8: "TNFRJ in pg per lx1 O'cells") rounded to whole numbers A second group of transfected cells was used for investigation of the effect of hMSCs on hPBMC proliferation in vitro. Human PBMCs from two different donors were used for this assay. PBMCs were isolated from leukopheresed blood using Ficoll-Paque gradient centrifugation according to the manufacturers protocol (Amersham Biosciences, 5 Ficoll-Paque Plus product insert). Cells were stored frozen at -80*C in a medium including 90% FBS and 10% DMSO prior to analysis. On the day of the experiment hPBMCs were thawed, counted and plated into 96-well tissue culture plates at I x 105 cells/well together with hMSCs (1 x 10 4 cells/well). A combination of antl-CD3 (1 pg/mt) and anti-CD28 (I pg/mL) antibodies was used to stimulate lymphocyte proliferation that represents an in vitro 10 model for immune cell activation characteristics of GVHD and rejection of allogeneic organs. (Trickett, et al., J. Immunol. Methods, Vol. 275, pgs. 251-255 (2003); Koulova, et al., J. Exp. Med., Vol. 173, No. 3, pgs. 759-762 (1991); Foster, et al., Transplantation, Vol. 76, No. 6; Czitrom, Clin. Ortho. Relat. Res., Vol. 326, pgs. 11-24 (1996)). The plates then were incubated in a humidified atmosphere containing 5% C02. The proliferation of 13 PBMCs alone and in the presence of MSCs was measured at day 5 from culture initiation by the addition of [Methyl- 3 H]-thymidine at I pC/well for the final 18-20 hrs of culture. After labeling, the cells were transferred onto a glass filter using a 96-well plate harvester, and radioactivity incorporated into DNA was measured by a liquid scintillation beta-counter. 5 The uptake of [Methyl- 3 H-thymidlne into DNA in counts per minute (cpm) represents hPBMC proliferation. Final results were expressed as % inhibition of PBMC proliferation in the presence of MSCs calculated as: 100%-[Proliferation (PBMC+MSC, cpm)x100/Proliferation (PBMC, cpm)] The results for the mesenchymal stem cells from each of the donors are given In Table 5 below. Table 5 Inhibition of CD3/CD28-induced hPBMC proliferation by hMSCs transfected with anti-sense and control (sense) oligonucleotides: summary for 7 tested hMSC donors % inhibition of hPBMC proliferation by hMSCs Mean % for 7 hMSC donor#: 486 13 24 007 14 15 23 donors SD hPBMC donor #: |2 3 2 3 3 3 3 2 2 3 Control (non transfected cells) 65 73 82 94 70 66 82 62 68 91 75.30 11.26 TNFRI anti-sense Dligo-transfected cells 5 pg/mL 40 45 46 68 32 10 39 19 38 52 38.90 16.29 fNFRI anti-sense oligo-transfected cells 2.5 jg/mL 83 90 59 86 ND 73 ND 63 7 58 69.88 15.48 TNFRI anti-sense oligo-transfected cellsl.25 g/mL 62 74 86 D 72 64 57 ND 72 80 70.88 9.58 Control (sense) oligo-transfected :ells 5 pg/mL 38 87 60 77 58 77 62 44 52 53 60.80 15.50 Control (sense) oligo-transfected cells 2.5 pg/mL 60 91 67 ND ND 2 66 57 70 95 71.00 14.22 Control (sense) oligo-transfected Eells 1.25 g/mL 87 ND 68 71 66 8 36 ND 49 85 70.57 12.77 Note: ND- no data The above data with respect to inhibition of CD3/CD28 induced PBMC proliferation were correlated to the mean TNFRI expression data shown in Table 4 hereinabove. The 14 correlated data with respect to mean TNFRI expression and inhibition of CD3/CD28 induced PBMC proliferation are given in Table 6 below. Table 6. TNFRI expression and effect on hPBMC proliferation in vitro by hMSCs transfected with TNFRI oligonucleotides % Inhibition of TNFRI Oligonucleotide hPBMC expression in Human MSCs condition concentration proliferation pg/lxlO MSCs (pg/mL) (MeantSD) (MeantSD) Untransfected (Control Not applicable 75.30±11.26 48.57±11.09 MSCs) 1.25 70.88±9.58 37.57±9.22 Antisense oligonucleotide 2.5 69.88±15.48 27.71±5.74 5 38.90±16.29 10.71±2.36 1.25 70.57t12.77 43.29±10.21 Sense oligonucleotide 2.5 71.00±14.22 39.297.30 (control oligonucleotide) 5 60.80±15.50 28.57±6.85 The results from these experiments show that hMSCs with decreased expression of TNFR type I (TNFRI) lose their ability to suppress hPBMC proliferation in vitro. The data 5 support the premise that the expression of TNFRI is an essential link to the suppression of PBMC proliferation by MSCs. Thus, TNFRI can be used as a potency marker for MSC immunomodulative activity. Based on the obtained data, a potency threshold of 13.07 pg of TNFRI (mean ± SD) per 1 x 106 cells correlates with less than 50% inhibition of hPBMC proliferation (Table 6, Figure 1). Thus, non-potent MSCs are cells expressing less than 13 10 pg TNFRI per 1 x 10 cells. Example 2 TNFRI Is a temperature-sensitive marker of hMSC functionality. Ex vivo handling of mammalian cells is restricted by a number of factors including temperature. For example, low temperatures such as -80+5*C, or lower, even as low as 15 135*C or below (liquid nitrogen) are required for cell storage whereas ex vivo cell 15 expansion requires a temperature of 37+0.5*C. Cell exposure to temperatures outside of the optimal ranges may lead to a decrease in cell functionality or cell death. Mammalian cells are able to withstand short-term minor temperature fluctuations; however, each type of cells has its own temperature tolerance range for cell culture maintenance, shipping, and 5 storage. The expression level of TNFRI on hMSCs correlates with hMSC immunosuppressive activity. The level of TNFRI expression by hMSCs of less than 13 pg/1i0 cells has been determined as a threshold, below which hMSCs begin to lose their ability to suppress an immune response (See Figure 1). Thus, TNFRI expression is a 10 marker of hMSC immunosuppression, an activity that is believed essential for MSCs to be -efficacious for treatment of immunological reactions taking place in GVHD, organ rejection, autoimmune diseases, and other diseases. Here, effects of temperature fluctuations during storage of frozen hMSCs as well as the effect of time of exposure of cells to room temperature on expression of TNFRI on hMSCs was investigated. 15 Effect of store temperature fluctuations on TNFRI expression and hMSC immunosuppressive potential. The objective of these experiments was to investigate the ability of hMSCs to retain their functional characteristics after an exposure to temperatures above -80"C, which are not optimal temperatures for storage of frozen cells. Human MSCs were frozen at passage 20 5 and placed for storage in a freezer at -80+5*C. After several weeks, bags of frozen cells were removed from the -80+5'C freezer and placed at either -70+5'C, -60+5'C, or 50+5*C for 72±2 hours. After 72+2 hours, the bags were retumed to storage at -8O05 0 C for at least 24 hours before thaw and analysis. A set of bags moved from one -80+5*C freezer to another, following the same schedule as the other bags, served as a control. On 25 the day of the experiment the bags containing the cells were thawed, cells were counted, and cell lysates for the TNFRI ELISA were prepared as described in Example 1. The TNFRI ELISA was performed as described in Example 1. Results are summarized in "Figure 2 (bars show mean TNFRI values +SD for 3 hMSC bags). The data showed that exposure of hMSCs to temperatures of 30 -6O15*C or -5015*C decreases the TNFRI expression level: the level of TNFRI detected by ELISA was below the determined hMSC potency threshold of 13 pg/10" cells (represented by the solid line on the graph). 16 Parallel with TNFRI measurement, two bags with hMSCs stored at -80+5*C (optimal storage temperature served as a control) and at -50+5 0 C (corresponding to a +30*C greater than the -80+5 0 C optimal storage temperature) were used for investigation of hMSC immunosuppressive activity. The ability of the MSCs to suppress anti-CD31CD28 5 induced proliferation of hPBMCs in vitro was evaluated as described in Example 1. The results showed that hMSCs stored at -50+5"C lost their ability to suppress hPBMC proliferation, whereas cells stored at -8O+5*C inhibited hPBMC proliferation by 92% (Figure 3, dark bars represent mean +SD% inhibition of hPBMC proliferation. Numbers inside the dark bars show numerical values). The immunosuppressive activity of MSCs is dependent 10 on the level of TNFRI expression: cells expressing more than 13 pg/I0? cells of TNFRI, which was determined as an MSC immunosuppressive potential threshold, are biologically active, and cells with the TNFRI level below 13 pg/10 cells are not (Figure 3, light bars represent mean SD of the TNFRI expression level. Numbers inside the light bars show numerical values). Thus, non-optimal storage temperatures decrease TNFRI expression 15 on hMSCs, and which correlates with decrease in hMSC functionality. Effect of cell exposure time to room temperature on TN FRI expression on hMSC. The results of this experiment serve as additional evidence that TNFRI expression on hMSCs is decreasing under cell exposure to non-optimal temperatures. In this experiment the effect of cell suspension storage at room temperature on TNFR expression 20 was studied. Two hMSC lots were used In the experiment. Bags containing hMSCs were stored at < -1 350C prior to the experiment. On the day of the experiment the cells were thawed and diluted with Plasmalyte A physiological solution (Baxter) in a manner that mimics the current cell processing for intravenous hMSC administration at clinical sites. The thawed and diluted hMSCs were kept at room temperature (22'C - 24*C), and 25 samples were taken and tested for the amount of TNFRI at 0 (immediately post-thaw baseline), 6, 8, 10, 24, and 32 hours post-thawing. The results showed that exposure of hMSCs to room temperature decreased the TNFRI expression level on the hMSCs (Figure 4, bars represent mean 1SD of the TNFRI expression level for 2 hMSC lots. The solid line represents the TNFRI expression level of 13 pg/10 cells, which is the hMSC potency 30 threshold). The significant decrease in TNFRI expression was observed at 24 hours and 32 hours, and it correlated with a significant decrease in cell viability (below 20%, data not shown). 17 Thus, the experiments described above show that TNFR expression by hMSCs is sensitive to temperature, and TNFRI can be used as a marker of functionality of hMSC that were exposed to non-optimal temperatures during storage, shipping or cell processing. The disclosures of all patents, publications, including published patent applications, 5 depository accession numbers, and database accession numbers are hereby Incorporated by reference to the same extent as if each patent, publication, depository accession number, and database accession number were specifically and individually incorporated by reference. It Is to be understood, however, that the scope of the present invention Is not to be 10 limited to the specific embodiments described above. The invention may be practiced other than as particularly described and still be within the scope of the accompanying claims. 18

