AU2014202914A1 - Telescoping spout for liquid container with flow control - Google Patents

Telescoping spout for liquid container with flow control Download PDF

Info

Publication number
AU2014202914A1
AU2014202914A1 AU2014202914A AU2014202914A AU2014202914A1 AU 2014202914 A1 AU2014202914 A1 AU 2014202914A1 AU 2014202914 A AU2014202914 A AU 2014202914A AU 2014202914 A AU2014202914 A AU 2014202914A AU 2014202914 A1 AU2014202914 A1 AU 2014202914A1
Authority
AU
Australia
Prior art keywords
spout
cap
sleeve
tube
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2014202914A
Inventor
Brandy Lamb
Patrick J. Wade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WD 40 Co
Original Assignee
WD 40 Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WD 40 Co filed Critical WD 40 Co
Publication of AU2014202914A1 publication Critical patent/AU2014202914A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D47/00Closures with filling and discharging, or with discharging, devices
    • B65D47/04Closures with discharging devices other than pumps
    • B65D47/06Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages
    • B65D47/061Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages with telescopic, retractable or reversible spouts, tubes or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D47/00Closures with filling and discharging, or with discharging, devices
    • B65D47/04Closures with discharging devices other than pumps
    • B65D47/06Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages
    • B65D47/12Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages having removable closures
    • B65D47/122Threaded caps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Closures For Containers (AREA)

Abstract

PAT WADE 1207-528PCT BRANDY LAMB TELESCOPING SPOUT FOR LIQUID CONTAINER WITH FLOW CONTROL Abstract of the Disclosure The telescoping spout includes a base through which a flexible tube extends and a sleeve fixed to the distal end of the tube. The sleeve is frictionally received on the base and is moveable to a position remote from the base to extend the tube. The sleeve has an open end with a protrusion. A cap with a small aperture in its top surface is received on the sleeve. The cap is rotatable from a position where the sleeve protrusion seals the cap aperture to prevent all liquid flow to a position where the liquid flow rate through, the spout is controlled by the location of the sleeve protrusion relative to the cap aperture. Flow rate control by rotating the cap can take place regardless of the extension of the tube. Removal of the cap permits liquid flow at the maximum flow rate.

Description

PATRICK J. WADE 1207-528PCT BRANDY LAMB TITLE OF THE INVENTION TELESCOPING SPOUT FOR LIQUID CONTAINER WITH FLOW CONTROL CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority of patent application 13/772,048 filed in the United States Patent and trademark Office on February 20, 2013. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not Applicable REFERENCE TO A "SEQUENCE LISTING", A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON COMPACT DISC Not Applicable BACKGROUND OF THE INVENTION 1 FIELD OF THE INVENTION The present invention relates to a telescoping spout for dispensing lubricant or other liquid from a container, and more particularly to a telescoping spout for a liquid container which is capable of controlling the rate of liquid flow through the spout at all positions of the spout. 2. DESCRIPTION OF PRIOR ART INCLUDING INFORMATION DISCLOSED UNDER 37 CFR 197 AND 198 Containers for various liquids are well known and commonly used for many purposes. Many such containers are made of flexible or semi-rigid material such as plastic or metal which can be squeezed by the user to cause the liquid in the container to exit the mouth of the container. Because the mouth of the container must be relatively large to facilitate filling of the container, it is common to have a spout associated with the neck of the container. The spout often has an opening substantially smaller than that of the mouth of the container such that only a relatively small amount of liquid can exit the container at one time when the container is squeezed. It is also common to provide a cap for the mouth of the container. The cap prevents liquid from exiting the container when it is in place. Often the neck of the 2 container and the spout are provided with screw threads which engage to mount the cap on and removed from of the container. Certain liquids must be delivered to particular a location when dispensed from the container. Because the target area to which the liquids must be dispensed may be small, or may be located in an inaccessible place, accurately dispensing the liquid directly from the mouth of the container to the target area may be difficult. To overcome that, the neck of the container may be elongated to permit more accurate delivery of the liquid. Moreover, in certain situations, because of the nature of the liquid being dispensed, it may be critical that the liquid be dispensed only to the target area and not to the surrounding area. In such situations, an extendible or telescoping spout may be employed to more accurately convey the liquid from the container to the target area. Lubricants fall into this category because they often must be dispensed to small, difficult to reach parts within large machines without contact being deposited on parts of the machine not being lubricated. In addition, the flow rate of liquid which is dispensed may be an issue. For example, in the lubricant situation, even if the lubricant is delivered directly to the part within the machine to be lubricated, if too large a quantity of liquid is deposited on the part to be lubricated, the lubricant may drip onto other parts of the machine where it is not wanted. That is particularly true when a squeeze bottle type container is used because it is difficult to accurately gage the amount of pressure which must be applied to the bottle to dispense only the desired amount of lubricant. It is therefore a prime object of the present invention to provide a spout for a liquid container which extends to permit accurate delivery of the liquid to a target area. 3 It is another object of the present invention to provide an extendible or telescoping spout which allows control of the flow rate of the liquid being dispensed. It is another object of the present invention to provide an extendible or telescoping spout which allows the flow rate of the liquid being dispensed to be controlled at all extension positions of the spout. It is another object of the present invention to provide an extendible or telescoping spout in which the position of the cap controls the flow rate of the liquid through the spout. It is another object of the present invention to provide an extendible or telescoping spout in which liquid flow through the spout may be prevented entirely, may be controlled or may be maximized, It is another object of the present invention to provide an extendible or telescoping spout in which liquid may be delivered to a target located proximate the neck of the container or to a target located remotely from the container. It is another object of the present invention to provide an extendible or telescoping spout formed of simple, inexpensive parts which operate together in a highly reliable manner to create a mechanism with a long useful life. It is another object of the present invention to provide an extendible or telescoping spout formed of parts which cooperate together and move relative each other in a leak-proof manner. 4 BRIEF SUMMARY OF THE INVENTION Those objects are achieved by the present invention which relates to a telescoping spout for a liquid container. The container is of the type having a mouth defined by a neck and a tube which extends into the container and has an open distal end. The spout includes a base adapted to be received on the container neck and through which the tube extends. A sleeve is fixed to the distal end of the tube. The sleeve is adapted to be received on the base and is moveable from the base to a position remote from the base to extend the tube. A cap is adapted to be received on and to cooperate with the sleeve to control the liquid flow rate through the spout. The cap has a surface with an aperture. The cap is moveable relative to the sleeve between a first position, wherein the aperture is sealed and liquid flow through the spout is prevented, and a second position, wherein liquid flow through the spout can take place through the aperture. The aperture is substantially smaller than the diameter of the tube. The neck of the container is externally threaded. An internally threaded section of the base is adapted to cooperate with the externally threaded neck of the container to mount the spout on the container. The base has an elongated section. The sleeve is adapted to be received on the elongated section of the base. The sleeve has an externally threaded section. The cap has an internally threaded section adapted to engage the externally threaded section of the sleeve. The sleeve includes a tubular section with an open end. The tubular section is adapted to engage the distal end of the tube. -5 The elongated sleeve section includes means for sealing the cap aperture when the cap is in its first position. The base includes means for engaging the neck of the container. The sleeve includes means for frictionally engaging the base. The cap includes means for engaging the sleeve. The base has an externally textured surface. One or more fins radially extend from the elongated section of the base. The cap includes an external textured surface having at least one non-textured portion. Preferably two non-textured portions are provided on opposite sides of the cap. The sleeve includes a protrusion adapted to seal the aperture in the cap when the cap is in its first position. In accordance with another aspect of the present invention, a telescoping spout is provided for a liquid container. The container is of the type having a mouth defined by a neck and a tube with an open distal end. The spout includes a first part mounted on the container neck and having an end through which the tube extends. A second part of the spout is fixed to the distal end of the tube. The second part is adapted to be received on the first part and is moveable, with the distal end of the tube, from the first part to a position remote from the first part. A third part of the spout is adapted to be received on the second part The third part is moveable relative to the second part between a first position, wherein liquid flow through the spout is prevented, and a second position, wherein liquid flow rate through the spout is controlled. The third part is removable from the second part to maximize liquid flow through the spout. 6 The third part has an aperture. The aperture in the third part is substantially smaller than the diameter of the tube. The spout includes means for sealing the aperture when the third part is in its first position. The distal end of the tube is moveable between a position proximate the first part and a position remote from the first part by moving the second part relative to the first part. The third part is rotatably mounted relative to the second part. The rotational position of the third part controls liquid flow rate through the spout. BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF DRAWINGS To these and to such other objects that may hereinafter appear, the present invention relates to a telescoping spout for a liquid container with flow control as described in detail in the following specification and recited in the annexed claims, taken together with the accompanying drawings, in which like numerals refer to like parts and in which: Figure 1 is a perspective view of a container with the spout of the present invention; Figure 2 is a perspective view of a container with the spout of the present invention, the spout being shown partially extended with the cap removed; Figure 3 is a cross-sectional view of the cap; Figure 4 is an enlarged cross-sectional view of the top of the cap of Figure 3; Figure 5 is an elevation view of the distal end of tubular section of the sleeve; '7 Figure 6 is a cross-sectional view of the distal end of the tube and the sleeve mounted to the tube; Figure 7 is an enlarged cross-sectional view of the distal end of the tubular section of the sleeve, taken along line 7-7 of Figure 5; Figure 8 is a cross-sectional view of base with a section of the tube extending though the base; Figure 9 is a cross-sectional view of the top of the container with the spout of the present invention mounted thereon, showing the sleeve mounted on the base and the cap in its flow preventing position; Figure 10 is an enlarged cross-sectional view of a portion of the elongated section of the base with the sleeve mounted thereon, showing the cap in its flow rate controlling position; Figure II is an enlarged cross-sectional view of the distal end of the sleeve with the cap in the flow rate controlling position, as seen in Figure 11; Figure 12 is an enlarged cross-sectional view of the distal end of the base with the sleeve mounted thereon and the cap removed, permitting maximum flow through the spout; Figure 13 is a perspective view of the top of a container with the spout of the present invention mounted thereon, the spout being shown with the tube in the fully extended position and the cap in its flow rate controlling position; Figure 14 is an enlarged cross-sectional view of the end of the tube, the sleeve and cap, showing the cap in its flow rate controlling position; and 8 Figure 15 is an enlarged cross-sectional view of the sleeve of Figure 14, with the cap removed to permit maximum flow through the spout. DETAILED DESCRIPTION OF THE INVENTION The telescoping spout of the present invention, generally designated A, is designed for use with a container 10. Container 10 preferably takes the form of a bottle made of plastic or other flexible or semi-rigid material, such that the container can be squeezed by the user to cause the liquid in the container to exit the open mouth of the container. The spout of the present invention is particularly well suited for use with container for dispensing a lubricant or other liquid 12 which sometimes must be deposited on a part or other target area which would be difficult to reach directly from the mouth of the container. The mouth of container 10 is defined by a neck 14. As best seen in Figures 2 and 9, neck 14 of the container is provided with external screw threads 16. Spout A is removably mounted to neck 14 by engaging screw threads 16. A hollow tube 1.8, preferably made of flexible plastic or similar material, is provided within container 10. Tube 18 has an open proximal end 20 situated within the container. Tube end 20 is provided with a flange 21 to prevent the tube from being pulled out of the spout and the spout is extended. The tube also has open distal end 22 which extends through neck 14 of the container and is fixed to the spout. Accordingly, as the spout is extended, the distal end of tube 20 will move with it. 9 Spout A. is composed of three parts: a base 24; a sleeve 26; and a cap 28. Base 24 has an internally threaded lower section 30 designed to fit over neck 14 of container 10 and to engage the external screw threads 16 on neck 14, as seen in Figures 2 and 9. Base 24 also includes an elongated hollow upper section 32 mounted on threaded section 30. Base 24 has an internal bore 34 through which tube 18 extends, see Figures 8 and 9. As best seen in Figures 8 and 9, the threaded section 30 of base 24 is provided with a hollow cylindrical wall 31. Wall 31 extends downwardly into the neck of the container when the base is mounted on the neck such that the neck is contacted on both its internal surface and its external surface by the base to prevent leakage. Tube 18 may be moved through the bore 34 in base 24, as seen in Figure 2, between a retracted position of the spout, as seen in Figure 1, and a fully extended position of the spout, as seen in Figure 13. The internal diameter of bore 34 is selected to be slightly larger than the external diameter of tube 18 such that a liquid-tight seal is achieved between the base and the tube. This seat prevents liquid from exiting the container on the exterior surface of the tube as the tube is extended. It also creates a snug fit between the parts such that friction will cause the tube to remain at any position relative to the base to which it is moved, without external assistance. Sleeve 26 is mounted on and pennanently affixed to the distal end 22 of tube 18, as best seen in Figure 6. Sleeve 26 has a hollow lower section 36 adapted to be received over and frictionally engage the distal end 40 of the elongated section 32 of base 24. In order to extend tube 18, sleeve 26 is moved away from base 24, as seen in Figure 13. Since tube 18 is fixed to sleeve 26, as sleeve 26 is moved away from base 24, so is the 10 distal end 22 of tube 18. Sleeve 26 has a tubular section 38 which extends from section 36 of sleeve 26. Cap 28 is rotatably received over tubular section 38 of sleeve 26, as seen in Figure 9. The lower portion of tubular section 38 of sleeve 26 is provided with external screw threads 42, see Figure 6. Cap 28 is hollow and has internal screw threads 44 within its lower portion. The screw threads 42 of the sleeve are adapted to be engaged by screw threads 44 of cap 28 to mount the rotatably mount the cap on the sleeve. The cap and sleeve cooperate to control the liquid flow rate through the spout based upon the position of the cap relative to the sleeve. In one position of the cap, all liquid flow through the spout is prevented. Rotation of the cap from its flow preventing position allows the cap to control the liquid flow rate. The further the cap is moved from its flow preventing position, the greater the liquid flow rate through the spout, up to a level defined by the size of an aperture in the cap, as explained below. When the cap is removed from the sleeve entirely, it no longer interferes with or restricts liquid flow through the spout, and the liquid flow rate through the spout is at its maximum, which is defined by the size of die opening at the end of the tubular section 38 of the sleeve. The position of the cap relative to the sleeve is adjusted by rotating the cap relative to the sleeve to linearly move the cap toward or away from the end of the sleeve. As can best be understood by reference to Figures 3-7, the distal end of tubular portion 38 of sleeve 26 has an opening 46 through which liquid from the end of tube 18 can flow. Extend over opening 46 is a protrusion 48 which has a truncated conical shape. Protrusion 48 is held in place over opening 46 by members 50, extending inwardly from the wall of the sleeve, on either side of the protrusion. Accordingly, when viewed from 11 above, as seen in Figure 5, opening 46 appears to be two spaced, half-moon shaped openings, 46a and 46b. Protrusion 48 covers a portion of opening 46 at the end of the sleeve. However, the majority of liquid which flows through the end of tube 18 can still pass through the sleeve. That defines the maximum liquid flow rate through the spout, which occurs when the cap is removed from the sleeve. Rotating the cap relative to the sleeve restricts the liquid flow rate to a degree determined by the position of the cap on the sleeve. As is best seen from Figures 3 and 4, the top surface 52 of the cap has an aperture 54. Aperture 54 is substantially smaller that the diameter of the distal end of tube 18 and of opening 46 at the end of sleeve section 38. When viewed from the side, aperture 54 has a truncated conical shape, similar to that of protrusion 48, see Figure 4. As cap 28 is rotated in a clockwise direction (as indicated by the arrow in Figure 13) relative to the sleeve to a position where the cap is closest to section 36 of the sleeve, protrusion 48 is received snuggly within opening 54 in, the cap, entirely seals the cap aperture, and prevents all liquid flow through the spout. As cap 28 is rotated relative to the sleeve in the counter-clockwise direction, the cap moves away from section 36 of the sleeve, causing protrusion 48 to gradually withdraw from aperture 54 such that limited liquid flow through the cap aperture, and hence through the spout, is possible. The more the cap is rotated to move away from section 36 of the sleeve, the more the protrusion is withdrawn from the aperture, and the higher the liquid flow rate through the cap. Eventually, the cap will be rotated such that the screw threads of the cap no longer engage the screw threads of the sleeve and the cap can be removed from the sleeve. Once removed from the sleeve, the cap no longer 12 restricts the liquid flow rate through the spout, allowing liquid flow through the spout at the maximum flow rate. Control of the liquid flow rate through the spout, obtained by adjusting the position of the cap relative to the sleeve, can take place regardless of the extent to which the tube is extended relative to the container. Accordingly, control over the liquid flow rate through the spout can be achieved whether the tube is extended to its maximum length, is not extended at all, or is at any position therebetween. Figures 10-12 illustrate the flow control mechanism when the sleeve is received on the base, that is, tube 18 is not extended. In Figures 10 and 11, the cap is situated on the sleeve but rotated to a position where the cap aperture 54 is not sealed by sleeve protrusion 48, such that the flow of liquid from the tube is restricted by the size of aperture 54 in the cap. Figure 12 shows that removal of the cap allows maximum flow through the spout, which is limited only by the size of the opening 46 at the distal end of the sleeve, which opening is substantially larger than that of aperture 54 in the cap. Figures 14 and 15 show tube 18 in its extended position, where the sleeve is not received on the base. In Figure 14, the cap is mounted on the sleeve but is rotated such that the cap is spaced from section 36 of the sleeve and protrusion 48 is not situated in cap aperture 54. In that position, liquid flow through the spout is possible but only up to the level determined by the size of aperture 54 in the cap. Figure 15 shows that when the cap is removed, maximum flow is possible, restricted only by the size of opening 46 at the distal end of the sleeve. Preferably, the external surface of section 30 of the base is textured to form an irregular surface which is easy to grab, even with wet fingers. One or more fins 56 13 radially extend from the elongated section 32 of base 24. Fins 56 serve to strengthen the elongated section of the base. The exterior surface of cap 28 may also be textured to improve the user's grip. In addition, the inclined exterior surface of cap 28 is preferably provided to two oppositely facing substantially flat, non-textured surfaces 58 to facilitate grasping and rotation of the cap. It will now be appreciated that the present invention includes a twist to open and close cap which controls the liquid flow rate through the spout regardless of whether or to what extent the tube is extended. The half-moon shaped openings at the distal end of the sleeve allow for even flow of the liquid from the container. The length of tube is only limited by the height of the container and may extend more than 6 inches beyond the neck of the container. The telescoping spout therefore can reach into tight spaces, allowing for precision application of the liquid. The elongated portion of the base aids in aiming the spout to deposit liquid into the target area and only where it is needed. The base is provided with dual contact areas which are positioned on either side of the neck of the bottle and prevent leaking. The clear bottle design allows the user to observe the level of liquid remaining in the bottle. The squeezable bottle allows the user to control the amount of liquid coming out the spout for drip application or small squirt applications. 14 While only a single preferred embodiment of the present invention has been disclosed for purposes of illustration, it is obvious that many modifications and variations could be made thereto. It is intended to cover all of those modifications and variations which fall within the scope of the present invention, as defined by the following claims. 15

Claims (25)

1. A telescoping spout for a liquid container of the type having a mouth defined by a neck and a tube with an open distal end, said spout comprising a base adapted to be received on the container neck and through which said tube extends, a sleeve fixed to said distal end of said tube, said sleeve being adapted to be received on said base and being moveable to a position remote from said base, and a cap adapted to be received on and to cooperate with said sleeve to control liquid flow rate through said spout.
2. The spout of claim I wherein said cap comprises an aperture and is moveable relative to said sleeve between a first position, wherein said cap aperture is sealed, and a second position, wherein liquid can flow through said aperture.
3. The spout of claim 2 wherein said aperture in said cap is substantially smaller than the diameter of the tube.
4. The spout of claim I wherein the neck of the container is externally threaded and further comprising an internally threaded section of said base adapted to engage said externally threaded neck of the container.
5. The spout of claim I wherein said base comprises an elongated section.
6. The spout of claim 5 wherein said sleeve is adapted to be received on said elongated section of said base.
7. The spout of claim I wherein said sleeve has an externally threaded section.
8. The spout of claim 7 wherein said cap has an internally threaded section adapted to engage said externally threaded section of said sleeve.
9. The spout of claim 2 wherein said sleeve comprises a tubular section, and wherein said cap is adapted to be received on said tubular section of said sleeve. 16
10. The spout of claim 9 wherein the distal end of the tube is fixed to said tubular section of said sleeve.
11. The spout of claim 9 wherein said tubular section of said sleeve comprises means for sealing said cap aperture, when said cap is in said first position.
12. The spout of claim I wherein said base further comprises means for engaging the neck of the container.
13. The spout of claim I wherein said sleeve further comprises means for frictionally engaging said base.
14. The spout of claim 1 wherein said cap further comprises means for engaging said sleeve.
15. The spout of claim I wherein said base comprises an externally textured surface.
16. The spout of claim 5 further comprising a fin radially extending from said elongated section of said base.
17. The spout of claim I wherein said cap comprises an external textured surface having at least one non-textured portion.
18. The spout of claim 17 wherein said at least one non-textured portion of said cap surface comprises two non-textured portions on opposite sides of said cap.
19. The spout of claim 2 wherein said sleeve comprises a protrusion, said protrusion being adapted to seal said cap aperture when said cap is in said first position.
20. A telescoping spout for a liquid container of the type having a mouth defined by a neck and a tube with an open distal end, said spout comprising: a first part mounted on the container neck through which the tube extends; a second part fixed to the distal 17 end of the tube, said second part being adapted to be received on said first part and being moveable with the distal end of the tube to a position remote from said first part; and a third part adapted to be received on said second part and being moveable relative to said second part between a first position, wherein liquid flow through said spout is prevented, and a second position, wherein the liquid flow rate through said spout is controlled, said third part being removable from said second part to maximize liquid flow through said spout.
21. The spout of claim 20 wherein said third part comprises an aperture, said aperture in said third part being substantially smaller than the diameter of the tube.
22. The spout of claim 20 wherein said third part comprises an aperture and further comprising means on said second part for sealing said aperture in said third part, when said third part is in said first position.
23. The spout of claim 22 wherein said sealing means comprises a protrusion extending from said second part.
24. The spout of claim 20 wherein said third pail is rotatably mounted on said second part.
25. The spout of claim 24 wherein the rotational position of said third part controls the liquid flow rate through the spout. 18
AU2014202914A 2013-02-20 2014-02-20 Telescoping spout for liquid container with flow control Abandoned AU2014202914A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/772,048 2013-02-20
US13/772,048 US20140231468A1 (en) 2013-02-20 2013-02-20 Telescoping spout for liquid container with flow control
PCT/US2014/017407 WO2014130677A1 (en) 2013-02-20 2014-02-20 Telescoping spout for liquid container with flow control

Publications (1)

Publication Number Publication Date
AU2014202914A1 true AU2014202914A1 (en) 2014-09-04

Family

ID=51350445

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2014202914A Abandoned AU2014202914A1 (en) 2013-02-20 2014-02-20 Telescoping spout for liquid container with flow control

Country Status (4)

Country Link
US (1) US20140231468A1 (en)
AU (1) AU2014202914A1 (en)
CA (1) CA2856930A1 (en)
WO (1) WO2014130677A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10173813B2 (en) 2016-09-29 2019-01-08 Dow Global Technologies Llc Flexible container with pop-up spout
US11053056B2 (en) * 2017-04-14 2021-07-06 Sanford, L.P. Anti-clog cap and associated containers and methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734665A (en) * 1956-02-14 Device for discharging liquids from
US1797676A (en) * 1929-06-24 1931-03-24 Standard Oil Co California Extension-spout oil can
US3809299A (en) * 1973-01-09 1974-05-07 N Sand Captive dispenser cap
US5388712A (en) * 1993-07-19 1995-02-14 Norvey, Inc. Squeeze bottle top with integral closure holder
US5431305A (en) * 1994-04-15 1995-07-11 Owens-Illinois Plastic Products Inc. Tamper evident liquid dispensing package
US5465876A (en) * 1994-06-09 1995-11-14 Portola Packaging, Inc. Container and closure resealable bottle cap with push pull closure
US6293436B2 (en) * 1999-10-29 2001-09-25 Wd-40 Company Liquid container with extensible dispensing tube
US8517216B2 (en) * 2008-04-02 2013-08-27 Kenneth L. MacDougall Angled spout dispensing device

Also Published As

Publication number Publication date
WO2014130677A1 (en) 2014-08-28
US20140231468A1 (en) 2014-08-21
CA2856930A1 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
US7658306B2 (en) Drink pouring dispenser
US4128189A (en) Device for improving the pourability of fluids and also forming an improved closure for a container of such fluids
US9807976B2 (en) Closeable container cap
US7959036B2 (en) Elastomeric dispensing container
US9187219B2 (en) Pour lip closure with drain back
US9120112B2 (en) Metered liquid dispensing bottle
US9254944B1 (en) Assembly and method for pouring liquid from a container
AU2008201002A1 (en) Vessel
US10196196B2 (en) Watertight liquid dispenser with syringe-like functions
AU2014202914A1 (en) Telescoping spout for liquid container with flow control
US7775400B2 (en) Rotatable, reclosable closure
US20120033898A1 (en) Plastic two-piece dosing cap
US2938653A (en) Dispensing cap for tubular containers
WO2016141311A1 (en) Packaging closure adapter
US20210001360A1 (en) Probe
US20110297705A1 (en) Reclosable Dispensing Container Cap For Flowable Material Containers
US11001420B2 (en) Smart liquid container
JP5515259B2 (en) Cock-type spout tap
US1992320A (en) Metallic container opening attachment for a tap or plug
US20170283135A1 (en) Container for viscous liquid comprising a cap provided with a tap
US20150108151A1 (en) Venting Device for Liquid Container
US20160318671A1 (en) Internal pull-out expandable contractible pour spout cap for liquid container openings
JP6157261B2 (en) Hinge cap
US20100320229A1 (en) Valve construction
US2617561A (en) Drip-feed device

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted