AU2015255270A1 - C-spring suture for primary closure of surgical incisions - Google Patents

C-spring suture for primary closure of surgical incisions Download PDF

Info

Publication number
AU2015255270A1
AU2015255270A1 AU2015255270A AU2015255270A AU2015255270A1 AU 2015255270 A1 AU2015255270 A1 AU 2015255270A1 AU 2015255270 A AU2015255270 A AU 2015255270A AU 2015255270 A AU2015255270 A AU 2015255270A AU 2015255270 A1 AU2015255270 A1 AU 2015255270A1
Authority
AU
Australia
Prior art keywords
suture
skin
attachment
spring
attachment strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2015255270A
Inventor
Anthony Barr Mclorg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DERMAL THERAPIES LLC
Original Assignee
Dermal Therapies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dermal Therapies LLC filed Critical Dermal Therapies LLC
Priority to AU2015255270A priority Critical patent/AU2015255270A1/en
Publication of AU2015255270A1 publication Critical patent/AU2015255270A1/en
Abandoned legal-status Critical Current

Links

Abstract

A c-spring suture for primary closure of surgical incisions comprises a "C" shaped, lenticular centre spring hingedly connected at each end with surgical 5 tape. In one embodiment, the tape is connected to the centre spring through a tape clamp and pin hinge. In another embodiment, the tape is connected to the centre spring through welding flanges attached to membrane hinges. In operation, when the c-spring suture is in place on a wound or incision line, the distal ends of the surgical tape relative to the centre spring, in conjunction with 10 the centre spring, are adapted to produce closure forces along the incision line that are remote from the incision, enabling such forces to act through the thickness of the skin through shear force transfer and provide closure force at the dermal level of the skin that is initially applied at the epidermal level, thus overcoming the problem of skin inversion at incision line common to skin tapes of 15 the prior art. (Fig. 1) '10' 43' 21 2'v Fig. 1A 3' 5' 5' 3' 2 2T Fig. 1B 4' 5'