Claims (9)

1. A composition comprising mesenchymal stem cells wherein said mesenchymal stem cells express TNF- d receptor Type I in an amount of at least 13 pg/10,3 cells. 5
2. The composition of Claim 1 wherein said mesenchymal stem cells express TNF- d receptor Type I in an-amount of at least 15 pg/10 6 cells.
3. The composition of Claim 2 wherein said mesenchymal stem cells express TNF- d receptor Type I in an amount of at least 18 pg/1 06 cells.
4. The composition of Claim I wherein said mesenchymal stem cells are human 10 mesenchymal stem cells.
5. The composition of Claim 1, and further comprising an acceptable pharmaceutical carrier.
6. A method of obtaining mesenchymal stem cells which express TNF-a receptor Type I in an amount of at least 13 pg/1 0 cells, comprising: 15 obtaining at least one cell population including mesenchymal stem cells from at least one donor; determining the amount of TNF-a receptor Type I expressed by the mesenchymal stem cells in each of said at least one cell population(s): and selecting mesenchymal stem cells which express TNF-a receptor Type I in an 20 amount of at least 13 pg/10 6 cells.
7. The method of Claim 6 wherein said selected mesenchymal stem cells express TNF-a receptor Type I in an amount of at least 15 pg/106 cells.
8. The method of Claim 7 wherein said selected mesenchymal stem cells express TNF-a receptor Type I in an amount of at least 18 pg/10 6 cells. 25
9. The method of Claim 6 wherein said mesenchymal stem cells are human mesenchymal stem cells. 19
AU2015264932A 2006-01-13 2015-12-07 Mesenchymal stem cells expressing TNF-alpha receptor Abandoned AU2015264932A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2015264932A AU2015264932A1 (en) 2006-01-13 2015-12-07 Mesenchymal stem cells expressing TNF-alpha receptor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60/759,157 2006-01-13
AU2012216549A AU2012216549B2 (en) 2006-01-13 2012-08-30 Mesenchymal stem cells expressing TNF-alpha receptor
AU2015264932A AU2015264932A1 (en) 2006-01-13 2015-12-07 Mesenchymal stem cells expressing TNF-alpha receptor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2012216549A Division AU2012216549B2 (en) 2006-01-13 2012-08-30 Mesenchymal stem cells expressing TNF-alpha receptor

Publications (1)

Publication Number Publication Date
AU2015264932A1 true AU2015264932A1 (en) 2016-01-21

Family

ID=55085142

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2015264932A Abandoned AU2015264932A1 (en) 2006-01-13 2015-12-07 Mesenchymal stem cells expressing TNF-alpha receptor

Country Status (1)

Country Link
AU (1) AU2015264932A1 (en)

Similar Documents

Publication Publication Date Title
US11821004B2 (en) Mesenchymal stem cells expressing TNF-α receptors
EP2298864B1 (en) Mesenchymal stem cells and uses therefor
US10736922B2 (en) High telomerase activity bone marrow mesenchymal stem cells, methods of producing the same and pharmaceuticals and treatment methods based thereon
EP2614078B1 (en) Stem cell culture media and methods
JP2012510279A (en) Method for producing adipose-derived stem cells and use of the cells in the treatment of diseases
AU2015264932A1 (en) Mesenchymal stem cells expressing TNF-alpha receptor
AU2011202952B2 (en) Mesenchymal stem cells expressing TNF-alpha receptor
Class et al. Patent application title: HIGH TELOMERASE ACTIVITY BONE MARROW MESENCHYMAL STEM CELLS, METHODS OF PRODUCING THE SAME AND PHARMACEUTICALS AND TREATMENT METHODS BASED THEREON Inventors: Songtao Shi (Thousand Oaks, CA, US) Kentaro Akiyama (Okayama, JP) Chider Chen (Philadelphia, PA, US) Assignees: UNIVERSITY OF SOUTHERN CALIFORNIA
Lombardo et al. Stem cell culture media and methods

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period