AU2015264876B2 - Devices, Systems and Methods for Treatment of Neuropsychiatric Disorders - Google Patents

Devices, Systems and Methods for Treatment of Neuropsychiatric Disorders Download PDF

Info

Publication number
AU2015264876B2
AU2015264876B2 AU2015264876A AU2015264876A AU2015264876B2 AU 2015264876 B2 AU2015264876 B2 AU 2015264876B2 AU 2015264876 A AU2015264876 A AU 2015264876A AU 2015264876 A AU2015264876 A AU 2015264876A AU 2015264876 B2 AU2015264876 B2 AU 2015264876B2
Authority
AU
Australia
Prior art keywords
electrode
nerve
patient
stimulation
cutaneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2015264876A
Other versions
AU2015264876A1 (en
Inventor
Ian A. Cook
Alejandro Covalin
Christopher M. Degiorgio
Patrick R. Miller
Lara Schrader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2010303586A external-priority patent/AU2010303586B2/en
Application filed by University of California filed Critical University of California
Priority to AU2015264876A priority Critical patent/AU2015264876B2/en
Publication of AU2015264876A1 publication Critical patent/AU2015264876A1/en
Application granted granted Critical
Publication of AU2015264876B2 publication Critical patent/AU2015264876B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

DEVICES, SYSTEMS AND METHODS FOR TREATMENT OF NEUROPSYCHIATRIC DISORDERS The present disclosure relates to methods, devices and systems used for the treatment of mood, anxiety, post traumatic stress disorder, and cognitive and behavioral disorders (collectively, neuropsychiatric disorders) via stimulation of the superficial elements of the trigeminal nerve ("TNS"). More specifically, cutaneous methods of stimulation of the superficial branches of the trigeminal nerve located extracranially in the face, namely the supraorbital, supratrochlear, infraorbital, auriculotemporal, zygomaticotemporal, zygomaticoorbital, zygomaticofacial, infraorbital, nasal and mentalis nerves (also referred to collectively as the superficial trigeminal nerve) are disclosed herein. - 35 -

Description

COMPLETE SPECIFICATION
STANDARD PATENT
Invention title: DEVICES, SYSTEMS AND METHODS FOR TREATMENT
OF NEUROPSYCHIATRIC DISORDERS
The following statement is a full description of this invention, including the best method of performing it known to us:
2015264876 03 Dec 2015
DEVICES, SYSTEMS AND METHODS FOR TREATMENT OF
NEUROPSYCHIATRIC DISORDERS
This is a divisional application divided out of Application No 2010303586, the entire contents of which are incorporated herein by reference.
CROSS REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of priority under 35 U.S.C. § 119(e) to the following applications: U.S. Application No. 61/248,827, entitled “Devices and Methods for Treatment of Psychiatric Disorders,” filed October 5, 2009; U.S. Application No. 61/289,829, entitled “Extracranial Implantable Devices, Systems and Methods for Treatment of Neuropsychiatric Disorders,” filed December 23, 2009; U.S. Application No. 61/305,514, entitled “Systems, Devices and Methods for Treatment of Neurological Disorders and Conditions,” filed February 17, 2010; and U.S. Application No. 61/354,641, entitled “Extracranial Implantable Devices, Systems and Methods for Treatment of Neurological Disorders,” filed June 14, 2010, and each of the above applications is hereby incorporated by reference as though fully set forth herein.
[0002] This application is also related to the following copending applications: U.S.
Application No._[2010-396-2], entitled “Extracranial Implantable Devices,
Systems and Methods for Treatment of Neuropsychiatric Disorders,” filed on even date herewith with Attorney Docket No. 001659-5007-US; U.S. Application No._ [2007-292-2], entitled “Systems, Devices and Methods for Treatment of Neurological Disorders and Conditions,” filed on even date herewith with Attorney Docket No. 0016595001-US; U.S. Application No._[2010-588-2], entitled “Extracranial
Implantable Devices, Systems and Methods for Treatment of Neurological Disorders,” filed on even date herewith with Attorney Docket No. 001659-5005-US, and each of the above applications is hereby incorporated by reference as though fully set forth herein.
FIELD [0003] The present disclosure generally relates to cutaneous neuromodulation devices and systems and methods of using the same. More specifically, methods, devices, and systems configured for the treatment of neuropsychiatric disorders, such as mood, cognitive
-22015264876 14 May 2018
FIELD [0003] The present disclosure generally relates to cutaneous neuromodulation devices and systems and methods of using the same. More specifically, methods, devices, and systems configured for the treatment of neuropsychiatric disorders, such as mood, cognitive and behavioral disorders, via trigeminal nerve stimulation (“TNS”) are provided. Devices and systems configured for stimulation of superficial sensory branches of cranial nerves and their methods of application are described.
BACKGROUND [0004] Psychiatric or neuropsychiatric disorders, for example depressive disorders (DD) sometimes referred to as depression, or anxiety disorders, are traditionally treated with pharmacotherapy and psychotherapy. However, a substantial percentage of patients with these and other conditions do not recover despite multiple trials of treatment. Traditionally, brain stimulation has been a primary treatment alternative, and electroconvulsive therapy (ECT, or “electroshock” therapy) has been the dominant brain stimulation approach since the first part of the 20th century. ECT carries risks of memoiy' and other cognitive side effects, considerable cost, and risks of anesthesia. Two implantable approaches have aiso been described: deep brain stimulation (DBS), in which electrodes are implanted directly within the brain, and vagus nerve stimulation (VNS) in which stimulating electrodes are implanted on the vagus nerve in the neck. While the U.S. Food and Drug Administration (FDA) have approved systems for deep brain stimulation for the treatment of Parkinson’s disease, DBS is presently an experimental intervention for other neuropsychiatric conditions. The risks of DBS include infection, hemorrhage, and injury to deep brain structures. In reports of clinical studies with VNS, many of the patients who undergo VNS treatments do not achieve remission, and there is no reliable predictor of good outcomes from the implanted VNS device.
SUMMARY [0004a] An aspect of the present invention provides a system for trigeminal nerve stimulation for treatment of a neuropsychiatric disorder, the system comprising:
a pulse generator; and
-3 2015264876 14 May 2018 a cutaneous electrode assembly in electrical communication with the pulse generator, the assembly comprising:
a first electrode comprising at least one contact configured for cutaneous placement directly over an ophthalmic nerve on one side of a patient's forehead;
a second electrode comprising at least one contact configured for cutaneous placement directly over a remaining ophthalmic nerve on an opposing side of the patient’s forehead; and an insulating region connecting the first electrode and the second electrode such that a midpoint of the first electrode is separated from a midpoint of the second electrode by an expected separation between the ophthalmic nerve on the one side of the patient's forehead and the ophthalmic nerve on the opposing side of the patient's forehead.
[0004b] Another aspect of the present invention provides a method for treating a neuropsychiatric disorder by trigeminal nerve stimulation, comprising:
placing a first electrode contact of a cutaneous electrode assembly directly over an ophthalmic nerve on one side of a patient’s forehead;
placing a second electrode contact of the cutaneous electrode assembly directly over a remaining ophthalmic nerve on an opposing side of the patient's forehead; and applying electrical signals to the cutaneous electrode assembly at specified operational parameters to treat the neuropsychiatric disorder, wherein the cutaneous electrode assembly comprises an insulating region connecting the first electrode contact and the second electrode contact such that a midpoint of the first electrode contact is separated from a midpoint of the second electrode contact by an expected separation between the ophthalmic nerve on the one side of the patient's forehead and the ophthalmic nerve on the opposing side of the patient's forehead.
[0005] One aspect of the subject matter of the present disclosure ameliorates the aforementioned disadvantages by providing a method of treating psychiatric disorders and systems and devices configured to stimulate the ophthalmic (supraorbital), infraorbital and
- 3a 2015264876 08 Feb 2016 mentalis branch(es) of the trigeminal nerve, and more specifically by providing a method of treating psychiatric disorders using trigeminal nerve stimulation (TNS).
[0006] In another aspect of the present disclosure, there is provided an electrode assembly configured for the cutaneous stimulation of the trigeminal nerve.
[0007] In yet another aspect of the present disclosure, a method of treating psychiatric disorders using the disclosed electrode assembly is provided.
[0008] In accordance with one aspect of the present technology there is provided a method of treating a psychiatric disorder in a patient, the method comprising:
attaching at least one electrode cutaneously to the patient so as to contact the skin surface overlying the cutaneous distribution of at least one of the branches of the trigeminal nerve; and applying adjustable electric signals to at least one of the patient’s trigeminal nerves through the at least one electrode.
[0009] In accordance with another aspect of the present technology there is provided an electrode assembly configured to cutaneously stimulate at least one of the ophthalmic or supraorbital afferent of the trigeminal nerves, the device comprises: a first contact configured for placement on the right side of a patient’s face; a second contact configured for placement on the left side of a patient’s face; and an insulating connection region connecting the first contact and the second contact; wherein the first contact and the second contact are configured to contact a portion of the skin of the patient overlying the cutaneous distribution of at least one branch of the trigeminal nerve.
[0010] In accordance with yet another aspect of the present technology, there is provided a method of treating a psychiatric disorder in a patient, comprising: providing an electrode assembly provided in accordance with claim 2; attaching the electrode assembly to the patient so as to contact the skin surface over at least one of the ophthalmic or supraorbital nerve; and applying electric signals to the electrode assembly at a frequency between 20 and 300 Hertz, at a pulse duration between 50 and 250 microseconds, at an output current density of not greater than 25 mA/cm2 and an output charge density of not greater than 10 pCoulomb/cm2 at the cerebral cortex.
[0011] In another aspect, a system for trigeminal nerve stimulation for treatment of a neuropsychiatric disorder is disclosed herein. In one embodiment, the system includes: a
-42015264876 08 Feb 2016 pulse generator and a cutaneous electrode assembly. The cutaneous electrode assembly is in electrical communication with the pulse generator and or includes a first electrode comprising at least one contact configured for cutaneous placement directly over or adjacent an ophthalmic nerve on a side of a patient's forehead, and at a second electrode comprising at least one contact configured for cutaneous placement directly over or adjacent a remaining ophthalmic nerve on an opposing side of the patient's forehead. In some embodiments, the first electrode and the second electrode are configured to contact a portion of the patient’s face overlying the cutaneous distribution of a same branch of the trigeminal nerve. In some embodiments, the first electrode and the second electrode are configured to contact a portion of the patient’s face overlying the cutaneous distribution of a different branch of the trigeminal nerve. The system may further include a wire operably connecting the pulse generator and the cutaneous electrode assembly. The system may further include a regulating device configured to regulate the maximum charge balanced output current below approximately 3050 mA. In some aspects, the neuropsychiatric disorder is selected from the group consisting of: mood disorder, cognitive disorder, behavioral disorder and anxiety disorder. In some aspects, the pulse generator is configured to apply electrical signals at a frequency between approximately 20 and 300 Hertz, at a pulse duration between approximately 50 and 500 microseconds, at an output current density of not greater than approximately 25 mA/cm2 and an output charge density of not greater than approximately 10 microCoulomb/cm2.
In accordance with a yet further aspect of the present technology there is provided a system for trigeminal nerve stimulation for treatment of a neuropsychiatric disorder, the system comprising: a pulse generator; and a cutaneous electrode assembly in electrical communication with the pulse generator, the assembly comprising: a first electrode contact configured for cutaneous placement directly over or adjacent a trigeminal nerve branch on a patient; and a second electrode contact configured for cutaneous placement directly over or adjacent the trigeminal nerve branch on the patient, wherein the trigeminal nerve branch is selected from the group consisting of a mandibular nerve and a maxillary nerve.
In accordance a still further aspect of the present technology a method for treating a neuropsychiatric disorder by trigeminal nerve stimulation, comprising: placing a first electrode contact of a cutaneous electrode assembly directly over or adjacent to an ophthalmic nerve on one side of a patient’s forehead; and applying electrical signals to the cutaneous electrode assembly at specified operational parameters to treat the neuropsychiatric disorder.
- 5 2015264876 08 Feb 2016
In accordance with a yet further aspect of the present technology there is provided a method for treating a neuropsychiatric disorder by trigeminal nerve stimulation, comprising: placing a first contact of a cutaneous electrode assembly directly over or adjacent to a trigeminal nerve branch on a patient, wherein the trigeminal nerve branch is selected from the group consisting of a mandibular nerve and a maxillary nerve; and applying electrical signals to the cutaneous electrode assembly at specified operational parameters to treat the neuropsychiatric disorder. [0012] In another aspect, cutaneous electrode assembly for trigeminal nerve stimulation for treatment of a neuropsychiatric disorder is disclosed. In one embodiment, the assembly includes: a first electrode comprising at least one contact configured for cutaneous placement at a first region of the patient’s face, wherein the first electrode is configured to contact a portion of the patient’s face overlying the cutaneous distribution of at least one branch of the trigeminal nerve, wherein the assembly is configured for minimal current penetration into a brain of a patient, and wherein the at least one branch of the trigeminal nerve is selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve, zygomaticotemporal nerve, zygomaticofacial nerve, zygomaticoorbital nerve, nasal nerve, and auriculotemporal nerve. In some
- 5a 2015264876 03 Dec 2015 embodiments, the assembly may further include a second electrode comprising at least one contact configured for cutaneous placement at a second region of the patient’s face, wherein the second electrode is configured to contact a portion of the patient’s face overlying the cutaneous distribution of at least one branch of the trigeminal nerve, wherein the at least one branch of the trigeminal nerve is selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve, zygomaticotemporal nerve, zygomaticofacial nerve, zygomaticoorbital nerve, nasal nerve, and auriculotemporal nerve. In one embodiment, the first electrode and the second electrode are configured to contact a portion of the patient’s face overlying the cutaneous distribution of a same branch of the trigeminal nerve. In one embodiment, the first electrode and the second electrode are configured to contact a portion of the patient’s face overlying the cutaneous distribution of a different branch of the trigeminal nerve. In one embodiment, the neuropsychiatric disorder is selected from the group consisting of: mood disorder, cognitive disorder, behavioral disorder and anxiety disorder.
[0013] In another aspect, a method for treating a neuropsychiatric disorder by trigeminal nerve stimulation is disclosed herein. In one embodiment, the method includes contacting a first region of a patient’s face with a cutaneous electrode assembly, the cutaneous electrode assembly comprising: a first electrode comprising at least one contact configured for cutaneous placement at a first region of the patient’s face, wherein the first electrode is configured to contact a portion of the patient’s face overlying the cutaneous distribution of at least one branch of the trigeminal nerve, wherein the assembly is configured for minimal current penetration into a brain of a patient, and wherein the at least one branch of the trigeminal nerve is selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve, zygomaticotemporal nerve, zygomaticofacial nerve, zygomaticoorbital nerve, nasal nerve, and auriculotemporal nerve; and applying electrical signals to the electrode assembly at specified operational parameters to treat a neuropsychiatric disorder. In some embodiments, the electrode assembly may further include a second electrode comprising at least one contact configured for cutaneous placement at a second region of the patient’s face, wherein the second electrode is configured to contact a portion of the patient’s face overlying the cutaneous distribution of at least one branch of the trigeminal nerve, wherein the at least one branch of the trigeminal nerve is selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve,
-62015264876 03 Dec 2015 zygomaticotemporal nerve, zygomaticofacial nerve, zygomaticoorbital nerve, nasal nerve, and auriculotemporal nerve. In one embodiment, the step of applying electrical signals comprises applying electrical signals at a frequency between approximately 20 and 300 Hertz, at a current of 0.05 to 5 milliamperes (mA) and at a pulse duration of less than or equal to 500 microseconds. In one embodiment, the step of applying electrical signals comprises applying electrical signals at a frequency between approximately 20 and 300 Hertz, at a pulse duration between approximately 50 and 500 microseconds, at an output current density of not greater than approximately 25 mA/cm2 and an output charge density of not greater than approximately 10 microCoulomb/cm2 at the cerebral cortex. In one embodiment, the neuropsychiatric disorder is selected from the group consisting of: mood disorder, cognitive disorder, behavioral disorder and anxiety disorder.
[0014] In another aspect, a kit for trigeminal nerve stimulation for treatment of a neuropsychiatric disorder is disclosed herein. In one embodiment, the kit includes: the cutaneous electrode assembly as described herein; and instructions for placing the electrode assembly on a patient for treatment of a neuropsychiatric disorder. In some embodiments, the kit may include a pulse generator; and instructions for applying electrical signals to the electrode assembly for treatment of a neuropsychiatric disorder.
BRIEF DESCRIPTION OF THE DRAWINGS [0015] The present disclosure, both as to its organization and manner of operation, together with further objects and advantages, may be understood by reference to the following description, taken in connection with the accompanying drawings, in which:
[0016] Figs. IA and IB illustrate the location of several branches (nerves) of the trigeminal nerve and the location of the major foramina for the superficial branches of the trigeminal nerve;
[0017] Fig. 2 shows an embodiment of a system including an electrode assembly provided according to aspects of the present disclosure;
[0018] Fig. 3A depicts an enlarged view of the electrode assembly of Fig. 2;
[0019] Fig. 3B depicts representative dimensions of the electrode assembly of Fig.
3A;
-7 2015264876 03 Dec 2015 [0020] Figs. 4A-4C depict various embodiments of the cutaneous electrode assembly of Fig. 2;
[0021] Fig. 5 shows another embodiment of an electrode assembly that may be used with the system of Fig. 2;
[0022] Fig. 6A is a table showing an average of the results of four assessment tests pre-treatment and post treatment of a treatment study for psychiatric disorders using aspects of the present disclosure;
[0023] Fig. 6B is a bar graph of the data shown in Fig. 6A;
[0024] Fig. 6C is a graph illustrating the change over time of the data shown in Fig.
6A; and [0025] Fig. 7 summarizes one embodiment of current, charge, current density and charge density parameters for a subject exposed to cutaneous stimulation of the supraorbital nerve.
DETAILED DESCRIPTION [0026] The present disclosure relates to methods, devices and systems used for the treatment of mood, anxiety, post traumatic stress disorder, and cognitive and behavioral disorders (collectively, neuropsychiatric disorders) via stimulation of the superficial elements of the trigeminal nerve (“TNS”). More specifically, cutaneous methods of stimulation of the superficial branches of the trigeminal nerve located extracranially in the face, namely the supraorbital, supratrochlear, infraorbital, auriculotemporal, zygomaticotemporal, zygomaticoorbital, zygomaticofacial, infratrochlear, nasal and mentalis nerves (also referred to collectively as the superficial trigeminal nerve) are disclosed herein. Methods for the treatment of mood and other neuropsychiatric disorders by eTNS (external trigeminal nerve stimulation) are also provided. Systems and devices configured for therapeutic stimulation of the trigeminal nerve or branches thereof, such as the superficial trigeminal nerve, and their methods of application are also described. The unique anatomy of the trigeminal nerve, and its direct and indirect connections with key areas of the brainstem, thalamus, amygdala, insula, anterior cingulate and other cortical and subcortical areas involved with sensory processing, attention, emotion, cognition, and autonomic function, may allow the use of
-82015264876 03 Dec 2015 external stimulation for a variety of neuropsychiatric conditions in which stimulation may be desirable. The methods, systems and devices described herein may be noninvasive or minimally invasive.
[0027] Some brain stimulation methods aim to generate currents in large volumes of the cortex and treat the brain as a bulk conductor, for example, ECT (electroconvulsive therapy) at the whole-lobe level and rTMS (repetitive transcranial magnetic stimulation) at the large regional level (i.e. dorsolateral prefrontal cortex). Additionally, deep brain stimulation is generally predicated on stimulation of small but regional volumes that lead to discharges in a very large number of cells. The systems, devices and methods of the present disclosure send minimal, if any, current into the brain; instead, signals are sent into the brain in order to modify the activity of relevant neuroanatomical structures. Without wishing to be bound by any particular theory, the electrical pulses generate signals in the cutaneous branches of the trigeminal nerve and the electric fields are generally confined to the skin tissue and there is minimal, if any, leakage into the brain. These electrical pulses trigger a cascade of change in neuronal signaling events that involve very limited and precise recruitment of specific networks of neurons. The neuroanatomic pathways allow targeted modulation of activity in areas involved in depression (locus coeruleus, anterior cingulate, insula, amygdala, and other cortical and subcortical structures). Thus, the systems, devices and methods as disclosed herein utilize the brain’s existing infrastructure to transmit signals to the targets of interest. In the context of this disclosure, minimal current penetration means (1) a charge density of approximately 0 uC/cm2 at the cerebral cortex, or (2) calculated, measured, or modeled charge densities below the following thresholds at the cerebral cortex: (a) at currents, charge densities, or charge per phase not likely to cause direct activation of pyramidal neurons and axons; and (b) to prevent brain injury, a charge density of less than 10uC/cm2 in one embodiment, and, in other embodiments, a charge density of less than 1.0 uC/cm2 and in some embodiments, a charge density of less than 0.001 to 0.1 uC/cm2, and at combinations of charge density and charge per phase not known to cause brain injury. In some embodiments, a lower charge density may be used when the central nervous system of an individual patient is sufficiently sensitive to lower levels of stimulation that the lower level will still permit clinical benefit to accrue.
[0028] The following description is provided to enable any person skilled in the art to make and use the subject matter of this disclosure. Various modifications, however, will
-92015264876 03 Dec 2015 remain readily apparent to those skilled in the art, since the general principles of the disclosed subject matter have been defined herein specifically to describe: (1) methods of treating psychiatric disorders by trigeminal nerve stimulation, (2) a system and an electrode assembly configured for cutaneous trigeminal nerve stimulation; and (3) methods of treating psychiatric disorders using such system and electrode assembly.
[0029] With reference to Figs. IA and IB, the trigeminal nerve is the largest cranial nerve, and has extensive connections with brainstem and other brain structures. The trigeminal nerve has three major sensory branches over the face, all of which are bilateral, and highly accessible. The supraorbital nerve, or ophthalmic nerve, is frequently referred to as the V i division. The infraorbital branch, or maxillary nerve, is commonly referred to as the V2 division. The mandibular nerve (also known as the mentalis branch) is referred to as the V3 division. The supraorbital nerve supplies sensory information about pain, temperature, and light touch to the skin of the forehead, the upper eyelid, the anterior part of the nose, and the eye. The infraorbital branch supplies sensory information about pain, temperature, and light touch sensation to the lower eyelid, cheek, and upper lip. The mentalis branch supplies similar sensory modalities to the skin of the lower face (e.g. jaw and tongue) and lips.
[0030] These branches exit the skull through three foramina, as shown in Figs. IA and
IB. The supraorbital nerve or ophthalmic nerve exits at foramen 1 (the supraorbital foramen or notch), approximately 2.1-2.6 cm from the nasal midline (in adults), and is located immediately above the orbital ridge that is located below the eyebrow. The infraorbital branch or maxillary nerve exits at foramen 2 (the infraorbital foramen), approximately 2.43.0 cm from the nasal midline (in adults), and the mentalis nerve exits at foramen 3 (the mentalis foramen), approximately 2.0-2.3 cm from the nasal midline (in adults). The nasal nerve is a division of the ophthalmic nerve. Other sensory branches, including the zygomaticofacial, zygomaticoorbital, zygomaticotemporal, and auriculotemporal, arise from other foramina.
[0031] Fibers from the three major branches join together to form the trigeminal ganglion. From there, fibers ascend into the brainstem at the level of the pons to synapse with the main sensory nucleus of the pons, the mesencephalic nucleus of V, and the spinal nucleus and tract of V. Pain fibers descend in the spinal nucleus and tract of V, and then ascend to the ventral posterior medial nucleus (VPM) of the thalamus. Light touch sensory
- 102015264876 03 Dec 2015 fibers are large myelinated fibers, which ascend to the ventral posterior lateral (VPL) nucleus of the thalamus. Afferent sensory fibers project from the trigeminal nuclei to the thalamus and the cerebral cortex.
[0032] The trigeminal nucleus has reciprocal projections to the nucleus tractus solitarius (NTS), the locus coeruleus, the cerebral cortex and the vagus nerve. The NTS receives afferents from the vagus nerve and trigeminal nerve. NTS integrates input from multiple sources, and projects to structures in the brainstem and forebrain, including the locus coeruleus.
[0033] The locus coeruleus is a paired nuclear structure in the dorsal pons, and is located just beneath the floor of the fourth ventricle. The locus coeruleus has extensive axonal projections to a broad number of brainstem, sub-cortical and cortical structures, and is an important part of the reticular activating system. The locus coeruleus is a core part of the brainstem noradrenergic pathway, and produces the neurotransmitter norepinephrine. Norepinephrine plays a key role in attention, alertness, blood pressure and heart rate regulation, and mood.
[0034] While not wishing to be bound by any particular theory, in certain embodiments, the connections between the trigeminal nerve and the locus coeruleus, thalamus, amygdala, anterior cingulate, and other central nervous system structures as described above may be relevant to a potential role of the trigeminal nerve in neuropsychiatric disorders, including mood (such as depression), anxiety (such as posttraumatic stress disorder) and other cognitive and behavioral disorders. Thus, cutaneous stimulation of the trigeminal nerve could be effective in the treatment of these neuropsychiatric disorders.
[0035] For a discussion of certain embodiments of methods, systems and devices using cutaneous electrodes according to aspects of the present disclosure, reference is now made to Figs. 2A-5, which show various embodiments of the systems and devices that may be used for the cutaneous stimulation of the superficial branches of the trigeminal nerve and methods of using the same.
[0036] According to one aspect of the present disclosure, a method of treating neuropsychiatric disorders using trigeminal nerve stimulation (“TNS”) is provided. Broadly
- 11 2015264876 03 Dec 2015 speaking, the method of treating neuropsychiatric disorders by TNS comprises positioning external electrodes over or near at least one of the foramina or branches of the trigeminal nerve (Figs. 1A and IB), and stimulating the electrodes using a stimulator for a fixed time at specified operational parameters. The electrodes need not be applied at the main branch of the nerve, they can be applied in the area of the skin supplied by that nerve, which may be inches away from the main branch of the nerve. In one embodiment, the external electrodes are positioned over the foramina of the supraorbital or ophthalmic nerves (Fig. 1A, Foramen 1) since unilateral stimulation or bilateral stimulation of the trigeminal nerve is achievable by placing single or separate electrodes on the right and/or left sides (e.g. by placing an electrode assembly, such as two separate electrodes, a single paired electrode or two pairs of electrodes, each electrode having at least one contact, over the forehead or other region of the patient’s face). In one embodiment, the electrode assembly is configured for unilateral stimulation. In one embodiment, the electrode assembly is configured for bilateral stimulation. In some embodiments, bilateral stimulation may offer similar or better efficacy than unilateral stimulation because the function of different brain structures may not be the same on right and left (e.g. verbal expression is most commonly localized to speech centers in the left hemisphere, and injury there produces catastrophic loss of the ability to speak, while damage to the corresponding region on the right does not produce this profound loss of function, but may alter subtle functions). There may also be synergistic effects that arise with bilateral stimulation. In some embodiments, two separate electrodes or a single paired electrode may be placed over the forehead. In alternative embodiments, the electrode can be positioned over the foramina of the infraorbital foramen (infraorbital or maxillary nerves) (Fig. 1A, Foramen 2) or the mentalis foramen (mentalis or mandibular nerves) (Fig. IB, Foramen 3). In yet other embodiments, the stimulation can be unilaterally applied to one foramen of the trigeminal nerves. In other embodiments, the method of treating neuropsychiatric disorders comprises positioning external electrodes over a plurality of foramina and simultaneously stimulating different trigeminal nerves. In other embodiments, electrodes may be positioned at a region of the patient’s face (on the right and/or left side) corresponding with the supratrochlear nerve, infratrochlear nerve, zygomaticotemporal, zygomaticofacial, zygomaticoorbital, nasal, and/or auriculotemporal nerves and/or their respective foramina.
[0037] According to one aspect of the present disclosure, the method of treating psychiatric disorders by TNS comprises selecting patient specific values for the operational
- 122015264876 03 Dec 2015 parameters for the stimulation of each individual patient within a defined range. In one embodiment, the values of the operational parameters are selected such that a patient will experience a stimulation sensation, such as a mild tingling over the forehead and scalp without being in discomfort or in pain. In one embodiment, the values of the operational parameters are selected such that skin irritation, burns, and undesired effects on the brain, and/or the cranial nerves are minimized. In one embodiment, the method of selecting operational parameters comprises evaluating variables such as the configuration and size of the electrode, the pulse duration, the electrode current, the duty cycle and the stimulation frequency; which are important factors in ensuring that the total charge, the charge density, and charge per phase are well within accepted limits for the skin, nerve and brain. For example, to minimize skin irritation, it is not sufficient to merely state the total current, but the current density needs to be defined. Additionally, selection of the electrical stimulation parameters, electrode design, and inter-electrode distance are chosen such that the electrical stimulation zone includes the ophthalmic or other cranial nerves (approximately 3-4 mm below the skin surface), while preventing or minimizing current penetration beneath the skull bone as described above.
[0038] As described in more detail below with respect to Figs. 2A-5, the electrodes connect to leads for conveying the electrical stimuli from a neurostimulator. In some embodiments, the neurostimulation may be provided using an electrical neurostimulator at the following exemplary settings: frequency 20-150 Hz, current 1-10 mA, pulse duration (pulse width) of 50-250 microseconds, a duty cycle of 10% to 50%, for at least one hour per day. For patient comfort and low power consumption, stimulation parameters at the lower end of these ranges may be used. In other embodiments, different values of the operational parameters may be used. In alternative embodiments, a single external electrode can be used. In some embodiments, as described in more detail below, a portable external stimulator, which can be attached to a patient’s clothing, is used.
[0039] In one embodiment, as can be understood from Figs. 2-5, a system 200 for treatment of neuropsychiatric disorders via TNS includes an electrode assembly 100, electrical cable or wire 120 and an external neurostimulator or pulse generator 122. In some embodiments, the pulse generator may be an internal pulse generator. The electrode assembly may be configured for the bilateral simultaneous and asynchronous stimulation of the ophthalmic nerves. The neurostimulator or pulse generator may be any type of
- 13 2015264876 03 Dec 2015 appropriate stimulating, signal-generating device. In the illustrated embodiment, the generator 122 is portable and attached to the belt of a patient 20. However, either a portable or non-portable pulse generator may be used. As shown in Fig. 2, the electrode assembly 100 is connectable to an external stimulator 122 either by lead wires 124 connected to an electrical cable 120 or wirelessly. That is, in one embodiment, the electrical cable or wire 120 is configured to provide a physical and electrical link between the generator 122 and the electrode assembly 100 via lead wires 124. In other embodiments, the generator 122 and the electrode assembly 100 communicate wirelessly (i.e. the wire 120 and leads 124 are not used). The system 200 or elements thereof, such as the electrode assembly 100, may be part of a kit. In some embodiments, the kit may also include instructions for placement of the electrode system and/or system. In some embodiments, the kit may also include instructions for treatment of a neuropsychiatric disorder according to a method as disclosed herein.
[0040] In some embodiments, the system 200 may also include a regulation device to ensure safe use of the system. The regulation device is configured to be attached to the pulse generator 122 and is configured to govern the maximum charge balanced output current below approximately 30-50mA to minimize current penetration to the brain and increase patient tolerance. The regulation device may be internally programmed to range from 0.255.0 mA, 0 - 10mA, 0-15mA, depending on the surface area, placement, and orientation of the electrode, and whether the electrode is stimulating near or adjacent to the skull, or away from the skull, (mentalis), where current ranges may be higher or lower. Current TENS units stimulate with maximum output currents of up to 100 mA’s, which result in currents which may penetrate the skull and which may not be well tolerated.
[0041] In some embodiments, the electrode assembly 100 further includes a retainer element 130 configured to secure the electrode assembly to a patient’s forehead. In one embodiment, the retainer element 130 can be an elastic band or strap. In alternative embodiments, the electrode assembly 100 can be secured in place by a hat or a cap which also serves to conceal the electrode assembly from view. In still other embodiments, the electrode assembly may be secured by adhesive, such as an adhesive strip, an adhesive backing surrounding the conducting area or an adhesive conductive gel.
[0042] In some embodiments, the electrode assembly comprises an electrode with at least one contact. In some embodiments, a single electrode may have a plurality of contacts.
- 142015264876 03 Dec 2015
In some embodiments, the electrode assembly comprises pair of electrodes with a pair of contacts. In some embodiments, the electrode assembly may be a strip electrode with at least one contact. In some embodiments, the strip electrode may include a plurality of contacts.
[0043] The electrode assembly 100 shown in Figs. 2-3B is also referred to as a bilateral supraorbital electrode. As illustrated in Figs. 2-3B, the electrode assembly 100 includes a first pair of contacts 112a, 112b for placement on a first region of the patient’s face, and a second pair of contacts 114a, 114b for placement on a second region of the patient’s face. In some embodiments, the first region is the right side of the patient’s face and the second region is the left side of the patient’s face. The first pair of contacts comprises a first upper contact 112a and a first lower contact 112b, while the second pair of contacts comprises a second upper contact 114a and a second lower contact 114b. The first and second contact pairs are connected to each other by an insulative connection region 116. The electrode assembly 100 comprises an inner contact surface 118 that comes into contact with a patient’s skin at four contact areas, each corresponding to one of the four contacts 112a,
112b, 114a, 114b. The inner contact surface 118 comprising the four contact areas includes a buffered gel-like adhesive that provides good electrical conductivity with minimum skin irritation, an example of such gel includes the commercially available hydrogels from AmGel Technologies (AmGel Technologies, Fallbrook, CA, USA).
[0044] In one embodiment, the electrode assembly 100 is configured to stimulate both the right and left ophthalmic nerves either simultaneously or asynchronously. The insulative connection region 116 serves to assist a patient in lining up the electrode assembly 100 with the midline of the nose to ensure proper placement of the electrode assembly 100 over both ophthalmic nerves, which lie on the average about 2.1 to 2.6 cm from the nasal midline of an adult patient. Thus, the electrode assembly can be placed accurately (e.g. by the patient) without knowledge of the location of the ophthalmic nerve or key landmarks relative to the nerve, thereby reducing the possibility of inadequate stimulation due to errors in positioning of the electrodes.
[0045] The placement of the first contact pair 112a, 112b and the second contact pair
114a, 114b on opposite sides of the nasal midline assures that stimulation current moves orthodromically or in the direction of the afferent ophthalmic or supraorbital nerve. Furthermore, this configuration of the electrode assembly 100 allows the contact pairs
- 15 2015264876 03 Dec 2015
112a/l 12b and 114a/l 14b to be stimulated independently and/or unilaterally, as the response to stimulus may be localized and thus varied from one side of the midline to the other side. That is, the presently disclosed electrode assembly permits individual adjustment of current for the first and second regions or right and left sides, as applicable, thereby reducing asymmetric stimulation and/or perceived asymmetric stimulation. FIGS. 4A-4C illustrate other embodiments of the electrode assembly 100, which configurations may be used to stimulate the right and/or left ophthalmic nerve and/or other branches of the trigeminal nerve as disclosed herein, such as the zygomaticofacial and/or the auriculotemporal nerves. It can be appreciated that a single electrode with one or more contacts or multiple electrodes with one or more contacts may be used. The bilateral supraorbital electrode is specially configured for bilateral supraorbital stimulation. It is scalable based on the location of use, stimulation parameters and input from computer modeling so as to negate or minimize or render safe, current penetration into the brain. As skin irritation may occur, a similar configuration could be applied unilaterally, so as to provide relief to one side of the forehead, to promote skin tolerability and to reduce the risk of irritation. Other configurations of size and inter electrode distance can be conceived for different branches of the trigeminal nerve, as shown in Figs. 4A-4C. In one embodiment, a strip electrode with at least two contacts may be used to stimulate the auriculotemporal and/or zygomaticofacial nerve. In other embodiments, two separate electrodes may be used to stimulate the auriculotemporal and/or zygomaticofacial nerve.
[0046] For stimulations wherein electrical pulses of a single polarity (monophase either all positive pulses or all negative pulses) are generated, the upper contacts 112a, 114a and lower contacts 112b, 114 have fixed polarities. For stimulations wherein electrical pulses of alternating polarities (biphase - alternating positive and negative pulses or pulse trains) are generated, the upper contacts 112a, 114a and lower contacts 112b, 114b have alternating polarities. Also, the inferior electrode typically serves as the cathode for the leading phase of the stimulating pulse. In the case of a monophasic stimulation, the inferior electrode generally becomes the cathode.
[0047] As can be understood from Fig. 3B, each of the contacts 112a, 112b, 114a,
114b is sized to deliver an electrical pulse over a large enough surface area to minimize any skin injury due to excess current density and/or charge density, and to minimize or eliminate current penetration beyond the inner surface of the skull bone. The distance between the first
- 162015264876 03 Dec 2015 contact pair 112a, 112b and the second contact pair 114a, 114b is configured to stimulate the ophthalmic nerves while minimizing or eliminating current delivery to the surface of the brain. In one embodiment, the mid-point of each of the contacts is approximately 2.5 cm (range 1.5 cm to 3.5 cm) from the nasal midline. The electrode size and the inter-electrode distance may vary for children and adults, males and females based on anatomical differences. In one embodiment, the electrode is approximately 32.5mm in length by 12.5mm in height and the inter-electrode distance between, for example, the upper pair of electrodes 112a, 114a is 17.5 mm and the inter-electrode distance between, for example, the upper electrode 112a and the lower electrode 112b is 20mm. In other embodiments, the length of the electrode may be greater than or less than 32.5mm and greater than or less than
12.5 mm in height. In still other embodiments, the inter electrode distance can be in a range greater than 20mm and/or less than 17.5mm. In various embodiments, the surface area of each of the contacts 112a, 112b, 114a, and 114b can be within a range of about 0.5 cm2 to about 20 cm2. In various embodiments, the distance between the contacts 112a and 112b and the distance between contacts 114a, and 114b can be in a range of about 0.5 cm to about 10 cm. Those of skill in the art will recognize that one or more of the above distances can be used as a border of a range of distances.
[0048] Fig. 5 illustrates another embodiment of the electrode assembly 100. As shown in Fig. 5, a patient 10 is wearing two separate electrodes 12 on the forehead, one over each eyebrow, corresponding to the foramina of the ophthalmic nerves.
[0049] Those skilled in the art will appreciate that various adaptations and modifications of the above-described embodiments of the electrode assembly 100 are within the scope and spirit of the present disclosure. For example, one embodiment of the present device comprises a unilateral electrode assembly configured for the unilateral stimulation of ophthalmic nerves. Also, the instant electrode assembly can also be configured for the stimulation of the maxillary nerves or the mandibular nerves. Alternatively, an electrode assembly configured for the simultaneous stimulation of a plurality of trigeminal nerve branches is also within the scope of the present disclosure. In one embodiment, the system or electrode assembly as disclosed herein may be configured to stimulate the auriculotemporal nerve. In one embodiment, the system or electrode assembly as disclosed herein may be configured to stimulate the zygomaticofacial nerve.
- 172015264876 03 Dec 2015 [0050] In use, the electrode assembly 100 is positioned over the forehead of the patient 20 such that the insulative connection region 116 lines up with the midline of the patient’s nose. In some embodiments, the electrode assembly 100 is placed over the supraorbital foramina, located over the orbital ridge approximately 2.1-2.6 cm lateral to nasal midline. The electrode assembly 100 may then be connected to the external neurostimulator 122 via lead wires 124 and the electrical cable 120. In other embodiments, the electrode assembly 100 is connected to the neurostimulator 122 via a wireless connection. Stimulation according to patient specific operational parameters as determined according to the methods described herein is then applied.
[0051] According to one aspect of the present disclosure, there is provided a method of treatment of neuropsychiatric disorders using the electrode assembly 100, as described above. In one embodiment, the method of treating psychiatric disorders comprises positioning the electrode assembly 100 to the forehead of a patient, connecting the electrode assembly 100 to an external stimulator 122, and stimulating the electrode assembly 100 at defined values of the operational parameters as disclosed herein.
[0052] According to one aspect of the present disclosure, there is provided a method of treatment of neuropsychiatric disorders using an embodiment of the electrode assembly as described herein. In one embodiment, the method of treating psychiatric disorders comprises positioning the electrode assembly at a first region of a face of a patient, connecting the electrode assembly to an external stimulator, and stimulating the electrode assembly at defined values of the operational parameters as disclosed herein. In one embodiment, the first region is a region corresponding to the auriculotemporal nerve. In one embodiment, the first region is a region corresponding to the zygomaticofacial nerve. In one embodiment, the first region is a region corresponding to the supraorbital nerve.
[0053] In one embodiment, the bilateral supraorbital electrode 100 illustrated in Figs.
2-3A is stimulated at a stimulus frequency between about 20 Hz and about 300 Hz, at a pulse duration between 50 microseconds (psec) and 250 psec, at an output current density of less than 25 mA/cm2 and an output charge density of less than 10pCoulomb/cm2 at the cerebral cortex for at least one-half to one hour per day. In general, the stimulation would yield no or negligible charge densities at the cerebral In some cases, stimulation can be provided for
- 182015264876 03 Dec 2015 less than one-half hour per day. Those of skill in the art will recognize that one or more of the above parameters can be used as a border of a range of parameters.
[0054] In various embodiments, the stimulation is delivered at a specific pulse width or range of pulse widths (or pulse duration). The stimulation can be set to deliver pulse widths in any range within a lower limit of about 10 microseconds and an upper limit of about 3 seconds. In various embodiments, the stimulation can be set to deliver pulse widths in the range greater than and/or less than one or more of 50 ps, 60 ps, 70 ps, 80 ps, 90 ps,
100 ps, 125 ps, 150 ps, 175 ps, 200 ps, 225 ps, 250 ps, up to 500 ps. Those of skill in the art will recognized that one or more of the above times can be used as a border of a range of pulse widths.
[0055] In some embodiments, the stimulation amplitude is delivered as a voltage or current controlled stimulation. In other embodiments it can be delivered as a capacitive discharge. In various embodiments, the current amplitude can be in any range within a lower limit of about 300 pA and an upper limit of about 30mA-35mA, depending on the surface area of the electrodes, inter-electrode distance, the branch(es) stimulated, and the modeling data as described above.. In various embodiments, the amplitude can be in a range greater than and/or less than one or more of 50pA, 75 pA, 100 pA, 125 pA, 150 pA, 175 pA, 200 pA, 225 pA, 250 pA, 275 pA, 300 pA, 325 pA, 350 pA, 375 pA, 400 pA, 425 pA, 450 pA,
475 pA, 500 pA, 525 pA, 550 pA, 575 pA, 600 pA, 625 pA, 650 pA, 675 pA, 700 pA, 725 pA, 850 pA, 875 pA, 900 pA, 925 pA, 950 pA, 975 pA, 1 mA, 2 mA, 3 mA, 4 mA, 5 mA, 6 mA, 7 mA, 8 mA, 9 mA, 10 mA, 11mA, 12mA, 13mA, 14mA, 15mA, 16mA, 17mA, 18mA, 19mA and 20 mA. Those of skill in the art will recognize that one or more of the above amplitudes can be used as a border of a range of amplitudes.
[0056] In various embodiments, the stimulation can be delivered at one or more frequencies, or within a range of frequencies. The stimulation can be set to be delivered at frequencies in any range within an upper limit of about 500 Hz and a lower limit of about 10 Hz. In various embodiments, the stimulation can be set to be delivered at frequencies less than, and/or greater than one or more of 50 Hz, 45 Hz, 40 Hz, 35 Hz, 30 Hz, 25 Hz, 20 Hz, 15 Hz, or 10 Hz. In various embodiments, the stimulation can be set to be delivered at frequencies greater than, and/or less than, one or more of 20Hz, 30Hz, 40Hz, 50 Hz, 60 Hz,
Hz, 80 Hz, 90 Hz, 100 Hz, 125 Hz, 150 Hz, up to 300 Hz. Those of skill in the art will
- 192015264876 03 Dec 2015 recognize that one or more of the above frequencies can be used as a border of a range of frequencies.
[0057] In various embodiments, the stimulation is delivered at a specific duty cycle or range of duty cycles within a range from 100% down to about 5%. In various embodiments, the stimulation can be set to be delivered at a duty cycle in the range greater than and/or less than one or more of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%. In some embodiments, to ensure preservation of the nerve, a duty cycle of 10% to 50% may be preferable. In some embodiments, duty cycles up to 100% may be useful in particular circumstances. Those of skill in the art will recognize that one or more of the above percentages can be used as a border of a range of duty cycles.
[0058] In other embodiments, different values of the operational parameters may be used. In one embodiment, the values of the operational parameters are selected such that a patient will experience a stimulation sensation, such as a mild tingling over the forehead and scalp without being in discomfort or in pain. The neurostimulation parameters are important factors in the treatment method. In one embodiment, the values of the operational parameters are selected to minimize skin irritation, bums, undesired effects on the brain and/or the ophthalmic nerves. In one embodiment, the method of selecting operational parameters comprises evaluating variables such as the configuration and size of the electrode, the pulse duration, the electrode current, the duty cycle and the stimulation frequency, each of which are important factors in ensuring that the total charge, the charge density, and charge per phase are well within accepted safety limits for the skin, nerve and brain. For example, to minimize skin irritation, it is not sufficient to merely consider the total current, but the current density needs to be defined. Additionally, it is important to select the electrical stimulation parameters, electrode design, and inter-electrode distance, such that the electrical stimulation zone includes the ophthalmic nerve (approximately 3-4mm deep), or other target nerve, while preventing or minimizing current penetration beneath the skull bone.
[0059] The stimulation is carried out at the above-described values of the operational parameters. The values of the operational parameters are advantageously selected such that a patient will experience a stimulation sensation, such as mild tingling over the forehead and scalp, without causing the patient unbearable discomfort or pain. These values may vary
-202015264876 03 Dec 2015 according to the treatment of interest; however, the systems and devices disclosed herein stimulate at parameters where current penetration below the surface of the skull and/or into the brain is prevented or minimized.
[0060] In some embodiments, an external device may be used to identify the location of the branch or branches of the trigeminal nerve that will be targeted in an individual patient for stimulation by the implanted electrode assembly disclosed herein. The external device may be used for mapping and targeting the desired branch or branches of the trigeminal nerve and for identifying the individual stimulation parameters that are optimal for efficacy and safety. In one embodiment, the device may include a plurality of external (transcutaneous) TNS electrodes. The practitioner approximates the location of the target branch and affixes the electrodes to the patient’s skin above the target location. Stimulation may be applied and the actual location or preferred (optimal) stimulation location of the target branch or branches may be determined. Stimulation parameters may also be established. Once the location and/or stimulation parameters have been established via the external device, that data may be used to help guide the placement of the implanted electrodes for an individual patient and to establish the customized stimulation parameters for that patient.
[0061] In addition, the use of external electrodes for stimulation of the trigeminal nerve may identify individuals who are likely to derive therapeutic benefit from a minimally invasive system in addition to the optimal specific locations and parameters of stimulation based on person-to-person variability. Various neurodiagnostic, imaging, or cutaneous nerve mapping methods may be able to delineate differences in individual anatomy to optimize stimulation for efficacy and/or safety. Furthermore, the use of a minimally invasive system may allow screening and identification of those individuals who are likely to derive benefit from other implantable systems, such as deep brain stimulation. This can be conceptualized as linking the three approaches as stage I (external TNS of the trigeminal nerve), stage II (implanted TNS of the superficial trigeminal nerve), and stage III (deep brain stimulation), such that stage I can screen for stage II, and stage II for stage III. By monitoring a patient for evidence of useful therapeutic effect, such as by reduction in the severity of symptoms, the results of treatment at one stage may be used to judge the likely effect of treatment with a more invasive treatment from a higher stage.
-21 2015264876 03 Dec 2015 [0062] A method of evaluating the use of trigeminal nerve stimulation for treatment of a neuropsychiatric disorder in a patient is disclosed herein. The method may include applying a cutaneous system for stimulation of the trigeminal nerve to the patient and monitoring the patient for at least one of evidence of a useful therapeutic response or evidence of tolerability of TNS treatment, providing a subcutaneous electrode assembly or system, and implanting the subcutaneous electrode assembly or system in the patient for treatment of a neuropsychiatric disorder.
[0063] A method of evaluating the use of deep brain stimulation for treatment of a neuropsychiatric disorder in a patient is disclosed herein. The method may include applying a cutaneous system for stimulation of the trigeminal nerve to the patient and monitoring the patient for at least one of evidence of a useful therapeutic response or evidence of tolerability of TNS treatment thereby generating external measurement criteria, providing a subcutaneous electrode assembly or system, implanting the subcutaneous electrode assembly or system in the patient for treatment of a neuropsychiatric disorder, monitoring the patient for at least one of a useful therapeutic response or tolerability of the implanted device, thereby generating extracranial measurement criteria, and analyzing the external measurement criteria and extracranial measurement criteria to determine whether the patient will benefit from deep brain stimulation.
[0064] The following examples are presented to set forth more clearly the subject matter of this disclosure without imposing any limits on the scope thereof and to illustrate the clinical benefits of trigeminal nerve stimulation for the treatment of neuropsychiatric disorders. In the first example, patients with major depressive disorder were treated by TNS with external cutaneous electrodes. In the second example, a patient was treated using cutaneous electrodes for bilateral supraorbital stimulation.
Example 1 [0065] FIGS. 6A-6C illustrate the results from a pilot study of external trigeminal nerve stimulation for the treatment of depression. Subjects with major depression who met inclusion and exclusion criteria were followed for 8-weeks in an open label (unblinded) study conducted at UCLA.
-222015264876 03 Dec 2015 [0066] Inclusion Criteria were: Age 18-65 years old who met DSM-IV criteria for an acute, recurrent episode of Major Depressive Disorder (MDD) and were in a major depressive episode (MDE) of moderate severity. Other inclusion criteria were: the current MDE must be > 4 months in duration, no response to at least one antidepressant over at least six weeks during the current MDE, and concomitant use of at least one antidepressant. All had prominent residual symptoms, with mean Hamilton Depression Rating Scale (HDRS-28) scores at study entry of 25.4 (3.9 s.d.), range 19 to 29. Subjects placed stimulating electrodes over the supraorbital branches of the trigeminal nerve for at least 8 hours per day (primarily while asleep), with current adjusted to maintain comfortable levels. Five subjects completed the trial. Primary outcome was change in HDRS at 8 weeks.
[0067] Exclusion criteria were: current pregnancy; meeting DSM-IV criteria for atypical or psychotic or bipolar depression; a history of schizophrenia, schizoaffective disorder, or other non-mood disorder psychosis; a current secondary DSM-IV diagnosis (or signs) of delirium, dementia, amnestic disorder or other cognitive disorder; clinically significant current suicidal intent; significant cardiac, medical or progressive neurological or medical illness; facial pain or trigeminal neuralgia; a VNS or other implantable electrical device such as a pacemaker; current use of a TENS or VNS unit, or history of non-compliance.
[0068] All subjects received unblinded TNS augmentation (adjunctive) treatment for at least 8-hours each day. Assessments were made at study intake, and at weeks 2, 4, 6, and 8 in the acute treatment phase. Subjects who wished to continue the treatment were allowed to participate in an optional 6-month long-term extension phase with monthly monitoring visits.
[0069] Subjects underwent stimulation using an electrical stimulator, such as for example the EMS Model 7500 commercially available from TENS Products, Inc.
(www.tensproducts.com) operated at a frequency of 120 Hertz, a current less than 20 mA, a pulse duration of 250 psec, and a duty cycle at 30 seconds on and 30 seconds off, for a minimum of 8 hours per day.
[0070] Prior to initiating treatment and at subsequent follow-up assessment visits, the symptom severity of each subject was quantified using the Hamilton Depression Rating Scale (HDRS, scored using both 17- and 28-item versions), the Beck Depression Inventory (BDI), and the Quick Inventory of Depressive Symptomatology (QIDS), with the group average values on each of these scales being tabulated in the table shown in Fig. 6A. All three are
-23 2015264876 03 Dec 2015 assessment instruments designed to measure the severity of depression. The HDRS is a wellestablished rating scale instrument which is filled out by a clinician after interviewing and observing the individual subject in order to measure the severity of depression; in this study, ratings on all 28 items (questions) were made, and the scale was scored according to standard methods using all items (HDRS28) and the standard subset of 17 items (HDRS17). The BDI is a 21 -question multiple choice self-report survey that is used to measure the severity of depression. The QIDS-C16 is a 16-question clinician-rated survey that is used to measure the severity of depression. Each of these scales affords different strengths and limitations in assessing a patient’s symptom severity (e.g. BDI emphasizes cognitive symptoms of depression, while the HDRS weights neurovegetative symptoms prominently), and all are commonly used in clinical trials in major depression; the use of multiple scales allowed a more comprehensive assessment of the effects of trigeminal nerve stimulation than any single scale in this initial study of this treatment for major depression.
[0071] As shown in Fig. 6A, and graphically illustrated in Figs. 6B and 6C, decreases in HDRS28 were significant, from 25.4(3.9 s.d.) at entry to 13.6 (6.3 s.d.) at week 8 (2-tail t-test p<0.01, Cohen’s d 2.4). Responses on the BDI similarly declined, from 26.8 (8.1) to 10.6 (4.9) (p<0.01, d 2.3). Decreases on the 16-item clinician-rated QIDS were also significant, decreasing from 10.8 (3.4) to 5.5 (4.4) (p<0.05, d 1.3). Thus, significant decreases in symptom severity were achieved in the 8 weeks of acute TNS treatment. Furthermore, changes in symptoms occurred across all symptom areas, such as depressed mood, anxiety, sleep, and energy. These findings support the use of TNS treatment which may also have use as an adjunct to pharmacotherapy when medications have failed to produce remission of symptoms.
Example 2 [0072] FIG. 7 summarizes current, charge, current density and charge density recorded in a subject during exposure to cutaneous stimulation of the supraorbital nerve. FIG. 7 illustrates representative parameters for bilateral supraorbital stimulation recorded in a subject using an EMS 7500 stimulator, 120 HZ, 150-250 usee, Tyco superior silver electrodes 1.25”, placed one inch from the midline above the eyebrows. Data recorded with Fluke Oscilloscope, 50 mV/div, resistor = 10.1 Ω. In general, these findings show that, as the pulse width increased, the maximum tolerable current decreased.
-242015264876 03 Dec 2015 [0073] Cutaneous electrical stimulation of the supraorbital branch of the trigeminal nerve with round 1.25-inch TENS patch electrodes results in current densities and charge density/phase that are well within the limits of safety. In general, the maximum current comfortably tolerated by TNS patients studied previously is approximately 25 mA, and patients typically are stimulated at an amplitude setting well below 25 mA (6-10 mA).
[0074] The 1.25-inch TENS electrodes are circular electrodes with a radius of 1.59 cm. The surface area can be calculated as A = P r2 = [P ] X [1.59 cm]2 = 7.92 cm2. Using these electrodes, typical stimulation current ranges from 6-10 mA at pulse durations of 150250usec.
[0075] Current Density: In a typical subject, stimulation currents of 6-10 mA result in current densities ranging from .76 to 1.3 mA/cm2. McCreery et al have established a maximum safe current density of 25mA/cm at the stimulating electrode for transcranial electrical stimulation. Assuming even higher currents of up to 25 mA with electrodes of surface area 7.92 cm2, current densities may range to a maximum of 3.16mA/cm2. From .76 mA/cm2 to 3.16mA/cm2, TNS delivers a current density 8-33 times less than the maximum safe allowable current density. Charge Density (Charge density/phase): Yuen et al have identified a safe limit for charge density/phase delivered at the cerebral cortex of 40 uC/cm2. [Yuen et al 1981] and more recently McCreery et al. (McCreery et al 1990)have identified 10 uC/cm2 as the safe limit. Assuming 10 mA at 250usec, the charge density/phase is [.010A] x [250usec]/7.92 = 0.32 uC/cm2 at the stimulating electrode. Assuming even higher levels of stimulation, 25mA at 250usec, the maximum charge density per phase is 0.79uC/cm2. At these levels, the charge density is generally 12 to 120 fold less at the stimulating electrode than the maximum allowed at the cerebral cortex. Since the cortex is a minimum of 10-13 mm from the stimulating electrodes, and given the interposed layers of skin, fat, bone, dura, and CSF, the actual charge densities will be significantly lower. This is of importance in avoiding the undesired passage of current directly through brain tissue as a bulk conductor.
[0076] As shown in FIG. 7, stimulation intensity responses in a subject with electrodes of surface area 7.92 cm2, at pulse durations between 150-250 usee, results in current densities at the scalp well below currently recommended current densities for transcranial stimulation, which are 25 mA/cm2, and charge densities at the scalp significantly lower than safe charge densities at the cerebral cortex (0.15-0.18 uC/cm2).
-25 2015264876 03 Dec 2015 [0077] From the foregoing discussion, it will be appreciated that the invention can be embodied in various ways which include, but which are not limited to, the following:
1. A cutaneous electrode assembly for trigeminal nerve stimulation for treatment of a neuropsychiatric disorder, the cutaneous electrode assembly comprising: a first pair of contacts configured for placement on a first region of a patient’s face; a second pair of contacts configured for placement on a second region of a patient’s face; and an insulating connection region connecting the first pair of contacts and the second pair of contacts, wherein the first pair of contacts and the second pair of contacts are configured to contact a portion of the patient’s face overlying the cutaneous distribution of at least one branch of the trigeminal nerve and to stimulate said branch of said nerve with minimal or no current penetration below the surface of the skull.
2. The cutaneous electrode assembly of claim 1, wherein the at least one branch of the trigeminal nerve is selected from the group consisting of: superficial ophthalmic branch, infraorbital branch, and the mentalis branch.
3. The cutaneous electrode assembly of claim 1, wherein the at least one branch of the trigeminal nerve is a supraorbital nerve.
4. The cutaneous electrode assembly of claim 1, wherein the at least one branch of the trigeminal nerve is an auriculotemporal nerve.
5. The cutaneous electrode assembly of claim 1, wherein the at least one branch of the trigeminal nerve is a zygomaticofacial nerve.
6. The cutaneous electrode assembly of claim 1, further comprising a retainer element configured to secure the electrode assembly to a patient’s forehead.
7. The electrode assembly of claim 1, wherein the neuropsychiatric disorder is depression.
8. A system for trigeminal nerve stimulation for treatment of a neuropsychiatric disorder or condition, the system comprising: a neurostimulator; and a cutaneous electrode assembly comprising: a first pair of contacts configured for placement on a first region of a patient’s face; a second pair of contacts configured for placement on a second region of the
-262015264876 03 Dec 2015 patient’s face; and an insulating connection region connecting the first pair of contacts and the second pair of contacts, wherein the first pair of contacts and the second pair of contacts are configured to contact a portion of the patient’s face overlying the cutaneous distribution of at least one branch of the trigeminal nerve.
9. The system of claim 8, further comprising a cable and lead wires operably connecting the neurostimulator and the cutaneous electrode assembly.
10. The system of claim 8, further comprising a regulation device configured to regulate current output to minimize or prevent current penetration below the surface of the skull bone.
11. The system of claim 8, wherein the at least one branch of the trigeminal nerve is selected from the group consisting of: superficial ophthalmic branch, infraorbital branch, and mentalis branch.
12. The system of claim 8, further comprising a retainer element configured to secure the electrode assembly to the patient’s forehead.
13. The system of claim 8, wherein the at least one branch of the trigeminal nerve is a supraorbital nerve.
14. The system of claim 8, wherein the at least one branch of the trigeminal nerve is an auriculotemporal nerve.
15. The system of claim 8, wherein the at least one branch of the trigeminal nerve is a zygomaticofacial nerve.
16. A kit for trigeminal nerve stimulation for treatment of a neuropsychiatric disorder or condition, the kit comprising: the cutaneous electrode assembly according to claim 1; and instructions for placement of the electrode assembly on a patient for treatment of a neuropsychiatric disorder.
17. The kit of claim 16, further comprising: a neurostimulator; and instructions for applying electrical signals to the electrode assembly for treatment of a neuropsychiatric disorder.
-272015264876 03 Dec 2015
18. A method for treating a neuropsychiatric disorder by trigeminal nerve stimulation, comprising: attaching an electrode assembly to a patient, the electrode assembly comprising: a first pair of contacts configured for placement on a first region of the patient’s face; a second pair of contacts configured for placement on a second region of the patient’s face; and an insulating connection region connecting the first pair of contacts and the second pair of contacts, wherein the first pair of contacts and the second pair of contacts are configured to contact a portion of the patient’s face overlying the cutaneous distribution of at least one branch of the trigeminal nerve; and applying electrical signals to the electrode assembly at specified operational parameters to treat a neuropsychiatric disorder with minimal current penetration below the skull bone.
19. The method of claim 18, wherein the step of applying electrical signals comprises applying electrical signals at a frequency between approximately 20 and 300 Hertz, at a pulse duration between approximately 50 and 500 microseconds, at an output current density of not greater than approximately 25 mA/cm2 and an output charge density of not greater than approximately 10 microCoulomb/cm2.
20. The method of claim 18 wherein the electrode assembly is attached to the patient so as to contact the skin surface over a supraorbital nerve.
21. The method of claim 18 wherein the electrode assembly is attached to the patient so as to contact the skin surface over an auriculotemporal nerve.
22. The method of claim 18 wherein the electrode assembly is attached to the patient so as to contact the skin surface over a zygomaticofacial nerve.
23. The method of claim 18, wherein the neuropsychiatric disorder is depression.
[0078] Those skilled in the art will appreciate that various adaptations and modifications of the above described preferred embodiments may be configured without departing from the scope and spirit of this disclosure. Stimulation of the target nerve may be accomplished by cutaneous application of energy in many forms, such as magnetic or ultrasonic. Therefore, it is to be understood that the subject matter of this disclosure may be practiced other than as specifically described herein.
-282015264876 03 Dec 2015 [0079] In this specification, where a document, act or item of knowledge is referred to or discussed, this reference or discussion is not an admission that the document, act or item of knowledge or any combination thereof was at the priority date:
part of common general knowledge; or known to be relevant to an attempt to solve any problem with which this specification is concerned.
[0080] The word ‘comprising’ and forms of the word ‘comprising’ as used in this description and in the claims do not limit the invention claimed to exclude any variants or additions.
[0081] Modifications and improvements to the invention will be readily apparent to those skilled in the art. Such modifications and improvements are intended to be within the scope of this invention
-292015264876 14 May 2018

Claims (10)

  1. The claims defining the present invention are as follows:
    1. A system for trigeminal nerve stimulation for treatment of a neuropsychiatric disorder, the system comprising:
    a pulse generator; and a cutaneous electrode assembly in electrical communication with the pulse generator, the assembly comprising:
    a first electrode comprising at least one contact configured for cutaneous placement directly over an ophthalmic nerve on one side of a patient's forehead;
    a second electrode comprising at least one contact configured for cutaneous placement directly over a remaining ophthalmic nerve on an opposing side of the patient’s forehead; and an insulating region connecting the first electrode and the second electrode such that a midpoint of the first electrode is separated from a midpoint of the second electrode by an expected separation between the ophthalmic nerve on the one side of the patient's forehead and the ophthalmic nerve on the opposing side of the patient's forehead.
  2. 2. The system of claim 1, further comprising a wire operably connecting the pulse generator and the cutaneous electrode assembly.
  3. 3. The system of claim 1 or 2, further comprising a regulating device configured to regulate a maximum charge balanced output current through the first and second electrodes below approximately 30-50 mA.
  4. 4. The system of any one of claims 1 to 3, wherein the neuropsychiatric disorder is selected from the group consisting of: mood disorder, cognitive disorder, behavioral disorder and anxiety disorder.
  5. 5. The system of any one of claims 1 to 4, wherein the pulse generator is configured to apply electrical signals at a frequency between approximately 20 and 300 Hertz, at a pulse duration between approximately 50 and 500 microseconds, at an output current density of not
    -302015264876 14 May 2018 greater than approximately 25 mA/cm7 and an output charge density of not greater than approximately 10 uC/cm at the cerebral cortex.
  6. 6. A method for treating a neuropsychiatrie disorder by trigeminal nerve stimulation, comprising:
    placing a first electrode contact of a cutaneous electrode assembly directly over an ophthalmic nerve on one side of a patient’s forehead;
    placing a second electrode contact of the cutaneous electrode assembly directly over a remaining ophthalmic nerve on an opposing side of the patient's forehead; and applying electrical signals to the cutaneous electrode assembly at specified operational parameters to treat the neuropsychiatric disorder, wherein the cutaneous electrode assembly comprises an insulating region connecting the first electrode contact and the second electrode contact such that a midpoint of the first electrode contact is separated from a midpoint of the second electrode contact by an expected separation between the ophthalmic nerve on the one side of the patient's forehead and the ophthalmic nerve on the opposing side of the patient's forehead.
  7. 7. The method of claim 6, wherein the step of applying the electrical signals comprises applying the electrical signals at a frequency between approximately 20 and 300 Hertz, at a current of 0.05 to 5 mA and at a pulse duration of less than or equal to 500 microseconds.
  8. 8. The method of any one of claims 6 to 7, wherein the step of applying the electrical signals results in an output current density of not greater than approximately 25 mA/cm and a charge density of not greater than approximately 10 pC/cm at the patient’s cerebral cortex.
  9. 9. The method of any one of claims 6 to 8, wherein the neuropsychiatric disorder is selected from the group consisting of: mood disorder, cognitive disorder, behavioral disorder and anxiety disorder.
    -31 Atty. Docket No. 001659-5002-US
    UC Case No. 2010-003-2
    2015264876 03 Dec 2015
    Atty. Docket No. 001659-5002-US
    UC Case No. 2010-003-2
    2015264876 03 Dec 2015 /20
    122
    Atty. Docket No. 001659-5002-US
    UC Case No. 2010-003-2
    2015264876 03 Dec 2015
    Atty. Docket No. 001659-5002-US
    UC Case No. 2010-003-2
    2015264876 03 Dec 2015 θ
    θ
    Atty. Docket No. 001659-5002-US
    UC Case No. 2010-003-2
    2015264876 03 Dec 2015
    5/10
    100
    Atty. Docket No. 001659-5002-US
    UC Case No. 2010-003-2
    2015264876 03 Dec 2015
    6/1
    Atty. Docket No. 001659-5002-US
    UC Case No. 2010-003-2
    2015264876 03 Dec 2015
    Atty. Docket No. 001659-5002-US
    UC Case No. 2010-003-2
    2015264876 03 Dec 2015
    710
    PRE- TO POST-TREATMENT COMPARISON
    BDI HDRS28 HDRS17 QIDSie BASELINE 26.8(8.1) 25,4 (3,9) 16,2 (3.3) 10,8(2,8) FINAL 8.4 (4.9) 12.6 (6.4) 8,8 (4.4) 5.4 (3.8) 2-TAILP-VALUE 0.0004 0.006 0.005 0.01 % CHANGE 70.2% 51,1% 45.6% 58,1% COHEN’S d E.S 2.7 2,4 1.9 1,3
    Atty. Docket No. 001659-5002-US
    UC Case No. 2010-003-2
    2015264876 03 Dec 2015
    9/10
    Atty. Docket No. 001659-5002-US
    UC Case No. 2010-003-2
    2015264876 03 Dec 2015
  10. 10/10
    PULSE DURATION (Usee) 150us 200us 250us mA’S RECORDED (MAX TOLERATED SETTINGS) 7,92 5.94 5.72 ELECTRODE RADIUS(cm) (1.25” DIAMETER ROUND ELECTRODES) 1.59cm 1.59cm 1.59cm SURFACE AREA cm 7.92cm2 7.92cm2 7.92cm2 CURRENT DENSITY mA/cm2 1 .75 .72 MAXIMUM SAFE CURRENT DENSITY AT STIMULATING ELECTRODE mA/cm2 25 25 25 CHARGE DENSITY (A)(pulse)/cm2 =uC/cm2' AT STIMULATING ELECTRODE .15 .15 0.18 MAXIMUM SAFE CHARGE DENSITY (uC/cm2) AT BRAIN 10 10 10
AU2015264876A 2009-10-05 2015-12-03 Devices, Systems and Methods for Treatment of Neuropsychiatric Disorders Ceased AU2015264876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2015264876A AU2015264876B2 (en) 2009-10-05 2015-12-03 Devices, Systems and Methods for Treatment of Neuropsychiatric Disorders

