AU2014307962B2 - Smoking article with single radially-separated heat-conducting element - Google Patents

Smoking article with single radially-separated heat-conducting element Download PDF

Info

Publication number
AU2014307962B2
AU2014307962B2 AU2014307962A AU2014307962A AU2014307962B2 AU 2014307962 B2 AU2014307962 B2 AU 2014307962B2 AU 2014307962 A AU2014307962 A AU 2014307962A AU 2014307962 A AU2014307962 A AU 2014307962A AU 2014307962 B2 AU2014307962 B2 AU 2014307962B2
Authority
AU
Australia
Prior art keywords
heat source
aerosol
combustible heat
forming substrate
combustible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2014307962A
Other versions
AU2014307962A1 (en
Inventor
Oleg Mironov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philip Morris Products SA
Original Assignee
Philip Morris Products SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philip Morris Products SA filed Critical Philip Morris Products SA
Publication of AU2014307962A1 publication Critical patent/AU2014307962A1/en
Application granted granted Critical
Publication of AU2014307962B2 publication Critical patent/AU2014307962B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • A24B15/165Chemical features of tobacco products or tobacco substitutes of tobacco substitutes comprising as heat source a carbon fuel or an oxidized or thermally degraded carbonaceous fuel, e.g. carbohydrates, cellulosic material
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/22Cigarettes with integrated combustible heat sources, e.g. with carbonaceous heat sources
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Abstract

A smoking article (2, 42) comprises: a combustible heat source (4) having opposed front (6) and rear (8) faces; an aerosol-forming substrate (10) downstream of the rear face (8) of the combustible heat source (4); and a single heat-conducting element (36) overlying a rear portion of the combustible heat source (4) and at least a front portion of the aerosol-forming substrate (10). The single heat-conducting element (36) comprises one or more layers of heat conductive material and the one or more layers of heat conductive material are radially separated from the combustible heat source (4) and the aerosol-forming substrate (10). The combustible heat source (4) is either a blind combustible heat source or the combustible heat source (4) is a non-blind combustible heat source and the smoking article (42) further comprises a non-combustible substantially air impermeable barrier (46) between the non-blind combustible heat source and one or more airflow channels (44) extending from the front face (6) to the rear face (8) of the non-blind combustible heat source. The single heat-conducting element comprises an outer layer of heat conductive material that is visible on the exterior of the smoking article.

Description

The present invention relates to a smoking article comprising a combustible heat source having opposed front and rear faces, an aerosol-forming substrate downstream of the rear face of the combustible heat source and a single heat-conducting element overlying a rear portion of the combustible heat source and at least a front portion of the aerosol-forming substrate.
A number of smoking articles in which tobacco is heated rather than combusted have been proposed in the art. One aim of such ‘heated’ smoking articles is to reduce known harmful smoke constituents of the type produced by the combustion and pyrolytic degradation of tobacco in conventional cigarettes. In one known type of heated smoking article, an aerosol is generated by the transfer of heat from a combustible heat source to an aerosol-forming substrate. The aerosol-forming substrate may be located within, around or downstream of the combustible heat source. During smoking, volatile compounds are released from the aerosolforming substrate by heat transfer from the combustible heat source and entrained in air drawn through the smoking article. As the released compounds cool, they condense to form an aerosol that is inhaled by the user. Typically, air is drawn into such known heated smoking articles through one or more airflow channels provided through the combustible heat source and heat transfer from the combustible heat source to the aerosol-forming substrate occurs by forced convection and conduction.
For example, WO-A2-2009/022232 discloses a smoking article comprising a combustible heat source, an aerosol-forming substrate downstream of the combustible heat source, and a heat-conducting element around and in direct contact with a rear portion of the combustible heat source and an adjacent front portion of the aerosol-forming substrate.
The heat-conducting element in the smoking article of WO-A2-2009/022232 transfers heat generated during combustion of the combustible heat source to the aerosol-forming substrate by conduction. In smoking articles in which tobacco is heated rather than combusted, the temperature attained in the aerosol-forming substrate has a significant impact on the ability to generate a sensorially acceptable aerosol. It is typically desirable to maintain the temperature of the aerosol-forming substrate within a certain range in order to optimise the aerosol delivery to a user. In some cases, radiative heat losses from the outer surface of a heat-conducting element around and in direct contact with the combustible heat source and the aerosol-forming substrate may cause the temperature of the combustible heat source and the aerosol-forming substrate to drop outside of a desired range, thereby impacting the performance of the smoking article. If the temperature of the aerosol-forming substrate drops too low, for instance, it may adversely impact the consistency and the amount of aerosol delivered to a user.
2014307962 30 Nov 2016
EP-A1-2 550 879 discloses a smoking article comprising a multilayered tube member 9 including at least one metal layer and one paper layer, a carbon heat source 4 arranged in an end portion of the tube member 9 to be at least partly in direct close contact with an inner 5 surface of the tube member 9 and a smoking flavor releasing source 8 arranged in the tube member 9 to adjoin the carbon heat source 4, and a holder part 14 keeping the carbon heat source 4 in direct contact with said end portion and holding the carbon heat source 4 against said end portion.
In the embodiment shown in Fig. 1 the non-combustible wrapping material 9 is formed 0 by bonding a three-layer composite sheet 16 to the outer side of a two-layer composite sheet 15. The part of the three-layer composite sheet 16 projecting from the two layer composite sheet 15 forms the holder part 14. As shown in Fig. 2, the two-layer composite sheet 15 comprises an inner aluminum layer 17 and an outer paper layer 18 and the three-layer composite sheet 16 comprises an inner paper layer 18, a central aluminum layer 17 and an 5 outer paper layer 18. The innermost layer of the non-combustible wrapper 9 is the aluminum layer 17 of the two-layer composite sheet 15 and the outermost layer of the non-combustible wrapper 9 is the outer paper layer 18 of the three-layer composite sheet 16.
In some heated smoking articles, forced convective heat transfer from a combustible heat source to the aerosol-forming substrate is provided in addition to conductive heat transfer Ό via a heat-conducting element. For example, in some known heated smoking articles one or more airflow channels are provided along the combustible heat source in order to provide forced convective heating of the aerosol-forming substrate. In such smoking articles, the aerosolforming substrate is heated by a combination of conductive heating and forced convective heating.
For example, WO-A2-2009/022232 discloses providing at least one longitudinal airflow channel through the combustible heat source to provide a controlled amount of forced convective heating of the aerosol-forming substrate.
In known heated smoking articles in which heat transfer from the combustible heat source to the aerosol-forming substrate occurs primarily by forced convection, the forced convective heat transfer and hence the temperature in the aerosol-forming substrate can vary considerably depending upon the puffing behaviour of a user. As a result, the composition and hence the sensory properties of the mainstream aerosol generated by such known heated smoking articles may disadvantageously be highly sensitive to a user’s puffing regime.
In particular, in known heated smoking articles comprising one or more airflow channels along the combustible heat source, direct contact between air drawn through the one or more airflow channels and the combustible heat source during puffing by a user results in activation of combustion of the combustible heat source. Intense puffing regimes may therefore lead to
2983500v1
-32014307962 30 Nov 2016 sufficiently high forced convective heat transfer to cause spikes in the temperature of the aerosol-forming substrate, disadvantageously leading to pyrolysis and potentially even localised combustion of the aerosol-forming substrate. As used herein, the term ‘spike’ is used to describe a short-lived increase in the temperature of the aerosol-forming substrate. As a result, 5 the levels of undesirable pyrolytic and combustion by-products in the mainstream aerosols generated by such known heated smoking articles may also disadvantageously vary significantly depending upon the particular puffing regime adopted by a user.
In other heated smoking articles no airflow channels are provided through the combustible heat source. In such heated smoking articles heating of the aerosol-forming 0 substrate is achieved primarily by conductive heat transfer via a heat-conducting element. In heated smoking articles where the aerosol-forming substrate is heated primarily by conductive heat transfer, the temperature of the aerosol-forming substrate can become more sensitive to changes in the temperature of the heat-conducting element. This means that any cooling of a heat-conducting element around and in direct contact with the combustible heat source and the 5 aerosol-forming substrate due to radiative heat loss in such heated smoking articles may have a greater impact on the aerosol generation than in heated smoking articles where the aerosolforming substrate is also heated by forced convective heat transfer.
It would be desirable to provide a heated smoking article including a combustible heat source having opposed front and rear faces and an aerosol-forming substrate downstream of :0 the rear face of the combustible heat source which provides improved smoking performance. In particular, it would be desirable to provide a heated smoking article in which there is improved control of the heating of the aerosol-forming substrate in order to help maintain the temperature of the aerosol-forming substrate within a desired temperature range during smoking.
According to the invention there is provided a smoking article comprising: a combustible 25 heat source having opposed front and rear faces; an aerosol-forming substrate downstream of the rear face of the combustible heat source; and a single heat-conducting element overlying a rear portion of the combustible heat source and at least a front portion of the aerosol-forming substrate. The single heat-conducting element comprises one or more layers of heat conductive material and the one or more layers of heat conductive material are radially 30 separated from the combustible heat source and the aerosol-forming substrate. The combustible heat source is either a blind combustible heat source or the combustible heat source is a non-blind combustible heat source and the smoking article further comprises a noncombustible substantially air impermeable barrier between the non-blind combustible heat source and one or more airflow channels extending from the front face to the rear face of the 35 non-blind combustible heat source. The single heat-conducting element comprises an outer layer of heat conductive material that is visible on the exterior of the smoking article.
2983500v1
WO 2015/022321
PCT/EP2014/067237
-4 As used herein, the terms ‘distal’, ’upstream’ and ‘front’, and ‘proximal’, ‘downstream’ and ‘rear’, are used to describe the relative positions of components, or portions of components, of the smoking article in relation to the direction in which a user draws on the smoking article during use thereof. Smoking articles according to the invention comprise a proximal end through which, in use, an aerosol exits the smoking article for delivery to a user. The proximal end of the smoking article may also be referred to as the mouth end. In use, a user draws on the proximal end of the smoking article in order to inhale an aerosol generated by the smoking article.
The combustible heat source is located at or proximate to the distal end. The mouth end is downstream of the distal end. The proximal end may also be referred to as the downstream end of the smoking article and the distal end may also be referred to as upstream end of the smoking article. Components, or portions of components, of smoking articles according to the invention may be described as being upstream or downstream of one another based on their relative positions between the proximal end and the distal end of the smoking article.
The front face of the combustible heat source is at the upstream end of the combustible heat source. The upstream end of the combustible heat source is the end of the combustible heat source furthest from the proximal end of the smoking article. The rear face of the combustible heat source is at the downstream end of the combustible heat source. The downstream end of the combustible heat source is the end of the combustible heat source closest to the proximal end of the smoking article.
As used herein, the term ‘length’ is used to describe the maximum dimension in the longitudinal direction of the smoking article. That is, the maximum dimension in the direction between the proximal end and the opposed distal end of the smoking article.
As used herein, the term ‘aerosol-forming substrate’ is used to describe a substrate capable of releasing upon heating volatile compounds, which can form an aerosol. The aerosols generated from aerosol-forming substrates of smoking articles according to the invention may be visible or invisible and may include vapours (for example, fine particles of substances, which are in a gaseous state, that are ordinarily liquid or solid at room temperature) as well as gases and liquid droplets of condensed vapours.
As used herein, the term “radially separated” is used to indicate that the one or more layers of heat conductive material of the single heat-conducting element are spaced apart from both the combustible heat source and the aerosol-forming substrate in a radial direction, such that there is no direct contact between the one or more layers of heat conductive material of the single heat-conducting element and the combustible heat source or the aerosol-forming substrate.
WO 2015/022321
PCT/EP2014/067237
-5As used herein, the term ‘radial’ is used to describe the direction perpendicular to the direction between the proximal end and the opposed distal end of the smoking article.
As used herein, the term ‘direct contact’ is used to mean contact between two components without any intermediate material, such that the surfaces of the components are touching each other.
The aerosol-forming substrate may be in the form of a plug or segment comprising a material capable of releasing upon heating volatile compounds, which can form an aerosol, circumscribed by a wrapper. Where an aerosol-forming substrate is in the form of such a plug or segment, the entire plug or segment including the wrapper is considered to be the aerosolforming substrate.
In such embodiments, the one or more layers of heat conductive material of the single heat-conducting element are radially separated from the wrapper of the aerosol-forming substrate.
Smoking articles according to the invention comprise a single heat-conducting element overlying a rear portion of the combustible heat source and at least a front portion of the aerosol-forming substrate. The single heat-conducting element comprises one or more layers of heat conductive material and the one or more layers of heat conductive material are radially separated from the combustible heat source and the aerosol-forming substrate.
Smoking articles according to the invention do not comprise any additional heatconducting elements underlying or overlying the single heat-conducting element. In particular, smoking articles according to the invention do not comprise any heat-conducting elements around and in direct contact with one or both of the combustible heat source and the aerosolforming substrate.
Smoking articles according to the invention may comprise a blind combustible heat source or a non-blind combustible heat source.
As used herein, the term ‘blind’ is used to describe a combustible heat source wherein there are no airflow channels extending from the front face to the rear face of the combustible heat source.
In use, the air drawn through smoking articles according to the invention comprising a blind combustible heat source for inhalation by a user does not pass through any airflow channels along the blind combustible heat source. In smoking articles according to the invention comprising a blind combustible heat source, heating of the aerosol-forming substrate occurs primarily by conduction and heating of the aerosol-forming substrate by forced convection is minimised or reduced.
-62014307962 30 Nov 2016
As used herein, the term ‘airflow channel’ is used to describe a channel extending along the length of a combustible heat source through which air may be drawn downstream for inhalation by a user.
As used herein, the term ‘non-blind’ is used to describe a combustible heat source 5 wherein there are one or more airflow channels extending from the front face to the rear face of the combustible heat source.
In use, the air drawn through smoking articles according to the invention comprising a non-blind combustible heat source for inhalation by a user passes through one or more airflow channels along the non-blind combustible heat source. In smoking articles according to the 0 invention comprising a non-blind combustible heat source, heating of the aerosol-forming substrate occurs by conduction and forced convection.
Smoking articles according to the invention comprising a non-blind combustible heat source further comprise a non-combustible substantially air impermeable barrier between the non-blind combustible heat source and the one or more airflow channels extending from the 5 front face to the rear face of the non-blind combustible heat source.
As used herein, the term ‘non-combustible’ is used to describe a barrier that is substantially non-combustible at temperatures reached by the non-blind combustible heat source during combustion and ignition thereof.
Where smoking articles according to the invention comprise a blind combustible heat :0 source, the lack of any airflow channels through the blind combustible heat source advantageously substantially prevents or inhibits activation of combustion of the blind combustible heat source during puffing by a user.
Similarly, where smoking articles according to the invention comprise a non-blind combustible heat source inclusion of a non-combustible substantially air impermeable barrier 25 between the non-blind combustible heat source and the one or more airflow channels extending from the front face to the rear face of the non-blind combustible heat source advantageously substantially prevents or inhibit activation of combustion of the non-blind combustible heat source during puffing by a user.
Preventing or inhibiting activation of combustion of the combustible heat source during 30 puffing by a user, advantageously substantially prevents or inhibits spikes in the temperature of the aerosol-forming substrate of smoking articles according to the invention during puffing by a user.
By preventing or inhibiting activation of combustion of the combustible heat source, and so preventing or inhibiting excess temperature increases in the aerosol-forming substrate, combustion or pyrolysis of the aerosol-forming substrate of smoking articles according to the invention under intense puffing regimes may be advantageously avoided. In addition, the
2983500v1
WO 2015/022321
PCT/EP2014/067237
-7impact of a user’s puffing regime on the composition of the mainstream aerosol of smoking articles according to the invention may be advantageously minimised or reduced.
The single heat-conducting element overlies a rear portion of the combustible heat source and at least a front portion of the aerosol-forming substrate.
The one or more layers of heat conductive material of the single heat-conducting element are radially separated from the combustible heat source and the aerosol-forming substrate. This limits conductive heat transfer from the combustible heat source to the single heat-conducting element and conductive heat transfer from the single heat-conducting element to the aerosol-forming substrate. In use, this advantageously helps to maintain the temperature attained in the aerosol-forming substrate of smoking articles according to the invention below that at which combustion or pyrolysis of the aerosol-forming substrate may occur.
Preferably, heat transfer by conduction from the combustible heat source to the single heat-conducting element is substantially reduced. This results in the single heat-conducting element of smoking articles according to the invention retaining a lower temperature than the heat-conducting element of known heated smoking articles in which the heat-conducting element is around and in direct contact with a rear portion of the combustible heat source and at least a front portion of the aerosol-forming substrate.
In heated smoking articles in which the heat-conducting element is around and in direct contact with a rear portion of the combustible heat source and at least a front portion of the aerosol-forming substrate, the heat drain exerted by conductive heat transfer via the heatconducting element significantly lowers the temperature of the rear portion of the combustible heat source. This can shorten the burning lifetime of the combustible heat source and may lead to non-acceptable aerosol delivery.
The radial separation between the one or more layers of heat conductive material of the single heat-conducting element and the combustible heat source and the aerosol-forming substrate of smoking articles according to the invention advantageously reduces the heat drain exerted by conductive heat transfer via the single heat-conducting element.
The single heat-conducting element advantageously reduces heat losses from the combustible heat source. The one or more layers of heat conductive material of the single heatconducting element increase in temperature during smoking of the smoking article, as heat is generated by the combustible heat source. The increased temperature of the one or more layers of heat conductive material of the single heat-conducting element reduce the temperature differential between the combustible heat source and overlying components of the smoking article, such that heat losses from the combustible heat source can be reduced.
By reducing heat losses from the combustible heat source, the single heat-conducting element advantageously helps to maintain the temperature of the aerosol-forming substrate
WO 2015/022321
PCT/EP2014/067237
-8within a desired temperature range. This improves the generation of aerosol from the aerosolforming substrate.
The one or more layers of heat conductive material of the single heat-conducting element conduct heat along the smoking article. This improves the efficiency of conductive heat transfer from the combustible heat source to the aerosol-forming substrate and therefore the heating of the aerosol-forming substrate. The improvement in conductive heat transfer achieved through the inclusion of the single heat-conducting element is particularly beneficial for smoking articles according to the invention comprising a blind combustible heat source in which there is substantially no forced convective heat transfer.
The radial separation between the one or more layers of heat conductive material of the single heat-conducting element and the combustible heat source and the aerosol-forming substrate is preferably achieved through the inclusion of one or more intermediate layers of material between the one or more layers of heat conductive material of the single heatconducting element and the combustible heat source and the aerosol-forming substrate. The one or more intermediate layers of material may be provided over the entire area in which the single heat-conducting element overlies the combustible heat source and the aerosol-forming substrate. Alternatively, the one or more intermediate layers of material may be provided in only part or parts of this area. In some embodiments, the one or more intermediate layers of material may extend beyond the one or more layers of heat conductive material of the single heat-conducting element in one or both of the upstream direction and the downstream direction.
Preferably, the one or more layers of heat conductive material of the single heatconducting element are radially separated from the combustible heat source and the aerosolforming substrate by one or more layers of heat insulative material. Suitable heat insulative materials include, but are not limited to, paper, ceramics and metal oxides.
For example, in certain preferred embodiments of the invention, the rear portion of the combustible heat source and the at least a front portion of the aerosol-forming substrate overlain by the single heat-conducting element are covered by a paper wrapper that circumscribes the smoking article along at least a portion of its length. In such embodiments, the paper wrapper radially separates the single heat-conducting element from the combustible heat source and the aerosol-forming substrate such that there is no direct contact between the single heat-conducting element and the combustible heat source or the aerosol-forming substrate.
The single heat-conducting element comprises an outer layer of heat conductive material provided on the outside of the smoking article, such that the outer layer of heat conductive material of the single heat-conducting element is visible on the exterior of the smoking article.
WO 2015/022321
PCT/EP2014/067237
-9ln certain embodiments, the one or more layers of heat conductive material of the single heat-conducting element are radially separated from the combustible heat source and the aerosol-forming substrate by a wrapper that extends along all or just a part of the smoking article. In such embodiments, the wrapper is wrapped around the smoking article over the combustible heat source and the aerosol-forming substrate and the single heat-conducting element is then provided over at least a portion of the wrapper.
Provision of the single heat-conducting element over a wrapper of the smoking article may provide benefits in relation to the appearance of smoking articles according to the invention, in particular during and after smoking thereof. In certain cases, some discolouration of the wrapper in the region of the combustible heat source may be observed when the wrapper is exposed to heat from the combustible heat source. The wrapper may additionally be discoloured as a result of the migration of volatile compounds from the aerosol-forming substrate into the wrapper around and downstream of the aerosol-forming substrate. In certain embodiments, the single heat-conducting element of smoking articles according to the invention may be provided over the wrapper around at least a rear part of the combustible heat source and at least a front part of the aerosol-forming substrate so that discolouration of the wrapper is covered and no longer or less visible. In certain embodiments, the single heat-conducting element may extend around the entire length of the aerosol-forming substrate. In certain preferred embodiments, the single heat-conducting element may extend downstream beyond the aerosol-forming substrate. The initial appearance of the smoking article can therefore be retained during smoking.
Alternatively or in addition to one or more layers of heat insulative material between the one or more layers of heat conductive material of the single heat-conducting element and the combustible heat source and the aerosol-forming substrate, at least part of the single heatconducting element may be radially separated from the combustible heat source and the aerosol-forming substrate by an air gap. An air gap may be provided through the inclusion of one or more spacer elements between the one or more layers of heat conductive material of the single heat-conducting element and the combustible heat source and the aerosol-forming substrate to maintain a defined separation between the single heat-conducting element and the combustible heat source and the aerosol-forming substrate. The one or more spacer elements may be, for example, one or more strips of paper wrapped radially around the combustible heat source and the aerosol-forming substrate.
Preferably, the one or more layers of heat conductive material of the single heatconducting element are radially separated from the combustible heat source and the aerosolforming substrate by at least 20 microns, more preferably by at least 50 microns. In certain embodiments, the one or more layers of heat conductive material of the single heat-conducting
WO 2015/022321
PCT/EP2014/067237
-10element are radially separated from the combustible heat source and the aerosol-forming substrate by at least 75 microns or more or by at least 100 microns or more.
Where one or more layers of heat insulative material are provided between the one or more layers of heat conductive material of the single heat-conducting element and the combustible heat source and the aerosol-forming substrate, as described above, the radial separation between the one or more layers of heat conductive material of the single heatconducting element and the combustible heat source and the aerosol-forming substrate will be determined by the thickness of the one or more layers of heat insulative material.
The one or more layers of heat conductive material of the single heat-conducting element may comprise any suitable heat conductive material or combination of materials with an appropriate thermal conductivity.
Preferably, the one or more layers of heat conductive material of the single heatconducting element comprise heat conductive materials having a bulk thermal conductivity of between about 10 W per metre Kelvin (W/(m*K)) and about 500 W per metre Kelvin (W/(m*K)), more preferably between about 15 W per metre Kelvin (W/(m*K)) and about 400 W per metre Kelvin (W/(m*K)), at 23°C and a relative humidity of 50% as measured using the modified transient plane source (MTPS) method. Suitable heat conductive materials include, but are not limited to: metal foil wrappers such as, for example, aluminium foil wrappers, steel wrappers, iron foil wrappers and copper foil wrappers; and metal alloy foil wrappers.
In certain preferred embodiments, the single heat-conducting element comprises one or more layers of aluminium.
Preferably, the one or more layers of heat conductive material of the single heatconducting element comprise a heat reflective material, such as aluminium or steel. In such embodiments, in use, the single heat-conducting element advantageously reflects heat radiating from the combustible heat source and the aerosol-forming substrate back towards the combustible heat source and the aerosol-forming substrate.
As used herein the term ‘heat reflective material’ refers to a material that has a relatively high heat reflectivity and a relatively low heat emissivity such that the material reflects a greater proportion of incident radiation from its surface than it emits. Preferably, the heat reflective material reflects more than 50% of incident radiation, more preferably more than 70% of incident radiation and most preferably more than 75% of incident radiation.
In such embodiments, the relatively high heat reflectivity and relatively low heat emissivity of the single heat-conducting element reduces heat losses from the combustible heat source and the aerosol-forming substrate.
The reflectivity of the one or more layers of heat conductive material of the single heatconducting element may be improved by providing the one or more layers of heat conductive
WO 2015/022321
PCT/EP2014/067237
- 11 material of the single heat-conducting element with a shiny inner surface, wherein the inner surface is the surface that faces the combustible heat source and the aerosol-forming substrate.
The single heat-conducting element may be formed of a single layer of heat conductive material. Alternatively, the single heat-conducting element may be formed of a multilayer or laminate material comprising at least one layer of heat conductive material in combination with one or more other heat-conducting layers or non-heat-conducting layers. In such embodiments, the at least one layer of heat conductive material may comprise any of the heat conductive materials listed above.
In certain preferred embodiments, the single heat-conducting element may be formed of a laminate material comprising at least one layer of heat conductive material and at least one layer of heat insulative material. In such embodiments, the inner layer of the single heatconducting element facing the combustible heat source and the aerosol-forming substrate may be a layer of heat insulative material. In this way, the inner layer of heat insulative material provides the required radial separation between the at least one layer of heat conductive material of the single heat-conducting element and the combustible heat source and the aerosol-forming substrate.
In certain preferred embodiments, the single heat-conducting element comprises a single layer of heat conductive material.
In certain preferred embodiments, the single heat-conducting element is a laminate material comprising a single layer of heat conductive material and one or more layers of heat insulative material. In certain particularly preferred embodiments, the single heat-conducting element is a laminate material comprising a single layer of heat conductive material and a single layer of heat insulative material. Preferably, the single heat-conducting element is a laminate material comprising a single outer layer of heat conductive material and a single inner layer of heat insulative material.
One example of a particularly suitable laminate material for forming the single heatconducting element is a double layer laminate material comprising an outer layer of aluminium and an inner layer of paper.
The use of a single heat-conducting element comprising a laminate material may additionally be beneficial during the production of the smoking articles according to the invention, since the at least one heat-insulating layer may provide added strength and rigidity. This enables the laminate material to be processed more easily, with a reduced risk of collapse or breakage of the at least one heat-conducting layer, which may be relatively thin and fragile.
Preferably the thickness of the single heat-conducting element is between about 5 microns and about 100 microns, more preferably between about 5 microns and about 80 microns.
WO 2015/022321
PCT/EP2014/067237
- 12 Preferably the single heat-conducting element comprises one or more layers of heat conductive material having a thickness of between about 2 microns and about 50 microns, more preferably between about 4 microns and about 30 microns.
In certain embodiments, the single heat-conducting element may comprise aluminium foil having a thickness of about 20 microns.
In certain preferred embodiments, the single heat-conducting element may comprise a laminate material comprising an outer layer of aluminium having a thickness of between about 5 microns and about 6 microns and an inner layer of paper.
As described above, the single heat-conducting element of smoking articles according to the invention overlies a rear portion of the combustible heat source and at least a front portion of the aerosol-forming substrate.
The position and extent of the single heat-conducting element relative to the combustible heat source and the aerosol-forming substrate may be adjusted in order to control heating ofthe aerosol-forming substrate during smoking. In particular, the extent of the single heat-conducting element relative to the combustible heat source and the aerosol-forming substrate in the upstream direction and the downstream direction may be adjusted in order to adjust the aerosol delivery profile of the smoking article.
The single heat-conducting element may extend around all or a part of the circumference of the smoking article. Preferably, the single heat-conducting element forms a continuous sleeve that circumscribes the smoking article along part of its length.
Preferably, the rear portion of the combustible heat source overlain by the single heatconducting element is between about 2 mm and about 8 mm in length, more preferably between about 3 mm and about 5 mm in length.
Preferably, the front portion of the combustible heat source not overlain by the first heatconducting element is between about 4 mm and about 15 mm in length, more preferably between about 5 mm and about 8 mm in length.
In certain embodiments, the single heat-conducting element overlies the entire length of the aerosol-forming substrate. In such embodiments, the downstream end of the single heatconducting element may be aligned with the downstream end ofthe aerosol-forming substrate. Alternatively, the single heat-conducting element may extend beyond the aerosol-forming substrate in the downstream direction.
In other embodiments, the single heat-conducting element overlies only a front portion of the aerosol-forming substrate. In such embodiments, the aerosol-forming substrate extends beyond the single heat-conducting element in the downstream direction.
In embodiments in which the single heat-conducting element overlies only a front portion of the aerosol-forming substrate, the aerosol-forming substrate may extend at least about 3 mm
WO 2015/022321
PCT/EP2014/067237
- 13beyond the single heat-conducting element in the downstream direction. For example, the aerosol-forming substrate may extend between about 3 mm and about 10 mm beyond the single heat-conducting element in the downstream direction. Alternatively, the aerosol-forming substrate may extend less than 3 mm beyond the single heat-conducting element in the downstream direction.
In embodiments in which the single heat-conducting element overlies only a front portion of the aerosol-forming substrate, the front portion of the aerosol-forming substrate overlain by the single heat-conducting element may be between about 1 mm and about 10 mm in length, For example, the front portion of the aerosol-forming substrate overlain by the single heatconducting element may be between about 2 mm and about 8 mm in length or between about 2 mm and about 6 mm in length.
Smoking articles according to the invention may comprise a blind combustible heat source.
It is known to include additives in the combustible heat sources of heated smoking articles in order to improve the ignition and combustion properties of the combustible heat sources. However, the inclusion of ignition and combustion additives can give rise to decomposition and reaction products, which may disadvantageously enter air drawn through such known heated smoking articles during use thereof.
The inclusion of a blind combustible heat source may advantageously substantially prevent or inhibit combustion and decomposition products and other materials formed during ignition and combustion of the blind combustible heat source from entering air drawn through smoking articles according to the invention during use thereof. This is particularly advantageous where the blind combustible heat source comprises one or more additives to aid ignition or combustion of the blind combustible heat source.
In smoking articles according to the invention comprising a blind combustible heat source, it is particularly important to optimise the conductive heat transfer between the combustible heat source and the aerosol-forming substrate. The inclusion of a single heatconducting element radially separated from the combustible heat source and the aerosolforming substrate has been found to have a particularly advantageous effect on the smoking performance of smoking articles including blind heat sources, where there is little if any heating of the aerosol-forming substrate by forced convection.
It will be appreciated that smoking articles according to the invention may comprise blind combustible heat sources comprising one or more closed or blocked passageways through which air may not be drawn for inhalation by a user.
For example, smoking articles according to the invention may comprise blind combustible heat sources comprising one or more closed passageways that extend from the
WO 2015/022321
PCT/EP2014/067237
- 14 front face at the upstream end of the blind combustible heat source only part way along the length of the blind combustible heat source.
The inclusion of one or more closed air passageways increases the surface area of the blind combustible heat source that is exposed to oxygen from the air and may advantageously facilitate ignition and sustained combustion of the blind combustible heat source.
Alternatively, smoking articles according to the invention may comprise a non-blind combustible heat source wherein there are one or more airflow channels extending from the front face to the rear face of the non-blind combustible heat source.
The one or more airflow channels may comprise one or more enclosed airflow channels.
As used herein, the term ‘enclosed’ is used to describe airflow channels that extend through the interior of the non-blind combustible heat source and are surrounded by the nonblind combustible heat source.
Alternatively or in addition, the one or more airflow channels may comprise one or more non-enclosed airflow channels. For example, the one or more airflow channels may comprise one or more grooves or other non-enclosed airflow channels that extend along the exterior of the non-blind combustible heat source.
The one or more airflow channels may comprise one or more enclosed airflow channels or one or more non-enclosed airflow channels or a combination thereof.
In certain embodiments, smoking articles according to the invention comprise one, two or three airflow channels extending from the front face to the rear face of the non-blind combustible heat source.
In certain preferred embodiments, smoking articles according to the invention comprise a single airflow channel extending from the front face to the rear face of the non-blind combustible heat source.
In certain particularly preferred embodiments, smoking articles according to the invention comprise comprises a single substantially central or axial airflow channel extending from the front face to the rear face of the non-blind combustible heat source.
In such embodiments, the diameter of the single airflow channel is preferably between about 1.5 mm and about 3 mm.
It will be appreciated that in addition to one or more airflow channels through which air may be drawn for inhalation by a user, smoking articles according to the invention may comprise non-blind combustible heat sources comprising one or more closed or blocked passageways through which air may not be drawn for inhalation by a user.
For example, smoking articles according to the invention may comprise non-blind combustible heat sources comprising one or more airflow channels extending from the front face to the rear face of the combustible heat source and one or more closed passageways that
WO 2015/022321
PCT/EP2014/067237
- 15extend from the front face of the non-blind combustible heat source only part way along the length combustible heat source.
The inclusion of one or more closed air passageways increases the surface area of the non-blind combustible heat source that is exposed to oxygen from the air and may advantageously facilitate ignition and sustained combustion of the non-blind combustible heat source.
Smoking articles according to the invention comprising a non-blind combustible heat source further comprise a non-combustible substantially air impermeable barrier between the non-blind combustible heat source and the one or more airflow channels extending from the front face to the rear face of the non-blind combustible heat source.
Inclusion of a non-combustible substantially air impermeable barrier between the nonblind combustible heat source and the one or more airflow channels extending from the front face to the rear face of the non-blind combustible heat source may advantageously substantially prevent or inhibit combustion and decomposition products formed during ignition and combustion of the non-blind combustible heat source from entering air drawn into the smoking article through the one or more airflow channels as the drawn air passes through the one or more airflow channels. This is particularly advantageous where the non-blind combustible heat source comprises one or more additives to aid ignition or combustion of the non-blind combustible heat source.
The barrier between the non-blind combustible heat source and the one or more airflow channels may be adhered or otherwise affixed to the non-blind combustible heat source.
In certain preferred embodiments, the barrier comprises a non-combustible substantially air impermeable barrier coating provided on an inner surface of the one or more airflow channels. In such embodiments, preferably the barrier comprises a barrier coating provided on at least substantially the entire inner surface of the one or more airflow channels. More preferably, the barrier comprises a barrier coating provided on the entire inner surface of the one or more airflow channels.
As used herein, the term ‘coating’ is used to describe a layer of material that covers and is adhered to the combustible heat source.
In other embodiments, the barrier coating may be provided by insertion of a liner into the one or more airflow channels. For example, where the one or more airflow channels comprise one or more enclosed airflow channels that extend through the interior of the non-blind combustible heat source, a non-combustible substantially air impermeable hollow tube may be inserted into each of the one or more airflow channels.
Depending upon the desired characteristics and performance of the smoking article, the barrier may have a low thermal conductivity or a high thermal conductivity. Preferably, the
WO 2015/022321
PCT/EP2014/067237
- 16barrier has a low thermal conductivity.
The thickness of the barrier may be appropriately adjusted to achieve good smoking performance. In certain embodiments, the barrier may have a thickness of between about 30 microns and about 200 microns. In a preferred embodiment, the barrier has a thickness of between about 30 microns and about 100 microns.
The barrier may be formed from one or more suitable materials that are substantially thermally stable and non-combustible at temperatures achieved by the non-blind combustible heat source during ignition and combustion. Suitable materials are known in the art and include, but are not limited to, for example: clays; metal oxides, such as iron oxide, alumina, titania, silica, silica-alumina, zirconia and ceria; zeolites; zirconium phosphate; and other ceramic materials or combinations thereof.
Preferred materials from which the barrier may be formed include clays, glasses, aluminium, iron oxide and combinations thereof. If desired, catalytic ingredients, such as ingredients that promote the oxidation of carbon monoxide to carbon dioxide, may be incorporated in the barrier. Suitable catalytic ingredients include, but are not limited to, for example, platinum, palladium, transition metals and their oxides.
Where the barrier comprises a barrier coating provided on an inner surface of the one or more airflow channels, the barrier coating may be applied to the inner surface of the one or more airflow channels by any suitable method, such as the methods described in US-A-5,040,551. For example, the inner surface of the one or more airflow channels may be sprayed, wetted or painted with a solution or a suspension of the barrier coating. In certain preferred embodiments, the barrier coating is applied to the inner surface of the one or more airflow channels by the process described in WO-A2-2009/074870 as the combustible heat source is extruded.
Smoking articles according to the invention may further comprise a non-combustible substantially air impermeable barrier between the rear face of the combustible heat source and the aerosol-forming substrate.
Where smoking articles according to the invention comprise a non-blind combustible heat source and a non-combustible, substantially air impermeable barrier between the rear face of the combustible heat source and the aerosol-forming substrate, the barrier should allow air entering the smoking article through the one or more airflow channels extending from the front face to the rear face of the non-blind combustible heat source to be drawn downstream through the smoking article.
The barrier may abut one or both of the rear face of the combustible heat source and the aerosol-forming substrate. Alternatively, the barrier may be spaced apart from one or both of the rear face of the combustible heat source and the aerosol-forming substrate.
WO 2015/022321
PCT/EP2014/067237
- 17 The barrier may be adhered or otherwise affixed to one or both of the rear face of the combustible heat source and the aerosol-forming substrate.
In certain preferred embodiments, the barrier comprises a non-combustible substantially air impermeable barrier coating provided on the rear face of the combustible heat source. In such embodiments, preferably the barrier comprises barrier coating provided on at least substantially the entire rear face of the combustible heat source. More preferably, the barrier comprises a barrier coating provided on the entire rear face of the combustible heat source.
The barrier may advantageously limit the temperature to which the aerosol-forming substrate is exposed during ignition and combustion of the combustible heat source, and so help to avoid or reduce thermal degradation or combustion of the aerosol-forming substrate during use of the smoking article. This is particularly advantageous where the combustible heat source comprises one or more additives to aid ignition of the combustible heat source.
To facilitate aerosol formation, the aerosol-forming substrates of heated smoking articles typically comprise a polyhydric alcohol, such as glycerine, or other known aerosol-formers. During storage and smoking, such aerosol-formers may migrate from the aerosol-forming substrates of known heated smoking articles to the combustible heat sources thereof. Migration of aerosol-formers to the combustible heat sources of known heated smoking articles can disadvantageously lead to decomposition of the aerosol-formers, particularly during smoking of the heated smoking articles.
Inclusion of a non-combustible substantially air impermeable barrier between the rear face of the combustible heat source and the aerosol-forming substrate of smoking articles according to the invention may advantageously substantially prevent or inhibit migration of components of the aerosol-forming substrate to the combustible heat source during storage of the smoking article.
Alternatively or in addition, inclusion of a non-combustible substantially air impermeable barrier between the rear face of the combustible heat source and the aerosol-forming substrate of smoking articles according to the invention may advantageously substantially prevent or inhibit migration of components of the aerosol-forming substrate to the combustible heat source during use of the smoking article.
Inclusion of a non-combustible substantially air impermeable barrier between the rear face of the combustible heat source and the aerosol-forming substrate is particularly advantageous where the aerosol-forming substrate comprises at least one aerosol-former.
In such embodiments, inclusion of a non-combustible substantially air impermeable barrier between the rear face of the combustible heat source and the aerosol-forming substrate of smoking articles according to the invention may advantageously prevent or inhibit migration of the at least one aerosol-former from the aerosol-forming substrate to the combustible heat
WO 2015/022321
PCT/EP2014/067237
- 18source during storage and use of the smoking article. Decomposition of the at least one aerosol-former during use of the smoking article may thus be advantageously substantially avoided or reduced.
Depending upon the desired characteristics and performance of the smoking article, the non-combustible substantially air impermeable barrier between the rear face of the combustible heat source and the aerosol-forming substrate may have a low thermal conductivity or a high thermal conductivity. In certain embodiments, the barrier may be formed from material having a bulk thermal conductivity of between about 0.1 W per metre Kelvin (W/(m*K)) and about 200 W per metre Kelvin (W/(m*K)), at 23°C and a relative humidity of 50% as measured using the modified transient plane source (MTPS) method.
The thickness of the barrier may be appropriately adjusted to achieve good smoking performance. In certain embodiments, the barrier may have a thickness of between about 10 microns and about 500 microns.
The barrier may be formed from one or more suitable materials that are substantially thermally stable and non-combustible at temperatures achieved by the combustible heat source during ignition and combustion. Suitable materials are known in the art and include, but are not limited to, clays (such as, for example, bentonite and kaolinite), glasses, minerals, ceramic materials, resins, metals and combinations thereof.
Preferred materials from which the barrier may be formed include clays and glasses. More preferred materials from which the barrier may be formed include copper, aluminium, stainless steel, alloys, alumina (AI2O3), resins, and mineral glues.
In certain preferred embodiments, the barrier comprises a clay coating comprising a 50/50 mixture of bentonite and kaolinite provided on the rear face of the combustible heat source. In other preferred embodiments, the barrier comprises a glass coating, more preferably a sintered glass coating, provided on the rear face of the combustible heat source.
In certain particularly preferred embodiments, the barrier comprises an aluminium coating provided on the rear face of the combustible heat source.
Preferably, the barrier has a thickness of at least about 10 microns.
Due to the slight permeability of clays to air, in embodiments where the barrier comprises a clay coating provided on the rear face of the combustible heat source, the clay coating more preferably has a thickness of at least about 50 microns, and most preferably of between about 50 microns and about 350 microns.
In embodiments where the barrier is formed from one or more materials that are more impervious to air, such as aluminium, the barrier may be thinner, and generally will preferably have a thickness of less than about 100 microns, and more preferably of about 20 microns.
WO 2015/022321
PCT/EP2014/067237
- 19ln embodiments where the barrier comprises a glass coating provided on the rear face of the combustible heat source, the glass coating preferably has a thickness of less than about 200 microns.
The thickness of the barrier may be measured using a microscope, a scanning electron microscope (SEM) or any other suitable measurement methods known in the art.
Where the barrier comprises a barrier coating provided on the rear face of the combustible heat source, the barrier coating may be applied to cover and adhere to the rear face of the combustible heat source by any suitable methods known in the art including, but not limited to, spray-coating, vapour deposition, dipping, material transfer (for example, brushing or gluing), electrostatic deposition or any combination thereof.
For example, the barrier coating may be made by pre-forming a barrier in the approximate size and shape of the rear face of the combustible heat source, and applying it to the rear face of the combustible heat source to cover and adhere to at least substantially the entire rear face of the combustible heat source. Alternatively, the barrier coating may be cut or otherwise machined after it is applied to the rear face of the combustible heat source. In one preferred embodiment, aluminium foil is applied to the rear face of the combustible heat source by gluing or pressing it to the combustible heat source, and is cut or otherwise machined so that the aluminium foil covers and adheres to at least substantially the entire rear face of the combustible heat source, preferably to the entire rear face of the combustible heat source.
In another preferred embodiment, the barrier coating is formed by applying a solution or suspension of one or more suitable coating materials to the rear face of the combustible heat source. For example, the barrier coating may be applied to the rear face of the combustible heat source by dipping the rear face of the combustible heat source in a solution or suspension of one or more suitable coating materials or by brushing or spray-coating a solution or suspension or electrostatically depositing a powder or powder mixture of one or more suitable coating materials onto the rear face of the combustible heat source. Where the barrier coating is applied to the rear face of the combustible heat source by electrostatically depositing a powder or powder mixture of one or more suitable coating materials onto the rear face of the combustible heat source, the rear face of the combustible heat source is preferably pre-treated with water glass before electrostatic deposition. Preferably, the barrier coating is applied by spray-coating.
The barrier coating may be formed through a single application of a solution or suspension of one or more suitable coating materials to the rear face of the combustible heat source. Alternatively, the barrier coating may be formed through multiple applications of a solution or suspension of one or more suitable coating materials to the rear face of the combustible heat source. For example, the barrier coating may be formed through one, two,
WO 2015/022321
PCT/EP2014/067237
-20three, four, five, six, seven or eight successive applications of a solution or suspension of one or more suitable coating materials to the rear face of the combustible heat source.
Preferably, the barrier coating is formed through between one and ten applications of a solution or suspension of one or more suitable coating materials to the rear face of the combustible heat source.
After application of the solution or suspension of one or more coating materials to the rear face thereof, the combustible heat source may be dried to form the barrier coating.
Where the barrier coating is formed through multiple applications of a solution or suspension of one or more suitable coating materials to the rear face thereof, the combustible heat source may need to be dried between successive applications of the solution or suspension.
Alternatively or in addition to drying, after application of a solution or suspension of one or more coating materials to the rear face of the combustible heat source, the coating material on the combustible heat source may be sintered in order to form the barrier coating. Sintering of the barrier coating is particularly preferred where the barrier coating is a glass or ceramic coating. Preferably, the barrier coating is sintered at a temperature of between about 500°C and about 900°C, and more preferably at about 700°C.
Smoking articles according to the invention may comprise one or more first air inlets around the periphery of the aerosol-forming substrate.
As used herein, the term ‘air inlet’ is used to describe a hole, slit, slot or other aperture through which air may be drawn into the smoking article.
Where smoking articles according to the invention comprise one or more first air inlets around the periphery of the aerosol-forming substrate, in use, cool air is drawn into the aerosolforming substrate of the smoking article through the first air inlets. The air drawn into the aerosol-forming substrate through the first air inlets passes downstream through the smoking article from the aerosol-forming substrate and exits the smoking article through the proximal end thereof.
During puffing by a user, the cool air drawn through the one or more first air inlets around the periphery of the aerosol-forming substrate advantageously reduces the temperature of the aerosol-forming substrate. This advantageously substantially prevents or inhibits spikes in the temperature of the aerosol-forming substrate during puffing by a user.
As used herein, the term ‘cool air’ is used to describe ambient air that is not significantly heated by the combustible heat source upon puffing by a user.
By preventing or inhibiting spikes in the temperature of the aerosol-forming substrate, the inclusion of one or more first air inlets around the periphery of the aerosol-forming substrate, advantageously helps to avoid or reduce combustion or pyrolysis of the aerosol-forming
WO 2015/022321
PCT/EP2014/067237
-21 substrate under intense puffing regimes. In addition, the inclusion of one or more first air inlets around the periphery of the aerosol-forming substrate advantageously helps to minimise or reduce the impact of a user’s puffing regime on the composition of the mainstream aerosol of the smoking article.
In certain preferred embodiments, the one or more first air inlets are located proximate to the downstream end of the aerosol-forming substrate.
In certain embodiments, the aerosol-forming substrate may abut the rear face of the combustible heat source.
As used herein, the term ‘abut’ is used to describe the aerosol-forming substrate being in direct contact with the rear face of the combustible heat source or a non-combustible substantially air impermeable barrier coating provided on the rear face of the combustible heat source.
In other embodiments, the aerosol-forming substrate may be spaced apart from the rear face of the combustible heat source. That is, there may be a space or gap between the aerosol-forming substrate and the rear face of the combustible heat source.
As used herein, the term ‘spaced apart’ is used to describe the aerosol-forming substrate not being in direct contact with the rear face of the combustible heat source or a noncombustible substantially air impermeable barrier coating provided on the rear face of the combustible heat source.
Alternatively or in addition to one or more first air inlets, in such embodiments smoking articles according to the invention may comprise one or more second air inlets between the rear face of the combustible heat source and the aerosol-forming substrate. In use, cool air is drawn into the space between the combustible heat source and the aerosol-forming substrate through the second air inlets. The air drawn into the space between the combustible heat source and the aerosol-forming substrate through the second air inlets passes downstream through the smoking article from the space between the combustible heat source and the aerosol-forming substrate and exits the smoking article through the proximal end thereof.
During puffing by a user, cool air drawn through the one or more second inlets between the rear face of the combustible heat source and the aerosol-forming substrate may advantageously reduce the temperature of the aerosol-forming substrate. This may advantageously substantially prevent or inhibit spikes in the temperature of the aerosol-forming substrate during puffing by a user.
Alternatively or in addition to one or more first air inlets or one or more second air inlets, smoking articles according to the invention may comprise one or more third air inlets downstream of the aerosol-forming substrate.
WO 2015/022321
PCT/EP2014/067237
-22 It will be appreciated that smoking articles according to the invention may comprise one or more first air inlets around the periphery of the aerosol-forming substrate, or one or more second air inlets between the rear face of the combustible heat source and the aerosol-forming substrate, or one or more third air inlets downstream of the aerosol-forming substrate, or any combination thereof.
The number, shape, size and location of the air inlets may be appropriately adjusted to achieve a good smoking performance.
Preferably, the combustible heat source is a carbonaceous heat source. As used herein, the term ‘carbonaceous’ is used to describe a combustible heat source comprising carbon. Preferably, combustible carbonaceous heat sources for use in smoking articles according to the invention have a carbon content of at least about 35 percent, more preferably of at least about 40 percent, most preferably of at least about 45 percent by dry weight of the combustible heat source.
In some embodiments, combustible heat sources according to the invention are combustible carbon-based heat sources. As used herein, the term ‘carbon-based heat source’ is used to describe a heat source comprised primarily of carbon.
Combustible carbon-based heat sources for use in smoking articles according to the invention have a carbon content of at least about 50 percent. For example, combustible carbon-based heat sources for use in smoking articles according to the invention may have a carbon content of at least about 60 percent, or at least about 70 percent, or at least about 80 percent by dry weight of the combustible carbon-based heat source.
Smoking articles according to the invention may comprise combustible carbonaceous heat sources formed from one or more suitable carbon-containing materials.
If desired, one or more binders may be combined with the one or more carboncontaining materials. Preferably, the one or more binders are organic binders. Suitable known organic binders, include but are not limited to, gums (for example, guar gum), modified celluloses and cellulose derivatives (for example, methyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose and hydroxypropyl methylcellulose) flour, starches, sugars, vegetable oils and combinations thereof.
In one preferred embodiment, the combustible heat source is formed from a mixture of carbon powder, modified cellulose, flour and sugar.
Instead of, or in addition to one or more binders, combustible heat sources for use in smoking articles according to the invention may comprise one or more additives in order to improve the properties of the combustible heat source. Suitable additives include, but are not limited to, additives to promote consolidation of the combustible heat source (for example, sintering aids), additives to promote ignition of the combustible heat source (for example,
WO 2015/022321
PCT/EP2014/067237
-23oxidisers such as perchlorates, chlorates, nitrates, peroxides, permanganates, zirconium and combinations thereof), additives to promote combustion of the combustible heat source (for example, potassium and potassium salts, such as potassium citrate) and additives to promote decomposition of one or more gases produced by combustion of the combustible heat source (for example catalysts, such as CuO, Fe2O3 and AI2O3).
Where smoking articles according to the invention comprise a barrier coating provided on the rear face of the combustible heat source, such additives may be incorporated in the combustible heat source prior to or after application of the barrier coating to the rear face of the combustible heat source.
In certain preferred embodiments, the combustible heat source is a combustible carbonaceous heat source comprising carbon and at least one ignition aid. In one preferred embodiment, the combustible heat source is a combustible carbonaceous heat source comprising carbon and at least one ignition aid as described in W0-A1-2012/164077.
As used herein, the term ‘ignition aid’ is used to denote a material that releases one or both of energy and oxygen during ignition of the combustible heat source, where the rate of release of one or both of energy and oxygen by the material is not ambient oxygen diffusion limited. In other words, the rate of release of one or both of energy and oxygen by the material during ignition of the combustible heat source is largely independent of the rate at which ambient oxygen can reach the material. As used herein, the term ‘ignition aid’ is also used to denote an elemental metal that releases energy during ignition of the combustible heat source, wherein the ignition temperature of the elemental metal is below about 500 °C and the heat of combustion of the elemental metal is at least about 5 kJ/g.
As used herein, the term ‘ignition aid’ does not include alkali metal salts of carboxylic acids (such as alkali metal citrate salts, alkali metal acetate salts and alkali metal succinate salts), alkali metal halide salts (such as alkali metal chloride salts), alkali metal carbonate salts or alkali metal phosphate salts, which are believed to modify carbon combustion. Even when present in a large amount relative to the total weight of the combustible heat source, such alkali metal burn salts do not release enough energy during ignition of a combustible heat source to produce an acceptable aerosol during early puffs.
Examples of suitable oxidizing agents include, but are not limited to: nitrates such as, for example, potassium nitrate, calcium nitrate, strontium nitrate, sodium nitrate, barium nitrate, lithium nitrate, aluminium nitrate and iron nitrate; nitrites; other organic and inorganic nitro compounds; chlorates such as, for example, sodium chlorate and potassium chlorate; perchlorates such as, for example, sodium perchlorate; chlorites; bromates such as, for example, sodium bromate and potassium bromate; perbromates; bromites; borates such as, for example, sodium borate and potassium borate; ferrates such as, for example, barium ferrate;
WO 2015/022321
PCT/EP2014/067237
-24 ferrites; manganates such as, for example, potassium manganate; permanganates such as, for example, potassium permanganate; organic peroxides such as, for example, benzoyl peroxide and acetone peroxide; inorganic peroxides such as, for example, hydrogen peroxide, strontium peroxide, magnesium peroxide, calcium peroxide, barium peroxide, zinc peroxide and lithium peroxide; superoxides such as, for example, potassium superoxide and sodium superoxide; iodates; periodates; iodites; sulphates; sulfites; other sulfoxides; phosphates; phospinates; phosphites; and phosphanites.
While advantageously improving the ignition and combustion properties of the combustible heat source, the inclusion of ignition and combustion additives can give rise to undesirable decomposition and reaction products during use of the smoking article. For example, decomposition of nitrates included in the combustible heat source to aid ignition thereof can result in the formation of nitrogen oxides.
Where smoking articles according to the invention comprise a non-blind combustible heat source, the inclusion of a non-combustible substantially air impermeable barrier between the one or more airflow channels and the non-blind combustible heat source may advantageously substantially prevent or inhibit such decomposition and reaction products from entering air drawn into smoking articles according to the invention through the one or more airflow channels as the drawn air passes through the one or more airflow channels.
The inclusion of a non-combustible substantially air impermeable barrier between the rear face of the combustible heat source and the aerosol-forming substrate may also advantageously substantially prevent or inhibit such decomposition and reaction products from entering air drawn through smoking articles according to the invention.
Combustible carbonaceous heat sources for use in smoking articles according to the invention may be prepared as described in prior art that is known to persons of ordinary skill in the art.
Combustible carbonaceous heat sources for use in smoking articles according to the invention, are preferably formed by mixing one or more carbon-containing materials with one or more binders and other additives, where included, and pre-forming the mixture into a desired shape. The mixture of one or more carbon containing materials, one or more binders and optional other additives may be pre-formed into a desired shape using any suitable known ceramic forming methods such as, for example, slip casting, extrusion, injection moulding and die compaction or pressing. In certain preferred embodiments, the mixture is pre-formed into a desired shape by pressing or extrusion or a combination thereof.
Preferably, the mixture of one or more carbon-containing materials, one or more binders and other additives is pre-formed into an elongate rod. However, it will be appreciated that the mixture of one or more carbon-containing materials, one or more binders and other additives
WO 2015/022321
PCT/EP2014/067237
-25may be pre-formed into other desired shapes.
After formation, particularly after extrusion, the elongate rod or other desired shape is preferably dried to reduce its moisture content and then pyrolysed in a non-oxidizing atmosphere at a temperature sufficient to carbonise the one or more binders, where present, and substantially eliminate any volatiles in the elongate rod or other shape. The elongate rod or other desired shape is pyrolysed preferably in a nitrogen atmosphere at a temperature of between about 700°C and about 900°C.
In certain embodiments, at least one metal nitrate salt is incorporated in the combustible heat source by including at least one metal nitrate precursor in the mixture of one or more carbon containing materials, one or more binders and other additives. The at least one metal nitrate precursor is then subsequently converted in-situ into at least one metal nitrate salt by treating the pyrolysed pre-formed cylindrical rod or other shape with an aqueous solution of nitric acid. In one embodiment, the combustible heat source comprises at least one metal nitrate salt having a thermal decomposition temperature of less than about 600°C, more preferably of less than about 400°C. Preferably, the at least one metal nitrate salt has a decomposition temperature of between about 150°C and about 600°C, more preferably of between about 200°C and about 400°C.
In preferred embodiments, exposure of the combustible heat source to a conventional yellow flame lighter or other ignition means should cause the at least one metal nitrate salt to decompose and release oxygen and energy. This decomposition causes an initial boost in the temperature of the combustible heat source and also aids in the ignition of the combustible heat source. After decomposition of the at least one metal nitrate salt, the combustible heat source preferably continues to combust at a lower temperature.
The inclusion of at least one metal nitrate salt advantageously results in ignition of the combustible heat source being initiated internally, and not only at a point on the surface thereof. Preferably, the at least one metal nitrate salt is present in the combustible heat source in an amount of between about 20 percent by dry weight and about 50 percent by dry weight of the combustible heat source.
In other embodiments, the combustible heat source comprises at least one peroxide or superoxide that actively evolves oxygen at a temperature of less than about 600°C, more preferably at a temperature of less than about 400°C.
Preferably, the at least one peroxide or superoxide actively evolves oxygen at a temperature of between about 150°C and about 600°C, more preferably at a temperature of between about 200°C and about 400°C, most preferably at a temperature of about 350°C.
In use, exposure of the combustible heat source to a conventional yellow flame lighter or other ignition means should cause the at least one peroxide or superoxide to decompose and
WO 2015/022321
PCT/EP2014/067237
-26release oxygen. This causes an initial boost in the temperature ofthe combustible heat source and also aids in the ignition of the combustible heat source. After decomposition of the at least one peroxide or superoxide, the combustible heat source preferably continues to combust at a lower temperature.
The inclusion of at least one peroxide or superoxide advantageously results in ignition of the combustible heat source being initiated internally, and not only at a point on the surface thereof.
The combustible heat source preferably has a porosity of between about 20 percent and about 80 percent, more preferably of between about 20 percent and 60 percent. Where the combustible heat source comprises at least one metal nitrate salt, this advantageously allows oxygen to diffuse into the mass of the combustible heat source at a rate sufficient to sustain combustion as the at least one metal nitrate salt decomposes and combustion proceeds. Even more preferably, the combustible heat source has a porosity of between about 50 percent and about 70 percent, more preferably of between about 50 percent and about 60 percent as measured by, for example, mercury porosimetry or helium pycnometry. The required porosity may be readily achieved during production of the combustible heat source using conventional methods and technology.
Advantageously, combustible carbonaceous heat sources for use in smoking articles according to the invention have an apparent density of between about 0.6 g/cm3 and about 1 g/cm3.
Preferably, the combustible heat source has a mass of between about 300 mg and about 500 mg, more preferably of between about 400 mg and about 450 mg.
Preferably, the combustible heat source has a length of between about 7 mm and about 17 mm, more preferably of between about 7 mm and about 15 mm, most preferably of between about 7 mm and about 13 mm.
Preferably, the combustible heat source has a diameter of between about 5 mm and about 9 mm, more preferably of between about 7 mm and about 8 mm.
Preferably, the combustible heat source is of substantially uniform diameter. However, the combustible heat source may alternatively be tapered so that the diameter of a rear portion of the blind combustible heat source is greater than the diameter of a front portion thereof. Particularly preferred are combustible heat sources that are substantially cylindrical. The combustible heat source may, for example, be a cylinder or tapered cylinder of substantially circular cross-section or a cylinder or tapered cylinder of substantially elliptical cross-section.
Smoking articles according to the invention preferably comprise an aerosol-forming substrate comprising at least one aerosol-former and a material capable of releasing volatile compounds in response to heating. The aerosol-forming substrate may comprise other
WO 2015/022321
PCT/EP2014/067237
-27 additives and ingredients including, but not limited to, humectants, flavourants, binders and mixtures thereof.
Preferably, the aerosol-forming substrate comprises nicotine. More preferably, the aerosol-forming substrate comprises tobacco.
The at least one aerosol-former may be any suitable known compound or mixture of compounds that, in use, facilitates formation of a dense and stable aerosol and that is substantially resistant to thermal degradation at the operating temperature of the smoking article. Suitable aerosol-formers are well known in the art and include, for example, polyhydric alcohols, esters of polyhydric alcohols, such as glycerol mono-, di- or triacetate, and aliphatic esters of mono-, di- or polycarboxylic acids, such as dimethyl dodecanedioate and dimethyl tetradecanedioate. Preferred aerosol formers for use in smoking articles according to the invention are polyhydric alcohols or mixtures thereof, such as triethylene glycol, 1,3-butanediol and, most preferred, glycerine.
The material capable of emitting volatile compounds in response to heating may be a charge of plant-based material. The material capable of emitting volatile compounds in response to heating may be a charge of homogenised plant-based material. For example, the aerosol-forming substrate may comprise one or more materials derived from plants including, but not limited to: tobacco; tea, for example green tea; peppermint; laurel; eucalyptus; basil; sage; verbena; and tarragon.
Preferably, the material capable of emitting volatile compounds in response to heating is a charge of tobacco-based material, most preferably a charge of homogenised tobacco-based material.
The aerosol-forming substrate may be in the form of a plug or segment comprising a material capable of emitting volatile compounds in response to heating circumscribed by a paper or other wrapper. As stated above, where an aerosol-forming substrate is in the form of such a plug or segment, the entire plug or segment including any wrapper is considered to be the aerosol-forming substrate.
Preferably, the aerosol-forming substrate has a length of between about 5 mm and about 20 mm, more preferably of between about 8 mm and about 12 mm.
In preferred embodiments, the aerosol-forming substrate comprises a plug of tobaccobased material wrapped in a plug wrap. In particular preferred embodiments, the aerosolforming substrate comprises a plug of homogenised tobacco-based material wrapped in a plug wrap.
Smoking articles according to the invention preferably comprise a mouthpiece downstream of the aerosol-forming substrate. The mouthpiece is located at the proximal end of the smoking article.
WO 2015/022321
PCT/EP2014/067237
-28Preferably, the mouthpiece is of low filtration efficiency, more preferably of very low filtration efficiency. The mouthpiece may be a single segment or component mouthpiece. Alternatively, the mouthpiece may be a multi-segment or multi-component mouthpiece.
The mouthpiece may comprise a filter comprising one or more segments comprising suitable known filtration materials. Suitable filtration materials are known in the art and include, but are not limited to, cellulose acetate and paper. Alternatively or in addition, the mouthpiece may comprise one or more segments comprising absorbents, adsorbents, flavourants, and other aerosol modifiers and additives or combinations thereof.
Smoking articles according to the element preferably further comprise a transfer element or spacer element between the aerosol-forming substrate and the mouthpiece.
The transfer element may abut one or both of the aerosol-forming substrate and the mouthpiece. Alternatively, the transfer element may be spaced apart from one or both of the aerosol-forming substrate and the mouthpiece.
The inclusion of a transfer element advantageously allows cooling of the aerosol generated by heat transfer from the combustible heat source to the aerosol-forming substrate. The inclusion of a transfer element also advantageously allows the overall length of smoking articles according to the invention to be adjusted to a desired value, for example to a length similar to that of conventional cigarettes, through an appropriate choice of the length of the transfer element.
The transfer element may have a length of between about 7 mm and about 50 mm, for example a length of between about 10 mm and about 45 mm or of between about 15 mm and about 30 mm. The transfer element may have other lengths depending upon the desired overall length of the smoking article, and the presence and length of other components within the smoking article.
Preferably, the transfer element comprises at least one open-ended tubular hollow body. In such embodiments, in use, the air drawn through the smoking article passes through the at least one open-ended tubular hollow body as it passes downstream through the smoking article from the aerosol-forming substrate to the proximal end thereof.
The transfer element may comprise at least one open-ended tubular hollow bodies formed from one or more suitable materials that are substantially thermally stable at the temperature of the aerosol generated by the transfer of heat from the combustible heat source to the aerosol-forming substrate. Suitable materials are known in the art and include, but are not limited to, paper, cardboard, plastics, such a cellulose acetate, ceramics and combinations thereof.
Alternatively or in addition, smoking articles according to the invention may comprise an aerosol-cooling element or heat exchanger between the aerosol-forming substrate and the
WO 2015/022321
PCT/EP2014/067237
-29mouthpiece. The aerosol-cooling element may comprise a plurality of longitudinally extending channels.
The aerosol-cooling element may comprise a gathered sheet of material selected from the group consisting of metallic foil, polymeric material, and substantially non-porous paper or cardboard. In certain embodiments, the aerosol-cooling element may comprise a gathered sheet of material selected from the group consisting of polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polyethylene terephthalate (PET), polylactic acid (PLA), cellulose acetate (CA), and aluminium foil.
In certain preferred embodiments, the aerosol-cooling element may comprise a gathered sheet of biodegradable polymeric material, such as polylactic acid (PLA) or a grade of Mater-Bi® (a commercially available family of starch based copolyesters).
Smoking articles according to the invention may comprise one or more aerosol modifying agents downstream of the aerosol-forming substrate. For example, one or more of the mouthpiece, transfer element and aerosol-cooling element of smoking articles according to the invention may comprise one or more aerosol modifying agents.
Suitable aerosol-modifying agents include, but are not limited to: flavourants; and chemesthetic agents.
As used herein, the term ‘flavourant’ is used to describe any agent that, in use, imparts one or both of a taste or aroma to an aerosol generated by the aerosol-forming substrate of the smoking article.
As used herein, the term ‘chemesthetic agent’ is used to describe any agent that, in use, is perceived in the oral or olfactory cavities of a user by means other than, or in addition to, perception via taste receptor or olfactory receptor cells. Perception of chemesthetic agents is typically via a trigeminal response, either via the trigeminal nerve, glossopharyngeal nerve, the vagus nerve, or some combination of these. Typically, chemesthetic agents are perceived as hot, spicy, cooling, or soothing sensations.
Smoking articles according to the invention may comprise one or more aerosol modifying agents that are both a flavourant and a chemesthetic agent downstream of the aerosol-forming substrate. For example, one or more of the mouthpiece, transfer element and aerosol-cooling element of smoking articles according to the invention may comprise menthol or another flavourant that provides a cooling chemesthetic effect.
Smoking articles according to the invention may be assembled using known methods and machinery.
The invention will be further described, by way of example only, with reference to the accompanying drawings in which:
WO 2015/022321
PCT/EP2014/067237
-30Figure 1 shows a schematic longitudinal cross-section of a smoking article according to a first embodiment of the invention;
Figure 2 shows a schematic longitudinal cross-section of a smoking article according to a third embodiment of the invention;
Figure 3a shows a graph of the temperature of the rear portion of the combustible heat source of a smoking article according to the invention during smoking; and
Figure 3b shows a graph of the temperature of the aerosol-generating substrate of the smoking article according to the invention during smoking.
The smoking article 2 according to the first embodiment of the invention shown in Figure 1 comprises a blind combustible heat source 4 having a front face 6 and an opposed rear face 8, an aerosol-forming substrate 10, a transfer element 12, an aerosol-cooling element 14, a spacer element 16 and a mouthpiece 18 in abutting coaxial alignment..
The blind combustible heat source 4 is a blind carbonaceous combustible heat source and is located at the distal end of the smoking article 2. As shown in Figure 1, a noncombustible substantially air impermeable barrier 22 in the form of a disc of aluminium foil is provided between the rear face 8 of the blind combustible heat source 4 and the aerosolforming substrate 10. The barrier 22 is applied to the rear face 8 of the blind combustible heat source 4 by pressing the disc of aluminium foil onto the rear face 8 of the blind combustible heat source 4 and abuts the rear face 8 of the combustible carbonaceous heat source 4 and the aerosol-forming substrate 10.
In other embodiments of the invention (not shown), the non-combustible substantially air impermeable barrier 22 between the rear face 8 of the blind combustible heat source 4 and the aerosol-forming substrate 10 may be omitted.
The aerosol-forming substrate 10 is located immediately downstream of the barrier 22 applied to the rear face 8 of the blind combustible heat source 4. The aerosol-forming substrate 10 comprises a cylindrical plug of homogenised tobacco-based material 24 including an aerosol former such as, for example, glycerine, wrapped in plug wrap 26.
The transfer element 12 is located immediately downstream of the aerosol-forming substrate 10 and comprises a cylindrical open-ended hollow cellulose acetate tube 28.
The aerosol-cooling element 14 is located immediately downstream of the transfer element 12 and comprises a gathered sheet of biodegradable polymeric material such as, for example, polylactic acid.
The spacer element 16 is located immediately downstream of the aerosol-cooling element 14 and comprises a cylindrical open-ended hollow paper or cardboard tube 30.
The mouthpiece 18 is located immediately downstream of the spacer element 16. As shown in Figure 1, the mouthpiece 18 is located at the proximal end of the smoking article 2 and
-31 2014307962 30 Nov 2016 comprises a cylindrical plug of suitable filtration material 32 such as, for example, cellulose acetate tow of very low filtration efficiency, wrapped in filter plug wrap 34
The smoking article may further comprise a band of tipping paper (not shown) circumscribing a downstream end portion of the outer wrapper 20.
As shown in Figure 1, the smoking article 2 further comprises a single heat-conducting element 36 of suitable material such as, for example, aluminium foil, overlying a rear portion of the blind combustible heat source 4, the entire length of the aerosol-forming substrate 10 and the entire length of the transfer element 12.
In other embodiments of the invention (not shown), the transfer element 12 may extend beyond the single heat-conducting element 36 in the downstream direction. That is the single heat-conducting element 36 may overlie only a front portion of the transfer element 12. In other embodiments of the invention (not shown), the single heat-conducting element 36 may not overlie any of the transfer element 12.
In further embodiments of the invention (not shown), the aerosol-forming substrate 10 may extend beyond the single heat-conducting element 36 in the downstream direction. That is the single-heat-conducting element 36 may overlie only a front portion of the aerosol-forming substrate 10.
The single heat-conducting element 36 is radially separated from the blind combustible heat source 4 and the aerosol-forming substrate 10 by a wrapper 38 of heat insulative sheet :o material such as, for example, cigarette paper, of low air permeability, which is wrapped around the aerosol-forming substrate 10, transfer element 12 and a rear portion of the blind combustible heat source 4.
In the smoking article 2 according to the first embodiment of the invention shown in Figure 1, the single heat-conducting element 36 and the wrapper 38 radially separating the single heat-conducting element 36 from the blind combustible heat source 4 and the aerosolforming substrate 10 extend to approximately the same position on the blind combustible heat source 4 in the upstream direction, such that the upstream ends of the single heat-conducting element 36 and the wrapper 38 are substantially aligned over the blind combustible heat source 4.
However, it will be appreciated that in other embodiments of the invention (not shown), the wrapper 38 radially separating the single heat-conducting element 36 from the blind combustible heat source 4 and the aerosol-forming substrate 10 may extend beyond the single heat-conducting element 36 in the upstream direction.
The smoking article 2 according to the first embodiment of the invention comprises one or more first air inlets 40 around the periphery of the aerosol-forming substrate 10.
2983500v1
WO 2015/022321
PCT/EP2014/067237
-32As shown in Figure 1, a circumferential arrangement of first air inlets 40 is provided in the plug wrap 26 of the aerosol-forming substrate 10, the wrapper 38 radially separating the single heat-conducting element 36 from the blind combustible heat source 4 and the aerosolforming substrate 10 and the single heat conducting element 36 to admit cool air (shown by dotted arrows in Figure 1) into the aerosol-forming substrate 10.
In use, a user ignites the blind combustible heat source 4 of the smoking article 2 according to the first embodiment of the invention and then draws on the mouthpiece 18. When a user draws on the mouthpiece 18, cool air (shown by dotted arrows in Figures 1) is drawn into the aerosol-forming substrate 10 of the smoking article 2 through the first air inlets 40.
The front portion of the aerosol-forming substrate 10 is heated by conduction through the rear face 8 of the blind combustible heat source 4 and the barrier 22.
The heating of the aerosol-forming substrate 10 by conduction releases glycerine and other volatile and semi-volatile compounds from the plug of homogenised tobacco-based material 24. The compounds released from the aerosol-forming substrate 10 form an aerosol that is entrained in the air drawn into the aerosol-forming substrate 10 of the smoking article 2 through the first air inlets 40 as it flows through the aerosol-forming substrate 10. The drawn air and entrained aerosol (shown by dashed arrows in Figures 1 and 2) pass downstream through the transfer element 12, aerosol-cooling element 14 and spacer element 16, where they cool and condense. The cooled drawn air and entrained aerosol pass downstream through the mouthpiece 18 and are delivered to the user through the proximal end of the smoking article 2 according to the first embodiment of the invention. The non-combustible substantially air impermeable barrier 22 on the rear face 8 of the blind combustible heat source 4 isolates the blind combustible heat source 4 from air drawn through the smoking article 2 such that, in use, air drawn through the smoking article 2 does not come into direct contact with the blind combustible heat source 4.
In use, the single heat-conducting element 36 retains heat within the smoking article 2 to help maintain the temperature of the aerosol-forming substrate 10 and so facilitate continued and enhanced aerosol delivery. In addition, the single heat-conducting element 36 transfers heat along the aerosol-forming substrate 10 so that heat is dispersed through a larger volume of the aerosol-forming substrate 10. This helps to provide a more consistent puff-by-puff aerosol delivery.
A smoking article according to a second embodiment of the invention (not shown) is of largely identical construction to the smoking article according to the first embodiment of the invention shown in Figure 1. However, in the smoking article according to the second embodiment of the invention, the wrapper 38 radially separating the single heat-conducting element 36 from the blind combustible heat source 4 and the aerosol-forming substrate 10 is
WO 2015/022321
PCT/EP2014/067237
-33omitted and the single heat-conducting element 36 is formed of a laminate material comprising an outer layer of heat conductive material and an inner layer of heat insulative material. In the smoking article according to the second embodiment of the invention, the outer layer of heat conductive material of the single heat-conducting element 36 is radially separated from the blind combustible heat source 4 and the aerosol-forming substrate 10 by the inner layer of heat insulative material of the single heat-conducting element 36.
The smoking article 42 according to the third embodiment of the invention shown in Figure 2 is of largely identical construction to the smoking article according to the first embodiment of the invention shown in Figure 1. However, in the smoking article 42 according to the second embodiment of the invention, the first air inlets 40 around the periphery of the aerosol-forming substrate 10 are omitted and the combustible heat source 4 is a non-blind combustible carbonaceous heat source comprising a single central airflow channel 44 extending from the front face 6 to the rear face 8 of the non-blind combustible heat source 4.
As shown in Figure 2, a non-combustible substantially air impermeable barrier 46 is provided between the combustible heat source 4 and the central airflow channel 44. The barrier 46 comprises a non-combustible substantially air impermeable barrier coating provided on the entire inner surface of the single central airflow channel 44.
In use, a user ignites the non-blind combustible heat source 4 of the smoking article 42 according to the third embodiment of the invention and then draws on the mouthpiece 18. When a user draws on the mouthpiece 18, cool air (shown by dotted arrows in Figures 2) is drawn into the aerosol-forming substrate 10 of the smoking article 2 through the central airflow channel 44. The non-combustible substantially air impermeable barrier 22 on the rear face 8 of the non-blind combustible heat source 4 and the non-combustible substantially air impermeable barrier 46 on the inner surface of the single central airflow channel 44 isolate the non-blind combustible heat source 4 from air drawn through the smoking article 42 such that, in use, air drawn through the smoking article 42 does not come into direct contact with the non-blind combustible heat source 4.
In other embodiments of the invention (not shown), the non-combustible substantially air impermeable barrier 22 between the rear face 8 of the non-blind combustible heat source 4 and the aerosol-forming substrate 10 may be omitted.
A smoking article according to a fourth embodiment of the invention (not shown) is of largely identical construction to the smoking article according to the third embodiment of the invention shown in Figure 2. However, in the smoking article according to the fourth embodiment of the invention, the wrapper 38 radially separating the single heat-conducting element 36 from the blind combustible heat source 4 and the aerosol-forming substrate 10 is omitted and the single heat-conducting element 36 is formed of a laminate material comprising
WO 2015/022321
PCT/EP2014/067237
-34an outer layer of heat conductive material and an inner layer of heat insulative material. In the smoking article according to the fourth embodiment of the invention, the outer layer of heat conductive material of the single heat-conducting element 36 is radially separated from the nonblind combustible heat source 4 and the aerosol-forming substrate 10 by the inner layer of heat insulative material of the single heat-conducting element 36.
Example A
A smoking article according to the invention of largely identical construction to the smoking article according to the second embodiment of the invention described above is assembled. The smoking article comprises a single heat-conducting element formed of a laminate material comprising an outer layer of aluminium and an inner layer of paper. The smoking article does not comprise an outer wrapper, such that the outer layer of aluminium of the single heat-conducting element is visible on the exterior of the smoking article. Instead of a circumferential arrangement of first air inlets around the periphery of the aerosol-forming substrate, the smoking article comprises a circumferential arrangement of third air inlets around the periphery of the transfer element.
In the smoking article according to the invention, the outer layer of aluminium of the single heat-conducting element is radially separated from the blind combustible heat source and the aerosol-forming substrate by the inner layer of paper of the single heat-conducting element.
Comparative Example B
For the purposes of comparison, a smoking article not according to the invention is assembled. The smoking article not according to the invention comprises a single heatconducting element formed of a laminate material comprising an inner layer of aluminium and an outer layer of paper. Otherwise, the smoking article not according to the invention is of identical construction to the smoking article according to the invention of Example A.
In the smoking article not according to the invention, the inner layer of aluminium of the single heat-conducting element is in direct contact with the blind combustible heat source and the aerosol-forming substrate.
The temperature of the rear portion of the blind combustible heat sources of the smoking article according to the invention of Example A and the smoking article not according to the invention of Comparative Example B during combustion of the combustible heat source are measured in the smoking articles using a thermocouple attached to the surface of the smoking articles at a position 1 mm upstream of the aerosol-generating substrates thereof. The results are shown in Figure 3a.
-352014307962 30 Nov 2016
The temperature of the rear portion of the aerosol-forming substrates of the smoking article according to the invention of Example A and the smoking article not according to the invention of Comparative Example B during combustion of the combustible heat source are measured in the smoking articles using a thermocouple attached to the surface of the smoking 5 articles at a position 6 mm downstream of the combustible heat sources thereof. The results are shown in Figure 3b.
To measure the temperatures of the rear portion of the blind combustible heat sources and the aerosol-forming substrates, the smoking articles are ignited using a conventional yellow flame lighter and smoked under a Health Canada smoking regime over 12 puffs with a puff 0 volume of 55 ml, puff duration of 2 seconds and a puff interval of 30 seconds using a smoking machine. Conditions for smoking and smoking machine specifications are set out in ISO Standard 3308 (ISO 3308:2000). The atmosphere for conditioning and testing is set out in ISO Standard 3402.
As shown in Figures 3a and 3b, the temperature of the rear portion of the blind 5 combustible heat source and the aerosol-forming substrate of the smoking article not according to the invention of Comparative Example B are reduced compared to the smoking article according to the invention, particularly during later puffs. This results in the dry total particulate matter (DTPM) delivery of the smoking article not according to the invention of Comparative Example B (10.3 mg) being lower than the dry total particulate matter (DTPM) delivery of the :0 smoking article according to the invention of Example A (17.4 mg).
The specific embodiments described above are intended to illustrate the invention. However, other embodiments may be made without departing from the spirit and scope of the invention as defined in the claims, and it is to be understood that the specific embodiments described above are not intended to be limiting.
In this specification, the terms “comprise”, “comprises”, “comprising” or similar terms are intended to mean a non-exclusive inclusion, such that a system, method or apparatus that comprises a list of elements does not include those elements solely, but may well include other elements not listed.
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgement or any form of suggestion that the prior art forms part of the common general knowledge.
2983500v1
-362014307962 30 Nov 2016

Claims (15)

  1. CLAIMS:
    1. A smoking article comprising:
    a combustible heat source having opposed front and rear faces;
    5 an aerosol-forming substrate downstream of the rear face of the combustible heat source; and a single heat-conducting element overlying a rear portion of the combustible heat source and at least a front portion of the aerosol-forming substrate, wherein the single heat-conducting element comprises one or more layers of heat conductive material and the one or more layers 0 of heat conductive material are radially separated from the combustible heat source and the aerosol-forming substrate, wherein the combustible heat source is either a blind combustible heat source or the combustible heat source is a non-blind combustible heat source and the smoking article further comprises a non-combustible substantially air impermeable barrier between the non-blind 5 combustible heat source and one or more airflow channels extending from the front face to the rear face of the non-blind combustible heat source, and wherein the single heat-conducting element comprises an outer layer of heat conductive material that is visible on the exterior of the smoking article.
    Ό
  2. 2. A smoking article according to claim 1 wherein the one or more layers of heat conductive material are radially separated from the combustible heat source and the aerosol-forming substrate by one or more layers of heat insulative material.
  3. 3. A smoking article according to claim 1 or 2 wherein the one or more layers of heat
    25 conductive material are radially separated from the combustible heat source and the aerosolforming substrate by at least 50 microns.
  4. 4. A smoking article according to any preceding claim wherein the single heat-conducting element is formed of a laminate material comprising one or more layers of heat conductive
    30 material and one or more layers of heat insulative material.
  5. 5. A smoking article according to claim 4 wherein the one or more layers of heat conductive material are radially separated from the combustible heat source and the aerosol-forming substrate by at least one of the one or more layers of heat insulative material.
  6. 6. A smoking article according to any preceding claim wherein the one or more layers of heat conductive material comprise a heat-reflective material.
    2983500v1
    -372014307962 30 Nov 2016
  7. 7. A smoking article according to claim 6 wherein the heat-reflective material reflects more than 50% of incident radiation.
    5
  8. 8. A smoking article according to any preceding claim wherein the single heat-conducting element overlies the entire length of the aerosol-forming substrate.
  9. 9. A smoking article according to claim 8 wherein the single heat-conducting element extends downstream beyond the aerosol-forming substrate.
  10. 10. A smoking article according to any preceding claim further comprising a non-combustible substantially air impermeable barrier between the rear face of the combustible heat source and the aerosol-forming substrate.
    5
  11. 11. A smoking article according to any preceding claim further comprising one or more first air inlets around the periphery of the aerosol-forming substrate.
  12. 12. A smoking article according to any preceding claim wherein the aerosol-forming substrate abuts the rear face of the combustible heat source.
    :o
  13. 13. A smoking article according to any one of claims 1-12 wherein the aerosol-forming substrate is spaced apart from the rear face of the combustible heat source.
  14. 14. A smoking article according to claim 13 further comprising one or more second air inlets 25 between the rear face of the combustible heat source and the aerosol-forming substrate.
  15. 15. A smoking article according to any preceding claim further comprising one or more aerosol modifying agents downstream of the aerosol-forming substrate.
    2983500v1
    WO 2015/022321
    PCT/EP2014/067237
    - 1/2 -
    Figure 2
    WO 2015/022321
    PCT/EP2014/067237
    Temperature/Ό Temperature/ Ό
    - 2/2 -
    Time I seconds
    Figure 3a
    Time / seconds
    Figure 3b
AU2014307962A 2013-08-13 2014-08-12 Smoking article with single radially-separated heat-conducting element Ceased AU2014307962B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13180309 2013-08-13
EP13180309.0 2013-08-13
PCT/EP2014/067237 WO2015022321A1 (en) 2013-08-13 2014-08-12 Smoking article with single radially-separated heat-conducting element

Publications (2)

Publication Number Publication Date
AU2014307962A1 AU2014307962A1 (en) 2015-11-12
AU2014307962B2 true AU2014307962B2 (en) 2018-09-27

Family

ID=48985621

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2014307962A Ceased AU2014307962B2 (en) 2013-08-13 2014-08-12 Smoking article with single radially-separated heat-conducting element

Country Status (23)

Country Link
US (1) US20160174609A1 (en)
EP (1) EP3032974B1 (en)
JP (1) JP6757251B2 (en)
KR (1) KR102354033B1 (en)
CN (1) CN105407749B (en)
AR (1) AR097317A1 (en)
AU (1) AU2014307962B2 (en)
BR (1) BR112016001068B1 (en)
CA (1) CA2918188A1 (en)
ES (1) ES2671435T3 (en)
HK (1) HK1219845A1 (en)
IL (1) IL242343B (en)
MX (1) MX2016001960A (en)
MY (1) MY176645A (en)
PH (1) PH12015502505A1 (en)
PL (1) PL3032974T3 (en)
PT (1) PT3032974T (en)
RU (1) RU2671756C2 (en)
SG (1) SG11201601049YA (en)
TW (1) TWI654943B (en)
UA (1) UA117488C2 (en)
WO (1) WO2015022321A1 (en)
ZA (1) ZA201508084B (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10980273B2 (en) 2013-11-12 2021-04-20 VMR Products, LLC Vaporizer, charger and methods of use
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US20160366947A1 (en) 2013-12-23 2016-12-22 James Monsees Vaporizer apparatus
KR102130619B1 (en) 2013-12-23 2020-07-07 쥴 랩스, 인크. Vaporization device systems and methods
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
TWI702008B (en) 2014-08-13 2020-08-21 瑞士商菲利浦莫里斯製品股份有限公司 Heated aerosol-generating article and method of making aerosol-forming rods having predetermined values of cross-sectional porosity and a cross-sectional porosity distribution value for use as aerosol-forming substrates in heated aerosol-generating articles
WO2016050706A1 (en) 2014-09-29 2016-04-07 Philip Morris Products S.A. Slideable extinguisher
KR102574658B1 (en) 2014-12-05 2023-09-05 쥴 랩스, 인크. Calibrated dose control
WO2016156437A1 (en) 2015-03-31 2016-10-06 Philip Morris Products S.A. Smoking article comprising a wrapper with a plurality of projections provided on an inner surface thereof
DE102015205768A1 (en) 2015-03-31 2016-10-06 Hauni Maschinenbau Gmbh A method of making a first subunit of a HNB smoking article having a rod body and a cavity disposed thereon
TR201908063T4 (en) 2015-03-31 2019-06-21 Philip Morris Products Sa Smoking product having an ignitable heat source gripping means.
US20170055583A1 (en) * 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Apparatus for heating smokable material
US11924930B2 (en) 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US11744296B2 (en) 2015-12-10 2023-09-05 R. J. Reynolds Tobacco Company Smoking article
US10314334B2 (en) 2015-12-10 2019-06-11 R.J. Reynolds Tobacco Company Smoking article
WO2017139595A1 (en) 2016-02-11 2017-08-17 Pax Labs, Inc. Fillable vaporizer cartridge and method of filling
EP3419443A4 (en) 2016-02-11 2019-11-20 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
GB201612945D0 (en) * 2016-07-26 2016-09-07 British American Tobacco Investments Ltd Method of generating aerosol
CN107458055B (en) * 2017-08-31 2019-02-15 云南巴菰生物科技有限公司 A kind of purposes of the cooling combined material of aerosol and preparation method thereof with it
PL3453268T3 (en) 2017-09-07 2020-06-29 Philip Morris Products S.A. Aerosol-generating article with improved outermost wrapper
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
KR102027782B1 (en) * 2018-03-12 2019-10-10 지씨인터내셔널 주식회사 Cooling Filter for Ciga type Electronic Cigarette
KR102027791B1 (en) * 2018-03-12 2019-10-10 지씨인터내셔널 주식회사 Tobacco Stick for Ciga type Electronic Cigarette
WO2019177185A1 (en) * 2018-03-12 2019-09-19 지씨인터내셔널 주식회사 Cooling filter for heated tobacco product, and tobacco stick including same
US11723399B2 (en) 2018-07-13 2023-08-15 R.J. Reynolds Tobacco Company Smoking article with detachable cartridge
GB201903272D0 (en) * 2019-03-11 2019-04-24 Nicoventures Trading Ltd An article for use in an aerosol provision system
US11395510B2 (en) 2019-07-19 2022-07-26 R.J. Reynolds Tobacco Company Aerosol delivery device with rotatable enclosure for cartridge
US11330838B2 (en) 2019-07-19 2022-05-17 R. J. Reynolds Tobacco Company Holder for aerosol delivery device with detachable cartridge
US11589616B2 (en) 2020-04-29 2023-02-28 R.J. Reynolds Tobacco Company Aerosol delivery device with sliding and axially rotating locking mechanism
US11439185B2 (en) 2020-04-29 2022-09-13 R. J. Reynolds Tobacco Company Aerosol delivery device with sliding and transversely rotating locking mechanism
US11825872B2 (en) 2021-04-02 2023-11-28 R.J. Reynolds Tobacco Company Aerosol delivery device with protective sleeve
KR102639729B1 (en) * 2021-04-30 2024-02-23 주식회사 케이티앤지 Aerosol generating article and aerosol generating system
WO2024003397A1 (en) 2022-06-30 2024-01-04 Philip Morris Products S.A. Aerosol-generating article comprising airflow guiding element extending into tubular substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040551A (en) * 1988-11-01 1991-08-20 Catalytica, Inc. Optimizing the oxidation of carbon monoxide
US20090065011A1 (en) * 2007-08-10 2009-03-12 Philip Morris Usa Inc. Distillation-based smoking article
US20120067360A1 (en) * 2010-05-06 2012-03-22 Billy Tyrone Conner Segmented smoking article with substrate cavity

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5020548A (en) * 1985-08-26 1991-06-04 R. J. Reynolds Tobacco Company Smoking article with improved fuel element
US4793365A (en) * 1984-09-14 1988-12-27 R. J. Reynolds Tobacco Company Smoking article
CN1018329B (en) * 1984-12-21 1992-09-23 美国耳杰瑞诺兹烟草公司 Carbon fuel element and method for mfg same
US5105831A (en) * 1985-10-23 1992-04-21 R. J. Reynolds Tobacco Company Smoking article with conductive aerosol chamber
EP2070682A1 (en) 2007-12-13 2009-06-17 Philip Morris Products S.A. Process for the production of a cylindrical article
JP5015269B2 (en) * 2007-12-27 2012-08-29 日本たばこ産業株式会社 Non-combustible smoking article with carbonaceous heating source
US8617263B2 (en) * 2008-09-18 2013-12-31 R. J. Reynolds Tobacco Company Method for preparing fuel element for smoking article
EP2210509A1 (en) * 2008-12-30 2010-07-28 Philip Morris Products S.A. Apparatus and method for combining components for smoking articles
EP2893822B2 (en) * 2010-03-26 2022-08-03 Japan Tobacco Inc. Smoking article
TW201134408A (en) * 2010-04-07 2011-10-16 Japan Tobacco Inc Smoking article
WO2012090294A1 (en) * 2010-12-28 2012-07-05 日本たばこ産業株式会社 Smoking article provided with carbon heat source
UA112440C2 (en) 2011-06-02 2016-09-12 Філіп Морріс Продактс С.А. SMOKING SOURCE OF HEAT FOR SMOKING PRODUCTS
AU2012338902B2 (en) * 2011-11-15 2016-03-10 Philip Morris Products S.A. Smoking article comprising a combustible heat source with a rear barrier coating
CN203087527U (en) * 2012-06-20 2013-07-31 刘秋明 Electronic cigarette and electronic cigarette device thereof
CN203087526U (en) * 2012-11-13 2013-07-31 刘秋明 Electronic cigarette and atomization device thereof
CN103202539B (en) * 2013-04-24 2015-10-28 上海烟草集团有限责任公司 Cigarette heater and cigarette used thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040551A (en) * 1988-11-01 1991-08-20 Catalytica, Inc. Optimizing the oxidation of carbon monoxide
US20090065011A1 (en) * 2007-08-10 2009-03-12 Philip Morris Usa Inc. Distillation-based smoking article
US20120067360A1 (en) * 2010-05-06 2012-03-22 Billy Tyrone Conner Segmented smoking article with substrate cavity

Also Published As

Publication number Publication date
PT3032974T (en) 2018-10-16
CN105407749B (en) 2019-06-04
WO2015022321A1 (en) 2015-02-19
AR097317A1 (en) 2016-03-09
IL242343B (en) 2019-11-28
CA2918188A1 (en) 2015-02-19
EP3032974B1 (en) 2018-05-02
KR20160042417A (en) 2016-04-19
CN105407749A (en) 2016-03-16
SG11201601049YA (en) 2016-03-30
PH12015502505B1 (en) 2016-02-22
KR102354033B1 (en) 2022-01-24
JP6757251B2 (en) 2020-09-16
PH12015502505A1 (en) 2016-02-22
JP2016527894A (en) 2016-09-15
MY176645A (en) 2020-08-19
RU2671756C2 (en) 2018-11-06
HK1219845A1 (en) 2017-04-21
ES2671435T3 (en) 2018-06-06
BR112016001068B1 (en) 2021-08-03
ZA201508084B (en) 2016-12-21
TWI654943B (en) 2019-04-01
US20160174609A1 (en) 2016-06-23
TW201521608A (en) 2015-06-16
UA117488C2 (en) 2018-08-10
MX2016001960A (en) 2016-05-26
BR112016001068A2 (en) 2017-07-25
AU2014307962A1 (en) 2015-11-12
EP3032974A1 (en) 2016-06-22
PL3032974T3 (en) 2018-10-31
RU2016108814A (en) 2017-09-18

Similar Documents

Publication Publication Date Title
AU2014307962B2 (en) Smoking article with single radially-separated heat-conducting element
CA2920714C (en) Smoking article with dual heat-conducting elements and improved airflow
AU2014375238B2 (en) Smoking article comprising an insulated combustible heat source
AU2014314050B2 (en) Smoking article with non-overlapping, radially separated, dual heat-conducting elements

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired