AU2014271228B2 - Preparation process of a self-reinforced starch composite used to produce capsules - Google Patents

Preparation process of a self-reinforced starch composite used to produce capsules Download PDF

Info

Publication number
AU2014271228B2
AU2014271228B2 AU2014271228A AU2014271228A AU2014271228B2 AU 2014271228 B2 AU2014271228 B2 AU 2014271228B2 AU 2014271228 A AU2014271228 A AU 2014271228A AU 2014271228 A AU2014271228 A AU 2014271228A AU 2014271228 B2 AU2014271228 B2 AU 2014271228B2
Authority
AU
Australia
Prior art keywords
starch
reinforced
sliding block
nanocrystals
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2014271228A
Other versions
AU2014271228A1 (en
Inventor
Fangwen Shuai
Xiangfeng Wang
Jiawei Zhang
Nuozi ZHANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Er Kang Pharmaceutical Co Ltd
Original Assignee
Hunan Er Kang Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Er Kang Pharmaceutical Co Ltd filed Critical Hunan Er Kang Pharmaceutical Co Ltd
Priority to AU2014271228A priority Critical patent/AU2014271228B2/en
Assigned to HUNAN ER-KANG PHARMACEUTICAL CO., LTD. reassignment HUNAN ER-KANG PHARMACEUTICAL CO., LTD. Request for Assignment Assignors: Zhongshan Capsule Starch Material Technology Co., Ltd.
Publication of AU2014271228A1 publication Critical patent/AU2014271228A1/en
Application granted granted Critical
Publication of AU2014271228B2 publication Critical patent/AU2014271228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

13 14 1s 16 17 1819 20 21 22 23 1.2.3.4.5.6.7.8.9.10.11.1 The invention discloses a technical process to prepare a self-reinforced starch composite used to produce capsules. This composite is made by uniformly mixing the matrix phase and the particulate reinforced phase at a proper proportion, the former being one or a combination of the starches selected from the group consisting of oxidized starch, cationic starch and esterified starch ; and the latter, cross-linked starch or starch nanocrystals. This composite is processed into the forms of granules, films, or sheets by extrusion method and these different forms of the composite can be used to replace the gelatin as the raw material of capsules because its barrier property, processability, and mechanical properties are significantly improved.

Description

PREPARATION PROCESS OF A SELF-REINFORCED STARCH COMPOSITE USED TO
PRODUCE CAPSULES
FIELD OF INVENTION
[0001] This application is a divisional of Australian Patent Application No 2014266292 the entire contents of which are incorporated herein by reference.
[0001a] This invention relates to a preparation process of a self-reinforced starch composite used to prepare capsule products.
BACKGROUND OF THE INVENTION
[0002] Capsules are widely used for the products of medicines, dietary supplements and functional foods. Currently in the market, the main material used to manufacture capsule products is gelatin------a product made from animal bones and the skins through hydrolyzation process. Gelatin is a biological triplex structure macromolecule with good biological compatibility and physicochemical properties. The unique molecular structure of the gelatin, however, leads to some disadvantages in its application, one of which is that the gelatin capsule may become less soluble in water as gelatin is easy to crosslink with aldehyde compound, reducing sugar compound, and Vitamin C, resulting in capsule shell disintegration and delay in the dissolving-out of capsule content; another disadvantage is that it produces electrostatic charge accumulation in dry condition, which has negative influences on subsequent processing; finally, if the gelatin capsule is stored in low humidity environment for long time, it may become fragile and easily broken. In addition, because of the animal source component present in gelatin, it is not welcomed by certain groups of people with various faith and religious beliefs.
Therefore, it is necessary to research and develop new materials to replace gelatin—the traditional raw material of capsules.
[0003] As plant capsule is becoming one of the fastest growing products in pharmaceutical market, the plant materials like gellan gum, carrageenan, and xanthan gum have been used as to study the preparation of the substitute products of gelatin capsules. The starch, with good film-forming properties, is one of the most important food raw materials and has been widely used in the field of food and medicine . With the advantages of rich sources and low price, starch is regarded as a most promising substitute of the raw material of capsules.
[0004] Most of the technologies applied in the preparation of starch capsules reported nowadays are similar to the traditional dip forming process to manufacture gelatin capsules. As the gel properties of starch itself can hardly meet the requirements of manufacturing process of capsules, it is, in existing preparation technology, necessary to add certain gel to improve the processing performance in the preparation of starch-based capsules [0005] It has been a major research area to improve the mechanical properties and stability of starch-based material. In addition to starch modification, other processing technologies of polymer materials like blending and compounding are also widely used to manufacture starch-based material. In recent years, self-reinforced composites, with perfect material interface, simple chemical structure, and high value-added recycled waste, has attracted wide attention. For Medical biodegradable materials, it is extremely important to use the composite developed by single raw material, because any enhancing or modifying additive is likely to affect the biocompatibility or biodegradability of the main raw material; as a medicinal capsule, the less the amount of additive used, the better. This invention relates to a process for preparing self-reinforced starch composite that can be used to replace the gelatin as the raw material of capsules.
[0005a] Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present disclosure as it existed before the priority date of each claim of this application.
[0005b] Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
OBJECT OF THE INVENTION
[0006] It is a desirable feature of the present invention to provide a method for manufacturing self-reinforced starch composite to overcome the existing performance deficiency of starch-based capsule materials.
[0007] It is also a desirable feature of the invention to provide one type of self-reinforced starch composite, and use it to manufacture non-gelatin capsules, in an attempt to overcome the potential risk resulted from the use of gelatin-made capsules and make the capsule products suitable for vegetarians and people of different religious beliefs.
[0008] In one aspect, there is provided a process to prepare a self-reinforced starch composite, comprising: (A) uniformly mixing a matrix phase comprising one or a combination of the substances selected from the group consisting of oxidized starch, cationic starch, and esterified starch, and a particulate reinforced phase comprising cross-linked starch or starch nanocrystals wherein the mass ratio of the matrix phase to the particulate reinforced phase is 4: 0.01-1/ and (B) adding the uniform mixture prepared in step A into a double-screw extruder, and heating and kneading the mixture; inputting pure water in an amount of 0.5%-25% of the mixture by weight, thus forming processable thermoplastic material; and extruding the thermoplastic material into granules or sheets of self-reinforced material or further processing the thermoplastic material into a film.
[0008a] In another aspect there is provided use of a self-reinforced starch composite in the preparation of capsules prepared using the process as defined above.
[0008b] In another aspect there is provided a soft capsule made of the self-reinforced starch composite prepared using the process as defined above.
[0008c] In another aspect there is provided use of the soft capsule as defined above, in the fields of medicines, dietary supplements, or functional foods.
[0009] This invention applies a technology for preparing a self-reinforced starch composite that can be used to manufacture capsules. The invention includes the following technical approaches : [0010] Detailed Description of Each Step [0011] Step (a) Matrix phase: One or a combination of the substances selected from the group consisting of oxidized starch, cationic starch, and esterified starch; reinforced phase: cross-linked starch or starch nanocrystals . Uniformly mix the matrix phase and the reinforced phase at the mass ratio of 4:0.01-1.
[0012] Step (b) Add the uniform mixture from Step (a) into a double screw-type extruder , heat and knead it, and then add pure water at the amount of 10%-20% of the mixture (by weight) to make the mixture into processable thermoplastic material, which is then extruded into granules or sheets of self-reinforced material or further processed to films.
[0013] The matrix phase Step (a) is one or a combination of the substances selected from the group consisting of cationic starch, esterified starch, and oxidized starch from corn, potato, tapioca, wheat, mung bean, and rice, of which, esterified cassava starch is the priority choice. The esterification degree can be 0.001-0.05.
[0014] In addition, one type of reinforced matrix according to Step (a) is cross-linked starch, which is one or a combination of the crosslinked starches selected from the group consisting of crosslinked starches extracted from corn, potato, cassava, wheat, mung bean, and rice, .of which, cross-linked cassava starch is the priority choice. The cross-linking degree could be 5-45%.
[0015] Another type of reinforced matrix according to Step (a) is the starch nanocrystal, which is one or a combination of nanocrystals selected from the group consisting of nanocrystals from corn starch, potato starch, cassava starch, wheat starch, mung bean starch, and rice starch. Starch nanocrystals are prepared by acidolysis of starch using sulfuric acid , and the starch nanocrystals used in this invention are commercially available cassava starch nanocrystals at the particle size of 10-200nm .
[0016] The mass ratio of matrix phase (modified starch) and reinforced phase (cross-linked starch or starch nanocrystals) is as follows : [0017] Modified starch, 98.0%-99.5%; Cross-linked starch or starch nanocrystals, 0.5%-2%.
[0018] The pure water described in Step (b) is deionized or purified water .
[0019] The said self-reinforced starch composite contains neither gel nor plasticizers, such as polyhydric alcohol or polyhydric sugar alcohol.
[0020] The above mentioned composite material is composed of matrix phase, particle reinforced phase, and water. The priority choice for the said matrix phase is esterified cassava starch with esterification degree of 0.001-0.05, and for the particle reinforced phase, the starch nanocrystals at the particle diameter of 10-200 nm.
[0021] According to the schematic diagram (Figure 1), the double-screw extruder is composed of a number of individual cylinder blocks. In the Examples of this invention, there is a selection of 12 independent digit position of each cylinder block, numbered 1 to 12 from the left to the right. Each scrolling block can be electrically heated through a single control circuit or cooled by cooling water. The extruder is a tightly meshed double-screw type with equivalent rotation, and the screw diameter is 50-70mm, the length to diameter ratio, 36-46, and the compression ratio, 1:2-3. The self-reinforced composite product is fed at the end of the extruder through the nozzle, and a shaping die or casting device is connected to the rear end of the nozzle, Granules or sheets are directly prepared through extrusion at the pressure of 50-2000N/m2, and the thin film is prepared by tape casting at the casting roller's rotation speed of 1-20 rpm. The prepared self-reinforced composite granules, sheet or film can be directly taken out.