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US24882709P 2009-10-05 2009-10-05
US61/248,827 2009-10-05
US28982909P 2009-12-23 2009-12-23
US61/289,829 2009-12-23
US30551410P 2010-02-17 2010-02-17
US61/305,514 2010-02-17
US35464110P 2010-06-14 2010-06-14
US61/354,641 2010-06-14
AU2010303586A AU2010303586B2 (en) 2009-10-05 2010-10-05 Devices, systems and methods for treatment of neuropsychiatric disorders
PCT/US2010/051542 WO2011044176A1 (en) 2009-10-05 2010-10-05 Devices, systems and methods for treatment of neuropsychiatric disorders
AU2015264876A AU2015264876B2 (en) 2009-10-05 2015-12-03 Devices, Systems and Methods for Treatment of Neuropsychiatric Disorders

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2010303586A Division AU2010303586B2 (en) 2009-10-05 2010-10-05 Devices, systems and methods for treatment of neuropsychiatric disorders

Publications (2)

Publication Number Publication Date
AU2015264876A1 AU2015264876A1 (en) 2015-12-24
AU2015264876B2 true AU2015264876B2 (en) 2018-05-31

Family

ID=54883849

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2015264876A Ceased AU2015264876B2 (en) 2009-10-05 2015-12-03 Devices, Systems and Methods for Treatment of Neuropsychiatric Disorders

Country Status (1)

Country Link
AU (1) AU2015264876B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051370A1 (en) * 2004-11-10 2006-05-18 Patrick Cosson Electrotherapy device and method
US20090210028A1 (en) * 2008-02-20 2009-08-20 Stx-Med Sprl Device for the electrotherapeutic treatment of tension headaches

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051370A1 (en) * 2004-11-10 2006-05-18 Patrick Cosson Electrotherapy device and method
US20090210028A1 (en) * 2008-02-20 2009-08-20 Stx-Med Sprl Device for the electrotherapeutic treatment of tension headaches

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DeGiorgio CM et al, "Trigeminal nerve stimulation for epilepsy: long-term feasibility and efficacy.", Neurology 72 pages 936-938, 10 March 2009 *

Also Published As

Publication number Publication date
AU2015264876A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
US10322283B2 (en) Devices, systems and methods for treatment of neuropsychiatric disorders
AU2015264876B2 (en) Devices, Systems and Methods for Treatment of Neuropsychiatric Disorders

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired