AU2015200852A1 - New therapeutic agents - Google Patents
New therapeutic agents Download PDFInfo
- Publication number
- AU2015200852A1 AU2015200852A1 AU2015200852A AU2015200852A AU2015200852A1 AU 2015200852 A1 AU2015200852 A1 AU 2015200852A1 AU 2015200852 A AU2015200852 A AU 2015200852A AU 2015200852 A AU2015200852 A AU 2015200852A AU 2015200852 A1 AU2015200852 A1 AU 2015200852A1
- Authority
- AU
- Australia
- Prior art keywords
- substituted
- unsubstituted
- mmol
- nmr
- compound according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Compounds of formula (1) or formula (II), or pharmaceutically acceptable salts thereof, wherein X is 0, N or S, and R', R2, R3, R4 and R7 are as defined in the description, and the use of these compounds in treating cancer or as an inhibitor of the interaction of MDM2 with p53. N It x r-A 7 r 1 N-R 1 R0 X C) r N co CD Cq
Description
- 1 New Therapeutic Agents The invention relates to a series of isoindolin-l-one derivatives which find particular utility as pharmaceuticals, in particular in the treatment of cancer. Under conditions of stress such as hypoxia and DNA damage it is known that 5 the cellular level of the protein p53 increases. P53 is known to initiate transcription of a number of genes which govern progression through the cell cycle, the initiation of DNA repair and programmed cell death"7. Thus, p53 is a tumour suppressor. The activity of p53 is tightly regulated by the MDM2 protein, the transcription of which is itself regulated by p53. p53 is inactivated when it becomes bound to the 10 p53 transactivation domain of the MDM2 protein. Once inactivated the functions of p53 are repressed and the p53-MDM2 complex becomes a target for ubiquitinylation. In normal cells the balance between active p53 and inactive MDM2-bound p53 is maintained in an autoregulatory negative feed back loop 3 t That is to say that p53 can activate MDM2 expression, which in turn leads to the repression of p53. 15 It has been found that inactivation of p53 by mutation is common in around half of all tumours. Furthermore, in around 7% of turnours, over expression of MDM2 results in the loss of functional p53, thereby allowing malignant transformation and uncontrolled tumour growth 5 . X-ray crystal studies of the MDM2-p53 complex have been conducted and 20 have revealed a hydrophobic pocket on the surface of MDM2 into which the side chains of Phe 19, Trp 23 and Leu 26 on p 5 3 bind 6 . Therefore, inhibition of the MDM2-p53 binding interaction is an attractive target for researchers developing treatments for cancer as a means of restoring normal p53 activity in cells overexpressing MDM2 and thereby exerting an anti-tumour effect 7
.
-2 A number of inhibitors of the MDM2-p53 interaction have been discovered including peptide inhibitors, the natural product chlorofusion, and small molecules such as the imidazolines described in WO 03/051359-. The invention describes a novel series of compounds which inhibit the 5 MDM2-p53 interaction and which have exciting in vitro activity. According to a first aspect of the invention there is provided a compound of formula I: 3 2 R R2 x R3 | xX R4- I-- -R 1 0 or a compound of formula 11: x
R-R
7 --
N-R
1 R~ 0 10 0 RII or a pharmaceutically acceptable salt thereof, wherein in both formulae I and II: X is selected from 0, N or S; R' is selected from hydrogen, substituted or unsubstituted alkyl, substituted 15 or unsubstituted hydroxyalkyl, substituted or unsubstituted alkylanine, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, and substituted or unsubstituted heteroaralkyl; -3 R2 is selected from hydrogen, substituted or unsubstituted alkenyl or alkynyl, substituted or unsubstituted branched hydroxyalkyl, substituted or unsubstituted cycloalkyl having 6 ring carbon atoms or greater, substituted or unsubstituted cycloalkenyl, hydroxyalkylaralkyl, hydroxyalkylheteroaralkyl, and a carboxylic acid 5 containing group; R? is selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted hydroxyalkyl, substituted or unsubstituted alkylarnine, substituted or unsubstituted alkoxy, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, and substituted or unsubstituted 10 heteroaralkyl; and R - R7 represents groups R4, R5, R6 and R7 which are independently selected from hydrogen, halo, hydroxy, substituted or unsubstituted alkyl, substituted or unsubstituted hydroxyalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted heteroaryl, substituted or 15 unsubstituted heteroaralkyl, substituted or unsubstituted alkylamine, substituted or unsubstituted alkoxy, trifluoromethyl, amino, nitro, carboxyl, carbonyl, methylsulfone, trifluoromethylsulfone, cyano and substituted or unsubstituted sulfonamide; wherein, where R2 is substituted or unsubstituted branched hydroxyalkyl, X is 20 0 or S; and wherein, where R2 is hydrogen, at least one of R4 - R 7 is not hydrogen and R3 is not a benzimidazole derivative; and wherein, in the formula II, the 6-membered ring may have 0, 1, or 2 C=C double bonds. 25 According to a second aspect of the invention there is provided a compound of formula I or formula II, or a pharmaceutically acceptable salt thereof, wherein -4 X is selected from 0, N or S; R' is selected from substituted aryl, substituted heteroaryl, substituted aralkyl, and substituted heteroaralkyl; R2 is selected from halo, acetyl, substituted or unsubstituted acyclic alkyl, 5 substituted or unsubstituted hydroxyalkyl, substituted or unsubstituted alkylanine, substituted or unsubstituted alkoxyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, and substituted or unsubstituted heteroalkyl;
R
3 is selected from hydrogen, hydroxy, substituted or unsubstituted alkyl, 10 substituted or unsubstituted hydroxyalkyl, substituted or unsubstituted alkylamine, substituted or unsubstituted alkoxy, substituted or unsubstituted aryl or heteroaryl, and substituted or unsubstituted aralkyl or heteroalkyl; and R - R 7 represents groups R 4 , Rs, R 6 and R7 which are independently selected from hydrogen, halo, hydroxy, substituted or unsubstituted alkyl, substituted or 15 unsubstituted hydroxyalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroaralkyl, substituted or unsubstituted alkylamine, substituted or unsubstituted alkoxy, trifluoromethyl, amino, nitro, carboxyl, carbonyl, methylsulfone, trifluoromethylsulfone, cyano and substituted or unsubstituted 20 sulfonamide; wherein when R2 is a straight chain hydroxyalkyl, RI is not selected from 4 nitrobenzyl or 4-chlorobenzyl; and wherein, where R 2 is hydrogen, at least one of R 4 - R7 is not hydrogen and
R
3 is not a benzimidazole derivative or a benzimidazoline derivative; 25 and wherein when R3 is a phenyl group, RI cannot be 4-methoxybenzyl or 4 hydroxybenzyl group; -5 and wherein, in the formula II, the 6-membered ring may have 0, 1, or 2 C=C double bonds. In the compounds of formula II, the 6-membered aromatic ring may be completely saturated, or it may have one carbon-carbon double bond, or alternatively 5 it may have two carbon-carbon double bonds. All of these variations are individually envisaged within the scope of the invention. According to a third aspect of the invention there is provided a compound as defined in the first or second aspects for use in therapy. Further, in a fourth aspect of the invention there is provided a compound as defined in the first or second aspects 10 for use in treating cancer. In a fifth aspect of the invention there is provided a compound as defined in the first or second aspects, wherein said compound inhibits the interaction of MDM2 protein with p53. In an sixth aspect of the invention there is provided a compound as defined in 15 the first or second aspects, for use as an active pharmaceutical substance for the treatment of cancer. In an seventh aspect of the invention a compound of the first or second aspects may be used in the manufacture of a medicament; and in an eighth aspect a compound of the first or second aspects may be used in the manufacture of a medicament for the 20 treatment of cancer. Also disclosed as a ninth aspect of the invention is a pharmaceutical composition comprising an effective amount of at least one compound as defined in the first or second aspects of the invention and a pharmaceutically acceptable carrier. In a tenth aspect of the invention there is provided a method of treating a 25 mammal comprising the steps of administering a medicament comprising at least one compound as defined in the first or second aspects of the invention.
-6 In an eleventh aspect of the invention there is provided a kit comprising at least one compound as defined in the first or second aspects of the invention; and instructions for use. The kit may additionally comprise a second compound as defined in the first or second aspects of the invention or an alternative cancer 5 treatment compound known in the art. Advantageously, the compounds of the present invention have been shown to be good inhibitors of the formation of the MDM2-p53 complex. The term "halo" is used herein to denote a halogen atom which is typically selected from fluorine, chlorine, bromine or iodine. 10 The term "alkyl" is used herein to denote, in particular, a lower alkyl group, i.e. a cyclic, branched (including ring structures formed via the linking of two branches at the same carbon atom) or straight chain hydrocarbon having one to eight carbon atoms, for example propyl. Cyclic alkyls, or cycloalkyls are defined herein as non-aromatic saturated hydrocarbons having at least one carbon-atom ring (typically 15 having from 6 to 10 ring carbon atoms), for example cyclohexyl or cyclooctyl. The term "alkenyl" is used herein to denote an alkyl group including one or more carbon-carbon double bonds, for example butenyl or cyclopentenyl. The term "alkynyl" is used herein to denote an alkyl group including one or more carbon-carbon triple bonds, for example butynyl. 20 The term "aryl" is used herein to denote a carbocyclic group or structure having at least one aromatic ring. The said ring may form part of a multiple condensed ring structure, for example phenyl, naphthalene or anthracene. The term "aralkyl" is used herein to denote an alkyl chain, as hereinbefore defined, in which there is an aryl group attached thereto, as hereinbefore defined, for 25 example benzyl.
-7 The term "heteroaryl" is used herein the denote an aryl group, as hereinbefore defined in which said group comprises at least one heteroatom, selected from, for example N, 0 or S, in said at least one aromatic ring. Examples of heteroaryl groups which may be used in accordance with the invention include, but are not limited to, 5 pyridine, pyrrole, furan, thiophene and inmidazole. The term "heteroaralkyl" is used herein to denote an aralkyl substituent, as hereinbefore defined, in which said at least one aromatic ring comprises at least one heteroatom selected from, for example N, 0 or S. Examples of heteroaralkyl groups which may be used in accordance with the invention include, but are not limited to, 10 methyl pyridine and methylfuran. The term "substituted alkyl" is used herein to denote an alkyl substituent, as hereinbefore defined, which is substituted with one or more functional groups. The term "substituted alkenyl" is used herein to denote an alkenyl substituent, as herein before defined, which is substituted with one or more functional groups. 15 The term "substituted alkynyl" is used herein to denote an alkynyl substituent, as hereinbefore defined, which is substituted with one or more functional groups. The term "substituted aryl" is used herein to denote an aryl substituent, as hereinbefore defined, which is substituted with one or more functional groups. Examples of substituted aryl groups which may be used in accordance with the 20 invention include, but are not limited to, halophenyl, methylphenyl, nitrophenyl or cyanophenyl. The term "substituted heteroaryl" is used herein to denote a heteroaryl substituent, as hereinbefore defined, which is substituted with one or more functional groups. 25 The term "substituted aralkyl" is used herein to denote an aralkyl substituent, as hereinbefore defined, which is substituted with one or more functional groups.
-8 Examples of substituted aralkyl groups which may be used in accordance with the invention include, but are not limited to, halobenzyl, benzonitrile, acetylbenzyl, benzoylbenzyl, nitrobenzyl, cyanobenzyl, methoxybenzyl, carboxamidobenzyl, or methylbenzyl. 5 The term "substituted heteroaralkyl" is used herein to denote a heteroaralkyl substituent, as hereinbefore defined, which is substituted with one or more functional groups. The term "alkoxy" is used herein to denote an alkyl group, as hereinbefore defined, which is linked to a second chemical structure, which may be any of the 10 foregoing, by way of an oxygen atom. The carbon chain of the alkyl group may be substituted with one or more functional groups to provide a "substituted alkoxy". Examples of alkoxy groups which may be used in accordance with the invention include, but are not limited to, ethoxy, methoxy and propoxy. The term "alkylamine" is used herein to denote an alkyl group, as hereinbefore 15 defined, comprising at least one amine function. The carbon chain of the alkyl group may be substituted with one or more functional groups. The amine function may be primary, secondary or tertiary. Examples of alkylamine groups which may be used in accordance with the invention include, but are not limited to, ethylamine and diethylamine. The amine function may form part of a cyclic or heteroaromatic 20 structure or another functionality, for example amide. As referred to herein suitable functional groups for substitution as described above include, but are not limited to, any of the following which may be used alone or in combination: halo, hydroxyl, hydroxyalkyl, acyl, acetamnide, carboxyl, cyano, carboxamide (carbamoyl), sulfonamide, sulfone, sulfoxide, amino, alkoxy or silico 25 ligand. Compounds of interest include those of formula I or formula II as defined in the first aspect of the invention wherein R' is selected from substituted or -9 unsubstituted aryl, and substituted or unsubstituted aralkyl; R 2 is selected from hydroxyalkenyl, hydroxyalkynyl, branched 5-carbon hydroxyalkyl, hydroxycycloalkyl, hydroxycycloalkenyl, hydroxymethylcycloalkyl, hydroxymethylcycloalkylmethylene, and hydroxylalkylbenzyl; and R 3 is selected 5 from substituted or unsubstituted aryl, and substituted or unsubstituted aralkyl. Where R' is selected from substituted or unsubstituted aryl, and substituted or unsubstituted aralkyl it is typically a substituted aralkyl, particularly a substituted benzyl. The substituted benzyl may be, for instance, benzonitrile, chlorobenzyl, bromobenzyl, iodobenzyl, methylbenzyl, acetylbenzyl, benzoylbenzyl, cyanobenzyl, 10 methoxybenzyl, carboxamidobenzyl, or nitrobenzyl. Typically, the substituted benzyl is nitrobenzyl, however isosteres of this functional group may also be advantageously used such as benzoyl, benzylcarboxylate, benzylcarboxylate alkyl ester, benzylsulfoxide or benzylsulfone. Other substituted benzyl groups may also be used, such as bromobenzyl, iodobenzyl, azobenzyl, aminobenzyl, or thioetherbenzyls. 15 The substituted benzyl may be substituted with one or more functional groups at any of positions 2- to 6-, however it is typical that a single substituent is present at the 3-, 4- or 5- position, typically the 4-position. Alternatively, R may be a propyl group or unsubstituted benzyL Where R is selected from substituted or unsubstituted heteroaryl, nitrogen is 20 typically the heteroatom in the ring, and the heteroaryl is typically an unsubstituted pyridyl. Alternatively, the heteroaryl could be an N-pyridine oxide. In both embodiments, the nitrogen atom may be in the 2-, 3-, or 4 -position. In a further embodiment of R', there may be a further alkylene group between the benzyl moiety and the nitrogen atom of the isoindolinone. Alternatively, the alkyl 25 carbon atom of the benzyl may be further substituted with an alkyl group, such as a methyl group.
-10 Typically, when R 2 is an alkenyl substituent, it will be selected from hydroxybutenyl, hydroxycyclohexenyl or hydroxycyclopentenyl, most often 4 hydroxybut-2-enyl, 4-hydroxycyclohex-2-enyl or 4-hydroxycyclopent-2-enyl. However, when R2 is a hydroxyalkynyl, it is typically a hydroxybutynyl, typically 4 5 hydroxybut-2-ynyl. When R2 is a branched 5-carbon hydroxyalkyl, it is typically a branched propyl chain such as hydroxy-2,2-dimethylpropyl or hydroxy-2,2-cyclopropylpropyl. The hydroxyl group will typically be a terminal hydroxy as would be found in 3 hydroxy-2,2-dimethylpropyl or 1-hydroxy-2,2-cyclopropylpropyl. 10 In embodiments where R2 is a substituted or unsubstituted cycloalkyl having 6 ring carbon atoms or greater it will typically be selected from hydroxycyclooctyl, hydroxymethylcyclohexyhmethylene, and hydroxycyclohexyl. Typically the selection will be from 5-hydroxycyclooctyl, 2-hydroxymethylcyclohexylmethylene, 4 hydroxycyclohexyl, and 4 -hydroxymethylcyclohexyhnethylene. 15 In alternative embodiments R 2 may be a hydroxyalkylbenzyl, it is typical in these embodiments that R2 is a hydroxymethylbenzyl such as 4-hydroxymethylbenzyl or 3-hydroxymethylbenzyl. Alternatively, R2 may comprise a linear alkoxy or amino group, such as an alkylamine where alkyl has the same meaning as given hereinabove. Typical amines include n-propylamine. 20 According to a further embodiment of the invention, when R2 is a carboxylic acid-containing group, it may be a succinic acid-containing group, such as a succinic acid methyl cyclopropylmethyl group. According to a further embodiment of the invention, R2 may be a 2 hydroxymethyl allyl group. 25 According to a further embodiment of the invention, R2 may be hydrogen where at least one of RR-k 7 is not hydrogen and R3 is not a benzimidazole derivative.
-11 Typically, R3 be selected from a singly substituted phenyl, typically a halophenyl, often chlorophenyl or bromophenyl, most often 4-chlorophenyl, although the substituent (regardless of identity) may be at any of the 2- to 6- positions. Additional compounds of interest include those of formula I or formula 11 as 5 defined in the second aspect of the invention wherein R3 is substituted aralkyl, R2 is acyclic hydroxyalkyl, and R? is substituted aryl. In these embodiments RI', may be any of the substituents described above with regard to the first aspect of the invention, however it is typical that RI' is a substituted 1 -ethylphenyl or a substituted benzyl. Although there may be more than one substituent which may be substituted at any of 10 the 2- to 6- positions on the encompassed phenyl group, it is typical that only a single substituent be present, often a halo group, typically present at the 4-position. Often the halophenyl will be a chlorophenyl and it is currently typical that when RI is a substituted I -ethylphenyl, RI' is 1-(4-chlorophenyl)-ethyl. Either the R- or the S enantiomer of this substituted 1-ethylphenyl substituent may be used, however the S 15 enantiomer is typical. When R1 is a substituted benzyl, it is typically nitrobenzyl, more typically 4 nitrobenzyl, 4-cyanobenzyl, 4-chlorobenzyl, 4-bromobenzyl, or 4-iodobenzyL Most typically, R' is 4-nitrobenzyl. Where R2 is acyclic hydroxyalkyl it is typical that the alkyl is an n-alkyl chain. 20 Typically, the chain length is 2 to 6 carbons, typically 4 carbons. The most typical acyclic hydroxyalkyl is 4-hydroxy-n-butyl or hydroxypropyl. As with the first aspect of the invention it is typical that R3 is selected from a singly substituted phenyl, typically a halophenyl, often chilorophenyl or bromophenyl, most often 4-chlorophenyl, although the substituent (regardless of identity) may be at 25 any of the 2- to 6- positions. In typical embodiments of the compounds of the first and second aspects of the invention, R 4 , R 5 , R and Rt 7 are each hydrogen atoms and X is independently 0.
- 12 However, in some compounds, one or more of R 4 to R 7 is H with two of the remaining R groups linked so as to form a 5- to 7-membered ring structure. The ring structure is typically saturated and may comprise at least one heteroatom selected from N, 0 or S. Alternatively,
R
4 to R 7 may each be independently selected from methyl, t-butyl, 5 chlorine, bromine and fluorine. In some aspects of the invention, one (or more) of R4 R7 may independently be chlorine, or one of R 4
-R
7 may be chlorine and another may be fluorine. It will be understood that where reference is made in this specification to compounds of formulae I or II such reference should be construed as extending also to 10 their pharmaceutically acceptable salts and to other pharmaceutically acceptable bio precursors (for instance, prodrug, chemically protected or solvated forms) where relevant. Salts The term "salt" is used in the specification to denote the combination of a 15 charged form of a compound with an oppositely charged ion to produce a neutral product. Examples of pharmaceutically acceptable salts are discussed in Berge et al., 1977, "Pharmaceutically Acceptable Salts." J. Pharm. ScL. Vol. 66, pp. 1-19. Unless otherwise specified, a reference to a particular compound also includes salt forms thereof. 20 For example, if the compound is anionic, or has a functional group which may be anionic (such as, -COOH may be -COO), then a salt may be formed with a suitable cation. Examples of suitable inorganic cations include, but are not limited to, alkali metal ions such as Na* and Ki, alkaline earth cations such as Ca2+ and Mg2 and other cations such as A,3*. Examples of suitable organic cations include, but are 25 not limited to, ammonium ion (i.e., NH4) and substituted ammonium ions (for example, NH 3 R, NH 2
R
2 *, NHR, 3 , NR4*). Examples of some suitable substituted ammonium ions are those derived from: ethylamine, diethylamine, - 13 dicyclohexylanine, triethylamine, butylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, benzylarnine, phenylbenzylamine, choline, meglumine, and tromethamine, as well as amino acids, such as lysine and arginine. An example of a common quaternary ammonium ion is N(CH3)4t. 5 If the compound is cationic, or has a functional group that may be cationic (such as, -NH 2 may be -NH3), then a salt may be formed with a suitable anion. Examples of suitable inorganic anions include, but are not limited to, those derived from the following inorganic acids: hydrochloric, hydrobromic, hydroiodic, sulfuric, sulfurous, nitric, nitrous, phosphoric, and phosphorous. 10 Examples of suitable organic anions include, but are not limited to, those derived from the following organic acids: 2-acetyoxybenzoic, acetic, ascorbic, aspartic, benzoic, camphorsulfonic, cinnamic, citric, edetic, ethanedisulfonic, ethanesulfonic, fumaric, glucheptonic, gluconic, glutamic, glycolic, hydroxymaleic, hydroxynaphthalene carboxylic, isethionic, lactic, lactobionic, lauric, maleic, malic, 15 methanesulfonic, mucic, oleic, oxalic, palmitic, pamoic, pantothenic, phenylacetic, phenylsulfonic, propionic, pyruvic, salicylic, stearic, succinic, sulfanilic, tartaric, toluenesulfonic, and valeric. Examples of suitable polymeric organic anions include, but are not limited to, those derived from the following polymeric acids: tannic acid, carboxymethyl cellulose. 20 Prodruas The term "prodrug" is used in the specification to denote modified forms or derivatives of a pharmacologically active compound which biodegrade or are modified in vivo so as to become converted into said active compound after administration, especially intravenous administration, in the course of therapeutic 25 treatment of a mammal. Typically, the prodrug is inactive, or less active than the active compound, but may provide advantageous handling, administration, or metabolic properties. Such prodrugs are commonly chosen because of an enhanced -14 solubility of aqueous media which helps to overcome formulation problems, and also in some cases to give a relatively slow or controlled release of the active agent. Unless otherwise specified, a reference to a particular compound also includes prodrugs thereof. 5 For example, some prodrugs are esters of the active compound (for instance, a physiologically acceptable metabolically labile ester). During metabolism, the ester group (-C(=0)OR) is cleaved to yield the active drug. Such esters may be formed by esterification, for example, of any of the carboxylic acid groups (-C(=O)OH) in the parent compound, with, where appropriate, prior protection of any other reactive 10 groups present in the parent compound, followed by deprotection if required. Also, some prodrugs are activated enzymatically to yield the active compound, or a compound which, upon further chemical reaction, yields the active compound (for example, as in ADEPT, GDEPT or LIDEPT). For example, the prodrug may be a sugar derivative or other glycoside conjugate, or may be an amino acid ester 15 derivative. Solvates The term "solvate" is used in the specification to denote a complex of solute (for instance the active compound or salt of active compound) and solvent. If the solvent is water, the solvate may be conveniently referred to as a hydrate, for 20 example, a mono-hydrate, a di-hydrate, a tri-hydrate, etc. Unless otherwise specified, a reference to a particular compound also includes solvate forms thereof. Chemically Protected Forms The term "chemically protected form" is used in the specification to denote a 25 compound in which one or more reactive functional groups are protected from -15 undesirable chemical reactions under specified conditions (for instance, pH, temperature, radiation, solvent, and the like). In practice, well known chemical methods are employed to reversibly render unreactive a functional group, which otherwise would be reactive, under specified conditions. In a chemically protected 5 form, one or more reactive functional groups are in the form of a protected or protecting group (also known as a masked or masking group or a blocked or blocking group). By protecting a reactive functional group, reactions involving other unprotected reactive functional groups can be performed, without affecting the protected group; the protecting group may be removed, usually in a subsequent step, 10 without substantially affecting the remainder of the molecule. Unless otherwise specified, a reference to a particular compound also includes chemically protected forms thereof. A wide variety of such "protecting," "blocking," or "masking" methods are used and well known in organic synthesis. For example, a compound which has two 15 non-equivalent reactive functional groups, both of which would be reactive under specified conditions, may be derivatized to render one of the functional groups "protected," and therefore unreactive, under the specified conditions; so protected, the compound may be used as a reactant which has effectively only one reactive functional group. After the desired reaction (involving the other functional group) is 20 complete, the protected group may be "deprotected" to return it to its original functionality. For example, a hydroxy group may be protected as an ether (-OR) or an ester (-OC(=O)R), for example, as: a t-butyl ether; a benzyl, benzhydryl (diphenyhnethyl), or trityl (triphenylmethyl) ether; a trimethylsilyl or t-butyldimethylsilyl ether; or an 25 acetyl ester (-OC(=O)CH 3 , -OAc). It should be understood that all plausible and compatible combinations of the embodiments described above are explicitly disclosed herein. Each of these combinations is disclosed herein to the same extent as if each individual combination -16 was specifically and individually recited. It should also be understood that where any of the compounds referred to can exist in one or more particular geometric, optical, enantiorneric, diasteriomeric, epimeric, atropic, stereoisomeric, tautomeric, conformational, or anomeric forms, including but not limited to, cis- and trans-forms; 5 E- and Z-forms; c-, t-, and r- forms; endo- and exo-forms; R-, 8-, and meso-forms; D and L-forms; d- and 1-forms; (+) and (-) forms; keto-, enol-, and enolate-forms; syn and anti-forms; synclinal- and anticlinal-forms; a- and J-forms; axial and equatorial forms; boat-, chair-, twist-, envelope-, and half chair-forms; and combinations thereof, hereinafter collectively referred to as "isomers" (or "isomeric forms") all such forms, 10 mixtures thereof, and their preparation and uses are within the scope of the invention. It should be noted, however, that stereo chemical considerations are likely to be important and there may be considerable selectivity such that different enantiomers or diastereoisomers have significantly different inhibitory activity. Examples of isoindolin-l-one compounds which are at present of particular 15 interest or typically of use in carrying out the invention comprise the following: Table 1 Number Compound Name Structure ELISA ICso NU8292 3-(4-Chlorophenyl)-3-(4- 2.3 0.3 hydroxycyclopent-2 enyloxy)-2-(4 (aminomethyl) benzonitrile)isoindolin-1 one
ON
- 17 Number Compound Name Structure ELISA IC 5 o (p1M)* NU8293 3-(4-Chlorophenyl)-3-(4- OH 1.5 ± 0.3 hydroxycyclopent-2- *' enyloxy)- 2
-(
4 chlorophenyl)isoindolin 1-one ar CI NU8294 3-(4-chlorophenyl)-3-(4- 15.1 -2.1 hydroxycyclopentenylox y)-2-propylisoindolin-l one 389.13
C
2 2
H
22 ClN0 3 NU8295 3-(4-Chlorophenyl)-3-(4- 1.4 i 0.4 hydroxycyclopent-2 enyloxy)-2-(4 methylbenzyl)isoindolin 1-one NU8298 2-benzyl-3-(4- 4.7± 1.1 chlorophenyl)-3 ((1R,4S)-4 hydroxycyclopent-2 enyloxy)isoindolin-1-one - 18 Number Compound Name Structure ELISA IC 50 NU8362 3-(4-Chlorophenyl)-3-(4- HO 3.2±1.0 hydroxybutoxy)-2-[2-(4 nitrophenyl)-ethylj-2,3- No2 dihydroisoindol- 1-one 0 NU8368 3-(4-Chlorophenyi)-2-[1- 0 2.5±0.8 (4-chlorophenyl)-ethyl]- CI 3-(4-hydroxybutoxy)- o 2,3-dihydro-isoindol-1- N one ci NU8370 4-[1-(4-Chiorophenyl)-1- 7 3.5±1.5 (4-hydroxybutoxy)-3- ci oxo-1,3-dihydro- 0 3 isoindol-2-ylmethyl]- N benzonitrile / \ CN * Mean ±SE of n=3 repeat experiments unless otherwise indicated Particularly useful examples of isoindolin-1-ones for use in carrying out the invention and which have been found to have particularly potent activity comprise the following: -19 Table 2 Number Compound Name Structure ELISA IC 50 NU8297 3-(4-Chlorophenyl)-3-(4- DH1 0.3 tM hydroxycyclopent-2- \(n=3) enyloxy)-2-(4 nitrobenzyl)isoindolin-1 one NU8350 3-(4-Chlorophenyl)-3-(4- HO 402+9 hydroxybut-2-enyloxy)-2 (4-nitrobenzyl)-2,3 dihydroisoindol- 1-one NOa NU8351 3-(4-Chlorophenyl)-3-(4- HO 405±10 hydroxybut-2-enyloxy)-2- 0 (4-nitrobenzyl)-2,3 dihydroisoindol- 1-one NO 2 NU8352 3-(4-Chlorophenyl)-3-(5- HO cI 375±36 hydroxycyclooctyloxy)-2- (n=5) (4-nitrobenzyl)-2,3 dihydroisoindol-1-one NO 2 -20 Number Compound Name Structure ELISA ICso (nM)* NU8353 3-(4-Chlorophenyl)-3-(3. OH 395±75 CI hydroxy-2,2 dirnethylpropoxy)-2-(4- 0 nitrobenzyl)-2,3-dihydro- N isoindol-1-one 0
NO
2 NU8354 3-(4-Chlorophenyl)-3-(1.. H ci 298 ±22 hydroxymethylcyclopropyl (n-8) methoxy)-2-(4- I nitrobenzyl)-2,3- a No 2 dihydroisoindol- 1 -one NU8354A (+)-3-(4-Chlorophenyl)-3- 164± 18 (1- (n-7) hydroxymethylcyclopropyl methoxy)-2-(4-nitro benzy1)-2,3 dihydroisoindol-1 -one NU8354B (-)-3-(4-Chlorophenyl)-3- 13331120 (1- (n=7) hydroxymethylcyclopropyl methoxy)-2-(4 nitrobenzyl)-2,3 dihydroisoindol-] -one -21 Number Compound Name Structure ELISA ICs 0 me (nM)* NU8357 3-(4-Chlorophenyl)-3-(4- H656:113 hydroxybut-2-ynyloxy)-2- ci (4-nitrobenzyl)-2,3- (n=5) dihydroisoindol-1 -one N
NO
2 NU8358 3-(4-Chlorophenyl)-3-(4- HON 582+75 hydroxymethylcyclohexyl (n=5) methoxy)-2-(4- Cl nitrobenzyl)-2,3 dihydroisoindol- 1-one N 0 NO 2 NU8359 3-(4-Chlorophenyl)-3-(2- 569±74 HO Ci hydroxymethylcyclohexyl (n=5) methoxy)-2-(4 nitrobenzyl)-2,3 dihydroisoindol- 1-one NO 2 NU8360 3-(4-Chlorophenyl)-3-(4- 388±107 hydroxycyclohexyloxy)-2- ci (n=5) (4-nitrobenzyl)-2,3 dihydroisoindol-1 -one
NO
2 -22 Number Compound Name Structure ELISA ICSO (nM)* NU8361 3-(4-Chlorophenyl)-3-(4- HO 306±92 hydroxy-cyclohex-2- cl (n=5) enyloxy)-2-(4-nitrobenzyl) 0 2,3-dihydroisoindol-1-one N 0Q
NO
2 NU8365 3-(4-Chlorophenyl)-2-[1- HO 869+64 (4-chlorophenyl)-ethyl]-3- cl (4-hydroxybutoxy)-2,3- 0 dihydroisoindol- 1-one N N 0 NU8366 3-(4-Cborophenyl)-3-(4- HO 983*170 hydroxymethylbenzyloxy) 2-(4-nitro-benzyl)-2,3- c dihydroisoindol-1-one 0
NO
2 NU8367 3-(4-Chlorophenyl)-3-(3- 7 732126 hydroxymethylbenzyloxy)- I 2-(4-nitrobenzyl)-2,3- \ 0 dihydroisoindol-1-one N
NO
2 * Mean ±-SE of n=3 repeat experiments unless otherwise indicated -23 Further typical examples of isoindolin-1-ones for use in carrying out the invention and which have been found to have particularly potent activity comprise the following: Table 3 Number Compound Descriptions Structure MDM2
IC
50 NU8380 3-( 3 -aninopropoxy)-3-(4-chlorophenyl)-2 NH2 (4-nitrobenzyl) isoindolin-1 -one c 2.46 : 0.39 pM N (n5) O
NO
2 NU8390 3-( 4 -bromophenyl)-3-(4-hydroxybutoxy)- HO 2-(4-nitrobenzyl)isoindolin-1-one at / 570 * 59 N nM N
N
2 N
NO
2 -24 NU8392 3-(4-bromophenyl)-3-(3-hydroxypropoxy) 2
-(
4 -nitrobenzyl)isojndojijn I-one Br 1.4± C N 0. 16 pM 0.
NO
2 NU8393 3-(4-chlorophenyl)-3-hydroxy-4-methyl-2
(
4 -nitrobenzyl)isoindolin- 1-one MeH c 2.2+ N 2 0.34 pM
NO
2 NU8394 3
-(
4 -chlorophenyl)-3-hydroxy-7-methyl-2
(
4 -nitrobenzyl)isoindolin-1-one HO 6.9±2.7 N Me
NO
2 NU8395 3-(4-chlorophenyl)-3-hydroxy-5-methyl-2
(
4 -nitrobenzyl)isoindolin-1-one HO C Me 5.08± O 0.65 pM
NO
2 NU8396 5-tert-butyl-3-(4-chlorophenyl)-3-hydroxy 2
-(
4 -nitrobenzyl)isoindolin-1-one HO Cl 12.7 1.4 yM
NO
2 -25 NU8397 6 -tert-butyl-3-(4-chlorophey1)- 3 -hydroxy_ 2
-(
4 -nitrobenzyl)isoindoli- 1-one HO c 837+49 o nM
NO
2 NU8398 4-chloro-3-(4-chlorophenyl.3 -hycLoxy-2
(
4 -nitrobenzyl)isoindolin- 1-one C' HO cl N 510 32 6-etbtl3NO 2 nM NU8399 6-tert-butyl-3-( 4 -chlorophenyl)-3-((1 (hydroxymethyl)cyclopropyl)methoxy)-2- HO
(
4 -nitrobenzyl)isoindolin-1-one c 152 ±27 N HV NN NCL- 3 -(4-chlorophenyl)-5-fluoro-3-hydroxy-2 000104 ( 4 -nitrobenzyl)isoindolin-1-one O cl 85 N N 0.54
NO
2 NCL- 3
-(
4 -chlorophenyl)--6-fluoro-3hydroxy- 2 000104 ( 4 -nitrobenzyl)isoindolin-I-one HO c 86 5.19: F 1.51 0
NO
2 -26 NCL- 5,6-dichloro-3-(4-chlorophenyl)-3-((1- HO 000104 (hydroxymethyl)cyclopropyl)methoxy)-2 87 (4-nitrobenzyl)isoindolin- I-one 3.67 ci 1.15 cl NO NCL- 4-((7-chloro-1-(4-chlorophenyl)-1 000104 hydroxy-3-oxoisoindolin-2- Cl HO yl)imethyl)benzonitrile N 1.621 88 N 0.97 0 CN NCL- 4-((4-chloro-1 -(4-chlorophenyl)-1 cl 000104 hydroxy-3-oxoisoindolin-2- Ho 89 yl)methyl)benzonitrile N 8.95+ 2.16 c / ON NCL- 2-(4-bromobenzyl)-4-chloro-3-(4- cl 000104 cfhlorophenyl)-3-hydroxyisoindolin-1-one C HO 90 0.847 0.082 Br -27 NCL- 4-((7-chloro-1-(4-chlorophenyl)-1-((1 000104 (hydroxymethyl)cyclopropyl)methoxy)-3- IO 92 oxoisoindolin-2-yl)methyl)benzonitrile c1 cI 0 0.185+ 0.017 N CN NCL- 2-(4-bromobenzyl)-4-chloro-3-(4- HO 000104 chlorophenyl)-3-((1 93 (hydroxymethyl)cyclopropyl)muethoxy)isoi ci ndolin-1-one C0 N0.169+ N 0.003 O Br NCL- 3-(4-chlorophenyl)-3-hydroxy-2-(4- cl 000104 nitrobenzyl)-2,3,4,5,6,7-hexahydro-1H- HO c 94 isoindol-1-one 2.81 0.07
NO
2 NCL- 3-(4-chlorophenyl)-5-fluoro-3-((1
-
HO 000104 (hydroxymethyl)cyclopropyl)methoxy)-2 95 (4-nitrobenzyl)isoindolin-1 -one ci 0.295 N 0.065
NO
2 -28 NCL- 3-(4-chlorophenyl)-6-fluoro-3 -((1 - HO 000104 (hydroxymethyl)cyclopropyl)methoxy)-2 96 (4-nitrobenzyl)isoindolin- 1-one CI 0.852+h
-
N 009 F 0
NO
2 Table 4 Number Compound Description MM Structure ICso (pM) NUS400 5-tert-butyl-3-(4-chlorophenyl)-3- HO ((1 (hydroxynaethyl)cyclopropyl)metho 733 29 xy)-2-(4-nitrobenzyl)isoindolin-1- N M one. 0
NO
2 NUS401 3-(4-chlorophenyJ)-3-((1- HO (hydroxymethyl)cyclopropyl)metho cI xy)-5-methyl-2-(4- Me 0 492 i 35 nitrobenzyl)isoindolin-1-one I N AM 0
NO
2 -29 NJ8405 3-(4-chlorophenyl)-3 -((1- HO (hydroxymethyl)cyclopropyl)metho xy)-4-methyl-2-(4- Me C2 nitrobenzyl)isoindolin- 1-one I N aM
NO
2 NU8406 4-chloro-3-(4-chlorophenyl)-3-((1.- HO (hydroxymethyl)cyclopropyl)metho xy)-2-(4-nitrobenzyl)isoindolin-1- c c4 oi 0 143 ±26 one | N nM 0
NO
2 NU8412 3-(4-chlorophenyl)-3-hydroxy-6- HO C1 methyl-2-(4-nitrobenzyl)isoindolin- HO 1-one N Me 1.46 0.36 O NO: NU8413 6-bromo-3-(4-chlorophenyl)-3- H cI hydroxy-2-(4- HO N nitrobenzyl)isoindolin-1-one N Br 5.37 0.51 O/02
NO
2 -30 NU8414 5-bromo-3-(4-chlorophenyl)-3- CI hydroxy-2-(4- Br HO nitrobenzyl)isoindolin-1-one N 5.68 0.16 NO NU8415 4-((1-(4-cblorophenyl)-1 -((1- HO hydroxymethyll) cyclopropyl)methoxy)-3- C oxoisoindolin-2- N 1.79:+ 0.67 yl)methyl)benzonitrile 0 CN NU8416 2-(4-chlorobenzyl)-3-(4- HO chlorophenyl)-3 -((1 (hydroxymethyl)cyclopropyl)metho CI xy)isoindolin-l-one 2.31 + 0.56 N NU8417 2-(4-bromobenzyl)-3-(4- HO chlorophenyl)-3-((1 (hydroxymethyl)cyclopropyl)metho Cl xy)isoindolin-1-one 1.20 0.61 N Br -31 NIU8418 3-(4-chlorophenyl)-2-((R)- 1-(4- HO chlorophenyl)ethyl)-3-((1- ci (hydroxymethyl)eyclopropyl)metho / xy)isoindoin-1-one Me 8.8 2.1 o ci NU8419 3-(4-chlorophenyl)-2-((S)-1 -(4- HO chlorophenyl)ethyl)-3-((1- cl (hydroxymethyl)cyclopropyl)metho / xy)isoindolin-1-one Me 89 1.9 N 0 Cl NU8424 5-bromo-3-(4-chlorophenyl)-3-((1- HO (hydroxymethyl)cyclopropyl)metho xy)-2-(4-nitrobenzyl)isoindolin-1 - cl one Br 902 71 0
NO
2 NU8425 6-bromo-3-(4-cblorophenyl)-3-((1- HO (hydroxymethyl)cyclopropyl)metho xy)-2-(4-nitrobenzyl)isoindolin-1- q1 one B 1.03+ 0.04 BrO
NO
2 -32 NU8429 3-(4-chlorophenyl)-3-((1- HO (hydroxymethyl)cyclopropyl)metho CI xy)-2-(pyridin-2- 0 C1 yimethyl)isoindolin- 1-one 0 Table 5 MDM2-p53 Name Structure ELISA ICSO (UM) C1 C1 HO 4-chloro-3-(4-chloropbenyl)-3 NU8398 hydroxy-2-(4- 14 N 0.51 & 0,03 nitrobenzyl)isoindolin-1-one o /
NO
2 HO (?)-4-chloro-3-(4 CI chlorophenyl)-3-((1- Ci NCL-00013774 (hydroxymethyl)eyclopropyl)m 0.04 : 0.004 ethoxy)-2-(4- / N nitrobenzyl)isoindolin-I-one O
NO
2 ~33 r--3 HO (?)-4-chloro-3-(4 Cl chlorophenyl)-3-((1- Cl o NCL-00013775 (hydroxymethyl)cyclopropyl)m N 1.26 +0.008 ethoxy)-2-(4- N nitrobenzyl)isoindolin-1-one O N0 2 CI HO 7-chloro-3-(4-chloro-phenyl)-3- . NCL-00016654 hydroxy-2-(4-nitro-benzy)-2,3- N 4.54 dihydro-isoindol- 1-one ci O X 7
NO
2 A..C HO I 2-(4-acetylbenzyl)-3-(4- N NCL-00016045 chlorophenyl)-3-hydroxy-2,3- 0 89 dihydroisoindol-i -one Me 0 HO 3-(4-chloropheny)-3-(1.
hydroxymethyl- q Cl NCL-00014529 cyclopropylmethoxy)-2-(4- 1.5 iodobenzyl)-2,3- N dihydroisoindol-1 -one a -34 HO 2-(4-acetylbenzyl)-3-(4- 0 NCL-O0O14531 chlorophenyl)-3-(I- N hydroxymethylcyclopropylmeth / N 1 oxy)-2,3 -dihydroisoindol-1 -one 0 Me 0 cI 3-(4-chloropbenyl)-3-hydroxy- HO NCLr00016046 2-naphthalen-1-ylmethyl-2,3- N 96 dihydroisoindol-1 -one 0 cl 2-(3-bromobenzyl)-3-(4- HO C NCL-00016047 chlorophenyl)-3-hydroxy-2,3- | N dihydroisoindol-1-one O Br HO 3-(4-chlorophenyl)-3 -(1- Cl NCL-00016106 hydroxymethyloyclopropylmeth qO 49 oxy)-2-naphthalen- 1 -ylmethyl- N 2,3 -dihydroisoindol- 1-one O / HO 2-(3-bromobenzyl)-3-(4 chlorophenyl)-3-(1- Cl NCL-00016107 hydroxymethyl- O 47 cyclopropylnethoxy)-2,3- N dihydroisoindol- 1-one O Br o0 -35 HO 3-hydroxy-2-(4-nitrobenzyl)-3 NCL-00016655 phenyl-2,3-dihydroisoindol-1- N 87 one 0
NO
2 HO 3-(1 hydroxymethylcyclopropylmeth 0 NCL-00016656 oxy)-2-(4-nitrobenzyl)-3- N 8.3 phenyl-2,3-dihydroisoindol-1- N one 0
NO
2 F HO I 3-hydroxy-2-(4-nitrobenzyl)-3 NCI-00016657 (4-fluorophenyl)-2,3- N 9.46 dihydroisoindol- 1-one o
NO
2 0 succinic acid mono-{1-[7- a chloro-1-(4-chlorophenyl)-2-(4- HO1 0 nitrobenzy)-3-oxo-2,3-dihydro- ci 0 c 0 I1H-isoindol-l yloxymethyl]cyclopropylmethy 1} ester
NO
2 -36 succinic acid mono-{l-[7- 0 chloro-1-(4-chlorophenyl)-2-(4- HO C NCL-00016659 cyanobenzyl)-3-oxo-2,3- cic 0. 102 (n=2) dihydro-lH-isoindol-1- I yloxymethyl]cyclopropylmethy 6 1} ester CN 0 succinic acid mono-{ 1-[2-(4- o bromobenzyl)-7-chloro-1-(4- HO NCL-00016653 chlorophenyl)-3-oxo-2,3- c0 ci NCrN0165.102 (n=2) dihydro-IH-isoindol-1- N yloxymethyllcyclopropylmethy 0 I} ester Br HO 3-(4-chloropheny)-3-((1- Cl NCI-00016865 (hydroxymethyl)cyclopropyl)m 0 2.3 ethoxy)-2-(4- CN methylbenzyl)isoindolin-1-one O H, HO 3-(4-chlorophenyl)-3-((1 (hydroxymethyl)cyclopropyl)m q NCL-00016866 ethoxy)-2-(4- 2.8 methoxybenzyl)isoindolin-1- N one 0 OMe -37 HO C) 3-(4-chlorophenyl)-3-(2- O NCL-00016895 (hydroxymethyl)allyloxy)-2-(4- 0.68 nitrobenzyl)isoindolin- I-one N 0
NO
2 HO 3-(4-fluorophenyl)-3-((l- F NCL-00016896 (hydroxymethyl)cycopropyl)m 0 2.7 ethoxy)-2-(4- I N nitrobenzyl)isoindolin- 1-one 0
NO
2 C1 C' HO 4-chloro-3-(4-chlorophenyl)-5- F N NCL-00016897 fluoro-3-hydroxy-2-(4- 34 nitrobenzyl)isoindolin- 1-one O NO Of the compounds in Table 5 above, those wherein R2 is hydrogen and all of R -R7 are H are used as intermediate compounds in the preparation of the compounds of the invention. 5 Studies of the p53 binding pocket on the MDM2 protein guided the nature of the molecules synthesised. Thus the present invention provides small molecule inhibitors of MDM2-p53 interaction based on an isoindolinone scaffold. Preliminary screening studies, using an in vitro MDM2-p53 binding assay identified the - 38 particularly useful isoindolin- I-one compounds (Tables 2-4) as inhibitors of MDM2 p53 interaction having an ICso in the range 100-1000 nM (ICso is the concentration of a particular compound required to inhibit 50% of a specific measured activity, in this case inhibition of the MDM2-p53 interaction). The isoindolin-1-ones were found to 5 be active in the inhibition of the MDM2-p53 interaction. The inhibitory efficacies of the compounds of the present invention have been determined using the ELISA assay which for the avoidance of doubt is described below. As referred to herein "cancer" or "tumour" includes, but is not limited to, lung 10 cancer, small cell lung cancer, non-small cell lung cancer, gastrointestinal cancer, stomach cancer, bowel cancer, colon cancer, rectal cancer, colorectal cancer, thyroid cancer, breast cancer, ovarian cancer, endometrial cancer, prostate cancer, testicular cancer, liver cancer, kidney cancer, renal cell carcinoma, bladder cancer, pancreatic cancer, brain cancer, glioma, sarcoma, osteosarcoma, bone cancer, skin cancer, 15 squamous cancer, Kaposi's sarcoma, melanoma, malignant melanoma, lymphoma, or leukemia. Compounds of the present invention have been shown to inhibit the interaction of p53 with MDM2. Such inhibition leads to cell arrest and apoptosis. Accordingly, the compounds of the present invention are of particular interest for the treatment of a range of selected cancer tumours, and the invention further 20 provides a method for the treatment of a patient suffering from cancer. Thus, a therapeutically effective non-toxic amount of a compound of the first and second aspects of the invention, may be suitably administered orally, parenterally (including subcutaneously, intramuscularly, and intravenously or topically). The administration will generally be carried out repetitively at intervals, for example once or several 25 times a day. The amount of the compound, which is required in order to be effective as an anti tumour agent for treating mammals will of course vary and is ultimately at the discretion of the medical or veterinary practitioner treating the mammal in each -39 particular case. The factors to be considered by such a practitioner include the route of administration and pharmaceutical formulation; the mammal's body weight, surface area, age and general condition; and the chemical form of the compound to be administered. However, a suitable effective anti tumour dose may be in the range of 5 about 1.0 to about 75mg/kg bodyweight, typically in the range of about 5 to 40mg/kg with most suitable doses being for example in the range of 10 to 30mg/kg. In daily treatment for example, the total daily dose may be given as a single dose, multiple doses, such as two to six times per day, or by intravenous infusion for any selected duration. For example, in the case of a 75kg mammal, the dose range could be about 10 75 to 500mg per day and it is expected that a typical dose would commonly be about 100mg per day. If discrete multiple doses are indicated, treatment might typically be 50mg of the compound of formula given 4 times per day in the form of a tablet capsule, liquid (for example, syrup) or injection. The dosing will depend upon the subject or patient which may be a chordate, a 15 vertebrate, a mammal, a placental mammal, a marsupial, a monotreme (for instance, duckbilled platypus), a rodent, murine (for instance, a mouse), a lagomorph (for instance, a rabbit), avian, canine, feline, equine, porcine, ovine (for instance, a sheep), bovine, a primate, simian (for instance, a monkey or ape), a monkey (for instance, marmoset, baboon), an ape (for instance, gorilla, chimpanzee, orangutang, gibbon), or 20 a human. Furthermore, the subject/patient may be any of its forms of development, for example, a foetus. Typically, the subject is a human. While it may be possible for the compounds of the first or second aspects of the invention to be administered alone as the raw chemical, it is preferable to present the compound in a pharmaceutical composition. Thus, the invention also provides 25 pharmaceutical compositions comprising an effective amount of a compound as hereinbefore defined which forms the active therapeutic ingredient. Such pharmaceutical compositions for medical use will be formulated in accordance with any of the methods well known in the art of pharmacy for administration in any convenient marmer. The compounds will usually be admixed with at least one other -40 ingredient providing a compatible pharmaceutically acceptable additive carrier, diluent or excipient, and may be presented in unit dosage form. The carrier(s) must be pharmaceutically acceptable in the sense of being compatible with the other ingredients of the formulation and not deleterious to the 5 recipient thereof The possible formulations include those suitable for oral, rectal, topical and parenteral (including subcutaneous intramuscular and intravenous) administration or for administration to the lung or other absorptive site such as the nasal passages. All methods of formulation in making up such pharmaceutical compositions 10 will generally include the step of bringing a compound as defined in the first to third aspects of the invention into association with a carrier which constitutes one or more accessory ingredients. Usually, the formulations are prepared by uniformly and intimately bringing the compound into association with a liquid carrier or with a finely divided solid carrier or with both and then, if necessary, shaping the product 15 into desired formulations. Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets, tables or lozenges, each containing a predetermined amount of the compound; as a powder or granules; or a suspension in an aqueous liquid or non-aqueous liquid such as a syrup, an elixir, an 20 emulsion or a draught. The compound may also be presented as bolus, electuary or paste. A tablet may be made by compression or moulding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing, in a suitable machine, the compound in a free-flowing form such as a powder or 25 granules, optionally mixed with a binder, lubricant, inert diluent, surface active or dispersing agent. Moulded tablets may be made by moulding in a suitable machine, a mixture of the powdered compound with any suitable carrier.
-41 A syrup may be made by adding the compound to a concentrated, aqueous solution of a sugar, for example sucrose, to which may be added any desired accessory ingredients. Such accessory ingredient(s) may include flavourings, one or more agents to retard crystallisation of the sugar or one or more agents to increase the 5 solubility of any other ingredient, such as a polyhydric alcohol, for example glycerol or sorbitol. Formulations for rectal administration may be presented as a suppository with a carrier, for instance cocoa butter. Formulations suitable for parental administration conveniently comprise a 10 sterile aqueous preparation of a compound of the first or second aspects of the invention, which is typically isotonic with the blood of the recipient. In addition to the aforementioned ingredients, formulations of this invention, for example ointments, creams and such like, may include one or more accessory ingredients, for example a diluent, buffer, flavouring agent, binder, surface active 15 agent, thickener, lubricant and/or a preservative (including an antioxidant) or other pharmaceutically inert excipient. The compounds of the present invention may also be made up for administration in liposomal formulations, which can be prepared by methods well known in the art. 20 Where the compound is provided as part of a kit, it is typical that the kit contains a compound as defined in the first or second aspect of the invention, or a composition comprising a compound as described herein (typically provided in a suitable container and/or with suitable packaging); and instructions for use (for example, written instructions on how to administer the active compound or 25 composition). The instructions may also include a list of indications for which the active ingredient is a suitable treatment.
-42 The isoindolinone compounds of the present invention may be administered alone or as a combination therapy. For instance, the compounds described herein may also be used in combination with one another or in conjunction with other agents, for example, cytotoxic agents or anticancer agents. Examples of treatments and therapies 5 include, but are not limited to, chemotherapy (the administration of active agents, including, for instance, drugs, antibodies (as in immunotherapy), prodrugs (as in photodynamic therapy, GDEPT, ADEPT, etc.)); surgery; radiation therapy; photodynamic therapy; gene therapy; and controlled diets. The particular combination would be at the discretion of the physician who would select dosages using his 10 common general knowledge and dosing regimens known to a skilled practitioner. Analytical Techniques ELISA assay Streptavidin-coated 96-well plates are used to immobilise a biotin-tagged IP3 p53-derived peptide (MPRFMDYWEGLN). This is a peptide analogue derived from 15 the p53 binding site for MDM2 (QETFSDLWCKLLP). IP3 has a higher affinity for MDM2 than the native peptide and has been used elsewhere to identify antagonists of the binding between MDM2 and p53 (Stoll et al 2001). Aliquots of MDM2 generated by in vitro translation are pre-incubated for 20 minutes at room temperature (i.e. 20-25"C) with test compounds and controls, before transfer into the IP3-coated 20 96-well plates. Following a further incubation period of90 minutes at 4"C, the plates are washed to remove unbound MDM2 and the residual bound MUM2 is detected using a primary monoclonal antibody (MDM2 Ab-1, clone IF2, Oncogene Research Products) and HRP-conjugated secondary antibody (Goat anti-mouse, Dako P0447). The HRP (horseradish peroxidase) is measured by a chemiluminescence reaction 25 using standaid reagents (Amershamn Pharmacia Tm R.PN 2106) and an automatic injection 96-well plate illuminometer (EG & G Berthold Microplate LB 96V). For validation and subsequently as positive controls, IP3 & AP peptides are used, together with the isoindolin-1-one lead compound that at the time shows the - 43 highest degree of antagonistic activity. 3-(4-Chloro-phenyl)-3-(4-hydroxy-3,5 dimethoxy-benzyloxy)-2-propyl-2,3-dihydro-isoindolin- 1-one (NU8231) is currently included as a standard "lead compound" positive control. AP is an octomer synthetic peptide that inhibits the p53-MDM2 interaction with high potency (Cso = 5.OnM) and 5 has been reported to stimulate p53 and downstream apoptotic pathways in intact tumour cell lines (Chene et al 2000). The AP peptide is included as a positive control for biological evaluation of the isoindolinones in the cell free binding assays. All compounds are dissolved in DMSO and tested at a range ofconcentrations in the presence of a fixed final concentration of 5% DMSO. The percentage 10 inhibition of complex formation is expressed relative to a DMSO only control and an
IC
5 o, defined as the concentration required for 50% inhibition of MDM2-p53 complex formation, determined by interpolation. The ELISA assay showed a standard error for n=3 independent ICso determinations of 10-15% of the mean value. Thus, the variation in the IC 50 15 determination for an individual compound was much smaller than the range of values for the compounds evaluated thus far is (26.7> 500 gM). Western blot method Osteosarcoma cell line SJSA- 1 was plated out in 55mm dishes at a density of 2.5x10 5 cells in 3 mL of RPMI 1640 medium (Sigma) supplemented with 10% foetal 20 bovine serum (FBS, Gibco), 1% (v/v) HEPES (Gibco), 1% (v/v) sodium pyruvate (Gibco) and 1.25g/500ml glucose (Sigma) for 48 hours in a 37 0 C humidified incubator (Sanyo, MCO 20AIC) at a CO 2 concentration of 5%. The dishes were treated with 3-(4-Chloro-phenyl)-3-(4-hydroxy-3,5 dimethoxy-benzyloxy)-2-propyl-2,3-dihydro-isoindolin-1 -one (NU8231) at a final 25 concentration of 5, 10, and 20pM (at 1% DMSO) together with a 1% DMSO and an untreated control sample for 6 hours. The medium was then aspirated and the dishes were washed with 3 mL of cold PBS. The cells were then lysed in 40gL of Sodium -44 Dodecyl Sulphate (SDS, Sigma) lysis buffer, boiled at 100*C for 10 minutes before sonication for 3 x 5 seconds at 20 microns (Soniprep 150, MSE). The protein concentration for each of the samples was then determined using 5 BCA Protein Assay Kit (Pierce), and 1:1 loading buffer consisting of 0 mercaptoethanol (Sigma) and 0.5% bromophonol-blue (Sigma) were added to 40gg of protein and made up to a final volume of 3OgL and boiled for 5 minutes at 100*C The samples were then loaded onto a precast 4-20% gradient polyacrylamide Tris-Glycine gels (15 wells, 1.5 mm thickness, Invitrogen Life Technologies), along 10 with a pre-stained marker protein (SeeBlue, Invitrogen). The Gels were processed in Novex XCell (Invitrogen) at 180V and blotted onto a High Bond C membrane (Amersham Life Science) overnight at 30V. The membrane was then blocked for one hour at room temperature in TBS Tween containing 5% non-fat milk (TBST-M) followed by incubation with primary 15 antibodies for MDM2 (MDM2-Abl, 1:500, Oncogene), p53 (p53-D07, 1:1000, Novacastra), p21 (p21 Ab1, 1:100, Oncogene) and Actin (Actin AC40, 1:1000, Sigma) in PBST-M for 1 hour. The membrane was then washed three times in TBST (15 minutes per wash) and then incubated for an additional I hour with a anti mouse or a rabbit horseradish 20 peroxidase (HRP) secondary antibody (Dako, 1:1000) in PBST-M followed by a final wash consisting of six washes with TBST at 5 minutes per wash. Enhanced chemiluminescence (ECL, Amersham) detection reagents were then added onto the membrane which was exposed to a blue light sensitive X-ray film (Fuji Photo Film Co Ltd) and developed in an automated X-ray film processor, (Mediphot 937). 25 Results The invention will now be described, by way of example only, by reference to the accompanying figures, of which: - 45 Figure 1 is a Western Blot assay illustrating the effects of NU8293, NU8295, NU8296 and NU8297 in the SJSA-1 cell line; Figure 2 is a Western Blot assay illustrating the effects of NU8352, NU8353 and NU83 54 compared with the effects with Nutlin-3 in the SJSA- I cell line; 5 Figure 3 is a graph illustrating the effect of the NU8293, NU8296 and NU8297 isoindolinones on p53-dependent transcriptional activity measured by a Luciferase based reporter genes assay; Figure 4 is a western blot illustrating the dose response effects of NU8296 and Nutlin-3 (and NU8291, which is not part of this invention) on PARP and Caspase 3 10 cleavage in the SJSA-l cell line; Figure 5 is a graph illustrating the growth inhibitory effects of Nutlin-3 in p53 wild-type and p53 deleted versions of the ICTI 16 cell line with concentrations for 50% growth inhibition shown; Figure 6 is a graph illustrating the effect of NU8354 as a growth inhibitor in 15 wild-type and p53 mutant versions of the HCTI 16 cell line with concentrations for 50% growth inhibition shown; Figure 7 is a graph illustrating the induction of Caspase 3 and 7 enzymatic activity by NU8354 in the SJSA-1 cell line; Figure 8 is a graph illustrating the growth inhibition dose response to exposure 20 of Nutlin-3 and NTJ8354 in the SJSA-1 cell line; Figure 9 is a graph illustrating the growth inhibition dose response to exposure of Nutlin-3 and NU8354 in the LS cell line; and Figure 10 is a graph illustrating the growth inhibition dose response to drug exposure of Nutlin-3 and NU8354 in the JAR cell line.
-46 Figure 11 is an analytical chromatogram of NU8354 on a Chiracel AD column (4.6 mm x 25 cm) with 40% EtOH, pentane as eluant in isocratic mode. Figure 12 shows the cellular activity of Nutlin-3, NU8354 and enantiomers NU8354A and NU8354B in SJSA-1 cells by Western blotting. 5 NU8296 corresponds to 3-(4-chlorophenyl)-3-((I S,3R)-3-hydroxy cyclopentyloxy)-2-(4-nitrobenzyl)isoindolin-l-one, a further compound in the isoindolin- 1-one series, the structure of which is given below. OH 01-1 0
NO
2 (NU8296) Nutlin-3 is the proprietary name for (+)-4-[4,5-bis-(4-Chlorophenyl)-2-(2 10 isopropoxy-4-methoxyphenyl)-4,5-dihydroimidazole-1-carbonyl]-piperazin-2-one, the structure of which is given below. Nutlin-3 has been found to have an IC 50 of 45 + 4 nM and is included in the tests to provide a comparison of the efficacy of the inventive compounds with a known inhibitor of the MDM2-p53 interaction. cic N NH K- HjCKt -47 Figure 1 shows the induction of increased levels of p53, p 2 1 and MDM2 protein by treatment of MDM2 amplified SJSA-1 cells with NU8293, NU8295 and NU8291 in the 1-20pM concentration range. This is consistent with the inhibition of MDM2-p53 binding and release of p53 activity from negative regulation by MDM2 in 5 these cells, resulting in the increased expression and accumulation of MDM2 and p21 proteins. NU8297 did not show any evidence of activity in this experiment. Figure 2 shows that NU8534 treatment results in strong induction of MDM2, p 5 3, and p21, when compared with the positive control Nutlin-3; this is clear, for instance, from a comparison of the effects at a concentration of 10pM. These results 10 are consistent with the transcriptional activation of p53 resulting from its release from MDM2 inhibition. Figure 3 shows examples of activation of p53 dependent transcriptional activity by NU8293, NU8296 and NU8297 measured by a luciferase based p53 dependent reporter gene assay. This provides further evidence that this series of 15 compounds specifically induces p53-dependent transcriptional activity, consistent with the release of active p53 by inhibition of MDM2-p53 binding in intact cells. The time course of activation is similar to that seen with nutlin-3 and concentration ranges required are comparable. Figure 4 shows the dose dependence of PARP and caspase-3 cleavage in 20 SJSA-1 cells detected after 48 hours of treatment with NU8296 in comparison to nutlin-3. The levels of PARP and caspase-3 cleavage are comparable to those observed with nutlin-3 in the same dose range. Figures 5 and 6 show that NU8534 is growth inhibitory in wild-type p 5 3 HCT1 16 cells, as is Nutlin-3. These effects are consistent with the transcriptional 25 activation of p53 and consequent induction of the p21 cyclin dependent kinase inhibitor and hence growth arrest. Furthermore, NU8354 displays greater growth inhibition in'the p53wt HCTI 16 cell line than the p53-/- HCTI 16 cells, as does Nutlin-3. These effects demonstrate a predominantly p53-dependent mechanism of growth inhibitory activity. In addition, NU8354 shows greatest growth inhibitory 30 activity in MDM2 amplified and p53wt cell lines.
- 48 Figure 7 shows that NU8354 induces Caspase 3 and 7 enzymatic activity over a 24 and 48 hr exposure in SJSA cells; this is an indication of the induction of apoptosis and is consistent with the western blot evidence of PARP and caspase-3 cleavage. 5 Figures 8 to 10 show growth inhibition by NU8354 in the 5-20pM concentration range for a panel of MDM2 amplified cell lines, which are generally found to be more sensitive than cell lines not amplified for MDM2. Figure 11 shows the analytical chromatogram of NU8354 on a Chiracel AD column (4.6 mru x 25 cm) with 40% EtOH, pentane as eluant in isocratic mode. The 10 (+)-enantiomer NU8354A has a retention time of 9.8 minutes, whereas the (-) enantiomer NU8354B elutes at 12.4 minutes. The absolute configuration of the enantiomers has not been determined. Figure 12 shows the cellular activity of Nutlin-3, NU8354 and enantiomers NU8354A and NU8354B in SJSA-1 cells by Western blotting. Nutlin-3 shows a 15 strong dose dependent increase in MDM2, p53 and p21 levels from I to 20 pM. A similar but weaker effect is observed for NU8354 with a maximal effect observed at 10 pM. The activity of NU8354A is slightly weaker than Nutlin at the 20 pM dose and significantly weaker at the lower doses. The NU8354B enantiomer displays little cellular activity with weak induction of p21 and MDM2 at the 20 jiM dose. These 20 results are consistent with NU8354A being the enantiomer which confers the majority of the biological activity of the racemate and the observed ICSos in the in vitro ELISA assay. In summary, NU8534 shows a range of cellular effects consistent with the disruption of MDM2-p53 binding, the proposed mechanism of action. In comparison 25 with the positive control Nutlin-3, the effects are similar across a panel of cell lines with differing p53 and MDM2 status, in terms of p53 activation, growth inhibition and apoptosis. Synthetic Data -49 The present invention will now be described further by way of example only. The following examples and description of stages in synthetic routes of preparation of various compounds of interest serve further to illustrate the present invention. 3-( 4 -Fluorophenyl)-3-hydroxy-2-propyl-2,3-dihydroisoindol-J-one F HO N 5 0 THF (25 mL) was added to 2-(4-fluorobenzoyl)benzoic acid (5 g, 20.4 mmol) followed by thionyl chloride (2.97 mL, 40.9 mmol) and a catalytic amount of DMF (3 drops). The system was stirred under nitrogen for 4 h at room temperature. Removal 10 of the solvent gave 3-chloro-3-(4-fluorophenyl)-3H-isobenzofuran-1-one as a colourless oil (5.35 g, 20.4 mmol, 100%). Distilled THT (25 mL) was added to 3-chloro-3-(4-chlorophenyl)-3H isobenzofuran-l-one (5.35 g, 20.4 mmol) followed by n-propylamine (1.85 mL, 22.5 mmol), triethylamine (2.85 mL, 26.5 mmnol) resulting in the formation a creamy 15 white/yellow precipitate. The mixture was stirred at room temperature under nitrogen for 4 h then the solvent was removed under vacuum. The residue was taken up in ethyl acetate (30 mL), washed with water (3 x 20 mL), brine (10 mL), dried (MgSO 4 ) and evaporated. Recrystallisation (ethyl acetate) gave the title compound as a white solid (4.35 g, 15.2 mmol, 75%); Rf= 0.48 (40:60: EtOAc: petrol). mp 172.3-174.6"C. 20 1.x (CH30H)/nm 210. 1R: 3231, 2965, 1673, 1602, 1504, 1407, 1223 cm 1 . 'H NMR: (300 MHz, d 6 -DMSO) 6 0.75 (t, 3H, J 7.4 Hz, CH 2
-CH
2 -CH), 1.42 (m, 2H, N CHr-CH 2 ), 2.87 (m, 1H, N-CH 2 ), 3.14 (m, 1H, N-CH 2 ), 7.15 (m, 2H, Ar-H), 7.25 (m, 1H, Ar-H), 7.35 (m, 2H, Ar-H), 7.53 (dquin, 2H, J= 7.4, 1.4 Hz, Ar-H), 7.71 (m, 1H, Ar-H). "C NMR: (75 MHz, d 6 -DMSO) S 11.8, 22, 90.4, 115.4, 115.7, 122.7, 123, 25 128.3, 128.4, 129.5, 130.8, 132.7, 136.8, 136.9, 149.7, 160.5, 162.2, 163.7, 166.8. LCMS (ESI+) n/z = 161.1, 227.1, 268.1, 286.1 [M + Hift Anal. Calod. for - 50 C 17 Hi 6
FNO
2 : C, 71.56; H, 5.65; N, 4.91%. Found C, 71.61; H, 5.70; N, 4.99%. HRMS (EI) m/z Caled. for C1 7 Hl 6 FN0 2 : 285.1165. Found 285.1166. 3-( 4 -Fluorophenyl)-3-(3-hydroxycyclopentyloxy)-2-propyl-2,3-dihydroisoindol-1-one 5 HF OF 0 Distilled THF (20 mL) was added to 3
-(
4 -fIuorophenyl)-3-hydroxy-2-propyl 2,3-dihydroisoindol-l -one (200 mg, 0.7 mmol) followed by thionyl chloride (0.06 10 mL, 0.84 mmol) and a catalytic amount of DMF (3 drops). The mixture was stirred at room temperature under nitrogen for 4 h and monitored by TLC. Removal of the solvent under vacuum gave 3-chloro-3-(4-fluorophenyl)-2-propyl-2,3 dihydroisoindol-1-one as a colourless oil (212 mg, 0.69 nunol, 100%) which was used immediately without further purification. 15 Distilled THF was added to 3-chloro-3-(4-fluorophenyl)-2-propyl-2,3 dihydroisoindol-1-one (212 mg, 0.69 mmol) followed by 1,3-cyclopentanediol (0.65 mL, 6.9 mmol). The mixture was stirred at room temperature under nitrogen for 4 h and monitored by TLC. On completion the solvent was removed under vacuum, the residue was taken up in ethyl acetate (30 mL), washed with water (3 x 20 mL), brine 20 (10 mL) and dried (MgSO 4 ). The solvent was removed to give the crude product. HPLC (H 2 0:MeOH, 270 nm) gave NU8279 as a clear glass (126 mg, 0.34 mmol, 49%); Rf = 0.21 (40:60: EtOAc:petrol). Xma, (CH30H)/nm 220.5. IR: 3387, 2936, 1683, 1604, 1505, 1366 cmr 1 . 'H NMR: (300 MHz, d 4 -MeOH) 6 0.77 (t, 3H, J= 7.4 Hz, CH 2
-CH
2 -CH), 1.15 (m, IH, N-CH 2
-CH
2 ), 1.32 (m, 1H, N-CH 2
-CH
2 ), 1.40-2.05 25 (m, 6H, cyclopentane), 3.12 (m, IH, N-CH 2 ), 3.29 (m, IH, N-CH 2 ), 3.90 (m, IH, cyclopentane), 4.31 (n, 1H, cyclopentane), 7.07 (t, 2H, J= 9 Hz, Ar-H), 7.23 (m, I H, - 51 Ar-H), 7.39 (m, 2H, Ar-H), 7.60 (m, 2H, Ar-H), 7.87 (m, iH, Ar-14). "C NMR: (125 MHz, d4-MeOH) 6 12.2, 22.9, 32.7, 33.1, 34.2, 43.1, 44.3, 44.8, 72.8, 73, 75.7, 96.5, 116.3, 116.6, 124.3, 125.7, 130, 130.1, 131.6, 133.6, 134.1, 137.1, 148.1, 166.2, 170.7. LCMS (ESI+) n/z 227.1, 268.1, 370.3 [M + H], 392.3 [M + Na]*. HRMS 5 (EI) nz Caled. for C22H24FNO 3 : 369.1740. Found 369.1737. 3-(4-Chlorophenyl)-3-hydroxy-2-(4-nitrobenzyl)-2,3-dihydroisoindol-1-one Cl HO ON
NO
2 10 THF (25 mL) was added to 2-(4-chlorobenzoyl)benzoic acid (1 g, 3.8 mmol) followed by thionyl chloride (0.55 mL, 7.6 mmol) and a catalytic amount of DMF (3 drops). The system was stirred under nitrogen for 4 h at room temperature and monitored by TLC. Removal of the solvent gave 3-chloro-3-(4-chlorophenyl)-3H isobenzofuran-1-one as a colourless oil (1.06 g, 3.8 mmol, 100%). 15 Distilled THF (25 mL) was added to 3-chloro-3-(4-chlorophenyl)-3H isobenzofuran-1-one (3.2 g, 11.5 mmol), 4-nitrobenzylamine hydrochloride (2.3 g, 12.6 mmol), and triethylamine (4.8 mL, 34.5 mmol). The mixture was stirred at room temperature under nitrogen for 4 h and monitored by TLC. On completion the solvent was removed under vacuum, the residue was taken up in ethyl acetate (30 mL), 20 washed with water (3 x 20 mL), brine (10 mL) and dried (MgSO 4 ). The solvent was removed under vacuum. Recrystallisation (ethyl acetate) gave 3-(4-Chlorophenyl)-3 hydroxy-2-(4-nitrobenzyl)-2,3-dihydroisoindol- -one as a light yellow solid (2.95 g, 7.47 mmol, 65%); Rf = 0.4 (40:60: EtOAc:petrol). mp 197.1-199.7"C. k. (CH30H)/nm 225. IR: 3215, 1676, 1517, 1395, 1341 cm-. 'H NMR: (300 MHz, d 6 25 DMSO) 5 4.35 (d, 1H, J = 16.3 Hz, N-CH 2 ), 4.61 (d, 1H, J= 16.3 Hz, N-CH 2 ), 7.28 (im, 4H, Ar-H), 7.45 (m, 3H, Ar-HT), 7.58 (m, 2H, Ar-rn, 7.79 (m, 1H, Ar-H), 8.05 (m, -52 2H, Ar-H. ' 3 C NMR: (75 MHz, d 6 -DMSO) 5 42.1, 90.5, 123.1, 123.3, 128.4, 128.7, 129.1, 129.9, 130.3, 133.2, 133.3, 138.9, 146.4, 146.5, 149.4, 167.1. LCMS (ESI+) m/z = 307.2, 368.2, 377.1. Anal. Called. for C 21 HisCIN 2 0 4 : C, 63.89; H, 3.83; N, 7.10%. Found C, 63.78; H, 3.92; N, 7.12%. IRMS (EL) m/z Caled. for 5 C 21
H
15
CIN
2 0 4 : 394.0720. Found 394.0714. 3-(4-Chlorophenyl)-2-[-(4-chlorophenyl)-ethyl]-.3-hydroxy-2,3-dihydroisoindol-1 one C1 HO 10 C1 To a solution of 2-(4-chlorobenzoyl)benzoic acid (5 g, 19.2 mmol, 1 equiv.) in dry THF (20 mL) was added under nitrogen atmosphere thionylchloride (3.0 mL, 38.3 mmol, 2 equiv.) and 3 drops of anhydrous DMF. The reaction mixture was stirred for 15 4h at room temperature and concentrated in vacuo. The resulting pale yellow oil was taken up in dry THF (20 mL), and (S)- 4 -chloro-ot-methylbenzylamine (2.43 g, 15.6 mmol, 1.1 equiv.) and DIPEA (3.49 mL, 21.1 mmol, 1.1 equiv.) were added under nitrogen atmosphere. The reaction mixture was stirred overnight at room temperature and the solvents were removed in vacuo. The residue was taken up in EtOAc (100 20 mL), filtered, and the filtrate washed with water (3 x 50 mL) and brine (1 x 50 mL). The organic layer was dried over MgS04, filtered and concentrated in vacuo to afford a solid, which was recrystallised (EtOAc/Petrol) as a white crystalline powder (3.10 g, 55%). 1H NMR (300 MHz, CDCl 3 ): Mixture of two diastereoisomers: 7.74-7.09 (in, 13H, Ar-H and OH), 4.52 and 4.45 (q, J=6.9 Hz, 1H, CH*), 1.75 and 1.48 (d, J= 7.2 25 Hz, 3H, CH 3 ). "C NMR (75 MHz, CDCl 3 ): Mixture of two diastereoisomers: 166.94, -53 166.43, 149.17, 149,11, 142.01, 141.51, 139.65, 139.33, 133.24, 133.14, 132.90, 131.76, 131.60, 131.54, 131.47, 129.79, 129.71, 129.52, 128.67, 128.62, 128.26, 127.88, 127.84, 123.13, 122.74, 122.70, 91.19, 90.94, 51.22, 50.46, 20.21, 18.24. FTIR: 3103 (OH), 1665 (C=0) cm. m/z (ES): 398 [M+H). Anal.: cafe. for 5 CH 17 C1 2
NO
2 + 0.3 H 2 0: C: 65.45, H: 4.40, N: 3.47, Found: C: 65.00, H: 4.30, N: 3.60. General Procedure A 10 To a solution of the corresponding isoindolone (1.37 mmol, I equiv.) in dry THF (10 mL) was added under nitrogen atmosphere, thionyichloride (214 pL, 2.75 mmol, 2 equiv.) and 3 drops of DMF. The reaction mixture was stirred for 4h at room temperature and concentrated in vacuo. The resulting pale yellow oil was taken up in dry THF (10 mL), and the alcohol (2.75 mmol, 2 equiv) and potassium carbonate (380 15 mg, 2.75 mmol, 2 equiv.) were added. The reaction mixture was stirred overnight at room temperature and the solvents were removed in vacuo. The residue was taken up in EtOAc (50 mL) and washed with water (3 x 25 mL) and brine (] x 25 mL). The organic layer was dried over MgS04, filtered and concentrated in vacuo to afford an oil which was purified by flash chromatography (silica; EtOAc/petrol). 20 General Procedure B: Synthesis of3-Alkoxy-3-(4-chlorophenyl)isoindolin.- -ones To a solution of the appropriate 3-chloro-3-(4-chlorophenyl)isoindolin-1 -one, THF was added the appropriate alcohol (5.0 mol equiv unless stated otherwise) and 25 K 2 C0 3 (5.0 mol equiv unless stated otherwise). The mixture was allowed to stir at room temperature for 4 hours under nitrogen and monitored by TLC. Upon completion the mixture was extracted with EtOAc (15 mL), washed with saturated brine (3 x 10 mL), water (3 x 10 mL) and dried (MgSO 4 ). Removal of the solvent under reduced pressure yielded the crude 3 -alkoxy-2,3-dihydroisoindolin-1-one. 30 - 54 General Procedure B]: Synthesis of 3-alkoxy-2,3-dihydroisoindolin-1-ones To a solution of cis-cyclopentane or cis-cyclopentene diol (2.5 equiv) and
K
2
CO
3 (2.5 equiv) in THF (3 mL) was added the appropriate 3-chloro-3-(4 5 chlorophenyl)isoindolin-1-one (1 equiv) in THF (3 mL) dropwise over 3 hours with stirring under nitrogen at room temperature. The solution was stirred for a further hour and monitored by TLC. Upon completion the mixture was extracted with EtOAc (15 mL), washed with saturated brine (3 x 10 mL), water (3 x 10 mL) and dried (MgSO 4 ). The solvent was removed under reduced pressure to yield the crude 3 10 alkoxy-2,3-dihydroisoindolin-l -one. 3-(4-Chlorophenyl)-3-hydroxy-2-(4-chlorobenzyl)-isoindolin-1-one Cl HO N 0 CI 15 Distilled THF (25 mL) was added to 3-chloro-3-(4-chlorophenyl)-3H isobenzofuran-l-one (1.071 g, 3.84 mmol) followed by triethylamine (855.1.1 mg, 8.45 mmol, 1.178 mL) and para-chlorobenzylamine (543.36 mg, 3.84 mmol, 0.467 mL) resulting in the formation of a white precipitate. The mixture was stirred at room 20 temperature under nitrogen for 4 hours and monitored by TLC. Upon completion the mixture was then extracted with EtOAc (15 mL) and washed with saturated sodium bicarbonate (3 x 10 mL), water (3 x 10 mL) and dried (Na 2
SO
4 ). The solvent was removed under reduced pressure and the resultant precipitate recrystallised (EtOAc, petrol) to give the title product as a fine white crystalline solid (1.191 g, 3.20 mmol, - 55 83 %). 'H NMR: (300 MHz, DMSO) a ppm 4.23 (d, 1H, J= 15.59, Hg) 4.45 (d, 1H, J = 15.62 H 9 .) 7.25 (m, 9H, H-Hs, Hio-Hi 3 ) 7.56 (m, 2H, H 6
-H
7 ) 7.76 (d, 1H, Hs). "C NMR: (75 Hz, DMSO); 3 42.09 (N-CH 2 ), 90.55 (0-C-N), 122.98, 123.19, 128.02, 128.39, 128.57, 129.76, 130.21, 130.66, 131.60, 133.07, 133.15, 137.44, 139.33, 5 149.52 (Ar), 167.16 (C=0). Mp: 156.2 - 156.9 "C. IR: 1467,1661, 3184 cmn 1 . 3-(4-Chlorophenyl)-3-hydroxy-2-propylisoindolin-1-one C1 HO N 0 10 Distilled THF (20 mL) was added to 3-chloro-3-(4-cblorophenyl)-3H isobenzofuran..l-one (535.4 mg, 1.91 mmol) followed by triethylamine (398.9 mg, 0.549 mL, 3.94 mmol) and n-propylamine (159.8 mg, 0.22 nL, 1.792 mmol). The mixture was stirred at room temperature under nitrogen for 4 hours and monitored by 15 TLC. Upon completion the mixture was then extracted with EtOAc (15 mL) and washed with saturated sodium bicarbonate (3 x 10 mL), water (3 x 10 mL) and dried (Na 2 S0 4 ). Recrysallisation from a minimum amount of boiling ethyl acetate and an excess of petrol yielded the title product as a white crystalline solid (425 mg, 1.409 mmol, 77 %). 'H NMR: (300 Hz, CDCl 3 ) S ppm 0.76 (t, 3H, H 11 ), 1.45 (m, 2H, Hlo), 20 2.86 (m, IH, Hg), 3.36 (m, 1W, Hg.), 7.16 (d, 1H, H 5 ), 7.38 (dd, 4H, H-H4), 7.45 (m, 2H, H62 7 ), 7.70 (d, 1H, Hs). 3C NMR: (75 Hz, DMSO); 8 11.87 (N-CH 2
-CH
2 CH 3 ), 21.96 (N-CH 2
-CH
2 ), 40.69 (N-CH 2 ), 90.50 (0-C-N), 122.75, 122.99, 128.24, 128.76, 129.58, 131.04, 131.24, 132.73, 133.13, 139.94, 149.59 (Ar), 166.96 (C=0). Mp: 201.5-201.7 *C. IR: 1466,1608, 1664, 2968, 3157 cm. 25 2 -Benzyl-3-(4-chlorophenyl)-3-hydroxy-2,3 -dihydroisoindolin--one -56 CI HO Nb 0 Distilled THF (25 mL) was added to 3-chloro-3-(4-chlorophenyl)-3H 5 isobenzofuran-l-one (1.042 g, 3.84 mmol) followed by triethylamine (777.1 mg, 7.68 mmol, 1.06mL)) and benzylamine (616 mg, 5.76 mmol, 0.79 mL) resulting in the formation of a yellow/cream precipitate. The mixture was stirred at room temperature under nitrogen for 4 hours and monitored by TLC. Upon completion the mixture was then extracted with EtOAc (15 mL) and washed with saturated sodium bicarbonate (3 10 x 10 mL), water (3 x 10 mL) and dried (Na 2
SO
4 ). Recrystallisation of the cream precipitate from a minimum amount of boiling ethyl acetate and excess petrol to yielded the title product as a white crystalline solid (1.0378 g, 2.96 mmol, 77 % yield). 'H NMR: (300 Hz, CDC 3 ) 6 ppm 4.24 (d, 1H, Jl15.48 Hz, Hg), 4.42 (d, 1H, J=15.48 Hz, Hg.), 7.16 (m, 5H, Hio-H14), 7.25 (m, 5H, H-HS ), 7.56 (m, 2H, I-H 7 ), 15 7.75 (d, 111, H8). ' 3 C NMR: (75 Hz, DMSO); 5 42.80 (N-CH 2 ), 90.60 (0-C-N), 122.95, 123.18, 126.78, 128.07, 128.35, 128.41, 128.51, 129.70, 130.81, 132.97, 133.07, 138.42, 139.46, 149.59 (Ar), 167.20 (C=O). IR: 1463, 1664, 2936, 3285 cm". 3-(4-Chlorophenyl)-3-hydroxy-2-(4-methylbenzyl)-isoindolin-J-one 20 -57 CI HO NN 0 Me Distilled THF (25 mL) was added to 3-chloro-3-(4-chlorophenyl)-3H isobenzofuran-l-one (1.071 g, 3.84 mol) followed by triethylamine (855.1.1 mg, 5 8.45 minol, 1.178 mL) and para-methylbenzylamine (465.3 mg, 3.84 mmol, 0.489 mL) resulting in the formation of a bright yellow precipitate. The mixture was stirred at room temperature under nitrogen for 4 hours and monitored by TLC. Upon completion the mixture was then extracted with EtOAc (15 mL) and washed with saturated sodium bicarbonate (3 x 10 mL), water (3 x 10 mL) and dried (Na2SO 4 ). 10 Recrystallisation of the cream/yellow residue from a minimum amount of boiling ethyl acetate and excess petrol yielded the title product as a fme pale yellow crystalline solid (1.090 g, 3.10 mmol, 81 %). 'H NMR: (300 MHz, DMSO) S ppm 2.21 (s, 3H, H2), 4.20 (d, 1H, J= 15.62 Hz, H9), 4.40 (d, 1H, J= 15.36 Hz, Hg.), 6.95 (d, 2H J= 7.97 Hz, H H 13 ), 7.04 (d, 2HJ= 8.00 Hz, Hio-H, 4 ) 7.27 (m, 5H, Hi-H 5 ), 15 7.55 (m, 2H, H6-H7) 7.74 (d, IH, He). 2 -C NMR: (75 Hz, DMSO) 5 20.90 (CH 3 ), 42.53 (N-CH 2 ), 90.57 (0-C-N), 122.89, 123.15, 128.36, 128.38, 128.61, 129.66, 130.85, 132.91, 133.03, 135.37, 135.84, 139.51 (Ar), 167.10 (C=0). IR: 1398, 1468, 1660,2921, 3138 cm. 20 2- (4-(Aminomethyl)benzonitrile)-3-(4-chlorophenyl)-3-hydroxyisoindolin --one -58 CI HO N 0 N CN Distilled THF (25 mL) was added to 3-chloro-3-(4-chloropbenyl)-3H isobenzofuran-l-one (1.071 g, 3.84 mmol) followed by triethylamine (777.14 mg, 5 7.68 mmol, 1.07 mL) and 4 -(aminomethyl)benzonitrile (507.6 mg, 3.84 mmol). The mixture was stirred at room temperature under nitrogen for 4 hours and monitored by TLC. Upon completion the mixture was then extracted with EtOAc (15 mL) and washed with saturated sodium bicarbonate (3 x 10 mL), water (3 x 10 mL) and dried (Na 2 SO4). Removal of solvent after washing produced a viscous orange oil. 10 Trituration under petrol yielded a yellow/orange solid which was recrystallised from a minimum amount of boiling ethyl acetate and excess petrol to produce the title product as a fine pale yellow crystalline solid (665 mg, 1.83 mmol, 50 %). 'H NMR: (300 MHz, DMSO) $ ppm 4.31 (d, 2H, J= 16.12 Hz, Hg), 4.55 (d, 2H J = 16.15 Hz, H9, ), 7.26 (m, SH, HI-H 5 ), 7.37 (d, 2H J = 8.29 Hz, Hio, H 3 ), 7.58 (m, 2H, H 6
-H
7 ), 15 7.64 (d, 2H J = 8.26 Hz, Hw 1
H
1 2 ), 7.77 (d, 11, Hg). "C NMR:(75 Hz, DMSO); 8 42.51 (N-CH 2 ), 60.02 (CN) 90.57 (0-C-N), 109.82, 119.08, 123.06, 123.25, 128.40, 128.62, 129.16, 129.83, 130.54, 132.03, 133.19, 133.26, 133.52, 139.19, 144.24, 149.48 (Ar), 167.23 (C=0). IR: 1397, 1655, 2227 cm 4 . 20 4-((1-(4-chlorophenyl)-]-( 4 -hydroxycyclopent-2-enyloxy)-3-oxoisoindolin-2-. yI)methyl)benzonitrie (NU8292) -59 OH CI 0 N CN Distilled THE (10 mL) was added to 2-(4-(aminomethyl)benzonitrile)-3-(4 chlorophenyl)-3-hydroxyisoindolin-l-one (400 mg, 1.10 mmol), thionyl chloride 5 (288.9 mg, 2.42 mmol, 0.18 mL) and catalytic DMF (3 drops) as for general procedure B 1. 3 -Chloro-3-(4-chlorophenyl)-2-(4-(aminoimethyl)benzonitrile) isoindolin-1-one was produced as a viscous clear oil (419 mg, 1.10 mmol) which was used immediately without further purification. Distilled THF (3 mL) was added to 3 chloro- 3
-(
4 -chlorophenyl)-2-(4-(aminomethyl)benzonitrile)isoindolin- 1-one (419 mg, 10 1.10 mmol) and the resultant solution added dropwise to cis-cyclopentene diol (275, mg, 2.75 mmol) and dried K 2
CO
3 (380.05 mag, 2.75 mmol) in distilled THF (3 mL) as for general procedure B1. Removal of the solvent yielded the crude product as a yellow oil (364 mg). Purification by flash column chromatography yielded the title product as a yellow oily solid (105.4 mg, 0.23 nuol, 21 %). 'H NMR: (300 MHz, 15 DMSO) S ppm 1.31 (m, 1H, H 15 15 ), 1.73, 2.11 (m, 1H, Hi5's), 3.89 (br s, lIH, OH), 4.22 (m, 1H, H16), 4.42 (d, IH, J = 7.10 Hz, H93r), 4.52 (d, 1H J = 7.03 Hz, H9 .), 4.98, 5.04 (dd, IH, H17ns), 5.01, 5.27 (dd, 1H, H17n1), 5.75 (m, 1H, H 14 ), 7.24 (m, 7H, Hr-H5, H10, H13) 7.62 (M, 4H, H6/7, Hun112), 7.87 (d, 1H, H8). Mp: 126.4-127.8 *C. IR: 1382, 1609, 2229, 3061 cm'. HR-MS (ED: Calculated mass: [M+Naj 479.1133, 20 Found: 479.1134. 3-(4-Chlorophenyl)-3-(4-hydroxycyclopent-2-enyloxy)-2-(4-chlorobenzyl) isoindolin 1-one (NU8293) - 60 OH Cl INN 0 C1 Distilled THF (10 mL) was added to 3 -(4-Chlorophenyl)-3-hydroxy-2-(4 chlorobenzyl)-isoindolin- -one (200 mg, 0.54 mmol), thionyl chloride (141.37 mg, 5 1.18 mmol, 0.09 muL) and catalytic DMF (3 drops) as for general procedure B. 3 Chloro-3 -( 4 -chlorophenyl)-2-(4-chlorobenzyl)isoindolin- 1-one was produced as a viscous colourless oil (210 mg, 0.54 mmol) which was used immediately without further purification. Distilled THF (3 nL) was added to 3-chloro-3-(4-chlorophenyj) 2
-(
4 -chlorobenzyl)isoindolin-1-one (210.8 mg, 0.54 mmol) and the resultant solution 10 added dropwise to cis-cyclopentene diol (135 mg, 1.35 mmol) and dried potassium carbonate (186.6 mg, 1.35 mmol) in distilled THF (3 nL) as for general procedure B1. Removal of the solvent yielded the crude product as a yellow oil (224 mg). The sample was purified by flash column chromatography (EtOAc:Petrol, 40:60) to yield the title product as a yellow viscous oil. (103.9 mg, 0.23 mmol, 43 %). 1H NMR: 15 (300 MHz, DMSO) 8 ppm 1.27 (m, 1H, 11ss'), 1.41, 1.68 (m, 1H, Hisas5) 3.86 (m, IH, H16), 4.16 (m, 1H, H14) 4.31 (d, 1H, J= 15.49, H919) 4.50 (d, 1K J= 15.48 H9/9,) 4.93, 5.75 (dd, 1H, Hn17/8) 5.25, 5.70 (dd, 1H, H1718), 7.21 (m, 9H, Hr-Hs, H10-113 ) 7.63 (m, 2H, H6-H7) 7.85 (d, 11, Hs). IR: 1467, 1683, 2926, 3397 cm^ 1 . 20 -61 3- (4-Chlorophenyl) -3-(4-hydroxycyclopent-2-enyloxy)-2-propyliso indolin-I -one (NU8294) OH N 0 5 Distilled THF (5 mL) was added to 3-(4-chlorophenyl)-3-hydroxy-2 propylisoindolin-1-one (104 mg, 0.33 mmnol), thionyl chloride (86.83 mg, 0.73 nmol, 0.05 mL) and catalytic DMF (3 drops) as for general procedure B1. 3-Chloro-3-(4 chlorophenyl)-2-propylisoindolin-I-one was produced as an orange oil (105 mg, 0.33 mmol) which was used immediately without further purification. Distilled THE (6 10 mL) was added to 3.-chloro-3-( 4 -chlorophenyl)-2-propylisoindolin-1-one (211.2, 0.66 nmnol), cis-cyclopentene diol (330 mg, 3.3 mmol) and potassium carbonate (456 mg, 3.3 mmol) as for general procedure B. Removal of the solvent yielded the crude product as a colourless oil (160.2 mg). The sample was purified by flash column chromatography (EtOAc:Petrol, 40:60) to yield the title product as an colourless 15 viscous oil. (129 mg, 0.43 mmol, 51 % yield). 'H NMR: (300 Hz, DMSO) 5 ppm 0.76 (t, 3H, Hii), 1.36 (m, 1H, H, 3
/H
13 ), 1.49, 1.76 (m, 1H, H 13
/H
3 ), 3.12 (m, 2H
H
1 o) 3.96 (i, 1H, Hg/H 9 '), 4.26 (m, IH, H 9
/H
9 2), 5.29, 5.87, (dd, 1H, His/H 16 ) 5.74, 5.79 (dd, IH, His/H 16 ) 7.23 (d, 1H,), 7.38 (m, 4H, Hi-H 5 ), 7.61 (m, 2H, H 6 .H), 7.76 (d, 1H, H). IR: 1365, 1682, 2969, 3363 cm^A.
- 62 3-( 4 -Chlorophenyl)-3-( 4 -hydroxycyclopent-2-enyloxy)-2-(4-methylbenz ) isoindolin 1-one (NU8295) OH Cl 0 o v N 0 Me 5 Distilled THF (10 mL) was added to 3-(4-chlorophenyl)-3-hydroxy-2-(4 methylbenzyl)-isoindolin-I-one (400 mg, 1.13 mmol), thionyl chloride (295.8 mg, 2.48 mmol, 0.18 mL) and catalytic DMF (3 drops) as for general procedure Bi. 3 Chloro-3-(4-chlorophenyl)-2-(4-methylbenzyl)isoindolin- 1-one was produced as a 10 viscous yellow oil (418 mg, 1.13 mmol) which was used immediately without further purification. Distilled THF (3 mL) was added to 3 -chloro-3-(4-chlorophenyl)-2-(4 methylbenzyl)isoindolin-I 1-one (418.1 mg, 1.13 mmol) and the resultant solution added dropwise to cis-cyclopentene diol (285 mg, 2.85 mmol) and dried K 2 C0 3 (390.41 mg, 2.85 mmol) in distilled THF (3 mL) as for general procedure BI. 15 Removal of the solvent yielded the crude product as a green oil (359 g). Purification by flash column chromatography yielded the title product as a colourless viscous oil (242.1 mg, 0.55 mmol, 50 %) 'H NMR: (300 MHz, DMSO) S ppm 1.19 (m, 1H, Hi/w), 1.67, 2.05 (m, 1H, Hin16') 2.21 (s, 3H, H?1), 3.85 (m, 1H, H17), 4.06 (d, 1H, J 15.21 Hz, H9/9-), 4.32 (m, 1H, His) 4.53 (d, 1H, J= 15.21 Hz, H 9 19 .), 4.81, 5.74, (dd, 20 1H, 118/19) 5.20, 5.66 (dd, 1H, Hag19), 6.95 (in, 411, Hi1, Hil, H 13 , H14), 7.25 (in, 5H, Hi-H 5 ), 7.65 (m, 2H, H6-H7) 7.74 (d, 1H, Hs). IR: 1380, 1467, 1699, 2922 cm7. HR MS (EI): Calculated mass: [M+H]* 446.1517, Found: 446.1517.
- 63 3- ( 4 -Chlorophenyl)-3-(4-hydroxycyclopent-2-enyloxy)-2-(4-ni trobenzyl) isoindolin-1 one (NU8297) OH Cl 0 N 0
NO
2 5 Distilled THF (10 mL) was added to 3 -(4-chlorophenyl)-3-hydroxy-2-(4 nitrobenzyl)isoindolin-1-one (200 mg, 0.52 mmol), thionyl chloride (136.8 mg, 1.15 mmol, 0.08 mL) and catalytic DMF (3 drops) as for general procedure B1. 3-Chloro 3
-(
4 -chlorophenyl)-2-(4-nitrobenzyl)isoindolin- 1 -one was produced as a viscous 10 yellow oil (208.5 mg, 0.52 mmol) which was used immediately without further purification. Distilled TUF (3 mL) was added to 3-chloro-3-(4-chlorophenyl)-2-(4 nitrobenzyl)isoindolin-1-one (208.5 mg, 0.52 mmol) and the resultant solution added dropwise to cis-cyclopentene diol (260 mg, 2.6 nmol) and dried potassium carbonate (359 mg, 2.6 mmol) in distilled THF (3 mL) as for general procedure Bl. Removal of 15 the solvent yielded the crude product as a yellow oil (262 mg). The sample was purified by flash column chromatography (EtOAc:Petrol, 40:60) to yield the title product as a yellow viscous oil. (211 mg, 44.4 mmol, 85 %). 'H NMR: (300 MHz, DMSO) S ppm 1.34, (m, 1H, H15/H,) 1.74, 2.2 (m, 1H, His/H) 4.22 (dt, 1H, H16) 4.40 (d, IH, J=15.99 Hz, H9/Hg.), 4.63 (d, 1I, J=16.02 Hz, H9/H9), 4.93, 4.98, (dd, 20 1H, H17/His), 5.15, 5.29 (dd, 1HI, H17/His), 5.76 (m, 1H, H14) 7.26 (mn, 7H, 14-H 5 , H1i, H 13 ), 7.66 (m, 2H, H6-H7), 7.88 (d, IH, H8), 8.00 (m, 2H, Hu, 1H2).
- 64 2 -Benzyl-3-(4-chlorophenyl)-3-(4-hydroxycyclopent-2-enyloxy) isoindolin-1-one (NU8298) OH C1 0 N 5 Distilled THF (25 mL) was added to 2-benzyl-3-(4-chlorophenyl)-3-hydroxy 2,3-dihydroisoindolin-1-one (400 mg, 1.145 mmol), thionyl chloride (299.6 mg, 2.51 mmol, 0.18 mL) and catalytic DMF (3 drops) as for general procedure B 1. 3 -Chloro 3-(4-chlorophenyl)-2-benzylisoindolin-1 -one was produced as a colourless oil (421 10 mg, 1.145 mmol) which was used immediately without further purification. Distilled THF (25 mL) was added to 3 -chloro-3-(4-chlorophenyl)-2-benzylisoindolin-1-one (421 mg, 1.145 nmnol), cis-cyclopentene diol (572 mg, 5.725 mmol) and potassium carbonate (792.9 mg, 5.725 mmol) as for general procedure B, Removal of the solvent yielded the crude product as a pink oil (354 mg). The sample was purified by 15 flash column chromatography (EtOAc:Petrol, 40;60) to yield the title product as a cream oily solid (277.5 mg, 0.643 mmol, 56 % yield). 1H NMR: (300 Hz, CDCl 3 ) $ ppm 0.84, 1.66 (m, 1H, His/Hw) 1.26 (i, 1H, Hi 6
/H
6 ') 3.85 (in, iH, H 17 ) 3.36 (m, 1H, HIs) 4.15 (d, 1H, J=15.27 Hz, H/Hg.
9 ), 4.62 (d, 1H, J=15.31 Hz, Hg/Hg.), 4.68, 5,73 (dd, 1H, H1s/H 19 ), 5.21, 5.64 (dd, 1H, Hi 8
/H
19 ), 7.18 (m,10H, H-Hs, H1o-H 1 4), 20 7.62 (in, 2H, H 6
-H
7 ), 7.83 (d, 1H, H48). Mp: 63.4-63.9 "C. IR: 1489, 1683, 3061, 3379 cm~'.
- 65 3-( 4 -Chlorophenyl)-3-(4-hydroxybut-2-enyloxy)-2-(4-nitrobenzyl)-2,3 dihydroisoindol-] -one (NU8350) HCO C, I N
NO
2 5 The named compound was synthesised from 3 -(4-Chlorophenyl)-3-hydroxy-2
(
4 -nitrobenzyl)-2,3-dihydroisoindol-1-one (400 mg, 1.01 mmol, 1 equiv.) and cis butenediol (445 mg, 5.05 mmol, 5 equiv.) using General Procedure A and obtained as a yellow oil (272 mg, 58%). 'H NMR (300 MHz, CDCL 3 ): 8.04-8.00 (m, 2H, 0 2
N-C
10 CH), 7.93-7.91 (m, 1H, C(O)=C=CH), 7.57-7,51 (m, 2H, Ar-H), 7.39-7.36 (m, 2H, Ar-H), 7.23-7.12 (m, 5 H, Ar-H), 5.62-5.53 (m, 1H, OCH 2 CH), 5.35-5.26 (m, IIH,
OCH
2 CH), 4.64 and 4.26 (dd: AB, J= 15.0 Hz, 2H, N-CH 2 ), 3.79 (d, J= 6.6 Hz, HO
CH
2 ), 3.48-3.29 (m, 2H, 0-CH 2 ). "C NMR (75 MHz, CDCl 3 ): 168.17, 147.45, 145.07, 144.60, 136.86, 134.98, 133.07, 132.00, 131.44, 130.24, 130.02, 128.71, 15 127.99, 126.79, 123.89, 123,35, 95.00, 59.20, 58.48, 42.57. m/z (ES): 465 [M+H]+ Anal.: calc. for C 25
H
21
CN
2 0 5 : C: 64.59, H: 4.55, N: 6.02, Found: C: 64.39, H: 4.67, N: 5.67. 3
-(
4 -Chlorophenyl)-3-(4-hydroxybut-2-enyloxy)-2-(4-nitrobenzyl)-2,3 20 dihydroisoindol-I-one (NU8351) HO, 0 C, N 0
NO
2 - 66 The named compound was synthesised from 3-(4-Chlorophenyl)-3-hydroxy-2
(
4 -nitrobenzyl)-2,3-dihydroisoindol-1-one (400 mg, 1.01 mmol, I equiv.) and cis/trans-butenediol (445mg, 5.05 mmol, 5 equiv.) using General Procedure A and 5 obtained as a yellow oil (291 mg, 62%). 'H NMR (300 MHz, CDC13): 8.04-8.01 (m, 2H, 02N-C-CH), 7.94-7.91 (m, 1H, C(Q)=CCR), 7.57-7.51 (m, 2H, Ar-H), 7.40 7.36 (m, 2H, Ar-H), 7.23-7.13 (m, 5 H, Ar-H), 5.62-5.53 (m, 1H, OCH 2 CR), 5.35 5.27 (m, IH, OCH 2 CH), 4.64 and 4.26 (dd: AB, J= 15.0 Hz, 2H, N-CH 2 ), 3.79 (d, J= 6.6 Hz, HO-CH 2 ), 3.48-3.29 (m, 2H, O-CH 2 ). "C NMR (75 MHz, CDCl 3 ): 168.17, 10 147.50, 145.10, 144.60, 136.91, 135.01, 133.07, 132.01, 131.49, 130.25, 130.04, 128.73, 128.00, 126.83, 123.90, 123.35, 95.03, 59.23, 58.51, 42.60. m/z (ES): 465 [M+H. HPLC: Rt = 3.51 min. Anal.: calc. for C 25
H
21 C1N 2 0s: C: 64.59, H: 4.55, N: 6.02, Found: C: 64.23, H: 4.63, N: 5.73. 15 3-( 4 -Chlorophenyl)-3-(5-hydroxycycloocryloxy)-2--(4-nitrobenzyl)-2,3 dihydroisoindol-1 -one (NU8352) H O OCi
NO
2 20 The named compound was syntliesised from 3-(4-Chlorophenyl)-3-hydroxy-2 (4-nitrobenzy1)-2,3-dihydroisoindol-I-one (400 mg, 1.01 mmol, I equiv.) and cis-1,5 cyclooctanediol (728 mg, 5.05 mmol, 5 equiv.) using General Procedure A and obtained as a yellow solid (342 mg, 65%). 'H NMR (300 MHz, CDC1 3 ): 7.95-7.91 (m, 3H, 0 2 N-C-CH and C(0)=C=CH), 7.60-7.52 (m, 2H, Ar-H), 7.18-7.03 (m, 7 H, Ar 25 H), 4.86 and 4.20 (dd: AB, J= 15.3 Hz, 21, N-CH2), 3
.
5 9-3.52(m, IH, HO-CH), 3.24- - 67 3.18 (i, 1H, 0-CH), 1.83-1.29 (m, 12H, CH 2 ). ' 3 C NMR (75 MHz, CDC13): 168.29, 147.21, 145.92, 144.85, 137.61, 134.77, 132.60, 131.79, 130.16, 129.68, 128.34, 128.27, 124.02, 123.62, 123.08, 94.52, 73.62, 71.25, 42.75, 36.5], 35,92, 34.32, 33.94, 20.30, 20.12 Anal.: calc, for C 39
H
32 C1N 3 0 6 + 0.5 EtOAc: C: 66.34, H: 5.77, N: 5 5.16, Found: C: 66.25, H: 5.91, N: 5.00. Mp: 69-72*C (EtOAc). 3-( 4 -Chloro-phenyl)-3-(3-hydroxy-2,2-dimethyl-propoxy)-2-(4-nitro-benzyl)-2,3 dihydro-isoindol-1--one (NU8353) OH C1 0 N 10
NO
2 The named compound was synthesised from 3
-(
4 -Chlorophenyl)-3-hydroxy-2
(
4 -nitrobenzyl)-2,3-dihydroisoindol-1-one (400 mg, 1.01 mmol, 1 equiv.) and neopentyl glycol (526 mg, 5.05 mmol, 5 equiv.) using General Procedure A and 15 obtained as an off-white solid (267 mg, 55%). 'H NMR (300 MHz, CDCl 3 ): 8.02-7.98 (m, 2H, 0 2 N-C-CH), 7.96-7.93 (m, LH, C(O)=C=CH), 7.58-7.55 (m, 2H, Ax-H), 7.32 7.28 (m, 2H, Ar-H), 7.15-7.12 (m, 5 H, Ar-H), 4.58 and 4.44 (dd: AB, J= 15.3 Hz, 2H, N-CH 2 ), 3.39 (s, 2H, HO-CH 2 ), 2.78 and 2.63 (dd: AB, J= 8.7 Hz, 2H, N-CH 2 ), 0.83 (d, J= 3.9 Hz, CH 3 ). "C NMR (75 MHz, CDCta): 168.30, 147.33, 145.19, 20 144.60, 137.31, 134.90, 133.08, 131.64, 130.17, 129.85, 128.61, 127.95, 123.81, 123.23, 123.16, 94.54, 69.57, 69.02, 42.42, 36.41, 21.75. m/z (ES): 481 [M+Hf. Anal.: calc. for C 26
H
25 C1N 2 0 5 + 0.25 H 2 0: C: 64.32, H: 5.31, N: 5.77, Found: C: 64.32, H: 5.34, N: 5.57.
-68 3-(4-Chlorophenyl)-3-(1-hydroxymethylcyclopropylmethoxy)-2-(4-nitrobenzyl)-2,3 dihydroisoindol-1.-one (NU8354) OH OC
NO
2 5 The named compound was synthesised from 3-(4-Chlorophenyl)-3-hydroxy-2 (4-nitrobenzyl)-2,3-dihydroisoindol-1-one (400 mg, 1.01 mmol, I equiv.) and cyclopropane dimethanol (516 mg, 5.05 mmol, 5 equiv.) using General Procedure A and obtained as an off-white solid (305 mg, 63%). 'H NMR (300 MHz, CDC13): 10 8.01-7.98 (m, 211, 02N-C-CH), 7.92-7.89 (m, 1H, C(O)=C=CH), 7.55-7.52 (m, 2H, Ar-H), 7.32-7.29 (m, 2H, Ar-H), 7.19-7-12 (m, 5 H, Ar-H), 4.49 (s, 2H, N-CH 2 ), 3.51 3.43 (i, 2H, HOCH 2 ), 2.81 (s, 2H, OCH2), 0.43-0.40 (m, 2H, CH 2 ), 0.22-0.12 (m, 2H, CH 2 ). ' 3 C NMR (75 MHz, CDClj): 168.54, 145.52, 144.95, 137.47, 135.29, 133.45, 131.87, 130.50, 130.21, 128.98, 128.30, 124.16, 123.60, 123.48, 94.96, 67.84, 15 42.75, 22.68, 8.94, 8.90 Anal.: cale. for C 26 H23CIN 2 0 5 : C: 65.20, H: 4.84, N: 5.85, Found: C: 64.83, H: 4.92, N: 5.63. Racemic NU8354 was separated into its two enantiomers by chiral HPLC (Chiracel AD column; I cm x 25 cm; 40% EtOH, pentane): NU8354A, RT = 9.8 min; a. =+22.66*, 0.406 g/l00ml; 20 and NU8354B, RT = 12.4 min; oc = -20.10*, 0.398 g/100ml. 3-( 4 -Chlorophenyl)-3-(4-hydroxybut-2-ynyloxy)-2-(4-nitrobenzyl)-2,3 dihydroisoindol-1-one (NU8357) - 69 HOs C) IN
NO
2 The named compound was synthesised from 3-(4-Chlorophenyl)-3-hydroxy-2
(
4 -nitrobenzyl)-2,3-dihydroisoindol-1-one (400 mg, 1.01 mmol, I equiv.) and 5 butynediol (435 mg, 5.05 mmol, 5 equiv.) using General Procedure A and obtained as a yellow solid (271 mg, 58%). '1H NMR (300 MHz, CDC 3 ): 8.05-7.93 (M, 3H, 0 2
N
C-CH and C(O)=C=CB), 7.61-7.54 (m, 2H, Ar-H), 7.36-7.33 (m, 2H, Ar-H), 7.24 7.16 (m, 5H, Ar-H), 4.60 and 4.52 (d: AB, J= 15.0 Hz, 2H, N-CH 2 ), 4.20-4.18 (m, 2H, HO-CH 2 ), 3.83 and 3.52 (dt: AB, J= 1.8, 15.3 Hz, 2H, O-CH 2 ), 2.42 (t, J= 6.0 10 Hz, 1H, OH). "C NMR (75 MHz, CDCI 3 ): 169.24, 148.20, 145.18, 137.24, 135.88, 133.78, 132.49, 131.29, 130.78, 129.43, 128.79, 124.81, 124.43, 124.14, 95.88, 86.01, 81.28, 54.04, 52.97, 51.55, 43.60. m/z (ES): 463 [M+H1j 4 . Anal.: calc. for
C
25
H
19
CN
2 0s + 0.2 H20: C: 64.36, H: 4.20, N: 6.01, Found: C: 64.11, H: 3.72, N: 5.53. 15 3-( 4 -Chlorophenyl)-3-(4-hydroxymethylcyclohexylmethoxy)-2-(4-nitrobenzyl)-2,3 dihydroisoindol-1 -one (NU8358) - 70 HO~ C1 0 ON NO2 The named compound was synthesised from 3
-(
4 -Chlorophenyl)-3-hydroxy-2
(
4 -nitrobenzyl)-2,3-dihydroisoindol--one (400 mg, 1.01 mmol, 1 equiv.) and trans 5 cyclohexane-1,4-dimethanol (728 mg, 5.05 mmol, 5 equiv.) using General Procedure A and obtained as a yellow solid (374 mg, 71%). 'H NMR (300 MHz, CDC13): 8.05 7.92 (m, 3H, 0 2 N-C-CH and C(O)=C=CH), 7.56-7.53 (m, 2H, Ar-H), 7.38-7.10 (m, 7H, Ar-H), 4.59 and 4.35 (d: AB, J= 15.0 Hz, 2H, N-CH 2 ), 3.44 (d, J = 6.3 Hz, 2H,
HO-CH
2 ), 2.65-2.53 (m, 2H, OCH 2 ), 1.81-1.74 (m, 3H, OH and CH), 1.44-1.32 (m, 10 2H), 0.93-0.79 (m, 5H). "C NMR (75 MHz, CDCl 3 ): 168.26, 145.41, 144.82, 137.42, 134.84, 132.93, 130.01, 128.63, 128.01, 123.80, 123.24, 123.18, 94.67, 68.41, 68.26, 42.41, 40.59, 38.04, 29.68, 29.31, 28.90. n/z (ES): 521 [M+H]t. Anal.: cale. for
C
2 9H 29 C1N 2 0 5 + 0.2 H20: C: 66.38, H: 5.66, N: 5.34, Found: C: 66.23, H: 5.79, N: 4.99. 15 3-( 4 -ChlorophenyV)-3-(2-hydroxymethylcylohexylmethoxy)-2-(4-nitrobenzyl)-2,3 dihydroisoindol-1 -one (NU8359) HO CI O 0 I ON 0 N0 2 - 71 The named compound was synthesised from 3
-(
4 -Chlorophenyl)-3-hydroxy-2 (4-nitrobenzyl)-2,3-dihydroisoindo1-1-one (400 mg, 1.01 mmol, 1 equiv.) and cis-1,2 cyclohexane-dimethanol (728 mg, 5.05 mmol, 5 equiv.) using General Procedure A 5 and obtained as a yellow solid (337 mg, 64%). 'H NMR (300 MHz, CDC 3 ): mixture of diastereoisomers: 8.08-7.93 (m, 31, 0 2 N-C-CH and C(O)=C=CH), 7.58-7.54 (m, 2H, Ar-H), 7.43-7.36 (m, 2H, Ar-H), 7.23-7.11 (m, 5H, Ar-H), 4.61 and 4.25 (d: AB, J = 15.0 Hz, 2H, N-CH 2 ); and 4.59 and 4.36 (d: AB, J= 15.0 Hz, 2H, N-CH 2 ), 3.53 3.24 (m, 2H, HO-CH 2 ), 2.87-2.61 (m, 2H, OCH2), 1.87-1.09 (m, 10H, CH). '-C 10 NMR (75 MHz, CDCl 3 ): mixture of diastereoisomers: 168.25, 147.42, 145.37, 145.20, 144.84, 144.76, 137.28, 137.12, 134.97, 134.88, 133.03, 131.55, 131.41, 130.15, 130.10, 129.98, 129.94, 128.81, 128.69, 127.98, 127.92, 123.91, 123.8], 123.33, 123.30, 123.10, 123.06, 95.07, 94.97, 63.91, 63.57, 63.44, 63.31, 42.50, 42.43, 40.77, 39.99, 37.18, 27.40, 27.09, 26.21, 26.16, 23.77, 23.44, 23.29. Anal.: 15 calc. for C29H 29 C1N 2 0 5 + 0.3 CH202 + 0.1 H20: C: 64.18, H: 5.49, N: 5.11, Found: C: 64.34, H: 5.49, N: 4.95. 3- (4-Chlorophenyl)~3-(4-hydroxycyclohexyloxy)-2-(4-nirobenzyl)-2,3 dihydroisoindol- -one (NU8360) 20 HO Ci QN 0
NO
2 The named compound was synthesised from 3
-(
4 -Chlorophenyl)-3-hydroxy-2
(
4 -nitrobenzyl)-2,3-dihydroisoindol-1-one (400 mg, 1.01 mmol, I equiv.) and - 72 cis/trans-1,4-cyclohexanediol (586 mg, 5.05 mmol, 5 equiv.) using General Procedure A and obtained as a white solid (338 mg, 68%). 'H NMR (300 MHz, CDCla): mixture of diastereoisomers: 7.93-7.90 (m, 3H, 0 2 N-C-CH and C(0)=C=CH), 7.56 7.51 (m, 2H, Ar-H), 7.18-7.02 (m, 7H, Ar-H), 4.78 and 4.24 (d: AB, J= 15.0 Hz, 2H, 5 N-CH 2 ); 3.70-3.62 (m, 1H, HOCH-), 3.26-3.09 (m, 1H, OCH), 1.86-1.26 (m, 10H,
CH
2 ). "C NMR (75 MHz, CDCl 3 ): mixture of diastereoisomers: 168.33, 147.16, 146.01, 144.80, 137.66, 134.74, 132.72, 131.58, 130.21, 130.16, 129.68, 128.31, 128.28, 128.23, 128.19, 123.81, 123.09, 94.30, 94.28, 71.41, 69.22, 68.61, 67.66, 42.65, 32.51, 32.32, 30.95, 30.65, 30.33, 29.19, 29.03. n/z (ES): 493 [M+H]*. 10 HPLC: Rt = 3.43 min. Anal.: calc. for C 2 7
H
2 5
CIN
2 0 5 + 0.1 H20: C: 65.54, H: 5.14, N: 5.66, Found: C: 65.09, H: 5.20, N: 5.24. 3-(4-Chlorophenyl)-3-
(
4 -hydroxycyclohex-2-enyloxy)-2-(4-nitrobenzyl)-2,3 dihydroisoindol-I -one (NU8361) 15 HO Ci 0 o N N02 The named compound was synthesised from 3 -(4-chlorophenyl)-3-hydroxy-2
(
4 -nitrobenzyl)-2,3-dihydroisoindol-1-one (400 mg, 1.01 mmol, 1 equiv.) and trans 20 1,4-cyclohex-2-enediol (576 mg, 5.05 nmol, 5 equiv.) using General Procedure A and obtained as a white solid (263 mg, 53%). 'H NMR (300 MHz, CDC1 3 ): mixture of diastereoisomers: 7.96-7.92 (m, 3H, 0 2 N-C-CH and C(0)=C=CH), 7.61-7.55 (m, 2H, Ar-H), 7.22-7.03 (m, 7H, Ar-H), 5.75 and 5.34 (m, 2H, CH=CH), 4.83 and 4.28 (M, 2H, N-CH 2 ), 4.27 (m, 1H, HO-CB), 3.74-3.71 (m, 1H, OCH), 3.70-3.62 (m, 1H, - 73 HOCH-), 3.26-3.09 (m, 1K, OCH), 2.12-1.14 (m, 4H, CH 2 ). '1C NMR (75 MHz,
CDC
3 ): mixture of diastereoisomers: 168.57, 147.55, 146.08, 145.06, 144.99, 137.66, 137.57, 135.16, 134.64, 134.10, 133.20, 131.90, 130.68, 130.61, 130.09, 130.04, 129.96, 128.67, 128.65, 128.59, 128.55, 124.28, 124.15, 123.48, 123.46, 94.90, 94.82, 5 68.43, 68.30, 65.91, 65.76, 43.06, 30.85, 30.52, 28.58. m/z (ES): 491 [M+H'f. HPLC: Rt = 3.39 rmin. Anal.: calc. for C 27
H
23 C1N 2 0 5 + 0.2 H20: C: 65.57, H: 4.78, N: 5.67, Found: C: 65.32, H: 5.00, N: 5.18. 3-( 4 -Chlorophenyl)-3-hydroxy-2-[2-(4-nitrophenyl)ethyl]-2,3-dihydroisoindol- -one 10 CI HO 7 IN ON\
NO
2 To a solution of 2-( 4 -chlorobenzoyl)benzoic acid (5 g, 19.2 rmnol, 1 equiv.) in dry THF (20 mwL) was added under nitrogen atmosphere thionylchoride (3.0 mL, 38.3 15 mmol, 2 equiv.) and 3 drops of anhydrous DMF. The reaction mixture was stirred for 4h at room temperature and concentrated in vacuo. The resulting pale yellow oil was taken up in dry THF (20 mL), and the amine 2
-(
4 -nitrophenyl)ethylamine hydrochloride (4.30 g, 21.1 mmol, 1.1 equiv.) and DIPEA (3.49 mL, 21.1 nmol, 1.1 equiv.) were added under nitrogen atmosphere. The reaction mixture was stirred 20 overnight at room temperature and the solvents were removed in vacuo. The residue was taken up in EtOAc (100 mL), filtered, and the filtrate washed with water (3 x 50 mL) and brine (1 x 50 mL). The organic layer was dried over MgSO 4 , filtered and concentrated in vacuo to afford a buff-coloured solid, which was recrystallised from EtOAc/Petrol ether (4.47 g, 57%). 'H NMR (300 MHz, a-DMSO): 8.09 (d, J = 8.4 25 Hz, 2H, 02N-C-CH), 7.74 (d, J = 6.6 Hz, 1H, C(O)=C=Cm), 7.60-7.51 (m, 2H, Ar-H), 7.40-7.26 (m, 8H, Ar-H and OH), 3.69-3.57 (m, 1H, N-CH), 3.28-3.19 (m, 11H, N- -74 CH), 2.96-2.89 (m, 2H, N-CH 2 -CH). "C NMR (75 MHz, d-DMSO): 166.38, 148.77, 147.11, 145.85, 138.81, 132.57, 132.21, 130.08, 129.34, 128.97, 128.05, 127.51, 122.95, 122.36, 122.13. FTIR : 3240, 1166, 1520, 1338cmn'. m/z (ES): 409 {M+H]. HPLC: Rt = 3.36 min. Anal.: calc. for C22H 7 ClN20 4 : C 64.63, H 4.19, N 5 6.85, Found: C 65.02, H 4.27, N 6.74. Mp: 206-208"C (EtOAc). UV: X = 268 nm (EtOH). 3
-(
4 -Chlorophenyl)-3-(4-hydroxybutoxy)-2-2-(4-nitrophenyl)ethy]-2,3 dihydroisoindol-1 -one (NU8362) 10 HO Ci 0 ON
/NO
2 The named compound was synthesised from 3-(4-chlorophenyl)-3-hydroxy-2
[
2
-(
4 -nitrophenyl)ethyl]-2,3-dihydroisoindol-1-one (562 mg, 1.37 mmol, I equiv.) 15 and 1,4-butanediol (616 mg, 6.85 mmol, 5 equiv.) using General Procedure A and obtained as a white solid (306 mg, 63%). 1H NMR (300 MHz, CDC1 3 ): 8.11-8.08 (m, 2H, O 2 N-C-CH), 7.91-7.88 (m, 1H, C(O)=C=CH), 7.55-7.53 (m, 2H, Ar-H), 7.30 7.14 (m, 7H, Ar-H), 3.66 (m, 2H, N-CH 2 ), 3.45 (t, J = 8.1 Hz, 2H, HO-CH 2 ), 3.16 3.11 and 3.03-2.99 (in, 2H, OCH 2 ), 3.00-2.89 and 2.73-2.66 (m, 2H, NCH 2
CH
2 ), 20 1.75-1.63 (m, 5H, CH 2 and OH). '3C NMR (75 MHz, CDC 3 ): 168.23, 147.02, 146.62, 145.32, 137.69, 134.84, 132.74, 131.98, 129.99, 129.48, 128.74, 127.87, 123.65, 123.51, 123.10, 94.54, 62.79, 62.43, 40.51, 34.21, 29.60, 26.07. HPLC: R, = 3.45 min. Anal.: calc. for C26H 2 sClN 2 0 5 : C: 64.93; H: 5.24, N: 5.82, Found: C: 64.82, H: 5.18, N: 5.68. 25 - 75 3- (4-ChIorophenyl)-2-1-
(
4 -chlorophenyl)-ethylj-3-(4-hydroxybutoxy)-2,3 dihydroisoindol-]-one (NU8365) HO Cl o N o /\ Cl 5 The named compound was synthesised from 3 -(4-chloropheny])-2-[1-(4 chlorophenyl)-ethyl]-3-hydroxy-2,3 -dihydroisoindol- 1-one (498 nag, 1.37 mmol, I equiv.) and 1,4-butanediol (616 mg, 6.85 mmol, 5 equiv.) using General Procedure A and obtained as a pale yellow oil (242 mg, 51%). 'H NMR (300 MHz, CDCI 3 ): 7.87 10 7.83 (m, 1H, C(O)=C=CH), 7.53-7.46 (m, 2H, Ar-H), 7.07-7.03 (m, 9H, Ar-H), 4.41 (q, J= 7.2 Hz, IH, N-CH), 3.70 (m, 2H, HO-CH 2 ), 3.29-3.25 and 3.01-2.95 (m, 2H,
OCH
2 ), 1,86 (d, J= 7.2 Hz, 3H, CH 3 ), 1.77-1.68 (m, 4H, CH 2 ). ' 3 C NMR (75 MHz, CDC1 3 ): 168.31, 145.26, 141.47, 137.76, 134.79, 133.15, 133.06, 132.84, 130.20, 129.67, 128.75, 128.41, 128.27, 123.71, 123.27, 95.44, 63.35, 62.89, 52.49, 29.96, 15 26.48, 20.08. m/z (ES): 470 [M+H]. HPLC: Rt = 3.76 min. Anal.: calc. for C2H 2 sClzNO 3 : C: 66.39, H: 5.36, N: 2.98, Found: C: 66.33, H: 5.25, N: 2.46. 3-( 4 -Chlorophenyl)-3-(4-hydroxymethylbenzyloxy)-2-(4-nitrobenzy2)-2,3 dihydroisoindol-1.-one (NU8366) HO C1 20 N 20
NO
2 - 76 The named compound was synthesised from 3
-(
4 -chlorophenyl)-3-hydroxy-2 (4-nitrobenzyl)-2,3-dihydroisoi~ndo-1-one (541 mg, 1.37 mmol, 1 equiv.) and 1,4 benzenedimethanol (946 mg, 6.85 mmol, 5 equiv.) using General Procedure A and 5 obtained as a white solid (405 mg, 78%). 'H NMR (300 MHz, CDC13): 8.01-7.85 (m, 3H, 02N-C-CH and C(O)=C=C), 7.61-7.53 (m, 2H, Ar-H), 7.37-7.18 (m, 9H, Ar H), 6.93 (d, J= 7.8 Hz, 2H, Ar-H), 4.85 and 4.67 (d: AB, J= 15.0 Hz, 2H, N-CH 2 ), 4.66 (d, J= 5.7 Hz, CH 2 -OH), 3.90 and 3.68 (d: AB, Jz= 11.7 Hz, 2H, OCH 2 ), 2.12 (t, J= 6.0 Hz, 1H, OH). "C NMR (75 MHz, CDC1 3 ): 168.52, 147.63, 145.39, 144.90, 10 141.16, 137.34, 136.39, 135.37, 133.42, 131.73, 130.57, 130.32, 129.19, 128.38, 127.30, 127.11, 124.34, 123.69, 95.52, 65.26, 65.12, 42.89. m/z (ES): 515 [M+Hf. HiPLC: Rt = 3.56 min. Anal.: calc. for C29H2C1N 2 0 5 : C: 67.64, H: 4.50, N: 5.44, Found: C: 67.38, H: 4.43, N: 5.26. 15 3
-(
4 -Chlorophenyl)-3-(3-hydroxymethylbenzyloxy)-2-
(
4 -nitrobenzyl)-2,3 dihydroisoindol-l.-one (NU8367) OH C1 o 0 N
NO
2 20 The named compound was synthesised from 3-( 4 -chloropheny)-3-hydroxy-2-.
(
4 -nitrobenzyl)-2,3-dihydroisoindol-1y-one (541 mg, 1.37 mmol, I equiv.) and 1,3 benzenedimethanol (946 mg, 6.85 mmol, 5 equiv.) using General Procedure A and obtained as a white solid (390 mg, 75%). 2H NMR (300 MHz, CDCt): 8.01-7.90 (m, 3H, O 2 N-C-CH and C(O)=C=CB), 7.62-7.53 (m, 2H, Ar-H), 7.39-7.17 (m, 9H, Ar- -77 H), 6.95-6.91 (m, 2H, Ar-HT), 4.80 and 4.13 (d: AB, J= 15.0 Hz, 2H, N-CH 2 ), 4.64 (d, J= 5.1 Hz, CH 2 -OH), 3.93 and 3.73 (d: AB, J= 11.4 Hz, 2H, OCH 2 ), 1.95 (t, J= 5.4 Hz, 1H, OH). "C NMR (75 MHz, CDC 3 ): 168.51, 145.42, 144.88, 141,59, 137.45, 135.37, 133.39, 131.79, 130.56, 130.34, 129.17, 128.81, 128.38, 126.61, 126.51, 5 125.82, 124.32, 123.69, 95.55, 65.42, 65.35, 42.91. m/z (ES): 515 [M+H.t HPLC: Rt = 3.58 min. Anal.: calc. for C 29 H23ClN 2 0 5 + 0.15 CH 2 C1 2 : C: 66.34, H: 4.46, N: 5.31, Found: C: 66.12, H: 4.44, N: 5.03. 3-( 4 -Chloro-phenyl)-2-[1-(4-chloro-phenyl)-ethyl-3-hydroxy-2,3-dihydro-isoindol-1 10 one CI HO N 0 CI To a solution of (R)- 4 -chloro-a-methylbenzylamine hydrochloride (2.95 mL, 15 21.1 mmol, 1.1 equiv.) in dry THF (20 mL) was added under nitrogen atmosphere thionylchoride (3.0 mL, 38.3 mmol, 2 equiv.) and 3 drops of anhydrous DMF. The reaction mixture was stirred for 4h at room temperature and concentrated in vacuo. The resulting pale yellow oil was taken up in dry TIF (20 mL), and the amine 2-(4 nitrophenyl)ethylamine hydrochloride (4.30 g, 21.1 mmol, 1.1 equiv.) and DIPEA 20 (3.49 mL, 21.1 mmol, 1.1 equiv.) were added under nitrogen atmosphere. The reaction mixture was stirred overnight at room temperature and the solvents were removed in vacuo. The residue was taken up in EtOAc (100 mL), filtered, and the filtrate washed with water (3 x 50 mL) and brine (1 x 50 mL). The organic layer was dried over MgS04, filtered and concentrated in vacuo to afford a white crystalline -78 Powder, which was recrystallised from EtOAc/Petrol ether (4.98 g, 65%). 'H NMR (300 MHz, dt-DMSO): Mixture of two diastereoisomers: 7.64-7.61 (m, iH and IH, Ar-H), 7.46-7.30 (m, SH and 5H, Ar-H), 7.26-7.02 (m, 5H and 5H, Ar-H), 6.90 (d, J = 8.7 Hz, 1H and IH, Ar-H), 4.58 and 4.43 (q, J = 6.9 Hz, IH, CH*), 4.18 and 4.11 .5 (br s, lH, OH), 1.69 and 1.56 (d, J= 7.2 Hz, 3H, CH 3 ). 1 3 C N-MR (75 MHz, d 6 DMSO): 167.33, 167.26, 148.29, 148.25, 141.08, 140.53, 137.44, 137.32, 134.74, 134.67, 132.96, 132,91, 132.75, 132.72, 131.30, 131.21, 129.82, 129.45, 129.40, 128.81, 128.70, 128.43, 128.36, 128.25, 128.00, 123.44, 123.41, 122.47, 91.93, 91.50, 52.07, 52.01, 19.84, 18.43. FTIR : 3119, 1667 cm 1 . m/z (ES): 398 [M+H]. HPLC: Rt 10 = 3.57 min. Anal.: caic. for C 2 2 F9Cl 2
NO
2 : C 66.34, H 4.30, N 3.52, Found: C 66.24 H 4.28, N 3.50. 3-(4.-Chdoro-phenyd)-2-[-o(4-chloro-phenyl)-ethyl]-3-(4-hydroxy-butoxy)-2,3-dihydro isoindol-I-one (NU8368) 15 HO C1 N C1 The named compound was synthesised from 3
-(
4 -chloro-phenyl)-2-[1-(4 chloro-phenyl)-ethyl}-3 -hydroxy-2,3 -dihydro-isoindol- 1-one (498 mg, 1.37 mol, 1 20 equiv.) and 1,4-butanediol (616 mg, 6.85 mmol, 5 equiv.) using General Procedure B and obtained as a clear oil (304 mg, 64%). 'H NMR (300 MHz, CDC1 3 ): 7.87-7.84 (m, 1H, C(O)=C=CH), 7.53-7.46 (m, 2H, Ar-H), 7.07-7.00 (m, 9H, Ar-rn, 4.41 (q, J 7.2 Hz, IH, N-CH), 3.70 (m, 2H, HO-CH 2 ), 3.31-3.24 and 3.02-2.95 (m, 2H,
OCH
2 ), 1.86 (d, J = 7.2 Hz, 3H, CH 3 ), 1.76-1.66 (n, 4H, CH 2 ). "C NMR (75 MHz, 25 CDClj): 168.32, 145.27, 141.48, 137.77, 134.80, 133.15, 133.06, 132.84, 130.20, - 79 129.67, 128.74, 128.41, 123.72, 123.27, 95.45, 63.36, 62.88, 52.49, 29.96, 26.48, 20.08. m/z (ES): 470 [M+Hf. Anal.: calc. for C26H 2 5 C1 2 NO3 + 0.3 H20: C: 65.62, H: 5.43, N: 2.94, Found: C: 65.58, H: 5.77, N: 2.45. 5 4 -fl-( 4 -Chloro-pheny)--(4..hydroy-butoxy)-3-oxo-,3-dihydro-jsondol-2 ylmethyU-benzonitrile (NU8370) HO C1 0 s N 0 CN 10 The named compound was synthesised from 2
-(
4 -(aminmethyl)benzonitrile) 3-(4-chloropheny)--3-hydroxyisoindolin-1-one (513 mg, 1.37 mmol, 1 equiv.) and 1,4-butanediol (616 mg, 6.85 mmol, 5 equiv.) using General Procedure B and obtained as a white solid (302 mg, 67%). 'H NMR (300 MHz, CDCI 3 ): 7.94-7.91 (m, 1H, C(O)=C=CH), 7.55-7.52 (m, 2H, Ar-H), 7.47 and 7.33 (d: A2B 2 , J = 8.4 Hz, 4H, 15 Ar-H), 7.20 (m, 4H, Ar-H), 7.13-7.10 (m, IH, Ar-H), 4.60 and 4.24 (d: AB, J= 15.0 Hz, 2H, NCH 2 ), 3.56 (t, J= 5.4 Hz, 2H, HOCH2), 2.80-2.74 (m, 2H, OCH 2 ), 1.53 1.16 (m, 4H, CH 2 ). '3C NMR (75 MHz, CDC1 3 ): 168.18, 145.32, 142.86, 137.20, 134.77, 132.90, 131.86, 131.46, 129.99, 129.85, 128.61, 127.95, 123.77, 123.08, 118.41, 111.33, 94.78, 62.82, 62.34, 42.68, 29.41, 25.67. Anal.: cale. for 20 C29H23CIN203 + 0.2 H20: C: 69.37, H: 5.16, N: 6.22, Found: C: 69.29, H: 5.20, N: 6.04.
- 80 All references to General Procedures A-F made hereinbelow are references to the General Procedures A-F outlined immediately below and do not refer to General Procedures A-C hereinabove. 5 General Procedure A To a suspension of the corresponding phthalic anhydride (1 equiv.) in chlorobenzene (8 equiv.) was added aluminium chloride (2.4 equiv.) The mixture was heated to 90"C for 2 h and then cooled to room temperature. Ice was added followed by cone. HCI (5 mL) and the mixture was extracted into dichloromethane 10 (DCM) (3 x 50 mL) and then washed with 10% Na 2
CO
3 solution (2 x 50 mL). The Na 2
CO
3 washings were combined and acidified to pH3 with cone. HCL The resulting precipitate was collected by filtration and dried in a vacuum oven. General Procedure B 15 To a solution of the corresponding benzoic acid (1 equiv.) in dry THF (10 mL) was added under a nitrogen atmosphere thionyl chloride (2 equiv.) and 3 drops of anhydrous DMF. The reaction mixture was stirred for 4h at room temperature and concentrated in vacuo. The resulting pale yellow oil was taken up in dry THF (10 mL) and the amine (1.1 equiv.) and DIPEA (1.1 equiv.) were added under nitrogen 20 atmosphere. The reaction mixture was stirred overnight at room temperature and the solvents were removed in vacuo. The residue was taken up in EtOAc (50 mL), filtered and the filtrate washed with water (3 x 25 mL) and brine (1 x 25 mL). The organic layer was dried over MgS04, filtered and concentrated in vacuo to afford a solid which was recrystallised from EtOAc / petrol ether or purified by flash 25 chromatography (Biotage SP4). General Procedure C To solution of the corresponding isoindolinone (1 equiv.) in dry THF (10 mL) was added under a nitrogen atmosphere thionyl chloride (2 equiv.) and 3 drops of 30 anhydrous DMF. The reaction mixture was stirred for 4 h at room temperature and - 81 concentrated in vacuo. The resulting pale yellow oil was taken up in dry TIF (10 mL) and the alcohol (2 equiv.) and potassium carbonate (2 equiv.) were added. The reaction mixture was stirred overnight at room temperature and the solvents were removed in vacuo. The residue was taken up in EtOAc (50 mL) and washed with 5 water (3 x 25 mL) and brine (1 x 25 mL). The organic layer was dried over MgSO 4 , filtered and concentrated in vacuo to afford an oil which was purified by flash chromatography (Biotage SP4). Geeal. Procedure D) 10 To a solution of the corresponding isoindolinone (1 equiv.) in anhydrous DCM (5 mL) was added mCPBA (1.1 equiv.) . The reaction mixture was stirred at 30 C for 4 h and then diluted with DCM (30 mL), washed with saturated NaHCO 3 solution (30 mL), water (30 mL) and brine (30 mL). The organic layer was dried over MgSO 4 , filtered and concentrated in vacuo to afford an oil which was purified by flash 15 chromatography (Biotage SP4). General Procedure E To a solution of the corresponding ester (1 equiv.) in dry THF was added under a nitrogen atmosphere potassium trimethylsilanolate (1 equiv.). The reaction 20 mixture was stirred at room temperature overnight. Further potassium trimethylsilanolate (1.1 equiv.) was added and the mixture was again stirred at room temperature overnight. The solvent was concentrated in vacuo to afford a solid which was purified by flash chromatography (Biotage SP4). 25 General Procedure F To a solution of the corresponding isoindolinone (1 equiv.) in THF (10 mL) was added pyridine (2 equiv.), 4 -dinethylamino pyridine (catalytic) and succinic anhydride (2 equiv.). The reaction mixture was heated under reflux for 48 h, cooled to RT and the solvent concentrated in vacuo. The residue was dissolved in EtOAc (50 -82 mL), washed with water (2 x 20 mL), brine (20 mL), dried over Na 2
SO
4 and concentrated in vacuo. The product was purified by flash chromatography. INTERMEDIATES 5 Synthesis of 2
-(
4 -bronohenzovlbenzo-ic acid 0 C0 2 Br To a suspension of the phthalic anhydride (2 g, 13.50 mmol) in bromobenzene 10 (11.38 mL, 108 mmol) was added aluminium chloride (3.60 g, 27.00 mmol). The mixture was heated to 90 0 C for 2 h and then cooled to room temperature. Ice was added followed by cone. HCI (5 mL) and the mixture was extracted into DCM (3 x 50 mL) and then washed with 10% Na 2
CO
3 solution (2 x 50 mL). The Na 2
CO
3 washings were combined and acidified to pH3 with cone. HCL. The resulting precipitate was 15 collected by filtration and dried in a vacuum oven. The named compound was obtained as a white solid (3.41 g, 83%). 'H NMR (300 MHz, DMSO) 6 7.39-7.42 (m, IH, -CH=CH-C(CO 2 H)), 7.51-7.53 (d AB, J = 7.7 Hz , 2H, -CH-C(Br)), 7.73-7.66 (m, 4H, ArH), 7.97-8.00 (m, 11, CH=CH-CH-C(CO2H)) 20 ' 3 C NMR (DMSO, 75 MHz), 8 127.61, 128.89, 129.97, 130.09, 130.38, 130.71, 130.92, 132.07, 132.96, 136.46, 167.09, 194.21 IR: 665, 702, 736, 770, 812, 839, 924, 1009, 1065, 1148, 1252, 1279, 1422, 1485, 1570, 1670, 2546, 2657, 2832, 2988 cmt LCMS (DMSO): Rt = 3.01 min (on 5 min column) 25 UV (in EtOH): I max =259 nm Rf: 0.29 (50% EtOAc / petrol) MP: 170 - 172*C -83 Synthesis of a mixture. of acid and 24 chlorobenzovl)-6-methylbenoic acid Me O 0 002 C1 002 C Me 5 The named compounds were synthesised from 3 -methylphthalic anhydride (3 g, 18.50 nmol) using General Procedure A and obtained as a white solid (2.98 g, 59%, ratio of 3- and 6 -isomers is 20:1) which was used without further purification. 'H NMR (300 MHz, DMSO) 10 Major isomer: 5 2.06 (s, 3H, CH 3 ), 7.45-7.61 (m, 6H, ArH), 7.86-7.88 (d, J = 6.6 Hz, 1H, CH-(C0 2 H)), 10.69 (br s, 1H, CO2) 3CNMR (DMSO, 75 MHz), 6 18.63, 127.36, 128.94, 129.22, 129.53, 129.65, 130,06, 132.60, 134.94, 135.23, 137.74, 167.31, 193.10 IR: 675, 738, 754, 831, 919, 1009, 1088, 1144, 1264, 1288, 1400, 1580, 1678, 1749, 15 2556, 2643, 2817, 2961, 3406 cm-i LCMS (DMSO): Rt = 3.49 min (on 5 min column) UV (in EtOH): X max = 255 nm Rf- 0.37 (50% EtOAc / petrol) MP: 179 - 180 0 C 20 Synthesis of a mixture of 2
-
4 -chlorobenzovll4-emethybenzoic acid and 2-4 .chlorobenzoyli-5-methezic acid 0 0 Me C MeC C 25 - 84 The named compounds were synthesised from 4 -methylphthalic anhydride (3 g, 18.50 mmol) using General Procedure A and obtained as a white solid (4.60 g, 90%, ratio of 4- and 5-isomers is 2:1) which was used without further purification. H NMR (300 MHz, DMSO) S 5 Major isomer: 2.41 (s, 3H, CH3), 7.23-7,25 (d, J= 1.4 Hz, 1H, C(Me)-CH-C(COAr)), 7.43-7.48 (m, 1H, C(Me)-CH-CH-C(CO 2 H)), 7.53-7.63 (m, 4H, ArH), 7.89-7.91 (d, J =8.0 Hz, 1H, -CH-CH-C(Co2H)), 13.10 (br s, IH, CO2t Minor isomer: 2.44 (s, 3H, CH3), 7.32-7.34 (d, J = 7.7 Hz, 1H, C(Me)-CH-CH C(COAr), 7.36-7.40 (m, 1H, C(Me)-CH-CH-C(COAr), 7.53-7.63 (in, 4H, ArH), 7.80 10 7.82 (d, J = 1.1 Hz, 1H, C(Me)-CH-C(CO 2 H)), 13.10 (br s, 1H, CO2H) 'C NMR (DMSO, 75 MHz), 5 21.28, 127.79, 127.95, 129.07, 130.12, 130.78, 133.17, 136.45, 137.22, 138.11, 140.24, 167.00, 190.90 IR: 683, 751, 780, 838, 934, 962, 1009, 1088, 1153, 1211, 1288, 1398, 1422, 1486, 1570, 1677, 2164,2828, 3062 cn-' 15 LCMS (DMSO): Rt - 3.24 min (on 5 min column) UV (in EtOH):Xmax =253 nm Rf: 0.42 (50% EtOAc / petrol) MP: 163 - 164"C 20 Synthesis of a mixture of ch 4 -tert-buvI- orobenzoy1)benzoic acid and 5-tert butyl-2-(4-chlorobenzovIlbenzoic acid mMe 0 Me me-- Me Mel eC1C 2 C1 Me 25 The named compounds were synthesised from 4-tertbutylphthalic anhydride (2.5 g, 12.24 mmol) using General Procedure A and obtained as a cream solid (3,56 g, 92%, ratio of 4- and 5-isomers is 1.3:1) which was used without further purification.
- 85 'H NMR (300 MHz, DMSO) 8 Major isomer: 1.29 (s, 9H, (CH 3
)
3 ), 7.35-7.38 (d, J = 1.8 Hz, JH, C( t BU)-CHCH C(CO2H)), 7.54-7.69 (m, 4H, ArH), 7.69-7.75 (m, IH, C( t Bu)-CH-C(COr)) 7.94 7.97 (d, J= 8.3 Hz, 1H, -CH-CH-C(CO2H)) 5 Minor isomer: 1.34 (s, 9H, (CH 3
)
3 ), 7.40-7.41 (d, J = 8.0 Hz, IIH, C(Bu)-CH-CH C(COAr), 7.54-7.69 (m, 4H, ArH), 7.74-7.77 (m, 1H, C(tBu)-CH-C-H-C(COAr), 7.99 8.00 (d, J= 1.9 Hz, 1H, C(Bu)-CH-C(C02H)) Both isomers:
'
3 C NMR (DMSO, 75 MHz), 8 31.07, 31.18, 34.96, 35.24, 124.45, 126.68, 126.99, 10 127.59, 127.85, 128.69, 129.06, 129.56, 130.22, 130.52, 130,87, 130.92, 136.41, 138.27, 138.61, 141.35, 153.12, 156.11, 166.93, 167.41, 195.70, 195.88 IR:683, 712, 762, 808, 843, 907, 932, 1007, 1083, 1119, 1159, 1252, 1280, 1364, 1398, 1417, 1476, 1585, 2869, 2964 cm LCMS (DMSO): Rt = 3.56 min (on 5 min column) 15 UV (in EtOH): I max = 2 55 nm Rf= 0.52 (50% EtOAc / petrol). MP: 173 - 174"C Synthesis of 3 -chloro-2-(4-chwrobenzoyl)benzoic acid 20 and cchloro-2-4-chlorobenzovIlbenoic aid 0 C) 0 K C02 C1 C0 2 C1 C1 The named compounds were synthesised from 3 -chlorophthalic anhydride (5 g, 27.39 mmol) using General Procedure A and obtained as a yellow solid (6.71 g, 83%, ratio 25 of 3- and 6 -isomers is 99:1) which was used without further purification. H NMR (300 MHz, DMSO) 5 - 86 Major isomer (20): 7.56-7.59 (d AB, J = 8.6 Hz, CH-C(CI)-CH), 7.65-7.71 (m, 3H, Ar-), 7.84-7.87 (dd, J= 0.9, 8.0 Hz, IH, CH-C(C1)-C(COAr)), 8.03-8.06 (dd, J= 0.9, 8.0 Hz, 1H, CH-C(CO2H)), 13.65 (br s, IH, CO 2 H) Minor isomer (21): too weak to analyse 5 ' 3 C NMR (DMSO, 75 MHz), 8 129.38, 130.51, 130.59, 130.64, 131.36, 131.82, 134.20, 135.73, 138.55, 139.88, 165.93, 195.17 IR: 672, 714, 743, 756, 824, 864, 920, 1009, 1090, 1154, 1206, 1255, 1298, 1400, 1461, 1582, 16 76 , 2656, 2825, 3067 cm 4 LCMS (DMSO): Rt= 3.34 min (on 5 min column) 10 UV (in EtOH):Xmax =256 nm Rf= 0.29 (50% EtOAc / petrol) MP: 184 - 185 0 C Synthesisob v) z acid and 5-bromo-2-(4 15 chlorobenzoy Ibenzoic acid 0 0 Br~ t co 2 cc, BB
C
2 CCi The named compounds were synthesised from 4 -tertbutylphthalic anhydride (2.5 g, 12.24 mmol) using General Procedure A and obtained as a cream solid (3.47 g, 66%, 20 ratio of 4- and 5-isomers is -1:1) which was used without further purification. 'H NMR (300 MHz, DMSO) 8 Compound 36: 7.54-7.66 (m, 4H, -C 6
H
4 CI), 7.84-7.93 (m, 2H, Air), 8.08-8.09 (d. J= 1.7 Hz, 1H, C(Br)CQC(CO2H)), 13.60 (br s, IH, C0 2 ) Compound 35: 7.54-7.66 (m, 4H, -C61 4 C1), 7.70-7.72 (d, J = 1.5 Hz, IH, 25 C(Br)CHC(COAr)), 7.84-7.93 (m, 2H, ArH), 13.60 (br s, 1H, CO 2 fH) "C NMR (DMSO, 75 MHz), 8 128.16, 129.15, 130.21, 130.90, 131.37, 132.12, 133.18, 135.21, 135.52, 138. 35, 170.54, 193.35 -87 IR: 756, 841, 883, 927, 1013, 1092, 1152, 1177, 1285, 1400, 1423, 1483, 1580, 1672, 2546 cm LCMS (DMSO): Rt = 3.43 min (on 5 min column) UV (in EoH):Xmax =255 nm 5 Rf= 0.24 (50% EtOAc / petrol) MP: 210 -211*C Synthesis of 4,5-dichlo -2-(4-chlrqbnzoylbenzoicacid 0 CI N C 10 The named compound was synthesised from 4 ,5-dichlorophthalic anhydride (2.5 g, 11.52 mmol) using General Procedure A and obtained as a yellow solid (1.98 g, 52%). H NMR (300 MHz, DMSO) 5 7.56-7.59 (d AB, J= 8.3 Hz, -CC 2
H
2
C
2
H
2 CCI), 7.67 7.70 (d AB, J = 8.3 Hz, -CCzH 2
C
2
H
2 CC), 7.87 (s, lH, CH-C(COAr)), 8.14 (s, 1H, 15 CH-C(CO2H)), 13.85 (br s, IH, CO 2 f) 'SC NMR (DMSO, 75 MHz), 3 129.21, 130.76, 131.07, 131.11, 131.97, 134.15, 137.45, 138.23, 138.70, 139.76, 170.36, 198.58 IR: 768, 843, 868, 893, 964, 1009, 1090, 1126, 1167, 1257, 1343, 1422, 1478, 1545, 1582, 1678, 2228, 2563, 2834 cm 20 UV (in EtOH): max = 254 mn Rf= 0.18 (50% EtOAc / petrol) MP: 195- 197 0 C Synthesis of a mixture of 2
-(
4 -choroben zoVhy4IIurbe ic acid and 244 25 .cooe acid F C0 C0 2 CI Fja
CO
2 CI - 88 The named compounds were synthesised from 4-fluorophthalic anhydride (2.5 g 15.05 mmol) using General Procedure A and obtained as a cream solid (3.51 g, 84%, ratio of 4- and 5-isomers is 3:2). The mixture was used without further purification. 5 'H NMR (300 MHz, DMSO) s Major isomer: 7.24-7.27 (dd, J = 2.0, 8.5 -Hz, 1H, C(F)-CW-C(COAr)), 7.40-7.46 (m, 1H, C(F)-CH-CH-C(CO 2 H)), 7.49-7.52 (m, 2H, ArH), 7.57-7.61 (i, 2H, ArH), 8.02 8.07 (dd, J =5.4, 8.5 Hz, IH, CH-CH-(CO 2 H) Minor isomer: 7.40-7.46 (m, iH, C(F)-CH-CH-C(COAr)), 7.49-7.52 (m, 3H, ArH), 10 7.57-7.61 (m, 2H, ArH), 7.66-7.70 (dd, J= 1.9, 9.2 Hz, IH, C(F)-CH-(CO2)) "C NMR (DMSO, 75 MHz), 5 116.98, 119.25, 128.62, 129.15, 130.85, 130.92, 136.01, 138.40, 139.09, 166.10, 166.26, 196.59 IR: 681, 753, 784, 841, 860, 945, 974, 1011, 1086, 1140, 1174, 1211, 1278, 1401, 1427, 1486, 1580, 1672, 2822, 3070 cm-' 15 LCMS (DMSO): Rt = 3.76 min (on 5 min column) UV (in EtOH): X max = 256 nm Rf= 0.33 (50% EtOAc / petrol) MP: 153 - 155*C 20 Synthesis of 2
-(
4 -chlorobenzoyic exI -enecarbo acid 0 aCO 2 C The named compound was synthesised from 3 ,4,5,6-tetrahydrophthalic anhydride (2.08 g, 13.69 mmol) using General Procedure A, purified by chromatography 25 (Bliotage SP4; 20% - 40% EtOAc/petrol) and obtained as a yellow oil (2.69 g, 74%). 'H NMR (300 MHz, DMSO) 8 1.50-1.70 (m, 4H, CH2-C(COAr)-C(CO2H)-CH2) 2.15-2.17 (m, 4H, CH2-CH2-CH2-C(CO2H)), 7.93-7.48 (m, 4H, ArH), 8.16 (br s, 1H, CO2H) - 89 1 3 C NMR (DMSO, 75 MHz), 6 19.79, 21.01, 21.37, 21.45, 127.79, 128.84, 133.95, 137.48, 146.33, 149.31, 171.24, 192.87 IR: 687, 729, 757, 819, 907, 938, 966, 1038, 1072, 1169, 1206, 1246, 1375, 1422, 1489, 1597, 1736, 2865, 2937, 3318 cm 5 LCMS (DMSO): Rt = 3.72 min (on 5 min column) UV (in EtOH):Imax =254 nm Rf = 0.48 (50% EtOAc / petrol) FINAL COMPOUNDS 10 Synthesis of 3-(4_-bromopnyll-3 I4-h droxybutoxy-2-(4-nitrobezlisoindolin.
one (N83 90) HO Br 0 0
NO
2 15 The named compound was synthesised from NU8389 (0.50 g, 1.14 mmol) and 1,4 butanediol (0.20 mL, 2.28 mmol) using General Procedure C, purification by chromatography (Biotage SP4; 10% - 50% EtOAc/petrol) and obtained as a pale yellow oil (0.50 g, 85%). 20 'H NMR (300 MHz,
CDC
3 ) 6 1.36-1.45 (m, 41H, OCH-CH4CH2), 2.76 (t, J= 6.1 Hz, O-CH 2 ), 3.49 (t, J= 6.2 Hz, HO-CH 2 ), 4.25 and 4.60 (dd: AB, Jz= 15.0 Hz, 2H,
N-CH
2 ), 7.08-7.13 (m, 3 H, Ar-H), 7.29-7.36 (m, 4H, Ar-H), 7.48-7.51 (in, 2H, Ar 1), 7.87-7.89 (m, 1H, C(O)=C=CB), 7.97-8.00 (m, 2H, 0 2
N-C-CH)
-90 "C NMR (CDC1, 75 MIz), 8 26.01, 29.69, 42.69, 62.51, 63.19, 95.14, 123.21, 123.45, 123.55, 124.09, 128.61, 130.25, 130.34, 131.76, 131.92, 133.27, 138.13, 145.10, 145.58, 147.72, 168.49 IR: 696, 760, 804, 853, 928, 1005, 1063, 1099, 1177, 1276, 1341, 1381, 1425, 1467, 5 1519, 1605, 1687, 2872, 2925, 3397 cm LCMS (DMSO): Rt= 3.72 min (on 5 min column) UV (ini EtOHJ): X max = 267 nm Rf: 0.26 (50% EtOAc /petrol) CHN: C2sH23BrN 2 0s requires C: 58.72, H: 4.53, N: 5.48, found C: 58.70, H: 4.24, N: 10 5.25 S ynthe is . o f , 3
-(
4 -bron o en y1 -3 -.( 1- d ro x vi e f v ~ y ~ p o I m OH Br N0 N 15 N0 15
NO
2 The named compound was synthesised from NU8389 (0.50 g, 1.14 mol) and 1,1 bis(hydroxymethyl)cyclopropane (0.22 nL, 2.28 mmol) using General Procedure C, purification by chromatography (Biotage SP4; 10% - 50% EtOAc/petrol) and 20 obtained as white crystals (0.47 g, 78 %). 'H NMR (300 MHz,
CDCI
3 ) 6 0.13-0.22 (m, 2H, CH 2 ), 0.42-0.43 (m, 21, CH 2 ), 2.78 2.85 (m, 2H,
OCH
2 ), 3.44-3.52 (in, 2H, HOCH 2 ), 4.50 (s, 2H, N-CH 2 ), 7.09-7.18 (in, 3 H, Ar-H), 7.28-7.33 (m, 4H, Ar-H), 7.52-7.55 (m, 2H, Ar-H), 7.89-7.93 (m, 1H, C(O)=C=Cm), 7.96-8.01 (m, 2H, 02N-C-CH) -91 ' 3 C NMR (CDC1 3 , 75 MHz), 6 8.90, 22.64, 42.70, 67.72, 94.95, 123.33, 123.48, 123.59, 124.14, 128.59, 130.01, 130.20, 130.51, 131.94, 133.47, 138.00, 144.95, 145.42, 147.61, 168.54 IR: 697, 759, 805, 855, 928, 1007, 1065, 1097, 1177, 1275, 1341, 1383, 1426, 1466, 5 1519, 1605, 1685, 2873, 2917, 3078 cm 4 LCMS (DMSO): Rt = 3.88 min (on 5 min column) UV (in EtOH): X ax = 267 nm Rf: 0.32 (50% EtOAc / petrol) MP: 76 -77*C 10 CHN: C2H2 3 BrN 2 0 5 requires C: 59.67, H: 4.43, N: 5.35, found C: 59.71, H: 4.39, N: 5.17 Synthesis of 3 -(4- -ntrnzis3onoi-hndro1 one (NU8392) 15 OH Br 0 ON
NO
2 The named compound was synthesised from NU8389 (0.50 g, 1.14 mmol) and 1,3 propanediol (0.16 mL, 2.28 mmol) using General Procedure C, purification by 20 chromatography (Biotage SP4; 10% - 50% EtOAc/petrol) and obtained as a pale yellow oil (0.40 g, 70%). 1H NMR (300 MHz, CDC1 3 ) 8 1.46-1.61 (m, 2H, OCH-CH 2 ) 2.92 (td, J = 6.0, L9 Hz, 0-CH 2 ), 3.60 (t, J= 6.1 Hz, HO-CH2), 4.34 and 4.60 (dd: AB, J= 15 1 Hz, 2H,
N-CH
2 ), 6.95-6.99 (m, 1H, Ar-H), 7.10-7.17 (m, 2H, Ar-H), 7.27-7.39 (m, 4H, Ar-H), -92 7.50-7.55 (m, 2H, Ar-H), 7.89-7.92 (m, 1H, C(O)=C=CH), 7.97-8.04 (m, 2H, 0 2
N-C
CH) "C NMR (CDCI 3 , 75 MHz), 6 32.45, 42.71, 60.23, 60.80, 95.21, 123.31, 123.48, 123.61, 124.17, 128.57, 130.24, 130.47, 131.75, 131.99, 133.40, 137.99, 145.07, 5 145.43, 147.64, 168.58 IR: 697, 760, 805, 853, 927, 1010, 1063, 1098, 1177, 1278, 1339, 1381, 1423, 1467, 1518, 1603, 1688, 2879, 2925, 3409 cm~1 LCMS (DMSO): Rt 3.73 min (on 5 min column) UV (in EtOH): % max = 266 nm 10 Rf 0.24 (50% EtOAc / petrol). CHN: C2 4
H
21 BrN 2 0 5 requires C: 57.96, H: 4.26, N: 5.63, found C: 58.16, H: 4.28, N: 5.43 Synthesis of 3-( 4 -chlorophenyl)-3-hvdroxy-4-methy12.(4niobey1)isoindoln1 15 one (NU8393) and 3
-(
4 -chloronheny)-3-hydroxy-7-mety1-2-( 4 nitrobenzyl)isoindolin- 1 -one (NU8394) C1 C1 MeHO CHO N [ N O -Me O
NO
2
NO
2 20 The named compounds were synthesised from a mixture of 2
-(
4 -chlorobenzoyl)-3 methylbenzoic acid and 2
-(
4 -chlorobenzoy1)-6-methylbenzoic acid (2 g, 7.28 mmol) and 4 -nitrobenzylamine hydrochloride (1.51 g, 8.01 mmol)- using General Procedure B, purified by chromatography (Biotage SP4; 10% - 20% EtOAc/petrol) and obtained as a yellow solid (NU8393) and cream solid (NU8394) (1.45 g, 49%, ratio of 4- and 25 7 -isomers is 20:1).
- 93 Analysis of major isomer (NU8393): 'H NMR (300 MHz, CDCb3) 6 2.07 (s, 3H, -CH 3 ), 4.02 (br s, 1H, OH), 4.16 and 4.46 (dd, J = 15.3 Hz, 2H, N-CH 2 -),7.19-7.23 (m, 6H, Ar-H), 7,29-7.31 (dd, J = 7.5, 1.5 Hz, 1H, -CH-CH-C(Me), 7.39-7.44 (t, = 7.6 Hz, 1H, -CH-CH-C(Me)-), 7.60-7.62 5 (dd, J = 7.3, 1.1 Hz, 1H, C(O)-C=CH-),7.93-7.97 (m, 2H, -CH-NO 2 ) '3C NMR (CDC1 3 , 75 MHz), 6 19.86, 42.76, 90.65, 121.58, 123.67, 125.66, 126.70, 128.39, 129.02, 129.69, 131.33, 132.01, 134.21, 136.85, 139.43, 145.52, 148.29, 166.89 IR: 695, 729, 760, 800, 851, 932, 982, 1014, 1075, 1193, 1271, 1341, 1397, 1487, 10 1517, 1609, 1680, 3238 cm-1 LCMS (DMSO): Rt= 3.75 min (on 5 min column) HPLC purity (as area %): > 95 UV (in EtOH): X max = 269 un EI-MS: calculated mass of ion 409.0950 [M+H]*, measured mass of ion 409.0951 15 [M+H] 4 Rf: 0.47 (50% EtOAc / petrol) MP: 175 - 176*C CHN: C22H 7 C1N 2 0 4 requires C: 64.63, H: 4.19, N: 6.85, found C: 64.78, H: 4.40, N: 6.58 20 Analysis of minor isomer (NU83 94): H NMR (300 MHz, CDC1 3 ) 8 2.62 (s, 3H, -CH 3 ), 3.79 (br s, 1H, OH), 4.30 and 4.61 (dd, J = 15.3 Hz, 2H, N-CH 2 -),7.07-7.19 (m, 1H, Ar-H), 7.21-7.26 (in, 5H, Ar-H), 7.31-7.41 (m, 3H, Ar-H), 7.97-8.00 (m, 2H, -CH-NO 2 ) "C NMR (CDCl 3 , 75 MHz), 6 17.43, 42.78, 90.68, 120,41, 123.74, 126.76, 127.30, 25 128.18, 129.13, 129.79, 132.57, 133.06, 135.31, 137.40, 138.59, 145.87, 149.32, 168.65 IR: 696, 725, 779, 802, 854, 932, 966, 1011, 1088, 1171, 1199, 1279, 1337, 1378, 1423, 1481, 1516, 1602, 1678, 2852, 2923, 3338 em- 1 LCMS (DMSO): Rt = 3.70 min (on 5 min column) 30 HPLC purity (as area %): 90 - 94 UV (in EtOX): X nax = 270 nn EI-MS: calculated mass of ion 409.0950 [M+Hf, measured mass of ion 409.0945
[M+H
4 Rf: 0.58 (50% EtOAc /petrol) 5 MP: 158 - 159"C Synthesis of 3-4-chloro-phenyl)-3-(1 -hydroxymethvl-cvclopropy1methoxy-2-(4 nitro-benzyl)-2,3-dihydro-isoindol- -one (NU8354) OH CI N 10
NO
2 The named compound was synthesised from NU8260 (400 mg, 1.01 mmol) and 1,1 bis(hydroxymethyl)cyclopropane (0.19 mL, 2.03 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 10% - 50% EtOAc/petrol) and obtained as 15 a cream solid (442 mg, 92%). 'H NMR (300 MHz, CDCl) 8 0.12-0.22 (m, 2H, CH 2 ), 0.40-0.43 (m, 2H, CH 2 ), 2.81 (s, 2H, OCH 2 ), 3.43-3.51 (m, 2H, HOCH 2 ), 4.49 (s, 2H, N-CH 2 ), 7.12-7.19 (m, 5 H, Ar-H), 7.29-7.32 (mn, 2H, Ar-H), 7.52-7.55 (m, 2H, Ar-H), 7.89-7.92 (m, 1H, C(0)4=C), 7.98-8.01 (in, 2H, 0 2 N-C-CH) 20 1 -C NMR (CDC 3 , 75 MHz), 8 8.90, 8.94, 22.68, 42.75, 67.84, 94.96, 123.48, 123.60, 124.16, 128.30, 128.98, 130.21, 130.50, 131.87, 133.45, 135.29, 137.47, 144.95, 145.52, 168.54 IR: 702, 769, 820, 858, 928, 955, 1009, 1036, 1065, 1090, 1176, 1231, 1277, 1341, 1383, 1427, 1470, 1514, 1599, 1705, 2878, 3076, 3471 cm-' 25 LCMS (DMSO): Rt = 3.78 min (on 5 min column) -95 UV (in EtOH): Xmax = 267 nm EI-MS: calculated mass of ion 478.1290 [M+H]*, measured mass of ion 478.1291 [M+H]+ RE 0.32 (50% EtOAc / petrol) 5 MP: 148 - 149*C CHN: C 26
H
23 C1N 2 0 5 requires C: 65.21, H: 4.84, N: 5.85, found C: 65.21, H: 4.99, N: 5.58 Separation of enantiomers achieved by chiral preparative HPLC (Daicel Chiralpak 10 AD-H 250x10 mm; Hexane/Ethanol (4:1)) NU8354A (yellow solid) Optical rotation: Specific rotation [a] = + 22.66 9 (at 24.8 0 C, wavelength = 589 mn, tube length = 0.25 din, concentration = 0.406g / 1I00ml) 15 NU8354B (off-white solid) Optical Rotation: Specific rotation [a] = -20.10 * (at 24.8"C, wavelength = 589 nm, tube length = 0.25 din, concentration = 0.398g / I 00ml) 20 Synthesis of 3-( 4 -chlorophenvl)-3-hydroxy-5-methyl-2-(4-nitrobenzyl)isoindolin-1 one (NU8395) and 3-(4-chlorophenvl)-3 -hvdroxy-6-methyl-2-(4 nitrobenzyl)isoindolin-1-one (NU8412) CI CI HO I HO 1 JN
IN
eMe
NO
2
NO
2 25 -96 The named compounds were synthesised from a mixture of 2
-(
4 -chlorobenzoy)-4 methylbenzoic acid and 2
-(
4 -chlorobenzoyl)-5--methylbenzoic acid (2 g, 7.28 mmol) and 4-nitrobenzylamine hydrochloride (1.51 g, 8.01 mmol) using General Procedure B, purified by chromatography (Biotage SP4; 10% - 20% EtOAc/petrol) and obtained 5 as a white solid (NU8395) and white solid (NU8412) (1.25 g, 42%, ratio of 5- and 6 isomers is 2:1). Analysis of major isomer (NU8395): 'H NMR (300 MHz, CDC13) 8 1.36 (s, 9H, -C(CH 3 )), 3.64 (br s, 1H, OH), 4.21 and 4.64 (dd, J = 15.3 Hz, 2H, N-CH 2 -),7.19-7.24 (dd, J = 1.3 Hz 1H, -C-CH=C(Me)), 10 7.21-7.22 (m, 4H, Ar-H), 7.25-7.34 (in, 3H, Ar-H), 7.65-7.68 (dd, J = 7.7 Hz, 1H, C(O)-C=CH-), 7.97-8.01 (m, 2H, -CH-NO 2 ) "C NMR (CDCla, 75 MHz), 6 22.12, 40.91, 94.13, 123.73, 124.04, 128.17, 129.16, 129.76, 130.42, 132.88, 134.89, 136.93, 139.91, 140.77, 141.02, 145.33, 148.58, 166.11 15 IR: 696, 729, 745, 770, 788, 800, 833, 853, 929, 961, 988, 1015, 1044, 1089, 1103, 1128, 1155, 1184, 1203, 1271, 1309, 1341, 1390, 1427, 1491, 1516, 1603, 1623, 1660, 1937, 2202, 2851, 2918, 3053, 3088, 3231 cm LCMS (DMSO): Rt = 3.74 min (on 5 min column) HPLC purity (as area %): > 98 20 UV (in EtOH): Xmax = 268 nm EI-MS: calculated mass of ion 426.1215 [M+NH4], measured mass of ion 426.1212 [M+NH4]* Rf 0.50 (50% EtOAc / petrol) MP: 221 -- 222*C 25 CHN: C 2 2
H
17 C1N 2 0 4 requires C: 64.63, H: 4.19, N: 6.85, found C: 64.76, H: 4.13, N: 6.58 Analysis of minor isomer (NUS412): 'H NMR (300 MHz, CDC1 3 ) 8 2.40 (s, 3H, -CH 3 ), 4.27 (br s, 1H, OH), 4.26 and 4.56 (dd, 3 = 15.3 Hz, 2H, N-CH 2 -),7.13-7.21 (m, 5H, Ar-H), 7.25-7.28 (m, 2H, Ar-H), -97 7.30-7.34 (m, 1H, -CH-CH-C(Me)-), 7.43-7.45 (dd, J = 1.2 Hz, 1H, C(O)-C=CH-), 7.93-7.96 (m, 2H, -CH-NO 2 )
'
3 C NMR (CDC1 3 , 75 MHz), 8 21.64, 42.74, 91.34, 122.82, 123.65, 124.24, 128.18, 129.04, 129.77, 130.52, 134.42, 135.21, 137.27, 140.05, 140.80, 145.67, 146.24, 5 168.25 IR: 704, 731, 770, 787, 806, 831, 854, 932, 1013, 1061, 1090, 1132, 1174, 1199, 1256, 1310, 1343, 1383, 1433, 1491, 1518, 1607, 1660, 1678, 1983, 2018, 2224, 2255, 2853, 2922, 3320, 3342 cm-1 LCMS (DMSO): Rt = 4.09 min (on 5 min column) 10 UV (in EtOH): X max = 268 nm EI-MS: calculated mass of ion 407.0804 [M-H]~, measured mass of ion 407.0800 [M H]~ Rf: 0.53 (50% EtOAc / petrol) MP: 208 - 209"C 15 CHN: C22H 7
CIN
2 0 4 requires C: 64.63, H: 4.19, N: 6.85, found C: 64.95, H: 4.19, N: 6.83 Synthesis of 5-tert-butyl-3-(4-chlorophenyl-3-hydroxy-2-(4-nitrobenzy1)isoindolin-1 one (NU83 96) and 6-tert-butyl-3-(4-chlorophenvl)-3-hydroxy-2-(4 20 nitrobenzyl)isoindolin-1-one (NU8397) C1 C1 MeMe HO HO Me N MeM N Me O -Me O
NO
2 NO 2 The named compounds were synthesised fi-om a mixture of 4-tert-butyl-2-(4 25 chlorobenzoyl)benzoic acid and 5-tert-butyl-2-(4-chlorobenzoyl)benzoic acid (2.31 g, 7.28 mmol) and 4-nitrobenzylamine hydrochloride (1.51 g, 8.01 mmol) using General -98 Procedure B, purified by chromatography (Biotage SP4; 10% - 20% EtOAc/petrol) and obtained as a white solid (N18396) and cream solid (NU8397) (2.43 g, 74%, ratio of 5- and 6-isomers is 1.3:1). Analysis of major isomer (NU8396): 5 'H NMR (300 MHz, CDC1 3 ) 5 4.25 and 4.68 (dd, J = 15.4 Hz, 2H, N-CHr 2 -), 7.22-7.27 (m, 5H, Ar-H), 7.32-7.35 (m, 2H, Ar-H), 7.54-7.57 (dd, J = 8.06, 1.62 Hz, 1H, -CH CH-C(tBu)-), 7.72-7.75 (dd, J= 8.0 Hz, IH, C(O)-C=CH-CH-C(Bu)-), 8.00-8.03 (n, 2H, -CH-NO2)
'
3 C NMR (CDC 3 , 75 MHz), 5 31.58, 41.48, 41.54, 91.51, 119.64, 123.70, 125.51, 10 126.81, 127.26, 128.20, 129.13, 129.71, 133.51, 134.89, 138.81, 141.91, 145.87, 149.50, 167.81 IR: 701, 802, 850, 932, 958, 1011, 1052, 1090, 1194, 1277, 1339, 1395, 1423, 1487, 1515, 1603, 1666, 2160, 2955, 3260, 3461 cm LCMS (DMSO): Rt = 3.74 min (on 5 min column) 15 HPLC purity (as area %): > 93 UV (in EtOH): , max =268 nm EI-MS: calculated mass of ion 451.1419 [M+H], measured mass of ion 451.1413 [M+H]* Rf: 0.58 (50% EtOAc / petrol) 20 MP: 247 - 248*C CHN: C 25
H
23 C1N 2 0 4 requires C: 66.59, H: 5.14, N: 6.21, found C: 66.64, H: 5.19, N: 5.89 Analysis of minor isomer (NU8397): 'H NMR (300 MHz, CDC1 3 ) 8 1.36 (s, 9K, -C(CH 3 )), 3.64 (br s, 1H, OH), 4.15 and 25 4.59 (dd, J = 15.3 Hz, 2H, N-CH 2 -),7.19-7.24 (m, 5H, Ar-H), 7.27-7.30 (m, 2H, Ar H), 7.57-7.61 (dd, J= 8.04, 1.81 Hz, 1H, -CH-CH-C(Bu)-), 7.90-7.91 (dd, J= 1.5 Hz, 1H, C(O)-C=CH-C(Bu)-), 7.97-8.00 (m, 2H, -CH-NO 2 )
'
3 C NMR (CDC1 3 , 75 MHz), 6 31.63, 35.54, 42.75, 91.31, 120.95, 122.56, 123.67, 128.18, 129.08, 129.75, 130.93, 145.75 - 99 IR: 706, 727, 808, 833, 849, 901, 924, 939, 1013, 1049, 1088, 1134, 1198, 1258, 1271, 1309, 1345, 1393, 1439, 1487, 1517, 1603, 1682, 1792, 1898, 1923, 1948, 1969, 2065, 2104, 2217, 2365, 2866, 2963, 3381 cm LCMS (DMSO): Rt = 3.96 min (on 5 min column) 5 IPLC purity (as area %): > 97 UV (in EtOH):X max = 268 nm EI-MS: calculated mass of ion 451.1419 [M+H], measured mass of ion 451.1420 (M+H] Rf: 0.64 (50% EtOAc / petrol) 10 MP: 226 - 227"C CHN: C 2 5H23CIN 2 0 4 + 0.5EtOAc requires C: 65.52, H: 5.50, N: 5.66, found C: 65.44, H: 5.27, N: 5.47 Synthesis of 4-chloro-3 -(4-chlorophenvil-3-hydroxy-2-(4-nitrobenzvl)isoindolin l 15 one (NU8398) C1 C1 HO I N 0
NO
2 The named compound was synthesised from a mixture of 3-chloro-2-(4 20 chlorobenzoyl)benzoic acid and 6-chloro-2-(4-ehlorobenzoyl)benzoic acid (2.15 g, 7.28 mmol) and 4 -nitrobenzylanine hydrochloride (1.51 g, 8.01 mmol) using General Procedure B, purified by chromatography (Biotage SP4; 10% - 20% EtOAc/petrol) and obtained as a white solid (1.96 g, 63%). 'H NMR (300 MHz, CDCl 3 ) 6 4.28 (br s, IH, OH), 4,28 and 4.63 (dd, AB, J = 25 15.4Hz, N-CH 2 -), 7.19-7.22 (m, 4H, Ar-H), 7.31-7.33 (m, 2H, Ar-H), 7.44-7.49 (m, -100 2H, Ar-H), 7.72-7.75 (dd, J = 3.2, 8.5 Hz, 1H, (C(O)-C=CH-), 7.98-8.00 (m, 2H,
CH-NO
2 )
'
3 C NMR (CDC 3 , 75 MHz), 6 42.37, 90.90, 122.20, 123.22, 123.35, 128.21, 128.68, 129.44, 129.75, 131.69, 131.89, 134.14,135.15, 147.37, 163.60, 163.86 5 IR: 696, 729, 759, 808, 856, 932, 996, 1070, 1092, 1144, 1174, 1271, 1342, 1397, 1462, 1518, 1592, 1682, 2026, 2171, 3220 cm LCMS (DMSO): 8.47 min (on 12 ruin column) UV (in EtOH): X max = 268 nm EI-MS: calculated mass of ion 429.0403 [M+HJH, measured mass of ion 429.0401 10 IM+]* Rf 0.47 (50% EtOAc / petrol) MP: 202 - 203*C CHN: C2 1
H
14
C
2
N
2 0 4 + 0.2EtOAc requires C: 58.59, H: 3.52, N: 6.27, found C: 58.27, H: 3.21, N: 6.48 is SYnthesis of 6 -tert-butyl-3(4-chlorophenv)-3-(( -(hydroxymethyllcyclopropyj) ethoxy)-2-1-one (NU8399) HO C1 0 N
NO
2 20 The named compound was synthesised from NU8397 (200 mg, 0.44 mmol) and 1,1 bis(hydroxymethyl)cyclopropane (0.09 mL, 0.89 nmol) using General Procedure C, purified by chromatography (Biotage SP4; 10% - 50% EtOAc/petrol) and obtained as white crystals (182 mg, 75%).
- 101 'H NMR (300 MHz, CDC1 3 ) 8 0.20-0.30 (m, 2H, cyclopropane CH 2 ), 0.47-0.50 (m, 2H, Cyclopropane CH 2 ), 1.42 (s, 9H, C(CH 3 )), 2.12 (br s, 1H, OH), 2.86-2.90 (dd, AB, J = 9.5 Hz, C-0-CH 2 -), 3.51-3.60 (m, 2H, CH 2 OH), 4.57 (s, 2H, N-CH 2 -),7.13 7.16 (dd, J = 7.9 Hz, 1H, CH-CH-C(Bu)), 7.21-7.26 (m, 4H, Ar-H), 7.37-7.40 (m, 5 2H, Ar-H), 7.62-7.65 (dd, J = 8.0, 1.8 Hz, 1HI, -CH-CH-C(Bu)), 7.99-8.00 (dd, J= 1.3 Hz, 1H -C(O)-C-CH-), 8.04-8.06 (m, 2H, -CI-NO 2 ) "C NMR (CDC],, 75 MHz), 8 6.48, 20.00, 31.73, 41.69, 42.50, 68.00, 68.14, 94.86, 120.99, 122.07, 123.01, 123.62, 126.57, 126.82, 128.29, 128.95, 130.17, 135.15, 137.97, 139.28, 145.28, 147. 59, 167.20 10 IR: 649, 704, 729, 754, 801, 813, 835, 853, 927, 949, 1012, 1031, 1059, 1091, 1135, 1177, 1200, 1259, 1280, 1313, 1342, 1377, 1398, 1434, 1463, 1489, 1520, 1600, 1686, 2013, 2093, 2139, 2165, 2189,2208, 2870,2922, 2960, 3001, 3075, 3428 cm 4 LCMS (DMSO): Rt = 3.72 min (on 5 min column) [PLC purity (as area %): > 98 15 UV (in EtOH): Xmax = 267 nm EI-MS: calculated mass of ion 552.2260 [M+N4tf, measured mass of ion 552.2253 [M+N141f Rf: 0.53 (50% EtOAc / petrol) MIP: 104- 105 0 C 20 CHN: C 3 oHm 3 C1N20 5 requires C: 67.35, H: 5.84, N: 5.24, found C: 67.26, H: 5.89, N: 5.21 Synthesis of 5-tert-butyl-3-(4-chlorophenl)-3-((1-(hydroxymnethyl)cyclopropyl) methoxy)-2-(4-nitrobenzl)isoindolin- 1-one (NU8400) 25 - 102 HO C o N 0
NO
2 The named compound was synthesised from NU8396 (200 mg, 0.44 mmol) and 1,1 bis(hydroxymethyl)cyclopropane (0.09 mL, 0.89 nmol) using General Procedure C, 5 purified by chromatography (Biotage SP4; 10% - 50% EtOAc/petrol) and obtained as white crystals (43 mg, 18%). iH NMR (300 MHz, CDC1 3 ) 8 0.10-0.13 (m, 2H, cyclopropane CH 2 ), 0.41-0.44 (m, 2H, Cyclopropane CH 2 ), 1.26 (s, 9H, C(CH 3 )), 1.69 (br s, 1H, OH), 2.71-2.78 (m, 2H, C-0-CH 2 -), 3.41-3.52 (dd, AB, J= 11.0 Hz, CH 2 OH), 4.38-4.53 (dd, J = 15.2 Hz, 2H, 10 N-CH 2 -), 7.13-7.15 (dd, J = 1.1 Hz, 1H, C-CH-C(Bu)), 7.16-7.21 (m, 4H, Ar-H), 7.29-7.32 (m, 2H, Ar-H), 7.55-7.58 (dd, J = 8.1, 1.6 Hz, 1H, -CH-CH-C(Bu)), 7.8 1 7.83 (dd, J= 7.9 Hz, 1H -C(O)-C-CH-), 7.98-8.01 (m, 2H, -CH-NO 2 ) "C NMR (CDCI, 75 MHz), 8 8.95, 9.02, 22.69, 31.56, 42.72, 42.80, 67.94, 67.99, 93.23, 123.55, 123.70, 126.59, 127.79, 128.27, 128.91, 130.03, 130.11, 131.28, 15 133.01, 135.15, 138.50, 145.17, 147.27, 168.57 IR: 663, 691, 704, 730, 801, 843, 872, 893, 934, 951, 1013, 1059, 1091, 1132, 1189, 1240, 1260, 1281, 1342, 1382, 1398, 1425, 1465, 1490, 1520, 1605, 1686, 2010, 2872, 2926, 3073, 3413 cm~l LCMS: Rt = 3.80 min (on 5 min column) 20 HPLC purity (as area %)=> 97 UV (in EtOH): Xmax = 268 mn EI-MS: calculated mass of ion 552.2260 [M+INH 4 ]*, measured mass of ion 552.2260 [M+NH4]* Rf: 0.50 (50% EtOAc / petrol) -103 MP: 89 - 90"C CHN: C 3 oH3 1
CIN
2 0 5 requires C: 67.35, H: 5.84, N: 5.24, found C: 67.45, H: 6.01, N: 5.05 5 Synthesis of 3-(4-chlorophenyl)-3-((1-(hydroxvmethyl)cyclopropylimethoxy-5 methyl-2-(4-nitrobenzyl)isoindolin- 1-one (NU8401) HO o | Me N 0
NO
2 10 The named compound was synthesised from a mixture of NU8395 and NU8412 (200 mg, 0.49 nunol) and 1,1-bis(hydroxymethyl)cyclopropane (0.10 mL, 0.98 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 10% - 30% EtOAc/petrol) and obtained as a white solid (116 mg, 48%). 'H NMR (300 MHz, CDC 3 ) 6 0.07-0.28 (m, 2H, cyclopropane CH 2 ), 0.34-0.57 (m, 15 2H, cyclopropane CH 2 ), 2.33-2.40 (s, 3H, CH3), 2.74-2.88 (m, 2H, C-O-CH 2 -), 3.39 3.56 (m, 2H, CH 2 OH)), 4.35-4.62 (s, 2H, N-CH 2 -), 6.90-6.96 (m, 1H, Ar-H), 7.11 7.20 (im, 4H, Ar--H), 7.27-7.41 (m, 3H, Ar-H), 7.74-7.84 (dd, J = 7.8Hz, 1H, -C(O) C=CH-), 7.92-8.08 (m, 2H, -CH-NO 2 )
'
3 C NMR (CDC1 3 , 75 MHz), 8 8.89, 8.98, 22.16, 22.70, 42.71, 67.87, 67.98, 94.77, 20 123.59, 123.87, 124.02, 128.22, 128.29, 128.96, 130.20, 131.51, 135.10, 135-26, 137.63, 140.40, 145.85, 147.74, 166.79 IR: 662, 683, 704, 734, 766, 781, 801, 829, 845, 860, 893, 916, 937, 961, 1011, 1032, 1077, 1094, 1134, 1156, 1175, 1211, 1273, 1342, 1391, 1420, 1463, 1487, 1518, 1609, 1682, 1925, 2162, 2853, 2882, 2925, 3009, 3086, 3406 cm -104 LCMS (DMSO): Rt = 3.73 min (on 5 min column) HPLC purity (as area %): > 96 UV (in EtOH): X max = 266 nm EI-MS: calculated mass of ion 493.1525 [M+H]*, measured mass of ion 493.1521 5 [M+H]' Rf= 0.53 (50% EtOAc / petrol) MP: 177 - 1784C CHN: C 27
H
25
CIN
2 0 5 requires C: 65.79, H: 5.11, N: 5.68, found C: 65.57, H: 5.15, N: 5.45 10 Synthesis of 3-(4-chlorophenvl)-3-((1-(hydroxymethylcyclopropyl)methoxy)- 4 methyl-2-(4-nitrobenzylisoindolin-1 -one (NU8405) HO Me CI Me N
NO
2 The named compound was synthesised from NU8393 (413 mg, 1.01 mol) and 1,1 15 bis(hydroxymethyl)cyclopropane (0.19 m.L, 2.03 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 20% - 40% EtOAc/petrol) and obtained as a yellow solid (252 mg, 50%). 'H NMR (300 MIz, CDC1 3 ) 5 -0.07-0.17 (m, 2H, cyclopropane CH 2 ), 0.25-0.34 (m, 2H, Cyclopropane CH 2 ), 1.81 (s, 3K, CH 3 ), 1.92 (br s, 1H, OH), 2.60-2.83 (dd, AB, J 20 = 9.4 Hz, C-0-CH 2 -), 3.33-3.41 (m, 2H, CH 2 OH), 4.19 and 4.42 (dd, AB, J = 15.3 Hz, 2H, N-CH 2 -), 6.88-6.97 (m, 2H, Ax-H)), 7.04-7.06 (m, 2H, Ar-H), 7.11-7.13 (dd, J = 7.5 Hz, 1H, -CH-C(Me)), 7.26-7.30 (t, J= 7.5 Hz, 1H, -CH-CH-C(Me)), 7.57-7.60 (dd, J =7.4 Hz, 1H -C(0)-C-CH-), 7.75-7.79 (m, 2H, -CH-NO 2
)
- 105 "C NMR (CDCl 3 , 75 MHz), 8 8.82, 8.95, 17.30, 17.40, 22.68, 42.28, 67.60, 94.73, 121.62, 123.47, 128.45, 128.82, 129.94, 130.81, 132.18, 134.69, 135.24, 136.92, 142.26, 145.11, 147.50, 168.60 IR: 696, 762, 797, 930, 1013, 1067, 1186, 1229, 1286, 1340, 1393, 1427, 1487, 1520, 5 1605, 1677, 2864, 3455 cm 4 LCMS (DMS0): Rt= 3.68 min (on 5 min column) HPLC purity (as area %): > 96 UV (in EtOH): X max = 268 nm EL-MS: calculated mass of ion 493.1525 [M+H], measured mass of ion 493.1523 10 [M+H]* Rf: 0.36 (50% EtOAc / petrol); MP: 146 - 147"C CHN: C 27
H
25
CIN
2 0 5 requires C: 65.79, H: 5.11, N: 5.68, found C: 65.78, H: 4.81, N: 5.65 15 Synthesis of 4-chloro-3-(4-chlorophenyl)-3-((1-(hydroxymethyl) cyclopropyl) methoxy)-2-(4-nitrobenzyl)isoindolin- 1-one (NU8406) HO N O 0
NO
2 20 The named compound was synthesised from NU8398 (433 mg, 1.01 mmol) and 1,1 bis(hydroxymethyl)cyclopropane (0.19 mL, 2.03 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 20% - 50% EtOAc/petrol) and obtained as yellow crystals (321 mg, 62%).
- 106 'H NMR (300 MHz, CDC1 3 ) 8 0.21-0.42 (m, 2H, cyclopropane CH 2 ), 0.47-0.54 (m, 2H, cyclopropane CH 2 ), 2.12 (br s, 1H, OH), 2.89-3.05 (m,.2H, C-0-CH 2 -), 3.52-3.61 (m, 2H, CH 2 OH), 4.30-4.59 (dd, AB, J = 15.2Hz, N-CH 2 -),7.15-7.18 (m, 4H, Ar-H), 7.28-7.33 (m, 2H, Ar-H), 7.48-7.58 (m, 2H, Ar-H), 7.87-7.89 (dd, J = 7.1, 1.1 Hz, 1HI, 5 -C(O)-C=CH-), 7.98-8.01 (m, 2H, -CH-NO 2 )
'
3 C NMR (CDC1 3 , 75 MHz), 6 8.84, 8.90, 22.59, 42.54, 67.58, 68.10, 94.71, 122.63, 123.56, 128.65, 128.77, 130.09, 130.40, 132.28, 134.37, 135.27, 135.55, 135.57, 141.10, 144.62, 147,64, 167.04 IR: 696, 759, 816, 853, 930, 1011, 1074, 1144, 1171, 1234, 1341, 1384, 1428, 1462, 10 1489, 1519, 1699, 2872, 2923, 3422 cmn 1 HPLC purity (as area %): > 92 UV (in EtOH): Xmax = 267 nm EI-MS: calculated mass of ion 530.1244 [M+NH 4 ], measured mass of ion 530.1242 [M+NH*4 15 Rf: 0.30 (50% EtOAc / petrol); M: 76 - 77*C CHN: C 26
H
22 Cl 2
N
2 0 5 requires C: 60.83, H: 4.32, N: 5.46, found C: 60.68, H: 4.30, N: 5.40 Synthesis of 5-bromo-3-(4-chlorophenv1)-3-hydroxy-2-(4-nitrobenzv1)isoindolin-1 20 one (NU8414) and 6-bromo-3-(4-chlorophenvl)-3-hydroxy-2-(4 nitrobenzylisoindolin- 1-one (NU8413) ACI C HO I HO 1 B r N- N ON Br
NO
2 NO 2 The named compounds were synthesised from a mixture of 4-bromo-2-(4 25 chlorobenzoyl)benzoic acid and 5-bromo-2-(4-chlorobenzoyl)benzoic acid (2.48 g, 7.28 mmol) and 4-nitrobenzylamine hydrochloride (1.51 g, 8.01 mmol) using General - 107 Procedure B, purified by chromatography (Biotage SP4; 20% EtOAc/petrol) and obtained as a cream solid (NU8414) and cream solid (NU8413) (1.83 g, 53%, ratio of 5- and 6-isomers is ~1:1). Analysis of NU8414: 5 'H NMR (300 MHz, MeOD) 8 4.50 and 4.68 (dd, J = 15.7 Hz, 2H, N-CH 2 -), 4.88 (br s, 1H, OH), 7.24-7.32 (m, 4H, Ar-rn, 7.37-7.47 (m, 3H, Ar-H), 7.73-7.77 (dd, J 9.6 Hz, 1H, -CH-CH-C(Br)-), 7.99-8.01 (m, lH, C(OH)-C=CH-CBr-), 8.04-8.09 (m, 2H,
-CH-NO
2 ) "C NMR (MeOD, 75 MHz), 8 41.27, 93.73, 123.41, 124.51, 125.12, 127.77, 129.08, 10 129.64, 130.09, 130.90, 133.50, 134.67, 134.72, 140.45, 140.72, 142.17, 168.08 IR: 698, 781, 801, 827, 851, 895, 934, 1013, 1043, 1071, 1094, 1128, 1253, 1342, 1392, 1415, 1516, 1603, 1676, 2405, 2932, 3227 cm" LCMS (DMSO): Rt = 4.13 min (on 5 min column) IPLC purity (as area %)= 99 15 UV (in EtOH): X max = 267 nm EI-MS: calculated mass of ion 471.9820 [M-H], measured mass of ion 471.9818 [M H] Rf: 0.59 (50% EtOAc / petrol); MP: 221 - 2224C CHN: C 21 H1 4 BrC1N 2
O
4 requires C: 53.25, H: 2.98, N: 5.91, found C: 53.48, H: 2.99, 20 N: 5.79 Analysis of NU8413: 1H NMR (300 MHz, CDC1 3 ) 8 3.94 (br s, IH, OH), 4.22 and 4.53 (dd, J = 15.3 Hz, 2H, N-CH 2 -), 7.06-7.09 (d, J = 8.0 Hz, 1H, CH-CH-C(Br)-), 7.11-7.14 (m, 4H, Ar-H), 25 7.17-7.22 (m, 2H, Ar-H), 7.56-7.60 (dd, J = 8.0, 1.8 Hz, 1H, -CH-CH-C(Br)-), 7.71 7.72 (dd, J = 1.6 Hz, IH, C(O)-C=CH-),7.88-7.91 (m, 2H, -CH-NO 2 ) 1 3 C NMR (CDCl 3 , 75 MHz), 8 41.63, 94.94, 122.73, 123.76, 124.66, 127.26, 128.07, 129.28, 129.82, 132.04, 133.88, 135.53, 136.67, 143.14, 145.09, 145.38, 165.32 IR: 718, 754, 801, 827, 851, 930, 1011, 1063, 1090, 1183, 1273, 1311, 1342, 1389, 30 1437, 1487, 1516, 1599, 1672, 2853, 2923, 3163 cm- -108 LCMS (DMSO): Rt = 4.21 min (on 5 min column) HPLC purity (as area %)= 98 UV (in EtOH): X max = 267 nm EI-MS: calculated mass of ion 471.9820 [M-H], measured mass of ion 471.9814 [M 5 H] Rf: 0.66 (50% EtOAc / petrol); MP: 218 - 219"C Synthesis of 4-((1-(4-chloropheny)-1-((1-(hydroxymethyl) cyclopropyl)methoxy)-3 oxoisoindolin-2-yl)methy)benzonitrile (NU8415) 10 HO Cl o 1 N CN The named compound was synthesised from NU8306 (379 mg, 1.01 mmol) and 1,1 bis(hydroxymethyl)cyclopropane (0.19 mL, 2.03 mmol) using General Procedure C, 15 purified by chromatography (Biotage SP4; 20% - 50% EtOAc/petrol) and obtained as white crystals (221 mg, 51%). 1H NMR (300 MHz, CDC1 3 ) 8 0.01-0.19 (m, 2H, cyclopropane CH 2 ), 0.34-0.42 (m, 2H, cyclopropane CH 2 ), 1.96 (s, 1H, OH), 2.72-2.79 (m, 2H, C-O-CH 2 ), 3.39-3.49 (dd, J = 11.3, 18.2 Hz, 2H, CH 2 QH)), 4.40 (s, 2H, N-CH 2 -), 7.05-7.12 (m, 5H, Ar-H), 20 7.18-7.21 (d, AB quartet, J = 8.2 Hz, 2H, -CH-CH=C-CN), 7.35-7.37 (d, AB quartet, J = 8.2 Hz, 21H, -CH=C-CN), 7.45-7.50 (m, 2H, Ar-H), 7.82-7.85 (m, 1H, -C(O)
C=CH-)
-109 "C NMR (CDC1 3 , 75 MHz), 8 8.86, 22.61, 42.97, 67.43, 67.60, 94.88, 111.53, 118.74, 123.50, 124.06, 128.32, 128.88, 130.09, 130.45, 131.81, 132.17, 133.44, 135.07, 137.52, 143.10, 145.51, 168.57 IR: 700, 762, 810, 849, 926, 955, 1009, 1041, 1063, 1276, 1302, 1350, 1395, 1425, 5 1468, 1491, 1605, 1680, 2228, 2854, 2926, 3408 cm- 1 LCMS (DMSO): Rt = 3.90 min (on 5 min column) HPLC purity (as area %): > 98 UV (in EtOH): ? max=225 nm EI-MS: calculated mass of ion 459.1470 [M+H}l, measured mass of ion 459.1471 10 [M+H]* Rf: 0.32 (50% EtOAc / petrol); MP: 136 - 137*C CHN: C27H23CN203 requires C: 70.66, H: 5.05, N: 6.10, found C: 70.39, H: 5.05, N: 6.09 15 Synthesis of 2-(4-chlorobenzyl)-3-(4-chlorophenyl)-3-((1-(hydroxypethyl) cyclopropyl)methoxy)isoindolin- 1-one (NU8416) HO q C1 0 N 0 CI 20 The named compound was synthesised from NU8314 (200 mg, 0.52 mmol) and 1,1 bis(hydroxymethyl)cyclopropane (0.10 mL, 1.04 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 20% - 40% EtOAc/petrol) and obtained as white crystals (192 mg, 79%).
-110 'H NMR (300 MHz, CDC 3 ) 8 0.05-0.12 (m, 2H, cyclopropane CH 2 ), 0.34-0.39 (M, 2H, cyclopropane CH 2 ), 1.97 (s, 1H, OH), 2.63-2.79 (dd, AB, J = 9.4Hz, 2H, -C-0
CH
2 ), 3.34-3.50 (dd, AB, J= 11.3 Hz, 2H, CH 2 OH)), 4.16-4.49 (dd, AB, I = 14.9 Hz, 2H, N-CH 2 -), 7.07-7.09 (m, 4H, Ar-H), 7.10-7.14 (m, 5H, Ar-H), 7.44-7.47 (m, 2H, 5 Ar-H), 7.83-7.86 (m, 1H, -C(O)-C=CH-) "C NMR (CDCl 3 , 75 MHz), 8 8.82, 22.55, 42.76, 60.56, 67.70, 95.09, 123.33, 124.00, 128.30, 128.57, 128,90, 130.28, 130.94, 132.00, 133.22, 133.58, 134.94, 136.32, 137.66, 145.68, 168.48 IR: 700, 728, 761, 803, 812, 847, 924, 953, 1009, 1037, 1067, 1092, 1176, 1232, 10 1285, 1318, 1355, 1383, 1425, 1470, 1487, 1609, 1098, 2882, 2927, 3489 cm-1 LCMS (DMSO): Rt = 3.91 min (on 5 min column) IPLC purity (as area %): > 99 UV (in EtOH): max = 222nm EI-MS: calculated mass of ion 468.1128 [M+H]*, measured mass of ion 468.1128 15 [M+H] Rf= 0.41 (50% EtOAc / petrol); MIP: 118 - 119"C. Synthesis of 2-(4-bromobenzyl)-3-(4-chlorophenyl)-3-((1-(hydroxymethyl) cyclopropyl)methoxv)isoindolin-1 -one (NU8417) 20 HO / C1 N | N o Br The named compound was synthesised from NU8315 (433 mg, 1.01 mmol) and 1,1 bis(hydroxymethyl)cyclopropane (0.19 mL, 2.03 mmol) using General Procedure C, - 111 purified by chromatography (Biotage SP4; 20% - 40% EtOAc/petrol) and obtained as white crystals (333 mg, 64%). 'H NMR (300 MHz, DMSO) 8 -0.02-0.08 (m, 2H, cyclopropane CH 2 ), 0.26-0.33 (m, 2H, cyclopropane CH2), 2.59-2.80 (dd, AB, J= 9.0 Hz, 2H, -C-0-CH2), 3.16-3.45 (m, 5 2H, CH20H)), 4.21-4.42 (dd, AB, J 15.4 Hz, 21, N-CH 2 -), 4.45 (s, 1H, OH), 7.03 7.06 (d, J = 8.4 Hz, 2H, Ar-H), 7.19-7.22 (m, 3H, Ar-H), 7.29-7.40 (m, 4H, Ar-H), 7.56-7.65 (m, 2H, Ar-H), 7.83-7.85 (m, 1H, -C(O)-C=CH-) 13C NMR (DMSO, 75 MHz), 8 7.94, 22.19, 40.98, 65.96, 73.03, 94.24, 120.42, 12-3.40,, 123.59, 123.83, 128.45, 128.66, 130.99, 131.16, 131.40, 131.76, 133.49, 10 137.13, 138.13, 143.48, 167.64 IR: 679, 721, 760, 795, 814, 849, 922, 953, 1008, 1036, 1066, 1092, 1177, 1232, 1285, 1317, 1356, 1385, 1420, 1471, 1612, 1692,2586, 2884, 2944, 3499 cmdf LCMS (DMSO): Rt =4.06 min (on 5 min column) HPLC purity (as area %): > 99 15 UV (in EtOH): ) max = 223 nm EI-MS: calculated mass of ion 512.0623 [M+H], measured mass of ion 512.0627 [M+H]* Rf= 0.41 (50% EtOAc / petrol); MP: 161 - 162*C CHN: C 26 H23BrClN0 3 requires C: 60.89, H: 4.52, N: 2.73, found C: 60.95, H: 4.61, 20 N: 2.74 Synthesis of 3-(4-chlorophenyl)-2-((R)-1-(4-ohlorophenyl)ethyl)-3-((1 (hydroxymethyll)yclopropyllmethoxy)isoindolin- 1-one (NU8418) -112 HO C1 NMe C] The named compound was synthesised from NU8301 (401 mg, 1.01 mmol) and 1,1 bis(hydroxymethyl)cyclopropane (0.19 mL, 2.03 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 20% - 40% EtOAc/petrol) and obtained as 5 a pale yellow oil (146 mg, 30%). 'H NMR (300 MHz, CDC 3 ) 8 0.36-0.44 (in, 2H, cyclopropane CH 2 ), 0.48-0.59 (m, 2H, cyclopropane CH 2 ), 1.88 (d, J = 7.3 Hz, 3H, CH 3 ), 2.30 (br s, 1H, OH), 2.88-3.30 (dd, AB, J = 9.5 Hz, 2H, -C-0-CH 2 ), 3.58-3.67 (m, 2H, CH 2 OH)), 4.30-4.38 (q, J 7.2, 14.4 Hz, 1H, N-CH-), 6.96-7.01 (m, 7H, Ar--), 7.04-7.07 (m, i, Ar-H), 7.43 10 7.47 (m, 2H, Ar-H), 7.80-7.83 (in, iH, -C(O)-C=CH-) 1 3 C NMR (CDC1 3 , 75 MHz), 6 8.96, 9.03, 20.41, 22.93, 52.80, 60.59, 67.83, 95.25, 123.28, 123.75, 128.27, 128.43, 128.68, 129.57, 130.31, 133.09, 133.08, 134.82, 137.55, 141.72, 144.99, 168.30 IR: 699, 727, 762, 815, 868, 938, 1011, 1032, 1070, 1088, 1176, 1321, 1398, 1467, 15 1489, 1597, 1682, 2876, 2930, 3389 cm' LCMS (DMSO): Rt = 4.15 min (on 5 min column) HPLC purity (as area %): > 97 UV (in EtOH): X max = 221 nm EI-MS: calculated mass of ion 482.1284 [M+H], measured mass of ion 482.1279 20 [M+HJf Rf= 0.42 (50% EtOAc / petrol) Synthesis of 3-(4-chloropheni)-2-((Sl-1 -(4-chlorophenvethvn-3-(( 1 (hydroxymethyl)cyclopropyl)methoxy)isoindolin- 1-one (NU8419) -113 HO CJ o Me N C1 The named compound was synthesised from NU8347 (401 mg, 1.01 mmol) and 1,1 5 bis(hydroxymethyl)cyclopropane (0.19 mL, 2.03 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 10% - 30% EtOAc/petrol) and obtained as a pale yellow oil (60 mg, 12%). 'H NMR (300 MHz, CDC1 3 ) & 0.36-0.44 (m, 2H, cyclopropane
CH
2 ), 0.48-0.59 (m, 2H, cyclopropane
CH
2 ), 1.88 (d, J= 7.3 Hz, 3H, CH 3 ), 2.30 (br s, 1H, OH), 2.88-3.30 10 (dd, AB, J = 9.5 Hz, 2H, -C-O-CH 2 ), 3.58-3.67 (m, 2H, CH 2 OH)), 4.30-4.38 (q, J = 7.2, 14.4 Hz, 1H, N-CH-), 6.96-7.01 (m, 7H, Ar-H), 7.04-7.07 (m, 1H, Ar-H), 7.43 7.47 (m, 2H, Ar-H), 7.80-7.83 (m, 1H, -C(O)-C=CH-) "C NMR (CDCl 3 , 75 MHz), 6 8.96, 9.03, 20.41, 22.93, 52.80, 60.59, 67.83, 95.25, 123.28, 123.75, 128.27, 128.43, 128.68, 129.57, 130.31, 133.09, 133.08, 134.82, 15 137.55, 141.72, 144.99, 168.30 IR: 698, 727, 761, 815, 866, 1011, 1031, 1068, 1090, 1176, 1331, 1396, 1487, 1583, 1695, 2876, 2923, 3415 cm1 LCMS (DMSO): Rt = 4.19 min (on 5 min column) HPLC purity (as area %): > 98 20 UV (in EtOH): X max =221 nm EI-MS: calculated mass of ion 482.1284 [M+H], measured mass of ion 482.1285 [M+H]+ Rf= 0.42 (50% EtOAc / petrol) -114 Synthesis of 5-bromo-3-(4-chlorophenvl)-3-((1-(hydroxvmethyl) cyclopropyl) methoxy)-2-(4-nitrobenzyl)isoindolin- 1-one (NU8424) HO CI o Br N 0
NO
2 5 The named compound was synthesised from NU8414 (200 mg, 0.42 mmol) and 1,1 bis(hydroxymethyl)cyclopropane (0.08 mL, 0.84 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 20% - 40% EtOAc/petrol) and obtained as a yellow oil (204 mg, 87%). 10 'H NMR (300 MHz, CDCl 3 ) 8 0.17-0.27 (m, 2H, cyclopropane CH 2 ), 0.44-0.51 (m, 2H, cyclopropane CH 2 ), 2.05 (s, 1H, OH), 2.83-2.90 (dd, AB, J = 9.5 Hz, 2H, C-0
CH
2 ), 3.49-3.58 (dd, AB, J= 11.5 Hz, 2H, CH 2 OH), 4.45-4.56 (dd, AB, J= 15.4 Hz, 2H, N-CH 2 -), 7.16-7.19 (m, 4H, Ar-H), 7.29-7.33 (m, 3H, Ar-H), 7.66-7.70 (dd, J = 1.6, 8.0 Hz, 1H, -CH-CH-Br), 7.78-7.80 (dd, J = 8.0 Hz, 1H, -C(O)-C=CH-), 7.99 15 8.02 (d, AB, J = 8.7 Hz, 2H, CR-C-NO 2 ) '-C NMR (CDC 3 , 75 MHz), 6 8.90, 22.62, 42.79, 67.47, 67.72, 94.47, 123.62, 125,52, 126.92, 128.25, 128.41, 129.12, 130.24, 130.60, 134.00, 135.54, 136.72, 144.61, 147.35, 147.71, 167.66 IR: 702, 726, 799, 818, 855, 883, 934, 1011, 1032, 1078, 1128, 1176, 1277, 1343, 20 1387, 1420, 1488, 1521, 1601, 1684, 2854, 2922, 3420 cm' HPLC purity (as area %): >86 UV (in EtOH): X max=267 nm EI-MS: calculated mass of ion 574.0739 [M+NH 4 ]*, measured mass of ion 574.0735 [M+NH4]* 25 Rf = 0.37 (50% EtOAc / petrol); MP: 156-158"C -115 Synthesis of 6-bromo-3-(4-chlorophenvl)-3-((1-(hydroxymethyl)cyclopropyl) methox) -2-(4-nitrobenzyl)isoindolin- 1-one (NU8425) H O HQ _t 0C1 O N Br
NO
2 5 The named compound was synthesised from NU8413 (200 mg, 0.42 mmol) and 1,1 bis(hydroxymethyl)cyclopropane (0.08 mL, 0.84 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 20% - 40% EtOAc/petrol) and obtained as an orange solid (154 mg, 66%). 10 'H NMR (300 MHz, CDC1 3 ) 8 0.21-0.31 (m, 2H, cyclopropane
CH
2 ), 0.49-0.56 (m, 2H, cyclopropane CH 2 ), 2.13 (br s, 1H, OH), 2.88-2.92 (m, 2H, C-O-CH 2 ), 3.53-3.62 (dd, AB, J = 11.4 Hz, 2H, CH 2 OH), 4.52-4.62 (dd, AB, J = 15.9 Hz, 2H, N-CH 2 -), 7.12-7.14 (d, J = 8.0 Hz, 1H, CH-CH-CBr), 7.20-7.26 (in, 4H, Ar-H), 7.34-7.38 (m, 2H, Ar-H), 7.72-7.75 (dd, J = 1.8, 8.0 Hz, 1H, -CH-CH-CBr-), 8.04-8.07 (m, 2H, 15 CH-C-NO 2 ), 8.09-8.10 (d, J = 1.6 Hz, 1H1, C(=0)-C=CH-C-Br)
'
3 C NMR (CDCI 3 , 75 MHz), 8 8.88, 8.93, 22.65, 42.84, 67.50, 67.72, 94.75, 123.62, 124.81, 125.13, 127.39, 128.24, 129.07, 130.21, 133.68, 133.71, 135.46, 136.52, 136.83, 144.17, 144.60, 147.70, 167.09, IR: 696, 725, 820, 854, 926, 1011, 1176, 1277, 1341, 1376, 1425, 1489, 1519, 1602, 20 1699, 2924, 3077, 3422 cm 1 HPLC purity (as area %): > 98 UV (in EtOH): X max =267 nm EI-MS: calculated mass of ion 556.0395 [M], measured mass of ion 556.0389 [M]* Rf= 0.41 (50% EtOAc / petrol); MIP: 66-68"C 25 -116 Synthesis of 3-(4-chlorophenyl)-3-((1-(hydroxymethyl)cyclopropyl)methoxy)-2 (pyridin-2-ylmethyl)isoindolin- 1-one (NJ8429) HO O |C I N N~ 0 5 The named compound was synthesised from NU8423 (354 mg, 1.01 mmol) and 1,1 bis(hydroxyrmethyl)cyclopropane (0.19 mL, 2.03 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 50% EtOAc/petrol - EtOAc) and obtained as yellow crystals (383 mg, 87%). 10 'H NMR (300 MHz, CDCl 3 ) 6 0.04-0.17 (m, 2H, cyclopropane CH 2 ), 0.30-0.37 (m, 2H, cyclopropane CH 2 ), 2.57-3.18 (dd, J = 9.3 Hz, 2H, C-0-CH 2 ), 3.25-3.63 (dd, J= 11.3 Hz, 2H, CH20H), 4.10 (br s, 1H OH), 4.36-4.48 (dd, AB, J = 15.2 Hz, 2H, N
CHR
2 -), 6.94-7.02 (m, 3H, ArH), 7.04-7.07 (m, 1H, Ar-H), 7.10-7.15 (m, 2H,Ar-H), 7.19-7.22 (m, H, Ar-H), 7.35-7.42 (m, 3H, Ar-H), 7.76-7.79 (m, 1H, -C(O)-C=CH 15 ),8.22-8.23 (m, 1H, -C=N-CH=) "C NMR (CDC, 75 MHz), 8 8.79, 8.86, 22.64, 45.64, 67.13, 67.55, 94.79, 122.33, 123.40, 123.93, 124.07, 128.30, 128.69, 130.18, 132.12, 133.09, 134.57, 136.53, 137.86, 145.68, 148.96, 157.14, 168.40 IR: 700, 760, 813, 846, 928, 969, 1009, 1038, 1069, 1088, 1113, 1179, 1229, 1279, 20 1315, 1352, 1377, 1421, 1469, 1595, 1695, 2854, 2909, 3277 cm 1 HPLC purity (as area %): > 97 UV (in EtOH): X max = 261 nm EI-MS: calculated mass of ion 435.1470 [M+H]*, measured mass of ion 435.1471 [M+H]* 25 Rf= 0.01 (50% EtOAc / petrol); MP: 123 - 125"C -117 Synthesis of 3 -f 4 -cffloronyl)-5-fluoro-3-hydroxy-2-(4-nitrobenzylisoindolin-1 one (NCL-00010485) and 3-(4-chlorophenyl-6-fluoro-3-hydroxy-2-(4 nitrobenzyllisoindolin-1-one (NCL-00010486) HO I HO | F, N F
NO
2 NO 2 5 The named compounds were synthesised from a mixture of 2-(4-chlorobenzoyl)-4 fluorobenzoic acid and 2-(4-chlorobenzoyl)-5-fluorobenzoic acid (2.39 g, 8.58 mmol) and 4-nitrobenzylamine hydrochloride (1.78 g, 9.44 mmol) using General Procedure B, purified by chromatography (Biotage SP4; 25% EtOAc/petrol) and obtained as a 10 cream solid (NCL-00010485) and a yellow solid (NCL-00010486) (2.56 g, 72%, ratio of 5- and 6-isomers is 3:2). Analysis of major isomer (NCL-00010485): 'H NMR (300 MHz, CDC 3 ) 8 4.22-4.66 (dd AB, J = 15.4 Hz, 2H, N-CH 2 ), 5.28 (s, 1H, OH), 6.85-6.89 (dd, J = 7.7, 2.2 Hz, 1H, C(OH)CCH-C(F)), 7.06-7.13 (m, 1H, 15 C(=O)-C=CH-CH=), 7.15-7.22 (im, 4H, -C 6
H
4 CI), 7.30-7.36 (d AB, J= 8.7 Hz, 2H, C2H2C 2
H
2
C(NO
2 )), 7.72-7.76 (dd, J = 8.3, 4.8 Hz, 1H, C(=O)C=CH-), 7.93-7.96 (d AB, J= 8.7Hz, 2H, -C2H 2
C(NO
2 )) "C NMR (DMSO, 75 MHz), 8 42.35, 86.69, 113.40, 117.58, 123.23, 125.67, 126.79, 128.46, 128.74, 129.39, 133.52, 138.52, 140.85, 146.22, 147.54, 158.81, 166.24 20 IR: 710, 775, 804, 832, 933, 970, 1015, 1054, 1092, 1155, 1201, 1263, 1342, 1394, 1484, 1519, 1607, 1676, 3235 cm-' LCMS (DMSO): Rt = 4.03 min (on 5 min column) HPLC purity (as area %): > 98 UV (in EtOH): X max =272 nn 25 EI-MS: calculated mass of ion 430.0964 [M+NH4]*, measured mass of ion 430.0958 [M+NH4]* - 118 Rf= 0.50 (50% EtOAc / petrol); MP: 222-224 0 C Analysis of minor isomer (NCL-00010486): 'H NMR (300 MHz, CDCs) 6 4.25-4.65 (dd AB, J = 15.4 Hz, 2H, N-CH 2 ), 4.73 (s, 1H, OH), 7.13-7.24 (m, 6H, ArH), 7.30-7.33 (d AB, J 8.7Hz, 2H, 5 C 2
H
2
C
2
H
2 C(N0 2 )), 7.35-7.39 (dd, J = 7.2, 2.1 Hz, 1H, C(=O)C=CH-), 7.94-7.98 (d AB, J= 8.7Hz, 2H, -C2H2C(NO 2 )) 1 3 C NMR (DMSO, 75 MHz), 6 42.43, 90.42, 113.29, 116.37, 123.23, 125.58, 128.45, 128.70, 129.42, 133.48, 134.84, 138.76, 139.16, 142.38, 146.18, 160.19,166.08 IR: 776, 806, 831, 851, 891, 932, 1013, 1059, 1092, 1173, 1197, 1267, 1310, 1342, 10 1390, 1449, 1484, 1518, 1607, 1680, 2160, 2852, 2925, 3267 cm) LCMS (DMSO): Rt = 4.03 min (on 5 min column) HPLC purity (as area %): > 97 UV (in E): X max =267 nm EI-MS: calculated mass of ion 412.0621 [M+Hj, measured mass of ion 412.0619 15 [M+HJ Rf= 0.58 (50% EtOAc / petrol); MP: 188-190*C Synthesis of 5.6-dicloro-3-(4-chloropheny)-3-((1-(hvdroxymetfhvl)cyclopropvl) methoxy)-2-(4-nitrobenzy1)isoindoin-1-one (NCL-00010487) 20 HO I -C CI
N
NO
2 The named compound was synthesised from N118432 (350 mg, 0.75 mmol) and 1,1 bis(hydroxymethyl)cyclopropane (0.16 mL, 1.67 mmol) using General Procedure
C,
-119 purified by chromatography (Biotage SP4; 20% - 40% EtOAc/petrol) and obtained as a yellow oil (302 mg, 73%). 'H NMR (300 MIHz, CDC 3 ) 6 0.20-0.30 (in, 2H, CH 2 ), 0.46-0.50 (m, 2H, CH 2 ), 2.25 (s, IH, OH), 2.90 (s, 2H, OCH 2 ), 3.50-3.60 (dd AB, J= 11.2, 8.8Hz, 2H, HOCH2), 5 4.46-4,58 (dd AB, J = 15.2, 5.6 Hz, 2H, N-CfH 2 ), 7.19-7.20 (m, 4 H, -C 6 1 4 Cl), 7.29 7.32 (m, 3H, N 2 0-C=CH-CH= and C(O-)C=CH-), 7.98-8.01 (n, 311, 0 2 N-C-CH and C(O)=C=CI) "C NMR (CDCl 3 , 75 MHz), 6 8.87, 8.90, 22.60, 42.93, 67.27, 67.68, 94.36, 123.63, 125.76, 126.01, 128.22, 129.17, 130.23, 131.44, 135.56, 135.66, 136.41, 138.31, 10 144.38, 144.77, 147.72, 166.46 IR: 754, 804, 837, 889, 934, 1011, 1070, 1095, 1166, 1201, 1235, 1339, 1402, 1489, 1514, 1601, 1688, 2857, 2923, 3482 cm LCMS (DMSO): Rt= 4.65 min (on 5 min column) HPLC purity (as area %): > 99 15 UV (in EtOH): X max = 266 nm EI-MS: calculated mass of ion 569.0408 [M+Na]*, measured mass of ion 569.0408 [M+Na]* Rf= 0.45 (50% EtOAc / petrol) 20 Synthesis of 4-((7-chloro-I-(4-chlorophenyl)-1-hydroxy-3-oxoisoindolin-2-yl)methyl) benzonitrile (NCL-00010488) and 4-((4-chloro-1 -(4-chlorophenyl)-1 -hdroxv-3 oxoisoindolin-2-vI)iethyl)benzonitrile (73 / NCL-000 10489) Cl C1 C1 HO HO O N N CN CN 25 - 120 The named compounds were synthesised from a mixture of 3-chloro-2-(4 chlorobenzoyl)benzoic acid and 6 -chloro-2-(4-chlorobenzoyl)benzoic acid (2.15 g, 7.28 mmol) and 4-cyanobenzylamine hydrochloride (1.35 g, 8.01 mmol) using General Procedure B, purified by chromatography (Biotage SP4; 20% EtOAc/petrol) 5 and obtained as a white solid (NCL-00010488) and brown crystals (NCL-00010489) (1.98 g, 66%, ratio of 7- and 4 -isomers is 99:1) Analysis of major isomer (NCL-00010488): 'H NMR (300 MHz, CDC1 3 ) 8 3.50 (br s, 1H, OH), 4.224.61 (dd AB, J= 15.3 Hz, 2H, N-CH 2 -), 7.22-7.30 (m, 6H, AH), 7.40-7.51 (m, 4H, ArH), 7.75-7.78 (dd, J= 5.8, 10 2.6Hz, 1H, C(O)-C=CH) "C NMR (CDC13, 75 MHz), 6 42.97, 91.15, 107.13, 109.45, 122.61, 128.49, 129.02, 129.65, 130.01, 130.54, 132.09, 132.13, 132.34, 132.40, 135.02, 143.99, 145.12, 165.73 IR: 669, 710, 766, 812, 853, 930, 1002, 1069, 1088, 1146, 1175, 1277, 1352, 1404, 15 1462, 1490, 1582, 1661, 2228, 2919, 3205 cm 1 ' LCMS (DMSO): Rt= 3.99 min (on 5 min column) HPLC purity (as area %):> 97 UV (in EtOH): Xmax = 227 nm EI-MS: calculated mass of ion 407.0360 [M-HT, measured mass of ion 407.0363 [M 20 H] Rf= 0.42 (50% EtOAc / petrol); MP: 210-21 1C. Analysis of minor isomer (NCL-00010489): 'H NMR (300 MHz, CDC1 3 ) 6 4.02 (br s, 1H, OH), 4.29-4.60 (dd AB, J = 15.1 Hz, 2H, N-CH 2 -), 7.16-7.19 (dd, J= 7.2, 1.2 Hz, 1H, C(OH)-C=CH-), 7.20-7.22 (m, 4H, 25 CjC1), 7.26-7.29 (m, 2H, ArH), 7.37-7.47 (m, 4H, ArH) "C NMR (CDC 3 , 75 MHz), 6 43.17, 94.29, 100.01, 115.88, 128.17, 128.53, 129.18, 129.92, 131.95, 132.32, 132.77, 134.26, 134.36, 135.53, 136.47, 143.28, 144.23, 167.99 IR: 672, 698, 736, 789, 801, 845, 928, 956, 1013, 1088, 1169, 1205, 1269, 1350, 30 1382, 1460, 1489,1597, 1686, 1790,2226, 1851, 2922,3076, 3358 cm-' - 121 LCMS (DMSO): Rt = 3.95 min (on 5 min column) IPLC purity (as area %): > 88 UV (in EtOH): X max = 227 nm EI-MS: calculated mass of ion 426.0771 [M+NH4]*, measured mass of ion 426.0777 5 [M+NH 4 Rf= 0.57 (50% EtOAc / petrol); NP: 191-193"C Synthesis of 2-(4-bromobenzl)4-chloro-3-(4-chlorophenyl)-3-hydroxyisondolin-_l one (NCL-00010490) 10 C1 CI HO N. Br The named compound was synthesised from a mixture of 3-chloro-2-(4 chlorobenzoyl)benzoic acid and 6-chloro-2-(4-chlorobenzoyl)benzoic acid (2.15 g, 15 7.28 mmol) and 4-bromobenzylamine (1.49 g, 8.01 mmol) using General Procedure B, purified by chromatography (Biotage SP4; 20% EtOAc/petrol) and obtained as a white solid (1.57 g, 47%). 'H NMR (300 MHz, DMSO) 8 3.40 (br s, 1H, OH), 4.06-4.55 (dd AB, J = 15.0 Hz, 2H, N-CH 2 -), 7.01-7.07 (in, 2H, C-C2H2C 2
H
2 CBr), 7.23-7.32 (n, 6H, Ar), 7.44-7.50 20 (m, 2H, ArH), 7.72-7.75 (dd, J = 5.7, 2.8 Hz, 1H, C(=0)-C=CH) '-C NMR (DMSO, 75 MHz), 8 44.30, 91.18, 121.62, 122.51, 126.33, 127.34, 128.29, 128.58, 128.94, 130.81, 131.73, 134.30,137.00, 139.90, 141.07, 145.12, 167.02 IR: 671, 711, 766, 814, 847, 928, 1009, 1072, 1150, 1198, 1285, 1356, 1399, 1464, 1489, 1585, 1656, 3193 cm 25 LCMS (DMSO): Rt = 4.72 min (on 5 min column) HPLC purity (as area %): > 97 - 122 UV (in EtOH): X max =222 nm ELMS: calculated mass of ion 459.9512 [M-HT, measured mass of ion 459.9515
[MNHT
Rf= 0.57 (50% EtOAc / petrol); MP: 211-212*C 5 Synthesis of 4-((7-chloro-1-(4-chlorophenyl-1-((1-(iydroxvmethy1)cvclopropyl) methox)-3 -oxoisoindolin-2-yl)methyl)benzonitrile (NCL-000 10492) HO I N CN 10 The named compound was synthesised from NCL-00010488 (413 mg, 1.01 mmol) and 1,1-bis(hydroxymethyl)cyclopropane (0.19 mL, 2.03 nimol) using General Procedure C, purified by chromatography (Biotage SP4; 20% - 60% EtOAc/petrol) and obtained as white crystals (305 mg, 61%). 'H NMR (300 MHz, CDC1 3 ) 8 0.23-0.34 (m, 2H, cyclopropane CH 2 ), 0.3 8-0.46 (M, 15 2H, cyclopropane CH 2 ), 2.28 (s, 3H, OH), 2.78-2.92 (dd AB, J = 9.1 Hz, 2H, -0
CH
2 ), 3.43-3.53 (dd AB, J = 11.4 Hz, 2H, CH 2 OH), 4.30-4.45 (dd AB, J = 15.2 Hz, 2H, N-CHR 2 -), 7.02-7.10 (m, 2H, ArH), 7.12-7.16 (m, 4H, ArH), 7.33-7.37 (m, 2H,
C
2 H2-C(CN)), 7.38-7.42 (m, 1H, -CH-CH=C(C1)-C-C(OCH 2 -), 7.43-7.49 (m, 1H, CH=C(Cl)-C-C(OCH 2 )), 7.78-7.80 (dd, J= 7.2, 1.2 Hz, 1H, C(=Q)-C=CH) 20 3C NMR (CDC1 3 , 75 MHz), 8 8.80, 8.86, 22.54, 42.80, 67.46, 68.04, 94.69, 111.59, 118.67, 122.60, 128.66, 128.72, 129.98, 130.36, 132.17, 132.25, 134.33, 134.41, 135.17, 135.56, 141.10, 142.72, 167.04 IR: 761, 814, 854, 928, 1012, 1144, 1172, 1233, 1275, 1651, 1384, 1423, 1462, 1588, 1697, 2229, 2874, 2920, 3423 cm' - 123 LCMS (DMSO): Rt =4.02 min (on 5 min column) HPLC purity (as area %): > 96 UV (in EtOH): X max = 226 nm EI-MS: calculated mass of ion 426.0255 [M+Hj, measured mass of ion 426.0257 5 [M+IJ* Rf= 0.26 (50% EtOAc / petrol); MP: 70-724C Synthesis of 2-(4-bromobenzyl)-4-chloro-3-(4-chlorophenvl)-3-(l1-(hydroxymethyl) cyclopropyl)methoxy)isoindolin--l.-one (NCL-00010493) IN O 10 Br The named compound was synthesised from NCL-00010490 (468 mg, 1.01 mmol) and 1,1-bis(hydroxymethyl)cyclopropane (0.19 mL, 2.03 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 20% - 40% EtOAc/petrol) 15 and obtained as white crystals (304 mg, 55%). 'H NMR (300 MHz, DMSO) 8 0.06-0.27 (m, 2H, cyclopropane CH2), 0.35-0.40 (m, 2H, cyclopropane CH 2 ), 2.23 (s, 3H, OH), 2.82 (s, 2H, -0-CH 2 ), 3.41-3.50 (dd AB, J = 11.8 Hz, 2H, CH 2 OH), 4.15-4.38 (dd AB, J = 14.9 Hz, 2H, N-CH 2 -), 6.93-6.96 (d, AB, J = 8.4Hz, 2H, -C 2 H2C 2
H
2 CBr), 7.10-7.15 (m, '4H, ArH), 7.19-7.23 (d AB, J 20 =8.4Hz, 2H, C2H2-C(Br)), 7.37-7.47 (m, 2H, ArH), 7.77-7.81 (dd, J = 7.1, 1.2 Hz, 1H, C(=O)-C=cm, '-C NMR (DMSO, 75 MHz), 8 8.83, 8.97, 22.50, 42.70, 67.65, 68.08, 94.91, 121.69, 122.54, 128.72, 130.23, 131.15, 131.59, 132.10, 134.17, 134.63, 135.06, 135.63, 136.46, 141.22, 166.96 - 124 IR: 713, 759, 818, 924, 951, 1009, 1071, 1144, 1172, 1233, 1349, 1383, 1461, 1487, 1587, 1690, 2873, 2923, 3404 cm~ 1 LCMS (DMSO): Rt = 4.27 min (on 5 min column) HPLC purity (as area %): > 94 5 UV (in EtOH): max =222 nm EI-MS: calculated mass of ion 563.0498 [M+NH 4 ], measured mass of ion 563.0491
[M+NH
4
]
4 Rf= 0.39 (50% EtOAc / petrol); MP: 59 - 61*C 10 Synthesis of 3-(4-chlorophenvl)-3-hydroxy-2-(4-nitrobenzyl)-2,3,4,5,6,7 hexahydroisoindol- 1-one (NCL-000 10494) C1 HO 0
NO
2 15 The named compound was synthesised from, 2-(4-chlorobenzoyl)cyclohex-1 enecarboxylic acid (1.00 g, 3.78 mmol) and 4-nitrobenzylamine hydrochloride (0.78 g, 4.16 mmol) using General Procedure B, purified by chromatography (Biotage SP4; 30% EtOAc/petrol) and obtained as a yellow solid (0.67g, 44%). 1H NMR (300 MHz, CDC1 3 ) 6 1.60-1.80 (m, 4H, -C(=0)-C-CH 2 CH2CH2CH 2
C
20 C(OH), 2.20-2.33 (m, 4H, -C(=O)-C-CH 2
CH
2
CH
2 CH2C-C(OH)), 4.19-4.61 (dd AB, J = 15.6 Hz, 2H, N-CH 2 -), 4.73 (s, IH, OH), 7.24-7.30 (m, 4H, -C 6 H4CCl), 7.33-7.36 (d AB, J = 8.6Hz, 2H, -C2H 2
C
2
H
2 C(N0 2 )), 7.97-8.00 (d AB, J = 8.6Hz, 2H, C2H2C(NO2)) "C NMR (CDCl 3 , 75 MHz), 8 20.31, 21.02, 22.11, 22.26, 42.59, 92.16, 123.50, 25 127.94, 129.09, 129.66, 131.47, 134.97, 136.12, 146.31, 147.42, 157.64, 171.18 -125 IR: 697, 727, 797, 824, 853, 914, 968, 1013, 1045, 1092, 1136, 1202, 1283, 1339, 1435, 1489, 1520, 1603, 1661, 2853, 2932, 3159 cnf' LCMS (DMSO): Rt = 4.02 min (on 5 min column) HPLC purity (as area %): > 98 5 UV (in EtOH): X max =272 nm EI-MS: calculated mass of ion 399.1106 [M+H], measured mass of ion 399.1112 [M+H] + Rf= 0.39 (50% EtOAc / petrol); MP: 144 - 1464C 10 Synthesis of 3-(4-chlorophenyl)-5-fluoro-3 -((1 -(droxymethyl)cyclopropyl) methoxy)-2-(4-nrobenzyl)isoindolin-1-one (NCL-00010495) HO C1 0 FO N
NO
2 15 The named compound was synthesised from NCL-00010485 (150 mg, 0.36 mmol) and 1,1-bis(hydroxymethyl)cyclopropane (0.07 mL, 0.72 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 20% - 40% EtOAc/petrol) and obtained as white crystals (85 mg, 47%). 'H NMR (300 MHz, CDCl 3 ) 6 0.10-0.25 (m, 2H, cyclopropane CH 2 ), 0.40-0.49 (m, 20 2H, cyclopropane CH 2 ), 1.69 (s, 3H, OH), 2.84 (s, 2H, -0-CH 2 ), 3.43-3.54 (dd AB, J = 11.3 Hz, 2H, CH 2 OH), 4.48 (s, 2H, N-CH 2 -), 6.82-6.85 (dd, J = 7.5, 2.0Hz, 1H, ArH), 7.15-7.17 (m, 4H, -C 6
H
4 CCl), 7.18-7.25 (dt, J =8.7, 2 .2Hz, 1H, ArH)), 7.28 7.31 (d AB, J = 8.6Hz, 2H, -C2H 2
C
2
H
2
C(NO
2 )), 7.87-7.92 (dd, J = 8.3, 4.8 Hz, 1H, C(=0)-C=CH), 7.98-8.01 (d AB, J= 8.7Hz, 2H, -C2H2C(NO 2
))
- 126 "C NMR (CDC1 3 , 75 MHz), 8 8.91, 22.64, 42.86, 67.62, 67.77, 94.30, 110.87, 111.19, 118.11, 118.39, 123.63, 126.40, 128.22, 129.12, 130.22, 135.56, 136.88, 144.75, 148.23, 167.48, 168.20 11: 683, 772, 802, 836, 936, 1013, 1059, 1093, 1150, 1178, 1220, 1264, 1342, 1383, 5 1427, 1487, 1520, 1605, 1697, 2876, 2927, 3082, 3407 cn 1 LCMS (DMSO): Rt= 4.12 min (on 5 min column) HPLC purity (as area %): > 98 UV (in EtOH): k max = 267 nm EI-MS: calculated mass of ion 514.1540 [M+NH4], measured mass of ion 514.1540 10 [M+NH4} Rf= 0.35 (50% EtOAc / petrol); MP: 61-63"C Synthesis of 3-(4-chloropheny)-6-fluoro-3-((1-(hydroxymethyl~cclopropyl) methoxy)-2-(4-nitrobenzvl)isoindolin- 1-one (NCL-000 10496) HO Cl 0 | FI N 15 NO 2 The named compound was synthesised from NCL-00010486 (150 mg, 0.36 mmol) and 1,1-bis(hydroxymethyl)cyclopropane (0.07 mL, 0.72 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 20% - 40% EtOAc/petrol) 20 and obtained as white crystals (115 mg, 64%). 'H NMR (300 MHz, CDC1 3 ) 8 0.22-0.31 (in, 2H, cyclopropane CH 2 ), 0.48-0.55 (m, 2H, cyclopropane CH 2 ), 2.10 (s, 3H, OH), 2.90 (s, 2H, -0-CH 2 ), 3.52-3.62 (dd AB, J = 11.4 Hz, 2H, CH 2 OH), 4.51-4.62 (dd AB, J= 15.5 Hz, 2H, N-CH 2 -), 7.19-7.25 (in, SH, -C 6
H
4 CC1 and C(F)=CH-CH=), 7.27-7.30 (dd, J =8.6, 2.2Hz, 1H, -C(F)=CH- -127 CH=)), 7.34-7.37 (d AB, J= 8.6Hz, 2H, -C 2
H
2
C
2
H
2
C(NO
2 )), 7.62-7.65 (dd, J = 7.2, 2.1 Hz, 1H, C(=O)-C=CH), 8.04-8.06 (d AB, J=8.6Hz, 2H, -C2H 2
C(NO
2 )) "C NMR (CDC 3 , 75 MHz), 3 8.87, 8.92, 22.64, 42.90, 67.55, 67.64, 94.64, 110.93, 111.25, 12L03, 123.61, 125.35, 125.46, 128.25, 129.03, 130.20, 135.38, 137.11, 5 141.00, 144.64, 162.64, 167.32 IR: 701, 777, 802, 830, 928, 1011, 1065, 1092, 1177, 1227, 1264, 1342, 1379, 1447, 1484, 1520, 1605, 1694, 2874, 2928, 3408 cm LCMS (DMSO): Rt =4.05 min (on 5 min column) HPLC purity (as area %): > 98 10 UV (in EtOH): X max= 267 nm EI-MS: calculated mass of ion 514.1540 [M+NH 4 ], measured mass of ion 514.1537 [M+NH4 Rf= 0.45 (50% EtOAc / petrol); NP: 64-66*C 15 Synthesis of 4-chloro-3-( 4 -chlorophenyl)-3-hydroxy-2-(4-nitrobenzyl)isoindolin-1 one (NU38398) and 7-chloro-3-(4-chlorophenyl)-3-hydroxy-2-(4-nitrobenzyl)-2,3 dihydroisoindol-1 -one (AW379B. NCL-00016654) CI C1 CI HO HO ON | C N
NO
2 NO 2 20 The named compounds were synthesised from a mixture of 3-chloro-2-(4 chlorobenzoyl)benzoic acid and 6-chloro-2-(4-chlorobenzoyl)benzoic acid (2.15 g, 7.28 mmol) and 4-nitrobenzylamine hydrochloride (1.51 g, 8.01 mmol) using General Procedure B, purified by chromatography (Silica; 10% - 20% EtOAc/petrol) and 25 obtained as a white solid (NU8398) and a white solid (NCL-00016654) (1.96 g, 63%, ratio of isomers NU8398:NCL-00016654 is 99:1).
- 128 Analysis of major isomer (NU8398): 'H NMR (300 MHz, CDC 3 ) 8 4.28 (br s, 1H, OH), 4.28 and 4.63 (dd, AB, J 15.4Hz, 2H, N-CH 2 -), 7.19-7.22 (m, 4H, Ar-H), 7.31-7.33 (m, 2H, Ar-H), 7.44-7.49 5 (m, 2H, Ar-H), 7.72-7.75 (dd, J= 3.2, 8.5 Hz, 1H, (C(O)-C=CH-), 7.98-8.00 (in, 2H, CH-NO 2 ). 13 C NMR (CDC1 3 , 75 MHz), 6 42.37, 90.90, 122.20, 123.22, 123.35, 128.21, 128.68, 129.44, 129.75, 131.69, 131.89, 134.14, 135.15, 147.37, 163.60, 163.86. IR: 696, 729, 759, 808, 856, 932, 996, 1070, 1092, 1144, 1174, 1271, 1342, 1397, 1462, 1518, 1592, 1682, 2026, 2171, 3220 cr'. LCMS (DMSO): 8.47 min (on 10 12 min column). UV (in EtOH): X max = 268 nm. EI-MS: calculated mass of ion 429.0403 [M+Hfl, measured mass of ion 429.0401 [M+H]. Rf: 0.47 (50% EtOAc / petrol). MP: 202 - 203 "C. CHN: C 2 1
H
4 C1 2
N
2 0 4 + 0.2EtOAc requires C: 58.59, H: 3.52, N: 6.27, found C: 58.27, H: 3.21, N: 6.48. 15 Analysis of minor isomer (NCL-000 16654) 'H NMR (300 MHz, CDC1 3 ) 6 3.90 (s, 1H, OH), 4.30-4.66 (dd, AB, J 15.2Hz, 2H, N-CH-), 7.17-7.20 (dd, J = 1.2, 7.2 Hz, 1H, CH-C(COH)-), 7.21-7.24 (m, 4H, -CLI4CI), 7.29-7.35 (dd AB, J = 8.8 Hz, 2H, -CC2H 2
C
2
H
2 CN02), 7.37-7.48 (m, 2H, ArH), 7.94-8.00 (dd AB, J = 8.8 Hz, 2H, -CCzH 2 C2H 2
CNO
2 ). ' 3 C NMR 20 (CDC1 3 , 75 MHz), 6 42.88, 90.25, 121.72, 123.70, 126.42, 128.16, 129.23, 130.01, 132.04, 132.10, 135.64, 136.58, 145.18, 147.78, 151.26, 165.68. IR: 612, 852, 934, 1093, 1343, 1387, 1515, 1604, 1686, 2850, 2932, 3078, 3332 cnf 1 . LCMS (DMSO): RT = 3.47 min (on 5 min column), miz = 427 ES'. HPLC purity (as area %): > 98. UV (in EtOH): X max = 270 rm. EI-MS: calculated mass of ion 429.0403 [M+H], 25 measured mass of ion 429.0403 [M+HJ*. Rf= 0.55 (50% EtOAc / petrol). MP: 172 174 "C. Synthesis of 2 -(4-acetylbenzyl)-3-(4-cilorophenyl)-3-lhdroxv-2.3-dihydroisoindol-1 one (NCL-00016045 /AW344) 30 - 129 C1 HO N 0 Me The named compound was synthesised from 2-(4-chlorobenzoyl)-benzoic acid (687 mg, 2.63 mmol) and 4-acetylbenzylammonium. trifluoroacetate (630 mg, 2.40 5 mmol) using General Procedure B, purified by chromatography (Silica; 10% - 50% EtOAc / petrol) and obtained as white crystals (552 mg, 54%). 1H NMR (300 MHz, CDC1 3 ) 5 2.44 (s, 3H, CU 3 ), 4.10-4.60 (dd AB, J = 15.1 Hz, 2H,
N-CH
2 ), 5.03 (s, 1H, OH), 7.15-7.21 (m, 4H, ArH), 7.24-7.28 (m, 3H, ArH), 7.40 10 7.52 (m, 21, ArH, 7.57-7.60 (d AB, J = 8.2 Hz, 2H, ArH), 7.65-7.69 (m, 1H, -CH C(C=0)). "C NMR (CDC 3 , 75 MHz), 526.39, 42.98, 91.38, 123.01, 123.59, 128.23, 128.32, 128.76, 129.14, 129.75, 130.64, 133.01, 134.69, 136.17, 137.96, 143.66, 149-26, 168.06, 198.01. IR: 696, 725, 770, 804, 849, 905, 956, 1013, 1061, 1089, 1200, 1263, 1352, 1398, 1427, 1468, 1603, 1666, 2055, 2846, 2934, 3007, 3140 cmi 15 LCMS (DMSO): RT = 3.78 min (on 5 min column), m/z = 392 ES+. HPLC purity (as area %): > 98. UV (in EtOH): X max = 254 nrn. EI-MS: calculated mass of ion 392.1048 [M+H], measured mass of ion 392.1051 [M+H]*. Rf= 0.19 (25% EtOAc / petrol). MP: 147 - 150 C. 20 Synthesis of 2-4-benzoylbenzyl)-3-(4-chlorophenvl)-3-hydroxy-2,3-dihydroisoindol 1-one (AW357, NCL-00014532) - 130 C1 HO Ph The named compound was synthesised from 2-(4-chlorobenzoyl)-benzoic acid (791 mg, 3.03 mmol) and 4 -acetylbenzylammionium trifluoroacetate (640 mg, 1.97 5 mmol) using General Procedure B, purified by chromatography (Silica; 10% - 30% EtOAc / petrol) and obtained as white crystals (414 mg, 46%). 'H NMR (300 MHz, CDC1 3 ) 6 4.20-4.56 (dd AB, J = 15.1 Hz, 2H, N-CH 2 ), 6.01 (s, 1H, OH), 7.14-7.20 (m, 4H, ArH), 7.21-7.28 (m, 3H, ArH), 7.31-7.43 (m, 6H, ArH), 10 7.50-7.53 (m, 1H, -CH-C(C=O)), 7.56-7.62 (m, 3H, ArH). 'C NMR (CDC1 3 , 75 MHz), 6 43.02, 91.46, 123.09, 123.74, 128.37, 128.55, 128.83, 128.99, 129.87, 130.15, 130.26, 130.57, 132.65, 133.16, 134.78, 136.45, 137.86, 137.97, 143.06, 149.28, 168.18, 196.74. IR: 698, 735, 763, 810, 864, 927, 1015, 1063, 1090, 1198, 1275, 1313, 1350, 1400, 1468, 1597, 1655, 2023, 2157, 2931, 3065, 3179 cm 1 . 15 LCMS (DMSO): 3.88 min (on 5 min column), m/z = 454 ES HPLC purity (as.area %): > 97. UV (in EtOH): ?, max = 259 nm. El-MS: calculated mass of ion 454.1204 [M+H, measured mass of ion 454.1206 [M+H]*. Rf = 0.45 (25% EtOAc / petrol). NP: 163 - 164 "C. 20 Synthesis of 3
-(
4 -chloropheny1)-3-hydroxy-2-(4-iodobenzvy-2,3-dihydroisoindol-1 one (AW345, NCL-00014527) - 131 CI HO I N 0 The named compound was synthesised from 2-(4-chlorobenzoyl)-benzoic acid (1.76 g, 6.75 mmol) and 4-iodobenzylamine hydrochloride (2 g, 7.42 mmol) using 5 General Procedure B, recrystallised from EtOAc / petrol, purified by chromatography (Silica; 6% - 50% EtOAc / petrol) and obtained as a white solid (1.72 g, 52%). 'H NMR (300 MHz, CDCJ 3 ) & 3.37 (s, 1H, OH), 4.17-4.46 (dd AB, J= 15.6 Hz, 2H,
N-CH
2 ), 6.98-7.01 (d AB, J = 7.8 Hz, 2H, CC 2 H2C 2
H
2 C(I)), 7.23-7.32 (m, 51, ArH), 10 7.50-7.62 (m, 4H, ArpH, 7.75-7.78 (in, 1H, -CH-C(C=0)). "C NMR (CDC 3 , 75 MHz), 8 167.15, 149.54, 139.34, 138.32, 136.90, 133.21, 133.03, 130.80, 130.70, 129.73, 128.57, 128.38, 123.18, 122.98, 92.38, 90.59, 42.32. IR: 694, 719, 762, 790, 845, 926, 1007, 1063, 1093, 1119, 1198, 1288, 1352, 1391, 1412, 1467, 1659, 2912, 3175, 3178 cmuE. LCMS (DMSO): RT = 4.89 min (on 5 min column), m/z= 476 ES*. 15 HPLC purity (as area %): > 99. UV (in EtOH): ?, max = 231 nm. EI-MS: calculated mass of ion 475.9909 [M+H]*, measured mass of ion 475.9905 [M+H. Rf = 0.29 (25% EtOAc / petrol). MP: 184 - 185 *C Synthesis of 3-(4-chlorophenvl)-3-(1-hydroxymethylcycloproplImethoxy)-2-(4 20 iodobenzyl)-2,3-dihydroisoindol-l-one (AW350, NCL-00014529) -132 HO q C1 0 N The named compound was synthesised from NCL-00014527 (499 mg, 1.01 mmol) and 1,1-bis(hydroxymethyl)cyclopropane (0.19 mL, 2.03 mmol) using General 5 Procedure C, purified by chromatography (Silica; 10% - 40% EtOAc/petrol) and obtained as white crystals (487 mg, 83%). 'H NMR (300 MHz, CDC1 3 ) 5 0.10-0.15 (m, 2H, cyclopropane CH 2 ), 0.35-0.42 (m, 2H, cyclopropane CH 2 ), 1.85 (s, 1H, OH), 2.62-2.80 (dd AB, J = 9.4 Hz, 2H, iso-O
CH
2 -), 3.32-3.48 (m, 2H, -CJH 2 OH) 4.12-4.50 (dd AB, J= 14.8 Hz, 2H, N-CH 2 ), 6.85 10 6.93 (d AB, J= 8.3 Hz, 2H, CC2H2C 2
H
2 C(I)), 7.09-7.13 (m, 1H, -CH-CH=C(C=O)), 7.13-7.18 (n, 4H, ArH), 7.44-7.51 (m, 4H, ArH), 7.85-7.89 (m, 1H, -CH-C(C=0)).
'
3 C NMR (CDC1 3 , 75 MHz), 5 8.85, 22.56, 42.94, 67.81, 67.93, 94.68, 95.11, 123.30, 124.00, 128.27, 128.93, 130.28, 131.54, 133.20, 135.03, 137.45, 137.48, 137.63, 144.90, 145.62, 168.40. IR: 679, 758, 792, 812, 847, 877, 922, 953, 1035, 1065, 15 1091, 1177, 1229, 1277, 1318, 1356, 1386, 1418, 1471, 1611, 1684, 1769, 2817, 2880, 2943, 3005, 3063, 3508 cnf 1 . LCMS (DMSO): RT = 4.03 min (on 5 min column), m/z = 560 ESt HPLC purity (as area %): > 98. U7V (in EtOH): i max 229 nm. EI-MS: calculated mass of ion 560.0484 [M+H], measured mass of ion 560.0472 [M+H]. Rf= 0.36 (50% EtOAc / petrol). MP: 164 - 165 "C. 20 Synthesis of 3-(4-blorophenvl)-2-(4-fluorobenzyl)-3-(1 hydroxvmethylcvclopropyImethoxy)-2,3-dihydro-isoindol-1-one (AW351, NCL 00014530) - 133 HO q C1 0 1 N 0 F The named compound was synthesised from 3-(4-chloro-phenyl)-2-(4-fluoro benzyl)-3-hydroxy-2,3-dihydroisoindol-1-one (372 mg, 1.01 mmol) and 1,1 5 bis(hydroxymethyl)cyclopropane (0.19 mL, 2.03 mmol) using General Procedure C, purified by chromatography (Silica; 10% - 40% EtOAc/petrol) and obtained as yellow crystals (238 mg, 52%). H NMR (300 MHz, CDCl 3 ) 6 0.01-0.04 (m, 2H, cyclopropane CH 2 ), 0.29-0.34 (m, 10 2H, cyclopropane CH2), 2.05 (s, 1H, OH), 2.57-2.75 (dd AB, J = 9.4 Hz, 2H, iso-O CH-), 3.28-3.46 (dd AB, J = 11.3 Hz, 2H, -CH2OH) 4.11-4.45 (dd AB, J= 14.8 Hz, 2H, N-CH 2 ), 6.71-6.77 (m, 2H, ArH), 7.03-7.08 (m, 3H, -ArH), 7.08-7.13 (m, 4H, ArH), 7.39-7.42 (m, 211, ArHY), 7.78-7.82 (m, JH, -CH-C(C=0)). '3C NMR (CDCl 3 , 75 MHz), 6 8.80, 21.08, 42.70, 67.75, 95.11, 115.06, 123.31, 123.96, 128.30, 128.87, 15 130.25, 131.20, 131.30, 133.16, 133.70, 134.89, 137.76, 145.75, 164.12, 168.47. IR: 760, 808, 844, 918, 951, 1008, 1042, 1063, 1086, 1110, 1158, 1222, 1309, 1346, 1393, 1429, 1468, 1508, 1602, 1674, 2848, 2929, 3005, 3080, 3396 cnf 1 . LCMS (DMSO): RT = 3.78 min (on 5 min column), m/z = 452 ESt HPLC purity (as area %): > 96. UV (in EtOH): X max = 254 nm. EI-MS: calculated mass of ion 452.1423 20 [M+H]*, measured mass of ion 452.1419 [M+H]. Rf = 0.49 (50% EtOAc / petrol). MP: 130 - 132 C.
- 134 Synthesis of 2-(4-acetylbenzyl)-3-(4-chlorophenvl)l-3-(1 hydroxymethylcyclopropylmethoxy)-2.3 -dihydroisoindol-1 -one (AW354, NCL 00014531) HO qC1 N 0 Me 5 0 The named compound was synthesised from NCL-00016045 (270 mg, 0.69 mmol) and 1,1-bis(hydroxymethyl)cyclopropane (0.13 mL, 1.38 mmol) using General Procedure C, purified by chromatography (Silica; 20% - 70% EtOAc/petrol) and 10 obtained as a yellow oil (108 mg, 33%). 'H NMR (300 MHz, CDCl 3 ) 5 -0.05-0.03 (m, 2H, cyclopropane CH 2 ), 0.20-0.31 (m, 2H, cyclopropane CH 2 ), 1.76 (br s, 1H, OH), 2.42 (s, 3H, CH) 2.58-2.70 (dd AB, J 9.4 Hz, 21H, iso-O-CH2-), 3.23-3.37 (dd AB, J = 11.3 Hz, 2H, -CH2OH) 4.20-4.44 (dd 15 AB, J = 15.0 Hz, 2H, N-CH2), 6.95-7.10 (m, 5H, -ArH), 7.11-7.16 (m, 2H, Arm, 7.38-7.41 (m, 2H, ArH), 7.59-7.64 (in, 2H, ArH), 7.76-7.80 (m, 1H, -CHI-C(C=O))
"
1 C NMR (CDC 3 , 75 MHz), 6 8.84, 21.10, 26.63, 43.12, 67.85, 69.40, 95.09, 123.37, 124.07, 128.31, 128.48, 128.89, 129.61, 130.35, 132.04, 133.26, 135.03, 136.75, 137.61, 142.97, 145.65, 168.47, 197.58 20 IR: 698, 763, 811, 849, 926, 957, 1012, 1061, 1092, 1177, 1267, 1353, 1383, 1417, 1466, 1607, 1680, 2875, 2922, 3001, 3368, 3402 cm^ 1 . LCMS (DMSO): 4.14 min (on S min column). HPLC purity (as area %): > 97. UV (in EtOH): X max =251 nm. El MS: calculated mass of ion 476.1623 [M+H], measured mass of ion 476.618 [M+H]+. Rf= 0.21 (50% EtOAc / petrol).
- 135 Synthesis of 2-(4-benzovlbenzL)-3-(4-chlorophenyl)-3--(1 hvdroxvmethvlcvclopropmethoxy)-2,3 -dihydroisoindol-1 -one (AW360, NCL 00014533) 5 HO ci ON \ | N 0 Ph 0 The named compound was synthesised from NCL-00014532 (142 mg, 0.31 mmol) and 1,1-bis(hydroxymethyl)cyclopropane (0.06 mL, 0.63 mmol) using General 10 Procedure C, purified by chromatography (Silica; 10% - 50% EtOAc/petrol) and obtained as yellow crystals (124 mg, 74%). 'H NMR (300 MHz, CDC 3 ) S -0.08-0.03 (m, 2, cyclopropane CH 2 ), 0.25-0.30 (M, 2H, cyclopropane CH 2 ), 1.94 (br s, 1H, OH), 2.60-2.69 (dd AB, J = 9.4 Hz, 21, iso 15 O-CH2-), 3.23-3.37 (dd AB, J = 11.3 Hz, 2H, -CH2oH) 4.22-4.42 (dd AB, J = 15.0 Hz, 2H, N-CH 2 ), 6.96-7.05 (m, 5H, -CJI 4 CCI & -CHCHC(C=O-N-), 7.09-7.12 (d AB, J= 8.1 Hz, 2H, -N-CH2-CC2H2C 2
H
2 C(C(=0)Ph), 7.25-7.42 (m, 7H, ArH), 7.53 7.56 (d AB, J = 8.1 Hz, 2H, -N-CH2-CC 2
H
2 C2H2C(C(--o)Ph), 7.73-7.76 (m, 1H, CH-C(C=O)). "C NMR (CDC 3 , 75 MHz), 6 8.86, 22.65, 43.11, 67.74, 69.30, 95.07, 20 123.41, 124.08, 128.40, 128.56, 128.87, 129.07, 129.26, 130.18, 130.36, 132.04, 132.55, 133.28, 134.97, 137.09, 137.72, 138.15, 142.32, 145.69, 168.52, 196.28. IR: 699, 727, 764, 813, 858, 922, 1013, 1063, 1092, 1177, 1276, 1314, 1383, 1466, 1605, 1656, 1690, 2877, 2921, 3063, 3411 cm^ 1 . LCMS (DMSO): 4.88 min (on 5 min column).HPLC purity (as area %): > 94. UV (in EtOH): X max = 261 nm. EI-MS: -136 calculated mass of ion 560.1599 [M+Na]*, measured mass of ion 560.1601 [M+Na]*. Rf= 0.40 (50% EtOAc / petrol). MP: 69 -71 "C. Synthesis of 3-(4-chlorophenyl)-3-hydroxy-2-naphthalen-1-vlmethv1-2,3 5 dihydroisoindol-1 -one (AW364, NCL-00016046) CI HO | The named compound was synthesised from 2-(4-chlorobenzoyl)-benzoic acid 10 (2.24 g, 8.59 mmol) and 1-naphthylmethylamine (1.36 mL, 9.44 mmol) using General Procedure B, purified by chromatography (Silica; 6% - 50% EtOAc / petrol) and obtained as yellow crystals (0.35 g, 10%). 'H NMR (300 MHz, MeOD) 6 4.90 (s, 1H, OH), 4.90-5.27 (dd AB, J = 15.2 Hz, 2H, 15 N-CH 2 ), 6.75-6.79 (m, 2H, ArH), 6.95-6.98 (d AB, J = 8.5 Hz, 2H, ArH), 7.13-7-27 (n, 3H, ArH), 7.35-7.61 (m, 5H, ArH), 7.72-7.75 (m, 1H, -CH-C(C-0)), 7.86-7.89 (m, 1H, ArH), 8.17-8.19 (m, 1H, N-CH 2 -C-C(C)=CH)). ' 3 C NMR (MeOD, 75 MHz), 6 41.89, 92.80, 124.27, 124.59, 125.20, 126.37, 126.89, 127.38, 129.00, 129.05, 129.32, 129.40, 129.96, 131.05, 132.00, 133.36, 134.02, 134.55, 135.03, 135.47, 20 139.68, 151.56, 170.26. IR: 694, 762, 833, 929, 973, 1011, 1060, 1091, 1112, 1195, 1268, 1360, 1396, 1468, 1599, 1674, 2070, 2873, 2967, 3053, 3270, 3331 cm 1 . LCMS (DMSO): RT = 4.19 min (on 5 min column), m/z = 398 ES-. HPLC purity (as area %): > 92. LV (in EtOH): X max = 223 nm. EI-MS: calculated mass of ion 400.1099 [M+H}f, measured mass of ion 400.1099 [M+H]+. Rf= 0.15 (25% EtOAc / 25 petrol). MP: 75 - 76 *C.
-137 Synthesis of 2-(3-bromobenzl)-3-(4-chlorophenyD-3-hydroxv-2,3-dihydroisoindol 1-one (AW365. NCL-00016047) CI HO O Br 5 The named compound was synthesised from 2-(4-chlorobenzoyl)-benzoic acid (2.24 g, 8.59 mmol) and 3-bromobenzylamine hydrochloride (2.10 g, 9.44 mmol) using General Procedure B, recrystallised from EtOAc / petrol and obtained as orange crystals (2.12 g, 58%). 10 'H NMR (300 MHz, CDC 3 ) 8 4.12-4.33 (dd AB, J= 15.0 Hz, 2H, N-CH 2 ), 4.54 (br s, 1H, OH), 6.93-7.04 (m, 2H, -CH-CH=CH-CBr), 7.08-7.10 (n, 1H, ArH), 7.12-7.19 (m, 4H, -C 6 H4CI), 7.20-7.29 (m, 2H, ArH), 7.41-7.53 (in, 2H, ArH), 7.64-7.69 (m, 1H, =CH-C-C(=0)).
'
3 C NMR (CDC 3 , 75 MHz), 8 42.70, 91.40, 122.52, 122.56, 15 123.06, 123.95, 127.78, 128.27, 128.89, 130.01, 130.15, 130.54, 132.20, 133.36, 135.09, 137.20, 140.35, 149.08, 168.05. IR: 664, 696, 721, 764, 802, 837, 879, 926, 976, 1011, 1059, 1088, 1191, 1306, 1348, 1399, 1427, 1468, 1572, 1600, 1668, 2875, 2932, 3016, 3246 cm- 1 . LCMS (DMSO): RT = 4.32 min (on 5 min column), m/z 428 ES-. HPLC purity (as area %): > 98. UV (in EtOH): X max = 254 nm. EI-MS: 20 calculated mass of ion 428.0047 [M+H]*, measured mass of ion 428.0041 [M+H]*. Rf= 0.42 (50% EtOAc / petrol). MP: 167 - 170 *C. Synthesis of 3-(4-chlorophenvl)-3-(1-hydroxinethylcyclopropylmethoxy)-2 naphthalen-1--v1methyl-2.3 -dihydroisoindol-1 -one (AW366, NCL-00016106) 25 - 138 HO C 0 The named compound was synthesised from NCL-00016046 (270 mg, 0.69 mmol) and 1,1-bis(hydroxymethyl)cyclopropane (0.13 mL, 1.38 mmo]) using General 5 Procedure C, purified by chromatography (Biotage SP4; 6% - 25% EtOAc/petrol) and obtained as cream crystals (153 mg, 47%). 'H NMR (300 MHz, CDC1 3 ) 8 -0.35-0.15 (m, 2H, cyclopropane CH), 0.12-0.25 (m, 2H, cyclopropane CH), 1.80 (br s, 1H, OH), 2.38-2.70 (dd AB, J = 9.4 Hz, 2H, CH20 10 C), 3.18-3.31 (dd AB, J= 11.1 Hz, 2H, CH2OH), 4.63-5.27 (dd AB, J= 14.9 Hz, 2H,
N-CH
2 ), 7.02-7.07 (m, 5H, C6H4CI & ArH)), 7.15-7.30 (m, 2H, Arm), 7.43-7.48 (m, 4H, AiH), 7.68-7.71 (m, 1H, NCH 2 C-CHCHCH-C), 7.76-7.79 (m, 1H, -CH-C(C=0)), 7.93-7.97 (m, 1H, N-CH2-CC(C)=CHCHCHCHC-C), 8.29-8.32 (in, 1H, N-CH 2
-C
C(C)=CH)). 15 ' 3 C NMR (CDC 3 , 75 MHz), 8 8.58, 8.61, 22.36, 41.25, 67.68, 67.78, 95.41, 123.17, 124.09, 124.54, 125.35, 126.02, 126.70, 128.05, 128.50, 128.68, 128.85, 129.09, 130.15, 131.92, 132.40, 132.91, 133.19, 134.03, 134.49, 137.55, 146.16, 168.32. IR: 696, 767, 810, 839, 923, 945, 1012, 1065, 1110, 1271, 1356, 1389, 1467, 1487, 1598, 1685, 2874, 2923, 3004, 3051, 3395 cm-. LCMS (DMSO): RT= 3.99 min (on 5 min 20 column), m/z = 484 ES+. HPLC purity (as area %): > 95.UV (in EtOH): X max = 223 nm. EI-MS: calculated mass of ion 484.1674 [M+H, measured mass of ion 484.1673 [M+H]. Rf= 0.10 (25% EtOAc / petrol). MIP: 82 - 84 "C.
- 139 Synthesis of 2-(3-bromobenzl)-3-(4-chloroplenyl)-3-(1 hydroxymethylcvclopropylImethoxy)-2,3-dihydro-isoindol-1-one (AW367, NCL 00016107) HO q CI 0 I 50N Br 5 The named compound was synthesised from NCL-00016047 (292 mg, 0.68 mmol) and 1,1-bis(hydroxymethyl)cyclopropane (0.13 mL, 1.35 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 6% - 50% EtOAc/petrol) and 10 obtained as a pale yellow oil (253 mg, 73%). 'H NMR (300 MHz, CDCb3) 5 -0.05-0.05 (n, 2H, cyclopropane CH), 0.22-0.31 (m, 2H, cyclopropane CH), 2.33 (br s, 1H, OH), 2.54-2.73 (dd AB, J= 9.3 Hz, 2H, CH20 C), 3.26-3.32 (dd AB, J = 11.0 Hz, 2H, CH 2 0H), 4.10-4.31 (dd AB, J = 14.9 Hz, 2H, 15 N-CH 2 ), 6.81-6.87 (m, 1H, -CH-CH=CH-CBr), 6.95-7.05 (m, 7H, Ar), 7.09-7.11 (m, 1H, -CH=CH-C-C(=O)), 7.33-7.35 (m, 2H, -CH=CH-C-C(0-CH 2 -)), 7.71-7.74 (M, 11, =CH-C-C(=O)). 1 3 C NMR (CDC1 3 , 75 MHz), 8 8.76, 8.82, 22.58, 42.81, 67.52, 67.60, 94.99, 122.50, 123.40, 124.03, 128.19, 128.32, 128.86, 130.02, 130.30, 130.60, 132.00, 132.55, 133.25, 134.98, 137.61, 140.02, 145.69, 168.40. IR: 666, 20 695, 711, 761, 812, 838, 927, 1009, 1063, 1090, 1307, 1346, 1380, 1427, 1467, 1571, 1595, 1686, 2874, 2920, 3001, 3065, 3429 cm. LCMS (DMSO): RT = 3.93 min (on 5 min column), m/z= 511 ES. HPLC purity (as area %):> 98. UV (in EtOH): X max = 203 nm. EI-MS: calculated mass of ion 512.0623 [M+H], measured mass of ion 512.0620 [M+H]*. Rf= 0.36 (50% EtOAc / petrol). 25 -140 Synthesis of. 3-hydroxy-2-(4-nitrobenzy1)-3-phenyl-2,3-dihydroisoindol- 1-one (AW403 /NCL-00016655) HO | N o
NO
2 5 The named compound was synthesised from 2-benzoyl-benzoic acid (0.5 g, 2.21 mmol) and 4-nitrobenzylamine hydrochloride (0.46 g, 2.43 mmol) using General Procedure B, recrystallised from EtOAc / petrol and obtained as a yellow solid (0.56 g, 70%). 10 'H NMR (300 MHz, CDC1 3 ) 8 3.36 (s, IH, OH), 4.26-4.71 (dd AB, J = 15.3 Hz, 2H, N-CH2), 7.22-7.34 (m, 8H, Ar-H), 7.48-7.57 (m, 2H, Ar-H), 7.81-7.84 (m, 1H, CH=C-C(=0)), 7.96-8.01 (dd AB, J = 8.8 Hz, 2H, C 2
H
2
C-NO
2 ). "C NMR (CDC 3 , 75 Mfz), 5 41.02, 91.09, 123.65, 124.05, 125.56, 126.65, 127.64, 128.93, 129.05, 15 129.82, 133.48, 138.08, 138.25, 142.31, 145.80, 148.57, 168.29. IR: 688, 756, 851, 934, 1055, 1105, 1192, 1283, 1337, 1398, 1468, 1514, 1605,3083,3181 cm'. LCMS (DMSO): RT = 3.13 min (on 5 min column), m/z = 359 ES. HPLC purity (as area %): > 99. UV (in EtOH): X max = 269 nm. EI-MS: calculated mass of ion 361.1183 [M+H]7, measured mass of ion 361.1186 [M+H]*. Rf = 0.35 (50% EtOAc / petrol). 20 MP: 190 - 191 C. Synthesis of 3-(1-hydroxymethylcvclopropvlmethoxy)-2-(4-nitrobenzvl)3-pheny1 2,3-dihydroisoindol- 1-one (AW405 / NCL-00016656) - 141 HO N 0
NO
2 The named compound was synthesised from NCL-00016655 (300 mg, 0.83 mmol) and 1,1-bis(hydroxymethyl)cyclopropane (0.16 m.L, 1.67 mmol) using General 5 Procedure C, purified by chromatography (Biotage SP4; 10% - 50% EtOAc/petrol) and obtained as pale yellow crystals (298 mg, 8 1%). 1H NMR (300 MHz, CDC1 3 ) 6 -0.02-0.01 (m, 2H, cyclopropane CH 2 ), 0.15-0.25 (m, 2H, cyclopropane CH 2 ), 2.05 (s, 1H, OH), 2.49-2.65 (m, 2H, C-0-CH 2 ), 3.20-3.40 (m, 10 2H, GHHOH), 4.204.40 (m, 2H, N-CH2), 6.80-7.10 (m, 8H, Ar-H), 725-7.35 (m, 2H, Ar-H), 7.70-7.90 (m, 3H, CH=C-C(=0) & C 2
H
2 C-N0 2 ) 1 3 C NMR (CDCla, 75 MHz), 8 8.59, 21.07, 42.08, 66.02, 66.13, 94.53, 123.34, 123.83, 126.54, 128.29, 128.81, 129.67, 130.13, 131.52, 133.04, 137.95, 138.03, 144.61, 145.46, 146.88, 168.36. IR: 696, 753, 796, 854, 910, 938, 1022, 1057, 1103, 15 1179, 1243, 1278, 1341, 1384, 1466, 1518, 1605, 1686, 2853, 2921, 3077, 3414 ci. LCMS (DMSO): RT.= 3.22 min (on 5 min column). HPLC purity (as area %): > 97. UTV (in EtOH): A max = 267 nm. EI-MS: calculated mass of ion 445.1758 [M+H), measured mass of ion 445.1757 [M+H]*. Rf= 0.27 (50% EtOAc / petrol). MIP: 58 60 "C. 20 Synthesis of succinic acid mono-{ 1-{7-chloro- I -( 4 -chloro-phenyl)-2-(4-nitrobenzyl) 3-oxo-2.,3-dihydro-1H-isoindol-1-yloxymethvllcyclopropylmethyl} ester (AW393 / NCL-00016149) - 142 0 0 HO 0 0 Ci ei N o
NO
2 The named compound was synthesised from NU8406 (100 mg, 0.19 mmol), pyridine (0.03 mL, 0.39 mmol), 4-dimethylamino pyridine (5 mg, 0.04 mmol) and 5 succinic anhydride (39 mg, 0.39 minol) in anhydrous THF (10 mL) using General Procedure F, purified by chromatography (Biotage SP4; 50% EtOAc/petrol - 20% MeOH/EtOAc) and obtained as white crystals (60 mg, 50%). 'H NMR (300 MHz, CDC 3 ) 6 0.20-0.42 (m, 2H, cyclopropane CH 2 ), 0.45-0.52 (m, 10 2H, cyclopropane CH 2 ), 2.45-2.52 (br n, 4H, -CHCH 2
CO
2 H), 2.62-2.93 (dd, AB, J= 9.3 Hz, 2H, iso-C-0-CH 2 -), 4.00-4.15 (in, 2H, CfH2OCOCH 2
CH
2
CO
2 H), 4.30-4.60 (dd, AB, J = 15.2Hz, 2H, N-CH 2 -), 7.01-7.31 (m, 6H, Ar-H), 7.42-7.57 (m, 2H, Ar H), 7.80-8.10 (br m, 4H, ArH and CO2H). ' 3 C NMR (CDCL 3 , 75 MHz), 6 9.38, 20.00, 29.20, 29.45, 42.50, 67.27, 68.58, 94.68, 122.67, 123.53, 128.51, 128.70, 128.86, 15 130.06, 130.56, 132.31, 134.37, 135.36, 141.10, 142.22, 144.50, 147.67, 167.32, 172.27, 176.16. IR: 594, 730, 819, 1076, 1165, 1344, 1521, 1707, 1708, 2882, 2929, 3079 cm-> LCMS (DMSO): RT = 3.67 min (on 5 min column), m/z = 612 ES HPLC purity (as area %): > 95. EI-MS: calculated mass of ion 613.1139 [M+H]*, measured mass of ion 613.1139 [M+HJ*. Rf= 0.06 (50% EtOAc / petrol). MP: 42 20 44 *C. Synthesis of succinic acid mono-f 1-[ 7 -chloro-1-(4-chlorophenyl)-2-(4-cvanobenzvl) 3-oxo-2,3-dihydro-1H-isoindol-1-yloxymethvllcyclopropyhnethylI ester (AW417 / NCL-00016659) - 143 0 0 HO S0CI N CN The named compound was synthesised from NCL-00010492 (110 mg, 0.22 5 mmol), pyridine (36 pL, 0.45 mmol), 4-dimethylamino pyridine (5 mg, 0.04 mmol) and succinic anhydride (45 mg, 0.45 mmol) in anhydrous TE (10 mL) using General Procedure F, purified by chromatography (Biotage SP4; 50% EtOAc/petrol - 20% MeOH/EtOAc) and obtained as white crystals (20 mg, 15%). 10 'H NMR (300 MHz, CDC 3 ) 8 -0.27-0.20 (m, 2H, cyclopropane
CH
2 ), 0.29-0.36 (m, 2H, cyclopropane CH 2 ), 2.30-2.42 (br m, 4H, -CH 2 CHO2H), 2.55-2.66 (dd, AB, J 9.3 Hz, 2H, iso-C-O-CH 2 -), 3.85-3.90 (m, 2H, CH2OCOCH 2
CH
2
CO
2 H), 4.05-4.32 (dd, AB, J = 15.2Hz, 2H, N-CH 2 -), 6.80-6.92 (br m, 5H, -C 6
I
4 CI and CO 2 H), 6.93 (d AB, J = 8.3Hz, 2H, CC 2
H
2
C
2
H
2 CCN), 7.18 (d AB, J= 8.3Hz, 2H, CC 2
H
2 C2H2CCN), 15 7.23-7.25 (dd, J = 8.0, 0.9 Hz, IH, -CH-CH=C(CI)-C-C(OCH 2 -), 7.28-7.32 (m, 1H, CH=C(C1)-C-C(OCH 2 )), 7.62-7.65 (dd, J = 7.4, 0.9 Hz, IH, C(=0)-C=CH). ' 3 C NMR (CDC1 3 , 75 MHz), S 9.01, 9.07, 19.49, 28.90, 28.99, 29.70, 42.28, 66.69, 68.23, 94.20, 111.07, 118,54, 122.37, 128.34, 129.58, 130.03, 131.88, 132.03, 133.86, 134.03, 134.71, 134.84, 140,60, 142.29, 167.08, 172.22, 176.80. IR: 728, 761, 814, 20 853, 928, 1009, 1074, 1161, 1207, 1373, 1458, 1719, 1730, 2227, 2857, 2926, 3005, 3071 cm~-. LCMS (DMSO): RT = 3.41 min (on 5 min column), m/z = 592 ES~. HPLC purity (as area %): > 96. UV (in EtOH): % max = 226.5 nm. EI-MS: calculated mass of ion - 144 593.1241 [M+NH4] 4 , measured mass of ion 593.1240 [M+NH4]. Rf = 0.05 (50% EtOAc / petrol). MP: 72 -74 "C. Synthesis of succinic acid mono-f 1-2-4-bromobenzyl)-7-choro-1 -(4-chlorophenyl) 5 3-oxo-2,3-dihydrolH-isoindol-1 -vloxvnethyllcyclovroplmethvl ester (AW436, NCL-00016653) 0 0 HO 0 C Cl 0 N. Br 10 The named compound was synthesised from NCL-00010493 (150 mg, 0.27 mmol), pyridine (44 pL, 0.55 mmol), 4-dimethylamino pyridine (7 mg, 0.05 mmol) and succinic anhydride (55 mg, 0.55 mmol) in anhydrous THF (10 mL) using General Procedure 1, purified by chromatography (Biotage SP4; 50%-EtOAc/petrol - EtOAc) and obtained as a brown oil (93 mg, 53%). 15 'H NMR (300 Mz, CDC 3 ) 8 -0.04-0.18 (m, 2H, cyclopropane
CH
2 ), 0.27-0.35 (in, 2H, cyclopropane CH 2 ), 2.37-2.46 (br in, 4H, -CH 2 CH2CO 2 H), 2.52-2.69 (dd, AB, J = 9.3 Hz, 2H, iso-C-O-CH 2 -), 3.74-4.03 (dd AB, J = 11.4 Hz, 2H, CH2OCOCH 2
CH
2
CO
2 H), 4.05-4.17 (dd, AB, J = 14.9 Hz, 2H, N-CH 2 -), 6.78 (d AB, J 20 = 8.4 Hz, 2H, -C2H2C 2
H
2 CBr), 6.90-7.01, (m, 4H, CC 2 H4CCI), 7.06 (d AB, J = 8.4 Hz, 2H C2H-C(Br)), 7.25-7.27 (dd, J= 7.9, 0.8 Hz, 1H, -CH-CH=C(Cl)-C-C(OCH 2 ), 7.30-7.33 (m, 1H, -CH=C(Cl)-C-C(OCH 2 -) 7.65-7.67 (dd, J = 7.4, 0.8 Hz, 1H, C(=0)-C=CH) 9.00 (br s, 1H, COOH). '3C NMR (CDC1 3 , 75 MHz), 8 8.92, 8.98, 19.34, 28.87, 28.90, 42.21, 66.60, 68.37, 94.45, 121.33, 122.28, 128.33, 128.43, -145 129.91, 130.78, 131.21, 131.88, 133.86, 134.02, 134.67, 134.84, 135.97, 140.75, 166.97, 172.14, 177.17. IR: 760, 817, 926, 1009, 1070, 1159, 1350, 1387, 1462, 1487, 1588, 1704, 1730, 2854, 2921 cm-'. LCMS (DMSO): RT = 3.64 min (on 5 min column), m/z = 648 ESt HPLC purity (as area %): > 96. UV (in EtOH): X max = 5 222.5 nm. EI-MS: calculated mass of ion 663.0659 [M+NI4], measured mass of ion 663.0653 [M+NH4]* Rf= 0.08 (50% EtOAc / petrol). 3-4-chloropheny1)-3 -hydroxy-2-(4-methylbenzyl)isoindolin-1-one (tib 14/02) 10 CI HO N 0 The named compound was synthesised from 2-(4-chlorobenzoyl)-benzoic acid (2.0 g, 7.6 mmol) and 4-methyl benzylamine (1.07 mL, 8.4 mmol) using General 15 Procedure B, purified by chromatography (Biotage SP4; 10-80% EtOAc / hexane) and obtained as a white solid (2.045 g, 72%). 'H NMR (500 MHz, CDC 3 ) 5 7.74-7.77 (1H, m, 7-H), 7.53-7.59 (2H, m, 5 & 6-H), 7.28-7.31, (311, m, Ar-H), 7.24,-7.26 (2H, m, Ar-H), 7.05 (2H, d, J= 8.0, Ar-H), 6.96 20 (211, d, J = 8.0, Ar-H), 4.41 (1 H, d, J= 15.4, 2-CB), 4.20, (1H, d, J= 15.4, 2-CR'), 2.22 (3H, s, CH 3 ). 1 3 C NMIR (125 MHz, CDC 3 ) 8 166.7, 149.1, 139.0, 135.5, 135.0, 132.7, 132.6, 130.3, 129.4, 128.3, 128.2,128.0, 127.9, 122.8, 122.6, 90.2, 42.1, 20.6. Found; 364.1101 [M + H]; C2H 1 9NO 2 C, requires 364.1099. 25 3-(4-chlorophenyl)-3-hydroxy-2-(4-metboxybenz1)isoindolin-1-one (tib 16/02) -146 C1 HO eiN 0 0 The named compound was synthesised from 2-(4-chlorobenzoyl)-benzoic acid 5 (2.0 g, 7.6 mmol) and 4-methoxy benzylamine (0.542 mL, 4.18 mmol) using General Procedure B, purified by chromatography (Biotage SP4; 10-80% EtOAc / hexane) and obtained as a white solid (0.830 g, 57%). 'H NMR (500 MHz, CDCl 3 ) & 7.78-7.80 (1H, m, 7-H), 7.57-7.61 (2H, m, 5 & 6-H), 10 7.29-7.33 (311, in, Ar-H), 7.25-7.27 (2H, m, Ar-I), 7.10-7.13 (2H, m, Ar-H), 6.73 6.76 (2H, i, Ar-H), 4.40 (11H, d, J= 15.2, 2-CH), 4.26 (11H, d, J= 15.2, 2-CH'), 3.72 (3H, s, CH 3 ). ' 3 C NMR (125 MHz, CDCl 3 ) 8 166.7, 157.9, 149.1, 139,0, 132.6, 132.5, 130.3, 130.0, 129A, 129.3, 128.2, 128.0, 122.8, 122.5, 113.190.1, 55.0, 41.72. Found; 380.1055 [M4 + H]; C2H 19
NO
3 CJ, requires 380.1048. 15 3-(4-chlorophenyl)-3-(1'-hydroxy-2'-cyclopropyl-3'-methoxy)-2-(4 methylbenzyl)isoindolin-1-one (NCL-00016865) C1 1-0 O eIN 0 20 -147 The named compound was synthesised from 3-(4-chlorophenyl)-3-hydroxy-2 (4-methylbenzyl)isoindolin-1-one (300 mg, 0.83 mmol) and 1,1 bis(hydroxymethyl)cyclopropane (0.16 mL, 1.67 mmol) using General Procedure C, purified by chromatography (Biotage SP4; 10% - 80% EtOAc/n-hexane) and obtained 5 as a glassy solid (187mg, 54%). 'H NMR (500 MHz, CDC 3 ) 8 7.82-7.84 (1H, m, 7- H), 7.41-7.45 (211, mn, 5 & 6 H),7.15 (4H, s, Ar-H), 7.04-7.07 (3H, m, 4 & Ar-H), 6.93 (2H, d, J= 7.8, Ar-B), 4.60 (1H, d, J= 14.8, 2-CH), 3.95 (11H, d, J= 14.8, 2-CH'), 3.31 (11H, d, J= 11.3, 1' -H), 10 3.25 (11H, d, J= 11.3, l'-H), 2.64 (11H, d, J= 9.5, 3'-H), 2.55 (11H, d, J= 9.5, 3'-H'), 2.21 (3H, s, CH 3 ), 1.54 (1H, br s, 1'-OH), 0.27-0.30 (2H,m, H2), -0.02-0.03 (2, m, H2'). 3 C NMR (125 MHz, CDC1 3 ) 5 168.2, 1453, 137.3, 137.1, 134.5, 134.4, 132.8, 131.7, 129.9, 129.2, 128.9, 128.7, 127.9, 123.7, 122.8, 95.0, 68.0, 67.7, 42.9, 29.7, 22.1, 21.0, 8.6. Found; 448.1673 [M + HT]; C 2 7
H
2 7
NO
3 CI, requires 448.1674. 15 3-(4-chlorophenyl)-3-(1'-hydroxy-2'-cyclopropyl-3'-methoxy)-2-(4 methoxybenzyl)isoindolin- 1-one (NCL-00016866) HO C O N N 0 20 The named compound was synthesised from 3-(4-chlorophenyl)-3-hydroxy-2 (4-methoxybenzyl)isoindolin-1-one (300 mg, 0.79 mmol) and 1,1 bis(hydroxymethyl)cyclopropane (0.12 mL, 1.58 mmol) using General Procedure C, -148 purified by chromatography (Biotage SP4; 10% - 80% EtOAc/n--hexane) and obtained as a glassy solid (181mg, 53%). 'H NMR (500 MHz, CDCl 3 ) 6 7.75-7.86 (IH, m, 7-H), 7.35-7.39 (2H, m, 5 & 6-H), 5 7.08 (4H, in, Ar-H), 6.99-7.02 (3H, m, 4 & Ar-H), 6.57-6.60 (21, m, Ar-H), 4.45 (1H, d, J= 14.8, 2-CH), 3.97 (1H, d, J= 14.8, 2-CH), 3.62 (3H, s, CH 3 ), 3.32 (1H, d, J= 11.3, l'-H), 3.22 (11H, d, J= 11.3, 1'-H'), 2.62 (1H, d, J= 9.4, 3'-), 2.53 (11H, d, J= 9.4, 3'-H'), 1.53 (1H, br s, 1'-OR), 0.23-0.28 (2H, m, H2), -0.02-0.02 (2H, in, H 2 '). 13 C NMR (125 MHz, CDC 3 ) 6 168.1, 158.9, 145.3, 137.2, 134.4, 132.8, 131.7, 130.5, 10 129.9, 129.8, 128.6, 127.9, 123.6, 122.7, 113.6, 94.9, 68.0, 67.7, 55.3, 42.5, 22.1, 8.7, 8.6. Found; 464.1619 [M +; H]; C 27
H
2 7
NO
3 C1, requires 464.1623. 3-(4-chlorophenvI)-3-(l'-hydroxy-2'-cyclopropyl-3'-methoxy)-2-(4 carboxanidebenzyl)isoindolin- -- one (NCL-00016867) 15 HO IN 0 q0
H
2 N To a solution ofNCL-00010492 (200mg, 0.
4 36mmol) in t-BuOH (8.48mL) at 500C was added finely powdered KOH (647mg). The resulting suspension was stirred 20 at this temperature until TLC (10% MeOH/DCM) indicated the complete consumption of the starting material (3 h). The hot reaction mixture was filtered through Celite@ and the pad rinsed with several portions of THE. The filtrate was partitioned between EtOAc (10 mL) and H20 (10 mL) and the organic layer separated; the aqueous layer was extracted with EtOAc (2 x 10 mL). The combined 25 organic layers were washed with brine (15 mL), dried (Na 2
SO
4 ), filtered and -149 concentrated in vacuo. The residue was dissolved in THF before the addition of a minimum amount of silica and the resulting suspension was concentrated in vacuo. Purification by flash column chromatography on silica gel, eluting with 2-10% MeOH in DCM afforded the title compound as a glassy solid (62 mg, 30%). 5 'H NMR (500 MHz, CDCl 3 ) 6 7.77-7.80 (1H, m, 7-R), 7.51 (2H, d, J= 8.2, Ar-H), 7.38-7.42 (2H, m, 5 & 6-H), 7.13-7.15 (2H, m, Ar-H), 7:06 (4H, m, Ar-H), 7.00-7.02 (1H, n, 4-H), 6.11, (1H, br s, N-H), 5.71 (1H, br s, N-F), 4.48 (IH, d,J= 15.0,2 CH), 4.16 (1 H, d, J= 15.0, 2-CR'), 3.31 (11H, d, J= 10, 1'-H), 3.25 (11H, d, J= 10, 10 l'-H), 2.62 (2H, s, 3'-H 2 ), 1.66 (1H, br s, l'-OH) 0.24-0.34 (2H, m, H 2 ), -0.01-0.04 (2H, m, H 2 ). ' 3 C NMR (125 MHz, CDCl 3 ) 6 169.2, 168.3, 145.1, 141.5, 137.0, 134.6, 133.1, 132.3, 131.4, 130.1, 129.3, 128.7, 127.9, 127.3, 123.8, 123.0, 94.8, 67.6, 67.4, 50.8, 42.7, 22.2, 8.6. Found; 499.1395 [M + Na]; C 27
H
2 sN 2 0 4 C1Na, requires 499.1395. 15 Synthesis of 3-(4-chlorophenyl)-2-(4-fluorobenzyl)-3-hydroxy-2.3-dihydroisoindol-1 one (AW349, NCL-0014528) CI HO N 0 F 20 The named compound was synthesised from 2-(4-chlorobenzoyl)benzoic acid (2.24 g, 8.59 mmol) and 4-fluorobenzylamine (1.08 mL, 9.44 nunol) using General Procedure B, recrytsllised from EtOAc / petrol, purified by chromatography (Biotage SP4; Silica; 10% - 30% EtOAc / petrol) and obtained as white crystals (1.57 g, 50%). 25 -150 'H NMR (300 MHz, CDC1 3 ) 5 4.40-4.53 (dd AB, J = 15.2 Hz, 2H, N-CH 2 ), 4.58 (s, 1H, OH), 6.80-6.89 (m, 2H, CC2H2C 2
H
2 C(F)), 7.14-7.29 (m, 7H, ArK), 7.50-7.60 (m, 2H, Ar), 7.80-7.86 (m, 1H, -CH-C(C=O)).
'
3 C NMR (CDC1 3 , 75 MHz), 6 43.58, 92.63, 115.85, 116.13, 124.37, 124.52, 129.65, 129.82, 131.12, 131.91, 132.02, 5 134.55, 135.57, 135.70, 139.95, 151.19, 165.35, 170.25. IR: 696, 723, 766, 810, 835, 922, 1011, 1059, 1088, 1191, 1223, 12658, 1323, 1356, 1397, 1466, 1506, 1602, 1664, 2021, 2851, 2925, 3301 cm. LCMS (DMSO): RT = 3.71 min (on 5 min column), m/z = 368 ES+. HPLC purity (as area %): > 98. UV (in EtOH): X max = 254 nm. EI-MS: calculated mass of ion 368.0848 [M+H]f, measured mass of ion 10 368.0846 [M+H]. Rf= 0.49 (50% EtOAc / petrol). MP: 149 - 150 C. Synthesis of -( 4 -fiuoronhen1)-3-hydroxy-2-(4-nitrobeny)-2,3-dihydroisoindol-1 one (AW408 /NCL-000 16657) F HO IN 0 15
NO
2 The named compound was synthesised from 2
-(
4 -fluorobenzoyl)-benzoic acid (2.10 g, 8.60 mmol) and 4-nitrobenzylamine hydrochloride (1.78 g, 9.46 mmol) using General Procedure B, recrystallised from EtOAc / petrol, purified by chromatography 20 (Biotage; silica, 10% - 40% EtOAc / petrol) and obtained as a yellow solid (1.01 g, 31%). 'H NMR (300 MHz, CDC1 3 ) 6 4.21 (s, 1H, OH), 4.17-4.15 (dd AB, J= 15.4 Hz, 2H,
N-CH
2 ), 6.84-6.88 (m, 2H, ArI-), 7.19-7.25 (m, 5H, Ar-H), 7.39-7.48 (m, 2H, Ar-H), 25 7.66-7.88 (m, 1H, CH=C-C(=O)), 7.88-7.91 (dd AB, J = 8.8 Hz, 2H, C 2
H
2 C-N0 2 ). "C NMR (CDC 3 , 75 MHz), 6 42.20, 91.07, 115.33, 115.51, 122.85, 123.28, 123.52, - 151 128.28, 128.35, 129.42, 129.87, 133.27, 133.78, 145.30, 146.90, 148.72, 167.92. IR: 660, 692, 697, 760, 795, 814, 849, 892, 932, 1011, 1059, 1095, 1153, 1194, 1219, 1271, 1337, 1395, 1421, 1468, 1509, 1601, 1668, 3078, 3282 cmf. LCMS (DMSO): RT = 3.18 min (on 5 min column), m/z = 377 ES. HPLC purity (as area %): > 95. 5 UV (in EtOH): I max = 266 nm. EI-MS: calculated mass of ion 379.1089 [M+H]*, measured mass of ion 379.1084 [M+H]*. Rf= 0.46 (50% EtOAc / petrol). MY: 183 185 *C. Synthesis of 3-(4-fluorophenyl)-3-(1-ihydroxymethylcyclopropyhnethoxy)~2-(4 10 nitrobenzvl)-2,3-dihydro-isoindol- 1-one (AW413 /NCL-00016896) HO F 0 15 | N 0
NO
2 20 The named compound was synthesised from NCL-00016657 (380 mg, 1.01 mmol) and 1,1-bis(hydroxymethyl)cyclopropane (0.19 mL, 2.03 mmol) using General Procedure C, purified by chromatography (Biotage SP4; silica; 25% - 50% EtOAc/petrol) and obtained as a pale yellow oil (327 mg, 70%). R = 0.29 (50:50 25 EtOAc:petrol). mp 57 - 58 *C. A ex (CH 3 0H)/nm = 266. IR: 711, 727, 762, 802, 818, 853, 918, 1014, 1061, 1098, 1157, 1183, 1229, 1278, 1341, 1383, 1411, 1468, 1514, 1602, 1690, 2876, 2924, 3079, 3393 cmn. 'HNMR: (300 MHz, CDC 3 ) 6 0.14 0.31 (m, 2H, cyclopropane CH 2 ), 0.43-0.51 (m, 2H, cyclopropane CH 2 ), 2.17 (br s, 1H, O), 2.82-2.91 (dd AB, J 9.4 Hz, 2H, CH 2 0-C), 3.49-3.57 (dd AB, J= 11.4 Hz, 30 2H, CH2OH), 4.48-4.62 (dd AB, J = 15.2 Hz, 2H, N-CH2), 6.81-6.92 (m, 2H, ArH), - 152 7.17-7.28 (m, 3H, ArH), 7.31-7.35 (dd AB, J = 8.7 Hz, 2H, CC 2 R2C 2
H
2
C(NO
2 )), 7.52-7.60 (m, 2H, ArH), 7.90-7.96 (m, 1H, CH=C-C(-O)), 7.98-8.02 (dd AB, J = 8.7 Hz, 2H, CC 2
H
2
C
2
H
2
C(NO
2 )). "C NMR : (CDC1 3 , 75 MHz) 8 8.85, 8.90, 22.66, 42.63, 67.65, 67.66, 94.92, 115.50, 123.54, 124.06, 128.74, 128.85, 130.16, 130.43, 5 131.81, 133.45, 134.67, 145.10, 145.71, 147.61, 161.51, 168.59. LCMS (DMSO): RT 3.46 min (on 5 min column), m/z = 462 ES*. HPLC purity (as area %): > 99. HRMS (EI): m/z Caled. for ion: 463.1664 [M+H]*. Found: 463.1662 [M+H]t. Synthesis of 3-chloro-2-(4-chlorobenzoyl)-4-fluorobenzoic acid (AW442) 10 CI 0 F I I C0 2 C1 15 n-Butyl lithium (2.5M solution, 5.27 mL, 13.18 mmol) was added to a stirred solution of diisopropylamine (1.93 mL, 13.75 mmol) in anhydrous THF (25 mL) at 75 'C under a nitrogen atmosphere, and maintained at -30 *C for a further 1 h to 20 produce lithium diisopropylamide (LDA). After re-cooling to -75 "C, a solution of 3 cbloro-4-fluorobenzoic acid (1 g, 5.73 mmol) in THF (20 mL) was added over 1 h, and stirring continued overnight at -75 *C under nitrogen. A solution of methyl 4 chlorobenzoate (1.95 g, 11.46 mmol) in THF (20 mL) was added over 10 min, stirring was continued at -70 "C for 2 h and then at RT for 4 h. Water (30 mL) was added and 25 the aqueous layer was washed with ether (3 x 50 mL), acidified with IM HCi, extracted with DCM (3 x 50 mL), dried over MgSO 4 and concentrated in vacuo to afford a yellow solid. Partial purification was attempted with chromatography (Biotage, silica, 50% EtOAc/petrol to 20% MeOH/EtOAc). The crude product (0.60 g, 34%) was used in the next step without further purification. Rf = 0.05 (50:50 30 EtOAc:petrol). mp = 188-190 0 C. 2 x (CH30H)/m= 260. IR: 706, 749, 785, 843, - 153 901, 958, 987, 1003, 1090, 1166, 1254, 1395, 1487, 1562, 1586, 1671, 1770, 2855, 2924, 3398 cnf. 'H NMR: (300 MHz, MeOD) 8 7.27-7.32 (dd AB, J= 8.5 Hz, 2H, CC 2
H
2
C
2
H
2 C(C1)), 5 7.39-7.42 (m, 1H, CHC(F)C(Cl)), 7.60-7.66 (dd AB, J = 8.5 Hz, 2H, CC2H 2
C
2
H
2 C(C1)), 8.17 (d, J = 8.30 Hz, 1H, CHCHC(F)C(C), 13.60 (br s, 1H, CO2H). "C NMR (MeOD, 75 MHz), 8 119.90, 124.16, 132.022, 132.46, 133.89, 134.91, 135.87, 139.02, 163.04, 165.05, 197.46. LCMS (DMSO): RT =3.43 min (on 5 min column), m/z= 311 ES-. 10 Synthesis of 4 -chloro-3-(4-chloropheny1)-5-fluoro-3-hydroxy-2-(4-nitrobenyl)-2,3 dihydroisoindol- 1-one (AW448 / NCL-0001 6897) C1 CI HO| F N
NO
2 15 The named compound was synthesised from crude 3-chloro-2-(4 chlorobenzoyl)-4-fluorobenzoic acid (150 mg, 0.479 mmol) and 4-nitrobenzylamine hydrochloride (181 mg, 0.958 mmol) using General Procedure B, purified by chromatography (Biotage SP4; silica; 10-40% EtOAc / petrol), recrystallised from 20 EtOAc/petrol and obtained as a white solid (0.04 mg, 2%). Rj = 0.43 (50:50 EtOAc:petrol). mp = 289 - 291 0 C. X max (CH30H)/nm = 265. IR: 672, 705, 738, 816, 853, 897, 959, 1012, 1090, 1148, 1204, 1256, 1345, 1401, 1423, 1516, 1585, 1676, 2859, 2974, 3210 cm^ 1 . 25 'H NMR: (300 MHz, CDCl 3 ) & 4.30 (br s, IH, OH), 4.31-4.70 (dd, J= 15.5 Hz, 2H,
NCH
2 ), 6.90 (dd AB, J = 8.1 Hz, 2H, -CC 2
H
2
C
2
H
2 C(C1)), 7.22-7.26 (m, 2H, - - 154 CC 2
H
2
C
2
H
2 C(Cl)), 7.38 (dd AB, J = 8.4 Hz, 2H, -CC2H2C 2
H
2
C(NO
2 )), 7.64 (d, J 8.0 Hz, 1H, CHC(F)C(Cl)), 7.99 (d, J = 8.4 Hz, 1 H, CHCHC(F)C(Cl)), 8.05 (dd AB, J = 8.4 Hz, 2H, -CC 2
H
2
C
2
H
2
C(NO
2 )). "C NMR: (CDC1 3 , 75 MfHz) 8 42.73, 90.17, 123.42, 123.54, 126.35, 128.08, 128.46, 128.93, 129.38, 130.55, 131.80, 131.80, 5 134.71, 141.26, 144.16, 144.57, 167.99, 168.46. LCMS (DMSO): RT = 4.06 (on 5 min column), m/z = 445 ES". HPLC purity (as area %): > 95. HRMS (EI): m/z Calcd. for ion: 445.0164 [M-H]. Found: 445.0159 [M-H]. Synthesis of 4-chloro-3-(4-chlorophenvl)-34(1 10 (hydroxvmethyl)cvclopropoyl)methoxy)-2-(4-nitrobenzv1)isoindolin-1.-one (NUS406A /NCL-00013774 and NU8406B/NCL-00013775) HO q | N C)0
NO
2 20 The named compound was synthesised from NU8398 (433 mg, 1.01 mmol) and 1,1-bis(hydroxynethyl)cyclopropane (0.19 mL, 2.03 mmol) using General Procedure C, purified by chromatography (Biotage SP4; silica; 20% - 50% EtOAc/petrol) and obtained as yellow crystals (321 mg, 62%). Rf = 0.30 (50:50 25 EtOAc:petrol). mp 76 - 77 "C. X ma (CH 3 0H)/nm = 267. IR: 696, 759, 816, 853, 930, 1011, 1074, 1144, 1171, 1234, 1341, 1384, 1428, 1462, 1489, 1519, 1699, 2872, 2923, 3422 cm-. I1 NMR: (300 MHz, CDC1 3 ) 8 0.21-0.42 (m, 2H-, cyclopropane CH 2 ), 0.47-0.54 (m, 30 2H, cyclopropane CH2), 2.12 (br s, 1H, O), 2.89-3.05 (m, 2H, C-0-CH 2 -), 3.52-3.61 - 155 (m, 2H, CH 2 OH), 4.30-4.59 (dd, AB, J = 15.2Hz, N-CH 2 -),7.15-7.18 (m, 4H, ArH), 7.28-7.33 (m, 2H, ArH), 7.48-7.58 (m, 2H, ArH), 7.87-7.89 (dd, J = 7.1, 1.1 Hz, 1H, C(Q)-C=CH-), 7.98-8.01 (m, 2H, -CH-N0 2 ). 1 3 C NMR: (CDC1 3 , 75 MHz) 6 8.84, 8.90, 22.59, 42.54, 67.58, 68.10, 94.71, 122.63, 123.56, 128.65, 128.77, 130.09, 5 130.40, 132.28, 134.37, 135.27, 135.55, 135.57, 141.10, 144.62, 147.64, 167.04. IPLC purity (as area %): > 92. BRMS (El): m/z Caled. for ion: 530.1244 rM+NIH4]. Found: 530.1242 [M+NH4]. Anal. Caled. for C 2 6 H22Cl 2
N
2 0 5 : C, 60.83; H, 4.32; N, 5.46%. Found: C, 60.68; H, 4.30; N, 5.40%. 10 Separation of enantiomers was achieved by chiral preparative HPLC (Daicel Chiralpak AD-H 250x10 mm; Hexane/Ethanol (4:1)) NU8406A / NCL-000 13774 (white crystals) Optical rotation: Specific rotation [a] - 4.98 * (at 22.4 *C, wavelength = 589 15 nm, tube length = 0.25 din, concentration = 0.402 g / 100 mL). NU8406B / NCL-000 13775 (white crystals) Optical Rotation: Specific rotation [a] =+ 4.85 * (at 22.6*C, wavelength = 589 nm, tube length = 0.25 din, concentration = 0.412 g / 100 mL). 20 Synthesis of 3-(4-chlorophenyfl-3-(2-hydroxymethylallyloxy)-2-(4-nitrobenzy1-23 dihydroisoindol-1 -one (AW468 /NCL-00016895) HO 25 CI 0I
N
NO
2 - 156 The named compound was synthesised from NU8260 (400 mg, 1.01 mmol) and 2-methylene-1,3-propanediol (0.17 mL, 2.03 mmol) using General Procedure C, 5 purified by chromatography (Biotage SP4; silica; 10% - 40% EtOAc/petrol) and obtained as a yellow oil (342 mg, 73%). Rf = 0.24 (50:50 EtOAc:petrol). X ma, (CH30H)/nm 268. IR: 702, 764, 808, 853, 922, 969, 1011, 1058, 1092, 1177, 1278, 1341, 1381, 1425, 1466, 1489, 1519, 1603, 1689, 2859, 2922, 3080, 3407 cm 10 'H NMR (300 MHz, CDC,) 8 2.46 (br s, IH, OH), 3.20-3.40 (dd, J = 11.9 Hz, 2H, iso-OCH 2 ), 4.00 (s, 2H, CH 2 OH), 4.31-4.61 (dd, J= 15.1 Hz, 2H, NCH2), 4.88 (s, 1H, C=CH), 5.04 (s, 1H, C=CH), 7.12-7.15 (m, 1H, ArH), 7.15-7.21 (dd AB, J= 8.7 Hz, 4H, C6H40), 7.33-7.36 (dd AB, J = 8.7 Hz, 211), 7.49-7.53 (i, 2H, ArH), 7.87-7.91 (m, 1H, ArH), 7.95-7.98 (dd AB, 2H, CC 2
H
2
C
2
H
2
C(NO
2 )). 3C NMR (CDCl3, 75 15 MHz), 8 42.37, 63.63, 63.73, 94.80, 112.29, 123.27, 123.34, 123.86, 127.92, 128.69, 130.00, 130.29, 131.10, 133.23, 134.78, 136.74, 144.17, 144.57, 144.73, 147.03, 168.32. LCMS (DMSO): Rt = 3.74 min (on 5 min column); m/z = 465 (ES*). HPLC purity (as area %): > 98. HRMS (EI): m/z Calod. for ion: 464.113900 [M]*. Found: 464.115410 [M]t 20 It is, of course, to be understood that the invention is not intended to be restricted to the details of the above embodiments which are described by way of example only. References 25 1. Lane, D. P. Nature 1992, 358, 15-16. 2. Vousden, K. H.; Lu, X. Nat. Rev. Cancer 2002, 2, 594-604. 3. Momand, J.; Zambetti, G. P.; Olson, D. C.; George, D.; Levine, A. Cell 1992, 69, 1237-1245.
- 157 4. Fuchs, S. Y.; Adler, V.; Buschmann, T.; Wu, X. W.; Ronai, Z. Oncogene 1998, 17, 2543-2547. 5. Oliner, J. D.; Kinzler, K. W.; Meltzer, P. S.; George, D. L.; Vogelstein, B. Nature 1992, 358, 80-83. 5 6. Kussie, P. H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.; Levine, A. J.; Pavletich, N. P. Science 1996, 274, 948-953. 7. Chene, P. Nat. Rev. Cancer 2003, 3, 102-109. 8. Chene, P.; Fuchs, J.; Bobn, J.; Garcia-Echeverria, C.; Furet, P.; Fabbro, D. J. Molec. Biol. 2000, 299, 245-253. 10 9. Duncan, S. J.; Gruschow, S.; Williams, D. H.; McNicolas, C.; Purewal, R.; Hajek, M.; Gerlitz, M.; Martin, S.; Wrigley, S. K.; Moore, M. J Am. Chem. Soc. 2001, 123, 554-560. 10. Zhao, J. H.; Wang, M. J.; Chen, J.; Luo, A. P.; Wang, X. Q.; Wu, M.; Yin, D. L.; Liu, Z. H. Cancer Lett 2002, 183, 69-77. 15 11. Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.; Kanunlott, U.; Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E. A. Science 2004, 303, 844-848. 20
Claims (29)
1. A compound of formula I: 3 R2 R2 x R 3 1 R4 - R7 N-R 1 0 (J or a pharmaceutically acceptable salt thereof, wherein in both formulae I and II: X is selected from 0, N or S; R' is selected from hydrogen, substituted or unsubstituted alkyl, substituted or 10 unsubstituted hydroxyalkyl, substituted or unsubstituted alkylamine, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, and substituted or unsubstituted heteroaralkyl; R 2 is selected from hydrogen, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted branched hydroxyalkyl, 15 substituted or unsubstituted cycloalkyl having 6 ring carbon atoms or greater, substituted or unsubstituted cycloalkenyl, hydroxyalkylaralkyl, hydroxyalkylheteroaralkyl, and a carboxylic acid-containing group; - 159 R? is selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted hydroxyalkyl, substituted or unsubstituted alkylamine, substituted or unsubstituted alkoxy, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, and substituted or unsubstituted 5 heteroaralkyl; and R - R! represents groups R4, R, R7 and RI which are independently selected from hydrogen, halo, hydroxy, substituted or unsubstituted alkyl, substituted or unsubstituted hydroxyalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted heteroaryl, substituted or 10 unsubstituted heteroaralkyl, substituted or unsubstituted alkylamine, substituted or unsubstituted alkoxy, trifluoromethyl, amino, nitro, carboxyl, carbonyhnethylsulfone, trifluoromethylsulfone, cyano and substituted or unsubstituted sulfonamide; wherein, where R2 is substituted or unsubstituted branched hydroxyalkyl, X is O or S; 15 and wherein, where R2 is hydrogen, at least one of R4 - R7 is not hydrogen and R is not a benzimidazole derivative or a benzinidazoline derivative; and wherein, in the formula II, the 6-membered ring may have 0, 1, or 2 C-C double bonds.
2. A compound according to claim 1, wherein R' is selected from substituted or 20 unsubstituted aryl, and substituted or unsubstituted aralkyl; and/or R2 is selected from hydrogen, acetyl, hydroxyalkenyl, hydroxyalkynyl, branched 5-carbon hydroxyalkyl, hydroxycycloalkyl, hydroxycycloalkenyl, hydroxymethylcycloalkyl, hydroxymethylcycloalkylmethylene, and hydroxyl alkylbenzyl; and/or R3 is selected from substituted or unsubstituted aryl, and substituted or unsubstituted aralkyl. 25
3. A compound according to claim 1 or claim 2, wherein R2 is selected from hydroxypropyl, hydroxybutyl, hydroxybutenyl, hydroxycyclopentenyl, hydroxycyclohexenyl and a-propylamine. -160
4. A compound according to claim I or claim 2, wherein R2 is selected from hydroxy-2,2-dimethylpropyl, hydroxy-2,2-cyclopropylpropyl, 2-hydroxymethyl allyl, or a succinic acid derivative.
5. A compound according to claim 1 or claim 2, wherein R2 is selected from 5 hydroxycyclooctyl, hydroxymethylcyclohexylmethylene, and hydroxycyclohexyl.
6. A compound according to claim 1 or claim 2, wherein R2 is hydroxymethylbenzyl.
7. A compound according to any preceding claim, wherein R 1 is substituted benzyl. 10
8. A compound according to claim 7, wherein R' is 4-nitrobenzyl, 4 chlorobenzyl, 4-bromobenzyl, cyanobenzyl, or 4-iodobenzyl.
9. A compound according to any preceding claim, wherein R3 is substituted or unsubstituted phenyl.
10. A compound according to claim 9, wherein R3 is 4-chlorophenyl or 4 15 fluorophenyl.
11. A compound according to any preceding claim, wherein R 4 -R are all hydrogen or at least one of R 4 -R 7 is a chlorine atom.
12. A compound of formula 1: R2 R R x R4 - R | N-R1 -oaI 0 20 or a compound of formula II: - 161 R2 R3 I x R4 - R7 NR * N-R 1 0 (f or a pharmaceutically acceptable salt thereof, wherein wherein in both formulae I and II: X is selected from 0, N or S; 5 RI is selected from substituted aryl, substituted heteroaryl, substituted aralkyl, and substituted heteroaralkyl; R2 is selected from hydrogen, halo, substituted or unsubstituted acyclic alkyl, substituted or unsubstituted hydroxyalkyl, substituted or unsubstituted alkylamine, substituted or unsubstituted alkoxyalkyl, substituted or unsubstituted aryl, substituted 10 or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, and substituted or unsubstituted heteroalkyl; R is selected from hydrogen, hydroxy, substituted or unsubstituted alkyl, substituted or unsubstituted hydroxyalkyl, substituted or unsubstituted alkylamine, substituted or unsubstituted alkoxy, substituted or unsubstituted aryl or heteroaryl, and 15 substituted or unsubstituted aralkyl or heteroalkyl; and R - R7 represents groups RI, Ri, R 6 and R7 which are independently selected from hydrogen, halo, hydroxy, substituted or unsubstituted alkyl, substituted or unsubstituted hydroxyalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted heteroaryl, substituted or 20 unsubstituted heteroaralkyl, substituted or unsubstituted alkylamine, substituted or unsubstituted alkoxy, trifluoromethyl, amino, nitro, carboxyl, carbonyhnethylsulfone, trifluoromethylsulfone, cyano and substituted or unsubstituted sulfonamide; -162 wherein when R2 is a straight chain hydroxyalkyl, RI is not selected from 4 nitrobenzyl or 4-chlorobenzyl; and wherein, where R2 is hydrogen, at least one of R4 - R' is not hydrogen and R3 is not a benzimidazole derivative; 5 and wherein when RW is a phenyl group, R' cannot be 4-methoxybenzyl or 4 hydroxybenzyl group; and wherein, in the formula II, the 6-membered ring may have 0, 1, or 2 C=C double bonds.
13. A compound according to claim 12, wherein R1 is substituted aralkyl, R2 is 10 acyclic hydroxyalkyl, and RW is substituted aryl.
14. A compound according to claim 12 or claim 13, wherein R' is substituted 1 ethylphenyl, 4-nitrobenzyl, 4-cyanobenzyl, 4-chlorobenzyl, 4-bromobenzyl or 4 iodobenzyl.
15. A compound according to claim 14, wherein the substituted 1-ethylphenyl is 15 the S-enantiomer.
16. A compound according to any preceding claim, wherein RW is substituted phenyl.
17. A compound according to claim 16, wherein R? is 4-chlorophenyl or 4 fluorophenyl. 20
18. A compound according to any preceding claim, wherein R 4 -R' are all hydrogen or at least one of R 4 -R 7 is a chlorine atom.
19. A compound according to any preceding claim, wherein X is 0.
20. A compound according to any preceding claim, for use in therapy. - 163
21. A compound according to any of claims I to 19, for use in treating cancer.
22. A compound according to any of claims 1 to 19, wherein said compound inhibits the interaction of MDM2 protein with p 5 3.
23. A compound according to any of claims 1 to 19, for use as an active 5 pharmaceutical substance for the treatment of cancer.
24. The use of a compound according to any of claims 1 to 19, in the manufacture of a medicament.
25. The use of a compound according to any of claims I to 19, in the manufacture of a medicament for the treatment of cancer. 10
26. A pharmaceutical composition comprising an effective amount of at least one compound according to any of claims I to 19 and a pharmaceutically acceptable carrier.
27. A method of treating a mammal comprising the steps of administering a medicament comprising at least one compound according to any of claims I to 19. 15
28. A kit comprising at least one compound according to any of claims 1 to 19; and instructions for use.
29. A kit according to claim 28, further comprising a second compound according to any of claims I to 14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2015200852A AU2015200852A1 (en) | 2008-06-25 | 2015-02-19 | New therapeutic agents |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0811643.6 | 2008-06-25 | ||
AU2009263974A AU2009263974B2 (en) | 2008-06-25 | 2009-06-25 | New therapeutic agents |
AU2015200852A AU2015200852A1 (en) | 2008-06-25 | 2015-02-19 | New therapeutic agents |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2009263974A Division AU2009263974B2 (en) | 2008-06-25 | 2009-06-25 | New therapeutic agents |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2015200852A1 true AU2015200852A1 (en) | 2015-03-19 |
Family
ID=52672531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2015200852A Abandoned AU2015200852A1 (en) | 2008-06-25 | 2015-02-19 | New therapeutic agents |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2015200852A1 (en) |
-
2015
- 2015-02-19 AU AU2015200852A patent/AU2015200852A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2009263974B2 (en) | New therapeutic agents | |
AU2005278962C1 (en) | Isoindolin-1-one derivatives | |
JP5828201B2 (en) | Naphthalene derivatives | |
JP5636428B2 (en) | Substituted N-phenyl-1- (4-pyridinyl) -1H-pyrazol-3-amines | |
HU208122B (en) | Process for producing pyrazole derivatives and pharmaceutical compositions comprising same | |
SK13595A3 (en) | 2-thiondoles, 2-indolethione and polysulphides compounds, 2-selenoindoles, 2-indoleseleno and selenide compounds and pharmaceutical agents on their base | |
JP5778297B2 (en) | Novel 4-amino-N-hydroxy-benzamides as HDAC inhibitors for cancer treatment | |
CN101679392B (en) | Quinolone compound and pharmaceutical composition | |
JP2018502841A (en) | Piperidine derivatives as HDAC1 / 2 inhibitors | |
CZ20014496A3 (en) | Indole derivatives and their use for treating osteoporosis | |
Kryshchyshyn et al. | Synthesis and anti-leukemic activity of pyrrolidinedione-thiazolidinone hybrids | |
AU2005314601A1 (en) | Indane amides with antiproliferative activity | |
KR100363003B1 (en) | Oxopyridinylquinoxaline derivatives | |
KR20100132553A (en) | Novel n-(2-amino-phenyl)-acrylamides | |
JP2003532616A (en) | A. Useful for the treatment of osteoporosis O. Indole derivatives | |
WO2019191424A1 (en) | Glun2c/d subunit selective antagonists of the n-methyl-d-aspartate receptor | |
AU2015200852A1 (en) | New therapeutic agents | |
El‐Hashash et al. | Synthesis of Novel Heterocyclic Compounds with Expected Antibacterial Activities from 4‐(4‐Bromophenyl)‐4‐oxobut‐2‐enoic Acid | |
JP5247667B2 (en) | Medicine | |
Gangapuram et al. | Synthesis of substituted N‐[4 (5‐methyl/phenyl‐1, 3, 4‐oxadiazol‐2‐yl)‐3, 6‐dihydropyridin‐1 (2H)‐yl] benzamide/benzene sulfonamides as anti‐inflammatory and anti‐cancer agents | |
CN116134015A (en) | Selective acyclic nucleotide activating factor for CAMP sensor EPAC1 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK5 | Application lapsed section 142(2)(e) - patent request and compl. specification not accepted |