AU2014268180B2 - Surgical stapling apparatus - Google Patents

Surgical stapling apparatus Download PDF

Info

Publication number
AU2014268180B2
AU2014268180B2 AU2014268180A AU2014268180A AU2014268180B2 AU 2014268180 B2 AU2014268180 B2 AU 2014268180B2 AU 2014268180 A AU2014268180 A AU 2014268180A AU 2014268180 A AU2014268180 A AU 2014268180A AU 2014268180 B2 AU2014268180 B2 AU 2014268180B2
Authority
AU
Australia
Prior art keywords
assembly
anvil
cartridge
surgical
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2014268180A
Other versions
AU2014268180A1 (en
Inventor
Ernie Aranyi
Patrick Mozdzierz
Lee Olson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/414,931 priority Critical
Priority to AU2010200792A priority patent/AU2010200792B9/en
Application filed by Covidien LP filed Critical Covidien LP
Priority to AU2014268180A priority patent/AU2014268180B2/en
Publication of AU2014268180A1 publication Critical patent/AU2014268180A1/en
Priority claimed from AU2016269541A external-priority patent/AU2016269541B2/en
Publication of AU2014268180B2 publication Critical patent/AU2014268180B2/en
Application granted granted Critical
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Abstract

SURGICAL STAPLING APPARATUS A surgical stapling apparatus (10) comprising a tool assembly (17) having a cartridge assembly (18) including a plurality of surgical fasteners (84) therein, and an anvil assembly (20), at least one of the cartridge assembly (18) and anvil assembly (20) being movable in relation to the other of the cartridge assembly (18) and anvil assembly (20); a surgical buttress (13) releasably secured to a tissue contacting surface of at least one of the anvil plate (70) and the staple cartridge (82) by an anchor (S); a release assembly (74) associated with the at least one of the anvil assembly (20) and the cartridge assembly (18), the release assembly (74) having an anchoring configuration and a release configuration, the release assembly (74) gripping the anchor (S) while in the anchoring configuration; and a drive assembly (50) slidably translatable through the tool assembly (17) from a proximal position to a distal position, the drive assembly (50) actuating the release assembly to move the release assembly from the anchoring configuration to the release configuration thereby freeing the anchor (S) from the at least one of the anvil assembly (20) and the cartridge assembly (18).

Description

2014268180 26 Nov 2014 1

SURGICAL STAPLING APPARATUS

BACKGROUND

Technical Field

The present disclosure relates to a surgical apparatus having a buttress material incorporated therewith. More particularly, the present disclosure relates to a surgical stapling apparatus including a detachable surgical buttress and/or an endoscopic surgical stapling apparatus that includes a detachable surgical buttress.

Background of Related Art

Surgical devices for grasping or clamping tissue between opposing jaw structure and then joining tissue by surgical fasteners are well known in the art. In some instruments a knife is provided to cut the tissue which has been joined by the fasteners. The fasteners are typically in the form of surgical staples but two-part polymeric fasteners can also be utilized.

Instruments for this purpose can include two elongated jaw members which are respectively used to capture or clamp tissue. In certain surgical staplers, one of the jaw members carries a staple cartridge which houses a plurality of staples arranged in at least two lateral rows while the other jaw member has an anvil that defines a surface for forming the staple legs as the staples are driven from the staple cartridge. The stapling operation is effected by cam members that travel longitudinally through the staple cartridge, with the cam members acting upon staple pushers to sequentially eject the staples from the staple cartridge. A knife can travel between the staple rows to longitudinally cut and/or open the stapled tissue 2014268180 26 Nov 2014 2 setween the rows of staples. Such instruments are disclosed, for example, in U.S. Pat. No. 3,079,606 and U.S. Pat. No. 3,490,675.

Another stapler disclosed in U.S. Pat. No. 3,499,591 also applies a double row of staples on each side of the incision. This patent discloses a surgical stapler that has a disposable loading unit in which a cam member moves through an elongate guide path between iwo sets of staggered staple carrying grooves. Staple drive members are located within the grooves and are positioned in such a manner so as to be contacted by the longitudinally moving cam member to effect ejection of the staples from the staple cartridge of the disposable loading unit. Other examples of such staplers are disclosed in U.S. Pat. Nos. 4,429,695 and 5,065,929.

Each of the instruments described above is designed for use in surgical procedures in which surgeons have direct manual access to the operative site. However, in endoscopic or laparoscopic procedures, surgery is performed through a small incision or through a narrow cannula inserted through small entrance wounds in the skin. In order to address the specific needs of endoscopic and/or laparoscopic surgical procedures, endoscopic surgical stapling devices have been developed and are disclosed in, for example, U.S. Pat. No. 5,040,715 (Green, et al.); U.S. Pat. No. 5,307,976 (Olson, et al.); U.S. Pat. No. 5,312,023 (Green, et al.); U.S. Pat. No. 5,318,221 (Green, et al.); U.S. Pat. No. 5,326,013 (Green, et al.); U.S. Pat. No. 5,332,142 (Robinson, et al.); and U.S. Pat. No. 6,241,139 (Milliman et al.), the entire contents of each of which are hereby incorporated herein by reference.

Tyco Healthcare Group, LP, the assignee of the present application, has manufactured and marketed endoscopic stapling instruments, such as the Multifire ENDO GIA™. 30 and Multifire ENDO GIA™. 60 instruments, for a number of years. These instruments include a surgical stapling apparatus and a loading unit. Typically, the loading unit is attached to the apparatus immediately prior to surgery. After use, the loading unit can be removed from 2014268180 26 Nov 2014 3 the apparatus and a new loading unit can be fastened to the apparatus to perform additional stapling and/or cutting operations. These instruments have provided significant clinical benefits. Nonetheless, improvements to these instruments are still desirable.

When stapling relatively thin or fragile tissues, it is important to effectively seal the staple line against air or fluid leakage. Additionally, it is often necessary to reinforce the staple line against the tissue to prevent tears in the tissue or pulling of the staples through the tissue. One method of preventing tears or pull through involves the placement of a biocompatible fabric reinforcing material, or “buttress” material, between the staple and the underlying tissue. In this method, a layer of buttress material is placed against the tissue and the tissue is stapled in a conventional manner. In another method, the buttress material is positioned on the stapling instrument itself prior to stapling the tissue. An exemplary example of this is disclosed in U.S. Patent No. 5,542,594 to McKean et al., the entire content of which is incorporated herein by reference. In McKean et al., a tube of buttress material is slipped over the jaw of the stapler. The stapler is then actuated to staple the subject tissue and secure the buttress material between the tissue and staple line to reinforce the tissue and staple line.

OBJECT OF THE INVENTION

It is an object of the present invention to at least substantially overcome or at least ameliorate one or more of the disadvantages of the prior art, or to at least provide a useful alternative.

SUMMARY OF THE INVENTION

The present invention provides a surgical stapling apparatus, comprising: a tool assembly having a cartridge assembly including a plurality of surgical fasteners therein, and an anvil assembly, at least one of the cartridge assembly and anvil assembly being movable in relation to the other of the cartridge assembly and anvil assembly; a surgical buttress releasably secured to a tissue contacting surface of at least one of the anvil plate and the staple cartridge by an anchor; a release assembly associated with the at least one of the anvil assembly and the cartridge assembly, the release assembly having an anchoring configuration and a release configuration, the release assembly gripping the anchor while in the anchoring configuration; and 2014268180 26 Nov 2014 4 a drive assembly slidably translatable through the tool assembly from a proximal position to a distal position, the drive assembly actuating the release assembly to move the release assembly from the anchoring configuration to the release configuration thereby freeing the anchor from the at least one of the anvil assembly and the cartridge assembly.

There is disclosed a surgical stapling apparatus, comprising a housing; a handle supported by the housing; an elongated body extending distally from the housing; a tool assembly at the distal end of the elongated body, the tool assembly having a cartridge assembly including a staple cartridge having a plurality of surgical fasteners therein, and an anvil assembly, at least one of the cartridge assembly and anvil assembly being movable in relation to the other of the cartridge assembly and anvil assembly; a surgical buttress releasably secured to a tissue contacting surface of at least one of the anvil plate and the staple cartridge by an anchor, at least one of the anvil assembly and the cartridge assembly includes a constricting, open-ended, slot configured to grip an end of the anchor; a release assembly associated with the at least one of the anvil assembly and the cartridge assembly; and a drive assembly slidably translatable through the tool assembly from a proximal position to a distal position, the drive assembly actuating the release assembly to push the end of the anchor out of the slot and to free the surgical buttress from the at least one of the anvil assembly and cartridge assembly, wherein the at least one of the anvil assembly and the cartridge assembly define a side slot for receiving an end of the at least one anchor therein, and wherein the release assembly has a first bar and a second bar, the drive assembly actuating the first bar, the first bar moving the second bar into the slot.

There is also disclosed a surgical stapling apparatus including a housing; a handle supported by the housing; an elongated body extending distally from the housing; and a tool assembly at the distal end of the elongated body. The tool assembly has a cartridge assembly including a cartridge having a plurality of surgical fasteners therein, and an anvil assembly, wherein at least one of the cartridge assembly and anvil assembly being movable in relation to the other of the cartridge assembly and anvil assembly, wherein the anvil assembly includes an anvil plate, and wherein each of the anvil plate and the staple cartridge define an elongate longitudinal slot. The surgical stapling apparatus further 2014268180 26 Nov 2014 5 includes a surgical buttress releasably secured to a tissue contacting surface of at least one of the anvil plate and the staple cartridge, wherein each surgical buttress is secured to the at least one of the anvil assembly and the cartridge assembly by at least one anchor; a release assembly associated with the at least one of the anvil assembly and the cartridge assembly; and a drive assembly slidably translatable through the tool assembly from a proximal position to a distal position, wherein the drive assembly actuates the release assembly to thereby release the anchor and to free the surgical buttress from the at least one of the anvil assembly and cartridge assembly.

The release assembly may grip the at least one anchor prior to an actuation of the drive assembly.

The at least one of the anvil assembly and the cartridge assembly may define a side slot for receiving an end of the at least one anchor therein.

The release assembly may include a first bar extending across the longitudinal slot prior to an actuation of the drive assembly; and a second bar, connected to and actuatable by the first bar, having an end extending at least partially into the side slot, prior to an actuation of the drive assembly.

In use, as the drive assembly is advanced to the distal position, the drive assembly may actuate the first bar of the release assembly which in turn may actuate the second bar of the release assembly to release the anchor disposed within the side slot.

Each of the anvil assembly and the cartridge assembly may include a release assembly. Each of the anvil assembly and the cartridge assembly may define a side slot for receiving the anchor of each surgical buttress. 2014268180 26 Nov 2014 6

Each release assembly may include a first bar extending across the longitudinal slot prior to an actuation of the drive assembly; and a second bar, connected to and actuatable by the first bar, having an end extending at least partially into the side slot, prior to an actuation of the drive assembly. In use, as the drive assembly is advanced to the distal position, the drive assembly may actuate the first bar of each release assembly which in turn may actuate the second bar of each release assembly to release the anchor disposed within the each side slot.

At least one of the anvil assembly and the cartridge assembly may include a constricting, open-ended, side slot configured to grip an end of the anchor, and wherein the release assembly may push the end of the anchor out of the side slot, upon a distal advancement of the drive assembly.

The release assembly may include a pusher that is in operative association with the side slot retaining the end of the anchor. The pusher may be actuatable by a distally advancing drive member to push the end of the anchor out of the side slot.

The pusher of the release assembly may be one of pivotally connected to and slidably supported in at least one of the anvil assembly and the cartridge assembly.

The anchor may be a suture engaging the surgical buttress and the at least one of the cartridge assembly and the anvil assembly. The anchor may be an extension of the surgical buttress and engages the at least one of the cartridge assembly and the anvil assembly.

There is also disclosed a loading unit for use with a surgical stapling apparatus including a tool assembly having a cartridge assembly including a cartridge having a plurality of surgical fasteners therein, and an anvil assembly, at least one of the cartridge assembly and the anvil assembly being movable in 2014268180 26 Nov 2014 7 relation to the other of the cartridge assembly and anvil assembly, wherein the anvil assembly includes an anvil plate and, wherein each of the anvil plate and the staple cartridge define an elongate longitudinal slot; a surgical buttress releasably secured to a tissue contacting surface of at least one of the anvil plate and the staple cartridge, wherein each surgical buttress is secured to the at least one of the anvil assembly and the cartridge assembly by at least one anchor; a release assembly associated with the at least one of the anvil assembly and the cartridge assembly; and a drive assembly slidably translatable through the tool assembly from a proximal position to a distal position, the drive assembly actuating the release assembly to thereby release the anchor to free the surgical buttress from the at least one of the anvil assembly and cartridge assembly.

The release assembly may grip the at least one anchor prior to an actuation of the drive assembly.

At least one of the anvil assembly and the cartridge assembly may define a side slot for receiving an end of the at least one anchor therein.

The release assembly may include a first bar extending across the longitudinal slot prior to an actuation of the drive assembly; and a second bar, connected to and actuatable by the first bar, having an end extending at least partially into the side slot, prior to an actuation of the drive assembly.

In use, as the drive assembly is advanced to the distal position, drive assembly actuates the first bar of the release assembly which in turn actuates the second bar of the release assembly to release the grip on the end of the at least one anchor disposed within the side slot. 2014268180 26 Nov 2014 8

Each of the anvil assembly and the cartridge assembly may include a release assembly.

At least one of the anvil assembly and the cartridge assembly may include a constricting, open-ended, side slot configured to grip an end of the anchor disposed therein, and wherein the release assembly may push the end of the anchor out of the side slot, upon a distal advancement of the drive assembly.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention will be described hereinafter, by way of examples only, with reference to the accompanying drawings. FIG. 1 is a perspective view of a surgical stapling apparatus according to an embodiment of the present disclosure; FIG. 2 is a top, perspective view, with parts separated, of a distal end of a loading unit of the surgical stapling apparatus of FIG. 1; FIG. 2A is an enlarged perspective view of a distal end of an anvil assembly of the loading unit illustrating a surgical anvil buttress operatively secured to a tissue contacting surface thereof; FIG. 2B is an enlarged perspective view of a cartridge assembly of the loading unit illustrating a surgical cartridge buttress secured to a tissue contacting surface thereof; 2014268180 26 Nov 2014 g FIG. 3 is a top, perspective view of a distal end of an anvil assembly of the loading unit including a suture release assembly according to an embodiment of the present disclosure, shown in an open configuration; FIG. 4 is a top, perspective view of the anvil assembly of FIG. 3, illustrating the parts of the suture release assembly thereof separated; FIG. 5 is a bottom, perspective view of the anvil assembly of FIGS. 3 and 4; FIG. 6 is a top, plan view of the anvil assembly of FIGS. 3-5, illustrating the suture release assembly thereof in the closed configuration; FIG. 7 is a top, plan view of the anvil assembly of FIG. 6, with a retainer removed therefrom; FIG. 8 is a top, plan view of the anvil assembly of FIGS. 3-7, illustrating the suture release assembly thereof in the open configuration; FIG. 9 is a top, plan view of the anvil assembly of FIG. 8, with a retainer removed therefrom; FIG. 10 is a top, perspective view of a distal end of a cartridge assembly of the DLU including a suture release assembly according to an embodiment of the present disclosure; FIG. 11 is a top, perspective view of the cartridge assembly of FIG. 10, illustrating the parts of the suture release assembly thereof separated; FIG. 12 is a bottom, perspective view of a distal end of the cartridge assembly of FIGS. 10 and 11; 2014268180 26 Nov 2014 10 FIG. 13 is a top, plan view of the cartridge assembly of FIGS. 10-12, illustrating the suture release assembly thereof in the closed configuration; FIG. 14 is a top, plan view of the cartridge assembly of FIGS. 10-13, illustrating the suture release assembly thereof in the open configuration; FIG. 15 is a perspective view of a distal end of a loading unit including suture release assemblies according to another embodiment of the present disclosure; FIG. 16 is an enlarged view of the indicated area of detail of FIG. 15; FIG. 17 is a top, perspective view of a distal end of an anvil assembly (with an anvil cover removed), illustrating a suture release assembly thereof in an actuated configuration; FIG. 18 is a top, perspective view of the distal end of the anvil assembly of FIG. 17, illustrating the parts of the suture release assembly thereof separated; FIG. 19 is a top, plan view of the anvil assembly of FIGS. 17 and 18, illustrating the suture release assembly thereof in an unactuated configuration; FIG. 20 is a top, plan view of the anvil assembly of FIGS. 17-19, illustrating the suture release assembly thereof in an actuated configuration; FIG. 21 is a bottom, perspective view of a distal end of a cartridge assembly of the DLU of FIG. 15, illustrating a suture release assembly thereof separated therefrom; FIG. 22 is a top, perspective view of the suture release assembly of FIG. 21; FIG. 23 is a bottom, perspective view, with parts separated, of the suture release assembly of FIGS. 21 and 22; 2014268180 26 Nov 2014 11 FIG. 24 is a top, plan view of the suture release assembly of FIGS. 21-23, illustrating the suture release assembly thereof in an unactuated configuration; FIG. 25 is a top, plan view of the suture release assembly of FIGS. 21-24, illustrating the suture release assembly thereof in an actuated configuration; FIG. 26 is a top, plan view of a distal end of an anvil assembly of a loading unit including a suture release assembly according to yet another embodiment of the present disclosure; FIG. 27 is a top, perspective view, with parts separated, of the distal end of the anvil assembly of FIG. 26; FIG. 28 is a top, plan view of the distal end of the anvil assembly of FIGS. 26 and 27, illustrating the suture release assembly thereof in an unactuated configuration; FIG. 29 is a top, plan view of the distal end of the anvil assembly of FIGS. 26-28, illustrating the suture release assembly thereof in an actuated configuration; FIG. 30 is a top, plan view of a distal end of an anvil assembly of a loading unit including a suture release assembly according to still another embodiment of the present disclosure, illustrating the suture release assembly thereof in an unactuated configuration; FIG. 31 is a top, plan view of the distal end of the anvil assembly of FIG. 30, illustrating the suture release assembly thereof in an actuated configuration; FIG. 32 is a top, perspective view of a distal end of a cartridge assembly of a loading unit including a suture release assembly according to a further embodiment of the present disclosure; 2014268180 26 Nov 2014 12 FIG. 33 is a top, perspective view of the suture release assembly of FIG. 32; FIG. 34 is a bottom, perspective view of the suture release assembly of FIGS. 32 and 33; FIG. 35 is a bottom, perspective view, with parts separated, of the suture release assembly of FIGS. 32-34; FIG. 36 is a top, perspective view, with parts separated, of the suture release assembly of FIGS. 32-35; FIG. 37 is a top, plan view of the suture release assembly of FIGS. 32-36, illustrating the suture release assembly in an unactuated configuration; and FIG. 38 is a top, plan view of the suture release assembly of FIGS. 32-37, illustrating the suture release assembly in an actuated configuration.

DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed surgical stapling apparatus and loading unit will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views.

In the drawings and in the description that follows, the term “proximal”, as is traditional, will refer to the end of the stapling apparatus which is closest to the operator, while the term “distal” will refer to the end of the apparatus which is furthest from the operator. FIG. 1 shows a surgical apparatus, e.g., surgical stapling apparatus, generally referred to as 10. In the interest of brevity, this disclosure will focus primarily on to the tool assembly of the surgical stapling apparatus 10. A detailed discussion of the remaining 2014268180 26 Nov 2014 13 components and method of use of surgical stapling apparatus 10 is disclosed in U.S. Pat. No. 6,241,139, the disclosure of which is hereby incorporated by reference herein.

Surgical stapling apparatus 10 is an endoscopic apparatus and includes a handle assembly 12 and an elongated body 14 extending from handle assembly 12. A loading unit 16 is releasably secured to the distal end of elongated body 14. Furthermore, the present disclosure contemplates surgical stapling apparatus that have a replaceable cartridge that is received in the jaws of the apparatus.

Loading unit 16 includes a tool assembly 17 having a cartridge assembly 18 housing a plurality of surgical fasteners or staples 84 (see FIG. 2) and an anvil assembly 20 secured in juxtaposed relation relative to cartridge assembly 18, wherein anvil assembly 20 and cartridge assembly 18 are moveable to or away from one another to close or open tool assembly 17. As shown herein, loading unit 16 is configured to apply six (6) linear rows of staples, in loading units measuring from about 30 mm to about 60 mm in length. Loading units for applying any number of rows of staples, having staple pockets arranged in various patterns and/or loading units and end effectors having any other lengths, e.g., 45 mm, are also envisioned. Flandle assembly 12 includes a stationary handle member 22, a movable handle member 24, and a barrel portion 26. A rotatable member 28 is mounted on the forward end of barrel portion 26 to facilitate rotation of elongated body 14 and attached loading unit 16 with respect to handle assembly 12. An articulation lever 30 is also mounted on the forward end of barrel portion 26 adjacent rotatable member 28 to facilitate articulation of tool assembly 17. Preferably, a pair of knobs 32 are movably positioned along barrel portion 26. Knobs 32 are advanced distally to approximate or close cartridge and/or anvil assembly 18, 20, and retracted proximally to unapproximate or open cartridge and/or anvil assembly 18, 20. 14 2014268180 26 Nov 2014

Loading unit 16 is desirably selectively removably couplable to elongated body 14. Loading unit 16 includes a housing portion 36 having a proximal end adapted to releasably engage the distal end of elongated body 14. A mounting assembly 38 is pivotally secured at “P” to the distal end of housing portion 36, and is configured to receive the proximal end of tool assembly 17 such that pivotal movement of tool assembly 17 about an axis at “P”, perpendicular :o the longitudinal axis of housing portion 36, effects articulation of tool assembly 17.

With general reference to FIG. 2, loading unit 16 includes a mounting assembly 40. Mounting assembly 40 includes an upper and a lower mounting portion 40a, 40b, respectively. An axial drive assembly 50 is operatively associated with and slidably disposed between cartridge and/or anvil assembly 18, 20. With reference to FIG. 2, axial drive assembly 50 includes an elongated drive beam 52 having a distal end 54 and a proximal end 56. Drive beam 52 may be constructed from a single sheet of material or, preferably, multiple stacked sheets.

Proximal end 56 of drive beam 52 of drive assembly 50 includes a pair of resilient engagement fingers that receive a pusher. The pusher is dimensioned and configured to mountingly engage a drive member, e.g., a drive rod or control rod (not shown) when the proximal end of loading unit 16 is engaged with elongated body 14 of surgical stapling apparatus 10. The control rod functions to impart axial movement of drive assembly 50 from handle assembly 12.

Distal end 54 of drive beam 52 of drive assembly 50 includes a head 60 with a laterally extending upper portion 64a, a laterally extending lower portion 64b, and a central wall portion 62. A distal edge of central wall portion 62 defines a knife blade or the like 66.

As seen in FIG. 2, anvil assembly 20 includes an anvil plate 70 having a plurality of staple deforming pockets/cavities (not shown) and a cover plate 72 secured to a top surface 2014268180 26 Nov 2014 15 of anvil plate 70, having a cavity (not shown) is defined therebetween. The cavity defined between the anvil plate 70 and cover plate 72 is dimensioned to receive the upper portion 64a of head 60 therein. A longitudinal slot 70b extends through anvil plate 70 to facilitate passage of central wall portion 62 of head 60 therethrough. Additionally, cover plate 72 defines a pair of opposed recesses 72a formed therein which align with the proximal pair of recesses 70d formed in anvil plate 70 when cover plate 72 is assembled with anvil plate 70.

With continued reference to FIG. 2, anvil plate 70 defines a proximal pair of recesses 70d formed near a proximal end of anvil plate 70 and disposed, one each, on opposed sides of longitudinal slot 70b. Anvil plate 70 defines a distal pair of recesses 70e formed near a distal end of anvil plate 70 and disposed, one each, on opposed sides of longitudinal slot 70b. In one embodiment, at least one of the recesses of each of the proximal pair of recesses 70d and the distal pair of recesses 70e is preferably non-circular and constricting, or has a reduced width dimension, so as to frictionally engage and/or pinch an anchor “S”.

As used herein the term anchor is understood to include and is not limited to sutures, threads, tethers, straps, bands, lines, wires, cables, fasteners, tacks or any other material suitable for the intended purpose disclosed herein. In certain embodiments, the anchor is an extension of the staple line reinforcement material discussed below. The anchor may comprise an integral part of the staple line reinforcement material, or may be formed from the same or a similar material and attached to the staple line reinforcement material.

As seen in FIGS. 2 and 2A, anvil assembly 20 further includes a surgical anvil buttress “B1”, pledget or the like operatively secured to a lower surface or tissue contacting surface of anvil plate 70, by an anchor “S”, to overlie at least some of anvil pockets 70a and/or at least a portion of a length of longitudinal slot 70b. In particular, an anchor “S” is wrapped over a proximal portion of surgical anvil buttress “B1” and cinched in each of the proximal pair of 2014268180 26 Nov 2014 16 recesses 70d and an anchor “S” is wrapped around a distal portion of the surgical anvil buttress “ΒΓ and cinched in each of the distal pair of recesses 70e.

Surgical anvil buttress “B1” includes a proximal pair of notches formed in side edges aligned with the proximal pair of recesses 70d of anvil plate 70, a distal pair of notches formed in side edges thereof aligned with the distal pair of recesses 70e of anvil plate 70, and a proximal notch formed in a proximal edge thereof aligned with longitudinal slot 70b when surgical anvil buttress “B1” is secured to anvil assembly 20. Surgical anvil buttress “B1” further includes a tongue or tab extending from a distal edge thereof to facilitate with the attachment of surgical anvil buttress “B1” to anvil assembly 20 during the assembly process. It is contemplated that the tongue is removed from surgical anvil buttress “B1” following securement of surgical anvil buttress “ΒΓ to anvil assembly 20 and prior to packaging or shipment.

As seen in FIGS. 2-9, anvil assembly 20 further includes a release assembly 74 disposed between anvil plate 70 and cover plate 72 at a location in operative registration with the distal pair of recesses 70e. Release assembly 74 includes a guide plate 75 defining an arcuate slot 75a formed therethrough. Slot 75a is configured and dimensioned to receive a tool (not shown) therethrough. The function and purpose of slot 75a will be discussed in greater detail below.

Release assembly 74 further includes a lock or anchor bar 76 pivotally connected to anvil plate 70 (as seen in FIGS. 4 and 5) and/or optionally cover plate 72 (shown in FIG. 2). Anchor bar 76 includes a body portion 76a defining an elongate channel or slot 76b therein and a finger 76c extending from an edge thereof. Finger 76c is in operative registration with one of the distal pair of recesses 70e, preferably, the one of the distal pair of recesses having the relatively larger width dimension. 2014268180 26 Nov 2014 17

Suture release assembly 74 further includes an anchor bar actuation member 77 pivotally connected to anvil plate 70 (as seen in FIGS. 4 and 5) and/or optionally cover plate 72 (shown in FIG. 2). Actuation member 77 includes an eccentric cam 77a defining a central axis of rotation about which actuation member is permitted to rotate. Actuation member 77 includes a nub or boss 77b extending from a surface of eccentric cam 77a in a direction substantially parallel to and offset a radial distance from the central axis of rotation of eccentric cam 77a. Boss 77b is slidably and rotatably disposed in elongate slot 76b of anchor bar 76. Actuation member 77 further includes a release bar 77c extending substantially tangentially from eccentric cam 77a from a side substantially opposite to boss 77b. Release bar 77c defines a pin 77d formed thereon which is in registration with the arcuate slot 75a of guide plate 75. In operation, as eccentric cam 77a is rotated, pin 77d of release bar 77c follows along the path of arcuate slot 75a of guide plate 75.

As seen in FIGS. 6 and 7, suture release assembly 74 includes a locking or anchoring configuration wherein finger 76c of anchor bar 76 extends into or overlies the respective one of the pair of distal recesses 70e in operative registration therewith, release bar 77c of actuation member 77 extends across knife slot 70b of anvil plate 70, and pin 77d of release bar 77c is disposed at or near a first end of arcuate slot 75a of guide plate 75. It is contemplated that suture release assembly 74 may include a friction fit or snap fit feature for maintaining and/or retaining suture release assembly 74 in the locking or anchoring configuration at all times following the manufacturing/assembly process and prior to a complete firing of surgical stapling apparatus 10.

As seen in FIGS. 8 and 9, suture release assembly 74 includes an open or release configuration wherein finger 76c of anchor bar 76 does not extend into or overlie the respective one of the pair of distal recesses 70e in operative registration therewith, release bar 2014268180 26 Nov 2014 18 77c of actuation member 77 does not extend across knife slot 70b of anvil plate 70, and pin 77d of release bar 77c is disposed at or near a second end of arcuate slot 75a of guide plate 75.

Suture release assembly 74 is used by a manufacturer during the assembly process of surgical stapling apparatus 10 to secure, with a surgical suture or tether, a surgical anvil buttress “B” to a tissue contacting surface of the anvil plate 70, and by the end user of surgical stapling apparatus 10 to automatically release or free the surgical anvil buttress “B” from the tissue contacting surface of the anvil plate 70 upon a complete firing of the surgical stapling apparatus 10.

With reference to FIGS. 6-9, during the manufacturing process, with suture release assembly 74 in the open or release configuration (FIG. 8 and 9), a surgical anvil buttress “B” is laid over the tissue contacting surface of anvil plate 70. Then, a first end of a surgical suture “S1” is inserted into one of the pair of distal recesses 70e and a second end of surgical suture “S1” is extended across the surgical anvil buttress “ΒΓ (see FIG. 2) and inserted into the other of the pair of distal recesses 70e. It is contemplated that the first end of surgical suture “S1” may include a knot, stop or the like (not shown) sized so as to not pass through the narrower recess of the distal pair of recesses 70e.

With the second end of the surgical suture “S1” disposed in the pair of distal recesses 70e, and with the surgical suture “S1” pulled taught across the surgical anvil buttress “B”, a tool (not shown) is inserted through arcuate slot 75a of guide plate 75 and engaged with an opening provided in the pin 77d of release bar 77c. With reference to FIGS. 6 and 7, the tool is then manipulated to move through or along arcuate slot 75a of guide plate 75, thereby actuating or moving release bar 77c and rotating eccentric cam 77a. As eccentric cam 77a is rotated, boss 77b is rotated around the pivot axis of eccentric cam 77a and acts on the walls of elongate slot 76b of anchor bar 76 thereby causing anchor bar 76 to pivot. As anchor bar 76 is 2014268180 26 Nov 2014 19 pivoted, finger 76c thereof is caused to extend into or overlies one of the distal recesses 70e and to pinch the second end of the surgical suture disposed therewithin. Meanwhile, release bar 77c has been moved to a position extending across knife slot 70b of anvil plate 70. Suture release assembly 74 is now in the locking or anchoring configuration, as described above. The distal recess 70e that cooperates with the finger 76c is desirably relatively wide so as to allow the suture “S1” to easily pass into and out of the recess 70e when the 76 anchor bar is away from the recess 70e. The other distal recess 70e, arranged on the opposite lateral side of the anvil plate 70, may be the same size, or may be small enough to cinch the suture “S1” and hold the suture in place to facilitate assembly.

In operation, with surgical anvil buttress “B1” secured against the lower surface of anvil plate 70, during firing of surgical stapling apparatus 10, as drive assembly 50 is advanced (i.e., moved from a proximal-most position to a distal-most position), knife blade 66 slices through a central section of the proximal suture “S2”, thereby freeing the proximal end of the surgical anvil buttress “B1” from anvil assembly 20. During use, as the firing stroke of surgical stapling apparatus 10 is nearing completion and as drive assembly 50 approaches a distal end of knife slot 70b of anvil plate 70, as seen in FIG. 9, drive assembly 50 contacts release bar 77c, urging release bar 77c and, in turn, eccentric cam 77a to rotate about the pivot axis thereof. As eccentric cam 77a is rotated, boss 77b is rotated around the pivot axis of eccentric cam 77a and acts on the walls of elongate slot 76b of anchor bar 76 thereby causing anchor bar 76 to pivot. As anchor bar 76 is pivoted, finger 76c thereof is caused to move away from the relatively wider distal recess 70e and to release the second end of the surgical suture “S” disposed therewithin. With the second end of surgical suture “S” released or free, the distal end of the surgical anvil buttress “B1” is free to separate from the tissue contacting surface of anvil plate 70. 20 2014268180 26 Nov 2014

As seen in FIGS. 1 and 2, cartridge assembly 18 includes a carrier 80 defining an elongated support channel 80a. Elongated support channel 80a of carrier 80 receives a staple cartridge 82 therein. Corresponding tabs and slots formed along staple cartridge 82 and carrier 80 function to retain staple cartridge 82 within carrier 80. A pair of support struts formed on and extending from staple cartridge 82 are positioned to rest on side walls of carrier 80 to further stabilize staple cartridge 82 within support channel 80a of carrier 80. Staple cartridge 82 includes retention slots 82a formed therein for receiving a plurality of fasteners 84 and pushers 86. A plurality of spaced apart longitudinal slots 82b extend through staple cartridge 82 to accommodate upstanding cam wedges 90a of an actuation sled 90. The actuation sled 90 includes a central upstanding wedge or wall 90b. Central wall 90b defines a distal notch or shoulder 90c formed therein (See FIG. 2). A central longitudinal slot 82c is formed in and extends along the length of staple cartridge 82 to facilitate passage of central wall portion 62 of head 60 therethrough. During operation of surgical stapler 10, actuation sled 90 translates through longitudinal slots 82b of staple cartridge 82 to advance cam wedges 90a into sequential contact with pushers 92, to cause pushers 92 to translate vertically within retention slots 82a and urge fasteners 84 (e.g., staples) from slots 82a into the staple forming cavities 70a of anvil plate 70 of anvil assembly 20.

With continued reference to FIGS. 1 and 2, staple cartridge 82 defines a proximal pair of recesses 82e formed near a proximal end thereof and disposed, one each, on opposed sides of longitudinal slot 82c. Staple cartridge 82 further defines a distal pair of recesses 82f formed near a distal end thereof and disposed, one each, on opposed sides of longitudinal slot 82c. In one embodiment, at least one of the recesses of each of the proximal pair of recesses 82e and the distal pair of recesses 82f is preferably non-circular and constricting or otherwise arranged so as to frictionally engage and/or pinch an anchor “S”. 2014268180 26 Nov 2014 21

As seen in FIGS. 1 and 2B, cartridge assembly 18 further includes a surgical cartridge buttress “B2”, pledget or the like operatively secured to an upper surface or tissue contacting surface of staple cartridge 82, by anchors “S3” and "S4”, to overlie at least some of staple pockets 82a and/or at least a portion of a length of longitudinal slot 82c. In particular, an anchor “S4” is wrapped around a proximal portion of surgical cartridge buttress “B2” and cinched in each of the proximal pair of recesses 82e and an anchor “S3” is wrapped around a distal portion of the surgical cartridge buttress “B2” and cinched in each of the distal pair of recesses 82f.

In one particular embodiment, a first end of each anchor “S" includes a knot, stop or the like (not shown) sized so as to not pass through one recess of the proximal pair of recesses 82e and a second end of each anchor “S” passes over, and transversely across, surgical cartridge buttress “B2”, at least once, and back through the other recess of the proximal pair of recesses 82e. For example, the second end of each anchor “S” may be pinched or cinched in the other recess of the proximal pair of recesses 82e so as to anchor the second end of the anchor “S” and secure the surgical cartridge buttress “B2” against the tissue contacting surface of staple cartridge 82. Similarly, an anchor “S3” is used to extend transversely across surgical cartridge buttress “B2” and into engagement with the distal pair of recesses 82f.

In a further embodiment, the release assembly is arranged to cut the suture “S.” The arcuate slot 75a on the guide plate 75 extends in the opposite direction so that it is arranged to drive the anchor bar 95 toward the suture “S.” The surface of the anchor bar 76 that faces the suture S includes a sharpened edge and cuts the suture when actuated by the drive assembly.

Surgical cartridge buttress “B2” includes a proximal pair of notches formed in side edges aligned with the proximal pair of recesses 82e of staple cartridge 82, a distal pair of 22 2014268180 26 Nov 2014 notches formed in side edges thereof aligned with the distal pair of recesses 82f of staple cartridge 82, and a proximal notch formed in a proximal edge thereof aligned with longitudinal slot 82c when surgical cartridge buttress “B2” is secured to staple cartridge 82. Surgical cartridge buttress “B2” further includes a tongue or tab extending from a distal edge thereof to facilitate with the attachment of surgical cartridge buttress “B2” to staple cartridge 82 during the assembly process. It is contemplated that a width of surgical cartridge buttress “B2” may be reduced in a proximal portion thereof. It is further contemplated that the tongue is removed from surgical cartridge buttress “B2” following securement of surgical cartridge buttress “B2” to staple cartridge 82 and prior to packaging or shipment.

As seen in FIGS. 2 and 10-14, cartridge assembly 18 further includes a cartridge release assembly 94 supported in and near a distal end of staple cartridge 82. Release assembly 94 includes a lock or anchor bar 95 pivotally connected to staple cartridge 82. Anchor bar 95 includes a body portion 95a having a finger 95b extending from an edge thereof. Finger 95b is in operative registration with one of the distal pair of recesses 82f, preferably, the one of the distal pair of recesses having the relatively larger width dimension.

Release assembly 94 further includes an anchor bar actuation member 97 pivotally connected to anchor bar 95 (as seen in FIGS. 11 and 12). Actuation member 97 includes a first cam surface 97a located along a proximal edge of actuation member 97 and extending across central longitudinal slot 82c of staple cartridge 82, and a second eccentric cam surface 97b extending distaiiy and laterally from actuation member 97 in close proximity to the one of the distal pair of recesses 82f that is operatively associated with finger 95b of anchor bar 95. First cam surface 97a of actuation member 97 is substantially arcuate or convex. Actuation member 97 defines an aperture or opening 97c configured and dimensioned to receive a pin 95c of anchor bar 95 therein so as to anchor bar 95 and actuation member 97 to pivot or rotate relative to one another. 2014268180 26 Nov 2014 23

In operation, rotation of actuation member 97 in a first direction, about its pivot point, results in second cam surface 97b pressing against a surface 82g (see FIGS. 13 and 14) of staple cartridge 82 and thus moving finger 95b at least partially over and/or across the one of the distal pair of recesses 82f associated therewith.

As seen in FIG. 13, suture release assembly 94 includes a locking or anchoring configuration wherein first cam surface 97a of actuation member 97 extends into and across central longitudinal slot 82c of staple cartridge 82, wherein second cam surface 97b of actuation member 97 is pressed against surface 82g of staple cartridge 82, and thus finger 95b of anchor oar 95 extends into or overlies the respective one of the pair of distal recesses 82f in operative registration therewith. Fastener release assembly 94 may be maintained in the locking or anchoring configuration by way of a biasing member or a detent that engages actuation member 97 in a manner so as to keep actuation member 97 in the locked or anchoring configuration. When in such a locked or anchoring configuration, the suture “S3” may be urged into recess 82f of staple cartridge 82. It is contemplated that suture release assembly 94 may include a friction fit or snap fit feature for maintaining and/or retaining suture release assembly 94 in the locking or anchoring configuration at all times following the manufacturing/assembly process and prior to a complete firing of surgical stapling apparatus 10.

As seen in FIGS. 12 and 14, suture release assembly 94 includes an open or release configuration wherein finger 95b of anchor bar 95 does not extend into or overlie the respective one of the pair of distal recesses 82f in operative registration therewith, first cam surface 97a of actuation member 97 does not extend into and across central longitudinal slot 82c of staple cartridge 82, and second cam surface 97b of actuation member 97 is not pressed against surface 82g of staple cartridge 82. 2014268180 26 Nov 2014 24

Suture release assembly 94 is used by a manufacturer during the assembly process of surgical stapling apparatus 10 to secure, with an anchor, surgical suture, or tether “S”, a surgical cartridge buttress “B2” (see FIG. 2) to a tissue contacting surface of the staple cartridge 82, and by the end user of surgical stapling apparatus 10 to automatically release or free the surgical cartridge buttress “B2” from the tissue contacting surface of the staple cartridge 82 upon a complete firing of the surgical stapling apparatus 10.

With reference to FIGS. 10-14, during the manufacturing process, with suture release assembly 94 in the open or release configuration, a surgical cartridge buttress “B2” is laid over the tissue contacting surface of staple cartridge 82. Then, a first end of a surgical suture “S” is inserted into the relatively narrower of the pair of distal recesses 82f and a second end of surgical suture “S” is extended across the surgical cartridge buttress “B2” and inserted into the relatively wider of the pair of distal recesses 82f. It is contemplated that the first end of surgical suture “S” may include a knot, stop or the like (not shown) sized so as to not pass through the narrower recess of the distal pair of recesses 82f.

As seen in FIG. 11, staple cartridge 82 includes an access opening 83 formed therein which is used to insert and receive suture release assembly 94 therein and to provide access to actuation member 97. With the second end of the surgical suture “S” disposed in the relatively wider of the pair of distal recesses 82f, and with the surgical suture “S” pulled taught across the surgical cartridge buttress “B2,” actuation member 97 is rotated about the pivot axis causing first cam surface 97a of actuation member 97 to extend into and across central longitudinal slot 82c of staple cartridge 82 and causing second cam surface 97b of actuation member 97 to press against surface 82g (see FIGS. 13 and 14) of staple cartridge 82. In so doing, anchor bar 95 is pivoted by an amount sufficient for finger 95b of anchor bar 95 to extend into or overlies the respective one of the pair of distal recesses 82f in operative registration 25 2014268180 26 Nov 2014 therewith thereby pinch the second end of the surgical suture disposed therewithin. Suture release assembly 94 is now in the locking or anchoring configuration, as described above.

In operation, with surgical cartridge buttress “B1” secured against the tissue contacting surface of staple cartridge 82, during firing of surgical stapling apparatus 10, as drive assembly 50 is advanced (i.e., moved from a proximal-most position to a distal-most position), knife blade 66 slices through a central section of the proximal suture “S4”, thereby freeing the proximal end of the surgical cartridge buttress “B2” from staple cartridge 82. During use, as the firing stroke of surgical stapling apparatus 10 is nearing completion and as drive assembly 50 approaches a distal end of central longitudinal slot 82c of staple cartridge 82, as seen in FIG. 14, drive assembly 50 contacts first cam surface 97a of actuation member 97, urging actuation member 97 to rotate. Second cam surface 97b of actuation member 97 also rotates about the pivot axis of pivot pin 95c thereof. As eccentric second cam surface 97b is rotated about the pivot axis second cam surface 97b, the distance between the pivot pin 95c and the surface 82g of staple cartridge 82 is reduced thereby pivoting anchor bar 95 about pivot pin 95c. As anchor bar 95 is pivoted, finger 95c thereof is caused to move away from the relatively wider distal recess 82f and to release the second end of the surgical suture “S” disposed therewithin. With the second end of surgical suture “S” released or free, the distal end of the surgical cartridge buttress “B2” is free to separate from the tissue contacting surface of staple cartridge 82. The distal recesses 82f that is in operative registration with finger 95b of anchor bar 95 is dimensioned so that, notwithstanding the rotation of anchor bar 95, the suture “S3” is not cinched therewithin.

As drive assembly 50 is advanced from the proximal position to the distal position, knife blade 66 thereof slices or cuts longitudinally through both surgical anvil buttress “B1” and surgical cartridge buttress “B2”, thereby dividing the buttresses “B1, B2” substantially in half. Additionally, as drive assembly 50 is advanced from a proximal-most position to a distal- 2014268180 26 Nov 2014 26 most position, upstanding cam wedges 90a of actuation sled 90 actuates pushers 92, to cause pushers 92 to translate vertically within retention slots 82a and urge fasteners 84 from slots 82a. As fasteners 84 (e.g., staples) are urged from slots 82a of staple cartridge 82, legs of fasteners 84 penetrate and pass through both surgical anvil buttress “ΒΓ and surgical cartridge buttress “B2”, through any tissue (not shown) interposed between surgical anvil buttress “B1” and surgical cartridge buttress “B2”, and are formed against or within staple forming cavities 70a of anvil plate 70 of anvil assembly 20. Buttresses “B1, B2” preferably include perforations that divide the buttresses and facilitate removal of the apparatus from the tissue.

According to the present disclosure, surgical anvil buttress “B1” and/or surgical cartridge buttress “B2” is pre-loaded (i.e., from the manufacturer) onto anvil assembly 20 or cartridge assembly 18, respectively, of the loading unit 16. After the loading unit is fired, an additional unfired loading unit, with or without buttresses “B”, can be loaded onto the surgical apparatus. In certain embodiments, the replaceable loading unit is a removable cartridge that can be inserted into support channel of carrier 80. A buttress and release assembly may be pre-loaded onto the removable cartridge and means for the user of the surgical apparatus to load a buttress onto the anvil assembly can be provided. For example, a buttress having an adhesive can be used. Additional or replacement buttresses “B” for anvil assembly 20 and/or cartridge assembly 18 may be secured to either anvil assembly 20 or cartridge assembly 18 as needed or desired.

In a further embodiment, the release assembly may be arranged to cut the suture “S.” The cam surface 97b on the actuation member 97 may be arranged to cam the anchor bar 95 toward the suture “S.” The surface of the anchor bar 97 that faces the suture “S” may include a sharpened edge and may cut the suture when actuated by the drive assembly. 2014268180 26 Nov 2014 27

Turning now to FIGS. 15-25, a loading unit according to another embodiment of the present disclosure, for surgical stapling apparatus 10, is generally designated as 116. Loading unit 116 is substantially similar to loading unit 16 and will only be discussed in detail herein to the extent necessary to identify differences in construction and operation.

As seen in FIGS. 15-20, anvil assembly 120 of loading unit 116 includes a suture release assembly 174 disposed between anvil plate 170 and cover plate 172 at a location in operative registration with the distal pair of recesses 170e. Suture release assembly 174 includes a link arm 175 pivotally connected to anvil plate 170 (as seen in FIG. 18) and/or optionally cover plate 172. Link arm 175 includes a body portion 175a defining a pocket or recess 175c formed in a first side edge 175b thereof and a camming surface 175d defined substantially along an adjacent side or proximal edge thereof. Pocket 175c has a substantially arcuate, circular or rounded profile. As seen in FIGS. 18 and 20, link arm 175 includes a pivot pin 175e extending from body portion 175a for pivotally connecting link arm 175 to anvil assembly 120.

Release assembly 174 further includes a pusher bar 177 pivotally connected to link arm 175 and slidably disposed between anvil plate 170 and cover plate 172. Pusher bar 177 includes a body portion 177a having a substantially rectangular configuration and a head 177b, extending from a corner of body portion 177a, and having a substantially circular or rounded configuration. Head 177b of pusher bar 177 is configured and dimensioned for pivotable and/or rotatable connection in pocket 175c of link arm 175.

As seen in FIG. 19, suture release assembly 174 includes an unactuated configuration wherein pusher bar 177 does not extend into or overlie the respective one of the pair of distal recesses 170e in operative registration therewith, and a longitudinal axis of link arm 175 is oriented substantially parallel with a longitudinal axis of loading unit 116. It is 2014268180 26 Nov 2014 28 contemplated that suture release assembly 174 may include a friction fit or snap fit feature for maintaining and/or retaining suture release assembly 174 in the locking or anchoring configuration at all times following the manufacturing/assembly process and prior to a complete firing of the surgical stapling apparatus.

As seen in FIG. 20, suture release assembly 174 includes an actuated configuration wherein pusher bar 177 extends into or overlies the respective one of the pair of distal recesses 170e in operative registration therewith, and a longitudinal axis of link arm 175 is oriented substantially transverse to the longitudinal axis of loading unit 116.

With reference to FIGS. 15-20, during the manufacturing process, with suture release assembly 174 in the unactuated configuration, a surgical anvil buttress (not shown) is laid over the tissue contacting surface of anvil plate 170. Then, a first end of a surgical suture “S1” is inserted into one of the pair of distal recesses 170e and a second end of surgical suture “S1” is extended across the surgical anvil buttress (not shown) and inserted into the other of the pair of distal recesses 170e. It is contemplated that each of the pair of distal recesses 170e is an open ended constricting slot so as to frictionally grip or cinch a surgical suture “S1” disposed therein.

In operation, with a surgical anvil buttress (not shown) secured against the lower surface of anvil plate 170, during firing of the surgical stapling apparatus, as drive assembly 150 is advanced (i.e., moved from a proximal-most position to a distal-most position), knife blade 166 slices through a central section of the proximal suture (not shown), thereby freeing the proximal end of the surgical anvil buttress (not shown) from anvil assembly 120. During use, as the firing stroke of the surgical stapling apparatus is nearing completion and as drive assembly 150 approaches a distal-most end of knife slot 170b of anvil plate 170, as seen in FIG. 20, drive assembly 150 contacts camming surface 175d of link arm 175, thus urging link arm 175 to 2014268180 26 Nov 2014 29 rotate or pivot around the pivot pin and, in turn, urging pusher bar 177 to translate in the direction of the slot. As pusher bar 177 is translated, pusher bar 177 comes into contact with and urges the second end of suture “S1” out of the distal recess 170e that is registration therewith to release the second end of suture “S1” therefrom. With the second end of surgical suture “S1” released or free from distal recess 170e, the distal end of the surgical anvil buttress “ΒΓ is free to separate from the tissue contacting surface of anvil plate 170.

As seen in FIGS. 15, 16 and 21-25, cartridge assembly 118 of loading unit 116 includes a cartridge release assembly 194 supported in and near a distal end of staple cartridge 182. Release assembly 194 includes a retainer 195 supported in a distal end of staple cartridge 182 at a location near a distal end of longitudinal slot 182c and at least partially extending thereacross. Retainer 195 includes a body portion 195a, a boss 195b extending from a surface thereof, and defines a channel or recess 195c formed in a surface thereof and extending through a side thereof. When supported in staple cartridge 182, recess 195c of retainer 195 is in registration with one of the pair of distal recesses 182f of staple cartridge 182.

Release assembly 194 further includes a pusher member 196 having a head portion 196a pivotally connected to boss 195b of retainer 195. Pusher member 196 further includes a first leg member 196b extending from head portion 196a and a second leg member 196c connected to a free end of first leg member 196b via a living hinge connection 196d. Pusher member 196 further includes piston 196e connected to a free end of second leg member 196c via a living hinge connection 196f. Piston 196e is slidably disposed and translatable within recess 195c of retainer 195. In certain other embodiments, the pusher is a linkage assembly having a first link pivotably connected to the cartridge at one end. The other end of the first link is pivotably connected to a first end of a second link. The opposite, second, end of the second link is confined in the recess of the retainer. 2014268180 26 Nov 2014 30

As seen in FIG. 24, release assembly 194 includes an unactuated configuration wherein piston 196e does not extend into or overlie the respective one of the pair of distal recesses 182f, and first leg member 196b and second leg member 196c are angled with respect to one another and project proximally along longitudinal slot 182c of staple cartridge 182. It is contemplated that suture release assembly 194 may include a friction fit or snap fit feature for maintaining and/or retaining suture release assembly 194 in the locking or anchoring configuration at all times following the manufacturing/assembly process and prior to a complete firing of the surgical stapling apparatus.

As seen in FIG. 25, suture release assembly 194 includes an actuated configuration wherein piston 196e extends into or overlies the respective one of the pair of distal recesses 182f in operative registration therewith, and first leg member 196b and second leg member 196c are extended substantially along a common axis.

With reference to FIGS. 21-25, during the manufacturing process, with suture release assembly 194 in the unactuated configuration, a surgical cartridge buttress (not shown) is laid over the tissue contacting surface of staple cartridge 182. Then, a first end of a surgical suture “S3” is inserted into one of the pair of distal recesses 182f and a second end of surgical suture “S3” is extended across the surgical cartridge buttress and inserted into the other of the pair of distal recesses 182f. It is contemplated that at least the recess 182f that is adjacent the retainer 195 is an open ended constricting slot so as to frictionally grip or cinch a surgical suture “S3” disposed therein.

In operation, with surgical cartridge buttress (not shown) secured against the tissue contacting surface of staple cartridge 182, during firing of surgical stapling apparatus 10, as drive assembly 150 is advanced (i.e., moved from a proximal-most position to a distal-most position), knife blade 166 slices through a central section of a proximal suture (not shown), 2014268180 26 Nov 2014 31 thereby treeing the proximal end of the surgical cartridge buttress from staple cartridge 182. During use, as the firing stroke of surgical stapling apparatus 10 is nearing completion and as drive assembly 150 approaches a distal end of central longitudinal slot 182c of staple cartridge 182, as seen in FIG. 25, drive assembly 150 contacts living hinge connection 196d between first leg member 196b and second leg member 196c. As drive assembly 150 is further advanced distally, drive assembly 150 presses against living hinge connection 196d, causing first leg member 196b and second leg member 196c to extend. As first leg member 196b and second leg member 196c extend, piston 196e is translated through recess 195c of retainer 195. As piston 196e is translated through recess 195c of retainer 195, piston 196e engages the second end of suture “S3” and urges suture “S3” out of the distal recess 182f that is registration therewith to release the second end of suture “S3” therefrom. With the second end of surgical suture “S3” released or free from distal recess 182f, the distal end of the surgical cartridge buttress “B” is free to separate from the tissue contacting surface of staple cartridge 182.

Turning now to FIGS. 26-29, a loading unit according to another embodiment of the present disclosure, for surgical stapling apparatus 10, is generally designated as 216. Loading unit 216 is substantially similar to loading unit 16 or 116 and will only be discussed in detail herein to the extent necessary to identify differences in construction and operation.

As seen in FIGS. 26-29, anvil assembly 220 of loading unit 216 includes a release assembly 274 disposed between anvil plate 270 and cover plate 272 at a location in operative registration with the distal pair of recesses 270e. Release assembly 274 includes a cam 275 pivotally connected to anvil plate 270 and/or cover plate 272. Cam 275 includes a body portion 275a having an ovular profile and defining a cam surface 275b that is in operative association with one of the distal pair of recesses 270e. Cam 275 further includes a finger or stem 275c projecting at an angle from a lateral edge of body portion 275a. 2014268180 26 Nov 2014 32

Release assembly 274 further includes a pusher 277 slidably disposed between anvil plate 270 and cover plate 272. As seen in FIGS. 27-29, pusher 277 may be slidably disposed within longitudinal slot 270b of anvil plate 270a. Pusher 277 includes a cam arm 277a extending substantially in a distal direction. Cam arm 277a is configured and dimensioned to engage and/or act on finger 275c extending from cam 275.

As seen in FIG. 28, suture release assembly 274 includes an unactuated configuration wherein body portion 275a of cam 275 does not extend into or overlie the respective one of the pair of distal recesses 270e in operative registration therewith, and pusher 277 is in a retracted or non-advanced position. As seen in FIG.28, cam arm 277a of pusher 277 is adjacent finger 275c and may, although not necessarily, be in contact with finger 275c of cam 275.

As seen in FIG. 29, suture release assembly 274 includes an actuated configuration wherein body portion 275a of cam 275 extends into or overlies the respective one of the pair of distal recesses 270e in operative registration therewith, and pusher 277 is in an advanced position. As seen in FIG. 29, when pusher 277 is in the advanced position, cam arm 277a of pusher 277 has engaged finger 275c of cam 275 to rotate body portion 275a of cam 275.

In operation, with an surgical anvil buttress (not shown) secured against the lower surface of anvil plate 270, during firing of the surgical stapling apparatus, as drive assembly 250 approaches a distal-most end of knife slot 270b of anvil plate 270, drive assembly 250 contacts pusher 277, thus driving pusher 277 distally. As pusher 277 is driven distally, as seen in FIGS. 28 and 29, cam arm 277a of pusher 277 engages finger 275c of cam 275 to rotate or pivot cam 275. As cam 275 is rotated, cam surface 275b of cam 275 comes into contact with and urges the second end of suture “S1” out of the distal recess 270e that is 33 2014268180 26 Nov 2014 registration therewith to release the second end of suture “S1” therefrom. With the second end of surgical suture “S1” released or free from distal recess 270e, the distal end of the surgical anvil buttress is free to separate from the tissue contacting surface of anvil plate 270.

Turning now to FIGS. 30 and 31, a loading unit according to another embodiment of the present disclosure, for surgical stapling apparatus 10, is generally designated as 316. Loading unit 316 is substantially similar to loading unit 16, 116 or 216 and will only be discussed in detail herein to the extent necessary to identify differences in construction and operation.

As seen in FIGS. 30 and 31, anvil assembly 320 of loading unit 316 includes a release assembly 374 disposed between anvil plate 370 and the cover plate at a location in operative registration with the distal pair of recesses 370e. Release assembly 374 includes a body portion 374a slidably disposed within longitudinal slot 370b of anvil plate 370a. Release assembly 374 further includes a head portion 374b connected to or extending from a distal surface of body portion 374a. Head portion 374b defines a cam surface 374c along a side edge thereof that is configured and dimensioned for operatively association with one of the distal pair of recesses 370e formed in anvil plate 370a. Cam surface 374c may have an arcuate, curved or sinusoidal profile.

As seen in FIG. 30, suture release assembly 374 includes an unactuated configuration wherein body portion 374a is retracted and cam surface 374c does not extend into or across the respective one of the pair of distal recesses 370e in operative registration therewith.

As seen in FIG. 31, suture release assembly 374 includes an actuated configuration wherein body portion 374a is advanced distally and cam surface 374c extends into or overlies the respective one of the pair of distal recesses 370e in operative registration therewith. 2014268180 26 Nov 2014 34

In operation, with a surgical anvil buttress (not shown) secured against the lower surface of anvil plate 370, during firing of the surgical stapling apparatus, as drive assembly 350 approaches a distal-most end of knife slot 370b of anvil plate 370, as seen in FIGS. 30 and 31, drive assembly 350 contacts body portion 374a of release assembly 374, thus driving head portion 374b distally. As head portion 374b is driven distally, cam surface 374c comes into contact with and urges the second end of suture “S1” out of the distal recess 370e that is registration therewith to release the second end of suture “S1” therefrom. With the second end of surgical suture “S10” released or free from distal recess 370e, the distal end of the surgical anvil buttress is free to separate from the tissue contacting surface of anvil plate 370.

In a further embodiment, the driving head portion may include a sharpened edge instead of cam surface 374c. As the driving head portion is moved distally, the suture “S1” is caught between the sharpened edge of the driving head portion and the side of the distal recess 370e, severing the suture “S1.”

Turning now to FIGS. 32-38, a loading unit according to another embodiment of the present disclosure, for surgical stapling apparatus 10, is generally designated as 416. Loading unit 416 is substantially similar to loading unit 16, 116, 216 or 316 and will only be discussed in detail herein to the extent necessary to identify differences in construction and operation.

As seen in FIGS. 32-38, cartridge assembly 418 of loading unit 416 includes a cartridge release assembly 494 supported in and near a distal end of staple cartridge 482. Release assembly 494 includes a retainer 495 supported in a distal end of staple cartridge 482 at a location near a distal end of longitudinal slot 482c and at least partially extending thereacross. Retainer 495 includes a body portion 495a, a boss 495b extending from a surface thereof, and defines a channel or recess 495c formed in a surface thereof and extending 35 2014268180 26 Nov 2014 through a side thereof. Body portion 495a of retainer 495 defines a slot 495d formed in opposed sides thereof and which are configured to receive a suture therein. When supported in staple cartridge 482, recess 495c of retainer 495 is in registration with one of the pair of distal recesses 482f of staple cartridge 482, and slots 495d of retainer 495 are in registration with the pair of distal recesses 482f of staple cartridge 482 (see FIG. 32).

Release assembly 494 further includes a cam member 496 having a head portion 496a pivotally connected to boss 495b of retainer 495. Cam member 496 further includes a body portion 496b extending from head portion 496a. Body portion 496b defines a first cam surface ,496c and a second cam surface 496d each extending substantially tangentially to an axis of rotation of cam member 496.

Release assembly 494 further includes a sled 497 slidably disposed within channel 495c of retainer 495. Sled 497 includes a body portion 497a defining a cam surface 497b oriented to operatively engage second cam surface 496d of cam member 496, and a side wall 497c in registration with the one of the pair of distal recesses 482f of staple cartridge 482 that is in registration with recess 495c of retainer 495.

As seen in FIG. 37, release assembly 494 includes an unactuated configuration wherein first cam surface 496c of cam member 496 extends across longitudinal slot 482c staple cartridge 482, side wall 497c of sled 497 does not extend into or over the one of the pair of distal recesses 482f of staple cartridge 482 that is in registration therewith, and second cam surface 496d of cam member 496 is substantially in flush contact with cam surface 497b of sled 497.

As seen in FIG. 38, release assembly 494 includes an actuated configuration wherein first cam surface 496c of cam member 496 does not substantially extend across longitudinal slot 482c of staple cartridge 482, side wall 497c of sled 497 extends into or over the 2014268180 26 Nov 2014 36 one of the pair of distal recesses 482f of staple cartridge 482 that is in registration therewith, and second cam surface 496d of cam member 496 is spaced away from cam surface 497b of sled 497.

With reference to FIGS. 32-38, during the manufacturing process, with suture release assembly 494 in the unactuated configuration, a surgical cartridge buttress (not shown) is laid over the tissue contacting surface of staple cartridge 482. Then, a first end of a surgical suture “S3” is inserted into one of the pair of distal recesses 482f and a second end of surgical suture “S3” is extended across the surgical cartridge buttress and inserted into the other of the pair of distal recesses 482f. It is contemplated that at least the distal recesses 482f adjacent the side wall 497c is an open ended constricting slot so as to frictionally grip or cinch a surgical suture “S3” disposed therein.

In operation, with a surgical cartridge buttress (not shown) secured against the tissue contacting surface of staple cartridge 482, during firing of the surgical stapling apparatus, as drive assembly 450 approaches a distal end of central longitudinal slot 482c of staple cartridge 482, as seen in FIG. 38, drive assembly 450 contacts second cam surface 496c of cam member 496 extending across longitudinal slot 482c of staple cartridge 482.

As drive assembly 450 is further advanced distally, drive assembly 450 presses against first cam surface 496c of cam member 496, causing cam member 496 to rotate. As cam member 496 is rotated, second cam surface 496d thereof contacts and presses against cam surface 497b of sled 497 thus causing sled 497 to translate in recess 495c of retainer 495. As sled 497 is translated through recess 495c, side wall 497c of sled 497 engages the second end of suture “S3” and urges suture “S3” out of the distal recess 482f that is registration therewith to release the second end of suture “S3” therefrom. With the second end of surgical 2014268180 26 Nov 2014 37 suture “S3” released or free from distal recess 482f, the distal end of the surgical cartridge buttress is free to separate from the tissue contacting surface of staple cartridge 482.

According to further embodiments of the present disclosure, it is contemplated that buttresses “B” may be provided or formed with integral wings or tabs extending therefrom for insertion and/or receipt into distal and/or proximal recesses of anvil assembly and/or cartridge assembly. It is further contemplated that sutures “S” may be affixed to, embedded in or other wise connected to buttresses “B.”

Exemplary surgical buttresses “B” for use with the surgical stapling devices disclosed herein are shown and described in commonly assigned U.S. Patent Nos. 5,542,594; 5,908,427; 5,964,774; and 6,045,560, and commonly assigned U.S. Application Serial Nos. 2006/0085034, filed on April 20, 2006; and 2006/0135992, filed on June 22, 2006, the entire contents of each of which is incorporated herein by reference.

Surgical buttresses “B” may be fabricated from a suitable biocompatible and bioabsorbable material. Surgical buttresses “B” may be fabricated from a non-absorbent material which does not retain fluid. Surgical buttresses “B” may be fabricated from “BIOSYN” made from GLYCOMER 631 (a block copolymer), a synthetic polyester composed of glycolide, dioxanone and trimethylene carbonate.

One block of the resulting copolymer contains randomly combined units derived from p-dioxanone (1,4-dioxan-2-one) and trimethylene carbonate (1,3-dioxan-2-one). The second block of the copolymer contains randomly combined units derived from glycolide and p-dioxanone. The resulting polyester is an ABA triblock terpolymer possessing about 60% glycolide, about 14% dioxanone, and about 26% trimethylene carbonate. 2014268180 26 Nov 2014 38

It will be understood that various modifications may be made to the embodiments disclosed herein. For example, the stapling apparatus need not apply staples but rather may apply two part fasteners as is known in the art. Further, the length of the linear row of staples or fasteners may be modified to meet the requirements of a particular surgical procedure. Thus, the length of a single stroke of the actuation shaft and/or the length of the linear row of staples and/or fasteners within a disposable loading unit may be varied accordingly. Therefore, the above description should not be construed as limiting, but merely as exemplications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.

Claims (10)

  1. CLAIMS:
    1. A surgical stapling apparatus, comprising: a tool assembly having a cartridge assembly including a plurality of surgical fasteners therein, and an anvil assembly, at least one of the cartridge assembly and anvil assembly being movable in relation to the other of the cartridge assembly and anvil assembly; a surgical buttress releasably secured to a tissue contacting surface of at least one of an anvil plate and a staple cartridge by an anchor; a release assembly associated with the at least one of the anvil assembly and the cartridge assembly, the release assembly having an anchoring configuration and a release configuration, the release assembly gripping the anchor while in the anchoring configuration; and a drive assembly slidably translatable through the tool assembly from a proximal position to a distal position, the drive assembly actuating the release assembly to move the release assembly from the anchoring configuration to the release configuration thereby freeing the anchor from the at least one of the anvil assembly and the cartridge assembly.
  2. 2. The surgical stapling apparatus according to claim 1, wherein the at least one of the anvil assembly and the cartridge assembly define a side slot for receiving an end of the at least one anchor therein.
  3. 3. The surgical stapling apparatus according to claim 1, wherein the release assembly has a first bar and a second bar, the drive assembly actuating the first bar, the first bar moving the second bar away from the anchor.
  4. 4. The surgical stapling apparatus according to claim 1, wherein each of the anvil assembly and the cartridge assembly include a release assembly.
  5. 5. The surgical stapling apparatus of claim 4, wherein each of the anvil assembly and the cartridge assembly define a side slot for receiving the anchor of each surgical buttress.
  6. 6. The surgical stapling apparatus according to claim 5, wherein the drive assembly includes a distally advancing drive member having a knife blade.
  7. 7. The surgical stapling apparatus according to claim 6, wherein the staple cartridge and the anvil assembly include a longitudinally extending slot and the drive member advances through the cartridge assembly and the anvil assembly and through the longitudinally extending slot.
  8. 8. The surgical stapling apparatus according to claim 1, wherein the anchor is a suture engaging the surgical buttress and the at least one of the cartridge assembly and the anvil assembly.
  9. 9. The surgical stapling apparatus according to claim 1, wherein the anchor is an extension of the surgical buttress and engages the at least one of the cartridge assembly and the anvil assembly.
  10. 10. The surgical stapling apparatus according to claim 1, wherein the release assembly includes a pivotably mounted member in the at least one of the cartridge assembly and the anvil assembly.
AU2014268180A 2009-03-31 2014-11-26 Surgical stapling apparatus Active AU2014268180B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/414,931 2009-03-31
AU2010200792A AU2010200792B9 (en) 2009-03-31 2010-03-02 Surgical stapling apparatus
AU2014268180A AU2014268180B2 (en) 2009-03-31 2014-11-26 Surgical stapling apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2014268180A AU2014268180B2 (en) 2009-03-31 2014-11-26 Surgical stapling apparatus
AU2016269541A AU2016269541B2 (en) 2009-03-31 2016-12-09 Surgical stapling apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2010200792A Division AU2010200792B9 (en) 2009-03-31 2010-03-02 Surgical stapling apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2016269541A Division AU2016269541B2 (en) 2009-03-31 2016-12-09 Surgical stapling apparatus

Publications (2)

Publication Number Publication Date
AU2014268180A1 AU2014268180A1 (en) 2014-12-11
AU2014268180B2 true AU2014268180B2 (en) 2017-01-12

Family

ID=52016206

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2014268180A Active AU2014268180B2 (en) 2009-03-31 2014-11-26 Surgical stapling apparatus

Country Status (1)

Country Link
AU (1) AU2014268180B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020165559A1 (en) * 2001-05-07 2002-11-07 Grant Richard L. Method for releasing buttress material attached to a surgical fastening device
EP1256318B1 (en) * 2001-05-07 2005-02-23 Ethicon Endo-Surgery, Inc. Adhesive for attaching buttress material to a surgical fastening device
WO2008109125A1 (en) * 2007-03-06 2008-09-12 Tyco Healthcare Group Lp Surgical stapling apparatus
EP2005894A2 (en) * 2007-06-18 2008-12-24 Tyco Healthcare Group LP Surgical staple buttress material retention system
EP2005895A2 (en) * 2007-06-22 2008-12-24 Tyco Healthcare Group LP Detachable buttress material retention systems for use with a surgical stapling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020165559A1 (en) * 2001-05-07 2002-11-07 Grant Richard L. Method for releasing buttress material attached to a surgical fastening device
EP1256318B1 (en) * 2001-05-07 2005-02-23 Ethicon Endo-Surgery, Inc. Adhesive for attaching buttress material to a surgical fastening device
WO2008109125A1 (en) * 2007-03-06 2008-09-12 Tyco Healthcare Group Lp Surgical stapling apparatus
EP2005894A2 (en) * 2007-06-18 2008-12-24 Tyco Healthcare Group LP Surgical staple buttress material retention system
EP2005895A2 (en) * 2007-06-22 2008-12-24 Tyco Healthcare Group LP Detachable buttress material retention systems for use with a surgical stapling device

Also Published As

Publication number Publication date
AU2014268180A1 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
US8679155B2 (en) Surgical method utilizing a true multiple-fire surgical stapler
AU2009200755B2 (en) Staple cartridges for forming staples having differing formed staple heights
EP1503675B1 (en) Surgical stapling apparatus having a wound closure material applicator assembly
EP2764827B1 (en) Multiple thickness implantable layers for surgical stapling devices
US8016176B2 (en) Surgical stapling instrument with independent sequential firing
CA2717532C (en) Varying tissue compression aided by elastic members
EP2198787B1 (en) Surgical apparatus including surgical buttress
CA2571579C (en) Surgical stapling apparatus
CN104736069B (en) Surgical cutting instrument
EP2705800B1 (en) Staple line reinforcement for anvil and cartridge
EP2098170B1 (en) Interchangeable tools for surgical instruments
US5662259A (en) Method of stapling anatomical tissue
CN104981213B (en) Layer for surgical staple cartridge arrangement
JP6017466B2 (en) Surgical staple cartridge having a tissue tether to manipulate the divided tissue
CN103429172B (en) The removable cartridge of surgical staple
AU703615B2 (en) Surgical stapling system and method of applying staples from multiple staple cartridges
CA2560378C (en) Surgical stapling instrument having force controlled spacing end effector
CN103690214B (en) Tissue for a surgical instrument stopper
US7988027B2 (en) Crimp and release of suture holding buttress material
US7886952B2 (en) Surgical stapling apparatus with locking mechanism
US9936950B2 (en) Hybrid adjunct materials for use in surgical stapling
US8893950B2 (en) Surgical apparatus for applying tissue fasteners
US20090277947A1 (en) Varying tissue compression using take-up component
US20120031946A1 (en) Surgical Instrument
US20150245835A1 (en) Buttress brachytherapy and integrated staple line markers for margin identification

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)