[0022] Install kneading discs of different structure at appropriate location on the screw, so to make the raw material mixture kneaded as evenly as possible. As shown in Figure, location 1, 13, and 18 are the powdering inlets; location 20 and 14, the injection nozzles, which are used to send fluid to the kneading space; location 15, 16, 19, 21, 23, are the kneading discs; location 17, and 22 are discharge pipes connected to a vacuum source.
[0023] Figure 1 is the temperature curve against each different sliding block in the screw conveyor indicated in the Figure. The adjustable accuracy is +/-1 °C . One thing needs to be addressed here is that the sliding block and the molten material are not necessarily at the same temperature, and the latter is influenced by the factors like screw speed.
[0024] In the Examples of the invention, the model# of the double-screw extruder is TEC52 with screw diameter 51mm, length to diameter ratio, 40, and compression ratio, 1:2. One thing that needs to be addressed here is that, by properly adjusting the parameters of the extruders, the combination of the matrix phase and the reinforced matrix according to this invention can be used in any single-screw or double screw extruder to make starch self-reinforced composite extrusion granules, films, or sheets.
[0025] In the examples of this invention, the screw rotation speed of TEC52 double-screw extruder is set to 300-550 rpm; material feeding speed, 80-250kg/ hour; temperature of block 1, room temperature. The composite material is added in along the moving edge and then introduced into sliding block 2 and 3 which are heated to 60-120 °C. In the block 3, the pure water is input at the speed of 20-50kg/ hour, the temperature is raised to 120-140 °C in the closed block 4-6; and in block 7, 5% moisture is taken out by vacuum pump and the temperature is adjusted to 140-160 °C; Connect vacuum to the block 11 to pump out 4% water.
[0026] The soft capsule shell manufactured by the self-reinforced starch composite described in this invention can be used for preparing medicines, dietary supplements and functional foods.
[0027] Figure 1: The schematic drawing of the extruder used in the invention
EXAMPLES
[0028] The Examples set forth below is illustrative and aims to further explain the invention. It cannot be viewed as limiting the scope of the present invention.
[0029] Example 1 [0030] Continuously put the following materials into the hopper: [0031] Cassava starch (esterification degree, 0.04): 200kg/ hours [0032] Cross-linking cassava starch (cross-linking degree, about 40%) : 50kg/hour [0033] Add pure water into the sliding block 3 at the speed of 50kg/ hours. Extrude out at the screw rotation speed of 350 RPM and the temperature of the sliding blocks is set as follows:
[0034] Sliding Block 1: 25 °C
[0035] Sliding Block 2-3: 100 °C
[0036] Sliding Block 4-6: 140 °C
[0037] Sliding Block 7-9: 160 °C
[0038] Sliding Block 10-12: 160 °C
[0039] Nozzle: 160 °C
[0040] Example 2 [0041] Continuously put the following metered materials into the hopper: [0042] Cassava starch (esterification degree, 0.04): 200kg/ hours [0043] Cassava starch nanocrystals (particle diameter, about 180nm): 50kg/h [0044] Add pure water into the sliding block 3 at the speed of 50kg/ hours. Extrude out at the screw rotation speed of 350 RPM and the temperature of the sliding blocks is set as follows:
[0045] Sliding Block 1: 25 °C
[0046] Sliding Block 2-3: 100 °C
[0047] Sliding Block 4-6: 140 °C
[0048] Sliding Block 7-9: 160 °C
[0049] Sliding Block 10-12: 160 °C
[0050] Nozzle: 160 °C
[0051] Example 3 [0052] Continuously put the following metered materials into the hopper : [0053] Cassava starch (esterification degree, 0.04): 200kg/ hours [0054] Cross-linking cassava starch (cross-linking degree of about 40%): lOkg/h [0055] Cassava starch nanocrystals (particle size about 180nm): 40 kg/h [0056] Add pure water into the sliding block 3 at the speed of 50kg/ hours. Extrude out at the screw rotation speed of 350 RPM and the temperature of the sliding blocks is set as follows:
[0057] Sliding Block 1: 25 °C
[0058] Sliding Block 2-3: 100 °C
[0059] Sliding Block 4-6: 140 °C
[0060] Sliding Block 7-9: 160 °C
[0061] Sliding Block 10-12: 160 °C
[0062] Nozzle: 160 °C
[0063] Example 4 [0064] Continuously put the following metered materials into the hopper : [0065] Cassava starch (esterification degree, 0.04): 200kg/ hours [0066] Cross-linking cassava starch (cross-linking degree of about 40%): 40kg/h [0067] Cassava starch nanocrystals (particle size about 180nm): 10 kg/h [0068] Add pure water into the sliding block 3 at the speed of 50kg/ hours. Extrude out at the screw rotation speed of 350 RPM and the temperature of the sliding blocks is set as follows:
[0069] Sliding Block 1: 25 °C
[0070] Sliding Block 2-3: 100 °C
[0071] Sliding Block 4-6: 140 °C
[0072] Sliding Block 7-9: 160 °C
[0073] Sliding Block 10-12: 160 °C
[0074] Nozzle: 160 °C
[0075] Example 5 [0076] Continuously put the following metered materials into the hopper : [0077] Cassava starch (esterification degree, 0.04): 200kg/ hours [0078] Cross-linking cassava starch (cross-linking degree, about 40%): 31.25kg/h [0079] Cassava starch nanocrystals (particle size about 180nm): 31.25kg/h [0080] Add pure water into the sliding block 3 at the speed of 50kg/ hours. Extrude out at the screw rotation speed of 350 RPM and the temperature of the sliding blocks is set as follows:
[0081] Sliding Block 1: 25 °C
[0082] Sliding Block 2-3: 100 °C
[0083] Sliding Block 4-6: 140 °C
[0084] Sliding Block 7-9: 160 °C
[0085] Sliding Block 10-12: 160 °C
[0086] Nozzle: 160 °C
[0087] Example 6 [0088] Continuously add the following materials into the hopper: [0089] Esterified cassava (esterification degree: 0.04): 200kg/h [0090] Cassava starch nanocrystals (particle size: 80nm): 50kg/h [0091] Extrudes out at the screw rotation speed of 350 RPM and the temperature of the sliding blocks is set as follows:
[0092] Sliding Block 1: 25 °C
[0093] Sliding Block 2-3: 100 °C
[0094] Sliding Block 4-6: 140 °C
[0095] Sliding Block 7-9: 160 °C
[0096] Sliding Block 10-12: 160 °C
[0097] Nozzle: 160 °C
[0098] Example 7 [0099] Continuously add the following metered materials into the hopper : [0100] Cassava starch (esterification degree, 0.04): 200kg/ hours [0101] Cassava starch nanocrystals (particle size about 180nm): 50kg/h [0102] Add pure water into the sliding block 3 at the speed of 50kg/ hours. Extrude out at the screw rotation speed of 350 RPM and the temperature of the sliding blocks is set as follows:
[0103] Sliding Block 1: 25 °C
[0104] Sliding Block 2-3: 120 °C
[0105] Sliding Block 4-6: 120 °C
[0106] Sliding Block 7-9: 120 °C
[0107] Sliding Block 10-12: 120 °C
[0108] Nozzle: 120 °C
[0109] Example 8 [0110] Continuously adds the following metered materials into the hopper : [0111] Cas sava starch (esterification degree, 0.04) : 250kg/ hours [0112] Add pure water into the sliding block 3 at the speed of 50kg/ hours. Extrude out at the screw rotation speed of 350 RPM and the temperature of the sliding blocks is set as follows:
[0113] Sliding Block 1: 25 °C
[0114] Sliding Block 2-3: 120 °C
[0115] Sliding Block 4-6: 140 °C
[0116] Sliding Block 7-9: 160 °C
[0117] Sliding Block 10-12: 160 °C
[0118] Nozzle: 160 °C
[0119] Example 9 [0120] Continuously add the following metered materials into the hopper : [0121] Cross-linking cassava starch (degree of cross-linking of about 40%): 250kg/h [0122] Add pure water into the sliding block 3 at the speed of 50kg/ hours. Extrude out at the screw rotation speed of 350 RPM and the temperature of the sliding blocks is set as follows:
[0123] Sliding Block 1: 25 °C
[0124] Sliding Block 2-3: 120 °C
[0125] Sliding Block 4-6: 140 °C
[0126] Sliding Block 7-9: 160 °C
[0127] Sliding Block 10-12: 160 °C
[0128] Nozzle: 160 °C
[0129] Example 10 [0130] Continuously adds the following metered materials into the hopper : [0131] Cassava starch nanocrystals (Particle size about 180nm): 250kg/h [0132] Add pure water into the sliding block 3 at the speed of 50kg/ hours. Extrude out at the screw rotation speed of 350 RPM and the temperature of the sliding blocks is set as follows:
[0133] Sliding Block 1: 25 °C
[0134] Sliding Block 2-3: 120 °C
[0135] Sliding Block 4-6: 140 °C
[0136] Sliding Block 7-9: 160 °C
[0137] Sliding Block 10-12: 160 °C
[0138] Nozzle: 160 °C
[0139] Example 11 [0140] Continuously adds the following metered materials into the hopper : [0141] Cassava starch nanocrystals 95%, gel (GUM) 3.45%, plasticizer (glycerol) 1.25%, anti caking agent [0142] (Stearic acid) 0.25%, emulsifier (sodium dodecyl sulfate) 0.05% uniform mixture. Feeding speed, 250kg/h [0143] Add pure water into the sliding block 3 at the speed of 50kg/ hours. Extrude out at the screw rotation speed of 350 RPM and the temperature of the sliding blocks is set as follows:
[0144] Sliding Block 1: 25 °C
[0145] Sliding Block 2-3: 120 °C
[0146] Sliding Block 4-6: 140 °C
[0147] Sliding Block 7-9: 160 °C
[0148] Sliding Block 10-12: 160 °C
[0149] Nozzle: 160 °C
[0150] Table 1: The performance parameter of the self-reinforced starch composite sheets manufactured according to Example 1-11.
[0151] The experimental results show that, each performance parameter of the sheet material made from independent esterified starch, cross-linked starch or starch nanocrystals can not satisfy the requirements of capsule production process, and when the right amount of gel and plasticizer is added, the performance of the sheet material will be improved significantly to meet the requirements. The self-reinforced starch composite processed by this invention is made by appropriate proportion of different materials with no gel agent and plasticizer added at all, and the final products of self-reinforced starch composite films or sheets therefrom can satisfy the requirements of capsule production process.
[0152] Table 1: Performance index of the sheet material manufactured using different methods
Table 1

Claims (13)

1. A process to prepare a self-reinforced starch composite, comprising: (A) uniformly mixing a matrix phase comprising one or a combination of the substances selected from the group consisting of oxidized starch, cationic starch, and esterified starch, and a particulate reinforced phase comprising cross-linked starch or starch nanocrystals wherein the mass ratio of the matrix phase to the particulate reinforced phase is 4: 0.01-1; and (B) adding the uniform mixture prepared in step A into a double-screw extruder, and heating and kneading the mixture; inputting pure water in an amount of 0.5%-25% of the mixture by weight, thus forming processable thermoplastic material; and extruding the thermoplastic material into granules or sheets of self-reinforced material or further processing the thermoplastic material into a film.
2. The process according to claim 1 wherein the matrix phase is one or a combination of substances selected from the group consisting of: oxidized starch, cationic starch, and esterified starch made from corn, potato, cassava, wheat, mung bean, and rice.
3. The process according to claim 1 or claim 2 wherein the particulate reinforced phase is a cross-linked starch or starch nanocrystals wherein the cross-linked starch is one or a combination of substances selected from the group consisting: of potato, cassava, wheat, mung bean starch, and rice, and the said starch nanocrystal is one or a combination of nanocrystals selected from the group consisting of nanocrystals from corn starch, potato starch, cassava starch, wheat starch, mung bean starch, and rice starch, wherein the particle size of the starch nanocrystals is 10-200 nm.
4. The process according to any of claims 1 to 3 wherein the pure water is deionized or purified water.
5. The process according to any of claims 1 to 4 wherein the modified starch content accounts for 98.0%-99.5% of the mass of combined matrix phase and reinforced phase; the cross-linked starch or starch nanocrystals accounts for 0.5%-2%, and pure water accounts for 10-20%.
6. The process according to any one of claims 1 to 5 wherein: (1) each part of the double screw extruder along the direction of the screw is heated to a different temperature; (2) granules and sheets are prepared through direct extrusion at an extrusion pressure of 50-2000N/m2; and (3) the film is prepared by tape casting using a casting roller, and the rotation speed of the casting roller is set to 1-20 rpm.
7. The process according to any of claims 1 to 6 wherein the heating is conducted at a temperature less than 160 °C.
8. The use of the self-reinforced starch composite in the preparation of capsules prepared using the process according to any of claims 1 to 7.
9. A soft capsule made of the self-reinforced starch composite prepared using the process according to any of claims 1 to 8.
10. Use of the soft capsule described in claim 9, in the fields of medicines, dietary supplements, or functional foods.
11. The soft capsule of claim 9 or claim 10, further comprising a medicine.
12. The soft capsule of any of claims 9 to 11, further comprising a dietary supplement.
13. The soft capsule of any of claims 9 to 12, further comprising a functional food.
AU2014271228A 2014-11-24 2014-12-01 Preparation process of a self-reinforced starch composite used to produce capsules Active AU2014271228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2014271228A AU2014271228B2 (en) 2014-11-24 2014-12-01 Preparation process of a self-reinforced starch composite used to produce capsules

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2014266292 2014-11-24
AU2014266292 2014-11-24
AU2014271228A AU2014271228B2 (en) 2014-11-24 2014-12-01 Preparation process of a self-reinforced starch composite used to produce capsules

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2014266292 Division 2014-11-24 2014-11-24

Publications (2)

Publication Number Publication Date
AU2014271228A1 AU2014271228A1 (en) 2016-06-09
AU2014271228B2 true AU2014271228B2 (en) 2016-10-20

Family

ID=56096727

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2014271228A Active AU2014271228B2 (en) 2014-11-24 2014-12-01 Preparation process of a self-reinforced starch composite used to produce capsules

Country Status (1)

Country Link
AU (1) AU2014271228B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245157A (en) * 2007-02-17 2008-08-20 长春大成特用玉米变性淀粉开发有限公司 Film-forming agent composition and starchiness vegetable adhesive containing the composition
CN101906220A (en) * 2010-07-16 2010-12-08 山东农业大学 Starch-based edible film and preparation method thereof
CN103554552A (en) * 2013-10-26 2014-02-05 中山市凯博思淀粉材料科技有限公司 Preparation process of starch self-reinforced composite material for capsule articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245157A (en) * 2007-02-17 2008-08-20 长春大成特用玉米变性淀粉开发有限公司 Film-forming agent composition and starchiness vegetable adhesive containing the composition
CN101906220A (en) * 2010-07-16 2010-12-08 山东农业大学 Starch-based edible film and preparation method thereof
CN103554552A (en) * 2013-10-26 2014-02-05 中山市凯博思淀粉材料科技有限公司 Preparation process of starch self-reinforced composite material for capsule articles

Also Published As

Publication number Publication date
AU2014271228A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
EP2876130B1 (en) Preparation process of a self-reinforced starch composite used to produce capsules
AU783089B2 (en) Method for producing a moulded body containing starch
JP3398731B2 (en) Process for producing biodegradable films from plant-based raw materials
Yu et al. Research progress of starch-based biodegradable materials: A review
EP2865375A1 (en) Coating and extruding method for producing starch softgel capsules
EP2865373A1 (en) Compounding and extruding method for producing starch softgel capsules
US6313105B1 (en) Thermoplastic mixtures containing dialdehyde starch and natural polymers
CN111057289A (en) LDPE/corn starch/TiO2Antibacterial composite membrane and preparation method thereof
CN203622907U (en) Pelletizing equipment for producing full-starch based capsule granule material
CN113750050A (en) Method for preparing florfenicol solid dispersion through hot-melt extrusion
AU2014271228B2 (en) Preparation process of a self-reinforced starch composite used to produce capsules
CA2872054C (en) Preparation process of a self-reinforced starch composite used to produce capsules
CN104151628B (en) A kind of packaging material for food and preparation method thereof
CN104403281B (en) A kind of medical fibre based high molecular material and its preparation method
CN104610582B (en) A kind of full starch plant glue and its preparation method and application
CN113842372A (en) Starch-based capsule coat and preparation method and application thereof
CN114224863A (en) Starch-based soft capsule and preparation method thereof
CN103768608B (en) A kind of plant capsule compositions of Sargassum colloid
CN108201532B (en) Preparation process of starch self-reinforced composite material for hard capsule articles
CN203619914U (en) Forming equipment used for producing full-starch-based soft capsules
CN113121969A (en) Degradable antibacterial plastic sheet and preparation
CA2872049C (en) Compounding and extruding method for producing starch softgel capsules
CN112694728A (en) Plastic bag with poly (p-dioxanone) as substrate and preparation method thereof
CN106349618A (en) Chitosan filled PVA supporting material for 3D printing
CN114163793A (en) Chitosan antibacterial outer surface modified polylactic acid extrusion wire and preparation method thereof

Legal Events

Date Code Title Description
PC1 Assignment before grant (sect. 113)

Owner name: HUNAN ER-KANG PHARMACEUTICAL CO., LTD.

Free format text: FORMER APPLICANT(S): ZHONGSHAN CAPSULE STARCH MATERIAL TECHNOLOGY CO., LTD.

FGA Letters patent sealed or granted (standard patent)