Description

1
C-SPRING SUTURE FOR PRIMARY CLOSURE OF SURGICAL
INCISIONS
FIELD OF THE INVENTION
The present invention relates to sutures for primary closure of surgical incisions and/or wounds in the skin.
BACKGROUND TO THE INVENTION
Sutures are medical devices and materials used to hold body tissues together after injury or surgery. While over the centuries different types of threads have been used as the primary suture type to close dermis and epidermis incisions / wounds, surgical staples and of late non-penetrating clips are also used, in particular surgery. Where the skin to be repaired is not subject to constant flexing (tension and compression), skin-adhering tapes have also found application, in particular in epidermis incision sutures.
There exists an ongoing need for new types of suture devices / materials which can be applied to skin in a non-invasive manner but which nonetheless ensure the skin areas around the incision remain joined temporarily until such time as skin regeneration enables safe removal of the suture without risk of reopening of the wound.
SUMMARY OF THE INVENTION
In accordance with a first aspect of the present invention, there is provided a suture for primary closure of surgical incisions, comprising: a resilient centre piece having a first end and a second end; a first attachment strip connected to said first end of said centre piece, wherein said first attachment strip includes a distal end opposite the connection to the centre piece and is adapted to be attached to the skin of a wearer of the suture; a second attachment strip connected to said second end of said centre piece, wherein said second attachment strip includes a distal end opposite the connection to the centre piece and is adapted to be attached to the skin of a wearer of the suture; and wherein said first attachment strip are and second attachment strip are adapted to enable the centre piece to be stretched from a first position into a second position defined by the centre piece having self gauging level of pre-stress, over a wearer's surgical incision, then attached to the wearer's skin, transferring recoiling 2 force from the centre piece through the thickness of the skin through shear force transfer to provide closure force initially applied at the epidermal level at the dermal level of the skin.
In accordance with a second aspect of the present invention, there is provided a suture for primary closure of surgical incisions, comprising: a resilient means for storing and releasing mechanical energy; a first attachment means connected to said resilient means for supplying energy to said resilient means and transferring energy released from the resilient means to skin; and a second attachment means connected to said resilient means for supplying energy to said resilient means and transferring energy released from the resilient means to skin.
In yet another aspect of the present invention, there is provided a method of closing surgical incisions, comprising the steps of providing a resilient centre piece having a first end and a second end; providing a first attachment strip connected to said first end of said centre piece, wherein said first attachment strip includes a distal end opposite the connection to the centre piece and is adapted to be attached to the skin of a wearer of the suture; providing a second attachment strip connected to said second end of said centre piece, wherein said second attachment strip includes a distal end opposite the connection to the centre piece and is adapted to be attached to the skin of a wearer of the suture; and stretching said centre piece from a first position into a second position defined by the centre piece having self gauging level of pre-stress, over a wearer's surgical incision; and attaching at least one of said first attachment strip and said second attachment strip to the wearer's skin, enabling said first attachment strip and said second attachment strip to transfer recoiling force from the centre piece through the thickness of the skin through shear force transfer to provide closure force initially applied at the epidermal level at the dermal level of the skin.
Advantages associated with the various aspects of the present invention will become apparent from the following description of preferred embodiments thereof, provided with reference to the accompanying drawings. 3
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a side perspective view of a c-spring suture built in accordance with a pin hinge embodiment of the present invention and with a partial sectional view of its surgical tape; FIG. 1B is a side perspective view of a c-spring suture built in accordance with a membrane hinge embodiment of the present invention and with a partial sectional view of its surgical tape; FIG. 2A is a side perspective view of a c-spring suture, built in accordance with a pin hinge embodiment of the present invention, with its spring in a non-stressed state and a partial sectional view of its surgical tape; FIG. 2B is a side perspective view of a c-spring suture, built in accordance with a pin hinge embodiment of the present invention, with its spring in a fully stressed state and a partial sectional view of its surgical tape; FIG. 2C is a side perspective view of a c-spring suture, built in accordance with a pin hinge embodiment of the present invention, with its spring in a retracted state and a partial sectional view of its surgical tape; FIG. 3A is a side perspective view of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, with its spring in a non-stressed state and a partial sectional view of its surgical tape; FIG. 3B is a side perspective view of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, with its spring in a fully stressed state and a partial sectional view of its surgical tape; FIG. 3C is a side perspective view of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, with its spring in a retracted state and a partial sectional view of its surgical tape; FIG. 4A is a top plan view of a plurality of c-spring sutures packaged side to side, in sterile packaging for commercial distribution; FIG. 4B is a side elevational view of a cross section of a c-spring suture built in accordance with a membrane hinge embodiment of the present invention, in sterile packaging for commercial distribution; FIG. 4C is an enlarged, partial side elevational view of a cross section of the central section of c-spring suture built in accordance with a membrane hinge 4 embodiment of the present invention, in sterile packaging for commercial distribution; FIG. 4D is a side elevational view of a cross section of a c-spring suture built in accordance with a membrane hinge embodiment of the present invention with its end sections enlarged, in sterile packaging for commercial distribution; FIG. 5 is a side elevational view of a cross section of a c-spring suture built in accordance with a membrane hinge embodiment of the present invention, in sterile packaging for commercial distribution; FIG. 6 is a side elevational view of a cross section of a c-spring suture built in accordance with a membrane hinge embodiment of the present invention and having been removed from its packaging; FIG. 7 A is a side elevational view of a cross section of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, in a non-stressed state and with one end section attached to a wearer; FIG. 7B is a side elevational view of a cross section of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, with one end section attached to a wearer and with a pre-stressed spring; FIG. 7C is a side elevational view of a cross section of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, with both end sections attached to a wearer and with a pre-stressed spring; FIG. 7D is a side elevational view of a cross section of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, in a retracted state and with both end sections attached to a wearer; FIG. 8A is a partial side elevational view of a cross section of an enlarged central section of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, in a non-stressed state, prior to being attached to a wearer; FIG. 8B is a partial side elevational view of a cross section of an enlarged central section of a c-spring suture, built in accordance with a membrane hinge embodiment of the present invention, with both end sections attached to a wearer and with a pre-stressed spring prior to retraction of the spring; FIG. 8C is a side elevational view of a cross section of an enlarged central section of a c-spring suture, built in accordance with a membrane hinge 5 embodiment of the present invention, in a retracted state and with both end sections attached to a wearer; and
FIG. 9 is a top plan view of a plurality of c-spring sutures applied to a wearer, in an arc pattern, for closure and treatment of a large incision. DESCRIPTION OF PREFERRED EMBODIMENT
Referring now to the drawings and in particular FIG. 1A, a pin hinge c-spring suture 10' for primary closure of surgical incisions is shown having a centre spring 1' hingedly attached through pin hinge 2' at each end, to a tape clamp 3' attached to surgical tape 4', together with distal end 5'. A "C" shaped lenticular spring defines the centre spring 1' and enables the centre spring 1', when mechanically stretched apart, to store energy from being stretched and use it to exert an opposing compression force. In this regard, the centre spring 1' provides a resilient means for storing and releasing mechanical energy. In this embodiment, a pin hinge 2' defines each hinge member. By such a mechanism, when the centre spring 1' of the c-spring suture 10' is stretched from its non-stressed, convex lenticular form to a stressed, flattened lenticular form, through the application of manual force, the centre spring 1' automatically exerts a specific compression force biasing the centre spring 1' to return to its original convex lenticular form.
Tape clamps 3' are attached to pin hinges 2' at each end of the centre spring 1' and serve to fasten the centre spring 1' to the surgical tape 4', 5'. The surgical tape 4', 5' is embodied as conventional surgical tape and provides an attachment means that is connected to the centre spring 1' for supplying energy to the centre spring 1' and transferring energy released from centre spring 1' to skin. The surgical tape 4', 5' is shown as having a proximal surgical tape end 4' and a distal surgical tape end 5'. When the c-spring suture 10' is in place on a wound or incision line, the distal surgical tape ends 5', in conjunction with the centre spring 1', produce closure forces along the wound or incision line that are remote from the incision, enabling such forces to act by shear force transfer, through the thickness of the skin to provide closure force at the dermal level of the skin that is initially applied at the epidermal level.
Referring now to FIG. 1B, a membrane hinge c-spring suture 10 for primary closure of surgical incisions is shown having a centre spring 1 hingedly 6 attached at each end to a welding flange 3 through a membrane hinge member 2, with surgical tape 4, 5 extending from each welding flange 3. In contrast to the pin hinge c-spring suture embodiment, in the membrane hinge c-spring suture 10 membrane hinges 2 define the hinge members, supplying a hinge joint on either side of the centre spring 1 as well as welding flanges 3 to enable the attachment of surgical tape 4, 5. Together, each membrane hinge 2 and welding flange 3 assembly defines a connecting means for hingedly attaching the tape 4 and 5 to the spring 1. Both proximal ends of the surgical tape 4 are attached to the welding flanges 3 through thermal bonding. It is contemplated, however, that other permanent attachment mechanisms, such as a discrete adhesive, may be employed.
In the preferred version of this embodiment, the centre spring 1, membrane hinges 2 and the welding flanges 3 are defined as a continuous extrusion that is attached to the surgical tape 4, 5. Such a construction enables the manufacture of an entire sheet of a c-spring assembly, which is then slit to make the individual suture strips, or alternately as a continuous line process.
Despite any structural variations, however, the mechanical action of a c-spring suture, whether embodied with a pin hinge or a membrane hinge, is essentially similar to that of the centre spring acting through the distal ends of two opposing surgical tapes for the provision of dermal level closure forces.
Referring now to FIGS. 2A and 3A, embodiments of the c-spring suture 101', 101 are shown in the non-stressed state of operation. The non-stressed state defines the c-spring suture 101', 101 as it would be manufactured, once the packaging and tape release strips (not shown here) have been removed, or otherwise when it is not in use. In the non-stressed state, the centre spring 111', 111 maintains its resting, convex lenticular form, with the hinge members 211', 211 enabling movement in one plane, of the surgical tape 511', 511 relative to the centre spring 111', 111 by the action of vertical swinging 411', 411.
Referring now to FIGS. 2B and 3B, the c-spring suture 102', 102 is shown in its fully stressed state of operation. To be placed in this fully stressed state, force in a stressing direction 312', 312 must be placed on the surgical tape 512', 512 on at least one side of the centre spring 112', 112. Accordingly, it is contemplated that the c-spring suture 102', 102 can be placed in its fully stressed 7 state by exerting force in the stressing direction 312', 312 on the surgical tape 512', 512 on one side of the centre spring 112', 112 if the surgical tape 512', 512 on the other side is held in place or by exerting force in the stressing direction 312', 312 on the surgical tape 512', 512 on both sides of the centre spring 112', 112 simultaneously.
When force in the stressing direction is placed on the surgical tape 512', 512 in such a manner, the centre spring 112', 112 moves in a vertical flattening direction 422', 422, with the hinge members 212', 212 enabling the centre spring 112', 112 to swing in a flattening direction 412', 412 relative to the surgical tape 512', 512. The flattening of the centre spring 112', 112 stores the mechanical energy employed and places it at a self gauging level of pre-stress. Unlike prior art spring sutures, commonly embodied as either cylindrical, coil or leaf form, the centre spring 112', 112 embodied as a "C" shaped lenticular spring, has a geometrical limit to the amount of pre-stress that may be applied thereto before the c-spring suture 102', 102 is placed on the incision or wound that is to be closed. This closure pre-stress is applied to the dermal level as partly described in the description of FIGS. 1A and 1B. It is contemplated that variation in the section detail of the "C" shaped lenticular spring and the specific mechanical qualities of the material of manufacture, elasticity, strength, etc., can offer different levels of closure pre-stress as may be suitable for different areas of the body, face, abdomen etc. In contrast, in prior art spring sutures, the correct amount of closure pre-stress is left unreferenced and solely to the skill of the applier.
Referring now to FIGS. 2C and 3C, the c-spring suture 103', 103 is shown in its retracted state of operation. In the retracted state, the centre spring 113', 113 releases a portion of the mechanical energy stored when the c-spring suture 103', 103 was placed in a stressed state, exerting force in a horizontal retracting direction 313', 313 and motion in a vertical rising direction 423', 423 of the central spring 113', 113. The twisting motion 413', 413 is coincidental with the vertical rising direction of the spring 113', 113 is isolated from the retracting force 313', 313 and motion in the tape 513', 513 by the hinges 213', 213. The c-spring suture 103', 103 is constructed so that the surgical tape 513', 513 on both sides of the centre spring 113', 113 can be attached to the skin of a wearer on either side of a 8 targeted wound or incision. Thus, when force in horizontal retracting direction 313', 313 is applied by the centre spring 113', 113, of a c-spring suture 103', 103 in place on a wearer, pre-stress is applied to the skin, remote from the wound or incision, so as to act through shear in the skin, down to the dermal level, to provide closure pre-stress at that level. More specifically, as the two sections of the surgical tape 513', 513 are drawn inward, in the closing direction 313', 313, by the force invested in the centre spring 113', 113, the skin is drawn toward the wound or incision. The upper layer of skin acts through shear on the lower dermal layers so that they are also draw toward the incision from both sides. This causes compression at the dermal level, at the line of the incision. In order to let this compression act to result in abutment of the lower layers of the skin, relief space is provided for the swelled volume of the compressed upper layers of skin, under the spring, as the central part of the spring rises simultaneously, as it retracts.
It understood that the hinge members 213', 213 enable the c-spring suture 103', 103 to isolate the flexure forces in the centre spring 113', 113 from the surgical tape 513', 513 while in use on a wearer. Such isolation prevents the twisting forces of the centre spring 113', 113 from being applied to the skin around the wound or incision, thereby preventing distortion and misalignment of the skin which is detrimental to healing.
Referring now to FIGS. 4A, 4B, 4C, 4D, 5, 6, and 8A, the c-spring suture 610 is shown in various states of the preferred commercial packaging and deployment therefrom. The c-spring suture 610 is typically distributed as a sterile package 620, containing a plurality of discrete c-spring sutures 610 packaged side by side. The sterile package 620 typically includes a sterility wrapper 621 that includes a peeling edge 625 and a packing card 622. A doubled back tape release strip 623 having a free end 624 is additionally included to improve the ease of application of the c-spring sutures 610 at the incision.
Each discrete c-spring suture 610 includes a "C" shaped, lenticular centre spring 601, a membrane hinge 602 and a welding flange 603, all of which are nominally nylon or similar polymer, extruded together as one. Connection is made between the centre elements, the spring 601, the hinge 602 and the welding flange 603, and the surgical tape 604, at the welding flange 603. The bond is made by thermal weld between the nylon extrusion and the conventional surgical 9 tape normally made of spun bonded nylon. The doubled back tape release strip 623 is included with the surgical tape 604 when the tape and the centre are connected.
While the surgical tape 604 generally exerts force from the centre spring 601 on the skin of a wearer, it is understood that because it stretches less easily than skin, the surgical tape's distal end 605 primarily supplies the transfer closure force from the c-spring suture 610 structure to the surface of the skin, remotely from the edges of the wound or incision at the distal end 605.
Referring now to FIG. 7A, the c-spring suture 700 is shown being placed over an incision 2001 on the skin 2000 of a wearer. The c-spring suture 700 has the tape release strip 723 removed (not shown) on the surgical tape 705 on the left side of the centre spring 701, with the surgical tape 705 on the left side of the centre spring 701 applied to the skin 2000 of a wearer, affixing it thereto. The c-spring suture 700 is positioned on the wearer so that the centre spring 701 is disposed over the target incision 2001. On the right side the tape release strip 723 has been partly removed to partly expose the adhesive on the underside of the surgical tape 705, but remains at the end to enable the distal end of the surgical tape 705 to be grasped for stretching. As the c-spring suture 700 is shown prior to being stretched, the centre spring 701 is shown in its resting, convex lenticular shape.
Referring then to FIG. 7B, the c-spring suture 800 is shown being stretched over an incision 2101 on the skin 2100 of a wearer. The surgical tape 805 on the left side of the centre spring 801 affixed to the skin 2100 of a wearer, and force in a stretching (or stressing) direction 850 is being placed on the surgical tape 805 on the right side of the centre spring 801. The application of the force in a stretching direction 850 is required to pre-stress the centre spring 801, in preparation for the of the application of the surgical tape 805 on the right side of the c-spring suture 800 to the skin 2100 on the right side of the incision 2101.
In FIGS. 7C and 8B, the c-spring suture 900 is shown with both sides of the surgical tape 905 applied to the skin 2200 on either side of the incision 2201. The pre-stress is maintained in the centre spring 901, following the application of the second side of the surgical tape 905 to the skin 2200, by the stretching force 950, maintained prior to the release of the tape 905, by the applier. The incision 10 2201 is shown closed at the top as the edges thereof have been manually drawn tightly together, by the applier, at the epidermal level.
In the embodiments of FIGS. 7D and 8C, the c-spring suture 1000 is shown retracted in place on the skin 2300 of a wearer, over a target incision 2301. Following the initial application of the c-spring suture 1000, as shown in FIGS. 7C and 8B, the release of the stored force in the centre spring 1001 from the manual stretching causes the c-spring suture 1000 to take its retracted position. In the retracted position, the centre spring 1001 exerts force in a retracting (or closing) direction 1050. This force is transferred to the epidermal level of the skin 2310, by the distal ends of the c-spring suture 1000 through the attachment of the surgical tape 1005 to the skin 2300, with the distal ends at a location remote from the incision 2301. This force in a retracting direction 1050 on the epidermal level of the skin 2310, acts through shear in the skin down to the dermal level 2311, to provide dermal closure force 1051, through skin compression, resulting in abutment at the line of the incision 2301. The incision 2301 is shown closed at the dermal level 2311 of the skin 2300. During this process, the compressed tissue around the incision 2301 rises into the recess that develops under the centre spring as it retracts, rising as it tends to return to its original convex lenticular form.
It is contemplated that the application of closure pre-stress to the skin, remote from the line of the wound or incision, then acting through shear in the skin to provide dermal level compression closure force in conjunction with providing a relief space for the compressed tissue enables the c-spring suture to overcome the classical problem of skin inversion common to prior art skin tapes, while maintaining the advantage over staples or stitches, of being non invasive, that is also common to prior art skin tapes.
Referring now to FIGS. 8A, 8B, and 8C, it is recognized that the horizontal span of the c-spring suture 600, 900, 1000 varies depending on whether the c-spring suture is in a non-stressed state 600, a stressed state 900 or a retracted state 1000. A non-stressed state c-spring suture 600, defined by its un-stressed central spring 601, will have the smallest horizontal span. A fully stressed state c-spring suture 900, defined by a centre spring 901 under the effect of the applied stretching direction 950, has the largest horizontal 11 span. It is appreciated that the flattening of the centre spring 901 acts as an inherent limit to the stretch of the centre spring 901, making the self gauging property of the centre spring 901 possible. This self gauging action enables the automatic provision of the correct, designed level of closure force, for any particular application of any particular version of c-spring suture. A retracted state c-spring suture 1000, defined by the centre spring 1001 in an intermediate position between unstressed and stressed and exerting force in a retracting direction 1050 on attached surgical tape 1005, has a horizontal span between that of the non-stressed c-spring suture 620 and a stressed c-spring suture 900. The application of the force in a retracting direction 1050 at the surface of the skin 2300 through the surgical tape 1005 is transferred through shear to become dermal closure force 1051 at the base of the skin, against the underlying tissue (not shown). The dermal closure force 1051 at the dermal level provides the compression force that allows dermal level closure. The self gauging aspect of the spring geometry allows for the magnitude of the closure force to be designed to be correct for the specific application on a structural level, through selection of i.e. cross section geometry and elastic modulus of material.
The independence of the linear closure forces 1050, 1051 acting on the skin 2300, from the twisting flexural forces in the centre spring 1001, is ensured through the hinge members 1011 disposed on opposite sides of the centre spring 1001, respectively. The independence of the forces allowed by the hinge members 1011, in conjunction with the designable, self gauging level of closure force, provide for wound or incision closure of the highest accuracy. This in turn provides for minimum blood clotting volume, therefore minimum scarring and most rapid healing.
Referring finally to FIG. 9, a plurality of c-spring sutures 1101 are shown attached to the surface of a wearer's skin 1100 in an arc pattern as might be the case in an actual application. The c-spring sutures 1101 are shown spaced for easy application to the skin 1100 but close enough together so that when acting remotely from the incision line provide essentially continuous closure force 1150 across the incision line 1102 to provide completed closure as shown. A polymerizing skin adhesive 1110 may be applied to the distal ends of the c-spring sutures 1101, typically on the surgical tape thereof, once the accuracy of the final 2015255270 12 Nov 2015 12 closure has been confirmed. Acrylates that are compatible with skin 1100 are contemplated for this purpose, to provide maximum security of the closure. The structure of the c-spring sutures 1101, particularly the lack of any adhesive on the actual incision, make it appropriate for use with an anti-biotic ointment 1111 to 5 keep the wound clean and free from infection as well as to keep it from scabbing so as to minimize superficial scarring and discomfort, following the primary closure of surgical incisions. It is contemplated that such an ointment 1111 may be applied over and between the sutures and may occupy a slender interstitial space between the base of the centre spring and the top of the enclosed skin. 10 The present invention has been shown and described herein in what is considered to be the most practical and preferred embodiment. It is recognized, however, that departures may be made therefrom within the scope of the invention and that other modifications within the above described broader concepts and embodiments will occur to a person skilled in the art. 15 The term ‘comprising’ and ‘comprises’ are used in this specification in their inclusive meaning, and not exclusive as in ‘consisting solely of.

Claims (20)

  1. THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:
    1. A suture for primary closure of surgical incisions, comprising: a resilient centre piece having a first end and a second end; a first attachment strip connected to said first end of said centre piece, wherein said first attachment strip includes a distal end opposite the connection to the centre piece and is adapted to be attached to the skin of a wearer of the suture; a second attachment strip connected to said second end of said centre piece, wherein said second attachment strip includes a distal end opposite the connection to the centre piece and is adapted to be attached to the skin of a wearer of the suture; and wherein said first attachment strip are and second attachment strip are adapted to enable the centre piece to be stretched from a first position into a second position defined by the centre piece having self gauging level of pre-stress, over a wearer's surgical incision, then attached to the wearer's skin, transferring recoiling force from the centre piece through the thickness of the skin through shear force transfer to provide closure force initially applied at the epidermal level at the dermal level of the skin.
  2. 2. The suture of claim 1, wherein said resilient centre piece is a "C" shaped, lenticular spring centre configured to provide relief space while in retracted form for compressed tissue below.
  3. 3. The suture of claim 1 or 2, wherein the first attachment strip and the second attachment strip are connected to the centre piece through an attachment member and a hinge member disposed on the first end and an attachment member and a hinge member disposed on the second end, respectively.
  4. 4. The suture of claim 3, wherein a pin hinge provides at least one of said hinge members.
  5. 5. The suture of claim 4, wherein a tape clamp provides at least one of said attachment members.
  6. 6. The suture of claim 3, wherein a membrane hinge provides at least one of said hinge members.
  7. 7. The suture of claim 6, wherein a welding flange provides at least one of said attachment members.
  8. 8. The suture of claim 7, wherein the welding flange and hinge member disposed on said first end, the centre piece, and the welding flange and hinge member disposed on the second end comprise a single, continuous extrusion.
  9. 9. The suture of any one of claims 1 to 8, wherein surgical tape provides at least one of said first attachment strip and said second attachment strip.
  10. 10. The suture of any one of claims 1 to 8, wherein the distal ends of said first attachment strip and of said second attachment strip attach to a wearers skin through a polymerizing skin adhesive.
  11. 11. A suture for primary closure of surgical incisions, comprising: a resilient means for storing and releasing mechanical energy; a first attachment means connected to said resilient means for supplying energy to said resilient means and transferring energy released from the resilient means to skin; and a second attachment means connected to said resilient means for supplying energy to said resilient means and transferring energy released from the resilient means to skin.
  12. 12. The suture of claim 11, wherein said first attachment means is attached to the resilient means through a first connecting means for hingedly attaching; and said second attachment means is attached to the resilient means through a second connecting means for hingedly attaching.
  13. 13. A method of closing surgical incisions, comprising the steps of providing a resilient centre piece having a first end and a second end; providing a first attachment strip connected to said first end of said centre piece, wherein said first attachment strip includes a distal end opposite the connection to the centre piece and is adapted to be attached to the skin of a wearer of the suture; providing a second attachment strip connected to said second end of said centre piece, wherein said second attachment strip includes a distal end opposite the connection to the centre piece and is adapted to be attached to the skin of a wearer of the suture; and stretching said centre piece from a first position into a second position defined by the centre piece having self gauging level of prestress, over a wearer's surgical incision; and attaching at least one of said first attachment strip and said second attachment strip to the wearer's skin, enabling said first attachment strip and said second attachment strip to transfer recoiling force from the centre piece through the thickness of the skin through shear force transfer to provide closure force initially applied at the epidermal level at the dermal level of the skin.
  14. 14. The method of claim 13, wherein said resilient centre piece is a "C" shaped, lenticular spring centre.
  15. 15. The method of claim 13 or 14, wherein said first attachment strip and said second attachment strip are connected to the centre piece through an attachment member and a hinge member disposed on the first end and an attachment member and a hinge member disposed on the second end, respectively.
  16. 16. The method of claim 15, wherein a pin hinge provides at least one of said hinge members; and a tape clamp provides at least one of said attachment members.
  17. 17. The method of claim 15, wherein a membrane hinge provides at least one of said hinge members; and a welding flange provides at least one of said attachment members.
  18. 18. The method of claim 17, wherein welding flange and hinge member disposed on said first end, said centre piece, and said welding flange and hinge member disposed on said first end comprise a single, continuous extrusion.
  19. 19. The method of claim 13, wherein surgical tape defines at least one of said first attachment strip and said second attachment strip.
  20. 20. The method of claim 13, wherein the distal ends of said first attachment strip and of said second attachment strip attach to a wearers skin through a polymerizing skin adhesive.
AU2015255270A 2015-11-12 2015-11-12 C-spring suture for primary closure of surgical incisions Abandoned AU2015255270A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2015255270A AU2015255270A1 (en) 2015-11-12 2015-11-12 C-spring suture for primary closure of surgical incisions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2015255270A AU2015255270A1 (en) 2015-11-12 2015-11-12 C-spring suture for primary closure of surgical incisions

Publications (1)

Publication Number Publication Date
AU2015255270A1 true AU2015255270A1 (en) 2017-06-01

Family

ID=58766462

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2015255270A Abandoned AU2015255270A1 (en) 2015-11-12 2015-11-12 C-spring suture for primary closure of surgical incisions

Country Status (1)

Country Link
AU (1) AU2015255270A1 (en)

Similar Documents

Publication Publication Date Title
US11350936B1 (en) Spring suture for primary closure of surgical incisions
JP4295214B2 (en) System and method for moving and stretching a forming tissue
KR102046977B1 (en) Force modulating tissue bridge
JP5968909B2 (en) Wound or skin treatment device and method
AU2005281414B2 (en) Button anchor system for moving tissue
US4950282A (en) Wound closure strips
US20090149869A1 (en) System and method for providing sutures using self adhesive pads with anchors
US20150173758A1 (en) Sutureless wound closure
US10561359B2 (en) Elastic devices, methods, systems and kits for selecting skin treatment devices
MXPA02010751A (en) System and method for moving and stretching plastic tissue.
JPS63240850A (en) Wound closing apparatus and use thereof
KR102289767B1 (en) Wound or skin treatment devices with variable edge geometries
BR112014019587B1 (en) DRESSING SYSTEM
US11571203B2 (en) Deformable suture bridge having an insert and methods of manufacturing and using same
CA2911699C (en) C-spring suture for primary closure of surgical incisions
AU2015255270A1 (en) C-spring suture for primary closure of surgical incisions
US10617570B2 (en) Wound closing bandage
JP7426404B2 (en) Semi-crosslinked product and its production and usage method
US20130072968A1 (en) Reinforced Suture Strip and Methods of Use
US20240082063A1 (en) Wound closure treatment system
KR20200121221A (en) Medical suturing device

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted