AU2015201627A1 - Method for allylating and vinylating aryl, heteroaryl, alkyl, and alkene halogenides using transition metal catalysis - Google Patents
Method for allylating and vinylating aryl, heteroaryl, alkyl, and alkene halogenides using transition metal catalysis Download PDFInfo
- Publication number
- AU2015201627A1 AU2015201627A1 AU2015201627A AU2015201627A AU2015201627A1 AU 2015201627 A1 AU2015201627 A1 AU 2015201627A1 AU 2015201627 A AU2015201627 A AU 2015201627A AU 2015201627 A AU2015201627 A AU 2015201627A AU 2015201627 A1 AU2015201627 A1 AU 2015201627A1
- Authority
- AU
- Australia
- Prior art keywords
- cis
- alkyl
- aryl
- iron
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Abstract
H:\rbr\Intrwovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 What is described is a process for preparing organic compounds of the general formula (I) 5 R-R' (I) by converting a corresponding compound of the general formula (II) R-X (II) in which X is fluorine, chlorine, bromine or iodine to an organomagnesium compound of the general formula (III) 15 [M+], [RmMgXkYl] (III) wherein compounds of the formula (III) are reacted with a compound of the general formula (IV) 20 R R" (IV), characterized in that the reaction of (III) with (IV) is performed in the presence of a) catalytic amounts of an iron compound, based on the compound of the general formula (II), and optionally in the presence of 25 b) a nitrogen-, oxygen- and/or phosphorus-containing additive in a catalytic or stoichiometric amount, based on the compound of the general formula (II).
Description
H:\rbr\ntr ovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 Method for allylating and vinylating aryl, heteroaryl, alkyl, and alkene halogenides using transition metal catalysis This application is a divisional application of Australian Application No. 2011214483 the 5 specification of which as originally filed is incorporated herein in its entirety by reference. The invention provides a process for preparing functionalized aryl, heteroaryl, alkenyl or alkyl compounds, by a transition metal-catalyzed cross-coupling reaction of an optionally substituted aryl, heteroaryl, alkenyl or alkylmagnesium compound with an optionally substituted allyl carboxylate, allyl carbonate, vinyl carboxylate or vinyl carbonate, wherein the 10 formation of the organomagnesium compound from a halide can optionally proceed in situ, in parallel to the coupling reaction. Transition metal-catalyzed cross-couplings are some of the most important synthetic tools in modem organic chemistry. The majority of the known cross-coupling reactions use palladium or nickel complexes as transition metal catalysts; in the case of coupling of allylic esters as 15 coupling components with organomagnesium compounds, copper complexes are regularly the catalyst of choice (for example Karlstrum et al., Synlett 2001, 923), the prototype of which is the Kochi catalyst Li 2 CuCl 4 (Tamura et al., Synthesis 1971, 303). The very rare literature descriptions of the coupling of vinyl esters with organomagnesium compounds involve exclusively nickel catalysis (for example Wenkert et al., J. Am Chem. Soc. 1979, 101, 2246 20 and J. Org. Chem. 1984,49, 4894). Usually, in these couplings, organic ligands in the form of phosphines or N-heterocyclic carbenes are used, in order to achieve acceptable reactivity of the catalyst system. For economic (high palladium prices and high volatility of the palladium prices, costly ligands which are frequently unrecoverable) and toxicological reasons (high toxicity of nickel compounds and microbicidal action of copper ions in treatment plants), the 25 use of these catalysts has distinct disadvantages. It would therefore be desirable to be able to use, for this reaction type, catalysts based on less expensive, readily available and nontoxic metals, if at all possible without expensive ligands which are difficult to prepare. Under particular reaction conditions, iron compounds and also cobalt compounds also have 30 activity as catalysts in cross-coupling reactions. Especially compounds of iron are available at H:\rbr\ntr ovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 -2 very favorable prices in its capacity as a base metal, and are of no concern in terms of toxicology and wastewater legislation. Therefore, these compounds are preferable as catalyst systems to palladium, which is expensive, nickel, which is toxic and harmful to the environment, and copper, which is harmful to the environment. 5 As early as the early 1970s, it was shown that iron salts can catalyze the cross-coupling of vinyl halides with alkyl Grignard compounds (Kochi et al., J. Am. Chem. Soc. 1971, 1487). Due to a small range of application, this reaction found only very limited use over the next 30 years, until Knochel, Fiirstner, Cahiez and Nakamura, since the start of the decade, succeeded 10 in applying iron-catalyzed cross-couplings to a wider range of substrates with the aid of nitrogen-containing addition, for example N-methylpyrrolidone or N,N,N',N' tetramethylethylenediamine (TMEDA) (for example Fiirstner et al., Angew. Chem. Int. Ed. 2002, 41, 609; Nakamura et al., J. Am. Chem. Soc. 2004, 3686; Knochel et al., Synlett 2001, 1901; Cahiez et al., Angew. Chem. Int. Ed. 2007, 4364). These reactions are notable for 15 particularly mild reaction conditions (-20'C to +35'C), high functional group compatibility (for example methyl esters, amines) and short reaction times (generally less than two hours). These reactions are also of particular interest for industrial application in that they generally do not require any expensive and sensitive phosphine or carbene ligands, as is frequently the case with nickel and palladium, especially when inexpensive chlorides rather than bromides or 20 iodides are to serve as coupling partners. A common feature of all these reactions is that they couple a Grignard compound to an alkyl, alkenyl or aryl halide, while it has not been possible to date to couple the widespread structural motif of the allyl function with these inexpensive and environmentally friendly catalysts. This 25 appears to be at least partly because of the competing Kharasch reaction, which leads to the decomposition of the Grignard compound (cf. Fiirstner et al., Angew. Chem. Int. Ed. 2002, 41, 609). It was therefore an object of the present invention to find a process for preparing allyl and 30 vinyl derivatives by cross-coupling, in which inexpensive and environmentally friendly H:\rbr\Intrwovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 -3 catalysts can be used in order to couple readily available allyl and vinyl derivatives to aryl, heteroaryl, alkyl and alkenyl halides. This object is achieved by the present invention by provision of a process which couples 5 organomagnesium compounds derived from aryl, heteroaryl, alkyl and alkenyl halides, which can optionally be prepared in the presence of the allylic or vinylic coupling component, under catalysis by iron complexes, with allyl and vinyl carboxylates and allyl and vinyl carbonates, while maintaining the typical gentle conditions of iron catalysis. This allows the substrate range of the iron-catalyzed coupling to be widened considerably, since vinyl esters are 10 obtainable in a very simple manner from aldehydes and ketones by enolization and acylation, and allyl esters from allyl alcohols. The invention therefore provides a process for preparing organic compounds of the general formula (I) 15 R-R' (I) in which R is an optionally mono- or polysubstituted aryl, heteroaryl, alkenyl or alkyl radical, 20 and R' is a vinyl or alkyl radical of the general formula 11(a) or 11(b) (Ila) (I1b) R' = i or Q Vinyl Allyl 25 where j is 0, 1, 2 or 3 and q are identical or different groups other than H, by converting a compound of the general formula (II) H:\rbr\Interwoven\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 -4 R-X (II) in which X is fluorine, chlorine, bromine or iodine, and 5 R is as defined for formula (I), to an organomagnesium compound of the general formula (III) [M']. [RmMgXkY1] (III) 10 in which R is as defined for formula (I), X is an anion as defined for formula (II), M is a monovalent cation, 15 Y is a monovalent anion, n is either 0 or n is 1, 2, 3, 4, m is 1, 2, 3, 4, 5 or 6, k is 0, 1, 2, 3 or 4, 1 is 0, 1, 2, 3 or 4, 20 and, at the same time, the following relationship applies: n + 2= m + k +1, 25 followed by reaction of the compound (III) with a compound of the general formula (IV) 0 R 'O R" (IV) 30 H:\rbr\ntr ovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 -5 in which R' is as defined for formula (I) and is bonded to the oxygen atom in the allyl or vinyl position and R" is an optionally substituted alkyl, alkoxy, aryl, aryloxy, heteroaryl or heteroaryloxy 5 group, characterized in that the reaction of (III) with (IV), and optionally also the step from (II) to (III), is performed in the presence of a) catalytic amounts of an iron compound, based on the compound of the general 10 formula (II), and optionally in the presence of b) a nitrogen-, oxygen- and/or phosphorus-containing additive in a catalytic or stoichiometric amount, based on the compound of the general formula (II). 15 The organomagnesium compound (III) can be prepared in a manner familiar to the person skilled in the art, for example by Grignard reaction of the compound (II) with elemental magnesium, and under suitable conditions also by halogen-metal exchange or deprotonation, optionally with addition of auxiliaries, for example lithium chloride, or by transmetalation of 20 other organometallic compounds, e.g. organolithium compounds, with suitable magnesium compounds, e.g. magnesium salts or Grignard compounds. It is particularly advantageous to perform the preparation of the compound (III) by Grignard reaction in the presence of an iron compound which is capable of catalyzing both this reaction and the coupling of (III) with (IV) (domino catalysis; cf. Jacobi von Wangelin et al., Angew. Chem. Int. Ed. 2009, 48, 607). In 25 this case, it is also possible to allow both the reaction of (II) to give (III) and the further reaction of (III) and (IV) to give (I) to proceed in parallel, i.e. to perform the preparation of (III) in the presence of the compound (IV), as a result of which the compound (III) formed in situ reacts immediately with compound (IV) to give the compound (I). In this case, it is possible to dispense with the isolation and/or storage of a potentially pyrophoric Grignard 30 solution, which is thus difficult to handle under industrial conditions.
H:\rbr\ntr ovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 -6 Examples of suitable organomagnesium compounds (III) are 4-tolylmagnesium chloride, undecylmagnesium bromide, bis(4-tolyl)magnesium, bis(4-methoxyphenyl)magnesium lithium chloride complex, 2-methoxyphenylmagnesium chloride-lithium chloride complex, lithium tributylmagnesate, lithium dibutyl-(3-tolyl)magnesate or lithium tris(thiophen-2 5 yl)magnesate. The R radical in the formulae (I), (II) and (III) is an optionally substituted (C1-Cio)-alkyl, (C 2 Cio)-alkenyl, (C6-C24)-aryl radical or heteroaryl radical, where the heteroaromatic radical is a five-, six- or seven-membered ring having one or more nitrogen, phosphorus, oxygen or sulfur 10 atoms in the ring. Aromatic, heteroaromatic and/or cycloaliphatic rings may optionally be fused onto cyclic radicals. Examples of preferred aromatic R radicals are optionally mono- or polysubstituted phenyl, naphthyl, anthracenyl or phenanthryl radicals. Examples of preferred heteroaromatic radicals 15 are optionally mono- or polysubstituted pyridyl, pyrimidyl, pyrazinyl, furyl, thiophenyl, oxazolyl, thiazolyl or pyrrolyl radicals. Preferred alkenylic radicals are optionally mono- or polysubstituted vinyl radicals. Preferred alkylic radicals are optionally mono- or polysubstituted open-chain, cyclic, straight-chain or branched alkyl radicals, especially C 1 C 25 -alkyl radicals. 20 The alkenylic, alkylic, aromatic or heteroaromatic R radical may optionally bear one or more substituents which may each independently be (C 1
-C
1 s)-alkyl, (C 6
-C
18 )-cycloalkyl, (C 3 -C18) alkenyl, (C 4 -Cis)-cycloalkenyl, (C 4 -Cis)-alkynyl, (C 4 -Cis)-aryl, O-[(C 4 -Cis)-alkyl], O-[(C 4 Cis)-aryl], O-Si[(C 4 -Cis)-alkyl]4[(C 4 -Ci8)-aryl]3_, OC(O)-[(C 4 -Cis)-alkyl], OC(O)-[(C 4 -Ci8) 25 aryl], NH 2 , NH[(C 4 -C18)-alkyl], N[(C 4 -Ci 8 )-alkyl] 2 , NH[(C 4 -C18)-aryl], N[(C 4 -Ci 8 )-aryl]2,
NHC(O)-[(C
4 -C18)-alkyl], N[(C 4 -Ci)-alkyl]C(O)-[(C 4 -Cis)-alkyl], NHC(O)-[(C 4 -C18)-aryl],
N[(C
4 -Cis)-alkyl]C(O)-[(C 4 -Cis)-aryl], NO 2 , NO, S-[(C 4 -Cis)-aryl], S-[(C 4 -Cis)-alkyl], fluorine, chlorine, bromine, CF 3 , CN, COOM, COO-[(C 4 -C18)-alkyl], COO-[(C 4 -C18)-aryl],
C(O)NH-[(C
4 -C18)-alkyl], C(O)NH-[(C 4 -C18)-aryl], C(O)N-[(C 4 -Ci 8 )-alkyl] 2 , C(O)N-[(C 4 30 C 18 )-aryl] 2 , CHO, SO 2
-[(C
4 -C18)-alkyl], SO-[(C 4 -C18)-alkyl], SO 2
-[(C
4 -C18)-aryl], SO-[(C 4 Cis)-aryl], OSO 2
-[(C
4 -Cis)-alkyl], OSO 2
-[(C
4 -Cis)-aryl], PO-[(C 4 -Ci 8 )-alkyl] 2 , PO-[(C 4 -Ci 8
)-
H:\rbr\ntr ovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 -7 aryl] 2 , SO 3 M, S0 3
-[(C
4 -C18)-alkyl], S0 3
-[(C
4 -C18)-aryl] or Si[(C 4 -C18)-alkyl].[(C 4 -C18)-aryl] 3 _ ., where M is an alkali metal or alkaline earth metal atom and n is a natural number in the range from 0 to 3. In addition, two or more of these substituents may be joined to one another to form rings or ring systems. 5 Examples of preferred aromatic R radicals are 2-tolyl, 4-anisyl, 2-naphthyl, 4,4'-biphenyl, 3 tert-butoxycarbonylphenyl, 3,4-(2,2-difluoromethylenedioxy)phenyl, pentafluorophenyl or 2 decalinyl radicals. Examples of preferred heteroaromatic R radicals are 4 trifluoromethylpyridyl, 4-quinolinyl, 3-methoxythiophen-2-yl, 4-(2,2 10 ethylenedioxy)methylfuryl radicals. Examples of preferred vinylic R radicals are 2 methylprop-1-enyl, -styryl, cyclohex-1-enyl, 2-chlorobut-1-enyl, 3-squalenyl or but-2-en-2 yl radicals. Examples of alkyl radicals are isopropyl, 1-butyl, 2-butyl, cyclohexyl, 4 methoxycyclohexyl or perfluorobutyl radicals. 15 The allylic or vinylic R' radical in formula (I) and formula (IV) may optionally bear one or more substituents Q which may each independently be (C 4 -Cis)-alkyl, (C 4 -Cis)-cycloalkyl,
(C
4
-C
18 )-alkenyl, (C 4
-C
18 )-cycloalkenyl, (C 4
-C
18 )-alkynyl, (C 4
-C
18 )-aryl, 0-[(C4-Cis)-alkyl], 0-[C4-Cis)-aryl], 0-Si[(C4-Cis)-alkyll.[(C4-Cis)-aryl]3_., OC(O)-[C4-Cis)-alkyl], OC(O)
[(C
4 -Cis)-aryl], NH 2 , NH[(C 4 -C18)-alkyl], N[(C 4 -Cis)-alkyl] 2 , NH[(C 4 -C18)-aryl], N[(C 4 -Ci8) 20 aryl]2, NHC(O)-[(C 4 -C 18)-alkyl], N[(C 4 -C is)-alkyl]C(O)-[(C 4 -C is)-alkyl], NHC(O)-[(C 4 -C 18) aryl], N[(C 4 -Ci 8 )-alkyl]C(O)-[(C 4 -Cis)-aryl], NO 2 , NO, S-[(C 4 -Cis)-aryl], S-[(C 4 -Cis)-alkyl], fluorine, chlorine, bromine, CF 3 , CN, COOM, COO-[(C 4
-C
18 )-alkyl], COO-[(C 4
-C
1 8 )-aryl],
C(O)NH-[(C
4 -C18)-alkyl], C(O)NH-[(C 4 -C18)-aryl], C(O)N-[(C 4 -Cis)-alkyl]2, C(O)N-[(C 4 C18)-aryl]2, CHO, SO 2
-[(C
4 -C18)-alkyl], SO-[(C 4 -C18)-alkyl], SO 2
-[(C
4 -C18)-aryl], SO-[(C 4 25 C 18 )-aryl], OSO 2
-[(C
4
-C
18 )-alkyl], OSO 2
-[(C
4 -Ci 8 )-aryl], PO-[(C 4 -C18)-alkyl] 2 , PO-[(C 4 -Ci 8
)
aryl] 2 , SO 3 M, SO 3
-[(C
4
-C
18 )-alkyl], SO 3
-[(C
4 -C18)-aryl] or Si[(C 4 -C18)-alkyl] 1
[(C
4 -C18)-aryl] 3 _ n, where M is an alkali metal or alkaline earth metal atom and n is a natural number in the range from 0 to 3. In addition, two or more of these substituents may be joined to one another to form rings or ring systems. 30 H:\rbr\ntr ovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 Examples of preferred allylic R' radicals are linear, branched and cyclic, optionally substituted
(C
3
-C
18 )-1-alken-3-yls from the group of allyl, crotyl, methallyl, 1-methylallyl, cyclopent-1 en-3-yl and cyclohex-1-en-3-yl. Examples of preferred vinylic R' radicals are linear, branched and cyclic, optionally substituted (C 3 -Cis)-1-alken-1-yls from the group of vinyl, 1-propenyl, 5 2-methyl-1 -propenyl, cyclopent- 1-en-1 -yl or cyclohex- 1-en-1 -yl. Typically, the process is performed by reacting the halogen compounds of the formula (II) with magnesium turnings to give the Grignard compound, then adding the catalytic amount of an iron or cobalt compound and then slowly adding the allyl or vinyl compound of the formula 10 (IV) dropwise and then continuing to stir the reaction mixture for a period of 2 to 4 hours. The purification of the product formed pursues typically by column chromatography on silica gel. If the compound of the formula (IV) is allyl acetate, the reaction is effected with compounds of the formula (II) preferably from the group of 4-bromoanisole, bromobenzene, 4 15 bromoveratrole, 4-bromotoluene, 4-bromoanisole, 2-bromotoluene and 4-tert butylbromobenzene. Crotyl acetate as the compound of the formula (IV) can preferably be reacted with compounds of the formula (II) from the group of 4-bromoanisole and 1-bromo-4-tert-butylbenzene. 20 If the compound of the formula (IV) is 3-vinylallyl acetate, the reaction is preferably effected with compounds of the formula (II) from the group of 1-bromo-4-chlorobenzene, 1-bromo-4 fluorobenzene, 1-bromo-2,4-difluorobenzene, 2-bromoanisole, methyl 4-bromobenzoate, 4 bromoanisole, 1,3-dibromobenzene, 1,4-dibromine, 4-bromoveratrole, 4-bromoanisole, 4 25 bromotoluene, 4-tert-butylbromobenzene. The R" radical in formula (IV) may optionally bear one or more substituents which may each independently be (C1-Cis)-alkyl, (C 1 -Cis)-cycloalkyl, (C 1 -Cis)-alkenyl, (C1-Cis)-cycloalkenyl,
(C
1
-C
18 )-alkynyl, (C 1
-C
18 )-aryl, 0-[(C 1
-C
18 )-alkyl], 0-[(C 1
-C
18 )-aryl], O-Si[(C 1 -Cis) 30 alkyl], 1
[(C
1 -Ci 8 )-aryl]3_, OC(O)-[(C1-Cis)-alkyl], OC(O)-[(C 1 -Cis)-aryl], NH 2 , NH[(C 1 -Ci8) alkyl], N[(C 1 -Ci)-alkyl]2, NH[(C 1 -Cis)-aryl], N[(C 1
-C
18 )-aryl] 2 , NHC(O)-[(C 1 -Cis)-alkyl], H:\rbr\ntr ovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 -9
N[(C
1 -Ci)-alkyl]C(O)-[(C 1 -Ci 8 )-alkyl], NHC(O)-[(C 1
-C
18 )-aryl], N[(C 1
-C
1 s)-alkyl]C(O)-[(C 1 C 18 )-aryl], NO 2 , NO, S-[( C 18 )-aryl], S-[(C 1 -Cis)-alkyl], fluorine, chlorine, bromine, CF 3 , CN, COOM, COO-[(C1-Cis)-alkyl], COO-[(C1-Cis)-aryl], C(O)NH-[(C1-Cis)-alkyl], C(O)NH [(C1-Cis)-aryl], C(O)N-[(C 1 -Cis)-alkyl]2, C(O)N-[(C1-Cis)-aryl] 2 , CHO, SO 2
-[(C
1 -Cis)-alkyl], 5 SO-[(C 1
-C
18 )-alkyl], SO 2
-[(C
1
-C
18 )-aryl], SO-[(C 1
-C
18 )-aryl], OSO 2
-[(C
1
-C
18 )-alkyl], OSO 2 [(-C 18 )-aryl], PO-[(C1-Ci 8 )-alkyl] 2 , PO-[(C 1
-C
1 8 )-aryl]2, SO 3 M, SO 3
-[(C
1
-C
18 )-alkyl], SO 3 [(C1-Cis)-aryl] or Si[(C1-Cis)-alkyl]4[(C1-Cis)-aryl 1 3_ 1 , where M is an alkali metal or alkaline earth metal atom and n is a natural number in the range from 0 to 3. In addition, two or more of these substituents may be joined to one another to form rings or ring systems. 10 Examples of the R" radical in formula (IV) are methyl, ethyl, propyl, isopropyl or phenyl, methoxy, ethoxy, propoxy, isopropoxy or phenoxy radicals. Examples of compound (IV) are allyl acetate, crotyl propionate, methallyl dodecanoate, 15 cyclohex-1-en-3-yl butanoate, allyl methyl carbonate, (hex-1-en-3-yl)phenyl carbonate, and also vinyl acetate, 1-propenyl acetate, 2-propenyl methyl carbonate, cyclohex-1-en-1-yl propionate. The catalysts used are preferably transition metal compounds of group VIIIB of the Periodic 20 Table. Particular preference is given to using iron or cobalt compounds, very particular preference being given to using iron compounds in any oxidation state, preferably the +2 and +3 oxidation states, for example iron(II) chloride, iron(III) chloride, iron(II) acetylacetonate, iron(III) acetylacetonate, iron(II) acetate, iron(III) acetate, iron(II) bromide, iron(III) bromide, iron(II) fluoride, iron(III) fluoride, iron(II) iodide, iron(III) iodide, iron(II) sulfate, iron(II) 25 trifluoroacetate, iron(II) trifluoromethanesulfonate, iron(III) trifluoromethanesulfonate, iron(III) chloride-TMEDA complex. The amount of catalyst used is preferably 0.01 to 100 mol%, more preferably 0.1 to 10 mol%, based on the compound of the general formula (II). 30 H:\rbr\ntr ovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 - 10 It is optionally possible in the process according to the invention to add nitrogen-, oxygen and/or phosphorus-containing additives. These additives are preferably alkylamines, cycloalkylamines, alkyldiamines, 5 cycloalkyldiamines, N-containing heterocycles, alkylamides, cyclic alkylamides, alkylimines, aniline derivatives, ureas, urethanes, nitrogen-containing heteroaromatics, dialkyl ethers, alkyl aryl ethers, diaryl ethers, cyclic ethers, oligoethers, polyethers, triarylphosphines, trialkylphosphines, aryldialkylphosphines, alkyldiarylphosphines and bridged bisphosphines. 10 The additives used are more preferably triethylamine, ethyldiisopropylamine, N,N,N',N' tetramethylethylenediamine (TMEDA), 1,4-diazabicyclo [2.2.2] octane (DABCO), sparteine, N,N,N',N'-tetramethyldiaminomethane, 1,2-diaminocyclohexane (DACH), N-methyl-2 pyrrolidine (NMP), N,N-dimethylaniline, pyridine, phenanthroline, PEG (polyethylene glycol), DME (1,2-dimethoxyethane), binaphthyl dimethyl ether, 18-crown-6, 15 triphenylphosphine, tri-n-butylphosphine, tri-tert-butylphosphine, dppf (1,1' bis(diphenylphosphino)ferrocene), dppe (1,2-bis(diphenylphosphino)ethane), dppp (1,3 bis(diphenylphosphino)propane), dppb (1,4-bis(diphenylphosphino)butane) or dpppe (1,5 bis(diphenylphosphino)pentane). 20 It is also possible to use chiral additives in order to achieve chiral induction in the coupling reaction, if applicable. In the process according to the invention, the nitrogen-, oxygen- and/or phosphorus-containing additive is used preferably in an amount of 0 to 200 mol%, more preferably 0 to 150 mol%, 25 based on the compounds (II). The process according to the invention is typically performed in dry aprotic polar solvents, which are preferably used in dry form. Particular preference is given to using tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-methyl-THF), 1,4-dioxane, dimethylformamide (DMF), 30 dimethylacetamide (DMAc), methyl tert-butyl ether (MTBE), diethyl ether, 1,2 dimethoxyethane (DME, glyme), diisopropyl ether (DIPE), dipropyl ether, dibutyl ether, H:\rbr\ntr ovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 - 11 cyclopentyl methyl ether, diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), tetraethylene glycol dimethyl ether (tetraglyme), diethylene glycol dibutyl ether, dimethyl carbonate or N-methyl-2-pyrrolidone (NMP) as the solvent. 5 The reaction temperature in the process according to the invention is typically between -80'C and +100'C, preferably between -40 and +60'C, more preferably between -15 and +45 'C. In the process according to the invention, it is possible to react a multitude of substituted and unsubstituted aryl, heteroaryl, alkyl and alkenyl halides with substituted and unsubstituted 10 allyl and vinyl esters of substituted and unsubstituted carboxylic acids and carbonic acid. The coupling is effected in most cases predominantly at the carbon atom of the allyl or vinyl ester that bears the ester function, which means that isomerization and allyl shifts take place only to a minor degree, if at all. 15 The compounds prepared by the process according to the invention can be isolated and purified efficiently by conventional methods. Examples 20 Example 1: Coupling of allyl acetate with 2-methoxyphenylmagnesium bromide 1) Mg, LiCI, THF 2) Fe(acac) 3 r 3)O a Br _______ 25 Under protective gas, 63 mg of magnesium turnings, 126 mg of anhydrous lithium chloride, 4 ml of dry tetrahydrofuran and 2.4 mmol of 2-bromoanisole were reacted at room temperature to give the Grignard compound. Then the dark-colored solution formed was cooled to 0 0 C and a solution of 35.3 mg of iron(III) acetylacetonate (5 mol%) in 2 ml of dry tetrahydrofuran was H:\rbr\Intrwovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 - 12 added and the mixture was stirred for five minutes. Then 2 mmol of allyl acetate were added dropwise and the reaction mixture was stirred for 2 h. For workup, hydrolysis was effected with 5 ml of saturated sodium hydrogencarbonate solution and the mixture was extracted three times with 10 ml each time of ethyl acetate. The 5 combined organic phases were dried over magnesium sulfate, concentrated and purified by column chromatography on silica gel (eluent: cyclohexane-ethyl acetate). 95% of theory of 2-allylanisole was isolated. 10 Examples 2 to 17: Further couplings of aryl Grignard compounds with allyl acetate The procedure was as in example 1, except that the haloarenes listed in table 1 were used instead of 2-bromoanisole. The individual yields are not optimized. 15 Table 1 Example Haloaromatic Product Yield (% of No. theory) 2 4-bromoanisole 4-allylanisole 75 3 bromobenzene allylbenzene 70 4 4-bromoveratrole 4-allylveratrole 72 5 4-bromotoluene 4-allyltoluene 75 6 1,3-dibromobenzene 4-allylbromobenzene 71 7 4-bromo-N,N- 4-allyl-N,N-dimethylaniline 61 dimethylaniline 8 2-bromo-N,N- 2-allyl-N,N-dimethylaniline 31 dimethylaniline 9 2-bromotoluene 2-allyltoluene 69 10 4-bromo-tert-butylbenzene 4-allyl-tert-butylbenzene 54 11 4-bromo-2-fluorobiphenyl 4-allyl-2-fluorobiphenyl 60 12 9-bromophenanthrene 9-allylphenanthrene 76 H:\rbr\Intrwovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 - 13 13 1,4-dibromobenzene 4-allylbromobenzene 35 14 2-bromobenzonitrile 2-allylbenzonitrile 15 15 1-bromo-4-fluorobenzene 4-allylfluorobenzene 75 16 4-bromobenzotrifluoride 4-allylbenzotrifluoride 51 17 5-bromo-m-xylene 5-allyl-m-xylene 63 Example 18: Coupling of an alkyl Grignard compound with allyl acetate 1) Mg, LiCI, THF 2) Fe(acac) 3 HO-Br 3) H25 C12 .. OAc 5 n-Dodecyl bromide was converted analogously to example 1 to its Grignard compound and the latter was reacted with allyl acetate in the manner described. 1 -Pentadecene was obtained in 32% yield. 10 Examples 19 to 23: Coupling of aryl Grignard compounds with allyl carbonate 1) Mg, LiCI, THF 2) Fe(acac) 3 3) 0 15 The experiments were conducted analogously to example 1; instead of allyl acetate, allyl methyl carbonate was used. The experiments are listed in table 2. The individual yields are not optimized. Table 2 H:\rbr\Intrwovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 - 14 Example Haloarene Product Yield (% of theory) No. 19 4-bromotoluene 4-allyltoluene 50 20 2-bromoanisole 2-allylanisole 76 21 4-bromoanisole 4-allylanisole 68 22 2-bromotoluene 2-allyltoluene 56 23 4-tert-butylbromobenzene 4-allyl-tert-butylbenzene 50 Examples 24 to 37: Coupling of aryl Grignard compounds with substituted allyl acetates 1) Mg, LiCI, THF 2) Fe(acac) 3 Br 3) O O3) The experiments were conducted analogously to example 1; instead of allyl acetate, the substituted allyl acetates listed in table 3 were reacted with the aryl Grignard compounds listed. The individual yields were not optimized. 10 Table 3 No. Allyl compound Haloarene Product Yield (%) 24 crotyl acetate 4-bromoanisole 4-crotylanisole 30a> 25 crotyl acetate 1-bromo-4-tert- 1-tert-butyl-4-crotylbenzene 22a> butylbenzene 26 3-phenylallyl acetate 1-bromo-4- 4-(3- 94 chlorobenzene phenylallyl)chlorobenzene 27 3-phenylallyl acetate 1-bromo-4- 4-(3- 95 fluorobenzene phenylallyl)fluorobenzene H:\rbr\Intrwovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 - 15 28 3-phenylallyl acetate 1-bromo-2,4- 4-(3-phenylallyl)-m- 49 difluorobenzene difluorobenzene 29 3-phenylallyl acetate 2-bromoanisole 2-allylanisole 51 30 3-phenylallyl acetate methyl 4- methyl 4-(3- 16 bromobenzoate phenylallyl)benzoate 31 3-phenylallyl acetate 4-bromoanisole 4-(3-phenylallyl)anisole 62 32 3-phenylallyl acetate 1,3-dibromobenzene 3-(3- 21 phenylallyl)bromobenzene 33 3-phenylallyl acetate 1,4-dibromobenzene 4-(3- 52 phenylallyl)bromobenzene 34 3-phenylallyl acetate 4-bromoveratrole 4-(3-phenylallyl)veratrole 54 35 prenyl acetate 4-bromoanisole 4-prenylanisole 37a> 36 prenyl acetate 4-bromotoluene 4-prenyltoluene 35a> 37 methyl 3-acetoxy-2- 4-tert- methyl 2-(4-tert- 41a> methylenebutanoate butylbromobenzene butylbenzylidene)butanoate (a> isomer mixture) Examples 38 to 40: Variation of the coupling temperature of the allyl acetate coupling 5 Allyl acetate and 4-tert-butylphenylmagnesium bromide were reacted as described in example 10, except that the coupling reaction was conducted at the temperature listed in table 4. Table 4 No. Temperature (C) Yield (%) 38 20 31 39 0 37 40 -20 34 10 Examples 41 to 43: Variation of the catalyst in the allyl acetate coupling H:\rbr\Intrwovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 - 16 Allyl acetate and 4-tert-butylphenylmagnesium bromide were reacted as described in example 10, except that the coupling reaction was conducted with the catalyst specified in table 5 (5 mol%). 5 Table 5 No. Catalyst Yield (%) 41 iron(III) chloride 37 42 iron(III) acetylacetonate 37 43 iron(II) iodide 7 Examples 44 to 47: Variation of the stoichiometry in the allyl acetate coupling Allyl acetate and 4-tert-butylphenylmagnesium bromide were reacted as described in example 10 10, except that the stoichiometric ratios were varied as described in table 6. Table 6 No. Molar bromoarene:allyl acetate Yield (%) ratio 44 1.0: 1.2 33 45 1.0: 1.5 37 46 1.2: 1.0 40 47 1.5 : 1.0 51 Examples 48 to 52: Variation of additives in the allyl acetate coupling 15 Allyl acetate and 4-tert-butylphenylmagnesium bromide were reacted as described in example 10, except that the additives listed in table 7 were added in the amounts specified in each case. Table 7 No. Eq. of Eq. of Yield (%) LiCl TMEDA H:\rbr\Intrwovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 -17 48 1.5 0.0 47 49 1.5 0.4 44 50 1.5 0.9 39 51 1.5 1.5 37 52 0.0 0.0 37 Examples 53: Coupling of 4-tolylmagnesium bromide with vinyl acetate 1) Mg, LiCI, THF 2) TMEDA, FeCI 3 3) Br MOAc 5 Under protective gas, 96 mg of magnesium turnings were initially charged under 6 ml of a 0.5 M solution of lithium chloride in tetrahydrofuran. At 20'C, 2.6 mmol of 4-bromotoluene were added and the mixture was stirred for 2 h. A solution of 16.2 mg of iron(III) chloride (5 mol%) and 292 p l of TMEDA (1.3 eq.) in 1 ml of tetrahydrofuran was added to the Grignard solution 10 formed. Then the mixture was cooled to 0 0 C and 2 mmol of vinyl acetate were added, and the mixture was stirred at 0 0 C for 3 h and at 20'C for 1 h. For workup, 4 ml of saturated sodium carbonate solution were added and the mixture was extracted three times with 5 ml each time of ethyl acetate. The combined organic extracts were dried over sodium sulfate and purified by column chromatography on silica gel (eluent: cyclohexane-ethyl acetate). 15 This gave 4-methylstyrene in a yield of 99% of theory. Example 54: Coupling of 4-bromoanisole with vinyl acetate 20 The reaction was conducted analogously to example 53, except using 4-bromoanisole instead of 4-bromotoluene. This gave 4-methoxystyrene in 100% yield.
H:\rbr\nterwoven\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 - 18 Example 55: Coupling of bromotoluene with vinyl acetate as under domino iron catalysis 1) Mg, TMEDA, FeC 3 , THF 2) N-w Br 2) OAc 5 Under protective gas, 62 mg of magnesium turnings were initially charged under a solution of 16.2 mg (5 mol%) of iron(III) chloride in 6 ml of abs. tetrahydrofuran, and 60 pl of TMEDA (20 mol%) were added. The mixture was cooled to 0 0 C and stirred for another 10 min, then 2.6 mmol of bromobenzene were added and the mixture was stirred at 0 0 C for 90 min, then 2 mmol of vinyl acetate were added and the mixture was stirred once again at 0 0 C for 90 min. 10 For workup, 2 ml of saturated sodium carbonate solution were added to the reaction mixture, which was extracted three times with 5 ml each time of ethyl acetate. The combined organic phases were dried over sodium sulfate, concentrated and purified by column chromatography on silica gel (eluent: cyclohexane-ethyl acetate). This gave styrene in a yield of 42% of theory. 15 The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to 20 which this specification relates. Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but 25 not the exclusion of any other integer or step or group of integers or steps.
Claims (10)
1. A process for preparing organic compounds of the general formula (I) 5 R-R' (I) in which R is an optionally mono- or polysubstituted aryl, heteroaryl, alkenyl or alkyl radical, and 10 R' is a vinyl or allyl radical of the general formula 11(a) or 11(b) (Ila) (I1b) R'= Q or Qj Vinyl Allyl where j is 0, 1, 2 or 3 and 15 Q are identical or different groups other than H, by converting a compound of the general formula (II) R-X (II) 20 in which X is fluorine, chlorine, bromine or iodine, and R is as defined for formula (I), to an organomagnesium compound of the general formula (III) 25 [Mi]n [RmMgXYh] (II) in which H:\rbr\Intrwovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 - 20 R is as defined for formula (I), X is an anion as defined for formula (II), M is a monovalent cation, Y is a monovalent anion, 5 n is either 0 or n is 1, 2, 3, 4, m is 1, 2, 3, 4, 5 or 6, k is 0, 1, 2, 3 or 4, 1 is 0, 1, 2, 3 or 4, and, at the same time, the following relationship applies: 10 n + 2= m + k +1, followed by reaction of the compound (III) with a compound of the general formula (IV) 15 0 R 'O R" (IV) in which R' is as defined for formula (I) and is bonded to the oxygen atom in the allyl or vinyl 20 position and R" is an optionally substituted alkyl, alkoxy, aryl, aryloxy, heteroaryl or heteroaryloxy group, characterized in that the step from (II) to (III), is performed in the presence of 25 a) catalytic amounts of an iron compound, based on the compound of the general formula (II), and b) the compound of the general formula (IV), and optionally in the presence of c) a nitrogen-, oxygen- and/or phosphorus-containing additive in a catalytic or 30 stoichiometric amount, based on the compound of the general formula (II), H:\rbr\ntr ovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 - 21 such that the organomagnesium compound (III) formed reacts further in situ with (IV) to give (I). 5
2. The process as claimed in preceding claim 1, characterized in that R is an optionally substituted alkenyl, alkyl, aryl or heteroaryl radical, where the heteroaryl radical is a five-, six- or seven-membered ring having one or more nitrogen, oxygen and/or sulfur atoms in the ring, where any further optionally substituted aromatic, heteroaromatic and/or cycloaliphatic radicals may be fused onto a cyclic R radical and the R radical 10 may optionally bear one or more substituents which may each independently be (C 3 Cis)-alkyl, (C 3 -Cis)-cycloalkyl, (C 3 -Cis)-alkenyl, (C 3 -Cis)-cycloalkenyl, (C 3 -Ci 8 ) alkynyl, (C 6 -Cis)-aryl, O-[(C 4 -Cis)-alkyl], 0-[(C 6 -Cis)-aryl], O-Si[(C 4 -Ci 8 ) alkyl] 1 [(C 4 -C 18 )-aryl] 3_, OC(O)-[(C 4 -Cis)-alkyl], OC(O)-[(C 4 -Cis)-aryl], NH 2 , NH[(C 4 -Cis)-alkyl], N[(C 4 -Ci)-alkyl]2, NH[(C 4 -Cis)-aryl], N[(C 4 -Ci 8 )-aryl] 2 , 15 NHC(O)-[(C 4 -Cis)-alkyl], N[(C 4 -Cis)-alkyl]C(O)-[(C 4 -Cis)-alkyl], NHC(O)-[(C 4 -Ci 8 ) aryl], N[(C 4 -Cis)-alkyl]C(O)-[(C 4 -Cis)-aryl], NO 2 , NO, S-[(C 4 -Cis)-aryl], S-[(C 4 -Ci8) alkyl], fluorine, chlorine, bromine, pentafluorosulfuranyl, CF 3 , CN, COOM, COO [(C 4 -Cis)-alkyl], COO-[(C 4 -Cis)-aryl], C(O)NH-[(C 4 -Cis)-alkyl], C(O)NH-[(C 4 -Ci8) aryl], C(O)N-[(C 4 -Cis)-alkyl] 2 , C(O)N-[(C 4 -Cis)-aryl] 2 , CHO, S0 2 -[(C 4 -Cis)-alkyl], 20 SO-[(C 4 -Cis)-alkyl], SO 2 -[(C 4 -Cis)-aryl], SO-[(C 4 -Cis)-aryl], OSO 2 -[(C 4 -Cis)-alkyl], OSO 2 -[(C 4 -Cis)-aryl], PO-[(C 4 -Ci 8 )-alkyl] 2 , PO-[(C 4 -C 18 )-aryl] 2 , SO 3 M, S0 3 -[(C 4 C 18 )-alkyl], S0 3 -[(C 4 -C 18 )-aryl] or Si[(C 4 -Ci 8 )-alkyl].[(C 4 -Ci 8 )-ary1]3_, where M is an alkali metal or alkaline earth metal atom and n is a natural number in the range from 0 to 3, and where at least two of these substituents may form a ring system with one 25 another.
3. The process as claimed in one at least one of the preceding claims, characterized in that the allylic or vinylic R' radical may optionally bear one or more substituents Q which may each independently be (C 4 -Cis)-alkyl, (C 4 -Cis)-cycloalkyl, (C 4 -Ci 8 ) 30 alkenyl, (C 4 -Cis)-cycloalkenyl, (C 4 -Cis)-alkynyl, (C 4 -C 18 )-aryl, 0-[(C 4 -C 18 )-alkyl], 0 [(C 4 -C 18 )-aryl], O-Si[(C 4 -Cis)-alkyl], 1 [(C 4 -Cis)-aryl] 3 _ 1 , OC(O)-[(C 4 -C 18 )-alkyl], H:\rbr\ntr ovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 - 22 OC(O)-[(C 4 -Cis)-aryl], NH 2 , NH[(C 4 -C18)-alkyl], N[(C 4 -Cis)-alkyl] 2 , NH[(C 4 -C18) aryl], N[(C 4 -Cis)-aryl]2, NHC(O)-[(C 4 -C18)-alkyl], N[(C 4 -Cis)-alkyl]C(O)-[(C 4 -Ci8) alkyl], NHC(O)-[(C 4 -C18)-aryl], N[(C 4 -Cis)-alkyl]C(O)-[(C 4 -Cis)-aryl], NO 2 , NO, S [(C 4 -Cis)-aryl], S- [(C4-Cis)-alkyl], fluorine, chlorine, bromine, pentafluorosulfuranyl, 5 CF 3 , CN, COOM, COO-[(C 4 -C18)-alkyl], COO-[(C 4 -C18)-aryl], C(O)NH-[(C 4 -C18) alkyl], C(O)NH-[(C 4 -C18)-aryl], C(O)N-[(C 4 -Ci 8 )-alkyl] 2 , C(O)N-[(C 4 -Cis)-aryl]2, CHO, S0 2 -[(C 4 -C18)-alkyl], SO-[(C 4 -C18)-alkyl], SO 2 -[(C 4 -C18)-aryl], SO-[(C 4 -C 1 8 ) aryl], OSO 2 -[(C 4 -Cis)-alkyl], OSO 2 -[(C 4 -Cis)-aryl], PO-[(C 4 -C18)-alkyl] 2 , PO-[(C 4 C18)-ary1l]2, SO 3 M, S0 3 -[(C 4 -C18)-alkyl], SO 3 -[(C 4 -C 18 )-aryl] or Si[(C 4 -C18) 10 alkyl].[(C 4 -Cis)-aryl] 3 _ 1 , where M is an alkali metal or alkaline earth metal atom and n is a natural number in the range from 0 to 3, and where at least two of these substituents may form a ring system with one another.
4. The process as claimed in at least one of the preceding claims, characterized in that the 15 R" radical is an optionally branched, optionally cyclic alkyl group or an aryl or heteroaryl group, all of which may optionally bear one or more substituents which may each independently be (C 4 -Cis)-alkyl, (C 4 -Cis)-cycloalkyl, (C 4 -Cis)-alkenyl, (C 4 -C18) cycloalkenyl, (C 4 -C is)-alkynyl, (C 4 -C 18 )-aryl, 0- (C 4 -C is)-alkyl], 0- [(C 4 -C is)-aryl], 0 Si[(C 4 -Cis)-alkyl].[(C 4 -Cis)-aryl]3_n, OC(O)-[(C 4 -Cis)-alkyl], OC(O)-[(C 4 -Cis)-aryl], 20 NH 2 , NH[(C 4 -C18)-alkyl], N[(C 4 -Cis)-alkyl] 2 , NH[(C 4 -C18)-aryl], N[(C 4 -Cis)-aryl]2, NHC(O)- [(C 4 -C 18)-alkyl], N[(C 4 -C is)-alkyl] C(O)- [(C 4 -C is)-alkyl], NHC(O)- [(C 4 -C 18) aryl], N[(C 4 -Cis)-alkyl]C(O)-[(C 4 -Cis)-aryl], NO 2 , NO, S-[(C 4 -Cis)-aryl], S-[(C 4 -Ci8) alkyl], fluorine, chlorine, bromine, pentafluorosulfuranyl, CF 3 , CN, COOM, COO [(C 4 -Cis)-alkyl], COO-[(C 4 -Cis)-aryl], C(O)NH-[(C 4 -C18)-alkyl], C(O)NH-[(C 4 -C18) 25 aryl], C(O)N-[(C 4 -Ci 8 )-alkyl] 2 , C(O)N-[(C 4 -Ci 8 )-aryl] 2 , CHO, S0 2 -[(C 4 -C18)-alkyl], SO-[(C 4 -Cis)-alkyl], S0 2 -[(C 4 -Cis)-aryl], SO-[(C 4 -Cis)-aryl], OS0 2 -[(C 4 -Cis)-alkyl], OSO 2 -[(C 4 -Cis)-aryl], PO-[(C 4 -Cis)-alkyl] 2 , PO-[(C 4 -Cis)-aryl] 2 , S0 3 M, S0 3 -[(C 4 Cis)-alkyl], S0 3 -[(C 4 -Cis)-aryl] or Si[(C 4 -Cis)-alkyl], 1 [(C 4 -Cis)-aryl] 3 _n, where M is an alkali metal or alkaline earth metal atom and n is a natural number in the range from 0 30 to 3, and where at least two of these substituents may form a ring system with one another. H:\rbr\ntr ovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 - 23
5. The process as claimed in at least one of the preceding claims, characterized in that the iron compound used is iron(II) chloride, iron(III) chloride, iron(II) acetylacetonate, iron(III) acetylacetonate, iron(II) acetate, iron(III) acetate, iron(II) bromide, iron(III) 5 bromide, iron(II) fluoride, iron(III) fluoride, iron(II) iodide, iron(III) iodide, iron(II) sulfate, iron(II) trifluoroacetate, iron(II) trifluoromethanesulfonate, iron(III) trifluoromethanesulfonate or iron(III) chloride-TMEDA complex.
6. The process as claimed in at least one of the preceding claims, characterized in that the 10 iron compound is used in an amount of 0.01 to 50 mol%, based on the compound of the general formula (II).
7. The process as claimed in at least one of the preceding claims, characterized in that the optionally added nitrogen-, oxygen- and/or phosphorus-containing additive having one 15 or more nitrogen, oxygen and/or phosphorus atoms comprises optionally substituted alkylamines, N-containing heterocycles, alkylamides, cyclic alkylamides, cycloalkylamines, cycloalkyldiamines, alkylimines, cycloalkylimines, aniline, aniline derivatives, nitrogen-containing heteroaromatics, dialkyl ethers, alkyl aryl ethers, diaryl ethers, cyclic ethers, oligoethers, polyethers, triarylphosphines, 20 trialkylphosphines, aryldialkylphosphines, alkyldiarylphosphines and bridged bisphosphines.
8. The process as claimed in at least one of the preceding claims, characterized in that the nitrogen-, oxygen- and/or phosphorus-containing additive used is triethylamine, 25 ethyldiisopropylamine, N,N,N',N'-tetramethylethylenediamine (TMEDA), 1,4 diazabicyclo[2.2.2]octane (DABCO), sparteine, N,N,N',N' tetramethyldiaminomethane, 1,2-diaminocyclohexane (DACH), N-methyl-2 pyrrolidine (NMP), N,N-dimethylaniline, pyridine, phenanthroline, PEG-DME (polyethylene glycol dimethyl ether), DME (1,2-dimethoxyethane), binaphthyl 30 dimethyl ether, 18-crown-6, triphenylphosphine, tri-n-butylphosphine, tri-tert butylphosphine, dppf (1,1'-bis(diphenylphosphino)ferrocene), dppe (1,2- H:\rbr\Intrwovn\NRPortbl\DCC\RBR\7608082_I.docx-30/03/2015 - 24 bis(diphenylphosphino)ethane), dppp (1,3-bis(diphenylphosphino)propane), dppb (1,4 bis(diphenylphosphino)butane) or dpppe (1,5-bis(diphenylphosphino)pentane).
9. The process as claimed in at least one of the preceding claims, characterized in that the 5 nitrogen-, oxygen- and/or phosphorus-containing additive is used in an amount of 0 to 200 mol%, based on the compound of the general formula (II).
10. The process as claimed in any of the preceding claims, characterized in that the R radical in formula (I) is an aryl radical from the group of phenyl, naphthyl, anthracenyl 10 and phenanthryl or a heteroaryl radical from the group of pyridyl, pyrimidyl, pyrazinyl, dioxinyl, furyl, (thiophen)yl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, thiadiazolyl, triazolyl and pyrrolyl, and the R' radical in formula (I) is an allylic radical from the group of allyl, crotyl, methallyl, 1 methylallyl, cyclopent-1-en-3-yl and cyclohex-1-en-3-yl or a vinylic radical from the 15 group of vinyl, 1-propenyl, 2-methyl-1-propenyl, cyclopent-1-en-1-yl and cyclohex-1 en-1-yl.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2015201627A AU2015201627A1 (en) | 2010-02-09 | 2015-03-30 | Method for allylating and vinylating aryl, heteroaryl, alkyl, and alkene halogenides using transition metal catalysis |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010007226.5 | 2010-02-09 | ||
AU2011214483A AU2011214483A1 (en) | 2010-02-09 | 2011-02-01 | Method for allylating and vinylating aryl, heteroaryl, alkyl, and alkene halogenides using transition metal catalysis |
AU2015201627A AU2015201627A1 (en) | 2010-02-09 | 2015-03-30 | Method for allylating and vinylating aryl, heteroaryl, alkyl, and alkene halogenides using transition metal catalysis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2011214483A Division AU2011214483A1 (en) | 2010-02-09 | 2011-02-01 | Method for allylating and vinylating aryl, heteroaryl, alkyl, and alkene halogenides using transition metal catalysis |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2015201627A1 true AU2015201627A1 (en) | 2015-04-16 |
Family
ID=53058397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2015201627A Abandoned AU2015201627A1 (en) | 2010-02-09 | 2015-03-30 | Method for allylating and vinylating aryl, heteroaryl, alkyl, and alkene halogenides using transition metal catalysis |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2015201627A1 (en) |
-
2015
- 2015-03-30 AU AU2015201627A patent/AU2015201627A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hatakeyama et al. | Highly selective biaryl cross-coupling reactions between aryl halides and aryl Grignard reagents: a new catalyst combination of N-heterocyclic carbenes and iron, cobalt, and nickel fluorides | |
US8030520B2 (en) | Process for preparing organic compounds by a transition metal-catalysed cross-coupling reaction of an aryl-X, heteroaryl-X, cycloalkenyl-X or alkenyl-X compound with an alkyl, alkenyl, cycloalkyl or cycloalkenyl halide | |
Oishi et al. | Aromatic trifluoromethylation catalytic in copper | |
JP5376743B2 (en) | Phosphan ligands with adamantyl groups, their preparation and their use in catalytic reactions | |
US5922898A (en) | Process for preparing biaryl compounds | |
JP5419444B2 (en) | Method of binding carboxylic acid and carbon electrophile by CC bond while decarboxylating (decarboxylation) | |
US4912276A (en) | Preparation of biaryl compounds | |
EP1313560A1 (en) | CATALYST FOR AROMATIC C-O, C-N, and C-C BOND FORMATION | |
US9309188B2 (en) | Method for allylating and vinylating aryl, heteroaryl, alkyl, and alkene halogenides using transition metal catalysis | |
US20020173652A1 (en) | Process for preparing a polyaromatic compound | |
AU2015201627A1 (en) | Method for allylating and vinylating aryl, heteroaryl, alkyl, and alkene halogenides using transition metal catalysis | |
JP2002541232A (en) | Biaryl manufacturing method | |
EP1279656A2 (en) | Process for preparing unsymmetrical biaryls and alkylated aromatic compounds from arylnitriles | |
CN100378062C (en) | Process for the preparation of fluorophenylalkylene acid derivatives | |
CN107108420A (en) | The manufacture method of alkene | |
Tao et al. | Homocoupling of aryl bromides catalyzed by nickel chloride in pyridine | |
JP5687807B2 (en) | Reaction catalyst for cross coupling and process for producing aromatic compound | |
Puckette | The Tertiary Organometallic Reagent Promoted Reductive Coupling of Aryl Halides | |
ES2369961T3 (en) | PROCEDURE FOR THE PREPARATION OF ORGANIC COMPOUNDS THROUGH A CROSSED COUPLING REACTION CATALYZED BY A TRANSITION METAL OF AN ARIL-X, HETEROARIL-X, CYCLALQUENYL-X, OR ALQUENYL-X COMPOUND, WITH AN ALKYL-ALKYL ALKYL CYCLOALQUENYL | |
Li | 20. Combinatorial Approaches for New Catalyst Discovery: The First Homogeneous Catalysts Derived from Combinatorial Technologies for a Variety of Cross-Coupling Reactions | |
Pytlarczyk et al. | Synthetic pathways of 4-(alkyl-1-yn-1-yl)-bromo/chlorobenzenes as useful intermediates for highly birefringent Liquid Crystals | |
Milton | Pd catalysed CC & CO bond formation using bis-(dialkyl/diarylphosphino) ferrocene ligands | |
Adjabeng | Phospha-adamantanes as ligands for palladium-catalyzed cross-coupling reactions | |
Li | 20. Combinatorial Approaches for New Catalyst Discovery: The First Homogeneous Catalysts Derived from Combinatorial Technologies for a Variety of Cross-Coupling Reactions | |
DE102008062690A1 (en) | Preparing organic compounds e.g. functionalized aryl compounds, comprises reacting aryl compounds with halide containing alkyl compounds in presence of elemental magnesium, transition metal compound and nitrogen containing additive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK5 | Application lapsed section 142(2)(e) - patent request and compl. specification not accepted |