AU2015227450B2 - Preamble transmission and reception method and apparatus for OFDM system - Google Patents

Preamble transmission and reception method and apparatus for OFDM system Download PDF

Info

Publication number
AU2015227450B2
AU2015227450B2 AU2015227450A AU2015227450A AU2015227450B2 AU 2015227450 B2 AU2015227450 B2 AU 2015227450B2 AU 2015227450 A AU2015227450 A AU 2015227450A AU 2015227450 A AU2015227450 A AU 2015227450A AU 2015227450 B2 AU2015227450 B2 AU 2015227450B2
Authority
AU
Australia
Prior art keywords
control information
preamble
header
block
fec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2015227450A
Other versions
AU2015227450A1 (en
Inventor
Jae Yoel Kim
Hak Ju Lee
Yeon Ju Lim
Se Ho Myung
Sung Ryul Yun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009307247A external-priority patent/AU2009307247B2/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to AU2015227450A priority Critical patent/AU2015227450B2/en
Publication of AU2015227450A1 publication Critical patent/AU2015227450A1/en
Application granted granted Critical
Publication of AU2015227450B2 publication Critical patent/AU2015227450B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

A preamble receiving method comprising: receiving a preamble block and data through a reception bandwidth; detecting at least one header using known sequence in the received preamble block; determining a length of 5 control information and a start point of the control information in the preamble, by using a position of the detected header; extracting the control information based on the length and start point of the control information; and decoding the received the data based on the extracted control information; wherein, the preamble block filled a part of one or more header-inserted FEC blocks by 0 cyclically repeated, wherein the header added in front of each of the one or more FEC blocks, and wherein the one or more FEC blocks generated by coding and modulating the control information. 6908198_1 (GHMatters) P86389.AU.1 SARAHVV 16/09/2015 [Fig. 1] Prior art Freq fime CHANNEL 1 8MHz 101] CHANNEL 2 BMHz 11D21 Preamble 1 (103 Preamble 2 [104 1 Frame PLPI PLP2 PLP3 PLP4 PLP5 (105) (106) [107) [1081 (109) [Fig. 2] Prior art Frea Time BMHz BMHz COMMON COMMON Preamble 21 2] Preamble [203) I Frame PLP1 PLP2 PLP3 PLP4 LP5 (211] (212) (2131 [2111) 1215) IRECEPTION BANDWIDTHI (8MHZI (2201

Description

1 2015227450 24 Jan 2017
PREAMBLE TRANSMISSION AND RECEPTION METHOD AND APPARATUS FOR OFDM SYSTEM
Related Application 5 This application is a divisional application of Australian application no. 2009307247 the disclosure of which is incorporated herein by reference. Most of the disclosure of that application is also included herein, however, reference may be made to the specification of application no. 2009307247 as filed or accepted to gain further understanding of the invention claimed herein. o Field of Invention
The present invention relates to an Orthogonal Frequency Division Multiplexing (OFDM) system and, in particular, to a method and apparatus for transmitting and receiving a preamble having sequence information for an OFDM system. 5 Background Art
Orthogonal Frequency Division Multiplexing (OFDM) is a bandwidth efficient digital modulation technique that has been adopted for a variety of advanced broadcast standards such as Digital Video Broadcasting-Terrestrial (DVB-T). Digital Video Broadcasting-Cable 2 (DVB-C2), a new standard for 20 broadcast transmission over cable, has also selected OFDM as its modulation technique to provide a high degree of efficiency and flexibility.
The DVB-C2 system supports the feature of flexible and dynamic bandwidth allocation by combining various adjacent channels to a single wideband channel. In the case of a single channel implementation, the 25 bandwidth of the DVB-C2 becomes 8 MHz, equal to that of the DVB-C. Accordingly, when N channels are combined, the bandwidth of the DVB-C2 system increases N times compared to the DVB-C. This means that the DVB-C2 has the bandwidth of Nx8 MHz. 8634869J (GHMatters) P86389.AU.1 24/01/2017 2 2015227450 24 Jan 2017 A comparison will now be made between the channel combinations in the DVB-C and the DVB-C2. In the DVB-C system the number of guard bands increases in proportion to the number of channels combined due to the guard bands required to ensure separation between channels. In an exemplary case 5 of a combination of 4 channels, the total bandwidth available for the data transfer is equal to a value obtained by subtracting 5 guard bands from the entire 24 MHz bandwidth (4x8 MHz).
In contrast, the DVB-C2 system transmits signals using the OFDM which does not require guard bands between channels except for the guard bands at o the edges. Accordingly, when 4 channels are combined, the total bandwidth available for the data transfer is equal to a value obtained by subtracting 2 guard bands from the entire 24 MHz bandwidth (4x8 MHz). From the comparison, it is obvious that the DVB-C2 system is superior to the DVB-C system in spectral efficiency. 5 FIG. 1 is a diagram illustrating a frame format of a conventional DVB-C2 system with a fixed tuning window.
In FIG. 1, two channels 101 and 102 occupy two different frequency bands, and each channel is composed of different broadcast data (i.e. PLP1 105 and PLP 2 106 for the first channel 101 and PLP3 107, PLP4 108, and 20 PLP5 109 for second channel 102). The frame starts with preambles 103 and 104 containing control information for the respective channels 101 and 102. In this case, the receiver is tuned to channel 1 101 or channel 2 102 to receive the broadcast data transmitted on the corresponding channel.
In order to improve the resource allocation efficiency, the broadcast data 25 is scheduled over entire channel bandwidth. FIG. 2 is a diagram illustrating a frame format of another conventional DVB-C2 system. In FIG. 2, the bandwidth of each preamble block is identical to a reception bandwidth of 8 MHz as denoted by reference numeral 220. It is noted that the broadcast data 213 is 8634869J (GHMatters) P86389.AU.1 24/01/2017 3 2015227450 24 Jan 2017 allocated regardless of a boundary of the channels. In this case, the same control information is transmitted within the two preambles 202 and 203. The receiver can align its tuning window 220 to receive the target broadcast data without a need to be aligned with the preambles. Here, the maximum frequency 5 bandwidth of each broadcast data cannot be greater than the minimum reception bandwidth of the receiver (in FIG. 2, 8 MHz).
It can be considered that a preamble block is allocated a bandwidth narrower than the reception bandwidth of the receiver unlike the exemplary case of FIG. 2 in which the bandwidth of each preamble block is identical to the o reception bandwidth of the receiver. In this case, the preamble can be received within the reception bandwidth (8 MHz) without being segmented. FIG. 3 is a diagram illustrating a frame format of another conventional DVB-C2 system. In FIG. 3, the bandwidth of a preamble block is narrower than the reception bandwidth of the receiver. When the bandwidth of a preamble is 5 narrower than the reception bandwidth of the receiver, the receiver can receive a non-segmented preamble block 302 within its reception bandwidth. In this case, however, a specific preamble block 303 is received due to the tuning to the bandwidth of the channel carrying the preamble block 302. This is because the frequency band outside the frequency band 303 is another system 20 bandwidth, e.g. a frequency bandwidth allocated for a communication system other than the DVB-C2. FIG. 4 is a diagram illustrating a principle of operation of the receiver in the conventional DVB-C2 system when segmented preambles are received in the reception bandwidth. When the reception bandwidth as denoted by 25 reference numeral 420 is aligned to receive the broadcast data (PLP2) as shown in FIG. 4, the preamble information as denoted by reference numeral 401 is received within the reception bandwidth. In this case, since the preamble information is received within two preamble blocks 410 and 411, the 8634869_1 (GHMatters) P86389.AU.1 24/01/2017 4 2015227450 24 Jan 2017 information carried by the preamble blocks 410 and 411 must be reordered to obtain the complete information as denoted by reference numeral 430.
Accordingly, in order to obtain the complete control information in the above described conventional DVB-C2 system, the receiver must estimate a 5 boundary frequency 425 and reorder information carried by the preambles based on the boundary frequency 425, thereby processing latency. Particularly, when the boundary frequency is misestimated due to the frequency offset, the receiver is likely to fail to obtain complete control information from the preamble, resulting in reception failure of the data within the entire frame, o Summary of Invention
In an embodiment, the present invention provides a method and apparatus for transmitting and receiving a preamble robust to frequency offset in an OFDM-based broadcast system.
In an embodiment, the present invention provides a method and 5 apparatus for transmitting and receiving a preamble in an OFDM-based broadcast system that is capable of removing unnecessary dummy cells in a preamble block and improving reception performance by repeating control information.
In an embodiment, the present invention provides a method and 20 apparatus for transmitting and receiving a preamble in an OFDM-based broadcast system that is capable of improving reception performance of a receiver by negating the reordering process cause by reception of segmented preambles.
In accordance with an embodiment of the present invention, there is 25 provided a method of receiving data, comprising: receiving one or more preamble blocks and data through a reception bandwidth; detecting each of one or more headers by finding its known sequence in 8634869J (GHMatters) P86389.AU.1 24/01/2017 5 2015227450 24 Jan 2017 the received one or more preamble blocks; determining a length of control information and a start point of the control information in the received one or more preamble blocks, by using a position of the detected one or more headers; 5 extracting the control information based on the length and start point of the control information; and decoding the received data based on the extracted control information; wherein, before transmission, any empty portion of each preamble block is filled by cyclically repeating at least a part of one or more header-preceded o Forward Error Correction (FEC) blocks, and wherein each of the one or more header-preceded FEC blocks is generated by coding and modulating the control information and then adding a header in front of it.
In accordance with another embodiment of the present invention, there 5 is provided an apparatus comprising: a tuner configured to receive one or more preamble blocks and data through a reception bandwidth; a sequence detector configured to detect each of one or more headers using its known sequence in the received one or more preamble blocks, and 20 determine a length of control information and a start point of the control information in the received one or more preamble blocks, by using a position of the detected one or more headers; a control information extractor configured to extract the control information based on the length and start point of the control information; and 25 a data extractor configured to decode the received data based on the extracted control information; wherein, before transmission, any empty portion of each preamble block is filled by cyclically repeating at least a part of one or more header-preceded 8634869_1 (GHMatters) P86389.AU.1 24/01/2017 6
Forward Error Correction (FEC) blocks, and 2015227450 24 Jan 2017 wherein each of the one or more header-preceded FEC blocks is generated by coding and modulating the control information and then adding a header in front of it. 5 Advantageous Effects
An embodiment of a preamble transmission and reception method and apparatus for an OFDM system operates with an improved preamble designed to simplify the structure of a receiver and use combining diversity, resulting in improvement of the reception performance. o Also, an embodiment of a preamble transmission and reception method and apparatus for an OFDM system is robust to the frequency offset error by using an improved preamble having a known sequence, resulting in improvement of reception reliability.
Description of Drawings 5 Objects, features and advantages of the present invention will be more apparent from the following detailed description in conjunction with the accompanying drawings, in which: FIG. 1 is a diagram illustrating a frame format of a conventional DVB-C2 system with a fixed tuning window; 20 FIG. 2 is a diagram illustrating a frame format of another conventional DVB-C2 system; FIG. 3 is a diagram illustrating a frame format of another conventional DVB-C2 system; FIG. 4 is a diagram illustrating a principle of operation of the receiver in 25 the conventional DVB-C2 system when segmented preambles are received in the reception bandwidth; FIG. 5 is a diagram illustrating a structure of a preamble block used in the conventional DVB-C2 system; 8634869 1 (GHMatters) P86389.AU.1 24/01/2017 7 2015227450 24 Jan 2017 FIG. 6 is a diagram illustrating a format of a preamble block for used in a preamble transmission and reception method according to an embodiment of the present invention; FIG. 7 is a diagram illustrating a principle of a preamble transmission 5 and reception method according to an embodiment of the present invention; FIG. 8 is a diagram illustrating a principle of a preamble transmission and reception method according to another embodiment of the present invention; FIG. 9 is a block diagram illustrating a configuration of the conventional o transmitter; FIG. 10 is a block diagram illustrating a configuration of a transmitter according to an embodiment of the present invention; FIG. 11 is a block diagram illustrating a configuration of a transmitter according to another embodiment of the present invention; 5 FIG. 12 is a flowchart illustrating a method for generating a preamble having a known sequence is inserted in front of a FEC block as described with reference to FIG. 7; FIG. 13 is a flowchart illustrating a method for generating a preamble block having a known sequence inserted in the middle of a FEC block as 20 described with reference to FIG. 8; FIG. 14 is a block diagram illustrating a configuration of a receiver according to an embodiment of the present invention; and FIG. 15 is a flowchart illustrating a method for receiving a preamble having a known sequence according to an embodiment of the present invention. 25 Detailed Description
Embodiments of the present invention are described with reference to the accompanying drawings in detail. The same reference numbers are used throughout the drawings to refer to the same or like parts. Detailed descriptions 8634869J (GHMatters) P86389.AU.1 24/01/2017 8 2015227450 24 Jan 2017 of well-known functions and structures incorporated herein may be omitted to avoid obscuring the subject matter of the present invention. A structure of a frame used in the preamble transmission method and apparatus according to an embodiment of the present invention is described 5 first. FIG. 5 is a diagram illustrating a structure of a preamble block used in the conventional DVB-C2 system, and FIG. 6 is a diagram illustrating a format of a preamble block for used in a preamble transmission and reception method according to an embodiment of the present invention, o As shown in FIG. 5, a preamble block 501 of the conventional C2 frame is composed of K OFDM cells and has a bandwidth less than or equal to a reception bandwidth of a receiver.
The control information for a frame is encoded and modulated into one or more Forward Error Correction (FEC) blocks 511 to 513 and then inserted 5 into a beginning part of the preamble block. In FIG. 5, it is assumed that an FEC block consists of M cells and the control information is carried by N FEC blocks. Accordingly, K-MxN cells are empty in the preamble block 501. The length of the preamble block 501 has a fixed value determined previously, such that the empty part of the preamble block is filled with dummy cells. The 20 number of dummy cells is variable according to the length of the control information and thus, when the length of the control information is short, the preamble block is mostly filled with dummy cells, resulting in a waste of resources. A preamble block according to an embodiment of the present invention 25 is depicted in FIG. 6 under the assumption in that the preamble block is composed of K cells, a preamble header is composed of A cells, a FEC block includes M cells, and the control information is carried by N FEC blocks. In this case, the preamble headers 611, 613, and 615 are inserted in front of the 8634869 1 (GHMatters) P86389.AU.1 24/01/2017 9 2015227450 24 Jan 2017 corresponding FEC blocks 612, 614, and 616. Here, the control information is information relevant to all of the channels. That is, the first to Nth code blocks carry the data on all of the channels.
In an embodiment of the present invention, a preamble header 611 (or 5 613 or 615) has a known sequence value. The sequence can be a Pseudo
Noise sequence. Additionally, each preamble header can include an index of the FEC block and a length of the FEC block. In FIG. 6, the length of the header is predetermined with A cells, K-N*(M+a) cells are empty in the preamble block. In an embodiment of the present invention, the empty part of o the preamble block is filled with the region copied from the beginning of the preamble block as much as the length of the empty part unlike the conventional preamble block in which the empty part is filled with the dummy cells. Accordingly, the empty part of the preamble block is filled with the preamble header 617 identical to the preamble header 611 and the partial FEC block 618 5 identically to the beginning part of the FEC block 612.
The partial FEC block 618 can be combined with the FEC block 612 at the receiver by means of a Maximal Ratio Combining method for improving the reception performance.
How to insert the sequence into the preamble headers at the transmitter 20 and how to recover the control information from the preamble headers at the receiver are described hereinafter. FIGs. 7 and 8 are diagrams illustrating principles of preamble transmission and reception methods according to embodiments of the present invention.
In FIGs. 7 and 8, it is assumed that all of the control information is 25 transmitted within a single FEC block which is repeated in the frequency direction.
In the embodiment of FIG. 7, the known sequence is inserted in front of the FEC block. Referring to FIG. 7, an FEC frame including a header is 8634869_1 (GHMallers) P86389.AU.1 24/01/2017 10 2015227450 24 Jan 2017 cyclically repeated until the complete preamble block is filled, such that the preamble block 710 includes the header 701, the first FEC block 702, a repeated header 703, and a repeated FEC block 704. After placing the header 710 and the FEC block 702, the FEC frame is copied from its starting point for 5 as much as remained space of the preamble block 710 to fill the empty part of the preamble block 710.
The second preamble block 720 is identical to the first preamble block 710 in structure and data. That is, the second preamble block 720 is a duplicate of the first preamble block 710. o When the tuning window (reception bandwidth) of the receiver is aligned as denoted by reference numeral 730, three headers 703, 705 and 707 are received within the tuning window, each header having a sequence. Accordingly, a sequence detector of the receiver can obtain peak values a, b, and c of the three headers 703, 705, and 707 using a correlation method. That 5 is, the receiver performs correlation operation with the known sequences to obtain the peak values through auto-correlation.
The receiver can estimate the length of the control information based on the interval between the peak values and determines a start point “b” and length of the complete control information 740. Also, the receiver can recognize 20 the partial control information 750, such that the data reliability can be improved by combining the complete control information 740 and the partial control information 750.
Unlike the conventional preamble reception method in which the control information is recovered by finding the boundary frequency between the 25 preamble blocks, i.e. the start point of the header 705, within the tuning window and reordering the control information based on the boundary frequency, the preamble reception method according to the present invention enables the receiver to recovery the complete control information using a simple sequence 8634869 1 (GHMatters) P86389.AU.1 24/01/2017 11 2015227450 24 Jan 2017 detector. Accordingly, even when a frequency offset occurs unexpectedly, it is possible to acquire the complete control information with reliable preamble block detection.
Although the known sequence is put in front of the FEC block in the 5 above description, the position of the known sequence can be changed. In another embodiment of the present invention, the known sequence is put in the middle of an FEC block.
In the embodiment of FIG. 8, it is assumed that a systematic code such as Low Density Parity Check (LDPC) code is used for encoding the control o information. The systematic code means that the FEC block consists of the input control information bit string and a parity bits string. In this case, the known sequence can be inserted between the information bits string and the parity bits string so as to detect the length of the control information.
Referring to FIG. 8, an FEC block 801 is composed of an information bit 5 string 10, a header 20 having the known sequence, and a parity bit string 30 in series. The FEC block 801 is repeated until a complete preamble block is filled. Flere, the first preamble block 810 and the second preamble block 820 are identical to each other and have the known sequences 803 and 805 respectively. 20 If the receiver is configured with the tuning window (reception band), as denoted by reference numeral 830, equal to or greater than the size of a preamble block, at least one header is received within the tuning window. Accordingly, the receiver can detect a peak value 870 by means of a sequence detector. 25 Once the peak value 870 is detected, the receiver can calculate the position of the boundary frequency 850 between the first and second preamble blocks 810 and 820 base on position of the peak value 870 and then the information bit string length 860 using the positions of the peak value 870 and 8634869_1 (GHMatters) P86389.AU.1 24/01/2017 12 2015227450 24 Jan 2017 the boundary frequency 850. In order to calculate the length of the information bit string in this manner, the receiver should have the tuning information. A structure of a conventional transmitter and a transmitter for transmitting the preamble block generated with the control information having 5 the known sequence will now be compared. FIG. 9 is a block diagram illustrating a configuration of the conventional transmitter. Referring to FIG. 9, the conventional transmitter includes a FEC encoder 902, a symbol mapper 904, and a dummy cell inserter 906.
The FEC encoder 902 encodes and modulates the input control o information and outputs the FEC blocks. The symbol mapper 904 maps the FEC blocks to a required number of OFDM cells regardless of the length of the preamble and outputs the OFDM cells. The dummy cell inserter 906 inserts dummy cells into the remaining capacity of a preamble block and outputs a preamble block having a predetermined length. The preamble block formed in 5 this manner is repeated for all the channels.
In an embodiment of the present invention, the transmitter does not insert dummy cells into the remaining capacity of the preamble block. The structure of the transmitter according to an embodiment of the present invention is described hereinafter. 20 FIG. 10 is a block diagram illustrating a configuration of a transmitter according to an embodiment of the present invention. The transmitter depicted in FIG. 10 is configured to insert the known sequence in front of the FEC block as described with reference to FIG. 7.
Referring to FIG. 10, the transmitter according to an embodiment of the 25 present invention includes a FEC encoder 1002, a sequence generator 1005, a repeater 1003, a symbol mapper 1004, and a controller 1010.
The FEC encoder 1002 encodes and modulates the input control information. The sequence generator 1005 generates and outputs a header 8634869J (GHMallers) P86389.AU.1 24/01/2017 13 2015227450 24 Jan 2017 having the known sequence. The header output by the sequence generator 1005 is added in front of the FEC block output by the FEC encoder 1002 such that an FEC frame is input to the repeater 1003.
The repeater 1003 repeats the FEC frame cyclically until a complete 5 preamble block is filled. As described with reference to FIG. 6, the FEC frame can be broken to fit into the remaining part of the preamble block.
Next, the symbol mapper 1004 maps the FEC blocks to the OFDM cells so as to output a preamble block. In this case, there is no empty space within the preamble block, such that the dummy cell insertion process is negated, o The control unit 1010 outputs a seed value to the sequence generator 1005 in order for the sequence generator 1005 to generate sequences for identifying the FEC blocks and informs the repeater 1003 of a number of cells for filling the preamble block. FIG. 11 is a block diagram illustrating a configuration of a transmitter 5 according to another embodiment of the present invention. The transmitter depicted in FIG. 11 is configured to insert the known sequence in the middle of the FEC block as described with reference to FIG. 8.
Referring to FIG. 11, the transmitter according to another embodiment of the present invention includes an FEC encoder 1102, a sequence generator 20 1 1 05, a repeater 1103, a symbol mapper 1104, and a controller 1110.
The sequence generator 1105 generates the known sequence and outputs a header in which the known sequence is inserted. The FEC encoder 1102 inserts the header output by the sequence generator 1105 into the input control information bit string and encodes and modulates the header-inserted 25 bit string to output an FEC block.
Accordingly, the header is inserted in the middle of the FEC block, and the FEC block is input to the repeater 1103. The repeater 1103 repeats the FEC block cyclically until a complete preamble block is filled. 8634869J (GHMatters) P86389.AU.1 24/01/2017 14 2015227450 24 Jan 2017
Next, the symbol mapper 1104 maps the FEC blocks to the OFDM cells so as to output a preamble block. In this case, there is no empty space within the preamble block, such that the dummy cell insertion process is negated.
The control unit 1110 outputs a seed value to the sequence generator 5 1105 in order for the sequence generator 1105 to generate sequences for identifying the FEC blocks and informs the repeater 1103 of a number of cells for filling the preamble block.
The structures of the transmitters according to embodiments of the present invention have been described hereinabove. The preamble block o generation methods according to an embodiment of the present invention are described hereinafter with reference to FIGs. 12 and 13. FIG. 12 is a flowchart illustrating a method for generating a preamble having a known sequence is inserted in front of a FEC block as described with reference to FIG. 7. 5 Referring to FIG 12, the transmitter first generates control information corresponding to an FEC block in step 1201. Next, the transmitter encodes and modulates the control information into a FEC block in step 1203 and inserts a known sequence in front of the FEC block to output a complete FEC block in step 1205. Once an FEC block is generated, the transmitter determines whether 20 there is further control information to be transmitted in step 1207. If there is further control information to be transmitted, the procedure goes to step 1201 .Otherwise, if there is no further control information to be transmitted, the transmitter repeats the FEC block cyclically until a preamble block is filled in step 1209. Next, the transmitter maps the FEC blocks to OFDM cells to 25 generate the preamble block in step 1211. Finally, the transmitter copies the preamble block to be applied within the entire system in step 1213. FIG. 13 is a flowchart illustrating a method for generating a preamble block having a known sequence inserted in the middle of a FEC block as 8634869J (GHMatters) P86389.AU.1 24/01/2017 15 described with reference to FIG. 8. 2015227450 24 Jan 2017
The preamble block generation procedure depicted in FIG. 13 is similar to that of FIG. 12 except that the encoding step 1203 and the sequence insertion step 1205 are changed each other. 5 Referring to FIG. 13, the transmitter generates control information corresponding to an FEC block in step 1301. Next, the transmitter inserts a known sequence into the control information bit string in step 1303 and then encodes and modulates the known sequence-inserted control information bit string to output an FEC block in step 1305. Once an FEC block is generated, o the transmitter determines whether there is further control information to be transmitted in step 1307. If there is further control information to be transmitted, the procedure goes to step 1301 .Otherwise, if there is no further control information to be transmitted, the transmitter repeats the FEC block cyclically until a preamble block is filled in step 1309. Next, the transmitter 5 maps the FEC blocks to OFDM cells to generate the preamble block in step 1311. Finally, the transmitter copies the preamble block to be applied within the entire system in step 1313.
The preamble generation methods according to the embodiments of the present invention are described hereinabove. Operations of a receiver for 20 receiving the preamble generated as described above are described hereinafter. FIG. 14 is a block diagram illustrating a configuration of a receiver according to an embodiment of the present invention.
Referring to FIG. 14, the receiver according to an embodiment of the present invention includes a tuner 1402, a tuning controller 1403, a preamble 25 detector 1404, a sequence detector 1405, a control information extractor 1406, and a data extractor 1407.
The tuning controller 1403 determines a tuning window (reception bandwidth) over a system bandwidth. That is, the tuning controller 1403 8634869_1 (GHMatters) P86389.AU.1 24/01/2017 16 2015227450 24 Jan 2017 controls such that the tuning window is positioned to receive target broadcast data transmitted over a specific broadcast bandwidth. For instance, the tuning window can be aligned as denoted by reference numeral 730 in FIG. 7 or reference numeral 830 in FIG. 8. 5 The tuner 1402 is tuned to receive the broadcast data through the tuning window under the control of the tuning controller 1403. The preamble detector 1404 detects the preamble from the broadcast signal received through the tuning window. The sequence detector 1405 searches the preamble for the sequence of a first FEC block and calculates the length and position of the o control information based on the found sequence. Calculating the length and position of the control information has been described with reference to FIGs. 7 and 8.
The control information extractor 1406 extracts the control information based on the length and position of the control information. As aforementioned, 5 the FEC block is repeated within a preamble block such that a partial FEC block placed at the last part of the preamble block can be combined with the previous FEC block to acquire the complete control information. The data extractor 1407 decodes the data received on the channel based on the parameters contained in the extracted control information. 20 The structure of a receiver for receiving the preamble has been described hereinabove. A method for receiving the preamble according to an embodiment of the present invention is described hereinafter. FIG. 15 is a flowchart illustrating a method for receiving a preamble having a known sequence according to an embodiment of the present invention. 25 Referring to FIG. 15, the receiver receives a broadcast signal through a predetermined tuning window (i.e. reception bandwidth) in step 1501. While receiving the broadcast signal, the receiver acquires frame synchronization on the time axis and detects a preamble in the time direction in step 1503. Next, 8634869 1 (GHMatters) P86389.AU.1 24/01/2017 17 2015227450 24 Jan 2017 the receiver detects a position of a sequence of the first FEC block within the preamble in the frequency direction in step 1505 and then calculates the length and position of the control information based on the position of the sequence in step 1507. 5 In an embodiment of the present invention, the FEC block is repeated cyclically to fill the preamble block such that the partial FEC blocks can be combined to the complete control information. Once the length and position of the control information are calculated, the receiver determines whether to combine the FEC blocks received within the preamble block in step 1509. It is o determined to combine the FEC blocks, the receiver combines the repeated FEC blocks in step 1511.
Referring to the exemplary case of FIG. 7, the header 703 followed by the FEC block 704 are identical with the header 705 followed the corresponding part of the FEC block 706 such that the header 703 followed by the FEC block 5 704 can be combined with the header 705 followed by the FEC 706 by synchronizing their start points.
Referring to the exemplary case of FIG. 8, since the parts of blocks 809 and 804 and block 805 received within the tuning window 803 correspond to parts of the blocks 806 and 807 and block 808, the parts of the blocks 809 and 20 804 and the block 805 can be combined with the FEC block including the blocks 806, 807, and 808.
After combining the FEC blocks, the receiver demodulates and extracts the control information based on the length and position of the control information in step 1513. Finally, the receiver decodes the data based on the 25 parameters contained in the control information in step 1515. If it is determined not to combine the FEC blocks, step 1511 is skipped.
As described above, the preamble transmission and reception method and apparatus for an OFDM system operate with an improved preamble 8634869_1 (GHMatters) P86389.AU.1 24/01/2017 18 2015227450 24 Jan 2017 designed to simplify the structure of a receiver and use combining diversity, resulting in improvement of the reception performance.
Also, the preamble transmission and reception method and apparatus for an OFDM system is robust to the frequency offset error by using an 5 improved preamble having a known sequence, resulting in improvement of reception reliability.
Industrial Applicability
Although exemplary embodiments of the present invention have been described in detail hereinabove, it should be clearly understood that many o variations and/or modifications of the basic inventive concepts herein taught which may appear to those skilled in the present art will still fall within the spirit and scope of the present invention, as defined in the appended claims.
It is to be understood that, if any prior art is referred to herein, such reference does not constitute an admission that the prior art forms a part of the 5 common general knowledge in the art in any country.
In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive sense, i.e. to specify the 20 presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention. 8634869_1 (GHMatters) P86389.AU.1 24/01/2017

Claims (12)

1. A method of receiving data, comprising: receiving one or more preamble blocks and data through a reception bandwidth; detecting each of one or more headers by finding its known sequence in the received one or more preamble blocks; determining a length of control information and a start point of the control information in the received one or more preamble blocks, by using a position of the detected one or more headers; extracting the control information based on the length and start point of the control information; and decoding the received data based on the extracted control information; wherein, before transmission, any empty portion of each preamble block is filled by cyclically repeating at least a part of one or more header-preceded Forward Error Correction (FEC) blocks, and wherein each of the one or more header-preceded FEC blocks is generated by coding and modulating the control information and then adding a header in front of it.
2. The method of claim 1, wherein the known sequence is a pseudo noise sequence.
3. The method of claim 1, wherein the one or more header-preceded FEC blocks have equal length.
4. The method of claim 1, wherein the reception bandwidth is equal to or greater than a size of a preamble block.
5. The method of claim 1, further comprising: combining a complete control information from a complete received FEC block and a partial control information from a partial received FEC block before extracting the control information.
6. The method of claim 1, wherein a header added in front of a header-preceded FEC block includes length information corresponding to the header-preceded FEC block the header precedes.
7. An apparatus comprising: a tuner configured to receive one or more preamble blocks and data through a reception bandwidth; a sequence detector configured to detect each of one or more headers using its known sequence in the received one or more preamble blocks, and determine a length of control information and a start point of the control information in the received one or more preamble blocks, by using a position of the detected one or more headers; a control information extractor configured to extract the control information based on the length and start point of the control information; and a data extractor configured to decode the received data based on the extracted control information; wherein, before transmission, any empty portion of each preamble block is filled by cyclically repeating at least a part of one or more header-preceded Forward Error Correction (FEC) blocks, and wherein each of the one or more header-preceded FEC blocks is generated by coding and modulating the control information and then adding a header in front of it.
8. The apparatus of claim 7, wherein the known sequence is a pseudo noise sequence.
9. The apparatus of claim 7, wherein the one or more header-preceded FEC blocks have equal length.
10. The apparatus of claim 7, wherein the reception bandwidth is equal to or greater than a size of a preamble block.
11. The apparatus of claim 7, wherein control information extractor combines complete control information from a complete received FEC block and a partial control information from a partial received FEC block before extracting the control information.
12. The apparatus of claim 7, wherein a header added in front of a header-preceded FEC block includes length information corresponding to the header-preceded FEC block the header precedes.
AU2015227450A 2008-10-20 2015-09-16 Preamble transmission and reception method and apparatus for OFDM system Ceased AU2015227450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2015227450A AU2015227450B2 (en) 2008-10-20 2015-09-16 Preamble transmission and reception method and apparatus for OFDM system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2008-0102501 2008-10-20
AU2009307247A AU2009307247B2 (en) 2008-10-20 2009-10-20 Preamble transmission and reception method and apparatus for OFDM system
AU2015227450A AU2015227450B2 (en) 2008-10-20 2015-09-16 Preamble transmission and reception method and apparatus for OFDM system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2009307247A Division AU2009307247B2 (en) 2008-10-20 2009-10-20 Preamble transmission and reception method and apparatus for OFDM system

Publications (2)

Publication Number Publication Date
AU2015227450A1 AU2015227450A1 (en) 2015-10-08
AU2015227450B2 true AU2015227450B2 (en) 2017-03-09

Family

ID=54289164

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2015227450A Ceased AU2015227450B2 (en) 2008-10-20 2015-09-16 Preamble transmission and reception method and apparatus for OFDM system

Country Status (1)

Country Link
AU (1) AU2015227450B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110086569B (en) * 2019-04-03 2022-04-15 上海无线通信研究中心 Internet of vehicles variable frame communication method, terminal and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050163066A1 (en) * 2001-01-26 2005-07-28 At&T Corp. Method for packet-switching interface for code division switching in a terrestrial wireless system
US20060285604A1 (en) * 2005-06-16 2006-12-21 Walton Jay R Wireless communication network with extended coverage range

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050163066A1 (en) * 2001-01-26 2005-07-28 At&T Corp. Method for packet-switching interface for code division switching in a terrestrial wireless system
US20060285604A1 (en) * 2005-06-16 2006-12-21 Walton Jay R Wireless communication network with extended coverage range

Also Published As

Publication number Publication date
AU2015227450A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
US9705724B2 (en) Preamble transmission and reception method and apparatus for OFDM system
CN107005353B (en) Transmitter and receiver involving convolutional interleaving and corresponding methods
CN107771382B (en) Transmitter and receiver, and transmission and reception method
JP5491225B2 (en) New frame and data pattern structure for multi-carrier systems
RU2491744C2 (en) Device to transmit and receive signal and method to transmit and receive signal
US9258167B2 (en) Transmitting apparatus, receiving apparatus and control methods thereof
US8649450B2 (en) Method and apparatus for generating a preamble for use in cable transmission systems
KR20090127081A (en) New frame and training pattern structure for multi-carrier systems
RU2497294C2 (en) Device for transmission and reception of signal and method for transmission and reception of signal
KR20160058172A (en) Apparatus and method for transmitting and receiving boradcast signals
KR20150012753A (en) Transmitter, receiver and controlling method thereof
EP2695320B1 (en) Signaling data transmission transmitting split signaling data
US9668239B2 (en) Apparatus for transmitting broadcast signal, apparatus for receiving broadcast signal, method for transmitting broadcast signal and method for receiving broadcast signal
EP2249535A2 (en) Radio communication system
AU2015227450B2 (en) Preamble transmission and reception method and apparatus for OFDM system
JP2005260342A (en) Ofdm signal transmission apparatus and ofdm signal receiving apparatus
KR101491651B1 (en) Method And Apparatus for Fast TMCC Data Acquisition
EP2695319B1 (en) Apparatus and method for transmitting static signaling data in a broadcast system
KR102097543B1 (en) Transmitter, receiver and controlling method thereof
KR20120087080A (en) Method and appartus for transmitting data in cable network

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired