AU2014254001A1 - Laser assisted periodontium and osseus regeneration protocol - Google Patents

Laser assisted periodontium and osseus regeneration protocol Download PDF

Info

Publication number
AU2014254001A1
AU2014254001A1 AU2014254001A AU2014254001A AU2014254001A1 AU 2014254001 A1 AU2014254001 A1 AU 2014254001A1 AU 2014254001 A AU2014254001 A AU 2014254001A AU 2014254001 A AU2014254001 A AU 2014254001A AU 2014254001 A1 AU2014254001 A1 AU 2014254001A1
Authority
AU
Australia
Prior art keywords
substrate
periodontal pocket
periodontium
sulcus
amino acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2014254001A
Other versions
AU2014254001B2 (en
Inventor
Margaret KALMETA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bioregentech Institute Inc
Original Assignee
MOLECULAR SYSTEMS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/864,226 external-priority patent/US9180319B2/en
Application filed by MOLECULAR SYSTEMS Ltd filed Critical MOLECULAR SYSTEMS Ltd
Publication of AU2014254001A1 publication Critical patent/AU2014254001A1/en
Application granted granted Critical
Publication of AU2014254001B2 publication Critical patent/AU2014254001B2/en
Priority to AU2020200444A priority Critical patent/AU2020200444B2/en
Assigned to KALMETA, Margaret, BioRegentech, LLC reassignment KALMETA, Margaret Amend patent request/document other than specification (104) Assignors: KALMETA, Margaret, MOLECULAR SYSTEMS, LTD.
Assigned to BIOREGENTECH, INC. reassignment BIOREGENTECH, INC. Request for Assignment Assignors: BioRegentech, LLC, KALMETA, Margaret
Assigned to THE BIOREGENTECH INSTITUTE, INC. reassignment THE BIOREGENTECH INSTITUTE, INC. Request for Assignment Assignors: BIOREGENTECH, INC.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/06Implements for therapeutic treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/06Implements for therapeutic treatment
    • A61C19/063Medicament applicators for teeth or gums, e.g. treatment with fluorides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/221Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having an amino group, e.g. acetylcholine, acetylcarnitine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/401Proline; Derivatives thereof, e.g. captopril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/14Alkali metal chlorides; Alkaline earth metal chlorides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/20Halogens; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/24Phosphorous; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/368Carboxylic acids; Salts or anhydrides thereof with carboxyl groups directly bound to carbon atoms of aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • A61K8/442Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof substituted by amido group(s)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/606Nucleosides; Nucleotides; Nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/65Collagen; Gelatin; Keratin; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0624Apparatus adapted for a specific treatment for eliminating microbes, germs, bacteria on or in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/81Preparation or application process involves irradiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N5/0603Apparatus for use inside the body for treatment of body cavities
    • A61N2005/0606Mouth

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Dentistry (AREA)
  • Biochemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Laser Surgery Devices (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

A method of treating gum disease using a soft tissue diode laser which generates a beam of light having a wavelength in the visible portion of the electromagnetic spectrum (400nm - 700nm) at a laser power of 0.5 to 1.2 watts, used with intermittent stops to control tissue temperature, to decontaminate the gum tissue and biostimulate the periodontium nonsurgically when used with a substrate, thus preventing the long junctional epithelium from migrating into the sulcus, preserving tissue height, and regenerating periodontium, the method comprising: placing the tip of the laser inside the sulcus; penetrating the entire sulcus by moving the laser light with intermittent stops to control tissue temperature vertically and horizontally throughout the sulcus; and placing a substrate in the sulcus prior to a blood clot forming, thus regenerating periodontium in the sulcus.

Description

WO 2014/172459 PCT/US2014/034366 LASER ASSISTED PERIODONTIUM AND OSSEUS REGENERATION PROTOCOL by Margaret V. Kalmeta CROSS REFERENCES This application claims priority to United States Continuation-In-Part Patent Application No. 13/864,226 filed April 16, 2013, which claims the benefit of priority under 35 U.S.C. 120 from United States Patent Application No. 13/078,757 filed April 4, 2011, the entire contents of which are herein incorporated by reference. FIELD OF THE INVENTION The present invention relates generally to a method of treating gum diseases using a soft tissue diode laser which produces a beam of light having a wavelength in the visible portion of the electromagnetic spectrum (400nm - 700nm). Optionally, the laser light utilizes green wavelength range (520 - 570 nm) at a laser power of 0.5 to 1.2 watts to treat gum disease. BACKGROUND OF THE INVENTION Laser Assisted Periodontium And Osseus Regeneration (LAPOR) is a protocol which is laser assisted with the use of a substrate such as but not limited the LAPOR periodontal solution, the LAPOR periodontal gel and the LAPOR substrate and thus causes an increase in cell attachment of epithelial cells, gingival fibroblasts, PDL fibroblasts and adhesion of osteogenic cells. This protocol has shown to increase the expression of transcription factors related to the differentiation of osteoblasts/ cementoblasts as well as chondroblasts. Enhanced cell migration and proliferation appears to lead to accelerated wound fill rates in vitro using PDL fibroblasts, gingival fibroblasts and osteoblast-like cells. A substrate such as the LAPOR periodontal solution, the LAPOR periodontal gel and the LAPOR substrate, used in the LAPOR protocol, stimulates total protein synthesis and the 1 WO 2014/172459 PCT/US2014/034366 synthesis of specific extracellular matrix molecules. Studies that evaluate the bone remodeling regulation system indicate that enamel matrix proteins influence this by modulating the OPG and RANKI expression, thus indicating an indirect involvement in the bone remodeling process. The soft tissue diode laser used produces a beam of light having a wavelength in the visible portion of the electromagnetic spectrum (400nm - 700nm). Optionally, a beam of light having a wavelength in the green wavelength range (520 - 570 nm) at a laser power of 0.5 to 1 .2 watts is used in the LAPOR protocol. It has been shown by the LAPOR protocol to biostimulate the healing and regenerative processes of the periodontium, including the biostimulation of new bone and its supporting elements. Previous studies have shown a positive healing effect of low power laser therapy (infrared range of a soft tissue diode laser) on tissue repair. Low power lasers, in the infrared range, have been shown to positively affect several indices of tissue repair. They biostimulate wound healing by acceleration of collagen synthesis, acceleration of inflammation, decrease of healing time, acquisition of strength. They biostimulate regeneration of tissue via elevated metabolic indices of ATP synthesis, elevated fibroblast proliferation, elevated collagen synthesis and increased indices of biomechanical aspects of tissue healing. The soft tissue diode laser used in the LAPOR protocol, biostimulates the healing response of the periodontium nonsurgically, and biostimulates the tissue regeneration of the periodontium, nonsurgically, and prevents long junctional epithelium from migrating downwards into the sulcus (a biomechanical aspect of tissue healing), thereby preserving the tissue height. A soft tissue diode laser used in the LAPOR protocol helps a substrate such as but not limited to enamel matrix proteins to stimulate total protein synthesis and the synthesis of extracellular matrix molecules, nonsurgically. SUMMARY OF THE INVENTION In an exemplary embodiment of the present invention, there is disclosed a method of treating gum disease using a soft tissue diode laser which generates a beam of light having a wavelength in the visible portion of the electromagnetic spectrum (400nm - 700nm). Optionally, a beam of light having a wavelength in the green range (520 - 570 nm) at a laser power of 0.5 to 2 WO 2014/172459 PCT/US2014/034366 1.2 watts is used to decontaminate the gum tissue and to biostimulate healing and regenerate the periodontium (including cementum of the root surface), thus preventing long junctional epithelium from migrating downwards into the sulcus and thereby preserving the tissue height. The soft tissue diode laser also biostimulates the healing and regenerative response induced by a substrate, i.e. the LAPOR periodontal solution, the LAPOR periodontal gel and the LAPOR periodontal substrate, the method comprising: 1) placing the laser inside the sulcus; 2) penetrating the entire sulcus by moving the laser light intermittently vertically and horizontally throughout the sulcus; and 3) placing the substrate in the sulcus prior to a blood clot forming (which then increases cell attachment, adhesion, migration and proliferation). In another embodiment of the present invention, there is disclosed a root/bone/cartilage conditioner comprised of EDTA 15%, calcium gluconate 20%, methylparaben, propylparaben, Ethanolamine as a buffering agent, carboxymethylcellulose, and green food coloring and sterile water. In still another embodiment of the present invention, there is disclosed a first substrate comprised of: a combination of mono or disodium phosphate and sodium hydroxide in solution with a sodium content of 11 mg/100g; 60% water; 9% Lysine; 9% Proline; 9% all other essential amino acids wherein the amino acids are chosen from the group consisting of Isoleucine, Leucine, Methionine, Phenylalanine, Threonine, Tryptophan, Valine, Histadine, Asparagine and Selenocysteine; 2% of all other non-essential amino acids wherein the amino acids are chosen from the group consisting of Alanine, Arginine, Aspartate, Cysteine, Glutamate, Glutamine, Glycine, Serine, Tyrosine and Pyrrolsine; 6.9% free bases wherein the free bases are chosen from the group consisting of adenosine, uridine, guanosine, iridin and cytidine; 2% phosphates wherein the phosphates are chosen from the group consisting of ADP, ATP and acetycholine; and 1% benzoic acid at a pH of 7.45. In still another embodiment of the present invention, there is disclosed a second substrate comprised of: tricalcium phosphate wherein the tricalcium phosphate is precipitated with calcium hydroxide/Claw oil; and hydroxyapatite crystals. 3 WO 2014/172459 PCT/US2014/034366 The more important features of the invention have thus been outlined in order that the more detailed description that follows may be better understood and in order that the present contribution to the art may better be appreciated. Additional features of the invention will be described hereinafter and will form the subject matter of the claims that follow. Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention. The foregoing has outlined, rather broadly, the preferred feature of the present invention so that those skilled in the art may better understand the detailed description of the invention that follows. Additional features of the invention will be described hereinafter that form the subject of the claims of the invention. Those skilled in the art should appreciate that they can readily use the disclosed conception and specific embodiment as a basis for designing or modifying other structures for carrying out the same purposes of the present invention and that such other structures do not depart from the spirit and scope of the invention in its broadest form. BRIEF DESCRIPTION OF THE DRAWINGS Other aspects, features, and advantages of the present invention will become more fully apparent from the following detailed description, the appended claim, and the accompanying drawings in which similar elements are given similar reference numerals. 4 WO 2014/172459 PCT/US2014/034366 FIG. I shows an X-Ray view of a patient's teeth before treatment with a soft tissue diode laser before a substrate has been applied. FIG. 2-7 show X-Ray views of the lower teeth of FIG. 1 after treatment with a soft tissue diode laser after treatment with a substrate. FIG. 8 shows an X-Ray view of the upper teeth before treatment with a soft tissue diode laser after treatment with a substrate. Fig. 9 shows an X-ray view of the upper teeth of Fig. 8 after treatment with a soft tissue diode laser after treatment with a substrate. Fig. 10 shows a flow diagram of a method of using a soft tissue diode laser to treat gum disease in accordance with the principles of the invention. Fig. 11 shows bone density measurements for tooth 15 of a patient at 12 loci on the tooth following treatment with a soft tissue diode laser and a substrate over time. Fig. 12 shows bone density measurements for tooth 28 of a patient at 17 loci on the tooth following treatment with a soft tissue diode laser and a substrate over time. Fig. 13 shows bone density measurements for tooth 2, tooth 3 and tooth 15 of a patient at 3 loci per tooth following treatment with a soft tissue diode laser and a substrate over time. Fig. 14 shows X-rays of tooth 15 of a patient from which measurements shown in Fig. 11 were collected. (a) shows tooth 15 before treatment. (b) shows tooth 15 at the October 2011 measurement following three treatments. 5 WO 2014/172459 PCT/US2014/034366 Fig. 15 shows X-rays of tooth 28 of a patient from which measurements shown in Fig. 12 were collected. (a) shows tooth 28 before treatment. (b) shows tooth 28 at the January 2011 measurement following four treatments. Fig. 16 shows a panoramic X-ray of tooth 2, tooth 3 and tooth 15 of a patient from which measurements shown in Fig. 13 were collected. (a) shows the teeth before treatment. (b) shows the teeth at the July 2011 measurement. DETAILED DESCRIPTION OF THE INVENTION Definitions As used herein, the term "gum disease" means periodontal disease which can lead to tooth loss and/or other health problems. Examples of periodontal disease include gingivitis, aggressive periodontitis, chronic periodontitis, periodontitis as a manifestation of systemic diseases, and necrotizing periodontal disease. As used herein, the term "patient" means any individual suffering from a disease of the gums and in need of treatment for said gum disease. As used herein, the term "locus" means an exact point of measurement within the sulcus or the immediate surrounding area. As used herein, the term "substrate mixture" means the mixture of the first substrate and the second substrate disclosed herein for treatment of gum disease. As used herein, the term "bone regeneration" means increasing the density of calcium at specific loci in or around the sulcus. As used herein, the term "calcium density" means the measurement of calcium mass around a given loci. 6 WO 2014/172459 PCT/US2014/034366 The LAPOR protocol can be used in the treatment of gum disease by combining the most effective methods of treatment with the use of a special laser. Approximately 66% of the United States population has some form of gum disease. But many avoid seeking treatment because of the discomfort that often results from gum surgery. LAPOR provides a new choice. The LAPOR protocol is a treatment that is more effective as traditional periodontal surgery, and it is much more beneficial to the patient both in the short term and in the long run. The LAPOR protocol takes only about an hour and only two short follow-up visits. Patients enjoy no downtime with recovery taking only 24 hours. This makes immediate return to work both possible and comfortable. After having the LAPOR protocol performed, gum recession is minimal to none when compared to that which most often follows normal periodontal surgery. This, combined with new cementum formation on the roots, bone formation in previous defects, periodontal ligament formation tooth loss. The special type of laser used in the LAPOR protocol is the diode, a semiconductor coherent light beam used on soft tissues. The laser light used has a wavelength in the visible portion of the electromagnetic spectrum, between 400nm - 700nm wavelength. Optionally, the green range (520 - 570 nm) of the visible spectrum is utilized at a laser power of 0.5 to 1.2 watts, which disinfects the site, leaving the gum tissue bacteria free, and biostimulates healing; in conjunction with treatment with a substrate, the laser biostimulates regeneration of the periodontium. Traditional periodontal therapy removes tissue height of a tooth to reduce the pocket depths. The LAPOR protocol is a regenerative procedure. The patient does not lose tissue volume. Tissue volume is increased and bone is regenerated. The green wavelength is ideally suited for soft tissue procedures since it is highly absorbed by hemoglobin and melanin. This gives the diode laser the ability to, in this case, target the soft tissues. 7 WO 2014/172459 PCT/US2014/034366 The use of the diode laser in conjunction with routine scaling and root planning is more effective than scaling and root planning alone. It enhances the speed and extent of the patients gingival healing and postoperative comfort. This is accomplished through laser bacterial reduction and biostimulation with a laser light having a wavelength in the visible portion of the electromagnetic spectrum, between 400nm - 700nm wavelength. Optionally, the green range (520 - 570 nm) of the visible spectrum is utilized at a laser power of 0.5 to 1.2 watts. Referring to FIG. 10, there is disclosed a method 10 of using a soft tissue diode laser which produces a beam of light, used intermittently, having a wavelength in the visible portion of the electromagnetic spectrum, between 400nm - 700nm wavelength. Optionally, the green range (520 - 570 nm) of the visible spectrum is utilized at a laser power of 0.5 to 1.2 watts to treat gum disease. Starting at block 12, a perio probe determines the degree of excessive pocket depth and thus helps the dentist better identify diseased tissue and areas of bacterial infection. The dentist removes tartar from the root surface using an ultrasonic scaler and hand instruments, block 14. This action by the dentist helps stimulate a healing response in the sulcus by opening up the capillaries upon scaling. Going to block 18, the laser tip is placed inside the sulcus and a continuous light beam with intermittent stops for tissue temperature control is allowed to penetrate the entire sulcus by moving the tip vertically and horizontally throughout the sulcus. The laser tip is cut at a 45 degree angle during the first pass. The laser is cut at the opposite 45 degree angle during the second pass. This allows for the laser beam to penetrate the existing periodontium to decontaminate the tissue, as the heat of the targeted laser light kills the bacteria. This also allows for biostimulation of the sulcular contents. At block 20, the dentist scales the sulcular area and root surfaces once again to induce a healing response through renewed blood flow. Going to block 22, a substrate, such as but not limited to enamel matrix proteins, is then placed in the sulcus of the tooth prior to the blood clot forming and at block 24, a blood clot is carefully allowed to form by gently helping patient keep their mouth open for 5 minutes, to keep the substrate intact. The LAPOR protocol is much less invasive than traditional surgery and offers advantages and benefits over its counterpart. Recovery time is much faster because most, if not all, damage to healthy tissue is avoided through the use of more advanced technology. Because the LAPOR 8 WO 2014/172459 PCT/US2014/034366 protocol leaves healthy tissue intact, the height of the gums themselves around the teeth is much better preserved. The LAPOR protocol prevents long junctional epithelium from migrating downwards into the sulcus, thus preserving the tissue height and allowing for the regeneration of the periodontium. Firstly, the root conditioner is applied to the sulcus. The root conditioner comprises the following at Table 1: Table I Component EDTA 20-25 g. Calcium gluconate 10-20 g. Methylparaben .1-.9 g. Propylparaben .01-.1 g. Ethanolamine 2-8 mIs. Carboxymethylcellulose 2-10 g. Green food coloring 1-2 drops Sterile water 100 mIs. The conditioner is optionally rinsed out prior to application of additional substrates or laser light. Alternatively, the conditioner is left in the sulcus, with the laser light being applied prior to application of any substrate. In an alternative embodiment, the conditioner is left in with only one substrate applied prior to application of the laser light. Optionally, the conditioner is left in the sulcus and substrate is added prior to any application of laser light. 9 WO 2014/172459 PCT/US2014/034366 The placement of the substrate into the sulcus containing luminesced blood enables the luminesced blood to coagulate upon the substrate. The substrate contains building blocks for protein synthesis as well as substances used as energy for protein synthesis. The substrate also contains hard components that are able to be used by the body as a "lattice" for regeneration. The substrate also contains a slow release pH increasing agent to increase the pH for optimal regeneration while not "startling" the body such that it will have a negative reaction to the substrate. Optionally, the liquid substrate is comprised of the following, per 1 L of solution, at Table 2: 10 WO 2014/172459 PCT/US2014/034366 Table 2 Essential % Amino Acids Isoleucine 1.125 Leucine 1.125 Methionine 1.125 Phenylalanine 1.125 Threonine 1.125 Tryptophan 1.125 Valine 1.125 Histidine 1.125 Lysine 9 Non Essential % Amino Acids Alanine 0.25 Arginine 0.25 Aspartate 0.75 Glutamate 0.25 Glycine 0.25 Serine 0.25 Proline 9 Phosphates % ADP 0.667 ATP 0.667 Acetylcholine 0.667 Free Bases % Adenosine 1.725 Uridine 1.725 Guanosine 1.725 Cytidine 1.725 Benzoic Acid 1 Sodium 1.1 Chloride Sterile water 60 Total: 100 11 WO 2014/172459 PCT/US2014/034366 Optionally, the total sterile water component is adjusted 20% up or down, depending on the desired viscosity to be achieved. In an alternative embodiment, the liquid substrate is comprised of the following, at Table 3: 12 WO 2014/172459 PCT/US2014/034366 Table 3 Essential Amino Acids Grams Isoleucine 11.25 Leucine 11.25 Methionine 11.25 Phenylalanine 11.25 Threonine 11.25 Tryptophan 11.25 Valine 11.25 Histidine 11.25 Lysine 90 Non Essential Grams Amino Acids Alanine 2.5 Arginine 2.5 Aspartate 7.5 Glutamate 2.5 Glycine 2.5 Serine 2.5 Proline 90 Phosphates Grams ADP 7-8 ATP 7-8 Acetylcholine 6-7 Free Bases Grams Adenosine 13-14 Uridine 13-14 Guanosine 13-14 Cytidine 13-14 Iridine 13-14 Benzoic Acid 20 Sodium Chloride '1~9 Sterile water .9-1.2L 13 WO 2014/172459 PCT/US2014/034366 Most preferred, the pH of the final solution for the liquid substrate should be 7.45 with a tendency to apply a basic pH. An additional substrate may be applied, the additional substrate comprised of the following: a mixture of tricalcium phosphate and hydroxyapatite crystals. The tricalcium phosphate is precipitated with CaOH/devil's claw oil, in a preferred embodiment. Optionally, the additional substrate include 50% tricalcium phosphate/devil's claw oil precipitated with 50% porous hydroxyapatite crystals. The tricalcium phosphate crystals used are granules in the following sizes: 10-50 pm, 50-150 pm, 100-300 pm, 500-1000 pm, 1-3mm and 3-6 mm. The tricalcium phosphate crystals may be dense or porous. The additional substrate may be comprised of hydroxyapatite crystals of granules containing the following sizes: 10-50 tm, 50-150 pm, 100-300 pm, 500-1000 pm, 1-3mm and 3-6 mm. The hydroxyapatite crystals may be dense or porous. In the following examples, the conditioner is applied and is rinsed out. Optionally, the conditioner is left in the sulcus, as the conditioner allowed the micropores within the tooth structures to remain open. After the conditioner is applied, the sulcus is biostimulated with a laser light. After this occurs, the liquid substrate is applied. Optionally, the additional substrate is applied. Examples . Analysis of Tooth #15 at 12 Unigue Loci A patient's pocket depths at tooth 15 were measured at 12 separate loci. The root of the tooth was then scaled and planed to remove calculus build up on the root surface. After scaling and planning, bleeding occurs in the sulcus. The sulcus was allowed to air dry and immediately thereafter the conditioner is applied to the sulcus and left for 30 seconds before being rinsed with saline. The tooth was next scaled and planed again to renew blood flow. With blood pooling in the sulcus, the 450 laser tip was placed into the sulcus. The laser light used has a wavelength in 14 WO 2014/172459 PCT/US2014/034366 the visible portion of the electromagnetic spectrum, between 400nm - 700nm wavelength. The laser was emitted continuously with only intermittent stops for tissue temperature control. The laser was allowed to penetrate the entire sulcus by moving the tip vertically and horizontally throughout the sulcus for 30 second. The laser tip was cut to 450 in the opposite angle for the second pass into the sulcus and 900 for the third pass to allow the laser bean to penetrate the existing periodontium to decontaminate and biostimulate the sulcular contents. In the meantime, the first substrate and the second substrate were mixed in a glass dish. Some of the patient's blood that has been treated with the laser light in the sulcus was also mixed in the glass dish. This mixture is then placed immediately into the sulcus upon mixture. Enough of the mixture was placed into the sulcus to fill the sulcus while ensuring the mixture stayed 3 mm below the top of the gingival margin and also remained immersed in blood. The patient's mouth was kept open for 5 minutes to ensure the newly formed blood clot containing the substrate mixture remained intact. Treatment was repeated on tooth 15 on four subsequent occasions, at which time the pocket depths at each loci were measured prior to treatment. Measurements are shown in Fig. 11. The data show an increase in calcium density at the specific loci. II. Analysis of Tooth #12 at 17 Unique Loci A patient's pocket depths at tooth 28 were measured at 17 separate loci. The treatment disclosed herein was performed on five subsequent occasions, at which time the pocket depths at each loci were measured prior to treatment. Measurements are shown in Fig. 12. The data show an increase in calcium density across all loci. III.Analysis of Tooth #2, #3 and #15 at 3 Unique Loci Per Tooth A patient's pocket depths at tooth 2, tooth 3 and tooth 15 were measured at three separate loci per tooth. The treatment disclosed herein was performed 3 months after the initial treatment, 15 WO 2014/172459 PCT/US2014/034366 at which time the pocket depths at each loci were measured prior to treatment. Measurements are shown in Fig. 13. The data show a progression of bone generation. While there have been shown and described and pointed out the fundamental novel features of the invention as applied to the preferred embodiments, it will be understood that the foregoing is considered as illustrative only of the principles of the invention and not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are entitled. 16

Claims (13)

  1. 2. The substrate mixture of claim 1, wherein the first substrate is comprised of: a) 60% sterile water b) 1.1% sodium chloride; c) 1% benzoic acid; d) 9% Lysine; e) 9% Proline; f) 9% essential amino acids, wherein the essential amino acids include equal parts Isoleucine, Leucine, Methionine, Phenylalanine, Threonine, Tryptophan, Valine and Histadine; g) 2% non-essential amino acids, wherein the non-essential amino acids include equal parts Alanine, Arginine, Aspartate, Glutamate, Glycine and Serine; h) 2% phosphates, wherein the phosphates include equal parts adenosine diphospate (ADP), adenosine triphosphate (ATP), and Acetylcholine; and i) 6.9% free bases, wherein the free bases include equal parts adenosine, uridine, guanosine, and cytidine.
  2. 3. The substrate mixture of claim 1, wherein the second substrate is comprised of: a) tricalcium phosphate, wherein the tricalcium phosphate is precipitated in calcium hydroxide and Claw oil; and b) hydroxyapatite crystals.
  3. 4. A method for treating gum disease and associated bacteria in a periodontal pocket, the periodontal pocket being defined by opposing root and periodontium surfaces that are detached from one another, the method comprising the following steps: 17 WO 2014/172459 PCT/US2014/034366 Step A: scaling the root surface for detaching bacteria therefrom while simultaneously stimulating the periodontium surface for opening capillaries therein; then Step B: passing a beam of laser light over the root surface for killing bacteria and disinfecting the root surface; Step C: passing a beam of laser light into the opposing periodontium surface for heating and biostimulating the opened capillaries of said Step A in preparation for bleeding therefrom; then Step D: after heating and biostimulating the opened capillaries in said Step C, scaling the root surface again while simultaneously stimulating the periodontium surface for inducing blood flow and bleeding therefrom for displacing bacteria from the periodontal pocket and filling the periodontal pocket with blood; Step E: prior to blood clot formation, placing and maintaining a substrate mixture into the periodontal pocket for facilitating and stabilizing blood clot formation therein; and then Step F: maintaining the substrate mixture of said Step E intact within the periodontal pocket until blood clot formation has occurred; whereby treatment of the gum disease in the periodontal pocket is facilitated by the disinfection of the root surface by scaling and passing a beam of laser light thereover, by the displacement of bacteria from the periodontal pocket by bleeding from the periodontium, and by the subsequent clot formation in the presence of the substrate mixture, clot maintenance, and clot induced healing with the substrate within the periodontal pocket.
  4. 5. The method of claim 4, wherein the substrate mixture is comprised of a first substrate and a second substrate.
  5. 6. The method of claim 5, wherein the first substrate is comprised of: a) 60% sterile water b) 1.1% sodium chloride; c) 1% benzoic acid; d) 9% Lysine; e) 9% Proline; f) 9% essential amino acids, wherein the essential amino acids include equal parts Isoleucine, Leucine, Methionine, Phenylalanine, Threonine, Tryptophan, Valine and Histadine; 18 WO 2014/172459 PCT/US2014/034366 g) 2% non-essential amino acids, wherein the non-essential amino acids include equal parts Alanine, Arginine, Aspartate, Glutamate, Glycine and Serine; h) 2% phosphates, wherein the phosphates include equal parts adenosine diphospate (ADP), adenosine triphosphate (ATP), and Acetylcholine; and i) 6.9% free bases, wherein the free bases include equal parts adenosine, uridine, guanosine, and cytidine.
  6. 7. The method of claim 5, wherein the second substrate is comprised of: a) tricalcium phosphate, wherein the tricalcium phosphate is precipitated in calcium hydroxide and Claw oil; and b) hydroxyapatite crystals.
  7. 8. The method of claim 4 wherein further in said Step F, the substrate mixture is maintained intact in the periodontal pocket for at least 5 minutes.
  8. 9. The method of claim 4, wherein in further in said Step C, the laser light employed is of a type absorbed by haemoglobin and/or melanin and with sufficient duration for heating and biostimulating the opened capillaries.
  9. 10. The method of claim 4, wherein further: in said Step A, the stimulation optionally induces bleeding and blood flow; and in said Step D, the bleeding and blood flow is enhanced over bleeding and blood flow in said Step A due to the heating and biostimulating of the opened capillaries in said Step C; whereby the displacement of bacteria from the periodontal pocket in said Step D is enhanced as compared to said Step A.
  10. 11. The method of claim 4 wherein the scaling in step A is selected from the group consisting of ultrasonic scaling, hand tool scaling, and both ultrasonic and hand tool scaling. 19 WO 2014/172459 PCT/US2014/034366
  11. 12. The method of claim 4, wherein the method further comprises the following step: Prior to said Step A, determining the depth of the periodontal pocket.
  12. 13. The method of claim 4, wherein prior to Step A, the tooth is conditioned with an EDTA gel for at least 30 seconds.
  13. 14. The method of claim 13, wherein the EDTA gel is comprised of: a) sterile water; b) edetate disodium; c) calcium gluconate; d) methylparaben; e) propylparaben; f) ethanolamine; g) carboxymethylcellulose; and f green food coloring. 20
AU2014254001A 2013-04-16 2014-04-16 Laser assisted periodontium and osseus regeneration protocol Active AU2014254001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020200444A AU2020200444B2 (en) 2013-04-16 2020-01-22 Laser assisted periodontium and osseus regeneration protocol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/864,226 US9180319B2 (en) 2011-04-01 2013-04-16 Laser assisted periodontium and osseus regeneration protocol
US13/864,226 2013-04-16
PCT/US2014/034366 WO2014172459A2 (en) 2013-04-16 2014-04-16 Laser assisted periodontium and osseus regeneration protocol

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2020200444A Division AU2020200444B2 (en) 2013-04-16 2020-01-22 Laser assisted periodontium and osseus regeneration protocol

Publications (2)

Publication Number Publication Date
AU2014254001A1 true AU2014254001A1 (en) 2015-11-26
AU2014254001B2 AU2014254001B2 (en) 2019-10-24

Family

ID=51731975

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2014254001A Active AU2014254001B2 (en) 2013-04-16 2014-04-16 Laser assisted periodontium and osseus regeneration protocol
AU2020200444A Active AU2020200444B2 (en) 2013-04-16 2020-01-22 Laser assisted periodontium and osseus regeneration protocol

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2020200444A Active AU2020200444B2 (en) 2013-04-16 2020-01-22 Laser assisted periodontium and osseus regeneration protocol

Country Status (7)

Country Link
EP (1) EP2986250A4 (en)
JP (1) JP6399561B2 (en)
KR (1) KR20160013020A (en)
CN (1) CN105358122B (en)
AU (2) AU2014254001B2 (en)
CA (1) CA2909645A1 (en)
WO (1) WO2014172459A2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950529A (en) 1975-02-03 1976-04-13 Massachusetts General Hospital Amino acid formulations for patients with liver disease and method of using same
US5632972A (en) * 1994-06-30 1997-05-27 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Method for treating gingival and periodontal tissues
US20030199615A1 (en) * 1999-12-09 2003-10-23 Cyril Chaput Mineral-polymer hybrid composition
DE10102372A1 (en) * 2001-01-19 2002-08-14 Merz & Co Gmbh & Co Mixture for the treatment of inflammatory dental diseases and for use as a root canal filling material
US8491936B2 (en) * 2005-03-16 2013-07-23 North Carolina State University Functionally graded biocompatible coating and coated implant
CA2631388A1 (en) * 2005-11-30 2007-06-07 Nomir Medical Technologies, Inc. Optical therapeutic treatment device
ES2397890B1 (en) * 2011-03-25 2014-02-07 Lipotec, S.A. USEFUL PEPTIDES IN THE TREATMENT AND / OR CARE OF SKIN AND / OR MUCOSES AND ITS USE IN COSMETIC OR PHARMACEUTICAL COMPOSITIONS.
US20120251972A1 (en) * 2011-04-01 2012-10-04 Margaret Violett Kalmeta Laser Assisted Periodontium And Osseus Regeneration Protocol
US11730760B2 (en) * 2011-04-01 2023-08-22 The Bioregentech Institute, Inc. Laser assisted wound healing protocol and system
US9180319B2 (en) * 2011-04-01 2015-11-10 Margaret V. Kalmeta Laser assisted periodontium and osseus regeneration protocol

Also Published As

Publication number Publication date
JP2016524591A (en) 2016-08-18
EP2986250A4 (en) 2017-03-22
AU2020200444B2 (en) 2022-05-26
WO2014172459A3 (en) 2015-01-22
AU2020200444A1 (en) 2020-02-13
CA2909645A1 (en) 2014-10-23
CN105358122B (en) 2018-06-01
JP6399561B2 (en) 2018-10-03
WO2014172459A2 (en) 2014-10-23
AU2014254001B2 (en) 2019-10-24
EP2986250A2 (en) 2016-02-24
KR20160013020A (en) 2016-02-03
CN105358122A (en) 2016-02-24

Similar Documents

Publication Publication Date Title
US9180319B2 (en) Laser assisted periodontium and osseus regeneration protocol
US11730760B2 (en) Laser assisted wound healing protocol and system
Trowbridge et al. A review of current approaches to in-office management of tooth hypersensitivity
JP5659147B2 (en) Remineralization of calcified tissue
US11684797B2 (en) Laser assisted wound healing protocol and system
Taniguchi et al. A Novel Surgical Procedure for Er: YAG Laser-Assisted Periodontal Regenerative Therapy: Case Series.
US11745026B2 (en) Laser assisted wound healing protocol and system
AU2016353150B2 (en) Laser assisted wound healing protocol and system
US20120251972A1 (en) Laser Assisted Periodontium And Osseus Regeneration Protocol
AU2020200444B2 (en) Laser assisted periodontium and osseus regeneration protocol
Curylofo-Zotti et al. The combined use of sodium fluoride and Er: YAG laser to control the progression of enamel caries
US11654293B2 (en) Laser assisted wound healing protocol and system
CN108938131A (en) It is a kind of for treating the kit of dentine hypersensitivity
Yoshikawa et al. Periodontal regenerative therapy with enamel matrix derivative and autogenous bone graft in patient with chronic periodontitis: an 18-month follow-up report
Fatima et al. Minimal invasive dentistry: A review
EP3538001A1 (en) Laser assisted wound healing protocol and system
RU2181989C1 (en) Method for treating periimplantitis
RU2179417C1 (en) Surgical method for treating alveolar bone defects on the perodontitis background
Kawle A Comparative Evaluation of the Combined Occluding Effect of Sodium Fluoride Varnish and Er: Yag Laser Irradiation on Dentinal Tubules-A Confocal Laser Scanning Microscope and Scanning Electron Microscope-An in Vitro Study
Watanabe LASER PERIODONTICS
JP2023180375A (en) Non-surgical periodontal regeneration therapy
Khan et al. A Comparison of bioresorbable membrane alone or in Combination with tetracycline root conditioning in treating intrabony defects
Singh et al. List of Articles Pages No.
Elshehawy Effect of low-level laser therapy on the rate of leveling and alignment of the lower anterior teeth: A randomized controlled clinical study
Dwivedi et al. Comparative evaluation of efficacy of diode laser and two commercially available desensitizing toothpastes for dentinal tubular occlusion: A scanning electron microscope (SEM) study

Legal Events

Date Code Title Description
HB Alteration of name in register

Owner name: KALMETA, M.

Free format text: FORMER NAME(S): MOLECULAR SYSTEMS, LTD. ; KALMETA, MARGARET

Owner name: BIOREGENTECH, LLC

Free format text: FORMER NAME(S): MOLECULAR SYSTEMS, LTD. ; KALMETA, MARGARET

FGA Letters patent sealed or granted (standard patent)
PC Assignment registered

Owner name: BIOREGENTECH, INC.

Free format text: FORMER OWNER(S): KALMETA, MARGARET; BIOREGENTECH, LLC

PC Assignment registered

Owner name: THE BIOREGENTECH INSTITUTE, INC.

Free format text: FORMER OWNER(S): BIOREGENTECH, INC.