AU2014200449B2 - Suppression of neuroendocrine diseases - Google Patents

Suppression of neuroendocrine diseases Download PDF

Info

Publication number
AU2014200449B2
AU2014200449B2 AU2014200449A AU2014200449A AU2014200449B2 AU 2014200449 B2 AU2014200449 B2 AU 2014200449B2 AU 2014200449 A AU2014200449 A AU 2014200449A AU 2014200449 A AU2014200449 A AU 2014200449A AU 2014200449 B2 AU2014200449 B2 AU 2014200449B2
Authority
AU
Australia
Prior art keywords
cys
phe
trp
lys
peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2014200449A
Other versions
AU2014200449A1 (en
Inventor
Keith Foster
Stephen Johnstone
Philip Marks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ipsen Bioinnovation Ltd
Original Assignee
Ipsen Bioinnovation Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009259033A external-priority patent/AU2009259033B2/en
Application filed by Ipsen Bioinnovation Ltd filed Critical Ipsen Bioinnovation Ltd
Priority to AU2014200449A priority Critical patent/AU2014200449B2/en
Publication of AU2014200449A1 publication Critical patent/AU2014200449A1/en
Application granted granted Critical
Publication of AU2014200449B2 publication Critical patent/AU2014200449B2/en
Assigned to IPSEN BIOINNOVATION LIMITED reassignment IPSEN BIOINNOVATION LIMITED Request to Amend Deed and Register Assignors: SYNTAXIN LIMITED
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

5 Suppression of neuroendocrine disease The present invention relates to a method for suppressing neuroendocrine disease. The therapy employs use of a non-cytotoxic protease, which is targeted to a neuroendocrine tumour cell, preferably 10 via a somatostatin or cortistatin receptor, a GHRH receptor, a ghrelin receptor, a bombesin receptor, a urotensin receptor a melanin concentrating hormone receptor 1; a KiSS-1 receptor or a prolactin releasing peptide receptor. When so delivered, the protease is internalised and inhibits secretion from said tumour cell. The present 15 invention also relates to polypeptides and nucleic acids for use in said methods.

Description

Suppression of neuroendocrine diseases The present application is a divisional application from Australian patent application number 2009259033, the entire disclosure of which is incorporated herein by 5 reference. The present invention relates to therapeutics and corresponding therapies for the treatment of neuroendocrine diseases and conditions. 10 The neuroendocrine system is formed from cells derived from the embryonic neural crest, neuroectoderm and endoderm. It can be divided into cell types that form glands and others that are diffusely distributed, i.e. the disseminated or diffuse neuroendocrine system. The first group include those cells forming the pituitary, the parathyroid glands and the adrenal medulla. The second group include cells in the 15 skin, lung, thymus thyroid, pancreas, and the GI, biliary and urogenital tracts. Neuroendocrine tumours can arise in all these locations and can cause pathophysiology by either their physical size causing localised pressure or constrictions on surrounding organs, or by abnormal secretions of a variety of hormones and other bioactive molecules. These molecules are normally secreted by 20 non-tumour cells in physiologically appropriate amounts and under tight physiological control. When these cells form tumours, however, the secretions can be excessive leading to disease. Current therapies for these hypersecretion diseases can include surgical removal of 25 the tumour(s), generic anti-tumour chemotherapy, interferon therapy, radiotherapy and more specific treatment with, for example, somatostatin analogues. The preference for initial treatment mode varies according to the consultant physician and, while each of these approaches can be successful, they are not always appropriate. Depending on the size and location of the tumour surgical intervention may be 30 considered too risky and the tumour may not be completely removed. Anti-tumour chemotherapy, interferon therapy and radiotherapy are sometimes poorly tolerated by the patient or may be contra-indicated for other reasons 1 Furthermore, therapies resulting in tumour cell death also introduce the prospect of tumour lysis syndrome (TLS) occurring. TLS is a very serious and sometimes life threatening complication of tumour therapy. It can be defined as a constellation of metabolic abnormalities resulting from spontaneous or treatment-related tumour 5 necrosis or fulminant apoptosis. The metabolic 1a abnormalities observed in patients with TLS include: hyperkalaemia, hyperuricaemia, and hyperphosphataemia with secondary hypocalcaemia. TLS can also lead to acute renal failure (ARF). 5 In the majority of patients with metastatic carcinoids and pancreatic endocrine tumours, treatment with current medicaments such as octreotide may induce a rapid improvement in clinical symptoms, such as diarrhoea, dehydration, flushing attacks, hypokalaemia, peptic ulceration, hypoglycaemic attacks and necrotic skin lesions (Kvols et al. 1986, 1987, Ruszniewski et al. 1996, Capin et 10 al. 1998, Kulke & Mayer 1999, Wymenga et al. 1999). However, the majority of patients show desensitisation of the inhibition of hormone secretion by octreotide and lanreotide within weeks to months. These limitations on current therapies represent a major problem. 15 Neuroendocrine tumours, including gastroenteropancreatic endocrine tumours and pituitary adenomas are rare and heterogeneous diseases (table 1). As a result their prognosis and long-term survival are not well known. Regardless of survival prospects, the excessive secretions from such tumours can markedly affect quality of life for the affected individuals and so effective 20 treatment of this aberrant function is a requirement to maintain quality of life in sufferers. Table 1 Incidence/prevalence of major neuroendocrine tumours (U.S. unless otherwise stated) Tumour type Incidence carcinoid tumours Approximately 5,000 carcinoid tumours per annum are diagnosed. According to the National Cancer Institute (NCI), approximately 74% of these tumours originate in the GI tract and 25% occur in the respiratory tract. Carcinoids are rare in children and are more common in patients older than the age of 50. They are twice as common in men. Carcinoid tumours of the appendix usually are benign and often occur between the ages of 20 and 40. 2 Insulinomas The incidence is approximately 4 cases per million per year and the prevalence is approximately 4 per million population per year Gastrinomas The incidence of gastrinomas occurring sporadically or in association with multiple endocrine neoplasia type 1 (MEN-1) is 0.1-3 per million. The prevalence of MEN-1 is 0.2-2 per 100,000. MEN-1 is diagnosed in 30-38% of patients with gastrinomas, whereas 20 61% of patients diagnosed with MEN-1 are found to have gastrinomas associated with ZES (Zollinger Ellison Syndrome) VlPomas Prevalence = 1.12 per million of the population Glucagonomas Glucagonoma is listed as a "rare disease" by the Office of Rare Diseases (ORD) of the National Institutes of Health (NIH). Prevalence = approx 1 in 2,720,000 people in USA Prolactinoma Incidence: 6-10 per million per year. Prevalence 60-100 per million somatotrophinoma Prevalance of Acromegaly: 40-60 per million affected people at any time; Incidence (annual) of Acromegaly: 3 per million annual cases corticotrophinoma Incidence: 2-3 per million per year. Prevalence 20-30 per million phaeochromocytoma In Western countries the prevalence of phaeochromocytoma can be estimated to lie between 1:6,500 to 1:2,500 with an annual incidence in the United States of 500 to 1,100 cases per year Thyrotrophinoma Very rare Generally the symptoms of these tumours vary depending on the tumour type as they each secrete different hormones causing different symptoms (table 2). 5 3 Table 2 Symptoms or diseases caused by hypersecretion from neuroendocrine tumours Tumour type Pathophysiology and symptoms (caused by hypersecretion rather than tumour mass) carcinoid tumours A combination of symptoms that result from secretion of hormone or hormone-like substances (e.g. serotonin, gastrin, ACTH, histamine) that are produced by some carcinoid tumours. These symptoms include flushing, diarrhoea, cramp-like abdominal pain, swelling of skin or face and neck, wheezing, weight gain, increased body and facial hair, diabetes, headaches, oedema, lacrimation, weakness, pulmonary hypertension, symptoms of heart failure including shortness of breath Insulinomas Blurred vision, diplopia, weakness, palpitations, confusion and bizarre behaviour. Hypoglycaemia tends to occur 5 hours or so after a meal and the associated symptoms may be affected by diet, ingestion of ethanol and exercise Gastrinomas Diarrhoea, gastritis, recurrent gastric ulcers VlPomas Watery diarrhoea (3-20 litres per day), hypokalaemia, hypomagnesaemia, hypercalcaemia, acidosis, flushing, flaccid distended bladder, ileus/subileus. Diabetes or glucose intolerance are also common. Glucagonomas Necrolytic erythematous rash (often on the face, extremities and intertrigenous areas), anaemia, weight loss, impaired glucose tolerance, thrombosis and diarrhoea. corticotrophinoma Cushing's disease resulting from ACTH inducing excess circulating cortisol somatotrophinoma Acromegaly prolactinoma oligomenorrhea/amenorrhea, galactorrhea, vaginal dryness, loss of libido in females; sexual dysfunction (impotence), galactorrhea and gynaecomastia in 4 males phaeochromocytoma A wide range of symptoms resulting from metabolic and hemodynamic actions of circulating catecholamines. Sustained or paroxysmal hypertension is the most common clinical sign found in more than 90% of patients; with decreasing frequency:- headache, palpitations, pallor, nausea, flushing, weight loss, tiredness. Anxiety/panic, orthostatic hypotension, hyperglycaemia Thyrotrophinoma Thyrotoxicosis (overactivity of the thyroid gland), symptoms of which include weight loss in spite of increased appetite, rapid heart rate, a fine tremor, increased nervousness and emotional instability, intolerance of heat, and excessive sweating staring, bulging eyes, enlargement of the thyroid gland; in about a third of cases, the tumour also produces excess growth hormone resulting in mild acromegaly Current therapies are highly individualised as the symptoms experienced by each patient are often different and may also be changing over time. The three potential aims of treating a patient are (1) to remove the tumour, (2) to 5 slow down or stop the growth of the tumour or (3) to ameliorate the symptoms caused by hypersecretion from the tumour - all three may be sought in combination. The most common current therapies are described below. Carcinoid tumours/carcinoid syndrome 10 A 2-pronged approach is often used in the treatment of carcinoid syndrome, beginning with surgery to remove the tumour or reduce its size, followed by treatment with chemotherapy or interferons. A procedure known as hepatic embolisation may be used to control cancer that has spread from a carcinoid tumour into the liver; it helps reduce symptoms by decreasing blood supply to 15 the liver and starving tumour cells. 5 A second approach involves treating symptoms with different medications: diuretics for heart disease, bronchodilators for wheezing, somatostatin analogues for wheezing, diarrhoea and flushing. 5 Insulinomas The symptoms from insulinomas can sometimes be treated through diet regulation (e.g. by frequent, slow-release complex carbohydrate intake; guar gum). With malignant insulinoma, metastases may be found in the surrounding lymph nodes and liver. If the tumour cannot be localised before or 10 during surgery (intra-operatively), it may be removed through distal pancreatectomy. Gastrinomas In patients with gastrinomas, antisecretory medication such as a proton pump 15 inhibitor is used to control gastric acid hypersecretion. If a patient cannot take this medication, a total gastrectomy is recommended. Surgery has been shown to yield a 30% 5-year cure rate, and is recommended in patients without liver metastases, MEN 1, or complicating medical conditions that may limit life expectancy. (Ninety-five percent of patients with gastrinomas have 20 tumours). Patients with metastatic disease may benefit from chemotherapy or octreotide, if chemotherapy fails. VIPomas First-line therapy for VlPomas aims to correct the profound hypokalaemia, 25 dehydration and metabolic acidosis by replenishing fluids and electrolytes. Patients are typically given up to 5 L of fluid and 350 mEq of potassium daily. The optimal treatment for VlPomas is surgical removal of the primary tumour. Glucagonomas 30 Surgery is used to relieve the effects of glucagonomas or to reduce the size of the tumours, though about two-third of patients are not cured by surgery even after successful tumour localisation and assessment of metastatic disease. Currently, active drugs used to treat glucagonoma do not exist 35 Prolactinomas 6 Medical treatment is usually with the dopamine agonists bromocriptine or cabergoline. These drugs shrink the tumour and return prolactin levels to normal in approximately 80 percent of patients. However, use of these agonists is associated with side effects such as nausea and dizziness. 5 Surgery is an option where medical therapy cannot be tolerated or if it fails to reduce prolactin levels, restore normal reproduction and pituitary function, and reduce tumour size. However, the results of surgery depend a great deal on tumour size and prolactin level as well as the skill and experience of the neurosurgeon. Depending on the size of the tumour and how much of it is 10 removed, studies show that 20 to 50 percent will recur, usually within five years Somatotrophinomas (e.g. causing acromegaly) Current treatment for patients with acromegaly include surgical, radiation, and 15 medical therapies. Treatment depends on the size and extent of the tumour and the need for rapid cessation of hormone function that results in serious clinical sequelae. The standard treatments include surgery (usually a transsphenoidal approach) with or without postoperative radiation therapy, bromocriptine treatment, octreotide treatment and, more recently, 20 pegvisomant treatment. The above-described therapies have variable success. Corticotrophinomas For patients with corticotroph adenomas, transsphenoidal microsurgery is the 25 treatment of choice. However, remission rates reported in most series are approximately 70% to 90%. Drug therapy is considered to be an adjunct to transsphenoidal microsurgery in cases with a residual tumour and in cases in which one is awaiting the effects of the radiation therapy. Steroidogenesis inhibitors, including mitotane, metyrapone, ketoconazole, and 30 aminoglutethimide are used. Ketoconazole is the best tolerated of these agents, though only in about 70% of patients. Radiation therapy has been used in patients who are deemed to be poor surgical candidates and has also been used as adjunctive therapy in patients with residual or recurrent active tumour. 35 7 Phaeochromocytoma Laparoscopic tumour removal is the preferred procedure. However, complications during surgery need to be kept to a minimum by appropriate preoperative medical treatment to prevent catecholamine-induced, serious, 5 and potentially life-threatening complications during surgery, including hypertensive crises, cardiac arrhythmias, pulmonary oedema, and cardiac ischaemia. Traditional regimens include a-adrenoceptor blockers, combined a/p-adrenoceptor blockers and, calcium-channel blockers, all of which can have undesired effects both before and after surgery. 10 Thyrotrophinomas Transsphenoidal surgery is the treatment of choice for patients with thyrotrophic adenomas. Adjuvant radiation therapy may be employed when surgery is known to be non-curative even if the patient is still euthyroid 15 because relapse is inevitable, and the full effect of radiation therapy requires months or years. Medical therapy may be required for patients who still have hyperthyroid symptoms despite surgery and external radiation. As well as representing rare, but life-affecting, human conditions 20 neuroendocrine tumours continue to pose a major problem for animal healthcare on a global scale. Accordingly, there is a need in the art for alternative and/ or improved therapeutics and therapies that address one or more of the above problems. 25 In all cases, surgery can be of limited success as well as carrying inherent risks to the patient. In addition, current drug treatments also are no guarantee of success in alleviating the symptoms in al patients. The present invention solves one or more of the above problems or risks 30 associated with surgery or existing medical therapies, by providing a new category of non-cytotoxic agent designed to suppress undesirable (e.g. abnormally elevated) tumour secretions and thus minimising or reversing the resultant disease. 8 In more detail, a first aspect of the present invention provides a polypeptide for use in suppressing secretion(s) from a neuroendocrine tumour, said polypeptide comprising: a. a non-cytotoxic protease, which protease is capable of cleaving a 5 protein of the exocytic fusion apparatus in a neuroendocrine tumour cell; b. a Targeting Moiety (TM) that is capable of binding to a Binding Site on a neuroendocrine tumour cell, which Binding Site is 10 capable of undergoing endocytosis to be incorporated into an endosome within the neuroendocrine tumour cell; and c. a translocation domain that is capable of translocating the protease from within an endosome, across the endosomal 15 membrane and into the cytosol of the neuroendocrine tumour cell. In another aspect, the present invention provides use of a polypeptide for the preparation of a medicament for treatment of Cushing's disease by administration in an effective amount of said polypeptide comprising: ?0 (a) a non-cytotoxic protease, which protease is capable of cleaving a protein of the exocytic fusion apparatus in a pituitary tumour cell; (b) a peptide Targeting Moiety (TM) that binds to a Binding Site on a pituitary tumour cell, which Binding Site is capable of undergoing endocytosis to be incorporated into an endosome within the pituitary 25 tumour cell, wherein the TM comprises a growth hormone releasing hormone (GHRH) peptide, a somatostatin peptide, a cortistatin peptide, a ghrelin peptide, a bombesin peptide, a urotensin peptide, melanin-concentrating hormone peptide, a KISS-1 peptide, a gonadotropin-releasing hormone 30 (GnRH) peptide, or a prolactin-releasing peptide, and wherein the pituitary tumour cell is derived from or contributes to corticotrophinomas; and 9 (c) a bacterial or viral translocation domain that translocates the protease from within the endosome, across the endosomal membrane and into the cytosol of said pituitary tumour cell; wherein the polypeptide lacks the native Hc binding domain of a clostridial 5 neurotoxin. In another aspect, the present invention provides a polypeptide when used for treating Cushing's disease, the polypeptide comprising: (a) a non-cytotoxic protease, which protease is capable of cleaving a 10 protein of the exocytic fusion apparatus in a pituitary tumour cell; (b) a peptide Targeting Moiety (TM) that binds to a Binding Site on a pituitary tumour cell, which Binding Site is capable of undergoing endocytosis to be incorporated into an endosome within the pituitary tumour cell, 15 wherein said TM comprises a growth hormone-releasing hormone (GHRH) peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 34, 42, 43, 44, 45, 46, 47, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 20 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91 or 92; wherein said TM comprises a somatostatin peptide and wherein said polypeptide comprises an amino acid sequence having at least 90 92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 11, 12, 13, 14, 20, 21, 22, 23, 24, 26, 27 or 37; 25 wherein said TM comprises a cortistatin peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 7, 8, 9, 15, 16,18,19, 29, 30 or 31; wherein said TM comprises a ghrelin peptide and wherein said 30 polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 33, 35, 36, 38 or 39; wherein said TM comprises a bombesin peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, 9a or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 40 or 41; wherein said TM comprises a urotensin peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, 5 or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 48; wherein said TM comprises a melanin-concentrating hormone peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence 10 identity to any one of SEQ ID NOs: 57; wherein said TM comprises a KiSS-1 peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 58; 15 wherein said TM comprises a gonadotrophin-releasing hormone (GnRH) peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 93 or 94; or wherein said TM comprises a prolactin-releasing peptide and !0 wherein said polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 59, and wherein the pituitary tumour cell is derived from or contributes to corticotrophinomas; and 25 (c) a bacterial or viral translocation domain that translocates the protease from within the endosome, across the endosomal membrane and into the cytosol of said pituitary tumour cell; wherein the polypeptide lacks the native Hcc binding domain of a clostridial neurotoxin. 30 In another aspect, the present invention provides a method of treating Cushing's disease, comprising the step of administering to a subject in need thereof a therapeutically effective amount of a polypeptide comprising: 9b (a) a non-cytotoxic protease, which protease is capable of cleaving a protein of the exocytic fusion apparatus in a pituitary tumour cell; (b) a peptide Targeting Moiety (TM) that binds to a Binding Site on a pituitary tumour cell, which Binding Site is capable of undergoing 5 endocytosis to be incorporated into an endosome within the pituitary tumour cell, wherein the TM comprises a growth hormone releasing hormone (GHRH) peptide, a somatostatin peptide, a cortistatin peptide, a ghrelin peptide, a bombesin peptide, a urotensin peptide, melanin-concentrating 10 hormone peptide, a KISS-1 peptide, a gonadotropin-releasing hormone (GnRH) peptide, or a prolactin-releasing peptide, and wherein the pituitary tumour cell is derived from or contributes to cortinotrophinomas; and (c) a bacterial or viral translocation domain that translocates the protease 15 from within the endosome, across the endosomal membrane and into the cytosol of said pituitary tumour cell; wherein the polypeptide lacks the native Hoc binding domain of a clostridial neurotoxin. 20 In use, a polypeptide of the invention binds to a neuroendocrine tumour cell. Thereafter, the translocation component effects transport of the protease component into the cytosol of the tumour cell. Finally, once inside, the protease inhibits the exocytic fusion process 9c of the neuroendocrine tumour cell. Thus, by inactivating the exocytic fusion apparatus of the neuroendocrine tumour cell, the polypeptide of the invention inhibits secretion therefrom. Accordingly, the polypeptides of the present invention suppress/ treat one or more of the various pathophysiological conditions or symptoms listed in Table 2 above. 5 The principal target cells of the present invention are tumour cells of neuroendocrine origin that secrete one or more hormones (or other bioactive molecules) leading to the development of a pathophysiological condition. 10 The present invention provides polypeptides that are capable of (and for use in) suppression of the secretion of hormones and/or other bioactive molecules from neuroendocrine tumours. 9d In a related aspect of the present invention, there is provided a method for treating a neuroendocrine tumour in a patient, said method comprising 5 administering to the patient a therapeutically effective amount of a polypeptide of the present invention. Without wishing to be bound by any theory, the present inventors believe that undesirable (e.g. unusual levels of) secretion of physiologically active 10 molecules from neuroendocrine tumours cause and maintain pathological conditions in a patient. Thus, by inhibiting said secretions, the progression of the disease state can be halted and the symptoms reversed. The polypeptides of the present invention are particularly suited for use in 15 treating a range of neuroendocrine tumours, including their hormone-secreting metastases, precancerous conditions and symptoms thereof. In this regard, 'treating' includes reducing or eliminating excessive secretions from such cells. By way of example, important neuroendocrine tumour target cells of the present 20 invention include: pituitary adenomas and/ or gastroenteropancreatic neuroendocrine tumours (GEP-NETs). GEP-NETs are located mainly in the stomach, intestine or pancreas and secrete excessive amounts of hormones and other bioactive molecules that are normally secreted at lower levels under physiological regulation. These secretions contribute to the symptoms 25 experienced by the patients. GEP-NETs can be divided into carcinoid and non carcinoid subtypes. Carcinoid GEP-NETs (55% of all GEP-NETs) tend to be classified according to their tissue location and include, in order of prevalence, those arising from cells 30 in the appendix (38%), ileum (23%), rectum (13%) and bronchus (11.5%). Non-carcinoid GEP-NETs include insulinomas of the pancreatic islets secreting excess insulin (17%), tumours of unknown type (15%), gastrinomas of the pancreas or duodenum secreting excess gastrin (9%), VlPomas of the 35 pancreas, lung or ganglioneuromas, secreting excess vasoactive intestinal 10 polypeptide, and glucagonomas, tumours of the pancreatic islets secreting excess glucagon. The pituitary tumours, which tend to be classified according to their secretion 5 type or cellular identity, include: prolactinomas secreting prolactin (the most common), somatotrophinomas (growth hormone, corticotrophinomas (adrenocorticotrophic hormone), thyrotrophinomas (thyroid stimulating hormone), gonadotrophinomas (FSH, LH), and non-functioning pituitary adenomas. 10 Other secretory tumours include thyroid medullary tumours, small and non-small cell lung tumours, Merkel cell tumours, and phaeochromocytomas. The latter can be deadly if excessive secreted adrenaline leads to severe hypertension. Such hypersecretion can make the individual unsuitable for surgery to remove 15 tumour mass and so a reinforcing deleterious cycle can emerge and treatment of the tumour to minimise secretion is desirable. A particularly preferred sub-set of neuroendocrine tumour cells addressed by the present invention is: insulinomas, gastrinomas, VlPomas, glucagonomas, 20 prolactinomas, somatotrophinomas, corticotrophinomas, thyrotrophinomas and phaeochromocytomas. By suppressing the secretory functions of neuroendocrine tumour cells (such as the above sub-set of tumour cells), the present invention provides a therapy for 25 the treatment of, amongst others, conditions such as Cushing's disease, acromegaly, carcinoid syndrome, hypoglycaemic syndrome, necrolytic migratory erythema, Zollinger-Ellison syndrome and Verner-Morrison syndrome. Also provided are therapies for treatment of the symptoms ensuing from undesirable neuroendocrine tumour secretions (see Table 2). 30 The 'bioactive' component of the polypeptides of the present invention is provided by a non-cytotoxic protease. This distinct group of proteases act by proteolytically-cleaving intracellular transport proteins known as SNARE proteins (e.g. SNAP-25, VAMP, or Syntaxin) - see Gerald K (2002) "Cell and 35 Molecular Biology" (4th edition) John Wiley & Sons, Inc. The acronym SNARE 11 derives from the term Soluble NSF Attachment Receptor, where NSF means N-ethylmaleimide-Sensitive Factor. SNARE proteins are integral to intracellular vesicle formation, and thus to secretion of molecules via vesicle transport from a cell. Accordingly, once delivered to a desired target cell, the 5 non-cytotoxic protease is capable of inhibiting cellular secretion from the target cell. Non-cytotoxic proteases are a discrete class of molecules that do not kill cells; instead, they act by inhibiting cellular processes other than protein synthesis. 10 Non-cytotoxic proteases are produced as part of a larger toxin molecule by a variety of plants, and by a variety of microorganisms such as Clostridium sp. and Neisseria sp. Clostridial neurotoxins represent a major group of non-cytotoxic toxin 15 molecules, and comprise two polypeptide chains joined together by a disulphide bond. The two chains are termed the heavy chain (H-chain), which has a molecular mass of approximately 100 kDa, and the light chain (L-chain), which has a molecular mass of approximately 50 kDa. It is the L-chain, which possesses a protease function and exhibits a high substrate specificity for 20 vesicle and/or plasma membrane associated (SNARE) proteins involved in the exocytic process (eg. synaptobrevin, syntaxin or SNAP-25). These substrates are important components of the neurosecretory machinery. Neisseria sp., most importantly from the species N. gonorrhoeae, and 25 Streptococcus sp., most importantly from the species S. pneumoniae, produce functionally similar non-cytotoxic toxin molecules. An example of such a non cytotoxic protease is IgA protease (see W099/58571, which is hereby incorporated in its entirety by reference thereto). Thus, the non-cytotoxic protease of the present invention is preferably a clostridial neurotoxin protease 30 or an IgA protease. Turning now to the Targeting Moiety (TM) component of the present invention, it is this component that binds the polypeptide of the present invention to a neuroendocrine tumour cell. 35 12 Thus, a TM of the present invention binds to a receptor on a neuroendocrine tumour cell. By way of example, a TM of the present invention may bind to a receptor selected from the group comprising: a somatostatin (sst) receptor, including splice variants thereof (e.g. sst 1 , sst 2 , sst 3 , sst 4 and sst 5 ); a growth 5 hormone-releasing hormone (GHRH) receptor - also known a GRF receptor; a ghrelin receptor; a bombesin receptor (eg. BRS-1, BRS-2, or BRS-3); a urotensin receptor (eg. a urotensin II receptor); a melanin-concentrating hormone receptor 1; a prolactin releasing hormone receptor; a gonadotropin releasing hormone receptor (GnRHR) such as a Type 1 GnRHR and/ or a 10 Type 2 GnRHR receptor; and/ or a KiSS-1 receptor. In one embodiment, a TM of the present invention binds to a somatostatin (SST) receptor. Examples of suitable SST peptide TMs include full-length SST and cortistatin (CST), as well as truncations and peptide analogues thereof 15 such as: SANSNPAMAPRERKAGCKNFFWKTFTSC (SST-28); AGCKNFFWKTFTSC (SST- 14); QEGAPPQQSARRDRMPCRNFFWKTFSSCK (CST-29); QERPPLQQPPHRDKKPCKNFFWKTFSSCK (CST-29); QERPPPQQPPHLDKKPCKNFFWKTFSSCK (CST-29); 20 DRMPCRNFFWKTFSSCK (CST-17); PCRNFFWKTFSSCK (CST-14); and PCKNFFWKTFSSCK (CST-14); D-Phe-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-NH2 (BIM 23052), D-Phe-Phe-Tyr-D-Trp-Lys-Val-Phe-D-Nal-NH2 (BIM 23056) or c[Cys-Phe-Phe-D-Trp-Lys-Thr-Phe-Cys]-NH 2 (BIM23268); octreotide peptides, lanreotide peptides, BIM23027, CYN154806, BIM23027, vapreotide 25 peptides, seglitide peptides, and SOM230. These TMs bind to sst receptors, such as sst 1 , sst 2 , sst 3 , sst 4 and sst 5 receptors, which are present on neuroendocrine tumour cells relevant to the present invention - see Table 3. SST and CST have high structural homology, and bind to all known sst receptors. 30 Table 3 Expression of somatostatin receptor subtypes in gastroenteropancreatic neuroendocrine tumours (%) sstl sst2 sst3 sst4 sst5 All tumours 68 86 46 93 57 13 Insulinoma 33 100 33 100 67 Gastrinoma 33 50 17 83 50 Glucagonoma 67 100 67 67 67 VIPoma 100 100 100 100 100 Non functioning 80 100 40 100 60 mid-gut NETs 80 95 65 35 75 In another embodiment, a TM of the present invention binds to a growth hormone releasing hormone (GHRH) receptor. GHRH is also known as growth-hormone-releasing factor (GRF or GHRF) or somatocrinin. Suitable 5 GHRH peptides include full-length GHRH (1-44) peptide, and truncations thereof such as GHRH(1-27, 1-28, 1-29), GHRH(1-37), and GHRH(1-40, 1 43)-OH, as well as peptide analogues such as: BIM 28011 or NC-9-96; [MeTyr1,Alal5,22,Nle27]-hGHRH(1-29)-NH2; MeTyr1,Ala8,9,15,22,28,NIe27] hGHRH(1-29)-NH2; cyclo(25-29)[MeTyrl,Alal5,DAsp25,Nle27,Orn29+ ++] 10 hGHRH(1-29)-NH2; (D-Tyrl)-GHRH (1-29)-NH2; (D-Ala2)-GHRH (1-29)-NH2; (D-Asp3)-GHRH (1-29)-NH2; (D-Ala4)-GHRH (1-29)-NH2; (D-Thr7)-GHRH (1 29)-NH2; (D-Asn8)-GHRH (1-29)-NH2; (D-Ser9)-GHRH (1-29)-NH2; (D Tyr10)-GHRH (1-29)-NH2; (Phe4)-GHRH (1-29)-NH2; (pCI-Phe6)-GHRH (1 29)-NH2; (N-Ac-Tyrl)-GHRH (1-29)-NH2; (N-Ac-Tyrl, D-Ala2)-GHRH (1-29) 15 NH2; (N-Ac-D-Tyrl, D-Ala2)-GHRH (1-29)-NH2; (N-Ac-D-Tyrl, D-Ala 2, D Asp3)-GHRH (1-29)-NH2; (D-Ala2, NLeu27)-GHRH (1-29)-NH2; (His1, D Ala2, NLeu27)-GHRH (1-29)-NH2; (N-Ac-Hisl, D-Ala2, N-Leu27)-GHRH (1 29)-NH2; (His1, D-Ala 2, D-Ala 4, NIeu27)-GHRH (1-29)-NH2; (D-Ala2, D Asp3, D-Asn8, NLeu27)-GHRH (1-29)-NH2; (D-Asp3, D-Asn8, NLeu27) 20 GHRH (1-29)-NH2; [His1, NLeu27]-hGHRH(1-29)-NH2; [NLeu27]-hGHRH(1 29)-NH2; H-Tyr-Ala-Asp-Ala-le-Phe-Thr-Asn-Ser-Tyr-Arg-Lys-Val-Leu-Gly Gln-Leu-Ser-Ala-Arg-Lys-Leu-Leu-Gln-Asp-Ile-Met-Ser-Arg-Gln-Gln-Gly-Glu Ser-Asn-Gln-Glu-Arg-Gly-Ala-Arg-Ala-Arg-Leu-NH2; H-Tyr-Ala-Asp-Ala-lle Phe-Thr-Asn-Ser-Tyr-Arg-Lys-Val-Leu-Gly-Gln-Leu-Ser-Ala-Arg-Lys-Leu-Leu 25 Gln-Asp-Ile-Met-Ser-Arg-NH2; H-Tyr-D-Ala-Asp-Ala-Ile-Phe-Thr-Asn-Ser-Tyr Arg-Lys-Val-Leu-Gly-Gln-Leu-Ser-Ala-Arg-Lys-Leu-Leu-Gln-Asp-lle-Met-Ser Arg-NH2; H-Tyr-Ala-Asp-Ala-Ile-Phe-Thr-Asn-Ser-Tyr-Arg-Lys-Ile-Leu-Gly Gln-Leu-Ser-Ala-Arg-Lys-Leu-Leu-Gln-Asp-Ile-Met-Asn-Arg-Gln-Gln-Gly-Glu Arg-Asn-Gln-Glu-Gln-Gly-Ala-Lys-Val-Arg-Leu-NH2; H-Tyr-Ala-Asp-Ala-lle 30 Phe-Thr-Asn-Ser-Tyr-Arg-Lys-Val-Leu-Gly-Gln-Leu-Ser-Ala-Arg-Lys-Leu-Leu 14 Gln-Asp-Ile-Met-Asn-Arg-Gln-Gln-Gly-Glu-Arg-Asn-Gln-Glu-Gln-Gly-Ala-Lys Val-Arg-Leu-NH2; His-Val-Asp-Ala-lle-Phe-Thr-Gln-Ser-Tyr-Arg-Lys-Val-Leu Ala-Gln-Leu-Ser-Ala-Arg-Lys-Leu-Leu-Gln-Asp-le-Leu-Asn-Arg; His-Val-Asp Ala- lle-Phe-Thr-Gln-Ser-Tyr-Arg-Lys-Val-Leu-Ala-Gln-Leu-Ser-Ala-Arg-Lys 5 Leu-Leu-Gln-Asp-lle-Leu-Asn-Arg-Gln-Gln-Gly-Glu-Arg-Asn-Gln-Glu-Gn-Gly Ala. In another embodiment, a TM of the present invention binds to a ghrelin receptor. Examples of suitable TMs in this regard include: ghrelin peptides 10 such as full-length ghrelin (eg. ghrelin, 1 7 ) and truncations and peptide analogues thereof such as ghrelin 2 4
+
17 , ghrelin 5 2 1 17 , [Trp3, Arg5]-ghrelin (1 5), des-Gln-Ghrelin, cortistatin-8, His-D-Trp-Ala-Trp-D-Phe-Lys-NH 2 , growth hormone releasing peptide (e.g. GHRP-6), or hexarelin. 15 In a further embodiment, the TM binds to a bombesin receptor (eg. BRS-1, BRS-2, or BRS-3). Examples of suitable bombesin peptides include full-length: bombesin - a 14 amino acid peptide originally isolated from the skin of a frog (pGlu-Gln-Arg-Leu-G ly-Asn-Gln-rp-Ala-Val-Gly-His-Leu-Met-NH2); and the two known homologs in mammals, namely neuromedin B, and gastrin 20 releasing peptide (GRP) such as: porcine GRP - Ala-Pro-Val-Ser-Val-Gly-Gly G ly-Thr-Val-Leu-Ala-Lys-Met-Tyr-Pro-Arg-Gly-Asn-His-Trp-Ala-Val-Gly-His Leu-Met-NH 2 , and human GRP - Val-Pro-Leu-Pro-Ala-Gly-Gly-Gly-Thr-Val Leu-Thr-Lys-Met-Tyr-Pro-Arg-Gly-Asn-His-Trp-Ala-Val-Gly-His-Leu-Met-NH2. Reference to bombesin peptides embraces hornologs thereof such as 25 neuromedin B and GRP, and includes truncations and peptide analogues thereof, In another embodiment, a TM of the present invention binds to a urotensin receptor. Suitable TMs in this regard include urotensin peptides such as 30 Urotensin-Il (U-11), which is a cyclic neuropeptide. The C-terminal cyclic region of U-11 is strongly conserved across different species, and includes the six amino acid residues (-Cys Ple-Trp-Lys-Tyr-Cys-), which is structurally similar to the central region of somatostatin-14 (-Phe-Trp-Lys-Thr-). Urotensin peptides of the present invention include the U-Il precursor peptides, such as 35 prepro-urotensin-II (including the two human 124 and 139 isoforms thereof) as 15 well as other truncations such as the eleven residue mature peptide form and peptide analogues thereof. In a further embodiment, a TM of the present invention binds to a melanin 5 concentrating hormone receptor 1. Examples of suitable TMs in this regard include: melanin-concentrating hormone (MCH) peptides such as full-length MCH, truncations and analogues thereof. In another embodiment, a TM of the present invention binds to a prolactin 10 releasing hormone receptor. An example of a suitable TM in this regard includes prolactin releasing peptide, truncations and analogues thereof. In another embodiment, a TM of the present invention binds to a gonadotropin-releasing hormone (GnRH) receptor. GnRH is also known as 15 Luteinizing-Hormone Releasing Hormone (LHRH). Examples of suitable GnRH receptor TMs include: GnRHI peptides, GnRHII peptides and GnRHIII peptides, for example the full-length 92 amino acid GnRH precursor polypeptide and truncations thereof such as the decapeptide: pyroGlu-His Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly CONH2. 20 In a further embodiment, a TM of the present invention binds to a KiSS-1 receptor. Examples of suitable TMs in this regard include Kisspeptin-10, Kisspeptin-54 peptides, truncations and analogues thereof. 25 According to a second aspect of the present invention, there is provided a composition of matter, namely a polypeptide comprising: a a non-cytotoxic protease, which protease is capable of cleaving a protein of the exocytic fusion apparatus in a 30 neuroendocrine tumour cell; b. a Targeting Moiety (TM) that is capable of binding to a Binding Site on a neuroendocrine tumour cell, which Binding Site is capable of undergoing endocytosis to be 16 incorporated into an endosome within the neuroendocrine tumour cell; and d. a translocation domain that is capable of translocating the 5 protease from within an endosome, across the endosomal membrane and into the cytosol of the neuroendocrine tumour cell. All of the features of the first aspect of the present invention apply equally to the 10 above-described second aspect. In a preferred embodiment of the first and/ or second aspects of the present invention, the TM has a human peptide amino acid sequence. Thus, a highly preferred TM is a human SST peptide, a human CST peptide or a human 15 GHRH peptide. Polypeptide preparation The polypeptides of the present invention comprise 3 principal components: a 'bioactive' (ie. a non-cytotoxic protease); a TM; and a translocation domain. The 20 general technology associated with the preparation of such fusion proteins is often referred to as re-targeted toxin technology. By way of exemplification, we refer to: W094/21300; W096/33273; W098/07864; WOOO/1 0598; WOO1/21213; W006/059093; WOOO/62814; WOOO/04926; W093/15766; WOOO/61192; and W099/58571. All of these publications are herein 25 incorporated by reference thereto. In more detail, the TM component of the present invention may be fused to either the protease component or the translocation component of the present invention. Said fusion is preferably by way of a covalent bond, for example either 30 a direct covalent bond or via a spacer/ linker molecule. The protease component and the translocation component are preferably linked together via a covalent bond, for example either a direct covalent bond or via a spacer/ linker molecule. Suitable spacer/ linked molecules are well known in the art, and typically comprise an amino acid-based sequence of between 5 and 40, preferably 35 between 10 and 30 amino acid residues in length. 17 In use, the polypeptides have a di-chain conformation, wherein the protease component and the translocation component are linked together, preferably via a disulphide bond. 5 The polypeptides of the present invention may be prepared by conventional chemical conjugation techniques, which are well known to a skilled person. By way of example, reference is made to Hermanson, G.T. (1996), Bioconjugate techniques, Academic Press, and to Wong, S.S. (1991), Chemistry of protein 10 conjugation and cross-linking, CRC Press, Nagy et al., PNAS 95 p1794-99 (1998). Further detailed methodologies for attaching synthetic TMs to a polypeptide of the present invention are provided in, for example, EP0257742. The above-mentioned conjugation publications are herein incorporated by reference thereto. 15 Alternatively, the polypeptides may be prepared by recombinant preparation of a single polypeptide fusion protein (see, for example, W098/07864). This technique is based on the in vivo bacterial mechanism by which native clostridial neurotoxin (i.e. holotoxin) is prepared, and results in a fusion protein having the 20 following 'simplified' structural arrangement:
NH
2 - [protease component] - [translocation component] - [TM] - COOH According to W098/07864, the TM is placed towards the C-terminal end of 25 the fusion protein. The fusion protein is then activated by treatment with a protease, which cleaves at a site between the protease component and the translocation component. A di-chain protein is thus produced, comprising the protease component as a single polypeptide chain covalently attached (via a disulphide bridge) to another single polypeptide chain containing the 30 translocation component plus TM. Alternatively, according to W006/059093, the TM component of the fusion protein is located towards the middle of the linear fusion protein sequence, between the protease cleavage site and the translocation component. This 35 ensures that the TM is attached to the translocation domain (ie. as occurs with 18 native clostridial holotoxin), though in this case the two components are reversed in order vis-d-vis native holotoxin. Subsequent cleavage at the protease cleavage site exposes the N-terminal portion of the TM, and provides the di-chain polypeptide fusion protein. 5 The above-mentioned protease cleavage sequence(s) may be introduced (and/ or any inherent cleavage sequence removed) at the DNA level by conventional means, such as by site-directed mutagenesis. Screening to confirm the presence of cleavage sequences may be performed manually or 10 with the assistance of computer software (e.g. the MapDraw program by DNASTAR, Inc.). Whilst any protease cleavage site may be employed (ie. clostridial, or non-clostridial), the following are preferred: Enterokinase (DDDDKI) 15 Factor Xa (IEGRI / IDGRJ) TEV(Tobacco Etch virus) (ENLYFQIG) Thrombin (LVPRIGS) PreScission (LEVLFQIGP). 20 Additional protease cleavage sites include recognition sequences that are cleaved by a non-cytotoxic protease, for example by a clostridial neurotoxin. These include the SNARE (eg. SNAP-25, syntaxin, VAMP) protein recognition sequences that are cleaved by non-cytotoxic proteases such as clostridial neurotoxins. Particular examples are provided in US2007/0166332, which is 25 hereby incorporated in its entirety by reference thereto. Also embraced by the term protease cleavage site is an intein, which is a self cleaving sequence. The self-splicing reaction is controllable, for example by varying the concentration of reducing agent present. The above-mentioned 30 'activation' cleavage sites may also be employed as a 'destructive' cleavage site (discussed below) should one be incorporated into a polypeptide of the present invention. 19 In a preferred embodiment, the fusion protein of the present invention may comprise one or more N-terminal and/ or C-terminal located purification tags. Whilst any purification tag may be employed, the following are preferred: 5 His-tag (e.g. 6 x histidine), preferably as a C-terminal and/ or N-terminal tag MBP-tag (maltose binding protein), preferably as an N-terminal tag GST-tag (glutathione-S-transferase), preferably as an N-terminal tag His-MBP-tag, preferably as an N-terminal tag GST-MBP-tag, preferably as an N-terminal tag 10 Thioredoxin-tag, preferably as an N-terminal tag CBD-tag (Chitin Binding Domain), preferably as an N-terminal tag. One or more peptide spacer/ linker molecules may be included in the fusion protein. For example, a peptide spacer may be employed between a 15 purification tag and the rest of the fusion protein molecule. Thus, a third aspect of the present invention provides a nucleic acid (e.g. DNA) sequence encoding a polypeptide as described above (i.e. the second aspect of the present invention). 20 Said nucleic acid may be included in the form of a vector, such as a plasmid, which may optionally include one or more of an origin of replication, a nucleic acid integration site, a promoter, a terminator, and a ribosome binding site. 25 The present invention also includes a method for expressing the above described nucleic acid sequence (i.e. the third aspect of the present invention) in a host cell, in particular in E. coli or via a baculovirus expression system. The present invention also includes a method for activating a polypeptide of the 30 present invention, said method comprising contacting the polypeptide with a protease that cleaves the polypeptide at a recognition site (cleavage site) located between the non-cytotoxic protease component and the translocation component, thereby converting the polypeptide into a di-chain polypeptide wherein the non-cytotoxic protease and translocation components are joined 35 together by a disulphide bond. In a preferred embodiment, the recognition site is 20 not native to a naturally-occurring clostridial neurotoxin and/ or to a naturally occurring igA protease. The polypeptides of the present invention may be further modified to reduce 5 or prevent unwanted side-effects associated with dispersal into non-targeted areas. According to this embodiment, the polypeptide comprises a destructive cleavage site. The destructive cleavage site is distinct from the 'activation' site (i.e. di-chain formation), and is cleavable by a second protease and not by the non-cytotoxic protease. Moreover, when so cleaved at the destructive cleavage 10 site by the second protease, the polypeptide has reduced potency (e.g. reduced binding ability to the intended target cell, reduced translocation activity and/ or reduced non-cytotoxic protease activity). For completeness, any of the 'destructive' cleavage sites of the present invention may be separately employed as an 'activation' site in a polypeptide of the present invention. 15 Thus, according to this embodiment, the present invention provides a polypeptide that can be controllably inactivated and/ or destroyed at an off-site location. 20 In a preferred embodiment, the destructive cleavage site is recognised and cleaved by a second protease (i.e. a destructive protease) selected from a circulating protease (e.g. an extracellular protease, such as a serum protease or a protease of the blood clotting cascade), a tissue-associated protease (e.g. a matrix metalloprotease (MMP), such as an MMP of muscle), and an intracellular 25 protease (preferably a protease that is absent from the target cell). Thus, in use, should a polypeptide of the present invention become dispersed away from its intended target cell and/ or be taken up by a non-target cell, the polypeptide will become inactivated by cleavage of the destructive cleavage site 30 (by the second protease). In one embodiment, the destructive cleavage site is recognised and cleaved by a second protease that is present within an off-site cell-type. In this embodiment, the off-site cell and the target cell are preferably different cell types. Alternatively 35 (or in addition), the destructive cleavage site is recognised and cleaved by a 21 second protease that is present at an off-site location (e.g. distal to the target cell). Accordingly, when destructive cleavage occurs extracellularly, the target cell and the off-site cell may be either the same or different cell-types. In this regard, the target cell and the off-site cell may each possess a receptor to which 5 the same polypeptide of the invention binds. The destructive cleavage site of the present invention provides for inactivation/ destruction of the polypeptide when the polypeptide is in or at an off-site location. In this regard, cleavage at the destructive cleavage site minimises the 10 potency of the polypeptide (when compared with an identical polypeptide lacking the same destructive cleavage site, or possessing the same destructive site but in an uncleaved form). By way of example, reduced potency includes: reduced binding (to a mammalian cell receptor) and/ or reduced translocation (across the endosomal membrane of a mammalian cell in the direction of the cytosol), and/ 15 or reduced SNARE protein cleavage. When selecting destructive cleavage site(s) in the context of the present invention, it is preferred that the destructive cleavage site(s) are not substrates for any proteases that may be separately used for post 20 translational modification of the polypeptide of the present invention as part of its manufacturing process. In this regard, the non-cytotoxic proteases of the present invention typically employ a protease activation event (via a separate 'activation' protease cleavage site, which is structurally distinct from the destructive cleavage site of the present invention). The purpose of the 25 activation cleavage site is to cleave a peptide bond between the non-cytotoxic protease and the translocation or the binding components of the polypeptide of the present invention, thereby providing an 'activated' di-chain polypeptide wherein said two components are linked together via a di-sulfide bond. 30 Thus, to help ensure that the destructive cleavage site(s) of the polypeptides of the present invention do not adversely affect the 'activation' cleavage site and subsequent di-sulfide bond formation, the former are preferably introduced into polypeptide of the present invention at a position of at least 20, at least 30, at least 40, at least 50, and more preferably at least 60, at least 22 70, at least 80 (contiguous) amino acid residues away from the 'activation' cleavage site. The destructive cleavage site(s) and the activation cleavage site are 5 preferably exogenous (i.e. engineered/ artificial) with regard to the native components of the polypeptide. In other words, said cleavage sites are preferably not inherent to the corresponding native components of the polypeptide. By way of example, a protease or translocation component based on BoNT/A L-chain or H-chain (respectively) may be engineered 10 according to the present invention to include a cleavage site. Said cleavage site would not, however, be present in the corresponding BoNT native L-chain or H-chain. Similarly, when the Targeting Moiety component of the polypeptide is engineered to include a protease cleavage site, said cleavage site would not be present in the corresponding native sequence of the 15 corresponding Targeting Moiety. In a preferred embodiment of the present invention, the destructive cleavage site(s) and the 'activation' cleavage site are not cleaved by the same protease. In one embodiment, the two cleavage sites differ from one another 20 in that at least one, more preferably at least two, particularly preferably at least three, and most preferably at least four of the tolerated amino acids within the respective recognition sequences is/ are different. By way of example, in the case of a polypeptide chimera containing a Factor 25 Xa 'activation' site between clostridial L-chain and HN components, it is preferred to employ a destructive cleavage site that is a site other than a Factor Xa site, which may be inserted elsewhere in the L-chain and/ or HN and/ or TM component(s). In this scenario, the polypeptide may be modified to accommodate an alternative 'activation' site between the L-chain and HN 30 components (for example, an enterokinase cleavage site), in which case a separate Factor Xa cleavage site may be incorporated elsewhere into the polypeptide as the destructive cleavage site. Alternatively, the existing Factor Xa 'activation' site between the L-chain and HN components may be retained, and an alternative cleavage site such as a thrombin cleavage site 35 incorporated as the destructive cleavage site. 23 When identifying suitable sites within the primary sequence of any of the components of the present invention for inclusion of cleavage site(s), it is preferable to select a primary sequence that closely matches with the 5 proposed cleavage site that is to be inserted. By doing so, minimal structural changes are introduced into the polypeptide. By way of example, cleavage sites typically comprise at least 3 contiguous amino acid residues. Thus, in a preferred embodiment, a cleavage site is selected that already possesses (in the correct position(s)) at least one, preferably at least two of the amino acid 10 residues that are required in order to introduce the new cleavage site. By way of example, in one embodiment, the Caspase 3 cleavage site (DMQD) may be introduced. In this regard, a preferred insertion position is identified that already includes a primary sequence selected from, for example, Dxxx, xMxx, xxQx, xxxD, DMxx, DxQx, DxxD, xMQx, xMxD, xxQD, DMQx, xMQD, DxQD, 15 and DMxD. Similarly, it is preferred to introduce the cleavage sites into surface exposed regions. Within surface exposed regions, existing loop regions are preferred. 20 In a preferred embodiment of the present invention, the destructive cleavage site(s) are introduced at one or more of the following position(s), which are based on the primary amino acid sequence of BoNT/A. Whilst the insertion positions are identified (for convenience) by reference to BoNT/A, the primary amino acid sequences of alternative protease domains and/ or translocation 25 domains may be readily aligned with said BoNT/A positions. For the protease component, one or more of the following positions is preferred: 27-31, 56-63, 73-75, 78-81, 99-105, 120-124, 137-144, 161-165, 169-173, 187-194, 202-214, 237-241, 243-250, 300-304, 323-335, 375-382, 30 391-400, and 413-423. The above numbering preferably starts from the N terminus of the protease component of the present invention. In a preferred embodiment, the destructive cleavage site(s) are located at a position greater than 8 amino acid residues, preferably greater than 10 amino 35 acid residues, more preferably greater than 25 amino acid residues, 24 particularly preferably greater than 50 amino acid residues from the N terminus of the protease component. Similarly, in a preferred embodiment, the destructive cleavage site(s) are located at a position greater than 20 amino acid residues, preferably greater than 30 amino acid residues, more 5 preferably greater than 40 amino acid residues, particularly preferably greater than 50 amino acid residues from the C-terminus of the protease component. For the translocation component, one or more of the following positions is preferred: 474-479, 483-495, 507-543, 557-567, 576-580, 618-631, 643-650, 10 669-677, 751-767, 823-834, 845-859. The above numbering preferably acknowledges a starting position of 449 for the N-terminus of the translocation domain component of the present invention, and an ending position of 871 for the C-terminus of the translocation domain component. 15 In a preferred embodiment, the destructive cleavage site(s) are located at a position greater than 10 amino acid residues, preferably greater than 25 amino acid residues, more preferably greater than 40 amino acid residues, particularly preferably greater than 50 amino acid residues from the N terminus of the translocation component. Similarly, in a preferred 20 embodiment, the destructive cleavage site(s) are located at a position greater than 10 amino acid residues, preferably greater than 25 amino acid residues, more preferably greater than 40 amino acid residues, particularly preferably greater than 50 amino acid residues from the C-terminus of the translocation component. 25 In a preferred embodiment, the destructive cleavage site(s) are located at a position greater than 10 amino acid residues, preferably greater than 25 amino acid residues, more preferably greater than 40 amino acid residues, particularly preferably greater than 50 amino acid residues from the N 30 terminus of the TM component. Similarly, in a preferred embodiment, the destructive cleavage site(s) are located at a position greater than 10 amino acid residues, preferably greater than 25 amino acid residues, more preferably greater than 40 amino acid residues, particularly preferably greater than 50 amino acid residues from the C-terminus of the TM component. 35 25 The polypeptide of the present invention may include one or more (e.g. two, three, four, five or more) destructive protease cleavage sites. Where more than one destructive cleavage site is included, each cleavage site may be the same or different. In this regard, use of more than one destructive cleavage site 5 provides improved off-site inactivation. Similarly, use of two or more different destructive cleavage sites provides additional design flexibility. The destructive cleavage site(s) may be engineered into any of the following component(s) of the polypeptide: the non-cytotoxic protease component; the 10 translocation component; the Targeting Moiety; or the spacer peptide (if present). In this regard, the destructive cleavage site(s) are chosen to ensure minimal adverse effect on the potency of the polypeptide (for example by having minimal effect on the targeting/ binding regions and/ or translocation domain, and/ or on the non-cytotoxic protease domain) whilst ensuring that 15 the polypeptide is labile away from its target site/ target cell. Preferred destructive cleavage sites (plus the corresponding second proteases) are listed in the Table immediately below. The listed cleavage sites are purely illustrative and are not intended to be limiting to the present 20 invention. Second Destructive Tolerated recognition sequence variance protease cleavage site P4-P3-P2-P1 -V-P1'-P2'-P3' recognition sequence P4 P3 P2 P1 P1' P2' P 3' Thrombin LVPR V GS A,F,G,1, A,F,G P R Not D Not - L,T,V ,1,L,T, or E D or or M VW E orA Thrombin GRVG G R G Factor Xa IEGRV A,F,G,1, D or E G R --- --- L,T,V or M ADAM 17 PLAQAVVRSSS Human SKGRVSLIGRV airway trypsin-like protease (HAT) 26 ACE --- --- --- --- Not P Not N (peptidyl- D or /A dipeptidase E A) Elastase MEAVVTY M, R E A, V, V, T, H Y - (leukocyte) H T Furin RXR/KR V R X R R or K Granzyme IEPDV I E P D --- --- Caspase 1 F,W,Y, --- H, D Not -- - L A,T P,E.D. Q.K or R Caspase 2 DVADV D V A D Not -- - P,E.D. Q.K or R Caspase 3 DMQDV D M Q D Not -- - P,E.D. Q.K or R Caspase 4 LEVD V L E V D Not -- - P,E.D. Q.K or R Caspase 5 LorW E H D --- --- Caspase 6 V E H D Not -- or I P,E.D. Q.K or R Caspase 7 DEVDV D E V D Not -- - P,E.D. Q.K or R Caspase 8 1 or L E T D Not -- - P,E.D. Q.K or R Caspase 9 LEHDV L E H D --- --- Caspase IEHDV I E H D --- --- 27 10 Matrix metalloproteases (MMPs) are a preferred group of destructive proteases in the context of the present invention. Within this group, ADAM17 5 (EC 3.4.24.86, also known as TACE), is preferred and cleaves a variety of membrane-anchored, cell-surface proteins to "shed" the extracellular domains. Additional, preferred MMPs include adamalysins, serralysins, and astacins. 10 Another group of preferred destructive proteases is a mammalian blood protease, such as Thrombin, Coagulation Factor VIla, Coagulation Factor IXa, Coagulation Factor Xa, Coagulation Factor Xia, Coagulation Factor X1la, Kallikrein, Protein C, and MBP-associated serine protease. 15 In one embodiment of the present invention, said destructive cleavage site comprises a recognition sequence having at least 3 or 4, preferably 5 or 6, more preferably 6 or 7, and particularly preferably at least 8 contiguous amino acid residues. In this regard, the longer (in terms of contiguous amino acid residues) the recognition sequence, the less likely non-specific cleavage of the destructive 20 site will occur via an unintended second protease. It is preferred that the destructive cleavage site of the present invention is introduced into the protease component and/ or the Targeting Moiety and/ or into the translocation component and/ or into the spacer peptide. Of these four 25 components, the protease component is preferred. Accordingly, the polypeptide may be rapidly inactivated by direct destruction of the non cytotoxic protease and/ or binding and/ or translocation components. Polypeptide delivery 30 In use, the present invention employs a pharmaceutical composition, comprising a polypeptide, together with at least one component selected from a pharmaceutically acceptable carrier, excipient, adjuvant, propellant and/ or salt. 28 The polypeptides of the present invention may be formulated for oral, parenteral, continuous infusion, implant, inhalation or topical application. Compositions suitable for injection may be in the form of solutions, suspensions or emulsions, or dry powders which are dissolved or suspended in a suitable 5 vehicle prior to use. Local delivery means may include an aerosol, or other spray (eg. a nebuliser). In this regard, an aerosol formulation of a polypeptide enables delivery to the lungs and/or other nasal and/or bronchial or airway passages. 10 The preferred route of administration is selected from: systemic (eg. iv), laparoscopic and/ or localised injection (for example, transsphenoidal injection directly into the tumour). 15 In the case of formulations for injection, it is optional to include a pharmaceutically active substance to assist retention at or reduce removal of the polypeptide from the site of administration. One example of such a pharmaceutically active substance is a vasoconstrictor such as adrenaline. Such a formulation confers the advantage of increasing the residence time of 20 polypeptide following administration and thus increasing and/or enhancing its effect. The dosage ranges for administration of the polypeptides of the present invention are those to produce the desired therapeutic effect. It will be 25 appreciated that the dosage range required depends on the precise nature of the polypeptide or composition, the route of administration, the nature of the formulation, the age of the patient, the nature, extent or severity of the patient's condition, contraindications, if any, and the judgement of the attending physician. Variations in these dosage levels can be adjusted using standard 30 empirical routines for optimisation. Suitable daily dosages (per kg weight of patient) are in the range 0.0001 -1 mg/kg, preferably 0.0001 -0.5 mg/kg, more preferably 0.002-0.5 mg/kg, and particularly preferably 0.004-0.5 mg/kg. The unit dosage can vary from less 35 that 1 microgram to 30mg, but typically will be in the region of 0.01 to 1 mg 29 per dose, which may be administered daily or preferably less frequently, such as weekly or six monthly. A particularly preferred dosing regimen is based on 2.5 ng of polypeptide as 5 the 1X dose. In this regard, preferred dosages are in the range 1X-1 OX (i.e. 2.5-250 ng). Fluid dosage forms are typically prepared utilising the polypeptide and a pyrogen-free sterile vehicle. The polypeptide, depending on the vehicle and 10 concentration used, can be either dissolved or suspended in the vehicle. In preparing solutions the polypeptide can be dissolved in the vehicle, the solution being made isotonic if necessary by addition of sodium chloride and sterilised by filtration through a sterile filter using aseptic techniques before filling into suitable sterile vials or ampoules and sealing. Alternatively, if solution stability is 15 adequate, the solution in its sealed containers may be sterilised by autoclaving. Advantageously additives such as buffering, solubilising, stabilising, preservative or bactericidal, suspending or emulsifying agents and or local anaesthetic agents may be dissolved in the vehicle. 20 Dry powders, which are dissolved or suspended in a suitable vehicle prior to use, may be prepared by filling pre-sterilised ingredients into a sterile container using aseptic technique in a sterile area. Alternatively the ingredients may be dissolved into suitable containers using aseptic technique in a sterile area. The product is then freeze dried and the containers are 25 sealed aseptically. Parenteral suspensions, suitable for intramuscular, subcutaneous or intradermal injection, are prepared in substantially the same manner, except that the sterile components are suspended in the sterile vehicle, instead of 30 being dissolved and sterilisation cannot be accomplished by filtration. The components may be isolated in a sterile state or alternatively it may be sterilised after isolation, e.g. by gamma irradiation. 30 Advantageously, a suspending agent for example polyvinylpyrrolidone is included in the composition/s to facilitate uniform distribution of the components. 5 Definitions Section Targeting Moiety (TM) means any chemical structure that functionally interacts with a Binding Site to cause a physical association between the polypeptide of the invention and the surface of a target cell (typically a mammalian cell, especially a human cell). The term TM embraces any 10 molecule (ie. a naturally occurring molecule, or a chemically/physically modified variant thereof) that is capable of binding to a Binding Site on the target cell, which Binding Site is capable of internalisation (eg. endosome formation) - also referred to as receptor-mediated endocytosis. The TM may possess an endosomal membrane translocation function, in which case 15 separate TM and Translocation Domain components need not be present in an agent of the present invention. Throughout the preceding description, specific TMs have been described. Reference to said TMs is merely exemplary, and the present invention embraces all variants and derivatives thereof, which possess a basic binding (i.e. targeting) ability to a Binding Site 20 on the neuroendocrine tumour cell, wherein the Binding Site is capable of internalisation. The TM of the present invention binds (preferably specifically binds) to the target cell in question. The term "specifically binds" preferably means that a 25 given TM binds to the target cell (e.g. to an SST receptor) with a binding affinity (Ka) of 106 M 1 or greater, preferably 10 7
M
1 or greater, or 108 M 1 or greater, or 109 M 1 or greater. The TMs of the present invention (when in a free form, namely when separate from any protease and/ or translocation component), preferably demonstrate a binding affinity (IC50) for the target 30 receptor in question (eg. an SST receptor) in the region of 0.05-18nM. The TM of the present invention is preferably not wheat germ agglutinin (WGA). 35 Reference to TM in the present specification embraces fragments and 31 variants thereof, which retain the ability to bind to the target cell in question. By way of example, a variant may have at least 80%, preferably at least 90%, more preferably at least 95%, and most preferably at least 97 or at least 99% amino acid sequence homology with the reference TM - the latter is any TM 5 sequence recited in the present application. Thus, a variant may include one or more analogues of an amino acid (e.g. an unnatural amino acid), or a substituted linkage. Also, by way of example, the term fragment, when used in relation to a TM, means a peptide having at least five, preferably at least ten, more preferably at least twenty, and most preferably at least twenty five amino 10 acid residues of the reference TM. The term fragment also relates to the above-mentioned variants. Thus, by way of example, a fragment of the present invention may comprise a peptide sequence having at least 7, 10, 14, 17, 20, 25, 28, 29, or 30 amino acids, wherein the peptide sequence has at least 80% sequence homology over a corresponding peptide sequence (of 15 contiguous) amino acids of the reference peptide. By way of example, somatostatin (SST) and cortistatin (CST) have high structural homology, and bind to all known SST receptors. Full-length SST has the amino acid sequence: 20 MLSCRLQCALAALSIVLALGCVTGAPSDPRLRQFLQKSLAAAAGKQELAKYF LAELLSEPNQTENDALEPEDLSQAAEQDEMRLELQRSANSN PAMAPRERKA GCKNFFWKTFTSC Full-length CST has the amino acid sequence: 25 MYRHKNSWRLGLKYPPSSKEETQVPKTLISGLPGRKSSSRVGEKLQSAHKM PLSPGLLLLLLSGATATAALPLEGGPTGRDSEHMQEAAGIRKSSLLTFLAWW FEWTSQASAGPLIGEEAREVARRQEGAPPQQSARRDRMPCRNFFWKTFSS CK 30 Reference to these TMs includes the following fragments (and corresponding variants) thereof: NFFWKTF; (R or K)NFFWKTF; C(R or K)NFFWKTF; 35 (P or G)C(R or K)NFFWKTF; 32 NFFWKTF(S or T); NFFWKTF(S or T)S; NFFWKTF(S or T)SC; (R or K)NFFWKTF(S or T); 5 (R or K)NFFWKTF(S or T)S; (R or K)NFFWKTF(S or T)SC; C(R or K)NFFWKTF(S or T); C(R or K)NFFWKTF(S or T)S; C(R or K)NFFWKTF(S or T)SC; 10 (P or G)C(R or K)NFFWKTF(S or T); (P or G)C(R or K)NFFWKTF(S or T)S; or (P or G)C(R or K)NFFWKTF(S or T)C. With regard to the above sequences, where a (P or G) alternative is given, a P 15 is preferred in the case of a CST TM, whereas a G is preferred in the case of an SST TM. Where an (R or K) alternative is given, an R is preferred in the case of a CST TM, whereas a K is preferred in the case of an SST TM. Where an (S or T) alternative is given, an S is preferred in the case of a CST TM, whereas a T is preferred in the case of an SST TM. 20 Preferred fragments comprise at least 7 or at least 10 amino acid residues, preferably at least 14 or at least 17 amino acid residues, and more preferably at least 28 or 29 amino acid residues. By way of example, preferred sequences include: SANSNPAMAPRERKAGCKNFFWKTFTSC (SST-28); 25 AGCKNFFWKTFTSC (SST-14); QEGAPPQQSARRDRMPCRNFFWKTFSSCK (CST-29); QERPPLQQPPHRDKKPCKNFFWKTFSSCK (CST-29); QERPPPQQPPHLDKKPCKNFFWKTFSSCK (CST-29); DRMPCRNFFWKTFSSCK (CST-17); PCRNFFWKTFSSCK (CST-14); and 30 PCKNFFWKTFSSCK (CST-14). The TM may comprise a longer amino acid sequence, for example, at least 30 or 35 amino acid residues, or at least 40 or 45 amino acid residues, so long as the TM is able to bind to a neuroendocrine tumour cell, preferably to an SST or 35 to a CST receptor on a neuroendocrine tumour cell. In this regard, the TM is 33 preferably a fragment of full-length SST or CST, though including at least the core sequence "NFFWKTF" or one of the above-defined primary amino acid sequences. 5 By way of further example, GHRH peptides of the present invention include: YADAIFTASYRKVLGQLSARKLLQDILSR; YADAIFTASYRNVLGQLSARKLLQDILSR; YADAIFTNSYRKVLGQLSARKLLQDIM; YADAI FTNSYRKVLGQLSARKLLQDI MS; ADAI FTNSYRKVLGQLSARKLLQDIMSR; YADAIFTNSYRKVLGQLSARKLLQDIMSRQQGESNQERGARARL; 10 YADAIFTNSYRKVLGQLSARKLLQDIMSRQQGESNQERGA; YADAIFTNAYRKVLGQLSARKLLQDIMSR; YADAIFTNSYRKVLGQLSARKALQDIMSR; YADAIFTASYKKVLGQLSARKLLQDIMSR; YADAI FTASYKRVLGQLSARKLLQDI MSR; YADAIFTASYNKVLGQLSARKLLQDIMSR; YADAI FTASYRKVLGQLSAKKLLQDI MSR; YADAIFTASYKKVLGQLSAKKLLQDIMSR; YADAIFTASYRKVLGQLSANKLLQDIMSR; 15 YADAIFTASYRNVLGQLSARKLLQDIMSR; YADAIFTASYRKVLGQLSARNLLQDIMSR; YADAIFEASYRKVLGQLSARKLLQDIMSR; YADAIFTASERKVLGQLSARKLLQDIMSR; YADAIFTASYRKELGQLSARKLLQDIMSR; YADAIFTASYRKVLGQLSARKLLQDIMSR; YADAIFTESYRKVLGQLSARKLLQDIMSR; YADAIFTNSYRKVLAQLSARKLLQDIM; YADAIFTNSYRKVLAQLSARKLLQDIMSR; YADAIFTASYRKVLAQLSARKLLQDIMSR; 20 YADAIFTAAYRKVLAQLSARKALQDIASR; YADAIFTAAYRKVLAQLSARKALQDIMSR; HVDAI FTQSYRKVLAQLSARKLLQDI LN RQQG E RNQEQGA; HVDAIFTQSYRKVLAQLSARKALQDILSRQQG; HVDAIFTSSYRKVLAQLSARKLLQDILSR; HVDAIFTTSYRKVLAQLSARKLLQDILSR; YADAIFTQSYRKVLAQLSARKALQDILNR; YADAIFTQSYRKVLAQLSARKALQDILSR. 25 It is routine to confirm that a TM binds to the selected target cell. For example, a simple radioactive displacement experiment may be employed in which tissue or cells representative of a neuroendocrine tumour cell are exposed to labelled (eg. tritiated) TM in the presence of an excess of 30 unlabelled TM. In such an experiment, the relative proportions of non-specific and specific binding may be assessed, thereby allowing confirmation that the TM binds to the target cell. Optionally, the assay may include one or more binding antagonists, and the assay may further comprise observing a loss of TM binding. Examples of this type of experiment can be found in Hulme, E.C. 35 (1990), Receptor-binding studies, a brief outline, pp. 303-311, In Receptor biochemistry, A Practical Approach, Ed. E.C. Hulme, Oxford University Press. 34 In the context of the present invention, reference to a peptide TM (e.g. SST peptide, CST peptide, or GHRH peptide, etc) embraces peptide analogues thereof, so long as the analogue TM binds to the same receptor as the corresponding 'reference' TM. Said analogues may include synthetic residues 5 such as: B-Nal = B-naphthylalanine; B-Pal = r3 -pyridylalanine; hArg(Bu) = N guanidino-(buityl)-homoarginine; hArg(Et) 2 = N, Ntguanidino-(dimethyl) homoarginine; hArg(CH 2
CF
3 ) = N, N-guanidino-bis-(2,2,2,-trifluoroethyl) homoarginine; hArg(CHs, hexy) = N, N guanidino-(rnethyl, hexy) homoarginine; Lys(Me) = Ne-methyllysine; Lys(Pr) = N*-isopropyllysine; 10 AmPhe = aminomethylphenylalanine; AChxAla = arninocyclohexylalanine; Abu = caminobutyric acid; Tpo = 4-thiaproline; MeLeu = N-methylleucne; Orn = ornithine; Nle - norleucine; Nva = norvaline; Trp(Br) = 5-bromo tryptophan; Trp(F) = 5-fluoro-tryptophan; Trp(NOQ) = 5-nitro-tryptophan; Gaba = y-aminobutyric acid; Brnp = J-mercaptopropionyl; Ac = acetyl; and Pen = 15 pencillarnine By way of example, the above peptide analogue aspect is described in more detail with reference to specific peptide TMs, such as SST peptides, GHRH peptides, bornbesin peptides, ghrelin peptides, GnRH (aka LHRH peptides), 20 and urotensin peptides., though the same principle applies to all TMs of the present invention. Somatostatin analogues, which can be used to practice the present invention include, but are not limited to, those described in the following publications, 25 which are hereby incorporated by reference: Van Binst, G. et al. Peptide Research 5: 8 (1992); Horvath, A. et al. Abstract, "Conformations of Somatostatin Analogs Having Antitumor Activty", 22nd European peptide Symposium, September 13-19,1992, Interlaken, Switzerland; US5,506,339; EP0363589; US4,904,642; US4,871,717; US4,725,577; US4,684,620; 30 US4,650,787; US4,585,755; US4,725,577; US4,522,813; US4,369,179; US4,360,516; US4,328,214; US4,316,890; US4,31 0518; US4,291,022; US4,238,481; US4,235,886; US4,211,693; US4,190,648; US4,146,612; US4,133,782; US5,506,339; US4,261,885; US4,282,143; US4,190,575; US5,552,520; EP0389180; EP0505680; US4,603,120; EP0030920; 35 US4,853,371; W090/12811; W097/01579; W091/18016; W098/08529 and 35 W098/08528; WO/0075186 and WO00/06185; W099/56769; and FR 2,522,655. Preferred analogues include: cyclo(N-Me-Ala-Tyr-D-Trp-Lys-Val-Phe) or H-D 5 B-Nal-Cys-Tyr-D-Trp-Lys-Thr-Cys-Thr-NH2; H-Cys-Phe-Phe-D-Trp-Lys-Thr Phe-Cys-NH2; H-Cys-Phe-Tyr-D-Trp-Lys-Thr-Phe-Cys-NH2; H-Cys-Phe Phe-D-Trp-Lys-Ser-Phe-Cys-NH2; H-Cys-Phe-Tyr-D-Trp-Lys-Thr-Phe-Cys NH2; H-Cys-Phe-Phe-D-Trp-Lys-Thr-NH2; H-Cys-Phe-Phe-D-Trp-Lys-Thr Phe-Cys-NH2; H-Phe-Phe-Phe-D-Trp-Lys-Thr-NH2; H-D-Phe-Phe-Phe-D-Trp 10 Lys-Thr-Phe-THr-NH2; H-Cys-Phe-Tyr(I)-D-Trp-Lys-Thr-Phe-Cys-NH2; H-D Phe-p-chloro-Phe-Tyr-D-Trp-Lys-Thr-Phe-Thr-NH2, H-D-Phe-p-NO2-Phe-Tyr D-Trp-Lys-Val-Phe-Thr-NH2, H-D-B-Nal-p-chloro-Phe-Tyr-D-Trp-Lys-Val-Phe Thr-NH2, H-D-Phe-Phe-Tyr-D-Trp-Lys-Val-Phe-Thr-NH2, H-D-Phe-p-chloro Phe-Tyr-D-Trp-Lys-Va-Phe-Thr-NH2, H-D-Phe-Ala-Tyr-D-Trp-Lys-Val-Ala-D 15 B-Nal-NH2; H-D-B-Nal-Cys-Tyr-D-Trp-Lys-Thr-Cys-Thr-NH2; H-D-Phe-Cys Phe-D-Trp-Lys-Thr-Cys-B -Nal-NH2; H-D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Cys-B Nal-NH2; H-D-B-Nal-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-NH2; H-D-Phe-Cys-Tyr D-Trp-Lys-Thr-Pen-Thr-NH2; H-D-Phe-Cys-Phe-D-Trp-Lys-Thr-Pen-Thr-NH2; H-D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-OH; H-D-Phe-Cys-Phe-D-Trp-Lys 20 Thr-Pen-Thr-OH; H-G ly-Pen-Phe-D-Trp-Lys-Thr-Cys-Thr-OH; H-Phe-Pen-Tyr D-Trp-Lys-Thr-Cys-Thr-OH; H-Phe-Pen-Phe-D-Trp-Lys-Thr-Pen-Thr-OH; H D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-ol; H-D-Phe-Cys-Phe-D-Trp-Lys-Thr Cys-Thr-NH2; H-D-Trp-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2; H-D-Trp-Cys Phe-D-Trp-Lys-Thr-Cys-Thr-NH2; H-D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr 25 NH2; H-D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2; H-D-Phe-Cys-Tyr-D-Trp Lys-Val-Cys-Thr-NH2; Ac-D-Phe-Lys*-Tyr-D-Trp-Lys-Val-Asp*~Thr-NH2 (an amide bridge formed between Lys* and Asp'); Ac-hArg (Et) 2-Gly-Cys-Phe-D Trp-Lys-Thr-Cys-Thr-NH2; Ac-D-hArg (Et) 2-Gly-Cys-Phe-D-Trp-Lys-Thr-Cys Thr-NH2; Ac-D-hArg (Bu)-Gly-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-NH2; Ac-D 30 hArg (Et) 2-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-NH2; Ac-L-hArg (Et) 2-Cys-Phe D-Trp-Lys-Thr-Cys-Thr-NH2; Ac-D-hArg (CH2CF3) 2-Cys-Phe-D-Trp-Lys-Thr Cys-Thr-NH2; Ac-D-hArg (CH2CF3) 2-Gly-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr NH2; Ac-D-hArg (CH2CF3) 2-Gly-Cys-Phe-D-Trp-Lys-Thr-Cys-Phe-NH2; Ac D-hArg (CH2CF3) 2-Gly-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-NHEt; Ac-L-hArg 35 (CH2-CF3) 2-Gly-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-NH2; Ac-D-hArg (CH2CF3) 36 2-Gly-Cys-Phe-D-Trp-Lys (Me)-Thr-Cys-Thr-NH2; Ac-D-hArg (CH2CF3) 2 Gly-Cys-Phe-D-Trp-Lys (Me)-Thr-Cys-Thr-NHEt; Ac-hArg (CH3, hexyl)-Gly Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-NH2; HhArg (hexy12)-Gly-Cys-Phe-D-Trp Lys-Thr-Cys-Thr-NH2; Ac-D-hArg (Et) 2-Gly-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr 5 NHEt; Ac-D-hArg (Et) 2-Gly-Cys-Phe-D-Trp-Lys-Thr-Cys-Phe-NH2; Propionyl D-hArg (Et) 2-Gly-Cys-Phe-D-Trp-Lys (iPr)-Thr-Cys-Thr-NH2; Ac-D-B-Nal-Gly Cys-Phe-D-Trp-Lys-Thr-Cys-Gly-hArg (Et) 2-NH2; Ac-D-Lys (Pr)-Gly-Cys Phe-D-Trp-Lys-Thr-Cys-Thr-NH2; Ac-D-hArg (CH2CF3) 2-DhArg (CH2CF3) 2-Gly-Cys-Phe-D-Trp-Lys-Thr- Cys- Thr-NH2; Ac-D-hArg (CH2CF3) 2-D-hArg 10 (CH2CF3) 2-Gly-Cys-Phe-D-Trp-Lys-Thr- Cys- Phe-NH2; Ac-D-hArg (Et) 2-D hArg (Et) 2-Gly-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-NH2; c-Cys-Lys-Asn-4-CI Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-Ser-D-Cys-NH2; H-Brnp-Tyr-D-Trp-Lys-Val Cys-Thr-NH2; H-Bmp-Tyr-D-Trp-Lys-Val-Cys-Phe-NH2; H-Bmp-Tyr-D-Trp Lys-Val-Cys-p-Cl-Phe-NH2; H-Brnp-Tyr-D-Trp-Lys-Val-Cys-p-Nal-NH2; H-D 15 B-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2; H-D-Phe-Cys-Tyr-D-Trp-Lys-Abu Cys-Thr-NH2; H-D-Phe-Cys-Tyr-D-Trp-Lys-Abu-Cys-beta-Nal-NH2; H pentalluoro-D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2; Ac-D-B-Nal-Cys pentafluoro-Phe-D-Trp-Lys-Val-Cys-Thr-NH2; H-D-i-Nal-Cys-Tyr-fD-Trp-Lys Val-Cys-p-Nal-NH2; H-D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys--Nal-NH2; H-D-, 20 SNal-Cys-Tyr-D-Trp-Lys-Abu-Cys-Thr-NH2; H-D-p-Cl-Phe-Cys-Tyr-D-Trp Lys-Abu-Cys-Thr-NH2; Ac-D-p-Cl-Phe-Cys-Tyr-D-Trp-Lys-Abu-Cys-Thr-NH2; H-D-Phe-Cys-p-Nal-D-Trp-Lys-Val-Cys-Thr-NH2; H-D-Phe-Cys-Tyr-D-Trp Lys-Cys-Thr-NH2; cyclo (Pro-Phe-D-Trp-N-Me-Lys-Thr-Phe); cyclo (Pro-Phe D-Trp-N-Me-Lys-Thr-Phe); cyclo (Pro-Phe-D-Trp-Lys-Thr-N-Me-Phe); cyclo 25 (N-Me-Ala-Tyr-D-Trp-Lys-Thr-Phe); cyclo (Pro-Tyr-D-Trp-Lys-Thr-Phe); cyclo (Pro-Phe-D-Trp-Lys-Thr-Phe); cyclo (Pro-Phe-L-Trp-Lys-Thr-Phe); cyclo (Pro Phe-D-Trp (F)-Lys-Thr-Phe); cyclo (Pro-Phe-Trp (F-Lys-Thr-Phe); cyclo (Pro Phe-D-Trp-Lys-Ser-Phe); cyclo (Pro-Phe-D-Trp-Lys-Thr-p-Cl-Phe); cyclo (D Ala-N-Me-D-Phe- D-Thr-D-Lys-Trp-D-Phe); cyclo (D-Ala-N-Me-D-Phe-D-Val 30 Lys-D-Trp-D-Phe); cyclo (D-Ala-N-Me-D-Phe-D-Thr-Lys-D-Trp-D-Phe); cyclo (D-Abu-N-Me-D- Phe-D-Val-Lys-D-Trp-D-Tyr); cyclo (Pro-Tyr-D-Trp-t-4 AchxAla-Thr-Phe); cyclo (Pro-Phe-D-Trp-t-4-AchxAla-Thr-Phe); cyclo (N-Me Ala-Tyr-D-Trp-Lys-Val-Phe); cyclo (N-Me-Ala-Tyr-D-Trp-t-4-AchxAla-Thr-Phe); cyclo (Pro-Tyr-D-Trp-4-Amphe-Thr-Phe); cyclo (Pro-Phe-D-Trp-4-Arnphe-Thr 35 Phe); cyclo (N-Me-Ala-Tyr-D-Trp-4-Amphe-Thr-Phe); cyclo (Asn-Phe-Phe-D 37 Trp-Lys-Thr- Phe-Gaba); cyclo (Asn-Phe-Phe-D-Trp-Lys-Thr-Phe-Gaba Gaba); cyclo (Asn-Phe-D-Trp-Lys-Thr-Phe); cyclo (Asn-Phe-Phe-D-Trp-Lys Thr-Phe-NH (CH2) 4CO); cyclo (Asn-Phe-Phe-D-Trp-Lys-Thr-Phe->Ala); cyclo (Asn-Phe-Phe-D-Trp-Lys-Thr-Phe-D-Glu)-OH; cyclo (Phe-Phe-D-Trp 5 Lys-Thr-Phe); cyclo (Phe-Phe-D-Trp-Lys-Thr-Phe-Gly); cyclo (Phe-Phe-D-Trp Lys-Thr-Phe-Gaba); cyclo (Asn-Phe-Phe-D-Trp-Lys-Thr-Phe-Gly); cyclo (Asn Phe-Phe-D-Trp (F)-Lys-Thr-Phe-Gaba); cyclo (Asn-Phe-Phe-D-Trp (N02) Lys-Thr-Phe-Gaba); cyclo (Asn-Phe-Phe-Trp (Br)-Lys-Thr-Phe-Gaba); cyclo (Asn-Phe-Phe-D-Trp-Lys-Thr-Phe (I)-Gaba); cyclo (Asn-Phe-Phe-D-Trp-Lys 10 Thr-Tyr (But)-Gaba); cyclo (Bmp-Lys-Asn-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr Pro-Cys)-OH; cyclo (Bmp-Lys-Asn-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-Pro-Cys) OH; cyclo (Bnip-Lys-Asn-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-Tpo-Cys)-OH; cyclo (Bmp-Lys-Asn-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-MeLeu-Cys)-OH; cyclo (Phe-Phe-D-Trp-Lys-Thr-Phe-Phe-Gaba); cyclo (Phe-Phe-D-Trp-Lys-Thr-Phe 15 D-Phe-Gaba); cyclo (Phe-Phe-D-Trp (5F)-Lys-Thr-Phe-Phe-Gaba); cyclo (Asn-Phe-Phe-D-Trp-Lys (Ac)-Thr-Phe-NH- (CH2) 3-CO); cyclo (Lys-Phe Phe-D-Trp-Lys-Thr-Phe-Gaba); cyclo (Lys-Phe-Phe-D-Trp-Lys-Thr-Phe Gaba); cyclo (Orn-Phe-Phe-D-Trp-Lys-Thr-Phe-Gaba); H-Cys-Phe-Phe-D Trp-Lys-Thr-Phe-Cys-NH2; H-Cys-Phe-Phe-D-Trp-Lys-Ser-Phe-Cys-NH2; H 20 Cys-Phe-Tyr-D-Trp-Lys-Thr-Phe-Cys-NH2; H-Cys-Phe-Tyr (I)-D-Trp-Lys-Thr Phe-Cys-NH2. Methods for synthesizing analogues are well documented, as illustrated, for example, by the patents cited above. For example, synthesis of H-D-Phe-Phe 25 Phe-D-Trp-Lys-Thr-Phe-Thr-NH2, can be achieved by following the protocol set forth in Example 1 of EP0395417A1. Similarly, synthesis analogues with a substituted N-terminus can be achieved, for example, by following the protocol set forth in WO88/02756, EP0329295, and US5,240,561. 30 Preferred examples of linear analogues include: H-D-Phe-p-chloro-Phe-Tyr-D Trp-Lys-Thr-Phe-Thr-NH2; H-D-Phe-p-N02-Phe-Tyr-D-Trp-Lys-Val-Phe-Thr NH2; H-D-*Nal-p-chloro-Phe-Tyr-D-Trp-Lys-Val-Phe-Thr-NH2; H-D-Phe-Phe Phe-D-Trp-Lys-Thr-Phe-Thr-NH2; H-D-Phe-Phe-Tyr-D-Trp-Lys-Val-Phe-Thr NH2; H-D-Phe-p-chloro-Phe-Tyr-D-Trp-Lys-Val-Phe-Thr-NH2; and H-D-Phe 35 Ala-Tyr-D-Trp-Lys-Val-Ala-D-beta-Nal-NH2. 38 One or more chemical moieties, eg. a sugar derivative, mono or poly-hydroxy (C2-12) alkyl, mono or poly-hydroxy (C2-12) acyl groups, or a piperazine derivative, can be attached to a SST analogue, e g. to the N-terminus amino 5 acid - see WO88/02756, EP0329295, and US5,240,561. Further examples of SST analogues that can be used as a TM in the present invention include the following: D-Cpa-cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr NH2; D-Phe-cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2; D-Phe-cyclo[Cys-p 10 NH2-Phe-D-Trp-Lys-Val-Cys]-Thr-NH2; N-Me-D-Phe-cyclo[Cys-Tyr-D-Trp Lys-Val-Cys]-Thr-NH2; D-Phe-cyclo[Cys-Tyr-D-Pal-Lys-Val-Cys]-Thr-NH2; Ac-D-Nal-cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2; D-Phe-cyclo [Cys-Tyr D-Trp-Lys-Val-Cys]-Nal-NH2; D-Nal-cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Nal NH2; D-Nal-cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-OH; ED-Phe-cyclo[Cys 15 Nal-D-Trp-Lys-Val-Cys]-Thr-NH2; D-Nal-cyclo[Cys-Tyr-D-Nal-Lys-Val-CysJ Nal-NH2; D-Nal-cyclo[Cys-Tyr-D-Trp-Lys-Val-D-Cys]-Nal-NH2; D-Trp cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Nal-NH2; D-Nal-cyclo[Cys-Tyr-D-Trp-Lys Val-Cys]-D-Nal-NH2; Nal-cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-D-Nal-NH2; (AcO-CH2 )3-C-NH-CO-(CH2)2-CO-D-Nal-cyclo(Cys-Tyr-D-Trp-Lys-Val 20 Cys]Thr-NH2; [3-0-(2,5,6-triacetyl ascorbic)acetyl-D-Nal-cyclo[Cys-Tyr-D-Trp Lys-Val-Cys]-Thr-NH2; D-Nal-cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Trp-NH2; Phe-cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Trp-NH2; 3-O-(ascorbic)-butryrl-D-Nal cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2; 3-O-(ascorbic acid)Ac-D-Nal cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2; D-Bpa-cyclo[Cys-Tyr-D-Trp-Lys 25 Val-Cys]-Nal-NH2; D-Nal-cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Bpa-NH2; Tris Suc-D-Nal-cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2; D-Dpa-cyclo[Cys-Tyr D-Trp-Lys-Val-Cys]-Nal-NH2; D-Nal-cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Dpa NH2; Ac-D-Nal-cyclo[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2; cyclo-[Cys-Tyr-D Trp-Lys-Val-Cys]-Thr-NH2; NmeCpa-cyclo (DCys-3-Pal-DTrp-Lys-Thr-Cys)-2 30 Nal-NH2; Cpa-cyclo(NMeDCys-3-Pal-DTrp-Lys-Thr-Cys)-2-Nal-N HMe; Cpa cyclo (DCys-NMe3-Pal-DTrp-Lys-Thr-Cys)-2-Nal-NH2; Cpa-cyclo(DCys-3-Pal NMeDTrp-Lys-Thr-Cys)-2-Nal-NH2; Cpa-cyclo(DCys-3-Pal-DTrp-NMeLys Thr-Cys)-2-Nal-NH2; Cpa-cyclo(DCys-3-Pal-DTrp-Lys-N MeThr-Cys)-2-Nal NH2; Cpa-cyclo (DCys-3-Pal-DTrp-Lys-Thr-NMeCys)-2-Nal-NH2; Cpa-cyclo 35 (DCys-3-Pal-DTrp-Lys-Thr-Cys)-Nme2-Nal-NH2; Cpa-cyclo(NMeDCys-3-Pal 39 DTrp-Lys-Thr-Cys)-Dip-NHMe; Cpa-cyclo (DCys-3-Pal-NMeDTrp-NMeLys Thr-Cys)-2-Nal-NH2; Cpa-cyclo(DCys-Tyr-DTrp-NMeLys-Thr-Cys)-2-Nal-NH2; Tfm-cyclo (DCys-3- Pal-DTrp-NMeLys-Thr-Cys)-2-Nal-NH2; Cpa-cyclo(DCys 3-Pal-DTrp-NMeLys-Thr-Cys)-DTrp-NH2; Nal-cyclo (DCys-3-Pal-DTrp 5 NMeLys-Thr-Cys)-DTrp-NH2; 3-Pal-cyclo (DCys-3-Pal-DTrp-NMeLys-Thr Cys)-DTrp-NH2; NmeCpa-cyclo (DCys-3- Pal-DTrp-Lys-Thr-Cys)-2-Nal-NH2; Cpa-cyclo(DCys-3-Pal-DTrp-NMeLys-Thr-Cys)-2-Nal-NH2; Cpa-cyclo(DCys 3-Pal-NMeDTrp-NMeLys-Thr-Cys)-2-Nal-NH2; Cpa-cyclo (DCys-Tyr-DTrp NMeLys-Thr-Cys)-2-Nal-NH2; Cpa-cyclo(DCys-3-Pal-DTrp-NMeLys-Thr-Cys) 10 DTrp-NH2; Nal-cyclo (DCys-Pal-DTrp-NMeLys-Thr-Cys)-DTrp-N H2; or 3-Pal cyclo(DCys-3-Pal-DTrp-NMeLys-Thr-Cys)-DTrp-NH2; NmeCpa-cyclo (DCys 3-Pal-DTrp-Lys-Thr-Cys)-2-Nal-NH2; Cpa-cyclo(DCys-3-Pal-DTrp-NMeLys Thr-Cys)-2-Nal-NH2; Cpa-cyclo (DCys-3- Pal-NMeDTrp-N MeLys-Thr-Cys)-2 Nal-NH2; Cpa-cyclo (DCys-Tyr-DTrp-NMeLys-Thr-Cys)-2-Nal-NH2; or Cpa 15 cyclo(DCys-3-Pal-DTrp-NMeLys-Thr-Cys)-DTrp-NH2; Cpa-cyclo (DCys-3-Pal DTrp-NMeLys-Thr-Cys)-2-Nal-NH2; Cpa-cyclo(DCys-Tyr-DTrp-NMeLys-Thr Cys)-2-Nal-NH2; methylpropionic acid-Tyr-D-Trp- ys-Val-Cys-Thr-NH 2 ; methylpropionic acid-Tyr-D-Trp- ys-Val-Cys-Phe-NH 2 ; methylpropionic acid Tyr-D-Trp-Lys-Val-Cys-p-CI-Phe-NH2; methylpropionic acid-Tyr-D-Trp-Lys 20 Val-Cys-p-Nal-NH 2 ; D-Phe-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-NH2; D-Phe Phe-Tyr-D-Trp-Lys-val-Phe-Thr-NH2; D-Phe-p-chloro-Phe-Tyr-D-Trp-Lys-Val Phe-Thr-NH 2 ; or D-Phe-Ala-Tyr-D-Trp-Lys-Val-Ala-p-D-Nal-NH 2 ; H 2 -c[Cys Phe-Phe-D-Trp-Lys-Thr-Phe-Cys]-NH 2 , H 2 -c[D-Cys-Phe-Phe-D-Trp-Lys-Thr Phe-Cys]-NH 2 , H 2 -c[Cys-Phe-Trp-D-Trp-Lys-Ser-Phe-Cys]-NH 2 , H 2 -c[Cys 25 Phe-Phe-D-Trp-Lys-Ser-Phe-Cys]-NH 2 , or H 2 -c[Cys-Phe-Tyr(I)-D-Trp-Lys-Thr Phe-Cys]-NH 2 , H 2 -c[Cys-Phe-Trp-D-Trp-Lys-Thr-Phe-Cys]-NH 2 , H 2 -c[D-Cys Phe-Trp-D-Trp-Lys-Thr-Phe-Cys]-NH 2 , H 2 -c[Cys-Phe-His-D-Trp-Lys-Thr-Phe Cys]-NH 2 , H 2 -c[D-Cys-Phe-His-D-Trp-Lys-Thr-Phe-Cys]-NH 2 , H 2 -c[D-Cys Phe-Phe-D-Trp-Lys-Ser-Phe-Cys]-NH 2 , H 2 -c[D-Cys-Phe-Trp-D-Trp-Lys-Ser 30 Phe-Cys]-NH 2 , H 2 -c[Cys-Phe-His-D-Trp-Lys-Ser-Phe-Cys]-NH 2 , H 2 -c[D-Cys Phe-His-D-Trp-Lys-Ser-Phe-Cys]-NH 2 , H 2 -c[D-Cys-Phe-Tyr(I)-D-Trp-Lys-Thr Phe-Cys]-NH 2 , H 2 -c[Cys-Phe-Tyr(I)-D-Trp-Lys-Ser-Phe-Cys]-NH 2 , or H 2 -c[D Cys-Phe-Tyr(I)-D-Trp-Lys-Ser-Phe-Cys]-NH 2 , H 2 -c[D-Cys-Asn-Phe-Phe-D Trp-Lys-Thr-Phe-Cys]-NH 2 , H 2 -c[Cys-Asn-Phe-Trp-D-Trp-Lys-Thr-Phe-Cys] 35 NH 2 , H 2 -c [D-Cys-Asn-Phe-Trp-D-Trp-Lys-Thr-Phe-Cys]-NH 2 , H 2 -c [Cys-Asn 40 Phe- His-D-Trp- Lys-Th r- Phe-Cys]- NH 2 , H 2 -c[D-Cys-Asn-Phe-His-D-Trp-Lys Thr-Phe-Cys]-NH 2 , H 2 -C[ Cys-Asn-Phe-Phe-D-Trp-Lys-Ser-Phe-Cys]-NH 2 , H 2 c[D-Cys-Asn-Phe-Phe-D-Trp-Lys-Ser-Phe-Cys]-NH 2 , H- 2 -c[Cys-Asn-Phe-Trp D-Trp-Lys-Ser-Phe-Cys]-NH 2 , H 2 -c[D-Cys-Asn-Phe-Trp-D-Trp-Lys-Ser-Phe 5 Cys ]-NH 2 , H 2 -C [Cys-Asn-Phe-His-D-Trp-Lys-Ser-Phe-Cys]-NH 2 , H 2 -C [D-Cys Asn-Phe-His-D-Trp-Lys-Ser-Phe-Cys]-NH 2 , H 2 -C [Cys-Asn-Phe-Tyr(I)-D-Trp Lys-Thr-Phe-Cys]-NH 2 , H 2 -C [D-Cys-Asn-Phe-Tyr(I)-D-Trp-Lys-Thr-Phe-Cys]
NH
2 , H 2 -C [Cys-Asn-Phe-Tyr(I)-D-rp-Lys-Ser-Phe-Cys]-NH 2 , H 2 -C [D-Cys-Asn Phe-Tyr(I)-D-Trp-Lys-Ser-Phe-Cys]-NH 2 , H 2 -C[CYS-Phe-Phe-D-Trp-Lys-Thr 10 Phe-Cys]-NH 2 ; Ac-D-Phe-Iyr-cydo '-y--r-y-y)AuTrN2 N al-Tyr-cyclo (Cys- D-Trp- Lys- D-Cys) -Val- N al-N H2; NaI-Tyr-cyclo(Cys-D-Trp Lys- D-Cys)-Abu- Na-N H-2; D- D ip-Tyr-cyclo (Cys- D-Trp- Lys- D-Cys)-Abu -N a NH2; DipTyr-cyclo (DCsDTpLsD-y)AuNlN Nal-Tyr-cydo(D Cys-i7XTrp-LysT>-DCys)-Abu-Nal-NH2; D -y-yl -y-DTp y-DCs 15 ValkNal-NH2; N lTrccI DCs -rp y-DCs a l H2; cyclo(D PheTrcco( Cs -Tp y-y)-b T ) Cpa-Pacyco(D-Cys-D-rp Lys-D-Cys)-A3c&NaINH2; C a a-yl D-y-DTp y-DCy)A0 l NH2; Cp-Pkyo(-y-DTr-Ls -y)Ac a H2 - (G(z))aeg cyclo( ' -y--r-y--y)AcNlN2 PaI-cyclo(D-Cys-D-Trp-Lys-D 20 Cys)-A5c-NaI-NH2; Cpa- Pa-cyclo (D-Cys- D-Trp- Lys- D-Cys) -B-Ala- N al-N H-2; Cpa- PalI-cyclo (D-Cys- D-Trp- Lys- D-Cys)-Sar-N al- NH 2; Cpa-Pakcydo(D-Cys D-Trp-Lys-D-Cys-Gaba-NaIkNH2; Cpa- Pal-cyclo (D-Cys- D-rp- Lys- D-Cys) Pro-NakNH2,: Pro- Phe-c(D-Cys- D-Trp-Lys- D-Cys)-N le- Phe-N H-2; Pro-Phe c(D-Cys-D-Trp-Lys-D-Cys)-Thr-NIe-NH2; Pro-Phe-c (D-Cys-D-Trp-Lys-D 25 Cys)>Thr-Phe-NH2; Cpa-Phe-c (DCs -r-Ls-DCs-aaNH ; Cpa Ph e-c(D-Cys- D-Trp- Lys- D-Cys) -G aba-Tyr- N H 2; Pip-Phe-c (D-Cys-D-Trp-Lys D-Cys)-NH2; Pip-Phe-c (Cys-D-Trp-Lys-Cys)-Gaba-NH2; or Pro-Phe-c(D Cys-D-Trp- Lys- D-Cys)-Th r-NH1-2; Phe-cyclo(Cys-D-Trp-Lys-Cys>,)Thr-NH2:, PheTrcco( Cs -r- y-y)-b T -NH2 Ac-D-Phe-Tyr-cyclo(D 30 Cy--r-y-y)AuTrN2 N al-Tyr-cylo ( Cys- D-Irp- ys- D-Cys) Nal Nal-NH2; N l-y-yl Cs -r- y-DCs-b l H2, Dip-Tyr cyl(-y--r-y--y)AuNlN2 N aI-Tyr-cyclo (D-Cys- D-Trp- Lys D-Cys)-Abu-NaI-NH1-2; Dip-Tyr-cyclo (DCsDTp-y--y -a- -H2; NalTyr-cyco(D-Cs- D-Trp- Lys- D-Cys)Va/W-Na N H2, Cpa-Pal-cyco(D-Cys-D 35 Trp- Lys- D-Cys)-A3c- NaMNH2; Cp-Plcco' -y- -r-Ls -y)Ac 41 Nal-NH2,- Cpa- Pa-cyclo (D-Cys- D-Trp- Lys- D-Cys)-A6c- Na-N H-2; (G(z))aeg cyclo(D-Cys-D-Trp-Lys-D-Cys)-A5c-Na-NH2; D-Cpa-cyclo (Cys- D-Trp- Lys- D Cys)-A5c-NaI-NH2; Pak-yclo (D-Cys-DTrp-ys-D-Cys>-A5&-NaNH2;, Cpa cyclo(D-Cys-D-Trp-Lys-D-Cys)-A5c-Na-NH2; Cpa-PaI-cyclo(D-Cys-D-Trp 5 Lys-D-Cys)- B-Ala-NaI-NH2; Cpa-Pal cyc,,o(D-Cys-i7XTrp-Lys,,D-Cys>Sar-Nal NH2; Cpa- Pa-cyclo (D-Cys- D-Trp- Lys- D-Cys) -Ai c- N al-N H2; Cpa-Pal-cyclo(D Cy--Tp Ly-DCs-aa a- 2 paPlccoDCsDTpLs Cys)-Pro-NaLNH2; (T)aeg -cyclo (D-Cys- D-Trp- Lys- D-Cys) -(A) aeg -N H2; Cpa PaI-cyclo(D-Cys-D-Trp-Lys-D-Cys)-A4c-Na-NH2; Cpa-PaI-cyclo(D-Cys-D 10 Trp-Lys-D-Cys)-Na-N H2; PaI-cyclo (D-Cys- D-Trp- Lys- D-Cys)- Na- NH1-2; Pro Ph e-cyclo (Cys- D-Trp- Lys- D-Cys) -Val- N H2; Pro- Phe-cyclo (D-Cys- D-rp- Lys Cys)Val-NH2; Pip-4-N02-Phe-cyclo(D-cys-D-Trp-Lys-D-Cys)-NIe-NH2; (G) aeg -Pa-cyclo (D-Cys- D-Trp- Lys- D-Cys) -Th r(Bzl)y(C)aeg -N H 2 or (C)aeg PaI-cyclo (D-Cys- D-Trp- Lys- D-Cys) -Th r (BzI")-(G)aeg-NH2; Nal-cyclo(D-Cys 15 Tyr-D-Trp-Lys-Cys-Na-H2:, D-NaI-cyclo(D-Cys-Tyr-D-Trp-Lys-Cys)-Na NH2; D-h-yl(y-y--r-y-y)TrN2 D-4-N02-Phe-cyclo(D Cys-Tyr-D-Trp-Lys-Cys)-Na-NH2; Ac-D-4-N02-Phe-cyclo(D-Cys-Tyr-D-Trp Lys-Cys)-NaI-NH2; D-4-NO2Phe-Pakcycdo(D-Cys-Phe (40BI-DTpLs eysvf-yr-NH2; Cpa-cyclo (D -Cys- Pal- D-Trp- Lys-Cys) -Th r(Bz) -Tyr- N H2; D-4 20 N02- Phe-cyclo(D-Cys- Pa- D-Trp-Lys-Cys)-Th r-Tyr-NH1-2; D-4-N02-Phe cyclo (D-Cys- Pal- D -Trp- Lys-Cys)-Th r(BzI) -N H2; D-4-NO2-Phe-cyclo (D-Cys Pal- D-Trp- Lys- D-Cys) -Th r(BzlWTyr N H 2 D-4-NO2-Phe-cycbo(D-Cys-Tyr-D Trp-Lys-Cys)-Thr"Bzl)>Tyr-NH2; 4- N02-Phe-cyclo (D-Cys- Pal- D-Trp- Lys-Cys) Thr(BzIWTyr-NH2,- D- N a cylo (D-Cys- Pak D-Trp- Lys-Cys)-Thr'. BzI) Tyr- N H2; 25 Pro-cyclo (D -Cys- Pal- D-Trp- Lys-Cys)-Th r(Bz) -Tyr- N H2; Cpa-cyclo(D-Cys-PaI D-Trp-Lys-Cys)-Thr(BzI)-NaI-NH2; Ser(BzI)-cyclo (D-Cys- Pal- D-Trp- Lys-Cys) Thr-Tyr-NH2; (T e-yl D-y-PkDTp-Ls -y)-hrBl Tr H2; (A)aeg -cyclo (D-Cys- Pal- D-Trp- Lys-Cys) -Th r(Bz) -Tyr- N H 2; (G)aeg-cyclo(D Cys- Pal- D-Trp- Lys-Cys) -Th r'Bzl) -yr- N H 2; (T)aeg-cyclo(D-Cys-4-Pa-D-Trp 30 Lys-Cys)-Thr(BzI)-Tyr-NH2; (T)aeg-cyclo(D-Cys-Tyr-D-Trp-Lys-Cys)-Thr(Bz) Tyr-NH2: (T)aeg -cyclo (D-Cys- Ph e-D-Trp- Lys-Cys)-Th r(Bzl) Tyr-N H 2; (T)aeg cyclo(D-Cys-ijF~aeg-D-Trp-Lys-Cys)-Thr (Bzl)Tyr-NH2; (T)aeg-cydlo(D-Cys Pak D-Trp-Lys-Cys)-Ser(Bzh-Tyr N H2; (TagccoDCsPiDTpLs Cys)-Phe(4-0-BzI)Tyr-NH2; (T)aegcyco(D-Cys-Pa D-rpLys-Cys)-A5c 35 Tyr-NH2; (Tag-yl DCs aI D-r-LsCs-b Tr H 2; D-Cpa 42 cyclo (D-Cys- (T)aeg- D-Trp- Lys-Cys)-Th r(Bz)-Tyr-NH1-2; (C)aeg-cyclo(D-Cys Pa D-r-Ls -y)-hrB -y-NH2 -p-(-y-PkDTp y-D Cys)Thr(Bzh>Tyr-NH2; (T) aeg-c(Pe n -Pa- D-Trp- Lys- D-Cys)Th r(Bz)-Tyr- N H2; (T) aeg -c(D-Cys-Trp- D-Trp- Lys- D-Cys)Th r(Bz) -Tyr- N H2; (T)aeg-c(D-Cys-Phe 5 D-Trp-Lys-D-Cys)Thr(BzI)-Tyr-NH2; (T)aeg-c(D-Cys- Pal- D-Trp-Orn-D Cys)Thr(BzI)-Tyr-N H2; (T) aeg -c(D-Cys- Pal- D-Trp-h Lys- D-Cys)Th r(Bz)-Tyr NH2; (T) aeg -c(D-Cys- Pal- D-Trp-Ilam p-D-Cys)Th r(BzI) Tyr- N H2; (T)aeg-c(D Cys-PaI-D-Trp-Cha(4-am)-D-Cys) Thr (BzlW)Tyr-NH21: (T)aeg-c(D-Cys- Pal Tr-Ls -y)Se(z)Tr 2 (T)aeg-c(D-Cys-Pa-D-Trp-Lys-D 10 Cys)Thr(BzI)-D-Tyr-NH2; (T)aeg-c(D-Cys-Pa-D-Trp-Lys-D-Cys) Thr (Bzl)-Irp NH2; (T) aeg-c (D-Cys- Pal- D-Trp- Lys- D- Pen)Th r(Bz) -Tyr- N H-2; (C)aeg-c(D Cys- Phe-D-Trp- Lys- D-Cys)Th r(Bz)-Tyr-N H-2; Ina-c(D-Cys-Phe-D-Trp-Lys-D Cys)-Thr(BzI)-Tyr-NH2; M nf -c(D-Cys- Ph e-D-Trp- Lys- D-Cys)-Th r(Bzl) Tyr NH2, Inp-c(D-Cys-Phe-D-Trp-Lys-D-Cys)-thr(Bz)-Tyr-NH2; Nua-c(D-Cys 15 Phe-D-Trp-Lys-D-Cys)-Thr(Bz)-Tyr-NH2; (TagPIcDCsDTpLsD Cys)Thr(BzI)>Tyr-N H2, (T) aeg- Pakc(D-Cys- D-Trp- Lys- D-Cys)Tyr(BzI) -Th r NH2; (C g hec -y-DTp y-DCs Thr(BzIyr-N H2; or (T)aeg-D Tr-(-y-a-y--y)h(z)LuN2 Hca-cyclo(D-Cys-Tyr-D-Trp Lys-Cys)-NaI-NH2; AcNlccoD-y-y--r-LsCs-a-H2: Ac-D 20 PleccoDCsTrD-r-y-y)NlN2 AcDNIccODCsTrD Trp-Lys-Cys)-Na-NH2; D-h-yl(-y-y-DTpLs s-a-H2:. Nal cycbo(D-Cysyr-D-rp-Lys-Cys)-Na-NH2: D- N a-cyclo (D-Cys-Tyr- D-Trp- Lys Cys)-NaI-N H2; D-Phe-cyclo('Cys-Iyr-D-Trp-Lys-Cys-Thr-N H2; D-4-NO2-Phe cycdo( D-Cys-TyrDTrp-Lys-Cys>)NalkNH2; Ac-D-4-N\02-Phe-cyclo(D-Cys-Tyr 25 D-Trp-Lys-Cys)-Na-N H2; D--O-h-a-yl(-y-h(--z)DTp Lys-Cys)JTyr-NH21: D-4- N02- Ph e-cyclo (D-Cys- Pa- D-Trp- Lys-Cys) -Th r(Bz) Tyr-NH2; C pa-cyclo (D-Cys- Pal- D-Trp- Lys-Cys)-Th r(Bz) -Tyr- N H-2; D-4-N02 Phe-cyclo (D-Cys- Pal- D-Trp- Lys-Cys)-Th r(Bz)-NH1-2; D-4NO2Phe-cyclo(D Cys-PaI-D-Trp-Lys-D-Cys)-Thr (BzI)-Tyr-NH2; D-4-N\02-Phe-cyclo(D-Cys-Tyr 30 D-Trp-Lys-Cys)-Thr(BzI)-Tyr-NH2; 4- N02- Ph e-cyclo (D-Cys- Pal- D-Trp- Lys Cys)-Thr(BzI)-Tyr-NH2; D-Na-cylo (D-Cys- Pal- D-Trp-Lys-Cys)-Th r (Bzl)Tyr NH2; P occo(-y-PkDTp y-y)-hrM Tr H2; Cpa-cyclo(D Cys-Pa-D-Trp-Lys-Cys)-Thr(Bz)-Na-NH2; Ser(BzI)-cyclo(D-Cys-Pa-D-Trp Lys-Cys)-Thr-Tyr-NH2; (T) aeg -cyclo (D-Cys- Pal- D-Trp- Lys-Cys)-Th r(Bz) -Tyr 35 NH2; (C) aeg -cyclo (D -Cys- Pal- D-Trp- Lys-Cys) -Th r(Bzl -yr- N H 2, Aic-cyclo(D 43 Cys- Pal- D-Trp- Lys-Cys) -Th r(Bz) -Tyr- N H 2; (C (z))aeg -cyclo (D-Cys- Pak D-p Lys-Cys)JThr(zI)>Tyr-NH2; (A(z))aeg-cyclo (D-Cys- Pal- D-Trp- Lys-Cys) Thr(Bzl)>Tyr-NH2; (TagccoPCs a -r-y-DCs-h(z)Tr NH2; (A)aeg -cyclo (D-Cys- Pal- D-Trp- Lys-Cys)-Th r(Bzl) Tyr-N H2; (G)aeg 5 cylo ( D-Cys- Pal - Tp y- s-hrBl)-y-NH2 (T)aeg-cyclo (D-Cys-4- Pal D-Trp-Lys-Cys)-Th r( BzI)-Tyr-N H2; (T)aeg-cyclo (D-Cys-Tyr- D-Trp-Lys-Cys) Thr (Mz-Tyr-NH2; (T)aeg -cyclo (D-Cys- Ph e-D-Trp- Lys-Cys)-Th r(Bz) -Tyr NH2; (T e cco(-y-()ag -r-LsCs-hrBl Tr H2; (T)aeg cyclo (D-Cys- Pal- D -Trp- Lys-Cys)-Se r(Bz) -Tyr- N H2; (T)aeg-cyclo(D-Cys- Pak 10 D-r-y-y)P~(40Bi-y-H- (TagccoDCsPiDTpLs Cys)>A5c-Tyr-N H2; (T) aeg-cyclo (D-Cys- Pal- D-Trp- Lys-Cys) -Abu -Tyr- N H2; D Cpa-cyclo (D-Cys- (T) aeg- D-Trp- Lys-Cys)-Th r(Bz) -Tyr- N H2; (T)aeg-cyclo(D Cys- PaI-D-Trp- Lys- D-Cys)-Th r(BzI)-p-Me- Phe-NH1-2; Ac-(T)aeg-cyclo(D-Cys Pal- D-Trp- Lys- D-Cys) -Th r(BzI)-Tyr- N H2; (T)aeg -cyclo (D-Cys-Pal-D-Trp- Lys 15 D-Cys>-Nal-NH2; D-Cpa-cyclo(D-Cys-Pa-D-Trp-Lys-D-Cys)-Na-N H2; (A)aeg cyclo (D-Cys- Pal- D -Trp- Lys- D-Cys) -Th r(Bz)-Tyr- N H2; (C)aeg-cyclo(D-Cys Pal- D-Trp- Lys- D-Cys) -Th r(BziWTyr N H2 - (C)aeg-c(D-Cys-Pa-D-Trp-Lys-D Cys)-Thr(BzI)-Tyr-NH2; D-Cpa-c(D-Cys- Pal- D-Trp- Lys- D-Cys)Th r(Bz) -Tyr NH2; (T) aeg -c(Pe n -Pal- D-Trp- Lys- D-Cys)Th r(Bz')-yr- N H 2, (T)aeg-c(D-Cys 20 Trp- D-Trp- Lys- D-Cys)Th r(Bzl)Tyr- N H2; (T)aeg-c(D-Cys- Phe- D-Trp- Lys- D Cys)Thr(Bzl')Tyr-N H2; (T)aeg -c(D-Cys- Pal- D-Trp-Orn -D-Cys)Th r(Bzl) Tyr NH2; (T) aeg -c(D-Cys- Pal- D-Trp-h Lys- D-Cys)Th r(Bzl)>Tyr N H 2, (T)aeg-c(D Cy-Pl-DTp anp -y)hr z)-y-NH2 (T)aeg -c(D-Cys- Pal- D-Trp Cha(4-am)-D-Cys)Thr(Bzi)-Tyr-NH2; (T) aeg -c(D-Cys- Pal- D-Trp- Lys- D-Cys) 25 Ser(Bzl)yTyr-N H2; (T)aeg-c (D-Cys-PaI-D-Trp-Lys-D-Cys)Thr (Bzl)>D-yr NH2; (T)aeg-c (DCs a--r-Ls -CsT (z)Tp 2 (T)aeg-c(D Cys Pa--r-Ls -PnT (z)Tr NH;(~e-(-y-Pe - -Ls D-Cys)Thr(BzI)>Tyr-NH2; I -(-y-P .-DTp y-DCs-hrB Tr NH2; Mn-(-y-PeDTp ys -y)T 'Bl-y- H2, Inp-c(D-Cys 30 Phe-D-Trp-Lys-D-Cys)-Thr(Bz)-Tyr-NH2; Nua-c(D-Cys-Phe-D-Trp-Lys-D Cys)-Thr(BzI)-Tyr-NH2; (Tag a-(-y--r- y-DCsT (z)Tr NH2; (Tag-Pk(-y-DTp Ls -y)y(z)-hr H2; (C)aeg-Phe c(DCs -r-Ls -y)hrBl Tr H2 - or (T)aeg-D-Trp-c(D-Cys- Pak Lys- D-Cys)Th r(Bzl)-Leu-N H2; cyclo(Trp-D-Trp-Lys-Phe(4-O-BzI)-Phe-(T)aeg); 44 cyclo (Trp D-Trp ys-PalPh e- (T)aeg); cyclo(Phe-Phe-D-Trp-Lys-Thr-(T)aeg):I or H- B-D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2 (also known as lanreotide) cyclo (Pro- Phe-D-Trp- Lys-Th r- Phe), cyclo(N-Me-Ala-Tyr-D-Trp-Lys-Val- Phe); D-beta- Nal-Cys-Tyr-D-Trp- Lys-Val-Cys-Th r-N H 2 ; D- Phe-Cys-Tyr- D-Trp-Lys 5 VaI-Cysbeta-Na-NH 2 ; D-Phe-Cys-Tyr-D-Trp-Lys-a-Aminobutyric acid-Cys Thr-NH 2 ; pentafluoro-D-Phe-Cys-Tyr-D-Trp-Lys-Va-Cys-Thr-NH 2 ; N-Ac-D beta- Nal-Cys-Tyr- D-Trp- Lys-Val-Cys-Th r-N H- 2 ; D-beta- Nal -Cys- pe ntaflIu oro Phe- D-Trp-Lys-Val-Cys-Th r- NH 2 ; D-/3-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-beta NaI-NH 2 ; D-Phe-Cys-/3-NaI-D-Trp-Lys-VaI-Cys-Thr-NH 2 ; D-beta-Nal-Cys-Tyr 10 D-Trp-Lys-a-aminobutyric acid-Cys-Thr-NH 2 ; D-p-CI-Phe-Cys-Tyr-D-Trp-Lys a-aminobutyric acid-Cys-Thr-NH 2 ; acetyl-D-p-CI-Phe-Cys-Tyr-D-Trp-Lys-a aminobutyric acid-Cys-Thr-NH 2 ; cyclo(Pro-Phe-D-Trp- Lys-Thr-Phe); cyclo(N Me-Ala-Tyr-D-Trp- Lys-Val- Phe); D-beta- Nal-Cys-Tyr- D-rp- Lys.-Val-Cys-Th r-~
NH
2 ; D-h-y-y--r-LsVlCsTpN2 D-h-y-heDTpL 15 Thr-Cys-Thr(ol); D-p-Cl-Phe-Cys-yr-D-rpLys-Va-Cys-Thr-NH 2 ; D-Phe-Cys Tyr- D-Trp- Lys-Val-Cys-beta- N al; H2-beta-Nal- D-Cys-Tyr- D-Trp-Lys-Val-Cys beta-Nal-NH2; (H) (C H 300)-beta- Nal- D-Cys-Tyr- D-Trp- Lys-Val-Cys-beta- Nal NH2; (H)-(4- 2-h yd roxyethyl)- p ai n lctl bt-Nal -y-y-DTp Lys-VaCys-beta-NalkNH2; (H)-(4-(2-hydroxyeaih-1 20 pier ineha s fonl bt-Na-DCsTr -r-LsVlCs ea l NH2; H 2- beta- Nal- D-Cys- Pal- D-Trp- Lys-Val-Cys-beta- Nal- N H-2; (H)(CH300) beta- Nal- D-Cys- Pal- D-Trp- Lys-VaI-Cys-beta- Nal- NH2., (H)-(4-(2 hydroxyethyl)l %pip prazi n y~acetyl)-beta- Nal- D-Cys- Pal- D-Trp- Lys-Val-Cys beta-Nal-NH2; ('H)-i'4-(2-hydroxyethyW1 pprziietaieufty)-eaNlD 25 Cys-Pal-D-Trp-Lys-Val-Cys-beta-Nal-NH2; H 2- beta- Nal- D-Cys-Tyr- D-Trp- Lys Val-Cys-Thr-NH2; (H CH3O bt-NaI -y-y-DTp y-a-y-hr NH2; (H)(44(2Thydroxyethyl)l- i ai n lctl bt-Nal -y-y-DTp Lys-Val-Cys-Thr-NH2; (H)(4-i'24iydroxyethyi)-1 -piperizneethancsulfony) beta-N al- D-Cys-Tyr- D-Trp- Lys-Val-Cys-Th r- NH 2; H2-beta-Nal-D-Cys-Pal-D 30 Trp-Lys-Val-Cys-Thr-NH2; (H CH3O bt-Na-DCs a-D-r-LsVl Cys-hr-NH2; (H) (4-(2- hyd roxyethyl)- p ai nyaey)-ea Na-DCs a D-rp-Lys-ValCys-Thr-NH2:, (H1)(4-(2hydroxyethyl)- 1 pi przne hesIfoy)O a--y-Pl -r-y-a-yTH -112; H2 Ph e-D-Cys-Tyr- D-Trp- Lys-Val-Cys- beta- Nal- NH 2; (H)(CH300) Phe-D-Cys 35 Tyr-D-Trp-Lys-Val-Cys-beta-Nal-NH2; (H )(4-(2-hydroxyethy1)1 45 piperaznyla-etl)-Pe-DCys-yr--TrpLysVal-ys-eta-ai H(44-i2 hydroxyethyi)- -piperzineethaneSwbitnyl)>Phe-D-Cys-Tyr-D-Trp-Lys-Va-Cys beta-NaI-NH2; H2- Phe-D-Cys- Pal- D-Trp- Lys-VaI-Cys-beta-N al-N H2; (H) (CH300) Ph--y-Pl -r-y-a-y-eaNl 2 H(-2 5 hydroxyethyl)-l - ierz lctl P -DCs a-DTp y-a-y-bt. Nal-H2,: (H) (4-(2-hydroxyethyl)- -pprznehnsioy h--y-Pl D-Trp-Lys-VaI-Cys-beta-NaI-NH-2; H2- Phe-D-Cys- Pal- D-Trp-Lys-VaI-Cys-Th r NH2; (H)(0H300)-Phe-D-Cys-Pa-D-Trp-Lys-Va-Cys-Thr-NH2; (H)(4-(2 hydroxyethyl)-1 -pipe razi nylacetyI) -Ph e- D-Cys- Pal-D-Trp- Lys-Val-CysTh r 10 NH2; (H)(4-(2-hydroxyethyl)-1 -pi perizi neethanesuIf onyl)- Phe-D-Cys- Pal- D Trp-Lys-VaI-Cys-Thr-NH2; H2-beta-NaI-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-beta NaI-NH2; (H) (CH300) -beta- N a-D-Cys- Pa- D-Trp- Lys-Th r-Cys- beta- N al-N H2; (H)(4-(2-hydroxyethyl)-1 -pipe razi nylacetyl) -beta- N al-D-Cys-Tyr- D-Trp- Lys Thr-Cys-beta-Na-NH2; (H)(4-(2-hydroxyethyl)-1 -piperizineethanesulfonyl) 15 beta- N al-D-Cys-Tyr- D-Trp- Lys-Th r-Cys- beta- N al-N H2; H-2-beta-NaI-D-Cys Pal- D-Trp- Lys-Th r-Cys- beta- N al-N H2; (H) (0H300)-beta- Na-D-Cys- Pal- D Trp-Lys-Thr-Cys-beta-Na-NH-2; (H)(4-(2-hydroxyethyl)-1 -piperazinylacetyl) beta-NaI-D-Cys-PaI-D-Trp-Lys-Thr-Cys-beta-Na-NH2; (H)(4-(2-hydroxyethyl) 1 -pi perizi neethanesuIf onyl)-beta- Na-D-Cys- Pal- D-Trp-Lys-Th r-Cys-beta-N a 20 NH2; H2-beta-NaI-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-Thr-NH2; H(0H300)-beta NaI-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-Thr-NH2; (H)(4-(2-hydroxyethyl)-1 pi pe razi nylacetyl) -beta- N l -y-y-DTp ysT -y-hr (H)(4-(2 hydroxyethyl)-l -pp.rzneh~(,ufnl-eaNlDCsTrDTpLsTr Cys-Thr-NH2; H2-beta-NaI-D-Cys-Pa-D-Trp-Lys-Thr-Cys-Thr-NH2; 25 (H) (C0H 30)- beta- N a-D-Cys- Pa- D-Trp- Lys-Th r-Cys-Th r- N H2; (H)(4-(2 hydroxyethyl)l- i ai nyaeLh-bt-NakDCs a-DTp y-hrCs Thr-NH2; (H)(4-(2-hydroxyethyl)-1 -piperizineethanesulfonyl)-beta- NalkD-Cys PalkD-rp-Lys-Thr-Cys-Thr-NH2; H2-Phe-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-beta NaI-NH2; (H)(0H300)Phe-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-beta-Na-N H2; 30 (H)(44(2-hydroxyethyl)-l -piperazinylacety) Ph(.>D-Cys-Tyr-D-Trp-Lys-Thr-Cys beta-NaI-NH2; (H)(4-(2-hydroxyethyl)-1 -piperizineethanesulfonyl) Phe-D-Cys Tyr- D-Trp- Lys-Th r-Cys- beta- N al-N H2; H2- Phe- D-Cys- Pal- D-Trp-Lys-Th r-Cys beta-NaI-NH2; (H)(0H300) Phe-D-Cys-Pa-D-Trp-Lys-Thr-Cys-beta-Na-N H2; (H)(4-(2-hydroxyethyl)-1 -piperazinylacetyl) Phe-D-Cys-Pa -D-Trp-Lys4hr-Cys 35 beta-Nal-NH2: (H)(4-(2-hydroxyethyi)ippeiiethnsl ry)heDCs 46 Pal-D-Trp-Lys-Thr-Cys-beta-Nal-NH2; H2-Phe-D-Cys-Tyr-D-Trp-Lys-Thr-Cys Thr-NH2; (H)(CH3CO)Phe-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-Thr-NH2; (H)(4-(2 hydroxyethyl)-1-piperazinylacetyl)Phe-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-Thr NH2; (H)(4-(2-hydroxyethyl)-1-piperizineethanesuifonyl)Phe-D-Cys-Tyr-D-Trp 5 Lys-Thr-Cys-Thr-NH2; H2-Phe-D-Cys-Pal-D-Trp-Lys-Thr-Cys-Thr-NH2; (H) (CH3CO)- Phe-D-Cys- Pal-D-Trp-Lys-Thr-Cys-Thr-N H2; (H)(4-(2 hydroxyethyl)-1 -piperazinylacetyl) Phe-D-Cys-Pal-D-Trp-Lys-Thr-Cys-Thr NH2; (H)(4-(2-hydroxyethyl)1 -piperizineethanesulfonyl) Phe-D-Cys-Pal-D-Trp Lys-Thr-Cys-Thr-NH2; H2-beta-Nal-D-Cys-Tyr-D-Trp-Lys-Abu-Cys-beta-Nal 10 NH2; H2-Phe-D-Cys-Tyr-D-Trp-Lys-Abu-Cys-beta-Nal-NH2; H2-beta-Nal-D Cys-Pal-D-Trp-Lys-Abu-Cys-beta-Nal-NH2; H2-Phe-D-Cys-Pal-D-Trp-Lys Abu-Cys-beta-Nal-NH2; H2-beta-Nal-D-Cys-Tyr-D-Trp-Lys-Abu-Cys-Thr-NH2; H2-Phe-D-Pen-Tyr-D-Trp-Lys-VaI-Pen-beta-Nal-NH2; H2-Phe-D-Pen-Pal-D Trp-Lys-Thr-Pen-Thr-NH2; H2-Dip-D-Cys-Pal-D-Trp-Lys-Val-Cys-Dip-NH2; 15 H2-F5-Phe-D-Cys-His-D-Trp-Lys-Val-Cys-F5-Phe-NH2; H2-Dip-D-Cys-Pal-D Trp-Lys-Val-Cys-beta-Nal-NH2; H2-r- F-Phe-D-Cys-Pak-D-Trp-Lys-Val-Cys m-F-Phe-NH2 H2-o-F-Phe-D-Cys-Pal-D-Trp-Lys-Val-Cys-o-F-Phe-NH2; H2-p F-Phe-D-Cys-Pal-D-Trp-Lys-Val-Cys-p-F-Phe-NH2; H2-F5-Phe-D-Cys-Pal-D Trp-Lys-Val-Cys-F5-Phe-NH2; H2-F5-Phe-D-Cys-2-Pal-D-Trp-Lys-Val-Cys 20 F5-Phe-NH2; H2-beta-Nal-D-Cys-His-D-Trp-Lys-Val-Cys-D-Dip-NH2; H2-Dip D-Cys-His-D-Trp-Lys-Val-Cys-beta-Nal-NH2; H2-Dip-D-Cys-His-D-Trp-Lys Val-Cys-Dip-NH2; H2-beta-Nal-D-Cys-His-D-Trp-Lys-Val-Cys-beta-Nal-N H2; H2-Trp-D-Cys-Tyr-D-Trp-Lys-Val-Cys-D-beta-Nal-NH2; H2-beta-Nal-D-Cys Tyr-D-Trp-Lys-Val-Cys-D-beta-Nal-NH2; H2-beta-Nal-D-Cys-Pal-D-Trp-Lys 25 Val-Cys-D-p-F-Phe-NH2; H2-beta-Nal-D-Cys-Pal-D-Trp-Lys-Tle-Cys-beta Nal-NH2; H2-p-F-Phe-D-Cys-Pal-D-Trp-Lys-Val-Cys-beta-Nal-N H2; H2-beta Nal-D-Cys-Pal-D-Trp-Lys-NIe-Cys-beta-Nal-NH2; H2-beta-Nal-D-Cys-Pal-D Trp-Lys-Ilie-Cys-beta-Nal-NH2; H2-beta-Nal-D-Cys-Pal-D-Trp-Lys-Gly-Cys beta-Nal-NH2; H2-beta-Nal-D-Cys-Pal-D-Trp-Lys-Ala-Cys-beta-Nal-NH2; H2 30 beta-Nal-D-Cys-Pal-D-Trp-Lys-Leu-Cys-beta-Nal-NH2; H2-Bip-D-Cys-Tyr-D Trp-Lys-Ile-Cys-Bip-NH2; H2-p-F-Phe-D-Cys-His-D-Trp Lys-Val-Cys-p-F-Phe NH2; H2-Npa-D-Cys-Pal-D-Trp-Lys-Val-Cys-Tyr-NH2; H2-m-F-Phe-D-Cys His-D-Trp-Lys-Val-Cys-m-F-Phe-NH2; H2-o-F-Phe-D-Cys-His-D-Trp-Lys-Val Cys-o-F-Phe-NH2; H2-beta-Nal-D-Cys-Pal-D-Trp-Lys-Val-Cys-Dip-NH2; H2 35 Cpa-D-Cys-Pal-D-Trp-Lys-Val-Cys-Cpa-NH2; H2-Igl-D-Cys-Pal-D-Trp-Lys 47 VaI-Cys-IgI-NH2; H2-beta-NaI-D-Cys-Pa-D-Trp-Lys-Va-Cys-D-Dip-N H2; H2 beta- N al-D-Cys-3- I-Tyr- D-Trp- Lys-VaI-Cys- beta- N al-N H2; H2-p-CN-Phe-D Cys-PaI-D-Trp-Lys-VaI-Cys-p-CN-Phe-NH2; H2-beta-NaI-D-Cys-Tyr-D-Trp Lys-VaI-Cys-D-Dip-NH2; H 2- beta- N al-D-Cys- Bta- D-Trp- Lys-VaI-Cys- beta- N al 5 NH2; H2-p-F-Phe-D-Cys-Pa-D-Trp-Lys-TIe-Cys-beta-Na-NH2; H2-Bpa-D Cys-PaI-D-Trp-Lys-VaI-Cys-Bpa-NH2; H2- Iph- D-Cys- Pal- D-Trp-Lys-VaI-Cys Iph-NH2; H 2-Trp- D-Cys- Pal- D-Trp- Lys-Tie-Cys- beta- N al-N H2; H2-p-CI-Phe D-Cys- Pal- D-Trp-Lys-VaI-Cys-beta- Na-N H2; H2-p-CI- Phe-D-Cys- Pal- D-Trp Lys-Tie-Cys- beta- N al-N H2; H 2-p-CI- Ph e-D-Cys- Pal- D-Trp- Lys-Tie-Cys- p-C 10 Phe-NH2; H2-p-CI-Phe-D-Cys-PaI-D-Trp-Lys-Cha-Cys-p-CI-Phe-N H2; H2-p CI-Phe-D-Cys-Tr(I)-D-Trp-Lys-VaI-Cys-p-CI-Phe-NH2; H2pC-heDCs Tyl Tp y-a-y-bt-Na-NH2 H 2- p-ClPh (,-D-CysTyr( 1 -D-Trp- Lys Tle-Cys-beta-NalkNH2: H -- F he -y-y~) -Tp y-a-y-bt-Na NH2, H -p -P -, -y-y~)-DTp y-k-y-bt-Na , H2-beta 15 Na--y-y--r-y-b-y-eaNlN2 (H)(CH3CO)-beta-NalkD Cy-Tr D-r-LsAu-y-bt-Na-NH2 2pN2PeDCsTrDTp Lys-Abu-Cys-bela-NalkNH2; (H) (C0H 30)-beta- N a-D-Cys-Tyr- D-Trp- Lys-Abu Cys-beta-Na-NH2; H2pN2PeDCsTrBl--r-y-h(z)Cs Nal-NH24- (H)(4-(2Thydroxyethyl)- -pprz~yaey)--O-leDCs 20 Ty(z) -r-LsT 'z)-y-bt-Na-NH2 (H)(4-(2-hydroxyethyl)-l pieaiyaey)pN2PeDCy-y--r-y-h-y-y-H2;, H2-p N0 -h -- y-y--r-y-a-y -eaN lN 2 H(-2 hydroxyethyl)-l -pp.rznlc.tl-- -heDCsTrDTpLsVlCs P-NaLNH2; (H)(4-(2-thydroxyethyl)lppeaiy>ct1)b -NlPleDC 25 Tyr-D-Trp-Lys-VaI-Cys-beta-Na-NH2; H2bt-a-DCsTy(z) -r-Ls Thr(Bzi)Cys-beta-Nal-NH2; (H)(4-(2-hydroxyethyi)-->1 znlaey)-ea Nal-D-Cys-Tyr(BzI)-D-Trp-Lys-Thr(BzI)-Cys-Tyr(BzI)-NH2; H2-D-Phe-D-Pen Tyr-D-Trp-Lys-VaI-Cys-Thr-NH2; H 2-D- beta- N al-D-Cys-Tyr- D-Trp- Lys-Va Cys-Thr-NH2; H -Dbt-Na-DCsTr -r-LsVlCs ea l . 30 H 2-D- beta- N al-D-Cys-Tyr- D-Trp- Lys-Th r-Cys-beta- N al-N H2; H2-D-Phe-D Cys-PaI-D-Trp-Lys-Thr-Cys-Thr-NH2; H2-D-Phe-D-Cys-Tyr-D-Trp-Lys-Abu Cys-Thr-NH2; H2-D-beta-NaI-D-Cys-Tyr-D-Trp-Lys-Abu-Cys-Thr-N H2; H2-D beaNlDCsTrDTpLy-a-y--eaNlN2 H2DpFPeD Cy-a--r-y-alCsDpFPeN2 H2-D-Bip-D-Cys-Tyr-D-Trp-Lys 35 VaI-Cys-beta-NaI-NH2; H2- D-Di p- D-Cys- Pal- D-Trp-Lys-VaI-Cys-beta- Na 48 NH2; H2-D-p-F-Phe-D-Cys-Pal-D-Trp-Lys-Tie-Cys-beta-Na-NH2; H2-D-p-Cl Phe-D-Cys-Pal-D-Trp-Lys-Tie-Cys-p-Cl-Phe-NH2; p-N02-D-Phe-D-Cys-Pa-D Trp-Lys-Thr(Bzl)-Cys-Tyr(Bzl)-NH2; p-N02-D-Phe-D-Cys-Tyr(Bzl)-D-Trp-Lys Val-Cys-Tyr(Bzl)-NH2; (H)(4-(2-hydroxyetihyi)1-piperazinylacetyl)-p-NO2-P 5 Phe-D-Cys-Pal-D-Trp-Lys-Thr(Bzl)-Cys-Tyr(Bzl)-NH2; (H)(4-(2-hydroxyethyl) 1 -piperazinylacetyl)-p-NO2-P-Phe-D-Cys-Tyr(Bzl)-D-Trp-Lys-Val-Cys Tyr(Bzl)-NH2; (H) (5-phenylpropionyl)-D-Cys-Tyr-D-Trp-Lys-Val-Cys-beta-Nal NH2; (H)(3-phenylpropionyl')-D-Cys-Pal-D-Trp-Lys-Val-Cys-beta-Nal-NH2; (H)(3-phenylpropionyl)-D-Cys-Tyr-D-Trp- Lys-Thr-Cys-beta-Nal-N H2; (H)(3 10 phenylpropionyl)-D-Cys-Pal-D-Trp-Lys-Thr-Cys-beta-Nal-N H2 (H) (3 phenylpropionyl)-D-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2; (H)(3 phenylpropionyl)-D-Cys- Pal-D-Trp-Lys-Val-Cys-Thr-N H2; (H)(3 phenylpropionyl)-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-Thr-NH2; (H)(3 phenylpropionyl)-D-Cys-Pal-D-Trp-Lys-Thr-Cys-Thr-NH2; (H)(3-[2 15 naphthyl]propionyl)-D-Cys-Tyr-D-Trp-Lys-Val-Cys-beta-Nal-NH2; (H)(3-[2 naphthyl]propiony)-D-Cys- Pal-D-Trp-Lys-Val-Cys-beta-Nal-NH2; (H)(3-[2 naphthyl]propionyl)~D-Cys-Tyr-D-Trp-Lys-Thr-Cys-beta-Nal-N H2; (H)(3-[2 naphthyl] propinyl)-D-Cys-Pal-D-Trp-Lys-Thr-Cys-beta-Nal-NH2; (H)(3-[2 naphthyl]propionyl)-D-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2; (H)(3-[2 20 naphthyl]propionyl)-D-Cys-Pal-D-Trp-Lys-Val-Cys-Thr-NH2; (H)(3-[2 naphthyl]propionyl)-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-Thr-NH2; (H)(3-[2 naphthyl]propionyl)-D-Cys-Pak-D-Trp-Lys-Thr-Cys-Thr-NH2; (H)(3-[p hydroxyphenyl])-D-Cys-Tyr-D-Trp-Lys-Val-Cys-beta-Nal-NH2; (H)(3 naphthyl]propionyl)-D-Cys-Tyr-D-Trp-Lys-Abu-Cys-beta-Nal-NH2; (H)(3 25 naphthyl]propiony)-D-Cys-Tyr-D-Trp-Lys-Abu-Cys-Thr-NH2: (H)(3 phenylylpropionyl)-D-Cys-Tyr-D-Trp-Lys-Abu-Cys-beta-Nal-NH2; or (H)(3 phenylylpropionyl)-D-Cys-Tyr-D-Trp-Lys-Abu-Cys-Thr-NH2; H2-beta-Nal-D Cys-Tyr-D-Trp-Lys-Val-Cys-2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide; (H) (C H3CO)-beta-Nal- D-Cys-Tyr-D-Trp- Lys-Val-Cys-2 R,3 R-(2 30 hydroxymethyl)-3-hydroxy)propylanide; (H)(4-(2-hydroxyethy)-1 piperazinylacetyl)-beta-Nal-D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R,3R-(2 hydroxymethyl)-3-hydroxy)propylamide; (H)(4-(2-hydroxyethyl)- I piperizineethanesuifonyi)-beta-Nal-D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R,3R-(2 hydroxymethyl)-3-hydroxy)propylamide; H2-beta-Nal-D-Cys-Pak-D-Trp-Lys 35 Val-Cys-2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide; (H)(CH3CO)-beta 49 Nal-D-Cys-Pal-D-Trp-Lys-Val-Cys-2 R,3 R-(2-hydroxymethyl)-3 hydroxy)propylamide; (H)(4-(2-hydroxyethyl)-1-piperazinylacetyl)-beta-Nal-D Cys-Pal-D-Trp-Lys-Val-Cys-2R,3R-(2-hydroxymethyl)-3 hydroxy)propylamide; (H)(4-(2-hydroxyethyi)-1-piperizineethanesultonyi)-beta 5 Nal-D-Cys-Pal-D-Trp-Lys-Val-Cys-2R,3R-(2-hydroxymethyl)-3 hydroxy)propylamide; H2-beta-Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-2R,3R-(2 hydroxymethyl)-3-hydroxy)propylainide; (H)(CH3CO)-beta-Nal-D-Cys-Tyr-D Trp-Lys-Thr-Cys-2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide; (H)(4-(2 hydroxyethyl)- -piperazi nylacetyl)-beta-Nal- D-Cys-Tyr- D-Trp-Lys-Th r-Cys 10 2R,3R-(2-hydroxymnethyl)-3-hydroxy)propylamide; (H)(4-(2-hydroxyethyl)-1 piperizineethanesulfonyi)-beta-Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-2R,3R-(2 hydroxymethyl)-3-hydroxy)propylainide; H2-beta-Nal-D-Cys-PakD-Trp-Lys Thr-Cys-2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide; (H)(CH3CO)-beta Nal-D-Cys-Pal-D-Trp-Lys-Thr-Cys-2R,3R-(2-hydroxymethyl)-3 15 hydroxy)propylamide; (H)(4-(2-hydroxyethyl)~ -piperazinylacetyl)-beta-Nal-D Cys-Pal-D-Trp-Lys-Thr-Cys-2R,3R-(2-hydroxymethyl)-3 hydroxy)propylamide; (H)(4-(2-hydroxyethyl)-1-piperizineethanesuifonyl)-beta Nal-D-Cys-Pal-D-Trp-Lys-Thr-Cys-2R,3R-(2-hydroxymethyl)-3 hydroxy)propylamide; H2-Phe-D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R,3R-(2 20 hydroxymethyl)-3-hydroxy)propylamide; (H)(CH3CO)Phe-D-Cys-Tyr-D-Trp Lys-Val-Cys-2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide; (H)(4-(2 hydroxyethyl)-1-piperazinylacetyl)Phe-D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R,3R (2-hydroxymethyl)-3-hydroxy)propylamide; (H)(4-(2-hydroxyethyl)-1 piperizineethanesuifonyl) Phe-D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R,3R-(2 25 hydroxymethyl)-3-hydroxy)propylamide; H2-Phe-D-Cys-Pal-D-Trp-Lys-Val Cys-2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide; H(CH3CO)Phe-D-Cys Pal-D-Trp-Lys-Val-Cys-2 R,3 R-(2-hydroxymeth yl)-3-hydroxy)propylam ide;, (H)(4-(2-hydroxyethyi)-1 -piperazinylacetyl) Phe-D-Cys-Pal-D-Trp-Lys-Val-Cys 2R,3R-(2-hydroxyrnethyl)-3-hydroxy)propylamide; (H)(4-(2-hydroxyethyl)-1 30 piperizineethanesulfonyi) Phe-D-Cys-Pal-D-Trp-Lys-Val-Cys-2R,3R-(2 hydroxymethyl)-3-hydroxy)propylamide; H2-Phe-D-Cys-Tyr-D-Trp-Lys-Thr Cys-2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide; (H)(CH3CO)Phe-D Cys-Tyr-D-Trp-Lys-Thr-Cys-2R. 3R-(2-hydroxymethyl)-3 hydroxy)propylamide; (H)(4-(2-hydroxyethyl)-1-piperazinylacety)Phe-D-Cys 35 Tyr-D-Trp-Lys-Thr-Cys-2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide; 50 (H)(4-(2-hydroxyethyl)-1 -piperizineethanesulfonyl)Phe-D-Cys-Tyr-D-Trp-Lys Thr-Cys-2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide; H2-Phe-D-Cys PalD-Trp-Lys-Thr-Cys-2 R,3R-2-hydroxymethyl)-3-hydroxy)propylamide; (H)(CH3CO) Phe-D-Cys-Pal-D-Trp-Lys-Thr-Cys-2R,3R-(2-hydroxymethyl)-3 5 hydroxy)propylamide; (H)(4-(2-hydroxyethyl)-1-piperazinylacetyl)Phe-D-Cys Pal-D-Trp- Lys-Thr-Cys-2 R,3 R-(2-hydroxymethyl)-3-hydroxy)propylarnide; (H)(4-2-hydroxyethy-li -piperizineethanesulfonyl)Phe-D-Cys-Pal-D-Trp-Lys Thr-Cys-2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide; H2-beta-Nal-D-ys Tyr-D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide; (H)(CH3CO)-beta-Nal-D 10 Cys-Tyr-P-Trp-Lys-Vai-Cys-2R-(2-naphthyl)ethylamide; (H)(4-(2-hydroxyethyl) -- pipe razinylacetyl)-beta-Nal-D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R-(2 naphthyl)ethylamide; (H)(4-(2-hydroxythy)-1 -piperzineethanesulfonyl)-D Nal-D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R-(2-n aphthyl)ethylamide;H2-beta-Nal-D Cys-Pal-D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide; (H)(CHCO)-beta-Nal 15 D-Cys- Pal-D-Trp-Lys-Val-Cys-2R-(2-naphthylethylamide; (H)(4-(2 hydroxyethyl)-- pipe razi nycetyl)-beta-Nal-D-Cys-Pal-D-Trp-Lys-Val-Cys-2R (2-naphthyl)ethylamide; (H)(4-(2-hydroxyethyl)-1 -piperizineethanesuifonyl) beta-Nal-D-Cys-Pak-D-Trp-Lys- VaCys-2R-(2-naphthyl)ethylamide; H2-beta Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylanide; (H)(CH,CO) 20 beta-Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide; (H)(4-(2 hydroxyethyl)- -piperazinylacetyl)-bta-Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-2R (2-naphthyl)ethylamide; (H)(4-(2-hydroxyethyl)-1-piperizineethanesultonyl) beta-Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide; H2-beta Nal-D-Cys-Pal-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide; (H)(CH3CO) 25 beta- NalD-Cys-Pal- D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide; (H)(4-(2 hydroxyethyi)-1-piperazinylacetyl)-beta-Nal-D-Cys- Pal-D-Trp-Lys-Thr-Cys-2R (2-naphthy)ethylamide; (H)(4-(2-hydroxyethyl)- -piperzineethanesuitonyl) beta-Nal-D-Cys-Pak-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide; H2-Phe D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide; (H)(CH3CO)Phe-D 30 Cys-Tyr-D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide; (H)(4-(2-hydroxyethyl) -1 -piperazinylacetyl)Phe-P-Cys-Tyr-D-Trp-Lys-Val-Cys-2R-(2 naphthyl)ethylamide; (H)(4-(2-hydroxyethyl)- I -piperzineethanesuitony) Phe D-Cys-Tyr-D-Trp-Lys-VaH-Cys-2R-(2-naphthyl)ethylamide; H2-Phe-D-Cys-Pal D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide; (H)(CH3CO)Phe-Cys-Pa-D 35 Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylarnide; (H)(4-(2-hydroxyethyl)1 51 piperazi nyiaetyl) Phe-D-Cys- PakD-Trp-Lys-Val-Cys-2 R-(2 naphthyl)ethylamide; (H)(4-(2-hydroxyethyl)-1I-piperizineethanesulfonyl)Phe D-Cys-PakD-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide; H2-Phe-D-Cys-Tyr D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide; (H)(CH3CO)Phe-D-Cys-Tyr-D 5 Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide; (H)(4-(2-hydroxyethyl)-1 piperazinylacetyl)Phe-P-Cys-Tyr-D-Trp-Lys-Thr-Cys-2R-(2 naphthyl)ethylarnide; (H)(4-(2-hydroxyethyl)-1-piperizineethanesulfonyi)Phe D-Cys-Tyr-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylanide; H2-Phe-D-Cys-Pak D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide; (H)(CH3CO)Phe-Cys-Pa-D 10 Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide; (H)(4-(2-hydroxyethyl)-1 piperazinylacetyl)Phe-P-Cys-PaI-D-Trp-Lys-Thr-Cys-2R-(2 naphthylethylamide; (H)(4-(2-hydroxyethyl)-1-piperizineethanesulfonyi)Phe D-Cys-Pal-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide; H2-beta-Nal-D Cys-Tyr-D-Trp-Lys-Abu-Cys-2R-(2-naphthyl)ethylainide; H2-Phe-D-Cys-Tyr 15 D-Trp-Lys-Abu-Cys-2R-(2-naphthyl)ethylamide; H2-beta-Nal-D-Cys-Tyr-D Trp-Lys-Abu-Cys-2R,3R-(2-hydroxymethyl)-3-hydroxy)propyamide; or H2 Phe-D-Cys-Tyr-D-Trp-Lys-Abu-Cys-2R,3R-(2-hydroxymethyl)-3 hydroxy)propylamide; H2-Phe-D-Phe-Tyr-D-Trp-Lys-Thr-Phe-Thr-NH2; H2 Phe-D-Phe-Tyr-D-Trp-Lys-Val-Phe-Thr-NH2; H2-Phe-D-Cpa-Tyr-D-Trp-Lys 20 Val-Phe-Thr-NH2; H2-beta-Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-Thr-NH2; (H)(CH3CO)-beta-Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-Thr-NH2; (H)(4-(2 hydroxyethyl)-i -piperazinylacetyl) -beta-Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe Thr-NH2; (H)(4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)-beta-Nal-D-Cpa Tyr-D-Trp-Lys-Val-Phe-Thr-NH2; H2-beta-Nal-D-Cpa-PakD-Trp-Lys-VakPhe 25 Thr-NH2; (H)(CH3CO)-beta-Nal-D-Cpa-Pak-D-Trp-Lys-Vak-Phe-Thr-NH2; (H)(4-(2-hydroxyethy)-i -piperazinylacetyl)-beta-Nal-D-Cpa-Pa-D-Trp-Lys Val-Phe-Thr-NH2; (H)(4-(2-hydroxyethyl)-1 -piperizineethanesulfonyl)-beta Nal-D-Cpa-Pal-D-Trp-Lys-Val-Phe-Thr-NH2; H2-beta-NalD-Cpa-Tyr-D-Trp Lys-Thr-Phe-Thr-NH2; (H)(CH3CO)-beta-Nal-D-Cpa-Tyr-D-Trp-Lys-Thr-Phe 30 Thr-NH2; (H)(4-(2-hydroxyethyl)-1 -piperazinylacetyl)-beta-Nal-D-Cpa-Tyr-D Trp-Lys-Thr-Phe-Thr-NH2; (H)(4-(2-hydroxyethyi)-1-piperizineethanesuifonyl) beta-Nal-D-tpa-Tyr-D-Trp-Lys-Thr-Phe-Thr-NH2; H2-beta-Nal-D-Cpa-Pal-D Trp-Lys-Thr-Phe-Thr-NH2; (H)(CH3CO)-beta-Nal-D-Cpa-Pak-D-Trp-Lys-Thr Phe-Thr-NH2; (H)(4-(2-hydroxyethyl)- -piperazinylacetyl)-beta-Nal-D-Cpa 35 PaL-D-Trp-Lys-Thr-Phe-Thr-NH2; (H )(4-(2-hydroxyethyi)-1 52 piperizineethanesuifony) -beta-Nal-D-Cpa-Pal-D-Trp-Lys-Thr-Phe-Thr-NH2; H2-beta-Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-beta-Nal-NH2; (H)(CH3CO)-beta Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-beta-Nal-NH2; (H )(4-(2-hydroxyethyl piperazi nylacetyl)-beta-Nal-D-Cpa-Tyr-D-Trp-Lys-Val- Phe-beta-Nal-N H2; 5 (H)(4-(2-hydroxyethyl)-1 -piperizineethanesulifonyl)-beta-Nal-D-Cpa-Tyr-D-Trp Lys-Val-Phe-beta-Nal-NH2; H2-beta-Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-beta Nal-NH2-; or H2-beta-Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-Thr-NH2; H2-D-beta Nal-D-Cpa-Phe-D-Trp-Lys-Val-Phe-Thr-NH2; H2-D-beta-Nal-D-Phe-Tyr-D Trp-Lys-Thr-Phe-Thr-NH2; H2-D-Phe-D-Phe-Tyr-D-Trp-Lys-Val-Phe-Thr-NH2; 10 H2-D-beta-Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-Thr-NH2; or H2-D-beta-Nal-D Cpa-Tyr-D-Trp-Lys-Val- Phe-beta-Nal-N H2. GHRH peptide analogues date back to the 1990s, and include the 'standard antagonist [Ac-Tyr', D-Arg2jhGH-RH (1-29) Nha. US Patent 4, 659,693 15 (hereby incorporated in its entirety by reference thereto) discloses GH-RH antagonistic analogs which contain certain N, N'- dialkyl-omega-guanidino alpha-amino acyl residues in position 2 of the GH-RH (1-29) sequence. The following publications are of note, all of which are hereby incorporated by reference thereto, W091/16923 describes hGH-RH modifications including: 20 replacing Tyri, Ala2, Asp3 or Asn8 with their D-isomers; replacing Asn8 with L-or D-Ser, D-Arg, Asn, Thr, GIn or D-Lys; replacing Ser9 with Ala to enhance amphiphilicity of the region; and replacing Goy'S with Ala or Aib. US5,084,555 describes an analogue [Se-psi [CH2-NH]-TyrllhGH-RH (1 - 29) that includes a pseudopeptide bond (ie. a peptide bond reduced to a [CH2-NH] linkage) 25 between the R9 and R10 residues. US 5,550,212, US5,942.,489, and US6,057,422 disclose analogs of hGH-RH (1-29) NH2 produced by replacement of various amino acids and acylation with aromatic or nonpotar acids at the N-terminus of GH-RH (1 -29) NH2. The tumor inhibitory properties of antagonists featured in US Patent 5, 942,489 and US Patent 6,057, 422 30 have been demonstrated by using nude mice bearing xenografts of experimental human cancer models. Specific examples include: [PhAc-Tyr', D-Arg2, Phe (pCI) 6, Amp9, Tyr (MeO10, Abul5, Nle27, D-Arg28, Har29]hGH RH (1-29) NH2; [PhAc-Tyr', D-Arg2, Phe (pCl)6, Amp9, Abui5, Nle27, D Arg28, Har29]hGH-RH(1-29)NH2; [PhAc-Tyr', D-Arg2, Phe (pCI) 6, His9, Tyr 35 (Me)10, Abui5, Nle27, D-Arg28, Har29] hGH-RH (1-29) NH2; [CH3 (CH2) 53 6CO-Tyr1, D-Arg2, Phe (pCI)6, Amp9, Tyr (Me)10, Abui5, Nie27, D-Arg28, Har29]hGH-RH(1- 29) NH2; [HOOC (CH2) 8CO-Tyri, D-Arg2, Phe (pC) 6, Amp9, Tyr (Me)10, Abui5, Nie27, D-Arg28, Har29]hGH-RH (1-29) NH2; [HOOC (CH2) 2CO-Tyri, D-Arg2, Phe (pCi) 6, Amp9, Tyr (Me)10, Abul5, 5 Nie27, D-Arg28, Har29]hGH-RH (1-29) NH2; [PhAc-Tyr', D-Arg2, Phe (pCI)6, Amp9, Tyr (Me)10, His11, Abul5, Ne27, D-Arg28, Har29jhGH-RH(1- 29) NH2; [PhAc-Tyr', D-Arg2, Phe (pCI) 6, Cit8, Amp9, Tyr (Me)10, His", Abu'5, Ne27, D-Arg28, Har29] hGH-RH (1- 29) NH2; [1-nac-Tyri, D-Arg2, Phe (pCI) 6, Cit8, Amp9, Tyr (Me)10, Hisll. Abu15, Nie27, D-Arg28, Har29]hGH- RH 10 (1-29) NH2; [CH3 (CH2) 6CO-Tyr', D-Arg2, Phe (pC) 6, Cit8, Amp9, Tyr (Me)10, His", Abu15, Nie27, D-Arg28 Har] hGH-RH (1-29) NH2; [HOOC (CH2) 12CO-Tyr', D-Arg2, Phe (pC) 6, Cit8, Amp9, Tyr (Me)10, His", Abu'5, Ne27, D-Arg28, Har29] hGH-RH (1-29)NH2; [CH3 (CH2) 6CO -Tyr1, D-Arg2, Phe (pC)6, Cit, Amp9, Tyr (Et)', His", Abu'5, Ne27, D-Arg28, Har29] hGH 15 RH (1-29) NH2; [CH3 (CH2) 6CO-Tyr D-Arg2, Phe (pCI) 6, Cit8, His9, Tyr (EW01., Hisll, Abu15, Nie27, D-Arg28, Har29]hGH-RH(1-29)NH2; [CH3 (CH2) 6CO -Tyr1, D-Arg2, Phe (pC) 6, Alpe, His9, Tyr (Et)10, Hisl1, Abu15, NHe27, D-Arg28, i Har29] hGH-RH (1-29) NH2; [HOOC (CH2) CO -Tyr1, D Arg2, Phe(pCI)6, Ala8, His9, Tyr(Et)10, Hisll, Abu15, Nie27, D-Arg28, Har29] 20 hGH-RH (1-29) NH2; [HOOC(CH2)12CO -Tyri, D-Arg2, Phe(pCI)6, Aa8, His9, Tyr(Et)10, Hisl1, Abul5, Nie27, D-Arg28, Har29] hGH-RH (1-29) NH2; [CH3 (CH2) 6CO-Tyr, D-Arg2., Phe (pCI)6, AaB, His9, Tyr (Et)10, His11, Abul5, His20, Nle27, D-Arg28, Har29] hGH-RH (1-29) NH2; [CH3 (CH2) 6CO-Tyr1, D-Arg2, Phe (pCI)6, AB, Amp9, Tyr (Et)10, His 1, Abul 5, His20, 25 Nie27, D-Arg28, Har29]hGH-RH(i-29)NH2; [HOOC (CH2)1 2CO-Tyr1, D Arg2, Phe (pCI) 6, AaB, His9, Tyr (Et)10, Hisli, Abu15, His20, Nie27, D Arg28, Har2hGH-RH' (1-29) NH2; [HOOC(CH2)12CO-Tyr1, D-Arg2, Phe(pCI)6, AaB, Amp9, Tyr(Et)10, Hisll, Abul5, His20, Nie27, D-Arg28, Har29]hGH-RH(1-29)NH2; [1-Nac-Tyri, D-Arg2., Phe (pCI) 6, Aa, His9, Tyr 30 (Et)10, Hisll, Abul5, Ne27, D-Arg28. Har29]hGH-RH(i-29) NH2; [CH3 (CH2) 6CO -Tyr1, D-Arg2., Phe (pCI) 6., His9, Tyr (Et)'*, His", Abu'5, Nie27, D Arg28, Har29]hGH- RH (1-29) NH2; [CH3 (CH2) 6CO-Tyr', D-Arg2, Phe (pCI)6, Aa, His9, Cit5, Ne27, D-Arg28, har29]hGH-RH (1-29) NH2; [CH3 (CH2) 6CO-Tyr1, D-Arg2, Phe(pCI)6, Ala8, His9 tyr(Et)10, Hisll, His15, 35 His20, Nie27, D-Arg28 Har29]hGH-RH (1-29) NH2; [CH3 (CH2) 6CO-Tyr', D 54 Arg2, Phe (pC) 6, Ala8, His9, Tyr (Et)10, His11, Orn12, Abu 15, Orn21, Nie27, D- Arg28, Har29] hGH-RH (1-29) NH2; [CH3 (CH2) 6CO-Tyr', D-Arg2, Phe (pCI) 6, Alas, His9, Tyr (Et)10, His11, Orn12, Abu15, His20, Orn21, Nie27, D Arg28, Har29] hGH-RH (1-29) NH2; [CH3 (CH2) 6CO -TyrI, D-Arg2., Phe 5 (pCI)6, Ala8, His9, Tyr (Ef", His", Abu", Nie 2' D-Arg2, Har29]hGH-RH (1-29) NHEt; [CH3 (CH2) 8CO -Tyr1, D-Arg2., Phe (pCI) 6, Ala8, His9, Tyr (Et)10, His11, Abu15, Nie27, D-Arg28, Har29] hGH-RH (1-29) NHEt; [CH3 (CH2) 10CO -Tyr1, D-Arg2 Phe (pCI) 6 Ala8, His9, Tyr(Et)10, His11, Abu15, Nie27, D-Arg28 Har29] hGH-RH (1-29) NHEt; [Hca -Tyri, D-Arg2, Phe(pCI)6, Ala8, 10 His9, Tyr(EtI)0, His11, Abu15, Nie27, D-Arg28, Har29]hGH-RH(1- 29) NHE1 [CH3 (CH2) 6CO-Tyr> D-Arg2, Phe (pCI) 6, Ala8, His9, Tyr (Et)10, His1 1, Abu15, nie27, D-Arg28, Har29] hGH-RH (1-29)NHMe; [HOOC (CH2) 12CO Tyr', D-Arg2., Phe (pCI) 6, Alas, His9, Tyr (Et)10, Hisl1, Orn12, Abui5, His20, Om2l, Nie27 D-Arg28, Har29] hGH-RH (1-29) NH2; [CH3 (CH2) 6CO-Tyr', D 15 Arg2, Phe CI)6, Ala8, Amp9, Tyr(Et)10, His11, Ornl2, Abui5, His20, Om21 NIe27, D-Arg28, Har29] hGH-RH (1-29) NH2; [CH3(CH2)6CO -Tyr1, D-Arg2, Phe (pCI) 6, Ala8, His9, Dip1 0, His1 1, Orl 2, Abul 5, His20, Orn2l, Ne27, D Arg28, Har29]hGH-RH(i-29)NH2; [CH3 (CH2) 6CO-Tyr', D-Arg2, Phe (pCI) 6, Ala8, HisS, Phe (pNO2)10, His11, Orni2, Abu15, His2O, Orn21, Nie27, D 20 Arg28, Har29]hGH-RH(1-29)NH2; [CH3(CH2)6CO -Tyri, D-Arg2, Phe(pCI)6, Ala8, His9, Tyr(Et)10, His11, Om12, Abu15, His20, Orn2l, Nie27, D-Arg28, Har29] hGH-RH (1-29) NHEt; [HOOC 9CH2)12CO -Tyr1, D-Arg2., Phe (pCI) 6, Alas, Amp9, Tyr (Et)10, His", Orn, Abu15, His20 Orn2l, Nie27, D-Arg28, Har29] hGH-RH (1-29) NH2; [HOOC (CH2) 2CO -Tyr1, D-Arg2 Phe (pC 6, 25 AMa8, His9, Dip'", His", Orn12, Abu'5, His, Orn21, Nie D-Arg28, Har29]hGH RH (1-29) NH2; [HOOC(CH2)12CO -Tyri, D-Arg2, Phe (pCI) 6, Ala8, HisS, Phe (pNC2)10., Hisl., Ornl2, Abu15, His20, Orn2l, Nie27, D-Arg28, Har29] hGH-RH (1-29) NH2; [HOOC (CH2) 12CO-Tyr D-Arg2, Phe (pCI) 6. Alas, His9, Tyr (Et)10, Hisl1, Omnl2, Abul, His20, Orn2i, NIe27, D-Arg28, Har29] 30 hGH-RH (1-29) NHEt; [CH3(CH2)6CO -Tyr1, D-Arg2, Phe (pCI) 6, Ala8, AmpS, Dip10, Hisl, Orni2, Abu15, His20, Orn2l, Nie27, d-Arg28, Har29]hGH-RH (1-29) NH2; [CH3(CH2)6CO -Tyri, D-Arg2, Phe(pCI)6, Ala8, AmpS, Phe(pNC2)10, His1l, Orn12, Abu15, His20, Or2, Nie27, D-Arg28, har29]hGH-RH(1-29)NH2; [CH3 (CH2) 600 -Tyr1, D-Arg2., Phe(pCI)6, Ala8, 35 Amp9, Tyr(Et)10, His1l, Om12, Abu15, His20, Orn2l, Nie27, D-Arg28, 55 Har29]hGH-RH(1-29) NHEt; [CH3 (CH2) 6CO -Tyr1, D-Arg2, Phe (pCI) 6, Ala8, His9, DipiO, His1l, Orn12, Abul5, His20, Orn21, Nie27, D- Arg28, Har29]hGH-RH (1-29) NHEt; [CH3 (CH2) 6CO -Tyr1, D-Arg2, Phe (pC 6, Aia8, His9, Phe (pNO2)'*, His", Orn'2, Abu'5, His20, Orn2i, Nie27, D-Arg28, 5 Har29] hGH-RH (1-29) NHEt; [HOOC (CH2) 12CO-Tyr', D-Arg2, Phe (pCI)6, Ala8, Amp9, Dip10, His", Orn12, Abu15, His20, Orn21, Nie27 D-Arg Har29] hGH-RH (1-29) NH2; [HOOC(CH2)12CO -Tyri, D-Arg2, Phe (pCI) 6, Aa8, Amp9, Phe (pNO2) 10, His11, Orn12, Abui5, His2 Orn21, Ne27, D-Arg28, Har29] hGH-RH (1 -29) NH2; [CH3 (CH2) 6CO-Tyr1, D-Arg2, Phe (pCI) 6, Ala, 10 Amp9 Dip' 0 , His", Orn12, Abui5, His20, Om21, Nie27, D-Arg28, Har29]hGH RH (1-29) NHEt; [CH3 (CH2) 6CO-Tyr', D-Arg2, Phe (pC) 6, Aa8, Amp9, Phe (pN02)10, Hisl1, orni2, Abu15, His20, Om21, Nie27, D-Arg28, Har29] hGH RH (1-29) NHEt; [HOOC (CH2) 12CO -Tyr1, D-Arg2., Phe (pCI) 6, Aa8, Amp9, DiplO, Hisl1, Orn12, Abu15, his20, Orn21, Nie27, D-Arg28, Har29] 15 hGH-RH (1-29) NHEti [HOOC (CH2)1 2CO -Tyr1, D-Arg2, Phe (pCI) 6, Alas, Amp9, Phe (pNO2)10, His", Orn12, Abu15, His20 Orn21, Nie27, D-Arg28, Har29] hGH-RH (1-29) NHEt; [CH3 (CH2) 4CO-Tyr, D-Arg2, Phe (pCI)6, Arg9, Abu15, Nie27, D-Arg28, Har29]hGH-RH(1-29)NH2; [HOOC (CH2) 4CO Tyr', D-Arg2, Phe (pCi)6, Arg9, Abu15, NIe27, D-Arg28, Har29] hGH-RH (1 20 29) NH2; [CH3 (CH2) 6CO-TyrE, D-Arg2, Phe (pCI) 6, Arg9, Abu15, NIe27, D Arg28, Har29]hGH-RH (1-29) NH2; [HOOC(CH2)6CO-Tyr1, D-Arg2, Phe(pCI)6, Arg9, Abu15, Ne27, D-Arg28, Har29jhGH-RH(1-29)NH2; [CH3(CH2)8CO-Tyr1, D-Arg2, Phe (pC) 6, Arg9, Abu'5, Nie27, D-Arg28, Har29] hGH-RH (1-29) NH2; [HOOC(CH2)8CO-Tyr1, D-Arg2, Phe(pCI)6, 25 Arg9, Abu15, Nie27, D-Arg28, Har29]hGH-RH(1-29)NH2; [CH3 (CH2)1 CO Tyr1, D-Arg2 Phe C6, Arg9, Abu15, NIe27, D-Arg26, Har29]hGH-RH(1 29)NH2; [HOOC (CH2) OCO-Tyr1, D-Arg2, Phe (pCI6, Arg9, Abu15, Nie27, D-Arg28, Har29]hGH-RH(1-29)NH2; [CH3 (CH2) 12CO-Tyr D-Arg2, Phe (pC)6, Arg9, Abu15, Ne27, D-Arg28, Har29]hGH-RH (1-29) NH2; [HOOC 30 (CH2) i2CO-Tyr\ D-Arg2. Phe (pC6, Arg9. Abu15, Nke27, D-Arg28, Har29jhGH-RH (1-29) NH2; [CH3 (CH2) 4CO-Tyr1 D-Arg2, Phe (pCI) 6. Arg9, Abu15, Nie27, D-Arg28, Har29]hGH-RH (1-29) NH2; [HOOC (CH2) 4CO Tyr1, D-Arg2, Phe (pC6, Arg9, Abu15, Nie27, D-Arg28, Har29]hGH-RH (1 29) NH2; [CH3 (CH2) CO-Tyri, D-Arg2, Phe(pC)6, Arg9, Abu15, Ne27, 35 Har28, D-Arg29]hGH-RH(1-29)NH2; [PhAc-Tyr D-Arg2, Phe (pC) 6, Arg9, 56 Abu'5, Ne27, Har28, D-Arg29] hGH-RH (-29) NH2; [CH3 (CH2) 4CO-Phe0, D-Arg2, Phe (pCI) 6, Arg9, Abu15, Nie27, D-Arg28, har29] hGH-RH (1-29) NH2; [CH3 (CH2) 14CO-D-PheG, D-Arg2, Phe (pCI)6, Arg9, Abu15, Nie27, D Arg28, Har29]hGH-RH (1-29) NH2; [PhAc-Arg 0 , D-Arg2, Phe (pCi) 6, Arg9, 5 Abu'5, NLe27, D-Arg28, Har29] hGH-RH (1-29) NH2; [PhAc-D-Arg, D-Arg2, Phe (pCI) 6, Arg9, Abu'5, Nie27, D-Arg28, Har29] hGH-RH (1-29) NH2; [PhAc-Tyri, D-Arg2, Phe (pCI) 6, Cite, Arg9 Abut5 Nie27, D-Arg28, Har29] hGH-RH (1-29) NH2; [PhAc-Tyr', D-Arg2, Phe (pCi) 6, Cite, Cit9, Abul5, Nie27, D-Arg28, har29]hGH-RH(1-29)NH2; [PhAc-Tyr', D-Arg2, Phe (pCI) 6, 10 Cit8, Arg9, Abu'5, Nie27, Har28, D-Arg29]hGH-RH (1-29) NH2; [PhAc-Tyr1, D-Arg2, Phe (pCI)6., Cit8, Cit9, Abul5, Nle27, Har28, D-Arg29]hGH-RH (1-29) NH2; [HOOC (CH2) 12CO-Tyr\ D-Arg2. Phe (pCI)6, Cit8, Cit9, Abu15, Nie27, D-Arg28, Har29jhGH-RH(1- 29) NH2; [PhAc-Tyr1, D-Arg2, Phe (pCI) 6, D AlaS, Arg9, Abu15, Nie27, D-Arg28, Har29] hGH-RH (1-29) NH2; [PhAc-Tyr1, 15 D-Arg2, Phe (pCI) r3, Abu3, Arg9, Abu'5, Nie27, D-Arg28, Har29] hGH-RH (1 29) NH2; [PhAc-Tyr' D-Arg2, Phe (pCI)6, Cit, Abu15, NIe27, Har28, D Arg29]hGH-RH (1-29) NH2; [PhAc-Tyr', D-Arg2, Phe (pCI) 6, Arg9, Amp' 0 , Abu'5, NIe27, D-Arg28, Har29]hGH-RH (1-29) NH2; [PhAc-Tyri., D-Arg2., Phe (pC) 6, Har9, Ampl0 Abu5, Nie27, D-Arg28, Har29 hGH-RH (1-29) NH2; 20 PhAc-Tyr1, D-Arg2, Phe (pCI) 6 Arg9., His'o, Abu'5, Me 27, D-Arg28, Ha) hGH-RH (1-29) NH2; [PhAc-Tyr', D-Arg2, Phe (pCI) 6, Arg9, Chal. Abu15, Nie27, D-Arg28, Har29]hGH-RH(1-29)NH2; [PhAc-Tyr', D-Arg2, Phe (pCI)6, Har9, Tpi10, Abul5, Nle27, D-Arg28, har29]hGH-RH (1-29) NH2; PhAc-Tyr1, D-Arg2, Phe(pCI)6, Har9, 2-Nal1 0, Abul5, Nie27, D-Arg28, Har29]hGH-RH(1 25 29)NH2; [PhAc-Tyr1, D-Arg2, Phe (pCI) 6, Har9, Dipl0, Abu15, Nie27, D Arg28, Har29]hGH-RH (1-29) NH2; [PhAc-Tyr1, D-Arg2, Phe(pCI)6, Har9, Phe (pNH2)10, Abu15, Nie27, D-Arg28, Har29]hGH-RH (1-29) NH2; [PhAc Tyr1, D-Arg2 Phe (pCI) zu Har9, Trpt, Abul5 Nie27, D-Arg28, Har29]hGH RH(1-29)NH2; [PhAc-Tyri, D-Arg2, Phe(pCI)6, Har9, Phe(pNO2)10., Abu15, 30 Nie27, D-Arg28, Har29]hGH-RH(i-29)NH2; [PhAc-Tyri, D-Arg2, Phe (pCI)6, Har9, 3-Pal10, Abu15, NIe27, D-Arg28, Har29] hGH-RH (1-29) NH2; [PhAc Tyrl, D-Arg2, Phe (pCI) 6, Har9, Tyr (Et) Abu15, NIe27, D-Arg28, Har29] hGH-RH (1-29) NH2; [PhAc-His', D-Arg2, Tyr6, Har9, Bpal0, Abu'5, Nie27, D Arg28, Har29] hGH-RH (1-29) NH2; [PhAc-Tyr', D-Arg2, Phe (pCI) 6, Arg9, 35 Har12, Abul5, Nie27, D-Arg28, Har29] hGH-RH (1-29) NH2; [Hca-Tyr', D 57 Arg2, Phe (pCI) 6, Har9, Tyr (Me)10, Abul5, Nie27, D-Arg28, Har29]hGH-RH (1-29) NHEt; [PhAc-Tyr'D-Arg2, Phe (pCI) 6 Har9, Tyr(Me)10, Abu15, Nle27, D-Arg28, Har29] hGH-RH (1-29) NHEt; [Hca-Tyr1. D-Arg2, Phe (pCI)6, Arg9, Abu15, Nle27, D-Arg28, Har29[hGH-RH(1-29) NHEt; PhAc-Tyri, D-Arg2 Phe 5 CI)6, Arg9, Abu15, Nie27, D-Arg2S, Har29]hGH-RH(1-29 NHEt; [PhAc-Tyr1, D-Arg2, Phe (pCI) 6, Har9, Tyr (Me)10., Aib15, Nie27, D-Arg28, Har29] hGH RH (1-29) NHEt; [PhAc-Tyr D-Arg2, Phe (pCI) 6, Har9, Tyr (Me)10, Orn12, Abu15, Nie27, D-Arg28, Har29] hGH-RH (1- 29) NHEL; [Hca-Tyrl, D-Arg2, Phe (pCI) 6, Har9, Tyr (Me)10, Abu15, Nie27, D-Arg28, Agm29]hGH-RH (1 10 29); [PhAc-Tyri, D-Arg2, Phe (pCI) 6, Har9, Tyr (Me)' 0 , Abu15, Ne27, D Arg28, Agm29]hGH-RH(1-29); [Hca-Tyrl., D-Arg2, Phe (pCI) 6, Har9, Tyr (Me)10, Abu15, Ne27, D-Arg28, Har29, Har30]hGH-RH(1- 30) NH2; [Dat Tyri, D-Arg2, Phe (pCI)6, Har9, Tyr (Me)10, Abu15, Nie27, D-Arg28, Har29, Har30]hGH-RH (1-30) NH2; [Ipa-Tyr1, D-Arg2, Phe (pCI) 6, Har9, Tyr (Me)10, 15 Abu15, NIe27, D-Arg28, Har29, Har30]hGH-RH(1-30)NH2; [Hca-Tyr D-Arg2, Phe (pCI) 6, Har9, Tyr (Me)10, Abu15, NIe27, D-Arg28, Har29, Har30] hGH RH (1-30) NHEt; [Hca-Tyr', D-Arg2, Phe (pCI) 6, Har9, Tyr (Me10), Abu15, Nie27, D-Arg28, D-Arg29, Har30]hGH-RH(1- 30) NH2; [Hca-Tyr', D-Arg2, Phe (pCI) 6, Har9, Tyr (Me)10, Abu15, NIe27, D-Arg28, Har29, D-Arg30]hGH 20 RH(1- 30) NH2; [Hca-Tyr', D-Arg2, Phe (pCI) 6, Har9, Tyr (Me)10., Abu15, NIe27, D-Arg28, Har29, Agrn30] hGH-RH (1-30); [PhAc-Tyr', D-Arg2, Phe (pCI) 6., Har9, Tyr (Me)10, Abu15, NIe27, D-Arg28, Har29, Agm30] hGH-RH (1-30); [PhAc-Tyr', D-Arg2, Phe (pCI) 6, Har9, Tyr (Me)10, Hisl, Abul5, NIe27, D-Arg28, Har29]hGH-RH(1-29)NH2; [PhAc-Tyri, D-Arg2, Phe(pCI)6, 25 Har9, Tyr(Me)10, Har11, Abu15, NIe27, D-Arg28, Har29]hGH-RH(1-29) NH2 [PhAc-Tyr1, D-Arg2, Phe(pCI)6, Har9, Tyr (Me)10, Ampl1, Abul5. Nie27, D Arg28, Har29] hGH-RH (1-29) NH2; [PhAc-Tyri, D-Arg2, Phe (p0I)6, Har9, Tyr (Me)10, Cit", Abu15, Nie27, D-Arg28, Har29]hGH-RH(1-29) NH2; [PhAc Tyr1, D-Arg2, Phe (pCI)6, Har9, Tyr (Me)'*, Abu15, His20, Nle, D-Arg28, 30 Har29]hGH-RH(1-29) NH2; [PhAc-Tyr', D-Arg2, Phe(pCI)6, Har9, Tyr (Me)10, His", Abu15, His20, NIe27, D-Arg28, Har29]hGH- RH (1-29) NH2; [PhAc-Tyr1, D-Arg2, Phe (pCI) 6, Arg9, Cit15, NIe27, D-Arg28, Har29]hGH-RH(1-29)NH2: [PhAc*, D-Arg2, Phe (pCI)6, Arg9, Abu15, Nle27, D-Arg28, Har29] hGH-RH (1-29) NH2; [IndAcO., D-Arg2, Phe(p0C)6, Arg9, Abu15, NIe27, D-Arg28, 35 Har29]hGH-RH(l- 29) NH2; [PhAcO, D-Arg2, Phe pCl) r, Har9, Tyr(Me)10, 58 Abu15, NIe27, D-Arg28, Har29]hGH- RH (1-29) NH2; [PhAc*, D-Arg2, Phe(pCI)6, Arg9, Tyr(Me)10, Abu15, Ne27, D-Arg28, Har29] hGH- RH (1-29) NH2; [PhAc*, His', D-Arg2, Phe (pCI)6, Arg9, Abu15, Nie27, D-Arg28, Har29jhGH-RH(1- 29) NH2; [Nac 0 , His'. D-Arg2, Phe (pCI) 6, Arg9, Abu15, 5 Nie27, D-Arg28, Har29] hGH-RH (1-29) NH2; [PhAc 0 , D-Arg2, Phe (pCI) 6 Arg9, Abu'5, NIe27, D-Arg28, Har29] hGH-RH (1-29) NH2; [IndAc 0 , D-Arg2, Phe (pCI)6, Arg9, Abu15, Nle27, D-Arg28, Har29] hGH-RH (1-29) NH2; [PhAc 0 , D-Arg2, Phe (pCI) 6, Har9, Tyr (Me)10, Abui5, Nie27, D-Arg28, Har29] hGH-RH (1-29) NH2; [PhAc, D-Arg2., Phe (pCI) 6, Arg9, Tyr (Me)10, 10 Abui5, Nie27, D-Arg28, Har29] hGH-RH (1-29) NH2 ; [PhAc* His', D- Arg2, Phe (pCI)6, Arg9, Abu15, Nie27, D-Arg28, Har29]hGH-RH(1-29)NH2; [Nac 0 , His', D-Arg2, Phe(pCI)6, Arg9, Abu15, Nke27, D-Arg28, Har29] hGH-RH (1-29) NH2; [PhAc 0 , D-Arg 2 , Phe(pCl)', Ala 15 , Nie Asp 2 e]hGH-RH(1-28)Agm; [lbu ,D-Arg 2 Phe(pC) 8 10 Abut Ni]hGH-RH(1-28)Agm; [PhAcO,D-Arg 2 , 15 Phe(pCI) Abu He ']hGH-RH(1-28)Agm; [PhAcO.D-Arg 2 Phe(pCI), Ala 5 , Nef]hGH-RH(1-29)-NH 2 ; [PhAc,. D-Arg<Phe(pQtAbu',AlatNie ]hGH RH(i-29)NH 2 ; [PhAc 0 , D-Arg', Phe(pCi) 0 . Abu--t Ala 5 , Nie]hGH-RH(1-29)
NH
2 ; cycl o[PhAcI,D-Arg Phe(pCI) Glu Ala',N1e7]hGH-RH(I-29)-NH 2 ; cycloI 2 [PhAc*,D-Arg Phe(pCt),SertAlatGlul ,Nle"]hGH-RH(1 -29)-NHW; 20 cycloS 1 2 "2 " 2 [PhAccD-ArgtPhe(pCI)b,Glu" ,Abu ,NIef]hGH-RH(1-28)Agm; cyclo"i [PhActD-ArgtD-Asp, Phe(pCl)3GluD-Lys Ala 6NIe"]hGH RH(i-29)-NH 2 ; cycl 8 121 2 [[PhAcc,D-Arg 2 . Phe(pC)t Gl 25 D-Lys Ala 5 , N[e'] hGH-RH(1-29)-NH 2 . Additional GHRH analogue examples are provided in W096/032126, W096/022782, W096/016707, W094/01 1397, 25 W094/01 1396, each of which is herein incorporated by reference thereto. Examples of bombesin analogues suitable for use in the present invention include TMs comprising: D-Phe-Gln-Trp-Aa-Val-Gly-His-Leu-Met-NH 2 (code named BIM-26218), D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-Leu-NH 2 (code 30 named BIM-26187); D-Cpa-Gln-Trp-Ala-Val-Gly-His-Leu-p [CH 2 NH]-Phe-NH 2 (code named BIM-26159), and D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-p
[CH
2 NH]-Cpa-NH 2 (code named BIM-26189); D-Phe-Gln-Trp-Ala-Val-N methyl-D-Ala-His-Leu- methylester, and D-F 0 -Phe-Gln-Trp-Ala-Val-D-Ala-His Leu- methylester. 35 59 Bombesin analogues include peptides derived from the naturally-occurring, structurally-related peptides, namely, bombesin, neuromedin B, neuromedin C, litorin, and GRP. The relevant amino acid sequences of these naturally occurring peptides are: Bombesin (last 10 amino acids): Gly-Asn-Gln-Trp-Ala 5 Val-Gly-His-Leu-Met-NH 2 ; Neuromedin B: Gly-Asn-Leu-Trp-Ala-Thr-Gly-His Phe-Met-NH 2 ; Neuromedin C: Gly-Asn-His-Trp-Ala-Val-Gly-His-Leu-Met--NH 2 ; Litorin: pGlu-Gln-Trp-Ala-Val-Gly-His-Phe-Met-NH 2 ; Human GRP (last 10 amino acids): Gly-Asn-His-Trp-Ala-Val-Gly-His-Leu-Met-
NH
2 . 10 Analogs suitable for use in the present invention include those described in U.S. Serial Number 502,438, filed March 30, 1990, U.S. Serial No. 397,169, filed August 21, 1989, U.S. Serial No. 376,555, filed July 7, 1989, U.S. Serial Number 394,727, filed August 16, 1989, U.S. Serial No. 317,941, filed March 2, 1989, U.S. Serial Number 282,328, filed December 9, 1988, U.S. Serial No. 15 257,998, filed October 14, 1988, U.S. Serial No. 248,771, filed September 23, 1988, U.S. Serial No. 207,759, filed June 16., 1988., U.S. Serial No. 204,171. filed June 8, 1988, U.S. Serial No, 173,311, filed March 25, 1988, U.S. Serial No. 100,571, filed September 24, 1987; and U.S. Serial No. 520,225, filed May 9. 1990, U.S. Serial No. 440,039, filed November 21, 1989. All these 20 applications are hereby incorporated by reference. Bombesin analogs are also described in Zachary et al., Proc. Nat. Aca, Sci. 82:7616 (1985); Heimbrook et al., "Synthetic Peptides: Approaches to Biological Problems", UCLA Symposium on Mol. and Cell. Biol. New Series, Vol. 86, ed. Tarn and Kaiser; Heinz-Erian et al. , Am. J. Physiol. G439 (1986); Martinez et al., J. Med. 25 Chem. 28:1874 (1985); Gargosky et al., Biochem. J. 247:427 (1987); Dubreuil et al. , Drug Design and Delivery, Vol 2:49, Harwood Academic Publishers, GB (1987); Heikkila et al., J. Biol. Chem. 262:16456 (1987); Caranikas et al. J. Med. Chem. 25:1313 (1982); Saeed et al., Peptides 10:597 (1989); Rosell et al, Trends in Pharmacological Sciences 3:211 (1982); Lundberg et al., 30 Proc. Nat. Aca, Sci. 80:1120, (1983); Engberg et al., Nature 293:222 (1984); Mizrahi et al., Euro. J. Pharma. 82:101 (1982); Leander et al., Nature 294:467 (1981); Woll et al., Biochem. Biophys. Res. Comm. 155:359 (1988); Rivier et al,, Biochem. 17:1766 (1978); Cuttitta et al., Cancer Surveys 4:707 (1985); Aumelas et al., Int. J. Peptide Res. 30:596 (1987); all of which are also hereby 35 incorporated by reference. 60 The analogs can be prepared by conventional techniques, such as those described in W092/20363 and EP0737691. 5 Additional bornbesin analogues suitable for use in the present invention comprise: D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-jjsi-Tac-NH2; D-Tpi-Gln-Trp Ala-Val-Gly-His-Leu-Esi-Tac-NH 2 ; D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-Esi DMTac-NH 2 ; Hca-Gln-Trp-Ala-Val-Gly-His-Leu-jpsi-Tac-NH2; D-Trp-Gln-Trp Ala-Val-Gly-His-Leu-ps-Leu-NH 2 ; D-Trp-Gln-Trp-Ala-Val-Gly-His-Leu-psi 10 Phe-NH2; D-Trp-Glu(MeNH)-Trp-Ala-Val-Gly-His-Leu-psi-Phe-NH 2 ; D-Trp-Gin Trp-Ala-Val-Gly-His-Leu-psi-Trp-NH 2 ; D-Tpi-Gln-Trp-Ala-Val-Gly- His-Leu-psi Leu-NH 2 ; D-Tpi-Gln-Trp-Ala-Val-Gly- His-Leu-psi-Phe-NH 2 ; D-Tpi-Gln-Trp Ala-Val-Gly- His-Leu-psi-Trp-NH 2 ; D-pGlu-Gln-Trp-Ala-Val- Gly-His-Leu-psk Tpi-NH 2 .; D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-psi-Tpi-NH 2 ; D-Trp-Gln-Trp-Ala 15 Val-Gly-His-Leu-psi-Tpi-NH 2 ; Tpi-Gln-Trp-Ala-Val-Gly-His-Leu-psi-Tpi-NH2; NH2CO-Tpi-Gln-Trp-Ala-Val-Gly-His-Leu-psi-Tpi-NH and ACY-Tpi-Gln-Trp Ala-Val-Gly-His-Leu-psi-Tpi-NH 2 wherein ACY is acetyl, octanoyl or 3 hydroxy-2-naphthoyl; D-Tpi-Gln-Trp-Ala-Val-Gly His-Leu-psi-Tpi-NH 2 ; D-Trp Glu(MeO)-Trp-Ala-Val-Gly-His-Leu-psi-Tpi-NH 2 ; D-Trp-Giu(MeNH)-Trp-Ala 20 Val-Gly-His-Leu-psi-Tpi-NH 2 ; D-Trp-His(Bz)-Trp-Ala-Val Gly-His-Leu-psi-Tpi NH: Phe-Glu-Trp-Ala-Val-Gly His-Leu-psi-Tpi-NH 2 ; HrD-Nal-Cys-Tyr-D-Trp Lys-Val-Cys-Nal-NH 2 ; H 2 D-Nal-Cys-Tyr-D-Trp-Lys-Nal-Cys-Thr-N H 2 ; HrD Nal-Cys-Tyr-D-Trp-Lys-Nal-Cys-Nal-NH 2 ; H 2 -D-Phe-Cys-Tyr-D-Trp-Lys-Val Cys-Nal-NH2; H 2 D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-D-Nal-NH 2 ; H 2 -Nal-Cys 25 Tyr-D-Trp-Lys-Val-Cys-D-Nal-NH ; H 2 D-Na-D-Cys-Tyr-D-Trp-Lys-Val-Cys Nal-NH 2 ; H 2 D-Nal-Cys-Tyr-D-Trp-Lys-Val-D-Cys-Nal-NH2; H*D-Trp-Cys-Tyr D-Trp-Lys-Val-Cys-Nal-NH 2 ; H;D-Nal-Cys-Tyr-D-Trp-Lys-Phe-Cys-Nal-NH 2 ; HAD-Nal-Cys-Tyr-D-Nal-Lys-Val-Cys-Nal-NH 2 ; H 2 D-Phe-Cys-Tyr-D-Trp-Lys Nal-Cys-Thr-NH 2 ; H 2 -D-Nal-Cys-Tyr-D-Trp-Orn-Val-Cys-Nal-NH 2 ; H 2 -D-Phe 30 Cys-Tyr-D-Trp-Lys-Thr-Cys-Nal-NH 2 ; H 2 D-Phe-Cys-Tyr-D-Trp-Lys(iPr)-Thr Cys-Nal-NH 2 ; H 2 -D-Phe-Cys-Tyr-D-Trp-Lys(diEt)-Thr-Cys-Nal-NH 2
H
2 D-Phe Cys-Tyr-D-Trp-Lys-Ser-Cys-Thr-NH 2 ; H 2 -D-Nal-Cys-Tyr-D-Trp-Lys-Thr-Cys Nal-NH 2 ; H 2 -D-Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-Nal-NH 2 ; or H 2 D-Nal-Cys Phe-D-Trp-Lys-Thr-Cys-Nal-NH 2 ; H 2 D-Nal-Cys-Tyr-D-Trp-Dab-Val-Cys-Nal 35 N , HrD-Nal-Cys-Tyr-D-Trp-Orn-Val-Cys-Nal-NH2. H-D-Nal-Cys-Tyr-D-Trp 61 Arg-Val-Cys-Nal-NH 2 ; pGlu-Gln-Trp-Ala-Val-Gly-His-Leu-Leu-NH2, D-Phe Gin-Trp-Ala-Val-Gly-His-Leu-Leu-NH2, D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu Met-NH 2 , D-Cpa-Gn-Trp-Ala-Val-Gly-His-Leu-Met-NH 2 , D-Cpa-Gln-Trp-Ala Val-Gly-His-Leu-Leu-NH 2 , D-Phe-Gln-Trp-Ala-Val-D-Ala-His-Leu-Leu-NH 2 , D 5 Phe-Gln-Trp-Ala-Val-D-Ala-His-Leu-Met-NH, D-Cpa-Gln-Trp-Ala-Val-D-Ala His-Leu-Met-NH 2 , pGlIu-Gln-Trp-Ala-Val-Gly-His-Phe-Leu-NH 2 , D-Phe-Gln Trp-Ala-Val-Gly-His-Phe-Leu-NH 2 , D-Phe-Gln-Trp-Ala-Val-D-Ala-His-Phe Met-NH 2 , D-Phe-Gln-Trp-Ala-Val-D-Ala-His-Phe-Leu-NH 2 , D-Phe-Gln-Trp-Aia Val-Gly-His-Leu-Nie-NH 2 , D-Phe-Gn-Trp-Ala-Val-D-Ala-His-Leu-Nie-NH 2 , D 10 Phe-Gln-Trp-Ala-Val-Gly-His-Phe-Nie-NH 2 , D-Phe-Gln-Trp-Ala-Val-DAla-His Phe-Nie-NH 2 , D-p-Cl-Phe-Gln-Trp-Ala-Val-Gly-His-Leuc[CH2NH]Phe-NH 2 , D Phe-Gln-Trp-Ala-Val-Gly-His-Leu-proplyamide, Ac-His-Trp-Ala-Val-D-Ala-His Leu-Leu-NH 2 , D-Phe-Gln-Trp-Ala-Val-Gly-His-CHx-Ala-Leu-NH 2 ,. cyclo-D Phe-Gln-Trp-Ala-Val-Gly-His-Leu-Leu, D-Cys-Asn-Trp-Ala-Val-Gly-His-Leu 15 Cys-NH 2 , cyclo-His-Trp-Ala-Val-Gly-His-Leu-Met, Cys-Trp-Ala-Val-Gly-His Leu-Cys-NH 2 , cyclo-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-Met, cyclo-D-Phe His-Trp-Ala-Val-Gly-His-Leu-Met cyclo-Trp-Ala-Val-Gly-His-Leu-Met, Additional bombesin analogues are described in, for example, W089/02897, 20 W091/17181, WO90/03980 and W091/02746, all of which are herein incorporated by reference thereto. Examples of ghrelin analogues suitable for use as a TM of the present invention comprise: Tyr-DTrp-DLys-Trp-DPhe-NH 2 , Tyr-DTrp-Lys-Trp-DPhe 25 NH 2 , His-DTrp-DLys-Trp-DPhe-NH 2 , His-DTrp-DLys-Phe-DTrp-NH 2 , His DTrp-DArg-Trp-DPhe-NH 2 , His-DTrp-DLys-Trp-DPhe-Lys-NH 2 , DesaminoTyr DTrp-Ala-Trp-DPhe-NH 2 , DesaminoTyr-DTrp-DLys-Trp-DPhe-NH 2 , DeaminoTyr-DTrp-Ser-Trp-DPhe-Lys-NH 2 , DesaminoTyr-DTrp-Ser-Trp-DPhe
NH
2 , His-DTrp-DTrp-Phe-Met-NH 2 , Tyr-DTrp-DTrp-Phe-Phe-NH 2 , 30 Glyip[CH 2 NH]-DpNal-Ala-Trp-DPhe-Lys-NH 2 , GlyW[CH2NH]-DbetaNaL-DLyS TrP-DPhe-Lys-NH 2 , DAla-DbetaNal-DLys-DTrp-Phe-Lys-NH 2 , His-DbetaNal DLys-Trp-DPhe-Lys-NH 2 , Ala-His-DTrp-DLys-Trp-DPhe-Lys-NH 2 , Alap[CH 2 NH]-DbetaNal-Ala-Trp-DPhe-Lys-NH 2 , DbetaNal-Ala-Trp-DPhe-Ala
NH
2 , DAla-DcyclohexylAla-Ala-Phe-DPhe-Nie-NH2, DcyclohexylAla-Ala-Phe 35 DTrp-Lys-NH 2 , DAla-DbetaAla-Thr-DThr-Lys-NH 2 , DcyclohexylAla-Ala-Trp 62 DPhe-NH2, D~aDeaa-l-l-~aLsN2 DbetaNa-Aarp-DPhe Leu-hH 2 , HisDTrp-Phe-rp-DPhe-ys-NH 2 -, DAkitDbetaNa-DAlaDTrp-Phe Lys-NH 2 , pAla-Trp-DAla-DTrp-Phe-NH 2 , HisTrp-DAla-DTrp-Phe-LysNH 2 , DLys-DpNal-AaTrp-t Phe-Lys-NH 2 ., D~aDeaa-DLs ~p h-Ls 5 NH 2 , Tyr-DAla-Phe-Aib-NH 2 , Tyr-DAkm-Sar-NWePhe-NH 2 , ayAbu-DTrp-DTrp Ser-NH 2 , ayAbu-DTrp-DTrp-Lys-NH 2 , ayAbw-DTrp-DTrp-Orn-NH 2 , aAbu D~rp-D~rptrn-NH 2 , DThr-D6tNaV-D~rp-DPro-Arg-hH 2 . DAli-Akm-DAki-DTrp Ph-y-H lyCH ]Hi-Dr-l-r-DPhe- Lys- NH 2 , Lys-DHsDTrp Phe-NH 2 , yAbu-DTrp-DTrp-OrrnNH 2 , iniprp-rp-Phe-NH 2 , Ac-DTrp-Phe 10 DTrp-Lew-NH 2 , AcDr-h-~pLsN2 Ac-DTrp-DTrp-Lys-NH 2 , DLys Tyr-DTrp-DTrp-Phe-Lys-NH 2 , Ac-DbeiaNak-Leu-ProNH 2 , pAla-Trp-DTrp Dlrptrn-NH 2 , DVal-DaNaV-DTrp-Ph(-&Arq-NH 2 , DLow-DaNalDTrp-Phe-Arg
NH
2 , CyclohexylAlaDaNal-DTrp-~ Phe-Arq-NH -. DTp-DaNal-DTrp-?he-Arq
NH
2 , DAka-DFNalVD Pro- Phe-Arg-N H 2 , Ac-DaNalDTrp-Phe-Arg-NH 2 , DaNal 15 DTrp-Phe-Arg-NH 2 , His1DTrp1DTrp-Lys-NH 2 , AciDpNak-DTrp-NH 2 , aAib-DTrp DcyclahexylAl-N H 2 , a~bD~pD accohx K.aN2 DAla Dccoey~aAaAl-h-~eNeN2 DPhe-AiaPhe-DPal-NH 2 , DPhe Ala- Ph-D Phe-Lys-N H 2 . DLys-TyrDTrp-DTrp-Phe-NH 2 , Ac-DLys-Tyr-DTrp DTrp-Phe-NH 2 , Arg-DTrp- Leu-Tyr-Trp~-Proa(cyclic Arg-Pra), Ac&DrNalPicLys 20 ILys-DPhe-NH2, DPak-Phe-DTrp-Phe-t-NH 2 , DPhe-Trp-DPhe-Phe-Mer NRW, DPaV-Trp-DPhe-Phe-Met- H 2 , pAlaPalkDTrp-DTrp-Omn-NH 2 , ayAbLI Trp-DTrp-DTrptrn-NH 2 , P-Aa-Trp1DTrp-DTrp-Lys-NH 2 , yAbu-Trp-DTrp-DTrp Orn-NH, Ava-rp-DTrp-DTrp-Orm-NHf . DLys-Iyr-DTrp-Aki-Trp-t Ph-NH 2 , His-DTrp-DArg-Trp-DPhe-NH 2 ., <Glu-H&Isrp-DSer-DArg-NH 2 , DPhe-DPhe 25 DTrp-Met-DLys-NH 2 . 0-(2-meihylaI~f) benzophonone oxime. (R)-2-amino-3 i'Hid l3y)li'-h n lieii- -yl')prapan-1 -one, N4(R)-1 -((R)-1 -i(S)K3 IHtindo-3-yi> I oxonl -j4pheny lpiperidii--n~ roa-2l mn)--mio oxohexan-2jdamino)K3-hydroxy-l -oxopropan-2-y )benzamnide. (S)-N-(S)KP (I H-ndaK&3-yl)> -axo-i -(4- phenylpiperidin-i -l) pro pan -2-yi)-6-acetami ia-2 30 ((S) -2-am in o-3- (ben zy xy) pro pan amkldo) he-xan antde, (S)-N-((R)-3j1 H-Indok 3-fl)-i -axo-1 -(4- phenylpiperktin-1 -ylprapan-2-yI)-2-((S)-2-acetamiao-3 (benzyloxy) propaniamido)-6-am~nohexaniamkde, (P>-NJ-( IH-indokS3-yI)-l -(4 (2-methaoxypheniyi)piperidi~n-l-yi)-i -oxapropan-2-yl)-4-arn~inabutanarnide, (R) N-(3-( I H-indolk3-yI>1l -(4-(2-methoxypheny)piperdin-i -yI)-1 -oxopropan-2-j}) 35 2-arnina-2--rnethyipropaniai~de, methyl 3-(p-tciykx-arbamayb)-2-naphthoate, 63 ethyl 3-(4~(2-methoxyphenyl)piperidine-1-carbonyl)-2-naphthoate, 3-(2 methoxyphenylcarbamoyl)-2-naphthoate, (S)-2,-diamino-N-((R)-3 (naphthalen-2-ylmethoxy)-1 -oxo-1 -(4-phenylpiperidin- -y)propan-2 yl)butanarnide, naphthalene-2,3-diylbis((4-(2-methoxyphenyl)piperazin-1 5 yl)methanone), (R)-2-amino-N-(3-(benzyloxy)-1-oxo-1 -(4-phenylpiperazin-1 yl)propan-2-yl)-2-methylpropanamide, or (R)-2-anino-3-(benzyloxy)1 -(4 phenylpiperazin-1-yl)propan-1 -one. Examples of GnRH analogues suitable for use as a TM in the present invention 10 include those known from, for example, EP171477, W096/033729, W092/022322, W092/013883, and W091/05563, each of which is herein incorporated by reference thereto. Specific examples comprise: (NAcDQal",DPtf 2 ,DPA1 3 ,cjsPzACAla 5 ,DPicLys 6 ,DAIa 1 0)LH RH; NAcDNal 1 ,DpClPhe 2 ,DPal 3 ,cjsPzACAla 5 ,DNicLys 6 ,1 Lys",DAIa 1 0 )LH RH; 15 (NAcDNal 1 ,DpClPhe 2 ,DPal 3 ,Thr 4 ,PicLys 5 ,DPicLys 6 ,1Lys 8 ,DAIa 1 0)LHRH; (NAcDNal 1 ,DpClPhe 2 ,DPal 3 , PicLys 5 ,DPicLys 6 ,Thr 7 , 1Lys3,DAla 10 )LHRH; (NapDThr', DpCIPhe 2 , DPal 3 , PicLys 5 ,DPicLys 6 ,lLys,DAla 10 )LHRH; (NAcDNal" , DpCIPhe 2 ,DPa 3 ,NicLys 5 ,DNicLys 6 ,Thr 7 ,1Lys,DAla 1 0)LHRH; (NAcDNal" , DpCIPhe 2 ,DPa 3 ,Thr 4 NicLys 5 ,DNicLys 6 ,Thr 7 ,Lys,DAla 1 0)LHRH; 20 (NAcDNal 1 ,DpClPhe 2 ,DPal 3 ,PicLys 5 ,D(PicSar)Lys 6 ,1Lys 8 ,DAIa 1 0 )LHRH' (NAcDNal 1 ,DpClPhe 2 ,DPal 3 ,D(PicSar)Lys 6 ,1 Lys 8 ,DAIa 1 0)LH RH; (NAcDNal 1 ,DpClPhe 2 ,DPal 3 , PicLys 5 ,D(6ANic)Lys 6 ,1 Lys 8 ,DAla 10 )LHRH; (NAcDNal 1 ,DpClPhe 2 ,DPal 3 , PicLys 5 ,D(6ANic)Orn 6 , 1Lys 8 ,DAla 10 )LHRH; (NAcDQal',DCpa 2 ,DPal 3 ,cisPzACAla 5 ,DPicLys 6 ,NLeu 7 , lLys 8 ,DAla 1 0)LHRH; 25 (NAcDNal",DCpa 2 ,DPa 3 .DPicLys 5 ,DAPhe(PicSar)P,1Lys,DAla' 0 )LHRH; NAcDQal',DCpa 2 ,DPal 3 , PicLys 5 ,DPal, lLys 8 ,DAla 1 0)LHRH; (NAcDNal",DCpa 2 ,DPal 3 ,PicLys 5 ,DOrn(ACyp) 6 ,Lys,DAla 10 )LHRH; N-acetyl D-beta-Nal-D- Phe- D-Phe-Ser-Tyr-D-Lys(cylo-pentyl)-Phe-Arg- Pro-D-Ala NH2; N-acetyl-D-o-Nal-D-Phe-D-Phe-Ser-Tyr-D-Lys(cyclopentyl)-Phe 30 Lys(cyclopentyl)-Pro-D-Ala-NH2; N-acetyl-D-beta-Nal-D-Phe-D-Phe-Ser-Tyr D-Arg-Phe-(isopropyl)D-Lys-Pro-D-Ala-NH2; N-acety -D-beta-Nal-D-Phe-D Phe-Ser-Tyr-D-Lys(benzyl)-Phe-Arg-Pro-D-Ala-NH2; N-acetyl-D-beta-Nal-D Phe-D-Phe-Ser-Tyr-D-Lys(Cl-benzyl)-Phe-Arg-Pro-D-Ala-NH2; N-acetyl-D beta-Nal-D-Phe-D-Phe-Ser-Tyr-D-Lys(heptyl)-Phe-Arg-Pro-D-Ala-NH2; N 35 acetyl-D-beta-Nal-D-Phe-D-Phe-Ser-Tyr-D-Arg-Phe-Lys-(&butylmethyl)-Pro 64 D-Ala-NH 2 ; N-acetyl-D-beta-Nal-D-Phe-D-Phe-Ser-Tyr-D-Arg-Phe-Lys-(4 methyl-benzyl)-Pro-D-Ala-NH 2 ; N-acetyl-D-beta-Nal-D-Phe-D-Phe-Ser-Tyr-D Arg- Phe- Lys- (benzy)- Pro-D-Ala- NH2; N-ac-etyl-D-beta-Nal-D-p-Cl-Ph~e-D-Trp Ser-Tyr-D-p-NH2-Phe-Phe-(isopropyl)Lys-Pro-D-Ala-NH,; N-acetyl-D-beta 5 Nal-D-Phe-D-Phe-Ser-Tyr-D-Lys(heptyl)-Phe-Lys-(heptyl)-Pro-D-Ala-NH2; N acetyl-D-3-Nal-D-Phe-D-Phe-Ser-Tyr-D-Lys( -butylpentyl)-Phe-Lys(I butylpentyl)-Arg- Pro-D-Ala-NH 2 . Examples of urotensin analogues suitable for use as a TM of the present 10 invention comprise: Cpa-c [D-Cys-Phe-Trp-Lys-Thr-Cys]-Val-NH2; and Asp c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH. The polypeptides of the present invention lack a functional Hc domain of a clostridial neurotoxin. Accordingly, said polypeptides are not able to bind rat 15 synaptosomal membranes (via a clostridial Hc component) in binding assays as described in Shone et al. (1985) Eur. J. Biochem. 151, 75-82. In a preferred embodiment, the polypeptides preferably lack the last 50 C-terminal amino acids of a clostridial neurotoxin holotoxin. In another embodiment, the polypeptides preferably lack the last 100, preferably the last 150, more 20 preferably the last 200, particularly preferably the last 250, and most preferably the last 300 C-terminal amino acid residues of a clostridial neurotoxin holotoxin. Alternatively, the Hc binding activity may be negated/ reduced by mutagenesis - by way of example, referring to BoNT/ A for convenience, modification of one or two amino acid residue mutations (W1266 25 to L and Y1 267 to F) in the ganglioside binding pocket causes the Hc region to lose its receptor binding function. Analogous mutations may be made to non serotype A clostridial peptide components, e.g. a construct based on botulinum B with mutations (W1262 to L and Y1263 to F) or botulinum E (W1 224 to L and Y1225 to F). Other mutations to the active site achieve the 30 same ablation of Hc receptor binding activity, e.g. Y1 267S in botulinum type A toxin and the corresponding highly conserved residue in the other clostridial neurotoxins. Details of this and other mutations are described in Rummel et al (2004) (Molecular Microbiol. 51:631-634), which is hereby incorporated by reference thereto. 35 65 In another embodiment, the polypeptides of the present invention lack a functional Hc domain of a clostridial neurotoxin and also lack any functionally equivalent TM. Accordingly, said polypeptides lack the natural binding function of a clostridial neurotoxin and are not able to bind rat synaptosomal 5 membranes (via a clostridial Hc component, or via any functionally equivalent TM) in binding assays as described in Shone et al. (1985) Eur. J. Biochem. 151, 75-82. The Hc peptide of a native clostridial neurotoxin comprises approximately 10 400-440 amino acid residues, and consists of two functionally distinct domains of approximately 25kDa each, namely the N-terminal region (commonly referred to as the HCN peptide or domain) and the C-terminal region (commonly referred to as the Hcc peptide or domain). This fact is confirmed by the following publications, each of which is herein incorporated in its 15 entirety by reference thereto: Umland TC (1997) Nat. Struct. Biol. 4: 788-792; Herreros J (2000) Biochem. J. 347: 199-204; Halpern J (1993) J. Biol. Chem. 268: 15, pp. 11188-11192; Rummel A (2007) PNAS 104: 359-364; Lacey DB (1998) Nat. Struct. Biol. 5: 898-902; Knapp (1998) Am. Cryst. Assoc. Abstract Papers 25: 90; Swaminathan and Eswaramoorthy (2000) Nat. Struct. Biol. 7: 20 1751-1759; and Rummel A (2004) Mol. Microbiol. 51(3), 631-643. Moreover, it has been well documented that the C-terminal region (Hcc), which constitutes the C-terminal 160-200 amino acid residues, is responsible for binding of a clostridial neurotoxin to its natural cell receptors, namely to nerve terminals at the neuromuscular junction - this fact is also confirmed by the above 25 publications. Thus, reference throughout this specification to a clostridial heavy-chain lacking a functional heavy chain Hc peptide (or domain) such that the heavy-chain is incapable of binding to cell surface receptors to which a native clostridial neurotoxin binds means that the clostridial heavy-chain simply lacks a functional Hcc peptide. In other words, the Hcc peptide region 30 is either partially or wholly deleted, or otherwise modified (e.g. through conventional chemical or proteolytic treatment) to inactivate its native binding ability for nerve terminals at the neuromuscular junction. Thus, in one embodiment, a clostridial HN peptide of the present invention 35 lacks part of a C-terminal peptide portion (Hcc) of a clostridial neurotoxin and 66 thus lacks the Hc binding function of native clostridial neurotoxin. By way of example, in one embodiment, the C-terminally extended clostridial HN peptide lacks the C-terminal 40 amino acid residues, or the C-terminal 60 amino acid residues, or the C-terminal 80 amino acid residues, or the C-terminal 100 5 amino acid residues, or the C-terminal 120 amino acid residues, or the C terminal 140 amino acid residues, or the C-terminal 150 amino acid residues, or the C-terminal 160 amino acid residues of a clostridial neurotoxin heavy chain. In another embodiment, the clostridial HN peptide of the present invention lacks the entire C-terminal peptide portion (Hcc) of a clostridial 10 neurotoxin and thus lacks the Hc binding function of native clostridial neurotoxin. By way of example, in one embodiment, the clostridial HN peptide lacks the C-terminal 165 amino acid residues, or the C-terminal 170 amino acid residues, or the C-terminal 175 amino acid residues, or the C-terminal 180 amino acid residues, or the C-terminal 185 amino acid residues, or the C 15 terminal 190 amino acid residues, or the C-terminal 195 amino acid residues of a clostridial neurotoxin heavy-chain. By way of further example, the clostridial HN peptide of the present invention lacks a clostridial Hcc reference sequence selected from the group consisting of: 20 Botulinum type A neurotoxin - amino acid residues (Y1 111 -L1 296) Botulinum type B neurotoxin - amino acid residues (Y1098-E1291) Botulinum type C neurotoxin - amino acid residues (Y1 112-El 291) Botulinum type D neurotoxin - amino acid residues (Y1 099-El 276) Botulinum type E neurotoxin - amino acid residues (Y1 086-Kl 252) 25 Botulinum type F neurotoxin - amino acid residues (Y1 106-El 274) Botulinum type G neurotoxin - amino acid residues (Y1 106-El 297) Tetanus neurotoxin - amino acid residues (Y1 128-Dl 315). The above-identified reference sequences should be considered a guide as 30 slight variations may occur according to sub-serotypes. The protease of the present invention embraces all non-cytotoxic proteases that are capable of cleaving one or more proteins of the exocytic fusion apparatus in eukaryotic cells. 35 67 The protease of the present invention is preferably a bacterial protease (or fragment thereof). More preferably the bacterial protease is selected from the genera Clostridium or Neisseria/ Streptococcus (e.g. a clostridial L-chain, or a neisserial IgA protease preferably from N. gonorrhoeae or S. pneumoniae). 5 The present invention also embraces variant non-cytotoxic proteases (ie. variants of naturally-occurring protease molecules), so long as the variant proteases still demonstrate the requisite protease activity. By way of example, a variant may have at least 70%, preferably at least 80%, more preferably at 10 least 90%, and most preferably at least 95 or at least 98% amino acid sequence homology with a reference protease sequence. Thus, the term variant includes non-cytotic proteases having enhanced (or decreased) endopeptidase activity - particular mention here is made to the increased Kcat/Km of BoNT/A mutants Q161A, E54A, and K165L see Ahmed, S.A. (2008) 15 Protein J. DOI 10.1007/s10930-007-9118-8, which is incorporated by reference thereto. The term fragment, when used in relation to a protease, typically means a peptide having at least 150, preferably at least 200, more preferably at least 250, and most preferably at least 300 amino acid residues of the reference protease. As with the TM 'fragment' component (discussed 20 above), protease 'fragments' of the present invention embrace fragments of variant proteases based on a reference sequence. The protease of the present invention preferably demonstrates a serine or metalloprotease activity (e.g. endopeptidase activity). The protease is 25 preferably specific for a SNARE protein (e.g. SNAP-25, synaptobrevin/VAMP, or syntaxin). Particular mention is made to the protease domains of neurotoxins, for example the protease domains of bacterial neurotoxins. Thus, the present 30 invention embraces the use of neurotoxin domains, which occur in nature, as well as recombinantly prepared versions of said naturally-occurring neurotoxins. Exemplary neurotoxins are produced by clostridia, and the term clostridial 35 neurotoxin embraces neurotoxins produced by C. tetani (TeNT), and by C. 68 botulinum (BoNT) serotypes A-G, as well as the closely related BoNT-like neurotoxins produced by C. baratii and C. butyricum. The above-mentioned abbreviations are used throughout the present specification. For example, the nomenclature BoNT/A denotes the source of neurotoxin as BoNT (serotype 5 A). Corresponding nomenclature applies to other BoNT serotypes. BoNTs are the most potent toxins known, with median lethal dose (LD50) values for mice ranging from 0.5 to 5 ng/kg depending on the serotype. BoNTs are adsorbed in the gastrointestinal tract, and, after entering the 10 general circulation, bind to the presynaptic membrane of cholinergic nerve terminals and prevent the release of their neurotransmitter acetylcholine. BoNT/B, BoNT/D, BoNT/F and BoNT/G cleave synaptobrevin/vesicle associated membrane protein (VAMP); BoNT/C, BoNT/A and BoNT/E cleave the synaptosomal-associated protein of 25 kDa (SNAP-25); and BoNT/C 15 cleaves syntaxin. BoNTs share a common structure, being di-chain proteins of ~150 kDa, consisting of a heavy chain (H-chain) of ~100 kDa covalently joined by a single disulfide bond to a light chain (L-chain) of ~50 kDa. The H-chain 20 consists of two domains, each of ~50 kDa. The C-terminal domain (Hc) is required for the high-affinity neuronal binding, whereas the N-terminal domain (HN) is proposed to be involved in membrane translocation. The L-chain is a zinc-dependent metalloprotease responsible for the cleavage of the substrate SNARE protein. 25 The term L-chain fragment means a component of the L-chain of a neurotoxin, which fragment demonstrates a metalloprotease activity and is capable of proteolytically cleaving a vesicle and/or plasma membrane associated protein involved in cellular exocytosis. 30 Examples of suitable protease (reference) sequences include: Botulinum type A neurotoxin - amino acid residues (1-448) Botulinum type B neurotoxin - amino acid residues (1-440) 35 Botulinum type C neurotoxin - amino acid residues (1 -441) 69 Botulinum type D neurotoxin - amino acid residues (1-445) Botulinum type E neurotoxin - amino acid residues (1-422) Botulinum type F neurotoxin - amino acid residues (1-439) Botulinum type G neurotoxin - amino acid residues (1-441) 5 Tetanus neurotoxin - amino acid residues (1 -457) IgA protease - amino acid residues (1 -959)* * Pohiner, J. et al. (1987). Nature 325, pp. 458-462, which is hereby incorporated by reference thereto. 10 The above-identified reference sequence should be considered a guide as slight variations may occur according to sub-serotypes. By way of example, US 2007/0166332 (hereby incorporated by reference thereto) cites slightly different clostridial sequences: 15 Botulinum type A neurotoxin - amino acid residues (M1-K448) Botulinum type B neurotoxin - amino acid residues (M1-K441) Botulinum type C neurotoxin - amino acid residues (M1-K449) Botulinum type D neurotoxin - amino acid residues (M1-R445) 20 Botulinum type E neurotoxin - amino acid residues (Ml -R422) Botulinum type F neurotoxin - amino acid residues (M1-K439) Botulinum type G neurotoxin - amino acid residues (M1-K446) Tetanus neurotoxin - amino acid residues (M1-A457) 25 A variety of clostridial toxin fragments comprising the light chain can be useful in aspects of the present invention with the proviso that these light chain fragments can specifically target the core components of the neurotransmitter release apparatus and thus participate in executing the overall cellular mechanism whereby a clostridial toxin proteolytically cleaves a substrate. The 30 light chains of clostridial toxins are approximately 420-460 amino acids in length and comprise an enzymatic domain. Research has shown that the entire length of a clostridial toxin light chain is not necessary for the enzymatic activity of the enzymatic domain. As a non-limiting example, the first eight amino acids of the BoNT/A light chain are not required for enzymatic activity. 35 As another non-limiting example, the first eight amino acids of the TeNT light 70 chain are not required for enzymatic activity. Likewise, the carboxyl-terminus of the light chain is not necessary for activity. As a non-limiting example, the last 32 amino acids of the BoNT/A light chain (residues 417-448) are not required for enzymatic activity. As another non-limiting example, the last 31 5 amino acids of the TeNT light chain (residues 427-457) are not required for enzymatic activity. Thus, aspects of this embodiment can include clostridial toxin light chains comprising an enzymatic domain having a length of, for example, at least 350 amino acids, at least 375 amino acids, at least 400 amino acids, at least 425 amino acids and at least 450 amino acids. Other 10 aspects of this embodiment can include clostridial toxin light chains comprising an enzymatic domain having a length of, for example, at most 350 amino acids, at most 375 amino acids, at most 400 amino acids, at most 425 amino acids and at most 450 amino acids. 15 The non-cytotoxic protease component of the present invention preferably comprises a BoNT/A, BoNT/B or BoNT/D serotype L-chain (or fragment or variant thereof). The polypeptides of the present invention, especially the protease component 20 thereof, may be PEGylated - this may help to increase stability, for example duration of action of the protease component. PEGylation is particularly preferred when the protease comprises a BoNT/A, B or C, protease. PEGylation preferably includes the addition of PEG to the N-terminus of the protease component. By way of example, the N-terminus of a protease may 25 be extended with one or more amino acid (e.g. cysteine) residues, which may be the same or different. One or more of said amino acid residues may have its own PEG molecule attached (e.g. covalently attached) thereto. An example of this technology is described in W02007/104567, which is incorporated in its entirety by reference thereto. 30 A Translocation Domain is a molecule that enables translocation of a protease into a target cell such that a functional expression of protease activity occurs within the cytosol of the target cell. Whether any molecule (e.g. a protein or peptide) possesses the requisite translocation function of the present 35 invention may be confirmed by any one of a number of conventional assays. 71 For example, Shone C. (1987) describes an in vitro assay employing liposomes, which are challenged with a test molecule. Presence of the requisite translocation function is confirmed by release from the liposomes of 5 K+ and/ or labelled NAD, which may be readily monitored [see Shone C. (1987) Eur. J. Biochem; vol. 167(1): pp. 175-180]. A further example is provided by Blaustein R. (1987), which describes a simple in vitro assay employing planar phospholipid bilayer membranes. The 10 membranes are challenged with a test molecule and the requisite translocation function is confirmed by an increase in conductance across said membranes [see Blaustein (1987) FEBS Letts; vol. 226, no. 1: pp. 115-120]. Additional methodology to enable assessment of membrane fusion and thus 15 identification of Translocation Domains suitable for use in the present invention are provided by Methods in Enzymology Vol 220 and 221, Membrane Fusion Techniques, Parts A and B, Academic Press 1993. The present invention also embraces variant translocation domains, so long 20 as the variant domains still demonstrate the requisite translocation activity. By way of example, a variant may have at least 70%, preferably at least 80%, more preferably at least 90%, and most preferably at least 95% or at least 98% amino acid sequence homology with a reference translocation domain. The term fragment, when used in relation to a translocation domain, means a 25 peptide having at least 20, preferably at least 40, more preferably at least 80, and most preferably at least 100 amino acid residues of the reference translocation domain. In the case of a clostridial translocation domain, the fragment preferably has at least 100, preferably at least 150, more preferably at least 200, and most preferably at least 250 amino acid residues of the 30 reference translocation domain (eg. HN domain). As with the TM 'fragment' component (discussed above), translocation 'fragments' of the present invention embrace fragments of variant translocation domains based on the reference sequences. 72 The Translocation Domain is preferably capable of formation of ion-permeable pores in lipid membranes under conditions of low pH. Preferably it has been found to use only those portions of the protein molecule capable of pore formation within the endosomal membrane. 5 The Translocation Domain may be obtained from a microbial protein source, in particular from a bacterial or viral protein source. Hence, in one embodiment, the Translocation Domain is a translocating domain of an enzyme, such as a bacterial toxin or viral protein. 10 It is well documented that certain domains of bacterial toxin molecules are capable of forming such pores. It is also known that certain translocation domains of virally expressed membrane fusion proteins are capable of forming such pores. Such domains may be employed in the present 15 invention. The Translocation Domain may be of a clostridial origin, such as the HN domain (or a functional component thereof). HN means a portion or fragment of the H-chain of a clostridial neurotoxin approximately equivalent to the 20 amino-terminal half of the H-chain, or the domain corresponding to that fragment in the intact H-chain. The H-chain lacks the natural binding function of the Hc component of the H-chain. In this regard, the Hc function may be removed by deletion of the Hc amino acid sequence (either at the DNA synthesis level, or at the post-synthesis level by nuclease or protease 25 treatment). Alternatively, the Hc function may be inactivated by chemical or biological treatment. Thus, the H-chain is incapable of binding to the Binding Site on a target cell to which native clostridial neurotoxin (i.e. holotoxin) binds. Examples of suitable (reference) Translocation Domains include: 30 Botulinum type A neurotoxin - amino acid residues (449-871) Botulinum type B neurotoxin - amino acid residues (441-858) Botulinum type C neurotoxin - amino acid residues (442-866) Botulinum type D neurotoxin - amino acid residues (446-862) 35 Botulinum type E neurotoxin - amino acid residues (423-845) 73 Botulinum type F neurotoxin - amino acid residues (440-864) Botulinum type G neurotoxin - amino acid residues (442-863) Tetanus neurotoxin - amino acid residues (458-879) 5 The above-identified reference sequence should be considered a guide as slight variations may occur according to sub-serotypes. By way of example, US 2007/0166332 (hereby incorporated by reference thereto) cites slightly different clostridial sequences: 10 Botulinum type A neurotoxin - amino acid residues (A449-K871) Botulinum type B neurotoxin - amino acid residues (A442-S858) Botulinum type C neurotoxin - amino acid residues (T450-N866) Botulinum type D neurotoxin - amino acid residues (D446-N862) Botulinum type E neurotoxin - amino acid residues (K423-K845) 15 Botulinum type F neurotoxin - amino acid residues (A440-K864) Botulinum type G neurotoxin - amino acid residues (S447-S863) Tetanus neurotoxin - amino acid residues (S458-V879) In the context of the present invention, a variety of Clostridial toxin HN regions 20 comprising a translocation domain can be useful in aspects of the present invention with the proviso that these active fragments can facilitate the release of a non-cytotoxic protease (e.g. a clostridial L-chain) from intracellular vesicles into the cytoplasm of the target cell and thus participate in executing the overall cellular mechanism whereby a clostridial toxin proteolytically 25 cleaves a substrate. The HN regions from the heavy chains of Clostridial toxins are approximately 410-430 amino acids in length and comprise a translocation domain. Research has shown that the entire length of a HN region from a Clostridial toxin heavy chain is not necessary for the translocating activity of the translocation domain. Thus, aspects of this 30 embodiment can include clostridial toxin HN regions comprising a translocation domain having a length of, for example, at least 350 amino acids, at least 375 amino acids, at least 400 amino acids and at least 425 amino acids. Other aspects of this embodiment can include clostridial toxin HN regions comprising translocation domain having a length of, for example, at most 350 amino 74 acids, at most 375 amino acids, at most 400 amino acids and at most 425 amino acids. For further details on the genetic basis of toxin production in Clostridium 5 botulinum and C. tetani, we refer to Henderson et al (1997) in The Clostridia: Molecular Biology and Pathogenesis, Academic press. The term HN embraces naturally-occurring neurotoxin HN portions, and modified HN portions having amino acid sequences that do not occur in nature 10 and/ or synthetic amino acid residues, so long as the modified HN portions still demonstrate the above-mentioned translocation function. Alternatively, the Translocation Domain may be of a non-clostridial origin. Examples of non-clostridial (reference) Translocation Domain origins include, 15 but not be restricted to, the translocation domain of diphtheria toxin [O'Keefe et al., Proc. Nati. Acad. Sci. USA (1992) 89, 6202-6206; Silverman et al., J. Biol. Chem. (1993) 269, 22524-22532; and London, E. (1992) Biochem. Biophys. Acta., 1112, pp.25-51], the translocation domain of Pseudomonas exotoxin type A [Prior et al. Biochemistry (1992) 31, 3555-3559], the 20 translocation domains of anthrax toxin [Blanke et al. Proc. Nati. Acad. Sci. USA (1996) 93, 8437-8442], a variety of fusogenic or hydrophobic peptides of translocating function [Plank et al. J. Biol. Chem. (1994) 269, 12918-12924; and Wagner et al (1992) PNAS, 89, pp.7934-7938], and amphiphilic peptides [Murata et al (1992) Biochem., 31, pp.1986-1992]. The Translocation Domain 25 may mirror the Translocation Domain present in a naturally-occurring protein, or may include amino acid variations so long as the variations do not destroy the translocating ability of the Translocation Domain. Particular examples of viral (reference) Translocation Domains suitable for 30 use in the present invention include certain translocating domains of virally expressed membrane fusion proteins. For example, Wagner et al. (1992) and Murata et al. (1992) describe the translocation (i.e. membrane fusion and vesiculation) function of a number of fusogenic and amphiphilic peptides derived from the N-terminal region of influenza virus haemagglutinin. Other 35 virally expressed membrane fusion proteins known to have the desired 75 translocating activity are a translocating domain of a fusogenic peptide of Semliki Forest Virus (SFV), a translocating domain of vesicular stomatitis virus (VSV) glycoprotein G, a translocating domain of SER virus F protein and a translocating domain of Foamy virus envelope glycoprotein. Virally encoded 5 Aspike proteins have particular application in the context of the present invention, for example, the El protein of SFV and the G protein of the G protein of VSV. Use of the (reference) Translocation Domains listed in Table (below) includes 10 use of sequence variants thereof. A variant may comprise one or more conservative nucleic acid substitutions and/ or nucleic acid deletions or insertions, with the proviso that the variant possesses the requisite translocating function. A variant may also comprise one or more amino acid substitutions and/ or amino acid deletions or insertions, so long as the variant 15 possesses the requisite translocating function. Translocation Amino acid References Domain source residues Diphtheria toxin 194-380 Silverman et aL., 1994, J. Biol. Chem. 269, 22524-22532 London E., 1992, Biochem. Biophys. Acta., 1113, 25-51 Domain II of 405-613 Prior etaL, 1992, Biochemistry pseudomonas 31, 3555-3559 exotoxin Kihara & Pastan, 1994, Bioconj Chem. 5, 532-538 Influenza virus GLFGAIAGFIENGWE Plank et aL., 1994, J. Biol. Chem. haemagglutinin GMIDGWYG, and 269, 12918-12924 Variants thereof Wagner et al., 1992, PNAS, 89, 7934-7938 Murata etal., 1992, Biochemistry 31, 1986-1992 Semliki Forest virus Translocation domain Kielian et al., 1996, J Cell Biol. fusogenic protein 134(4), 863-872 76 Translocation Amino acid References Domain source residues Vesicular Stomatitis 118-139 Yao et aL., 2003, Virology 310(2), virus glycoprotein G 319-332 SER virus F protein Translocation domain Seth et aL., 2003, J Virol 77(11) 6520-6527 Foamy virus Translocation domain Picard-Maureau etal., 2003, J envelope Virol. 77(8), 4722-4730 glycoprotein The polypeptides of the present invention may further comprise a translocation facilitating domain. Said domain facilitates delivery of the non cytotoxic protease into the cytosol of the target cell and are described, for 5 example, in WO 08/008803 and WO 08/008805, each of which is herein incorporated by reference thereto. By way of example, suitable translocation facilitating domains include an enveloped virus fusogenic peptide domain, for example, suitable fusogenic 10 peptide domains include influenzavirus fusogenic peptide domain (eg. influenza A virus fusogenic peptide domain of 23 amino acids), alphavirus fusogenic peptide domain (eg. Semliki Forest virus fusogenic peptide domain of 26 amino acids), vesiculovirus fusogenic peptide domain (eg. vesicular stomatitis virus fusogenic peptide domain of 21 amino acids), respirovirus 15 fusogenic peptide domain (eg. Sendai virus fusogenic peptide domain of 25 amino acids), morbiliivirus fusogenic peptide domain (eg. Canine distemper virus fusogenic peptide domain of 25 amino acids), avulavirus fusogenic peptide domain (eg. Newcastle disease virus fusogenic peptide domain of 25 amino acids), henipavirus fusogenic peptide domain (eg. Hendra virus 20 fusogenic peptide domain of 25 amino acids), metapneumovirus fusogenic peptide domain (eg. Human metapneumovirus fusogenic peptide domain of 25 amino acids) or spumavirus fusogenic peptide domain such as simian foamy virus fusogenic peptide domain; or fragments or variants thereof. 25 By way of further example, a translocation facilitating domain may comprise a Clostridial toxin HCN domain or a fragment or variant thereof. In more detail, a 77 Clostridial toxin HCN translocation facilitating domain may have a length of at least 200 amino acids, at least 225 amino acids, at least 250 amino acids, at least 275 amino acids. In this regard, a Clostridial toxin HCN translocation facilitating domain preferably has a length of at most 200 amino acids, at most 5 225 amino acids, at most 250 amino acids, or at most 275 amino acids. Specific (reference) examples include: Botulinum type A neurotoxin - amino acid residues (872-1110) Botulinum type B neurotoxin - amino acid residues (859-1097) Botulinum type C neurotoxin - amino acid residues (867-1111) 10 Botulinum type D neurotoxin - amino acid residues (863-1098) Botulinum type E neurotoxin - amino acid residues (846-1085) Botulinum type F neurotoxin - amino acid residues (865-1105) Botulinum type G neurotoxin - amino acid residues (864-1105) Tetanus neurotoxin - amino acid residues (880-1127) 15 The above sequence positions may vary a little according to serotype/ sub type, and further examples of suitable (reference) Clostridial toxin HCN domains include: Botulinum type A neurotoxin - amino acid residues (874-1110) 20 Botulinum type B neurotoxin - amino acid residues (861-1097) Botulinum type C neurotoxin - amino acid residues (869-1111) Botulinum type D neurotoxin - amino acid residues (865-1098) Botulinum type E neurotoxin - amino acid residues (848-1085) Botulinum type F neurotoxin - amino acid residues (867-1105) 25 Botulinum type G neurotoxin - amino acid residues (866-1105) Tetanus neurotoxin - amino acid residues (882-1127) Any of the above-described facilitating domains may be combined with any of the previously described translocation domain peptides that are suitable for 30 use in the present invention. Thus, by way of example, a non-clostridial facilitating domain may be combined with non-clostridial translocation domain peptide or with clostridial translocation domain peptide. Alternatively, a Clostridial toxin HCN translocation facilitating domain may be combined with a non-clostridal translocation domain peptide. Alternatively, a Clostridial toxin 78 HCN facilitating domain may be combined or with a clostridial translocation domain peptide, examples of which include: Botulinum type A neurotoxin - amino acid residues (449-1110) Botulinum type B neurotoxin - amino acid residues (442-1097) 5 Botulinum type C neurotoxin - amino acid residues (450-1111) Botulinum type D neurotoxin - amino acid residues (446-1098) Botulinum type E neurotoxin - amino acid residues (423-1085) Botulinum type F neurotoxin - amino acid residues (440-1105) Botulinum type G neurotoxin - amino acid residues (447-1105) 10 Tetanus neurotoxin - amino acid residues (458-1127) Sequence homology: Any of a variety of sequence alignment methods can be used to determine percent identity, including, without limitation, global methods, local methods 15 and hybrid methods, such as, e.g., segment approach methods. Protocols to determine percent identity are routine procedures within the scope of one skilled in the. Global methods align sequences from the beginning to the end of the molecule and determine the best alignment by adding up scores of individual residue pairs and by imposing gap penalties. Non-limiting methods 20 include, e.g., CLUSTAL W, see, e.g., Julie D. Thompson et al., CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment Through Sequence Weighting, Position- Specific Gap Penalties and Weight Matrix Choice, 22(22) Nucleic Acids Research 4673-4680 (1994); and iterative refinement, see, e.g., Osamu Gotoh, Significant Improvement in Accuracy of 25 Multiple Protein. Sequence Alignments by Iterative Refinement as Assessed by Reference to Structural Alignments, 264(4) J. Mot Biol 823-838 (1996). Local methods align sequences by identifying one or more conserved motifs shared by all of the input sequences. Non-limiting methods include, e.g, Match-box, see, e.g., Eric Depiereux and Ernest Feytmans, Match-Box: A 30 Fundamentally New Algorithm for the Simultaneous Alignment of Several Protein Sequences, 8(5) CABIOS 501 -509 (1992); Gibbs sampling, see, e~g., C. E. Lawrence et al., Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment, 262(5131 ) Science 208-214 (1993); Align-M, see, e.g., vo Van Walle et al, Align-M - A New Algorithm for Multiple 79 Algnment of Highly Divergent Sequences, 20(9) Bioinformatics:1428-1435 (2004). Thus, percent sequence identity is determined by conventional methods. 5 See, for example, Altschul et al., Bull. Math. Bio. 48: 603-16, 1986 and Henikoff and Henikoff, Proc. Nati. Acad. Sci. USA 89:10915-19, 1992. Briefly, two amino acid sequences are aligned to optimize the alignment scores using a gap opening penalty of 10, a gap extension penalty of 1, and the "blosum 62" scoring matrix of Henikoff and Henikoff (ibid.) as shown below (amino 10 acids are indicated by the standard one-letter codes). Alignment scores for determining sequence identity A R N D C Q E G H I L K M F P S T W Y V 15 A 4 R-1 5 N -2 0 6 D -2 -2 1 6 C 0 -3 -3 -3 9 20 Q-1 1 0 0-3 5 E-1 0 0 2-4 2 5 G 0 -2 0 -1 -3 -2 -2 6 H -2 0 1 -1 -3 0 0 -2 8 I-1 -3 -3 -3 -1 -3 -3 -4 -3 4 25 L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 F-2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 P -1 -2-2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 30 S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 V 0 -3 -3 -3 -1 -2-2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 35 80 The percent identity is then calculated as: Total number of identical matches _x 100 5 [length of the longer sequence plus the number of gaps introduced into the longer sequence in order to align the two sequences] Substantially homologous polypeptides are characterized as having one or 10 more amino acid substitutions, deletions or additions. These changes are preferably of a minor nature, that is conservative amino acid substitutions (see below) and other substitutions that do not significantly affect the folding or activity of the polypeptide; small deletions, typically of one to about 30 amino acids; and small amino- or carboxyl-terminal extensions, such as an amino 15 terminal methionine residue, a small linker peptide of up to about 20-25 residues, or an affinity tag. Conservative amino acid substitutions 20 Basic: arginine lysine histidine Acidic: glutamic acid aspartic acid 25 Polar: glutamine asparagine Hydrophobic: leucine isoleucine valine 30 Aromatic: phenylalanine tryptophan tyrosine Small: glycine alanine 35 serine 81 threonine methionine In addition to the 20 standard amino acids, non-standard amino acids (such 5 as 4-hydroxyproline, 6-N-methyl lysine, 2-aminoisobutyric acid, isovaline and a -methyl serine) may be substituted for amino acid residues of the polypeptides of the present invention. A limited number of non-conservative amino acids, amino acids that are not encoded by the genetic code, and unnatural amino acids may be substituted for clostridial polypeptide amino 10 acid residues. The polypeptides of the present invention can also comprise non-naturally occurring amino acid residues. Non-naturally occurring amino acids include, without limitation, trans-3 methylproline, 2,4-methano-proline, cis-4-hydroxyproline, trans-4-hydroxy 15 proline, N-methylglycine, allo-threonine, methyl-threonine, hydroxy ethylcysteine, hydroxyethylhomo-cysteine, nitro-glutamine, homoglutamine, pipecolic acid, tert-leucine, norvaline, 2-azaphenylalanine, 3-azaphenyl alanine, 4-azaphenyl-alanine, and 4-fluorophenylalanine. Several methods are known in the art for incorporating non-naturally occurring amino acid 20 residues into proteins. For example, an in vitro system can be employed wherein nonsense mutations are suppressed using chemically aminoacylated suppressor tRNAs. Methods for synthesizing amino acids and aminoacylating tRNA are known in the art. Transcription and translation of plasmids containing nonsense mutations is carried out in a cell free system comprising 25 an E. coli S30 extract and commercially available enzymes and other reagents. Proteins are purified by chromatography. See, for example, Robertson et al., J. Am. Chem. Soc. 113:2722, 1991; Ellman et al., Methods Enzymol. 202:301, 1991; Chung et al., Science 259:806-9, 1993; and Chung et al., Proc. Nati. Acad. Sci. USA 90:10145-9, 1993). In a second method, 30 translation is carried out in Xenopus oocytes by microinjection of mutated mRNA and chemically aminoacylated suppressor tRNAs (Turcatti et al., J Biol. Chem. 271,:19991-8, 1996). Within a third method, E. coli cells are cultured in the absence of a natural amino acid that is to be replaced (e.g., phenylalanine) and in the presence of the desired non-naturally occurring 35 amino acid(s) (e.g., 2-azaphenylalanine, 3-azaphenylalanine, 4 82 azaphenylalanine, or 4-fluorophenylalanine). The non-naturally occurring amino acid is incorporated into the polypeptdie in place of its natural counterpart. See, Koide et al., Biochem. 33:7470-6, 1994. Naturally occurring amino acid residues can be converted to non-naturally occurring 5 species by in vitro chemical modification. Chemical modification can be combined with site-directed mutagenesis to further expand the range of substitutions (Wynn and Richards, Protein Sci. 2:395-403, 1993). A limited number of non-conservative amino acids, amino acids that are not 10 encoded by the genetic code, non-naturally occurring amino acids, and unnatural amino acids may be substituted for amino acid residues of polypeptides of the present invention. Essential amino acids in the polypeptides of the present invention can be 15 identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, Science 244: 1081-5, 1989). Sites of biological interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron 20 diffraction or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See, for example, de Vos et al., Science 255:306 12, 1992; Smith et al., J. Mol. Biol. 224:899-904, 1992; Wlodaver et al., FEBS Lett. 309:59-64, 1992. The identities of essential amino acids can also be inferred from analysis of homologies with related components (e.g. the 25 translocation or protease components) of the polypeptides of the present invention. Multiple amino acid substitutions can be made and tested using known methods of mutagenesis and screening, such as those disclosed by Reidhaar 30 Olson and Sauer (Science 241_:53-7, 1988) or Bowie and Sauer (Proc. Nati. Acad. Sci. USA 86:2152-6, 1989). Briefly, these authors disclose methods for simultaneously randomizing two or more positions in a polypeptide, selecting for functional polypeptide, and then sequencing the mutagenised polypeptides to determine the spectrum of allowable substitutions at each position. Other 35 methods that can be used include phage display (e.g., Lowman et al., 83 Biochem. 30:10832-7, 1991; Ladner et al., U.S. Patent No. 5,223,409; Huse, WIPO Publication WO 92/06204) and region-directed mutagenesis (Derbyshire et al., Gene 46:145, 1986; Ner et al., DNA 7:127, 1988). 5 Multiple amino acid substitutions can be made and tested using known methods of mutagenesis and screening, such as those disclosed by Reidhaar Olson and Sauer (Science 241_:53-7, 1988) or Bowie and Sauer (Proc. Nati. Acad. Sci. USA 86:2152-6, 1989). Briefly, these authors disclose methods for simultaneously randomizing two or more positions in a polypeptide, selecting 10 for functional polypeptide, and then sequencing the mutagenized polypeptides to determine the spectrum of allowable substitutions at each position. Other methods that can be used include phage display (e.g., Lowman et al., Biochem. 30:10832-7, 1991; Ladner et al., U.S. Patent No. 5,223,409; Huse, WIPO Publication WO 92/06204) and region-directed mutagenesis 15 (Derbyshire et al., Gene 46:145, 1986; Ner et al., DNA 7:127, 1988). There now follows a brief description of the Figures, which illustrate aspects and/ or embodiments of the present invention. 20 Figure 1 - Purification of LHN/D-CT-CST28 fusion protein Using the methodology outlined in Example 5, a LHN/D-CT-CST28 fusion protein was purified from E. coli BL21 (DE3) cells. Briefly, the soluble products obtained following cell disruption were applied to a nickel-charged affinity capture column. Bound proteins were eluted with 200 mM imidazole, 25 treated with enterokinase to activate the fusion protein and then re-applied to a second nickel-charged affinity capture column. Samples from the purification procedure were assessed by SDS-PAGE. Lane 1: First nickel chelating Sepharose column eluant, Lane 2: Second nickel chelating Sepharose column eluant under non-reducing conditions, Lane 3: Second 30 nickel chelating Sepharose column eluant under reducing conditions, lane 4: Molecular mass markers (kDa). Figure 2 - Purification of LHN/A-CT-SST14 fusion protein Using the methodology outlined in Example 6, an LHN/A-CT-SST14 fusion 35 protein was purified from E. coli BL21 (DE3) cells. Briefly, the soluble 84 products obtained following cell disruption were applied to a nickel-charged affinity capture column. Bound proteins were eluted with 200 mM imidazole, treated with Factor Xa to activate the fusion protein and then re-applied to a second nickel-charged affinity capture column. Samples from the purification 5 procedure were assessed by SDS-PAGE. Lane 1: First nickel chelating Sepharose column eluant, Lane 2: Molecular mass markers (kDa), Lanes 3-4: Second nickel chelating Sepharose column eluant under non-reducing conditions, Lanes 5-6: Second nickel chelating Sepharose column eluant under reducing conditions. 10 Figure 3 - Activity of SST-LHN/A in cultured endocrine cells (AtT20) Figure 3a shows Inhibition of secretion of ACTH by SST-LHN/A, and Figure 3b shows corresponding cleavage of SNAP-25 by SST-LHN/A. 15 Figure 4 - Activity of SST-LHN/D in cultured endocrine cells (GH3) Figure 4 shows the effect of growth hormone release from GH3 cells. Higher administration dosages of SST-LHN/D result in a greater inhibition of growth hormone release. 20 Figure 5 - Activity of CP-GHRH-LHD on rat IGF-1 levels in vivo Figure 5 shows the effects of i.v. administration of CP-GHRH-LHD (SXN101000) on rat IGF-1 levels 5 days after treatment compared to a vehical only control. 25 Figure 6 - Activity of CP-GHRH-LHD on rat IGF-1 levels in vivo Figure 6 shows the effects of i.v. administration of CP-GHRH-LHD (SXN101000) on rat IGF-1 levels on day 1 to 8 days after treatment compared to a vehical only control. Due to the blocking of the cannula on days 9 and 10 have too few an n number to be considered. 30 Figure 7 - Activity of CP-GHRH-LHD on rat growth hormone levels in vivo Figure 7b shows the effects of i.v. administration of CP-GHRH-LHD (SXN101000) on rat growth hormone levels on day 5 days after treatment 35 compared to a vehical only control (figure 7a) and octreotide infusion (figure 7c). 85 Where the terms "comprise", "comprises", "comprised" or "comprising" are used in this specification (including the claims) they are to be interpreted as specifying the presence of the stated features, integers, steps or components, but not precluding the presence of one or more other features, integers, steps or components, or group 5 thereof. The discussion of documents, acts, materials, devices, articles and the like is included in this specification solely for the purpose of providing a context for the present invention. It is not suggested or represented that any or all of these matters formed part of the prior art base or were common general knowledge in the field relevant to 10 the present invention as it existed before the priority date of each claim of this application. SEQ ID NOs 1. DNA sequence of LHN/A 15 2. DNA sequence of LH/B 3 DNA sequence of LHN/C 4. DNA sequence of LHN/D 5. DNA sequence of the human CP-EN-GS15-SST28 linker 6. DNA sequence of the human CT-GS20-CST28 linker 20 7. Protein sequence of the CP-CST14-GS20-LHD fusion 8. Protein sequence of the CP-CST14-GS30-LHD fusion 9. Protein sequence of the CP-CST28-GS20-LHD fusion 10. Protein sequence of the CP-CST28-GS30-LHD fusion 11. Protein sequence of the CP-SST14-GS20-LHD fusion 25 12. Protein sequence of the CP-SST14-GS30-LHD fusion 13. Protein sequence of the CP-SST28-GS20-LHD fusion 14. Protein sequence of the CP-SST28-GS3O-LHD fusion 15. Protein sequence of the CT-CST14-GS20-LHD fusion 16. Protein sequence of the CT-CST14-GS30-LHD fusion 30 17. DNA sequence of the CT-CST28-GS20-LHD fusion 18, Protein sequence of the CT-CST28-GS20-LHD fusion 19. Protein sequence of the CT-CST28-GS30-LHD fusion 86 20. Protein sequence of the CT-SST14-GS15-L(#Fxa)HD fusion 21. Protein sequence of the CT-SST14-GS30-LHD fusion 22. Protein sequence of the CT-SST28-GS20-LHD fusion 23. Protein sequence of the CT-SST28-GS30-LHD fusion 5 24. Protein sequence of the CT-SST14-GS35-LHC fusion 25. DNA sequence of the CP-GS1 5-SST28-LHA fusion 26. Protein sequence of the CP-GSI 5-SST28-LHA fusion 27. Protein sequence of the CT-SST28-GS1 5-LHB fusion 28. Protein sequence of the CT-CST14-GS20-LHC fusion 10 29. Protein sequence of the CT-CST1 7-GS25-LHC fusion 30. Protein sequence of the CT-CST29-GS1 5-LHA fusion 31. Protein sequence of the CT-CST29-GS30-LHB fusion 32. DNA sequence of IgA-HNtet 33. Protein sequence of the CT-GHRP-LHC fusion 15 86a 34. Protein sequence of the CT-GHRH-LHD fusion 35. Protein sequence of the CT-GHRP-LHD fusion 36. Protein sequence of the CT-ghrelin-LHA fusion 37. Protein sequence of the IgA-HNtet-CT-SST1 4 Fusion 5 38. Protein sequence of the IgA-HNtet-CT-GHRP Fusion 39. Protein sequence of the CT-ghrelin S3W-LHA fusion 40. Protein sequence of the CT-GRP-LHD fusion 41. Protein sequence of the CT-GRP-LHB fusion 42. Protein sequence of the CP-qGHRH29-LHD fusion 10 43. Protein sequence of the CP-qGHRH-LHA fusion 44. Protein sequence of the CP-qGHRH-LHC fusion 45. Protein sequence of the CP-qGHRH-LHD fusion 46. Protein sequence of the CP-qGHRH-LHD Ni 0-PL5 fusion 47. Protein sequence of the CP-qGHRH-LHD N10-HX1 2 fusion 15 48. Protein sequence of the CP-UTS-LHA fusion 49. Protein sequence of LHN/A 50. Protein sequence of LHN/B 51. Protein sequence of LHN/C 52. Protein sequence of LHN/D 20 53. Protein sequence of IgA-HNtet 54. Synthesised Octreotide peptide 55. Synthesised GHRH agonist peptide 56. Synthesised GHRH antagonist peptide 57. Protein sequence of the CP-MCH-LHD fusion 25 58. Protein sequence of the CT-KISS-LHD fusion 59. Protein sequence of the CT-PrRP-LHA fusion 60. Protein sequence of the CP-HSGHRH_1 -27-LHD fusion 61. Protein sequence of the CP-HSGHRH_1 -28-LHD fusion 62. Protein sequence of the CP-HSGHRH_1 -29-LHD fusion 30 63. Protein sequence of the CP-HSGHRH_1 -44-LHD fusion 64. Protein sequence of the CP-HSGHRH_1 -40-LHD fusion 65. Protein sequence of the CP-HSGHRH_Ala9-LHD fusion 66. Protein sequence of the CP-HSGHRH_Ala22-LHD fusion 67. Protein sequence of the CP-HS_GHRHAla8_Lys 1 _1 -29-LHD fusion 35 68. Protein sequence of the CP-HSGHRH_Ala8_Lysl1_Argl2_1-29-LHD 87 fusion 69. Protein sequence of the CP-HSGHRH_Ala8_Asni 11 -29-LHD fusion 70. Protein sequence of the CP-HSGHRHAla8_Lys20_1 -29-LHD fusion 71. Protein sequence of the CP-HSGHRH_Ala8_Lys11_Lys20_1-29-LHD 5 fusion 72. Protein sequence of the CP-HSGHRH_Ala8_Asn20_1-29-LHD fusion 73. Protein sequence of the CP-HSGHRH_Ala8_Asn1 2_1-29-LHD fusion 74. Protein sequence of the CP-HSGHRH_Ala8_Asn2l1-29-LHD fusion 75. Protein sequence of the CP-HSGHRH_Ala8_Glu_7_1-29-LHD fusion 10 76. Protein sequence of the CP-HSGHRHAla8Glu_10 1 -29LHD fusion 77. Protein sequence of the CP-HSGHRH_Ala8_Glu_13_1-29-LHD fusion 78. Protein sequence of the CP-HSGHRH_Ala8-LHD fusion 79. Protein sequence of the CP-HSGHRH_Glu8_1-29-LHD fusion 80. Protein sequence of the CP-HSGHRHAlal 5_1-27-LHD fusion 15 81. Protein sequence of the CP-HSGHRH_Alal5-LHD fusion 82. Protein sequence of the CP- HSGHRH_Ala8_Alal 5_1-29-LHD fusion 83. Protein sequence of the CP-HSGHRH_Ala8_9_15_22_27-LHD fusion 84. Protein sequence of the CP-HSGHRH_Ala8_9_15_22-LHD fusion 85. Protein sequence of the CP-HSGHRHHVQAL_1 -32-LHD fusion 20 86. Protein sequence of the CP-HS_GHRHHVSAL_1 -29-LHD fusion 87. Protein sequence of the CP-HS_GHRHHVTAL_1 -29-LHD fusion 88. Protein sequence of the CP-HSGHRHQALN-LHD fusion 89. Protein sequence of the CP-HSGHRHQAL-LHD fusion 90. Protein sequence of the CP-hGHRH29 N8A M27L-LHD fusion 25 91. Protein sequence of the CP-hGHRH29 N8A K1 2N M27L-LHD fusion 92. Protein sequence of the N-terminal-hGHRH29 N8A M27L-LHD fusion 93. Protein sequence of the human GnRH-C fusion 94. Protein sequence of the human GnRH -D GS 20 fusion 30 SUMMARY OF EXAMPLES Example 1 Preparation of a LHA backbone construct Example 2 Construction of LHA-CP-SST28 35 Example 3 Expression and purification of a LHA-CP-SST28 fusion protein Example 4 Construction of LHD-CT-CST28 88 Example 5 Expression and purification of a LHD-CT-CST28 fusion protein Example 6 Chemical conjugation of LHN/A to SST TM 5 Example 7 Activity of SST-LHA in cultured endocrine cells (AtT20) Example 8 Activity of SST-LHD in cultured neuroendocrine cells (GH3) 10 Example 9 Method for alleviating acromegalic symptoms by reducing elevated GH and IGF-1 levels resulting from pituitary adenoma Example 10 Method for normalising swollen hirsute fingers by reducing elevated GH and IGF-1 levels resulting from pituitary adenoma 15 Example 11 Method for ameliorating the consequences of re-emerging growth-hormone-secreting pituitary adenoma Example 12 Method for treating acromegalic patients resistant to 20 somatostatin analogues Example 13 Method for treating Cushing's disease in patients intolerant of somatostatin analogues 25 Example 14 Method for reversing female sexual impotence by treating prolactinoma Example 15 Method for bringing about weight loss by treating insulinoma 30 Example 16 Method for treating glucagonoma Example 17 Method for treating diarrhoea and flushing caused by VIPoma Example 18 Method for treating gastrinoma 35 Example 19 Method for treating thyrotoxicosis caused by thyrotrophinoma Example 20 Method for treating recurrent soft tissue swelling caused by acromegaly 40 Example 21 Method for treating excessive facial hirsutism caused by Cushing's disease Example 22 Method for treating male galactorrhoea caused by prolactinoma 45 Example 23 Method for treating multiple symptoms caused by insulinoma Example 24 Method for treating acromegalic patients resistant to somatostatin analogues 50 89 Example 25 Method for treating Cushing's disease in patients intolerant of somatostatin analogues Example 26 Method for reversing female sexual impotence by treating 5 prolactinoma Example 27 Method for treating Cushing's disease Example 28 Method for treating gastrinoma 10 Example 29 Method for alleviating acromegalic symptoms by reducing elevated GH and IGF-1 levels resulting from pituitary adenoma Example 30 Method for treating acromegalic patients resistant to 15 somatostatin analogues Example 31 Method for treating acromegaly Example 32 Activity of CP-GHRH-LHD on rat IGF-1 levels in vivo 20 Example 33 Activity of CP-GHRH-LHD on rat IGF-1 levels in vivo Example 34 Activity of CP-GHRH-LHD on rat growth hormone levels in vivo 25 90 SEQ IDs 1. DNA sequence of LHN/A 5 ggatccATGGAGTTCGTTAACAAACAGTTCAACTATAAAGACCCAGTTAACGGTGTTGACATTGCTTAC ATCAAAATCCCGAACGCTGGCCAGATGCAGCCGGTAAAGGCATTCAAAATCCACAACAAAATCTGGGTT ATCCCGGAACGTGATACCTTTACTAACCCGGAAGAAGGTGACCTGAACCCGCCACCGGAAGCGAAACAG GTGCCGGTATCTTACTATGACTCCACCTACCTGTCTACCGATAACGAAAAGGACAACTACCTGAAAGGT 10 GTTACTAAACTGTTCGAGCGTATTTACTCCACCGACCTGGGCCGTATGCTGCTGACTAGCATCGTTCGC GGTATCCCGTTCTGGGGCGGTTCTACCATCGATACCGAACTGAAAGTAATCGACACTAACTGCATCAAC GTTATTCAGCCGGACGGTTCCTATCGTTCCGAAGAACTGAACCTGGTGATCATCGGCCCGTCTGCTGAT ATCATCCAGTTCGAGTGTCTGAGCTTTGGTCACGAAGTTCTGAACCTCACCCGTAACGGCTACGGTTCC ACTCAGTACATCCGTTTCTCTCCGGACTTCACCTTCGGTTTTGAAGAATCCCTGGAAGTAGACACGAAC 15 CCACTGCTGGGCGCTGGTAAATTCGCAACTGATCCTGCGGTTACCCTGGCTCACGAACTGATTCATGCA GGCCACCGCCTGTACGGTATCGCCATCAATCCGAACCGTGTCTTCAAAGTTAACACCAACGCGTATTAC GAGATGTCCGGTCTGGAAGTTAGCTTCGAAGAACTGCGTACTTTTGGCGGTCACGACGCTAAATTCATC GACTCTCTGCAAGAAAACGAGTTCCGTCTGTACTACTATAACAAGTTCAAAGATATCGCATCCACCCTG AACAAAGCGAAATCCATCGTGGGTACCACTGCTTCTCTCCAGTACATGAAGAACGTTTTTAAAGAAAAA 20 TACCTGCTCAGCGAAGACACCTCCGGCAAATTCTCTGTAGACAAGTTGAAATTCGATAAACTTTACAAA ATGCTGACTGAAATTTACACCGAAGACAACTTCGTTAAGTTCTTTAAAGTTCTGAACCGCAAAACCTAT CTGAACTTCGACAAGGCAGTATTCAAAATCAACATCGTGCCGAAAGTTAACTACACTATCTACGATGGT TTCAACCTGCGTAACACCAACCTGGCTGCTAATTTTAACGGCCAGAACACGGAAATCAACAACATGAAC TTCACAAAACTGAAAAACTTCACTGGTCTGTTCGAGTTTTACAAGCTGCTGTGCGTCGACGGCATCATT 25 ACCTCCAAAACTAAATCTGACGATGACGATAAAAACAAAGCGCTGAACCTGCAGTGTATCAAGGTTAAC AACTGGGATTTATTCTTCAGCCCGAGTGAAGACAACTTCACCAACGACCTGAACAAAGGTGAAGAAATC ACCTCAGATACTAACATCGAAGCAGCCGAAGAAAACATCTCGCTGGACCTGATCCAGCAGTACTACCTG ACCTTTAATTTCGACAACGAGCCGGAAAACATTTCTATCGAAAACCTGAGCTCTGATATCATCGGCCAG CTGGAACTGATGCCGAACATCGAACGTTTCCCAAACGGTAAAAAGTACGAGCTGGACAAATATACCATG 30 TTCCACTACCTGCGCGCGCAGGAATTTGAACACGGCAAATCCCGTATCGCACTGACTAACTCCGTTAAC GAAGCTCTGCTCAACCCGTCCCGTGTATACACCTTCTTCTCTAGCGACTACGTGAAAAAGGTCAACAAA GCGACTGAAGCTGCAATGTTCTTGGGTTGGGTTGAACAGCTTGTTTATGATTTTACCGACGAGACGTCC GAAGTATCTACTACCGACAAAATTGCGGATATCACTATCATCATCCCGTACATCGGTCCGGCTCTGAAC ATTGGCAACATGCTGTACAAAGACGACTTCGTTGGCGCACTGATCTTCTCCGGTGCGGTGATCCTGCTG 35 GAGTTCATCCCGGAAATCGCCATCCCGGTACTGGGCACCTTTGCTCTGGTTTCTTACATTGCAAACAAG GTTCTGACTGTACAAACCATCGACAACGCGCTGAGCAAACGTAACGAAAAATGGGATGAAGTTTACAAA TATATCGTGACCAACTGGCTGGCTAAGGTTAATACTCAGATCGACCTCATCCGCAAAAAAATGAAAGAA GCACTGGAAAACCAGGCGGAAGCTACCAAGGCAATCATTAACTACCAGTACAACCAGTACACCGAGGAA GAAAAAAACAACATCAACTTCAACATCGACGATCTGTCCTCTAAACTGAACGAATCCATCAACAAAGCT 40 ATGATCAACATCAACAAGTTCCTGAACCAGTGCTCTGTAAGCTATCTGATGAACTCCATGATCCCGTAC GGTGTTAAACGTCTGGAGGACTTCGATGCGTCTCTGAAAGACGCCCTGCTGAAATACATTTACGACAAC CGTGGCACTCTGATCGGTCAGGTTGATCGTCTGAAGGACAAAGTGAACAATACCTTATCGACCGACATC CCTTTTCAGCTCAGTAAATATGTCGATAACCAACGCCTTTTGTCCACTtaataagctt 45 2. DNA sequence of LHN/B GGATCCATGCCGGTTACCATCAACAACTTCAACTACAACGACCCGATCGACAACAACAACATCATTATG ATGGAACCGCCGTTCGCACGTGGTACCGGACGTTACTACAAGGCTTTTAAGATCACCGACCGTATCTGG ATCATCCCGGAACGTTACACCTTCGGTTACAAACCTGAGGACTTCAACAAGAGTAGCGGGATTTTCAAT 50 CGTGACGTCTGCGAGTACTATGATCCAGATTATCTGAATACCAACGATAAGAAGAACATATTCCTTCAG ACTATGATTAAACTCTTCAACCGTATCAAAAGCAAACCGCTCGGTGAAAAACTCCTCGAAATGATTATC AACGGTATCCCGTACCTCGGTGACCGTCGTGTCCCGCTTGAAGAGTTCAACACCAACATCGCAAGCGTC ACCGTCAACAAACTCATCAGCAACCCAGGTGAAGTCGAACGTAAAAAAGGTATCTTCGCAAACCTCATC ATCTTCGGTCCGGGTCCGGTCCTCAACGAAAACGAAACCATCGACATCGGTATCCAGAACCACTTCGCA 55 AGCCGTGAAGGTTTCGGTGGTATCATGCAGATGAAATTCTGCCCGGAATACGTCAGTGTCTTCAACAAC GTCCAGGAAAACAAAGGTGCAAGCATCTTCAACCGTCGTGGTTACTTCAGCGACCCGGCACTCATCCTC ATGCATGAACTCATCCACGTCCTCCACGGTCTCTACGGTATCAAAGTTGACGACCTCCCGATCGTCCCG AACGAGAAGAAATTCTTCATGCAGAGCACCGACGCAATCCAGGCTGAGGAACTCTACACCTTCGGTGGC CAAGACCCAAGTATCATAACCCCGTCCACCGACAAAAGCATCTACGACAAAGTCCTCCAGAACTTCAGG 60 GGTATCGTGGACAGACTCAACAAAGTCCTCGTCTGCATCAGCGACCCGAACATCAATATCAACATATAC AAGAACAAGTTCAAAGACAAGTACAAATTCGTCGAGGACAGCGAAGGCAAATACAGCATCGACGTAGAA AGTTTCGACAAGCTCTACAAAAGCCTCATGTTCGGTTTCACCGAAACCAACATCGCCGAGAACTACAAG ATCAAGACAAGGGCAAGTTACTTCAGCGACAGCCTCCCGCCTGTCAAAATCAAGAACCTCTTAGACAAC GAGATTTACACAATTGAAGAGGGCTTCAACATCAGTGACAAAGACATGGAGAAGGAATACAGAGGTCAG 91 AACAAGGCTATCAACAAACAGGCATACGAGGAGATCAGCAAAGAACACCTCGCAGTCTACAAGATCCAG ATGTGCGTCGACGGCATCATTACCTCCAAAACTAAATCTGACGATGACGATAAAAACAAAGCGCTGAAC CTGCAGTGCATCGACGTTGACAACGAAGACCTGTTCTTCATCGCTGACAAAAACAGCTTCAGTGACGAC CTGAGCAAAAACGAACGTATCGAATACAACACCCAGAGCAACTACATCGAAAACGACTTCCCGATCAAC 5 GAACTGATCCTGGACACCGACCTGATAAGTAAAATCGAACTGCCGAGCGAAAACACCGAAAGTCTGACC GACTTCAACGTTGACGTTCCGGTTTACGAAAAACAGCCGGCTATCAAGAAAATCTTCACCGACGAAAAC ACCATCTTCCAGTACCTGTACAGCCAGACCTTCCCGCTGGACATCCGTGACATCAGTCTGACCAGCAGT TTCGACGACGCTCTGCTGTTCAGCAACAAAGTTTACAGTTTCTTCAGCATGGACTACATCAAAACCGCT AACAAAGTTGTTGAAGCAGGGCTGTTCGCTGGTTGGGTTAAACAGATCGTTAACGACTTCGTTATCGAA 10 GCTAACAAAAGCAACACTATGGACAAAATCGCTGACATCAGTCTGATCGTTCCGTACATCGGTCTGGCT CTGAACGTTGGTAACGAAACCGCTAAAGGTAACTTTGAAAACGCTTTCGAGATCGCTGGTGCAAGCATC CTGCTGGAGTTCATCCCGGAACTGCTGATCCCGGTTGTTGGTGCTTTCCTGCTGGAAAGTTACATCGAC AACAAAAACAAGATCATCAAAACCATCGACAACGCTCTGACCAAACGTAACGAAAAATGGAGTGATATG TACGGTCTGATCGTTGCTCAGTGGCTGAGCACCGTCAACACCCAGTTCTACACCATCAAAGAAGGTATG 15 TACAAAGCTCTGAACTACCAGGCTCAGGCTCTGGAAGAGATCATCAAATACCGTTACAACATCTACAGT GAGAAGGAAAAGAGTAACATCAACATCGACTTCAACGACATCAACAGCAAACTGAACGAAGGTATCAAC CAGGCTATCGACAACATCAACAACTTCATCAACGGTTGCAGTGTTAGCTACCTGATGAAGAAGATGATC CCGCTGGCTGTTGAAAAACTGCTGGACTTCGACAACACCCTGAAAAAGAACCTGCTGAACTACATCGAC GAAAACAAGCTGTACCTGATCGGTAGTGCTGAATACGAAAAAAGTAAAGTGAACAAATACCTGAAGACC 20 ATCATGCCGTTCGACCTGAGTATCTACACCAACGACACCATCCTGATCGAAATGTTCAACAAATACAAC TCTtaataagctt 3. DNA sequence of LHN/C 25 ggatccATGCCGATCACCATCAACAACTTCAACTACAGCGATCCGGTGGATAACAAAAACATCCTGTAC CTGGATACCCATCTGAATACCCTGGCGAACGAACCGGAAAAAGCGTTTCGTATCACCGGCAACATTTGG GTTATTCCGGATCGTTTTAGCCGTAACAGCAACCCGAATCTGAATAAACCGCCGCGTGTTACCAGCCCG AAAAGCGGTTATTACGATCCGAACTATCTGAGCACCGATAGCGATAAAGATACCTTCCTGAAAGAAATC ATCAAACTGTTCAAACGCATCAACAGCCGTGAAATTGGCGAAGAACTGATCTATCGCCTGAGCACCGAT 30 ATTCCGTTTCCGGGCAACAACAACACCCCGATCAACACCTTTGATTTCGATGTGGATTTCAACAGCGTT GATGTTAAAACCCGCCAGGGTAACAATTGGGTGAAAACCGGCAGCATTAACCCGAGCGTGATTATTACC GGTCCGCGCGAAAACATTATTGATCCGGAAACCAGCACCTTTAAACTGACCAACAACACCTTTGCGGCG CAGGAAGGTTTTGGCGCGCTGAGCATTATTAGCATTAGCCCGCGCTTTATGCTGACCTATAGCAACGCG ACCAACGATGTTGGTGAAGGCCGTTTCAGCAAAAGCGAATTTTGCATGGACCCGATCCTGATCCTGATG 35 CATGAACTGAACCATGCGATGCATAACCTGTATGGCATCGCGATTCCGAACGATCAGACCATTAGCAGC GTGACCAGCAACATCTTTTACAGCCAGTACAACGTGAAACTGGAATATGCGGAAATCTATGCGTTTGGC GGTCCGACCATTGATCTGATTCCGAAAAGCGCGCGCAAATACTTCGAAGAAAAAGCGCTGGATTACTAT CGCAGCATTGCGAAACGTCTGAACAGCATTACCACCGCGAATCCGAGCAGCTTCAACAAATATATCGGC GAATATAAACAGAAACTGATCCGCAAATATCGCTTTGTGGTGGAAAGCAGCGGCGAAGTTACCGTTAAC 40 CGCAATAAATTCGTGGAACTGTACAACGAACTGACCCAGATCTTCACCGAATTTAACTATGCGAAAATC TATAACGTGCAGAACCGTAAAATCTACCTGAGCAACGTGTATACCCCGGTGACCGCGAATATTCTGGAT GATAACGTGTACGATATCCAGAACGGCTTTAACATCCCGAAAAGCAACCTGAACGTTCTGTTTATGGGC CAGAACCTGAGCCGTAATCCGGCGCTGCGTAAAGTGAACCCGGAAAACATGCTGTACCTGTTCACCAAA TTTTGCGTCGACGCGATTGATGGTCGTAGCCTGTACAACAAAACCCTGCAGTGTCGTGAACTGCTGGTG 45 AAAAACACCGATCTGCCGTTTATTGGCGATATCAGCGATGTGAAAACCGATATCTTCCTGCGCAAAGAT ATCAACGAAGAAACCGAAGTGATCTACTACCCGGATAACGTGAGCGTTGATCAGGTGATCCTGAGCAAA AACACCAGCGAACATGGTCAGCTGGATCTGCTGTATCCGAGCATTGATAGCGAAAGCGAAATTCTGCCG GGCGAAAACCAGGTGTTTTACGATAACCGTACCCAGAACGTGGATTACCTGAACAGCTATTACTACCTG GAAAGCCAGAAACTGAGCGATAACGTGGAAGATTTTACCTTTACCCGCAGCATTGAAGAAGCGCTGGAT 50 AACAGCGCGAAAGTTTACACCTATTTTCCGACCCTGGCGAACAAAGTTAATGCGGGTGTTCAGGGCGGT CTGTTTCTGATGTGGGCGAACGATGTGGTGGAAGATTTCACCACCAACATCCTGCGTAAAGATACCCTG GATAAAATCAGCGATGTTAGCGCGATTATTCCGTATATTGGTCCGGCGCTGAACATTAGCAATAGCGTG CGTCGTGGCAATTTTACCGAAGCGTTTGCGGTTACCGGTGTGACCATTCTGCTGGAAGCGTTTCCGGAA TTTACCATTCCGGCGCTGGGTGCGTTTGTGATCTATAGCAAAGTGCAGGAACGCAACGAAATCATCAAA 55 ACCATCGATAACTGCCTGGAACAGCGTATTAAACGCTGGAAAGATAGCTATGAATGGATGATGGGCACC TGGCTGAGCCGTATTATCACCCAGTTCAACAACATCAGCTACCAGATGTACGATAGCCTGAACTATCAG GCGGGTGCGATTAAAGCGAAAATCGATCTGGAATACAAAAAATACAGCGGCAGCGATAAAGAAAACATC AAAAGCCAGGTTGAAAACCTGAAAAACAGCCTGGATGTGAAAATTAGCGAAGCGATGAATAACATCAAC AAATTCATCCGCGAATGCAGCGTGACCTACCTGTTCAAAAACATGCTGCCGAAAGTGATCGATGAACTG 60 AACGAATTTGATCGCAACACCAAAGCGAAACTGATCAACCTGATCGATAGCCACAACATTATTCTGGTG GGCGAAGTGGATAAACTGAAAGCGAAAGTTAACAACAGCTTCCAGAACACCATCCCGTTTAACATCTTC AGCTATACCAACAACAGCCTGCTGAAAGATATCATCAACGAATACTTCAATtaataagctt 4. DNA sequence of LHN/D 92 ggatccATGACGTGGCCAGTTAAGGATTTCAACTACTCAGATCCTGTAAATGACAACGATATTCTGTAC CTTCGCATTCCACAAAATAAACTGATCACCACACCAGTCAAAGCATTCATGATTACTCAAAACATTTGG GTCATTCCAGAACGCTTTTCTAGTGACACAAATCCGAGTTTATCTAAACCTCCGCGTCCGACGTCCAAA 5 TATCAGAGCTATTACGATCCCTCATATCTCAGTACGGACGAACAAAAAGATACTTTCCTTAAAGGTATC ATTAAACTGTTTAAGCGTATTAATGAGCGCGATATCGGGAAAAAGTTGATTAATTATCTTGTTGTGGGT TCCCCGTTCATGGGCGATAGCTCTACCCCCGAAGACACTTTTGATTTTACCCGTCATACGACAAACATC GCGGTAGAGAAGTTTGAGAACGGATCGTGGAAAGTCACAAACATCATTACACCTAGCGTCTTAATTTTT GGTCCGCTGCCAAACATCTTAGATTATACAGCCAGCCTGACTTTGCAGGGGCAACAGTCGAATCCGAGT 10 TTCGAAGGTTTTGGTACCCTGAGCATTCTGAAAGTTGCCCCGGAATTTCTGCTCACTTTTTCAGATGTC ACCAGCAACCAGAGCTCAGCAGTATTAGGAAAGTCAATTTTTTGCATGGACCCGGTTATTGCACTGATG CACGAACTGACGCACTCTCTGCATCAACTGTATGGGATCAACATCCCCAGTGACAAACGTATTCGTCCC CAGGTGTCTGAAGGATTTTTCTCACAGGATGGGCCGAACGTCCAGTTCGAAGAGTTGTATACTTTCGGA GGCCTGGACGTAGAGATCATTCCCCAGATTGAGCGCAGTCAGCTGCGTGAGAAGGCATTGGGCCATTAT 15 AAGGATATTGCAAAACGCCTGAATAACATTAACAAAACGATTCCATCTTCGTGGATCTCGAATATTGAT AAATATAAGAAAATTTTTAGCGAGAAATATAATTTTGATAAAGATAATACAGGTAACTTTGTGGTTAAC ATTGACAAATTCAACTCCCTTTACAGTGATTTGACGAATGTAATGAGCGAAGTTGTGTATAGTTCCCAA TACAACGTTAAGAATCGTACCCATTACTTCTCTCGTCACTACCTGCCGGTTTTCGCGAACATCCTTGAC GATAATATTTACACTATTCGTGACGGCTTTAACTTGACCAACAAGGGCTTCAATATTGAAAATTCAGGC 20 CAGAACATTGAACGCAACCCGGCCTTGCAGAAACTGTCGAGTGAATCCGTGGTTGACCTGTTTACCAAA GTCTGCGTCGACAAAAGCGAAGAGAAGCTGTACGATGACGATGACAAAGATCGTTGGGGATCGTCCCTG CAGTGTATTAAAGTGAAAAACAATCGGCTGCCTTATGTAGCAGATAAAGATAGCATTAGTCAGGAGATT TTCGAAAATAAAATTATCACTGACGAAACCAATGTTCAGAATTATTCAGATAAATTTTCACTGGACGAA AGCATCTTAGATGGCCAAGTTCCGATTAACCCGGAAATTGTTGATCCGTTACTGCCGAACGTGAATATG 25 GAACCGTTAAACCTCCCTGGCGAAGAGATCGTATTTTATGATGACATTACGAAATATGTGGACTACCTT AATTCTTATTACTATTTGGAAAGCCAGAAACTGTCCAATAACGTGGAAAACATTACTCTGACCACAAGC GTGGAAGAGGCTTTAGGCTACTCAAATAAGATTTATACCTTCCTCCCGTCGCTGGCGGAAAAAGTAAAT AAAGGTGTGCAGGCTGGTCTGTTCCTCAACTGGGCGAATGAAGTTGTCGAAGACTTTACCACGAATATT ATGAAAAAGGATACCCTGGATAAAATCTCCGACGTCTCGGTTATTATCCCATATATTGGCCCTGCGTTA 30 AATATCGGTAATAGTGCGCTGCGGGGGAATTTTAACCAGGCCTTTGCTACCGCGGGCGTCGCGTTCCTC CTGGAGGGCTTTCCTGAATTTACTATCCCGGCGCTCGGTGTTTTTACATTTTACTCTTCCATCCAGGAG CGTGAGAAAATTATCAAAACCATCGAAAACTGCCTGGAGCAGCGGGTGAAACGCTGGAAAGATTCTTAT CAATGGATGGTGTCAAACTGGTTATCTCGCATCACGACCCAATTCAACCATATTAATTACCAGATGTAT GATAGTCTGTCGTACCAAGCTGACGCCATTAAAGCCAAAATTGATCTGGAATATAAAAAGTACTCTGGT 35 AGCGATAAGGAGAACATCAAAAGCCAGGTGGAGAACCTTAAGAATAGTCTGGATGTGAAAATCTCTGAA GCTATGAATAACATTAACAAATTCATTCGTGAATGTTCGGTGACGTACCTGTTCAAGAATATGCTGCCA AAAGTTATTGATGAACTGAATAAATTTGATCTGCGTACCAAAACCGAACTTATCAACCTCATCGACTCC CACAACATTATCCTTGTGGGCGAAGTGGATCGTCTGAAGGCCAAAGTAAACGAGAGCTTTGAAAATACG ATGCCGTTTAATATTTTTTCATATACCAATAACTCCTTGCTGAAAGATATCATCAATGAATATTTCAAT 40 taataagctt 5. DNA sequence of the human CP-EN-GS15-SST28 linker CATATGGGATCCGGTTTAAACGTCGACGGCATCATTACCTCCAAAACTAAATCTGACGATGACGATAAA 45 AGCGCCAATTCAAATCCTGCAATGGCGCCACGCGAACGCAAAGCTGGTTGCAAAAACTTCTTCTGGAAA ACCTTCACCTCTTGCGCGCTAGCGGGCGGTGGCGGTAGCGGCGGTGGCGGTAGCGGCGGTGGCGGTAGC GCACTAGTGCTGCAGCTAGAATAATGAAAGCTT 6. DNA sequence of the Human CT-GS20-CST28 linker 50 GGATCCGTCGACCTGCAGGGTCTAGAAGGCGGTGGCGGTAGCGGCGGTGGCGGTAGCGGCGGTGGCGGT AGCGGCGGTGGCGGTAGCGCACTAGTGCAGGAAAGACCTCCATTACAACAACCTCCACATCGCGATAAG AAACCATGTAAGAATTTCTTTTGGAAAACATTTAGCAGTTGCAAATGATAAAAGCTT 55 7. Protein sequence of the CP-CST14-GS20-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN 60 QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKPCKNFFWKTFSSCKALAGGGGSGGGGSGGGG SALVLQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLL 93 PNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSL AEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATA GVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHI NYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLF 5 KNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDII NEYFN 8. Protein sequence of the CP-CST14-GS30-LHD fusion 10 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK 15 FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKPCKNFFWKTFSSCKALAGGGGSGGGGSGGGG SGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDGQVP INPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEALGYS NKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIGNSALR 20 GNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMVSNWL SRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNNINKF IRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPFNIFSY TNNSLLKDIINEYFN 25 9. Protein sequence of the CP-CST28-GS20-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN 30 QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKQERPPLQQPPHRDKKPCKNFFWKTFSSCKAL AGGGGSGGGGSGGGGSALVLQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL 35 DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF 40 NIFSYTNNSLLKDIINEYFN 10. Protein sequence of the CP-CST28-GS30-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS 45 YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 50 ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKQERPPLQQPPHRDKKPCKNFFWKTFSSCKAL AGGGGSGGGGSGGGGSGGGGSGGGGSALVLQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYS DKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVE NITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVII PYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRV 55 KRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNS LDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKV NESFENTMPFNIFSYTNNSLLKDIINEYFN 11. Protein sequence of the CP-SST14-GS20-LHD fusion 60 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD 94 VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKAGCKNFFWKTFTSCALAGGGGSGGGGSGGGG SALVLQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLL 5 PNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSL AEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATA GVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHI NYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLF KNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDII 10 NEYFN 12. Protein sequence of the CP-SST14-GS30-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS 15 YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 20 ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKAGCKNFFWKTFTSCALAGGGGSGGGGSGGGG SGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDGQVP INPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEALGYS NKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIGNSALR GNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMVSNWL 25 SRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNNINKF IRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPFNIFSY TNNSLLKDIINEYFN 13. Protein sequence of the CP-SST28-GS20-LHD fusion 30 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD 35 VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKSANSNPAMAPRERKAGCKNFFWKTFTSCALA GGGGSGGGGSGGGGSALVLQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILD GQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEA 40 LGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIGN SALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMV SNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNN INKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPFN IFSYTNNSLLKDIINEYFN 45 14. Protein sequence of the CP-SST28-GS30-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE 50 KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKSANSNPAMAPRERKAGCKNFFWKTFTSCALA 55 GGGGSGGGGSGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSD KFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVEN ITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIP YIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVK RWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSL 60 DVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVN ESFENTMPFNIFSYTNNSLLKDIINEYFN 15. Protein sequence of the CT-CST14-GS20-LHD fusion 95 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD 5 VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDKSEEKLYDDDDKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFEN KIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSY YYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKK 10 DTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREK IIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDK ENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNI ILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSALVPCKNFF WKTFSSCK 15 16. Protein sequence of the CT-CST14-GS30-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE 20 KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDKSEEKLYDDDDKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFEN 25 KIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSY YYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKK DTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREK IIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDK ENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNI 30 ILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSGGGGSGGGG SALVPCKNFFWKTFSSCK 17. DNA sequence of the CT-CST28-GS20-LHD fusion 35 GGATCCATGACGTGGCCAGTTAAGGATTTCAACTACTCAGATCCTGTAAATGACAACGATATTCTGTAC CTTCGCATTCCACAAAATAAACTGATCACCACACCAGTCAAAGCATTCATGATTACTCAAAACATTTGG GTCATTCCAGAACGCTTTTCTAGTGACACAAATCCGAGTTTATCTAAACCTCCGCGTCCGACGTCCAAA TATCAGAGCTATTACGATCCCTCATATCTCAGTACGGACGAACAAAAAGATACTTTCCTTAAAGGTATC ATTAAACTGTTTAAGCGTATTAATGAGCGCGATATCGGGAAAAAGTTGATTAATTATCTTGTTGTGGGT 40 TCCCCGTTCATGGGCGATAGCTCTACCCCCGAAGACACTTTTGATTTTACCCGTCATACGACAAACATC GCGGTAGAGAAGTTTGAGAACGGATCGTGGAAAGTCACAAACATCATTACACCTAGCGTCTTAATTTTT GGTCCGCTGCCAAACATCTTAGATTATACAGCCAGCCTGACTTTGCAGGGGCAACAGTCGAATCCGAGT TTCGAAGGTTTTGGTACCCTGAGCATTCTGAAAGTTGCCCCGGAATTTCTGCTCACTTTTTCAGATGTC ACCAGCAACCAGAGCTCAGCAGTATTAGGAAAGTCAATTTTTTGCATGGACCCGGTTATTGCACTGATG 45 CACGAACTGACGCACTCTCTGCATCAACTGTATGGGATCAACATCCCCAGTGACAAACGTATTCGTCCC CAGGTGTCTGAAGGATTTTTCTCACAGGATGGGCCGAACGTCCAGTTCGAAGAGTTGTATACTTTCGGA GGCCTGGACGTAGAGATCATTCCCCAGATTGAGCGCAGTCAGCTGCGTGAGAAGGCATTGGGCCATTAT AAGGATATTGCAAAACGCCTGAATAACATTAACAAAACGATTCCATCTTCGTGGATCTCGAATATTGAT AAATATAAGAAAATTTTTAGCGAGAAATATAATTTTGATAAAGATAATACAGGTAACTTTGTGGTTAAC 50 ATTGACAAATTCAACTCCCTTTACAGTGATTTGACGAATGTAATGAGCGAAGTTGTGTATAGTTCCCAA TACAACGTTAAGAATCGTACCCATTACTTCTCTCGTCACTACCTGCCGGTTTTCGCGAACATCCTTGAC GATAATATTTACACTATTCGTGACGGCTTTAACTTGACCAACAAGGGCTTCAATATTGAAAATTCAGGC CAGAACATTGAACGCAACCCGGCCTTGCAGAAACTGTCGAGTGAATCCGTGGTTGACCTGTTTACCAAA GTCTGCGTCGACAAAAGCGAAGAGAAGCTGTACGATGACGATGACAAAGATCGTTGGGGATCGTCCCTG 55 CAGTGTATTAAAGTGAAAAACAATCGGCTGCCTTATGTAGCAGATAAAGATAGCATTAGTCAGGAGATT TTCGAAAATAAAATTATCACTGACGAAACCAATGTTCAGAATTATTCAGATAAATTTTCACTGGACGAA AGCATCTTAGATGGCCAAGTTCCGATTAACCCGGAAATTGTTGATCCGTTACTGCCGAACGTGAATATG GAACCGTTAAACCTCCCTGGCGAAGAGATCGTATTTTATGATGACATTACGAAATATGTGGACTACCTT AATTCTTATTACTATTTGGAAAGCCAGAAACTGTCCAATAACGTGGAAAACATTACTCTGACCACAAGC 60 GTGGAAGAGGCTTTAGGCTACTCAAATAAGATTTATACCTTCCTCCCGTCGCTGGCGGAAAAAGTAAAT AAAGGTGTGCAGGCTGGTCTGTTCCTCAACTGGGCGAATGAAGTTGTCGAAGACTTTACCACGAATATT ATGAAAAAGGATACCCTGGATAAAATCTCCGACGTCTCGGTTATTATCCCATATATTGGCCCTGCGTTA AATATCGGTAATAGTGCGCTGCGGGGGAATTTTAACCAGGCCTTTGCTACCGCGGGCGTCGCGTTCCTC CTGGAGGGCTTTCCTGAATTTACTATCCCGGCGCTCGGTGTTTTTACATTTTACTCTTCCATCCAGGAG 96 CGTGAGAAAATTATCAAAACCATCGAAAACTGCCTGGAGCAGCGGGTGAAACGCTGGAAAGATTCTTAT CAATGGATGGTGTCAAACTGGTTATCTCGCATCACGACCCAATTCAACCATATTAATTACCAGATGTAT GATAGTCTGTCGTACCAAGCTGACGCCATTAAAGCCAAAATTGATCTGGAATATAAAAAGTACTCTGGT AGCGATAAGGAGAACATCAAAAGCCAGGTGGAGAACCTTAAGAATAGTCTGGATGTGAAAATCTCTGAA 5 GCTATGAATAACATTAACAAATTCATTCGTGAATGTTCGGTGACGTACCTGTTCAAGAATATGCTGCCA AAAGTTATTGATGAACTGAATAAATTTGATCTGCGTACCAAAACCGAACTTATCAACCTCATCGACTCC CACAACATTATCCTTGTGGGCGAAGTGGATCGTCTGAAGGCCAAAGTAAACGAGAGCTTTGAAAATACG ATGCCGTTTAATATTTTTTCATATACCAATAACTCCTTGCTGAAAGATATCATCAATGAATATTTCAAT CTAGAAGGCGGTGGCGGTAGCGGCGGTGGCGGTAGCGGCGGTGGCGGTAGCGCACTAGTGCAGGAAAGA 10 CCTCCATTACAACAACCTCCACATCGCGATAAGAAACCATGTAAGAATTTCTTTTGGAAAACATTTAGC AGTTGCAAAtaataagctt 18. Protein sequence of the CT-CST28-GS20-LHD fusion 15 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK 20 FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDKSEEKLYDDDDKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFEN KIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSY YYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKK DTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREK 25 IIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDK ENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNI ILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSALVQERPPL QQPPHRDKKPCKNFFWKTFSSCK 30 19. Protein sequence of the CT-CST28-GS30-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN 35 QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDKSEEKLYDDDDKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFEN KIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSY 40 YYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKK DTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREK IIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDK ENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNI ILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSGGGGSGGGG 45 SALVQERPPLQQPPHRDKKPCKNFFWKTFSSCK 20. Protein sequence of the CT-SST14-GS15-L(#Fxa)HD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS 50 YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSIDGRNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 55 ERNPALQKLSSESVVDLFTKVCVDKSEEKLYIDGRWGSSLQCIKVKNNRLPYVADKDSISQEIFENKII TDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYL ESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTL DKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIK TIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENI 60 KSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILV GEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSALVAGCKNFFWK TFTSC 21. Protein sequence of the CT-SST14-GS30-LHD fusion 97 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN 5 QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDKSEEKLYDDDDKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFEN KIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSY 10 YYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKK DTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREK IIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDK ENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNI ILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSGGGGSGGGG 15 SALVAGCKNFFWKTFTSC 22. Protein sequence of the CT-SST28-GS20-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS 20 YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 25 ERNPALQKLSSESVVDLFTKVCVDKSEEKLYDDDDKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFEN KIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSY YYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKK DTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREK IIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDK 30 ENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNI ILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSALVSANSNP AMAPRERKAGCKNFFWKTFTSC 23. Protein sequence of the CT-SST28-GS30-LHD fusion 35 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD 40 VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDKSEEKLYDDDDKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFEN KIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSY YYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKK 45 DTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREK IIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDK ENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNI ILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSGGGGSGGGG SALVSANSNPAMAPRERKAGCKNFFWKTFTSC 50 24. Protein sequence of the CT-SST14-GS35-LHC fusion PITINNFNYSDPVDNKNILYLDTHLNTLANEPEKAFRITGNIWVIPDRFSRNSNPNLNKPPRVTSPKSG YYDPNYLSTDSDKDTFLKEIIKLFKRINSREIGEELIYRLSTDIPFPGNNNTPINTFDFDVDFNSVDVK 55 TRQGNNWVKTGSINPSVIITGPRENIIDPETSTFKLTNNTFAAQEGFGALSIISISPRFMLTYSNATND VGEGRFSKSEFCMDPILILMHELNHAMHNLYGIAIPNDQTISSVTSNIFYSQYNVKLEYAEIYAFGGPT IDLIPKSARKYFEEKALDYYRSIAKRLNSITTANPSSFNKYIGEYKQKLIRKYRFVVESSGEVTVNRNK FVELYNELTQIFTEFNYAKIYNVQNRKIYLSNVYTPVTANILDDNVYDIQNGFNIPKSNLNVLFMGQNL SRNPALRKVNPENMLYLFTKFCVDAIDGRSLYNKTLQCRELLVKNTDLPFIGDISDVKTDIFLRKDINE 60 ETEVIYYPDNVSVDQVILSKNTSEHGQLDLLYPSIDSESEILPGENQVFYDNRTQNVDYLNSYYYLESQ KLSDNVEDFTFTRSIEEALDNSAKVYTYFPTLANKVNAGVQGGLFLMWANDVVEDFTTNILRKDTLDKI SDVSAIIPYIGPALNISNSVRRGNFTEAFAVTGVTILLEAFPEFTIPALGAFVIYSKVQERNEIIKTID NCLEQRIKRWKDSYEWMMGTWLSRIITQFNNISYQMYDSLNYQAGAIKAKIDLEYKKYSGSDKENIKSQ VENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNEFDRNTKAKLINLIDSHNIILVGEV 98 DKLKAKVNNSFQNTIPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSGGGGSGGGGSGGGGS GGGGSALVAGCKNFFWKTFTSC 25. DNA sequence of the CP-SST28-GS15-LHA fusion 5 ggatccATGGAGTTCGTTAACAAACAGTTCAACTATAAAGACCCAGTTAACGGTGTTGACATTGCTTAC ATCAAAATCCCGAACGCTGGCCAGATGCAGCCGGTAAAGGCATTCAAAATCCACAACAAAATCTGGGTT ATCCCGGAACGTGATACCTTTACTAACCCGGAAGAAGGTGACCTGAACCCGCCACCGGAAGCGAAACAG GTGCCGGTATCTTACTATGACTCCACCTACCTGTCTACCGATAACGAAAAGGACAACTACCTGAAAGGT 10 GTTACTAAACTGTTCGAGCGTATTTACTCCACCGACCTGGGCCGTATGCTGCTGACTAGCATCGTTCGC GGTATCCCGTTCTGGGGCGGTTCTACCATCGATACCGAACTGAAAGTAATCGACACTAACTGCATCAAC GTTATTCAGCCGGACGGTTCCTATCGTTCCGAAGAACTGAACCTGGTGATCATCGGCCCGTCTGCTGAT ATCATCCAGTTCGAGTGTCTGAGCTTTGGTCACGAAGTTCTGAACCTCACCCGTAACGGCTACGGTTCC ACTCAGTACATCCGTTTCTCTCCGGACTTCACCTTCGGTTTTGAAGAATCCCTGGAAGTAGACACGAAC 15 CCACTGCTGGGCGCTGGTAAATTCGCAACTGATCCTGCGGTTACCCTGGCTCACGAACTGATTCATGCA GGCCACCGCCTGTACGGTATCGCCATCAATCCGAACCGTGTCTTCAAAGTTAACACCAACGCGTATTAC GAGATGTCCGGTCTGGAAGTTAGCTTCGAAGAACTGCGTACTTTTGGCGGTCACGACGCTAAATTCATC GACTCTCTGCAAGAAAACGAGTTCCGTCTGTACTACTATAACAAGTTCAAAGATATCGCATCCACCCTG AACAAAGCGAAATCCATCGTGGGTACCACTGCTTCTCTCCAGTACATGAAGAACGTTTTTAAAGAAAAA 20 TACCTGCTCAGCGAAGACACCTCCGGCAAATTCTCTGTAGACAAGTTGAAATTCGATAAACTTTACAAA ATGCTGACTGAAATTTACACCGAAGACAACTTCGTTAAGTTCTTTAAAGTTCTGAACCGCAAAACCTAT CTGAACTTCGACAAGGCAGTATTCAAAATCAACATCGTGCCGAAAGTTAACTACACTATCTACGATGGT TTCAACCTGCGTAACACCAACCTGGCTGCTAATTTTAACGGCCAGAACACGGAAATCAACAACATGAAC TTCACAAAACTGAAAAACTTCACTGGTCTGTTCGAGTTTTACAAGCTGCTGTGCGTCGACGGCATCATT 25 ACCTCCAAAACTAAATCTGACGATGACGATAAAAGCGCCAATTCAAATCCTGCAATGGCGCCACGCGAA CGCAAAGCTGGATGCAAAAACTTCTTTTGGAAGACATTTACTAGTTGTGCGCTAGCGGGCGGTGGCGGT AGCGGCGGTGGCGGTAGCGGCGGTGGCGGTAGCGCACTAGTGCTGCAGTGTATCAAGGTTAACAACTGG GATTTATTCTTCAGCCCGAGTGAAGACAACTTCACCAACGACCTGAACAAAGGTGAAGAAATCACCTCA GATACTAACATCGAAGCAGCCGAAGAAAACATCTCGCTGGACCTGATCCAGCAGTACTACCTGACCTTT 30 AATTTCGACAACGAGCCGGAAAACATTTCTATCGAAAACCTGAGCTCTGATATCATCGGCCAGCTGGAA CTGATGCCGAACATCGAACGTTTCCCAAACGGTAAAAAGTACGAGCTGGACAAATATACCATGTTCCAC TACCTGCGCGCGCAGGAATTTGAACACGGCAAATCCCGTATCGCACTGACTAACTCCGTTAACGAAGCT CTGCTCAACCCGTCCCGTGTATACACCTTCTTCTCTAGCGACTACGTGAAAAAGGTCAACAAAGCGACT GAAGCTGCAATGTTCTTGGGTTGGGTTGAACAGCTTGTTTATGATTTTACCGACGAGACGTCCGAAGTA 35 TCTACTACCGACAAAATTGCGGATATCACTATCATCATCCCGTACATCGGTCCGGCTCTGAACATTGGC AACATGCTGTACAAAGACGACTTCGTTGGCGCACTGATCTTCTCCGGTGCGGTGATCCTGCTGGAGTTC ATCCCGGAAATCGCCATCCCGGTACTGGGCACCTTTGCTCTGGTTTCTTACATTGCAAACAAGGTTCTG ACTGTACAAACCATCGACAACGCGCTGAGCAAACGTAACGAAAAATGGGATGAAGTTTACAAATATATC GTGACCAACTGGCTGGCTAAGGTTAATACTCAGATCGACCTCATCCGCAAAAAAATGAAAGAAGCACTG 40 GAAAACCAGGCGGAAGCTACCAAGGCAATCATTAACTACCAGTACAACCAGTACACCGAGGAAGAAAAA AACAACATCAACTTCAACATCGACGATCTGTCCTCTAAACTGAACGAATCCATCAACAAAGCTATGATC AACATCAACAAGTTCCTGAACCAGTGCTCTGTAAGCTATCTGATGAACTCCATGATCCCGTACGGTGTT AAACGTCTGGAGGACTTCGATGCGTCTCTGAAAGACGCCCTGCTGAAATACATTTACGACAACCGTGGC ACTCTGATCGGTCAGGTTGATCGTCTGAAGGACAAAGTGAACAATACCTTATCGACCGACATCCCTTTT 45 CAGCTCAGTAAATATGTCGATAACCAACGCCTTTTGTCCACTtaataagctt 26. Protein sequence of the CP-SST28-GS15-LHA fusion EFVNKQFNYKDPVNGVDIAYIKIPNAGQMQPVKAFKIHNKIWVIPERDTFTNPEEGDLNPPPEAKQVPV 50 SYYDSTYLSTDNEKDNYLKGVTKLFERIYSTDLGRMLLTSIVRGIPFWGGSTIDTELKVIDTNCINVIQ PDGSYRSEELNLVIIGPSADIIQFECLSFGHEVLNLTRNGYGSTQYIRFSPDFTFGFEESLEVDTNPLL GAGKFATDPAVTLAHELIHAGHRLYGIAINPNRVFKVNTNAYYEMSGLEVSFEELRTFGGHDAKFIDSL QENEFRLYYYNKFKDIASTLNKAKSIVGTTASLQYMKNVFKEKYLLSEDTSGKFSVDKLKFDKLYKMLT EIYTEDNFVKFFKVLNRKTYLNFDKAVFKINIVPKVNYTIYDGFNLRNTNLAANFNGQNTEINNMNFTK 55 LKNFTGLFEFYKLLCVDGIITSKTKSDDDDKSANSNPAMAPRERKAGCKNFFWKTFTSCALAGGGGSGG GGSGGGGSALVLQCIKVNNWDLFFSPSEDNFTNDLNKGEEITSDTNIEAAEENISLDLIQQYYLTFNFD NEPENISIENLSSDIIGQLELMPNIERFPNGKKYELDKYTMFHYLRAQEFEHGKSRIALTNSVNEALLN PSRVYTFFSSDYVKKVNKATEAAMFLGWVEQLVYDFTDETSEVSTTDKIADITIIIPYIGPALNIGNML YKDDFVGALIFSGAVILLEFIPEIAIPVLGTFALVSYIANKVLTVQTIDNALSKRNEKWDEVYKYIVTN 60 WLAKVNTQIDLIRKKMKEALENQAEATKAIINYQYNQYTEEEKNNINFNIDDLSSKLNESINKAMININ KFLNQCSVSYLMNSMIPYGVKRLEDFDASLKDALLKYIYDNRGTLIGQVDRLKDKVNNTLSTDIPFQLS KYVDNQRLLST 27. Protein sequence of the CT-SST28-GS15-LHB fusion 99 PVTINNFNYNDPIDNNNIIMMEPPFARGTGRYYKAFKITDRIWIIPERYTFGYKPEDFNKSSGIFNRDV CEYYDPDYLNTNDKKNIFLQTMIKLFNRIKSKPLGEKLLEMIINGIPYLGDRRVPLEEFNTNIASVTVN KLISNPGEVERKKGIFANLIIFGPGPVLNENETIDIGIQNHFASREGFGGIMQMKFCPEYVSVFNNVQE 5 NKGASIFNRRGYFSDPALILMHELIHVLHGLYGIKVDDLPIVPNEKKFFMQSTDAIQAEELYTFGGQDP SIITPSTDKSIYDKVLQNFRGIVDRLNKVLVCISDPNININIYKNKFKDKYKFVEDSEGKYSIDVESFD KLYKSLMFGFTETNIAENYKIKTRASYFSDSLPPVKIKNLLDNEIYTIEEGFNISDKDMEKEYRGQNKA INKQAYEEISKEHLAVYKIQMCVDGIITSKTKSDDDDKNKALNLQCIDVDNEDLFFIADKNSFSDDLSK NERIEYNTQSNYIENDFPINELILDTDLISKIELPSENTESLTDFNVDVPVYEKQPAIKKIFTDENTIF 10 QYLYSQTFPLDIRDISLTSSFDDALLFSNKVYSFFSMDYIKTANKVVEAGLFAGWVKQIVNDFVIEANK SNTMDKIADISLIVPYIGLALNVGNETAKGNFENAFEIAGASILLEFIPELLIPVVGAFLLESYIDNKN KIIKTIDNALTKRNEKWSDMYGLIVAQWLSTVNTQFYTIKEGMYKALNYQAQALEEIIKYRYNIYSEKE KSNINIDFNDINSKLNEGINQAIDNINNFINGCSVSYLMKKMIPLAVEKLLDFDNTLKKNLLNYIDENK LYLIGSAEYEKSKVNKYLKTIMPFDLSIYTNDTILIEMFNKYNSLEGGGGSGGGGSGGGGSALDSANSN 15 PAMAPRERKAGCKNFFWKTFTSC 28. Protein sequence of the CT-CST14-GS20-LHC fusion PITINNFNYSDPVDNKNILYLDTHLNTLANEPEKAFRITGNIWVIPDRFSRNSNPNLNKPPRVTSPKSG 20 YYDPNYLSTDSDKDTFLKEIIKLFKRINSREIGEELIYRLSTDIPFPGNNNTPINTFDFDVDFNSVDVK TRQGNNWVKTGSINPSVIITGPRENIIDPETSTFKLTNNTFAAQEGFGALSIISISPRFMLTYSNATND VGEGRFSKSEFCMDPILILMHELNHAMHNLYGIAIPNDQTISSVTSNIFYSQYNVKLEYAEIYAFGGPT IDLIPKSARKYFEEKALDYYRSIAKRLNSITTANPSSFNKYIGEYKQKLIRKYRFVVESSGEVTVNRNK FVELYNELTQIFTEFNYAKIYNVQNRKIYLSNVYTPVTANILDDNVYDIQNGFNIPKSNLNVLFMGQNL 25 SRNPALRKVNPENMLYLFTKFCVDAIDGRSLYNKTLQCRELLVKNTDLPFIGDISDVKTDIFLRKDINE ETEVIYYPDNVSVDQVILSKNTSEHGQLDLLYPSIDSESEILPGENQVFYDNRTQNVDYLNSYYYLESQ KLSDNVEDFTFTRSIEEALDNSAKVYTYFPTLANKVNAGVQGGLFLMWANDVVEDFTTNILRKDTLDKI SDVSAIIPYIGPALNISNSVRRGNFTEAFAVTGVTILLEAFPEFTIPALGAFVIYSKVQERNEIIKTID NCLEQRIKRWKDSYEWMMGTWLSRIITQFNNISYQMYDSLNYQAGAIKAKIDLEYKKYSGSDKENIKSQ 30 VENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNEFDRNTKAKLINLIDSHNIILVGEV DKLKAKVNNSFQNTIPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSGGGGSALVAGCKNFF WKTFTSC 29. Protein sequence of the CT-CST17-GS25-LHC fusion 35 PITINNFNYSDPVDNKNILYLDTHLNTLANEPEKAFRITGNIWVIPDRFSRNSNPNLNKPPRVTSPKSG YYDPNYLSTDSDKDTFLKEIIKLFKRINSREIGEELIYRLSTDIPFPGNNNTPINTFDFDVDFNSVDVK TRQGNNWVKTGSINPSVIITGPRENIIDPETSTFKLTNNTFAAQEGFGALSIISISPRFMLTYSNATND VGEGRFSKSEFCMDPILILMHELNHAMHNLYGIAIPNDQTISSVTSNIFYSQYNVKLEYAEIYAFGGPT 40 IDLIPKSARKYFEEKALDYYRSIAKRLNSITTANPSSFNKYIGEYKQKLIRKYRFVVESSGEVTVNRNK FVELYNELTQIFTEFNYAKIYNVQNRKIYLSNVYTPVTANILDDNVYDIQNGFNIPKSNLNVLFMGQNL SRNPALRKVNPENMLYLFTKFCVDAIDGRSLYNKTLQCRELLVKNTDLPFIGDISDVKTDIFLRKDINE ETEVIYYPDNVSVDQVILSKNTSEHGQLDLLYPSIDSESEILPGENQVFYDNRTQNVDYLNSYYYLESQ KLSDNVEDFTFTRSIEEALDNSAKVYTYFPTLANKVNAGVQGGLFLMWANDVVEDFTTNILRKDTLDKI 45 SDVSAIIPYIGPALNISNSVRRGNFTEAFAVTGVTILLEAFPEFTIPALGAFVIYSKVQERNEIIKTID NCLEQRIKRWKDSYEWMMGTWLSRIITQFNNISYQMYDSLNYQAGAIKAKIDLEYKKYSGSDKENIKSQ VENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNEFDRNTKAKLINLIDSHNIILVGEV DKLKAKVNNSFQNTIPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSGGGGSGGGGSALVDR MPCRNFFWKTFSSCK 50 30. Protein sequence of the CT-CST29-GS15-LHA fusion EFVNKQFNYKDPVNGVDIAYIKIPNAGQMQPVKAFKIHNKIWVIPERDTFTNPEEGDLNPPPEAKQVPV SYYDSTYLSTDNEKDNYLKGVTKLFERIYSTDLGRMLLTSIVRGIPFWGGSTIDTELKVIDTNCINVIQ 55 PDGSYRSEELNLVIIGPSADIIQFECLSFGHEVLNLTRNGYGSTQYIRFSPDFTFGFEESLEVDTNPLL GAGKFATDPAVTLAHELIHAGHRLYGIAINPNRVFKVNTNAYYEMSGLEVSFEELRTFGGHDAKFIDSL QENEFRLYYYNKFKDIASTLNKAKSIVGTTASLQYMKNVFKEKYLLSEDTSGKFSVDKLKFDKLYKMLT EIYTEDNFVKFFKVLNRKTYLNFDKAVFKINIVPKVNYTIYDGFNLRNTNLAANFNGQNTEINNMNFTK LKNFTGLFEFYKLLCVDGIITSKTKSDDDDKNKALNLQCIKVNNWDLFFSPSEDNFTNDLNKGEEITSD 60 TNIEAAEENISLDLIQQYYLTFNFDNEPENISIENLSSDIIGQLELMPNIERFPNGKKYELDKYTMFHY LRAQEFEHGKSRIALTNSVNEALLNPSRVYTFFSSDYVKKVNKATEAAMFLGWVEQLVYDFTDETSEVS TTDKIADITIIIPYIGPALNIGNMLYKDDFVGALIFSGAVILLEFIPEIAIPVLGTFALVSYIANKVLT VQTIDNALSKRNEKWDEVYKYIVTNWLAKVNTQIDLIRKKMKEALENQAEATKAIINYQYNQYTEEEKN NINFNIDDLSSKLNESINKAMININKFLNQCSVSYLMNSMIPYGVKRLEDFDASLKDALLKYIYDNRGT 100 LIGQVDRLKDKVNNTLSTDIPFQLSKYVDNQRLLSTLEGGGGSGGGGSGGGGSALVQEGAPPQQSARRD RMPCRNFFWKTFSSCK 31. Protein sequence of the CT-CST29-GS30-LHB fusion 5 PVTINNFNYNDPIDNNNIIMMEPPFARGTGRYYKAFKITDRIWIIPERYTFGYKPEDFNKSSGIFNRDV CEYYDPDYLNTNDKKNIFLQTMIKLFNRIKSKPLGEKLLEMIINGIPYLGDRRVPLEEFNTNIASVTVN KLISNPGEVERKKGIFANLIIFGPGPVLNENETIDIGIQNHFASREGFGGIMQMKFCPEYVSVFNNVQE NKGASIFNRRGYFSDPALILMHELIHVLHGLYGIKVDDLPIVPNEKKFFMQSTDAIQAEELYTFGGQDP 10 SIITPSTDKSIYDKVLQNFRGIVDRLNKVLVCISDPNININIYKNKFKDKYKFVEDSEGKYSIDVESFD KLYKSLMFGFTETNIAENYKIKTRASYFSDSLPPVKIKNLLDNEIYTIEEGFNISDKDMEKEYRGQNKA INKQAYEEISKEHLAVYKIQMCVDGIITSKTKSDDDDKNKALNLQCIDVDNEDLFFIADKNSFSDDLSK NERIEYNTQSNYIENDFPINELILDTDLISKIELPSENTESLTDFNVDVPVYEKQPAIKKIFTDENTIF QYLYSQTFPLDIRDISLTSSFDDALLFSNKVYSFFSMDYIKTANKVVEAGLFAGWVKQIVNDFVIEANK 15 SNTMDKIADISLIVPYIGLALNVGNETAKGNFENAFEIAGASILLEFIPELLIPVVGAFLLESYIDNKN KIIKTIDNALTKRNEKWSDMYGLIVAQWLSTVNTQFYTIKEGMYKALNYQAQALEEIIKYRYNIYSEKE KSNINIDFNDINSKLNEGINQAIDNINNFINGCSVSYLMKKMIPLAVEKLLDFDNTLKKNLLNYIDENK LYLIGSAEYEKSKVNKYLKTIMPFDLSIYTNDTILIEMFNKYNSLEGGGGSGGGGSGGGGSGGGGSGGG GSGGGGSALDQEGAPPQQSARRDRMPCRNFFWKTFSSCK 20 32. DNA sequence of IgA-HNtet ggatccATGGAGTCCAATCAGCCGGAAAAAAATGGAACCGCGACTAAACCCGAGAATTCGGGGAACACT ACGTCGGAAAACGGCCAGACGGAACCTGAGAAGAAACTGGAACTACGAAATGTGTCCGATATCGAGCTA 25 TACTCTCAAACCAATGGAACCTATAGGCAGCATGTTTCATTGGACGGAATCCCAGAAAATACGGATACA TATTTCGTCAAAGTGAAGTCTAGCGCATTCAAGGATGTATATATCCCCGTTGCGAGTATTACAGAAGAG AAGCGGAACGGTCAAAGCGTTTATAAGATTACAGCAAAGGCCGAAAAGTTACAACAGGAGTTAGAAAAC AAATACGTTGACAATTTCACTTTTTATCTCGATAAAAAGGCTAAAGAGGAAAACACGAACTTCACGTCA TTTAGTAATCTGGTCAAAGCCATAAATCAAAATCCATCTGGTACATACCATCTCGCGGCAAGTCTAAAC 30 GCGAATGAAGTAGAACTTGGCCCGGACGAGCGTTCATACATTAAGGATACCTTTACTGGCAGACTCATA GGGGAAAAAGACGGTAAGAACTATGCTATATACAATTTGAAAAAGCCTTTATTTGAGAACCTGTCGGGC GCCACCGTCGAGAAATTGTCCCTTAAAAACGTAGCTATAAGCGGAAAGAATGACATCGGTAGTCTTGCA AACGAGGCTACTAACGGGACAAAGATTAAACAAGTGCACGTAGATGGGtgtgtcgacggcatcattacc tccaaaactaaatctgacgatgacgataaaaacaaagcgctgaacctgcagtgcattaaaataaagaat 35 gaggatttgacattcatcgcagaaaaaaatagcttcagcgaagagccgttccaagatgagatagtaagc tacaacaccaagaacaagccgcttaattttaattactcgttagataaaatcatagttgactacaacctt caatcgaagatcacgttaccgaatgacagaacaactcctgtcacaaaaggaattccctatgcacctgag tataagtcaaatgccgcgtcaacaatagagattcataatatagatgacaacaccatctatcaatatctg tacgctcagaaaagtccaacaactcttcagcgtataacaatgaccaatagtgtcgatgacgcattgata 40 aattctaccaagatatactcttatttcccgagcgtcatctccaaagttaatcaaggtgctcaaggcatt ctatttttgcaatgggtccgagacatcatagatgacttcactaatgagtcgtctcagaaaaccacgatt gataaaatatcagatgtttccaccatcgtcccctacatcggacctgcgcttaacattgtgaagcagggg tatgaggggaattttatcggagcgttagaaactacgggggttgtgctattacttgaatacataccagag ataacattgcccgttatagcggccctcagtatcgcagaatcaagtacacaaaaagaaaagataatcaaa 45 acaatcgacaacttcctagaaaagaggtacgaaaaatggatagaggtttataaactcgtgaaagcgaaa tggttaggcactgttaatacgcagttccaaaagagatcctatcaaatgtatagatcactggagtaccag gtggatgccataaagaaaattatcgactatgaatataaaatatattcaggtccagataaggagcagata gctgatgaaataaacaatttaaaaaacaaacttgaagagaaggcgaataaggccatgatcaatatcaat atttttatgcgagaatcttcacgatcttttttggtaaatcagatgattaacgaagccaaaaagcagctg 50 cttgagttcgacacacagtccaaaaacatactaatgcaatatatcaaagcaaactcaaaattcattgga attactgagctgaagaaactggaatccaaaataaataaagtattctctaccccgatcccgttctcttac tctaaaaaccttgactgctgggtagataacgaagaagatattgacgttctagagtaataagctt 33. Protein sequence of the CT-GHRP-LHC fusion 55 PITINNFNYSDPVDNKNILYLDTHLNTLANEPEKAFRITGNIWVIPDRFSRNSNPNLNKPPRVTSPKSG YYDPNYLSTDSDKDTFLKEIIKLFKRINSREIGEELIYRLSTDIPFPGNNNTPINTFDFDVDFNSVDVK TRQGNNWVKTGSINPSVIITGPRENIIDPETSTFKLTNNTFAAQEGFGALSIISISPRFMLTYSNATND VGEGRFSKSEFCMDPILILMHELNHAMHNLYGIAIPNDQTISSVTSNIFYSQYNVKLEYAEIYAFGGPT 60 IDLIPKSARKYFEEKALDYYRSIAKRLNSITTANPSSFNKYIGEYKQKLIRKYRFVVESSGEVTVNRNK FVELYNELTQIFTEFNYAKIYNVQNRKIYLSNVYTPVTANILDDNVYDIQNGFNIPKSNLNVLFMGQNL SRNPALRKVNPENMLYLFTKFCVDAIDGRSLYNKTLQCRELLVKNTDLPFIGDISDVKTDIFLRKDINE ETEVIYYPDNVSVDQVILSKNTSEHGQLDLLYPSIDSESEILPGENQVFYDNRTQNVDYLNSYYYLESQ KLSDNVEDFTFTRSIEEALDNSAKVYTYFPTLANKVNAGVQGGLFLMWANDVVEDFTTNILRKDTLDKI 101 SDVSAIIPYIGPALNISNSVRRGNFTEAFAVTGVTILLEAFPEFTIPALGAFVIYSKVQERNEIIKTID NCLEQRIKRWKDSYEWMMGTWLSRIITQFNNISYQMYDSLNYQAGAIKAKIDLEYKKYSGSDKENIKSQ VENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNEFDRNTKAKLINLIDSHNIILVGEV DKLKAKVNNSFQNTIPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSALVGSSFLSPEHQRV 5 QQRKESKKPPAKLQPR 34. Protein sequence of the CT-GHRH-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS 10 YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 15 ERNPALQKLSSESVVDLFTKVCVDKSEEKLYDDDDKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFEN KIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSY YYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKK DTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREK IIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDK 20 ENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNI ILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSALVYADAIF TNSYRKVLGQLSARKLLQDIMSRQQGESNQERGA 35. Protein sequence of the CT-GHRP-LHD fusion 25 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD 30 VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDKSEEKLYDDDDKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFEN KIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSY YYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKK 35 DTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREK IIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDK ENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNI ILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSALVGSSFLS PEHQRVQQRKESKKPPAKLQPR 40 36. Protein sequence of the CT-ghrelin-LHA fusion EFVNKQFNYKDPVNGVDIAYIKIPNAGQMQPVKAFKIHNKIWVIPERDTFTNPEEGDLNPPPEAKQVPV SYYDSTYLSTDNEKDNYLKGVTKLFERIYSTDLGRMLLTSIVRGIPFWGGSTIDTELKVIDTNCINVIQ 45 PDGSYRSEELNLVIIGPSADIIQFECKSFGHEVLNLTRNGYGSTQYIRFSPDFTFGFEESLEVDTNPLL GAGKFATDPAVTLAHELIHAGHRLYGIAINPNRVFKVNTNAYYEMSGLEVSFEELRTFGGHDAKFIDSL QENEFRLYYYNKFKDIASTLNKAKSIVGTTASLQYMKNVFKEKYLLSEDTSGKFSVDKLKFDKLYKMLT EIYTEDNFVKFFKVLNRKTYLNFDKAVFKINIVPKVNYTIYDGFNLRNTNLAANFNGQNTEINNMNFTK LKNFTGLFEFYKLLCVDGIITSKTKSDDDDKNKALNLQCIKVNNWDLFFSPSEDNFTNDLNKGEEITSD 50 TNIEAAEENISLDLIQQYYLTFNFDNEPENISIENLSSDIIGQLELMPNIERFPNGKKYELDKYTMFHY LRAQEFEHGKSRIALTNSVNEALLNPSRVYTFFSSDYVKKVNKATEAAMFLGWVEQLVYDFTDETSEVS TTDKIADITIIIPYIGPALNIGNMLYKDDFVGALIFSGAVILLEFIPEIAIPVLGTFALVSYIANKVLT VQTIDNALSKRNEKWDEVYKYIVTNWLAKVNTQIDLIRKKMKEALENQAEATKAIINYQYNQYTEEEKN NINFNIDDLSSKLNESINKAMININKFLNQCSVSYLMNSMIPYGVKRLEDFDASLKDALLKYIYDNRGT 55 LIGQVDRLKDKVNNTLSTDIPFQLSKYVDNQRLLSTLEGGGGSGGGGSGGGGSALVGSSFLSPEHQRVQ QRKESKKPPAKLQPR 37. Protein sequence of the IgA-HNtet-CT-SST14 Fusion 60 ESNQPEKNGTATKPENSGNTTSENGQTEPEKKLELRNVSDIELYSQTNGTYRQHVSLDGIPENTDTYFVKV KSSAFKDVYIPVASITEEKRNGQSVYKITAKAEKLQQELENKYVDNFTFYLDKKAKEENTNFTSFSNLVKA INQNPSGTYHLAASLNANEVELGPDERSYIKDTFTGRLIGEKDGKNYAIYNLKKPLFENLSGATVEKLSLK NVAISGKNDIGSLANEATNGTKIKQVHVDGCVDGIITSKTKSDDDDKNKALNLQCIKIKNEDLTFIAEKNS FSEEPFQDEIVSYNTKNKPLNFNYSLDKIIVDYNLQSKITLPNDRTTPVTKGIPYAPEYKSNAASTIEIHN 102 IDDNTIYQYLYAQKSPTTLQRITMTNSVDDALINSTKIYSYFPSVISKVNQGAQGILFLQWVRDIIDDFTN ESSQKTTIDKISDVSTIVPYIGPALNIVKQGYEGNFIGALETTGVVLLLEYIPEITLPVIAALSIAESSTQ KEKIIKTIDNFLEKRYEKWIEVYKLVKAKWLGTVNTQFQKRSYQMYRSLEYQVDAIKKIIDYEYKIYSGPD KEQIADEINNLKNKLEEKANKAMININIFMRESSRSFLVNQMINEAKKQLLEFDTQSKNILMQYIKANSKF 5 IGITELKKLESKINKVFSTPIPFSYSKNLDCWVDNEEDIDVLEGGGGSGGGGSGGGGSALVAGCKNFFWKT FTSC 38. Protein sequence of the IgA-HNtet-CT-GHRP Fusion 10 ESNQPEKNGTATKPENSGNTTSENGQTEPEKKLELRNVSDIELYSQTNGTYRQHVSLDGIPENTDTYFVKV KSSAFKDVYIPVASITEEKRNGQSVYKITAKAEKLQQELENKYVDNFTFYLDKKAKEENTNFTSFSNLVKA INQNPSGTYHLAASLNANEVELGPDERSYIKDTFTGRLIGEKDGKNYAIYNLKKPLFENLSGATVEKLSLK NVAISGKNDIGSLANEATNGTKIKQVHVDGCVDGIITSKTKSDDDDKNKALNLQCIKIKNEDLTFIAEKNS FSEEPFQDEIVSYNTKNKPLNFNYSLDKIIVDYNLQSKITLPNDRTTPVTKGIPYAPEYKSNAASTIEIHN 15 IDDNTIYQYLYAQKSPTTLQRITMTNSVDDALINSTKIYSYFPSVISKVNQGAQGILFLQWVRDIIDDFTN ESSQKTTIDKISDVSTIVPYIGPALNIVKQGYEGNFIGALETTGVVLLLEYIPEITLPVIAALSIAESSTQ KEKIIKTIDNFLEKRYEKWIEVYKLVKAKWLGTVNTQFQKRSYQMYRSLEYQVDAIKKIIDYEYKIYSGPD KEQIADEINNLKNKLEEKANKAMININIFMRESSRSFLVNQMINEAKKQLLEFDTQSKNILMQYIKANSKF IGITELKKLESKINKVFSTPIPFSYSKNLDCWVDNEEDIDVLEGGGGSGGGGSGGGGSALVGSSFLSPEHQ 20 RVQQRKESKKPPAKLQPR 39. Protein sequence of the CT-ghrelin S3W-LHA fusion EFVNKQFNYKDPVNGVDIAYIKIPNAGQMQPVKAFKIHNKIWVIPERDTFTNPEEGDLNPPPEAKQVPVSY 25 YDSTYLSTDNEKDNYLKGVTKLFERIYSTDLGRMLLTSIVRGIPFWGGSTIDTELKVIDTNCINVIQPDGS YRSEELNLVIIGPSADIIQFECKSFGHEVLNLTRNGYGSTQYIRFSPDFTFGFEESLEVDTNPLLGAGKFA TDPAVTLAHELIHAGHRLYGIAINPNRVFKVNTNAYYEMSGLEVSFEELRTFGGHDAKFIDSLQENEFRLY YYNKFKDIASTLNKAKSIVGTTASLQYMKNVFKEKYLLSEDTSGKFSVDKLKFDKLYKMLTEIYTEDNFVK FFKVLNRKTYLNFDKAVFKINIVPKVNYTIYDGFNLRNTNLAANFNGQNTEINNMNFTKLKNFTGLFEFYK 30 LLCVDGIITSKTKSDDDDKNKALNLQCIKVNNWDLFFSPSEDNFTNDLNKGEEITSDTNIEAAEENISLDL IQQYYLTFNFDNEPENISIENLSSDIIGQLELMPNIERFPNGKKYELDKYTMFHYLRAQEFEHGKSRIALT NSVNEALLNPSRVYTFFSSDYVKKVNKATEAAMFLGWVEQLVYDFTDETSEVSTTDKIADITIIIPYIGPA LNIGNMLYKDDFVGALIFSGAVILLEFIPEIAIPVLGTFALVSYIANKVLTVQTIDNALSKRNEKWDEVYK YIVTNWLAKVNTQIDLIRKKMKEALENQAEATKAIINYQYNQYTEEEKNNINFNIDDLSSKLNESINKAMI 35 NINKFLNQCSVSYLMNSMIPYGVKRLEDFDASLKDALLKYIYDNRGTLIGQVDRLKDKVNNTLSTDIPFQL SKYVDNQRLLSTLEIYALVGSWFLSPEHQRVQQRKESKKPPAKLQPR 40. Protein sequence of the CT-GRP-LHD fusion 40 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK 45 FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDKSEEKLYDDDDKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFEN KIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSY YYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKK DTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREK 50 IIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDK ENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNI ILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSALVGNHWAV GHLM 55 41. Protein sequence of the CT-GRP-LHB fusion PVTINNFNYNDPIDNNNIIMMEPPFARGTGRYYKAFKITDRIWIIPERYTFGYKPEDFNKSSGIFNRDV CEYYDPDYLNTNDKKNIFLQTMIKLFNRIKSKPLGEKLLEMIINGIPYLGDRRVPLEEFNTNIASVTVN KLISNPGEVERKKGIFANLIIFGPGPVLNENETIDIGIQNHFASREGFGGIMQMKFCPEYVSVFNNVQE 60 NKGASIFNRRGYFSDPALILMHELIHVLHGLYGIKVDDLPIVPNEKKFFMQSTDAIQAEELYTFGGQDP SIITPSTDKSIYDKVLQNFRGIVDRLNKVLVCISDPNININIYKNKFKDKYKFVEDSEGKYSIDVESFD KLYKSLMFGFTETNIAENYKIKTRASYFSDSLPPVKIKNLLDNEIYTIEEGFNISDKDMEKEYRGQNKA INKQAYEEISKEHLAVYKIQMCVDEEKLYDDDDKDRWGSSLQCIDVDNEDLFFIADKNSFSDDLSKNER IEYNTQSNYIENDFPINELILDTDLISKIELPSENTESLTDFNVDVPVYEKQPAIKKIFTDENTIFQYL 103 YSQTFPLDIRDISLTSSFDDALLFSNKVYSFFSMDYIKTANKVVEAGLFAGWVKQIVNDFVIEANKSNT MDAIADISLIVPYIGLALNVGNETAKGNFENAFEIAGASILLEFIPELLIPVVGAFLLESYIDNKNKII KTIDNALTKRNEKWSDMYGLIVAQWLSTVNTQFYTIKEGMYKALNYQAQALEEIIKYRYNIYSEKEKSN INIDFNDINSKLNEGINQAIDNINNFINGCSVSYLMKKMIPLAVEKLLDFDNTLKKNLLNYIDENKLYL 5 IGSAEYEKSKVNKYLKTIMPFDLSIYTNDTILIEMFNKYNSLEGGGGSGGGGSGGGGSALVGNHWAVGH LM 42. Protein sequence of the CP-qGHRH29-LHD fusion 10 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK 15 FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDNNNNNNNNNNDDDDKHVDAIFTQSYRKVLAQLSARKLLQDILNRA EAAAKEAAAKALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDGQVPINP EIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEALGYSNKI YTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIGNSALRGNF 20 NQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMVSNWLSRI TTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNNINKFIRE CSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPFNIFSYTNN SLLKDIINEYFN 25 43. Protein sequence of the CP-qGHRH-LHA fusion EFVNKQFNYKDPVNGVDIAYIKIPNAGQMQPVKAFKIHNKIWVIPERDTFTNPEEGDLNPPPEAKQVPV SYYDSTYLSTDNEKDNYLKGVTKLFERIYSTDLGRMLLTSIVRGIPFWGGSTIDTELKVIDTNCINVIQ PDGSYRSEELNLVIIGPSADIIQFECKSFGHEVLNLTRNGYGSTQYIRFSPDFTFGFEESLEVDTNPLL 30 GAGKFATDPAVTLAHELIHAGHRLYGIAINPNRVFKVNTNAYYEMSGLEVSFEELRTFGGHDAKFIDSL QENEFRLYYYNKFKDIASTLNKAKSIVGTTASLQYMKNVFKEKYLLSEDTSGKFSVDKLKFDKLYKMLT EIYTEDNFVKFFKVLNRKTYLNFDKAVFKINIVPKVNYTIYDGFNLRNTNLAANFNGQNTEINNMNFTK LKNFTGLFEFYKLLCVDGIITSKTKSLIEGRHVDAIFTQSYRKVLAQLSARKLLQDILNRQQGERNQEQ GALAGGGGSGGGGSGGGGSALVLQCIKVNNWDLFFSPSEDNFTNDLNKGEEITSDTNIEAAEENISLDL 35 IQQYYLTFNFDNEPENISIENLSSDIIGQLELMPNIERFPNGKKYELDKYTMFHYLRAQEFEHGKSRIA LTNSVNEALLNPSRVYTFFSSDYVKKVNKATEAAMFLGWVEQLVYDFTDETSEVSTTDKIADITIIIPY IGPALNIGNMLYKDDFVGALIFSGAVILLEFIPEIAIPVLGTFALVSYIANKVLTVQTIDNALSKRNEK WDEVYKYIVTNWLAKVNTQIDLIRKKMKEALENQAEATKAIINYQYNQYTEEEKNNINFNIDDLSSKLN ESINKAMININKFLNQCSVSYLMNSMIPYGVKRLEDFDASLKDALLKYIYDNRGTLIGQVDRLKDKVNN 40 TLSTDIPFQLSKYVDNQRLLST 44. Protein sequence of the CP-qGHRH-LHC fusion PITINNFNYSDPVDNKNILYLDTHLNTLANEPEKAFRITGNIWVIPDRFSRNSNPNLNKPPRVTSPKSG 45 YYDPNYLSTDSDKDTFLKEIIKLFKRINSREIGEELIYRLSTDIPFPGNNNTPINTFDFDVDFNSVDVK TRQGNNWVKTGSINPSVIITGPRENIIDPETSTFKLTNNTFAAQEGFGALSIISISPRFMLTYSNATND VGEGRFSKSEFCMDPILILMHELNHAMHNLYGIAIPNDQTISSVTSNIFYSQYNVKLEYAEIYAFGGPT IDLIPKSARKYFEEKALDYYRSIAKRLNSITTANPSSFNKYIGEYKQKLIRKYRFVVESSGEVTVNRNK FVELYNELTQIFTEFNYAKIYNVQNRKIYLSNVYTPVTANILDDNVYDIQNGFNIPKSNLNVLFMGQNL 50 SRNPALRKVNPENMLYLFTKFCVDAIDGRHVDAIFTQSYRKVLAQLSARKLLQDILNRQQGERNQEQGA LAGGGGSGGGGSGGGGSALVLQCRELLVKNTDLPFIGDISDVKTDIFLRKDINEETEVIYYPDNVSVDQ VILSKNTSEHGQLDLLYPSIDSESEILPGENQVFYDNRTQNVDYLNSYYYLESQKLSDNVEDFTFTRSI EEALDNSAKVYTYFPTLANKVNAGVQGGLFLMWANDVVEDFTTNILRKDTLDKISDVSAIIPYIGPALN ISNSVRRGNFTEAFAVTGVTILLEAFPEFTIPALGAFVIYSKVQERNEIIKTIDNCLEQRIKRWKDSYE 55 WMMGTWLSRIITQFNNISYQMYDSLNYQAGAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEA MNNINKFIRECSVTYLFKNMLPKVIDELNEFDRNTKAKLINLIDSHNIILVGEVDKLKAKVNNSFQNTI PFNIFSYTNNSLLKDIINEYFN 45. Protein sequence of the CP-qGHRH-LHD fusion 60 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD 104 VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKHVDAIFTQSYRKVLAQLSARKLLQDILNRQQ GERNQEQGAALAGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNY 5 SDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNV ENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVI IPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQR VKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKN SLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAK 10 VNESFENTMPFNIFSYTNNSLLKDIINEYFN 46. Protein sequence of the CP-qGHRH-LHD N10-PL5 fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS 15 YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 20 ERNPALQKLSSESVVDLFTKVCVDNNNNNNNNNNDDDDKHVDAIFTQSYRKVLAQLSARKLLQDILNRQ QGERNQEQGAPAPAPLQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDGQV PINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEALGY SNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIGNSAL RGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMVSNW 25 LSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNNINK FIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPFNIFS YTNNSLLKDIINEYFN 47. Protein sequence of the CP-qGHRH-LHD N10-HX12 fusion 30 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQSYY DPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVEKFEN GSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSNQSSAVL GKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLDVEIIPQIE 35 RSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDKFNSLYSDLTN VMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNIERNPALQKLSSE SVVDLFTKVCVDNNNNNNNNNNDDDDKHVDAIFTQSYRKVLAQLSARKLLQDILNRQQGERNQEQGAEAAA KEAAAKALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPL LPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLA 40 EKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVA FLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMY DSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKV IDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFN 45 48. Protein sequence of the CP-UTS-LHA fusion EFVNKQFNYKDPVNGVDIAYIKIPNAGQMQPVKAFKIHNKIWVIPERDTFTNPEEGDLNPPPEAKQVPV SYYDSTYLSTDNEKDNYLKGVTKLFERIYSTDLGRMLLTSIVRGIPFWGGSTIDTELKVIDTNCINVIQ PDGSYRSEELNLVIIGPSADIIQFECKSFGHEVLNLTRNGYGSTQYIRFSPDFTFGFEESLEVDTNPLL 50 GAGKFATDPAVTLAHELIHAGHRLYGIAINPNRVFKVNTNAYYEMSGLEVSFEELRTFGGHDAKFIDSL QENEFRLYYYNKFKDIASTLNKAKSIVGTTASLQYMKNVFKEKYLLSEDTSGKFSVDKLKFDKLYKMLT EIYTEDNFVKFFKVLNRKTYLNFDKAVFKINIVPKVNYTIYDGFNLRNTNLAANFNGQNTEINNMNFTK LKNFTGLFEFYKLLCVDGGGGSADDDDKNDDPPISIDLTFHLLRNMIEMARIENEREQAGLNRKYLDEV ALAGGGGSGGGGSGGGGSALVLQCIKVNNWDLFFSPSEDNFTNDLNKGEEITSDTNIEAAEENISLDLI 55 QQYYLTFNFDNEPENISIENLSSDIIGQLELMPNIERFPNGKKYELDKYTMFHYLRAQEFEHGKSRIAL TNSVNEALLNPSRVYTFFSSDYVKKVNKATEAAMFLGWVEQLVYDFTDETSEVSTTDKIADITIIIPYI GPALNIGNMLYKDDFVGALIFSGAVILLEFIPEIAIPVLGTFALVSYIANKVLTVQTIDNALSKRNEKW DEVYKYIVTNWLAKVNTQIDLIRKKMKEALENQAEATKAIINYQYNQYTEEEKNNINFNIDDLSSKLNE SINKAMININKFLNQCSVSYLMNSMIPYGVKRLEDFDASLKDALLKYIYDNRGTLIGQVDRLKDKVNNT 60 LSTDIPFQLSKYVDNQRLLST 49. Protein sequence of LHN/A 105 EFVNKQFNYKDPVNGVDIAYIKIPNAGQMQPVKAFKIHNKIWVIPERDTFTNPEEGDLNPPPEAKQVPV SYYDSTYLSTDNEKDNYLKGVTKLFERIYSTDLGRMLLTSIVRGIPFWGGSTIDTELKVIDTNCINVIQ PDGSYRSEELNLVIIGPSADIIQFECKSFGHEVLNLTRNGYGSTQYIRFSPDFTFGFEESLEVDTNPLL GAGKFATDPAVTLAHELIHAGHRLYGIAINPNRVFKVNTNAYYEMSGLEVSFEELRTFGGHDAKFIDSL 5 QENEFRLYYYNKFKDIASTLNKAKSIVGTTASLQYMKNVFKEKYLLSEDTSGKFSVDKLKFDKLYKMLT EIYTEDNFVKFFKVLNRKTYLNFDKAVFKINIVPKVNYTIYDGFNLRNTNLAANFNGQNTEINNMNFTK LKNFTGLFEFYKLLCVDGIITSKTKSDDDDKNKALNLQCIKVNNWDLFFSPSEDNFTNDLNKGEEITSD TNIEAAEENISLDLIQQYYLTFNFDNEPENISIENLSSDIIGQLELMPNIERFPNGKKYELDKYTMFHY LRAQEFEHGKSRIALTNSVNEALLNPSRVYTFFSSDYVKKVNKATEAAMFLGWVEQLVYDFTDETSEVS 10 TTDKIADITIIIPYIGPALNIGNMLYKDDFVGALIFSGAVILLEFIPEIAIPVLGTFALVSYIANKVLT VQTIDNALSKRNEKWDEVYKYIVTNWLAKVNTQIDLIRKKMKEALENQAEATKAIINYQYNQYTEEEKN NINFNIDDLSSKLNESINKAMININKFLNQCSVSYLMNSMIPYGVKRLEDFDASLKDALLKYIYDNRGT LIGQVDRLKDKVNNTLSTDIPFQLSKYVDNQRLLST 15 50. Protein sequence of LHN/B PVTINNFNYNDPIDNNNIIMMEPPFARGTGRYYKAFKITDRIWIIPERYTFGYKPEDFNKSSGIFNRDV CEYYDPDYLNTNDKKNIFLQTMIKLFNRIKSKPLGEKLLEMIINGIPYLGDRRVPLEEFNTNIASVTVN KLISNPGEVERKKGIFANLIIFGPGPVLNENETIDIGIQNHFASREGFGGIMQMKFCPEYVSVFNNVQE 20 NKGASIFNRRGYFSDPALILMHELIHVLHGLYGIKVDDLPIVPNEKKFFMQSTDAIQAEELYTFGGQDP SIITPSTDKSIYDKVLQNFRGIVDRLNKVLVCISDPNININIYKNKFKDKYKFVEDSEGKYSIDVESFD KLYKSLMFGFTETNIAENYKIKTRASYFSDSLPPVKIKNLLDNEIYTIEEGFNISDKDMEKEYRGQNKA INKQAYEEISKEHLAVYKIQMCVDEEKLYDDDDKDRWGSSLQCIDVDNEDLFFIADKNSFSDDLSKNER IEYNTQSNYIENDFPINELILDTDLISKIELPSENTESLTDFNVDVPVYEKQPAIKKIFTDENTIFQYL 25 YSQTFPLDIRDISLTSSFDDALLFSNKVYSFFSMDYIKTANKVVEAGLFAGWVKQIVNDFVIEANKSNT MDAIADISLIVPYIGLALNVGNETAKGNFENAFEIAGASILLEFIPELLIPVVGAFLLESYIDNKNKII KTIDNALTKRNEKWSDMYGLIVAQWLSTVNTQFYTIKEGMYKALNYQAQALEEIIKYRYNIYSEKEKSN INIDFNDINSKLNEGINQAIDNINNFINGCSVSYLMKKMIPLAVEKLLDFDNTLKKNLLNYIDENKLYL IGSAEYEKSKVNKYLKTIMPFDLSIYTNDTILIEMFNKYNS 30 51. Protein sequence of LHN/C PITINNFNYSDPVDNKNILYLDTHLNTLANEPEKAFRITGNIWVIPDRFSRNSNPNLNKPPRVTSPKSG YYDPNYLSTDSDKDTFLKEIIKLFKRINSREIGEELIYRLSTDIPFPGNNNTPINTFDFDVDFNSVDVK 35 TRQGNNWVKTGSINPSVIITGPRENIIDPETSTFKLTNNTFAAQEGFGALSIISISPRFMLTYSNATND VGEGRFSKSEFCMDPILILMHELNHAMHNLYGIAIPNDQTISSVTSNIFYSQYNVKLEYAEIYAFGGPT IDLIPKSARKYFEEKALDYYRSIAKRLNSITTANPSSFNKYIGEYKQKLIRKYRFVVESSGEVTVNRNK FVELYNELTQIFTEFNYAKIYNVQNRKIYLSNVYTPVTANILDDNVYDIQNGFNIPKSNLNVLFMGQNL SRNPALRKVNPENMLYLFTKFCVDAIDGRSLYNKTLQCRELLVKNTDLPFIGDISDVKTDIFLRKDINE 40 ETEVIYYPDNVSVDQVILSKNTSEHGQLDLLYPSIDSESEILPGENQVFYDNRTQNVDYLNSYYYLESQ KLSDNVEDFTFTRSIEEALDNSAKVYTYFPTLANKVNAGVQGGLFLMWANDVVEDFTTNILRKDTLDKI SDVSAIIPYIGPALNISNSVRRGNFTEAFAVTGVTILLEAFPEFTIPALGAFVIYSKVQERNEIIKTID NCLEQRIKRWKDSYEWMMGTWLSRIITQFNNISYQMYDSLNYQAGAIKAKIDLEYKKYSGSDKENIKSQ VENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNEFDRNTKAKLINLIDSHNIILVGEV 45 DKLKAKVNNSFQNTIPFNIFSYTNNSLLKDIINEYFN 52. Protein sequence of LHN/D TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS 50 YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 55 ERNPALQKLSSESVVDLFTKVCVDKSEEKLYDDDDKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFEN KIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSY YYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKK DTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREK IIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDK 60 ENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNI ILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFN 53. Protein sequence of IgA-HNtet 106 ESNQPEKNGTATKPENSGNTTSENGQTEPEKKLELRNVSDIELYSQTNGTYRQHVSLDGIPENTDTYFV KVKSSAFKDVYIPVASITEEKRNGQSVYKITAKAEKLQQELENKYVDNFTFYLDKKAKEENTNFTSFSN LVKAINQNPSGTYHLAASLNANEVELGPDERSYIKDTFTGRLIGEKDGKNYAIYNLKKPLFENLSGATV EKLSLKNVAISGKNDIGSLANEATNGTKIKQVHVDGCVDGIITSKTKSDDDDKNKALNLQCIKIKNEDL 5 TFIAEKNSFSEEPFQDEIVSYNTKNKPLNFNYSLDKIIVDYNLQSKITLPNDRTTPVTKGIPYAPEYKS NAASTIEIHNIDDNTIYQYLYAQKSPTTLQRITMTNSVDDALINSTKIYSYFPSVISKVNQGAQGILFL QWVRDIIDDFTNESSQKTTIDKISDVSTIVPYIGPALNIVKQGYEGNFIGALETTGVVLLLEYIPEITL PVIAALSIAESSTQKEKIIKTIDNFLEKRYEKWIEVYKLVKAKWLGTVNTQFQKRSYQMYRSLEYQVDA IKKIIDYEYKIYSGPDKEQIADEINNLKNKLEEKANKAMININIFMRESSRSFLVNQMINEAKKQLLEF 10 DTQSKNILMQYIKANSKFIGITELKKLESKINKVFSTPIPFSYSKNLDCWVDNEEDIDV 54. Synthesised Octreotide peptide Cys-Dphe-Cys-Phe-Dtrp-Lys-Thr-Cys-Thr-ol 15 55. Synthesised GHRH agonist peptide
HIS-ALA-ASP-ALA-ILE-PHE-THR-ASN-SER-TYR-ARG-LYS-VAL-LEU-GLY-GLN-LEU
SER-ALA-ARG-LYS-LEU-LEU-GLN-ASP-ILE-NLE-SER-ARG-CYS 20 56. Synthesised GHRH antagonist peptide PhAc-Tyr-D-Arg-Asp-Ala-Ile-Phe(4-Cl)-Thr-Ala-Har-Tyr(Me)-His-Lys-Val Leu-Abu-Gln-Leu-Ser-Ala-His-Lys-Leu-Leu-Gln-Asp-Ile-Nle-D-Arg-Har-CYS 25 57. Protein sequence of CP-MCH-LHD TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE 30 KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKDFDMLRCMLGRVYRPCWQVALAKRLVLQCIK 35 VKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLN LPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQ AGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGF PEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLS YQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVID 40 ELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFN 58. Protein sequence of CT-KISS-LHD TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS 45 YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 50 ERNPALQKLSSESVVDLFTKVCVDKSEEKLYDDDDKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFEN KIITDETNVQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSY YYLESQKLSNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKK DTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREK IIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDK 55 ENIKSQVENLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNI ILVGEVDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSALVYNWNSF GLRFG 59. Protein sequence of CT-PrRP-LHA 60 EFVNKQFNYKDPVNGVDIAYIKIPNAGQMQPVKAFKIHNKIWVIPERDTFTNPEEGDLNPPPEAKQVPV SYYDSTYLSTDNEKDNYLKGVTKLFERIYSTDLGRMLLTSIVRGIPFWGGSTIDTELKVIDTNCINVIQ PDGSYRSEELNLVIIGPSADIIQFECKSFGHEVLNLTRNGYGSTQYIRFSPDFTFGFEESLEVDTNPLL GAGKFATDPAVTLAHELIHAGHRLYGIAINPNRVFKVNTNAYYEMSGLEVSFEELRTFGGHDAKFIDSL 107 QENEFRLYYYNKFKDIASTLNKAKSIVGTTASLQYMKNVFKEKYLLSEDTSGKFSVDKLKFDKLYKMLT EIYTEDNFVKFFKVLNRKTYLNFDKAVFKINIVPKVNYTIYDGFNLRNTNLAANFNGQNTEINNMNFTK LKNFTGLFEFYKLLCVDGIITSKTKSDDDDKNKALNLQCIKVNNWDLFFSPSEDNFTNDLNKGEEITSD TNIEAAEENISLDLIQQYYLTFNFDNEPENISIENLSSDIIGQLELMPNIERFPNGKKYELDKYTMFHY 5 LRAQEFEHGKSRIALTNSVNEALLNPSRVYTFFSSDYVKKVNKATEAAMFLGWVEQLVYDFTDETSEVS TTDKIADITIIIPYIGPALNIGNMLYKDDFVGALIFSGAVILLEFIPEIAIPVLGTFALVSYIANKVLT VQTIDNALSKRNEKWDEVYKYIVTNWLAKVNTQIDLIRKKMKEALENQAEATKAIINYQYNQYTEEEKN NINFNIDDLSSKLNESINKAMININKFLNQCSVSYLMNSMIPYGVKRLEDFDASLKDALLKYIYDNRGT LIGQVDRLKDKVNNTLSTDIPFQLSKYVDNQRLLSTLEGGGGSGGGGSGGGGSALVTPDINPAWYASRG 10 IRPVGRFG 60. Protein sequence of CP-HSGHRH_1-27-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS 15 YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 20 ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTNSYRKVLGQLSARKLLQDIMALAG GGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDG QVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEAL GYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIGNS ALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMVS 25 NWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNNI NKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPFNI FSYTNNSLLKDIINEYFN 61. Protein sequence of the CP-HSGHRH_1-28-LHD fusion 30 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD 35 VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTNSYRKVLGQLSARKLLQDIMSALA GGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILD GQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEA 40 LGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIGN SALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMV SNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNN INKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPFN IFSYTNNSLLKDIINEYFN 45 62. Protein sequence of the CP-HSGHRH_1-29-LHD fusion 108 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN 5 QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTNSYRKVLGQLSARKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL 10 DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF 15 NIFSYTNNSLLKDIINEYFN 63. Protein sequence of the CP-HSGHRH_1-44-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS 20 YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 25 ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTNSYRKVLGQLSARKLLQDIMSRQQ GESNQERGARARLALAGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETN VQNYSDKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKL SNNVENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISD VSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENC 30 LEQRVKRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVE NLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDR LKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFN 64. Protein sequence of the CP-HSGHRH_1-40-LHD fusion 35 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD 40 VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTNSYRKVLGQLSARKLLQDIMSRQQ GESNQERGALAGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYS 109 DKFSLDESILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVE NITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVII PYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRV KRWKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNS 5 LDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKV NESFENTMPFNIFSYTNNSLLKDIINEYFN 65. Protein sequence of the CP-HSGHRHAla9-LHD fusion 10 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK 15 FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTNAYRKVLGQLSARKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG 20 NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 25 66. Protein sequence of the CP-HSGHRHAla22-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN 30 QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTNSYRKVLGQLSARKALQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL 35 DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF 40 NIFSYTNNSLLKDIINEYFN 67. Protein sequence of the CP-HSGHRHAla8_Lysli11-29-LHD fusion 110 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN 5 QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTASYKKVLGQLSARKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL 10 DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF 15 NIFSYTNNSLLKDIINEYFN 68. Protein sequence of the CP-HSGHRHAla8_LysliArgl2_1-29 LHD fusion 20 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK 25 FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTASYKRVLGQLSARKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG 30 NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 35 69. Protein sequence of the CP-HSGHRHAla8_Asn11_1-29-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE 40 KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 111 ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTASYNKVLGQLSARKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG 5 NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 10 70. Protein sequence of the CP-HSGHRHAla8_Lys20_1-29-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE 15 KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTASYRKVLGQLSAKKLLQDIMSRAL 20 AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN 25 NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 71. Protein sequence of the CP-HSGHRHAla8_LysliLys20_1-29 LHD fusion 30 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD 35 VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTASYKKVLGQLSAKKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE 40 ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF 112 NIFSYTNNSLLKDIINEYFN 72. Protein sequence of the CP-HSGHRHAla8_Asn20_1-29-LHD fusion 5 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD 10 VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTASYRKVLGQLSANKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE 15 ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 20 73. Protein sequence of the CP-HSGHRHAla8_Asnl2_1-29-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS 25 YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 30 ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTASYRNVLGQLSARKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM 35 VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 74. Protein sequence of the CP-HSGHRHAla8_Asn2l_1-29-LHD 40 fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE 113 KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 5 ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTASYRKVLGQLSARNLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM 10 VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 75. Protein sequence of the CP-HSGHRHAla8_Glu_7_1-29-LHD 15 fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN 20 QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFEASYRKVLGQLSARKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL 25 DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF 30 NIFSYTNNSLLKDIINEYFN 76. Protein sequence of the CP-HSGHRHAla8_Glu_10_1-29LHD fusion 35 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK 40 FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTASERKVLGQLSARKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE 114 ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF 5 NIFSYTNNSLLKDIINEYFN 77. Protein sequence of the CP-HSGHRHAla8_Glu_13_1-29-LHD fusion 10 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK 15 FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTASYRKELGQLSARKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG 20 NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 25 78. Protein sequence of the CP-HSGHRHAla8-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN 30 QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTASYRKVLGQLSARKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL 35 DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF 40 NIFSYTNNSLLKDIINEYFN 79. Protein sequence of the CP-HSGHRHGlu8_1-29-LHD fusion 115 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD 5 VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTESYRKVLGQLSARKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE 10 ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 15 80. Protein sequence of the CP-HSGHRHAlal5_1-27-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE 20 KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTNSYRKVLAQLSARKLLQDIMALAG 25 GGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDG QVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEAL GYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIGNS ALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMVS NWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNNI 30 NKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPFNI FSYTNNSLLKDIINEYFN 81. Protein sequence of the CP-HSGHRHAlal5-LHD fusion 35 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK 40 FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTNSYRKVLAQLSARKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE 116 ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF 5 NIFSYTNNSLLKDIINEYFN 82. Protein sequence of the CP- HSGHRHAla8_Alal5_1-29-LHD fusion 10 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK 15 FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTASYRKVLAQLSARKLLQDIMSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG 20 NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 25 83. Protein sequence of the CP-HSGHRHAla8_9_15_22_27-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE 30 KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTAAYRKVLAQLSARKALQDIASRAL 35 AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN 40 NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 84. Protein sequence of the CP-HSGHRHAla8_9_15_22-LHD 117 fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE 5 KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTAAYRKVLAQLSARKALQDIMSRAL 10 AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN 15 NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 85. Protein sequence of the CP-HSGHRHHVQAL_1-32-LHD fusion 20 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK 25 FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKHVDAIFTQSYRKVLAQLSARKALQDILSRQQ GALAGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDE SILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTS VEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPAL 30 NIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSY QWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISE AMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENT MPFNIFSYTNNSLLKDIINEYFN 35 86. Protein sequence of the CP-HSGHRHHVSAL_1-29-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN 40 QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKHVDAIFTSSYRKVLAQLSARKLLQDILSRAL 118 AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM 5 VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 87. Protein sequence of the CP-HSGHRHHVTAL_1-29-LHD fusion 10 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD 15 VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKHVDAIFTTSYRKVLAQLSARKLLQDILSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE 20 ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 25 88. Protein sequence of the CP-HSGHRHQALN-LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE 30 KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTQSYRKVLAQLSARKALQDILNRAL 35 AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN 40 NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF NIFSYTNNSLLKDIINEYFN 89. Protein sequence of the CP-HSGHRHQAL-LHD fusion 119 TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN 5 QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSDDDDKYADAIFTQSYRKVLAQLSARKALQDILSRAL AGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESIL 10 DGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEE ALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIG NSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWM VSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMN NINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPF 15 NIFSYTNNSLLKDIINEYFN 90. Protein sequence of the CP-hGHRH29 N8A M27L -LHD fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS 20 YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI 25 ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSIEGRYADAIFTASYRKVLGQLSARKLLQDILSR ALAGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDES ILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSV EEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALN IGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQ 30 WMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEA MNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTM PFNIFSYTNNSLLKDIINEYFN 91. Protein sequence of the CP-hGHRH29 N8A K12N M27L -LHD 35 fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQS YYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVE KFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSN 40 QSSAVLGKSIFCMDPVIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLD VEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDK FNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNI ERNPALQKLSSESVVDLFTKVCVDGIITSKTKSIEGR YADAIFTASYRNVLGQLSARKLLQDILSR 120 ALAGGGGSGGGGSGGGGSALALQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDES ILDGQVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSV EEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALN IGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQ 5 WMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEA MNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTM PFNIFSYTNNSLLKDIINEYFN 92. Protein sequence of the N-termianal-hGHRH29 N8A M27L -LHD 10 fusion HVDAIFTQSYRKVLAQLSARKLLQDILNRNNNNNNNNNNTWPVKDFNYSDPVNDNDILYLRIPQNKLIT TPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPTSKYQSYYDPSYLSTDEQKDTFLKGIIKLFKRINER DIGKKLINYLVVGSPFMGDSSTPEDTFDFTRHTTNIAVEKFENGSWKVTNIITPSVLIFGPLPNILDYT 15 ASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSNQSSAVLGKSIFCMDPVIALMHELTHSLHQL YGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLDVEIIPQIERSQLREKALGHYKDIAKRLNNI NKTIPSSWISNIDKYKKIFSEKYNFDKDNTGNFVVNIDKFNSLYSDLTNVMSEVVYSSQYNVKNRTHYF SRHYLPVFANILDDNIYTIRDGFNLTNKGFNIENSGQNIERNPALQKLSSESVVDLFTKVCVDKSEEKL YDDDDKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDGQVPIN 20 PEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEALGYSNK IYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVIIPYIGPALNIGNSALRGN FNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMVSNWLSR ITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAMNNINKFIR ECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRLKAKVNESFENTMPFNIFSYTN 25 NSLLKDIINEYFN SEQ ID93 GnRH-C fusion protein PITINNFNYSDPVDNKNILYLDTHLNTLANEPEKAFRITGNIWVIPDRFSRNSNPNLNKPPRVT SPKSGYYDPNYLSTDSDKDTFLKEIIKLFKRINSREIGEELIYRLSTDIPFPGNNNTPINTFDFDV 30 DFNSVDVKTRQGNNWVKTGSINPSVIITGPRENIIDPETSTFKLTNNTFAAQEGFGALSIISISP RFMLTYSNATNDVGEGRFSKSEFCMDPILILMHELNHAMHNLYGIAIPNDQTISSVTSNIFYSQ YNVKLEYAEIYAFGGPTIDLIPKSARKYFEEKALDYYRSIAKRLNSITTANPSSFNKYIGEYKQK LIRKYRFVVESSGEVTVNRNKFVELYNELTQIFTEFNYAKIYNVQNRKIYLSNVYTPVTANILDD NVYDIQNGFNIPKSNLNVLFMGQNLSRNPALRKVNPENMLYLFTKFCVDAIDGRSLYNKTLQ 35 CRELLVKNTDLPFIGDISDVKTDIFLRKDINEETEVIYYPDNVSVDQVILSKNTSEHGQLDLLYP SI DSESEILPG ENQVFYDNRTQNVDYLNSYYYLESQKLSDNVEDFTFTRSI EEALDNSAKVYT YFPTLANKVNAGVQGGLFLMWANDVVEDFTTNILRKDTLDKISDVSAIIPYIGPALNISNSVRR GNFTEAFAVTGVTILLEAFPEFTIPALGAFVIYSKVQERNEIIKTIDNCLEQRIKRWKDSYEWM MGTWLSRIITQFNNISYQMYDSLNYQAGAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKI 40 SEAMNNINKFIRECSVTYLFKNMLPKVIDELNEFDRNTKAKLINLIDSHNIILVGEVDKLKAKVN NSFQNTIPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSALVMKPIQKLLAGLILLT WCVEGCSSQHWSYGLRPGGKRDAENLIDSFQEIVKEVGQLAETQRFECTTHQPRSPLRDLK GALESLIEEETGQKKI 121 SEQ ID94 GnRH-D fusion TWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTNPSLSKPPRPT SKYQSYYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLVVGSPFMGDSSTPEDTFDF 5 TRHTTNIAVEKFENGSWKVTNIITPSVLIFGPLPNILDYTASLTLQGQQSNPSFEGFGTLSILKV APEFLLTFSDVTSNQSSAVLGKSIFCMDPVIALMHELTHSLHQLYG INI PSDKRIRPQVSEGFF SQDGPNVQFEELYTFGGLDVEIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYK KIFSEKYNFDKDNTGNFVVNIDKFNSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFA NILDDNIYTIRDGFNLTNKGFNIENSGQNIERNPALQKLSSESVVDLFTKVCVDKSEEKLYDDD 10 DKDRWGSSLQCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDGQVPI NPEIVDPLLPNVNMEPLNLPG EEIVFYDDITKYVDYLNSYYYLESQKLSNNVENITLTTSVEEA LGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTNIMKKDTLDKISDVSVII PYIG PAL NIGNSALRGNFNQAFATAGVAFLLEGFPEFTIPALGVFTFYSSIQEREKIIKTIENCLEQRVKR WKDSYQWMVSNWLSRITTQFNHINYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVE 15 NLKNSLDVKISEAMNNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGE VDRLKAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNLEGGGGSGGGGSGGGGSGGGGSA LVMKPIQKLLAGLILLTWCVEGCSSQHWSYGLRPGGKRDAENLIDSFQEIVKEVGQLAETQR FECTTHQPRSPLRDLKGALESLIEEETGQKKI 122 Example 1 Preparation of a LHN/A backbone construct The following procedure creates a clone for use as an expression backbone for multidomain protein expression. This example is based on preparation of a serotype A based clone (SEQ ID1), though the procedures and methods are 5 equally applicable to all LHN serotypes such as serotype B (SEQ ID2), serotype C (SEQ ID3) and serotype D (SEQ ID4) and other protease or translocation domains such as IgA and Tetanus HN by using the appropriate published sequence for synthesis (SEQ ID32). 10 Preparation of cloning and expression vectors pCR 4 (Invitrogen) is the chosen standard cloning vector chosen due to the lack of restriction sequences within the vector and adjacent sequencing primer sites for easy construct confirmation. The expression vector is based on the pET (Novagen) expression vector which has been modified to contain the 15 multiple cloning site Ndel-BamHI-Sall-Pst|-Xbal-HindlI for construct insertion, a fragment of the expression vector has been removed to create a non mobilisable plasmid, a variety of different fusion tags have been inserted to increase purification options and an existing Xbal site in the vector backbone has been removed to simplify sub-cloning. 20 Preparation of LC/A The DNA sequence is designed by back translation of the LC/A amino acid sequence (obtained from freely available database sources such as GenBank (accession number P10845) using one of a variety of reverse translation 25 software tools (for example Backtranslation tool v2.0 (Entelechon)). BamHI/Sal recognition sequences are incorporated at the 5' and 3' ends respectively of the sequence maintaining the correct reading frame. The DNA sequence is screened (using software such as SeqBuilder, DNASTAR Inc.) for restriction enzyme cleavage sequences incorporated during the back 30 translation. Any cleavage sequences that are found to be common to those required by the cloning system are removed by the Backtranslation tool from the proposed coding sequence ensuring common E. coli codon usage is maintained. E. coli codon usage is assessed by reference to software programs such as Graphical Codon Usage Analyser (Geneart), and the %GC 35 content and codon usage ratio assessed by reference to published codon 123 usage tables (for example GenBank Release 143, September 13 2004). This optimised DNA sequence containing the LC/A open reading frame (ORF) is then commercially synthesized (for example by Entelechon, Geneart or Sigma-Genosys) and is provided in the pCR 4 vector. 5 Preparation of HN/A insert The DNA sequence is designed by back translation of the HN/A amino acid sequence (obtained from freely available database sources such as GenBank (accession number P10845) using one of a variety of reverse translation 10 software tools (for example Back translation tool v2.0 (Entelechon)). A Pstl restriction sequence added to the N-terminus and Xbal-stop codon-Hindll to the C-terminus ensuring the correct reading frame in maintained. The DNA sequence is screened (using software such as SeqBuilder, DNASTAR Inc.) for restriction enzyme cleavage sequences incorporated during the back 15 translation. Any sequences that are found to be common to those required by the cloning system are removed by the Backtranslation tool from the proposed coding sequence ensuring common E. coli codon usage is maintained. E. coli codon usage is assessed by reference to software programs such as Graphical Codon Usage Analyser (Geneart), and the %GC content and codon 20 usage ratio assessed by reference to published codon usage tables (for example GenBank Release 143, September 13 2004). This optimised DNA sequence is then commercially synthesized (for example by Entelechon, Geneart or Sigma-Genosys) and is provided in the pCR 4 vector. 25 Preparation of the interdomain (LC-HN tinker) The LC-HN linker can be designed from first principle, using the existing sequence information for the linker as the template. For example, the serotype A linker (in this case defined as the inter-domain polypeptide region that exists between the cysteines of the disulphide bridge between LC and 30 HN) has the sequence VRGIIPFKTKSLDEGYNKALNDL. This sequence information is freely available from available database sources such as GenBank (accession number P10845). For generation of a specific protease cleavage site, the native recognition sequence for Factor Xa can be used in the modified sequence VDGIITSKTKSLIEGR or an enterokinase recognition 35 sequence is inserted into the activation loop to generate the sequence 124 VDGIITSKTKSDDDDKNKALNLQ. Using one of a variety of reverse translation software tools (for example Backtranslation tool v2.0 (Entelechon), the DNA sequence encoding the linker region is determined. BamHI/Sai and Pstl/Xbal/stop codon/HindIll restriction enzyme sequences are incorporated at 5 either end, in the correct reading frames. The DNA sequence is screened (using software such as Seqbuilder, DNASTAR Inc.) for restriction enzyme cleavage sequences incorporated during the back translation. Any sequences that are found to be common to those required by the cloning system are removed by the Backtranslation tool from the proposed coding sequence 10 ensuring common E. coli codon usage is maintained. E. coli codon usage is assessed by reference to software programs such as Graphical Codon Usage Analyser (Geneart), and the %GC content and codon usage ratio assessed by reference to published codon usage tables (for example GenBank Release 143, September 13 2004). This optimised DNA sequence is then 15 commercially synthesized (for example by Entelechon, Geneart or Sigma Genosys) and is provided in the pCR 4 vector. Assembly and confirmation of the backbone clone Due to the small size, the activation linker must be transferred using a two 20 step process. The pCR-4 linker vector is cleaved with BamHI + Sal combination restriction enzymes and the cleaved linker vector then serves as the recipient for BamHI + Sal restriction enzyme cleaved LC DNA. Once the LC encoding DNA is inserted upstream of the linker DNA, the entire LC-linker DNA fragment can then be isolated and transferred to the pET expression 25 vector MCS. The LC-linker is cut out from the pCR 4 cloning vector using BamHI/Pst restriction enzymes digests. The pET expression vector is digested with the same enzymes but is also treated with antarctic phosphatase as an extra precaution to prevent re-circularisation. The LC linker and the pET vector backbone are gel purified and the purified insert and 30 vector backbone are ligated together using T4 DNA ligase. The product is transformed with TOP10 cells which are then screened for LC-linker using BamHI/Pst restriction digestion. The process is then repeated for the HN insertion into the Pst1/HindIll restriction sites of the pET-LC-linker construct. 125 Screening with restriction enzymes is sufficient to ensure the final backbone is correct as all components are already sequenced confirmed during synthesis. However, during the sub-cloning of some components into the backbone, where similar size fragments are being removed and inserted, sequencing of 5 a small region to confirm correct insertion is required. Example 2 Construction of LHN/AA-CP-GS15-SST28 The following procedure creates a clone for use as an expression construct for multidomain fusion expression where the targeting moiety (TM) is 10 presented centrally between the protease and translocation domain. This example is based on preparation of the LHN/A-CP-GS15-SST28 fusion (SEQ ID25), though the procedures and methods are equally applicable to create other protease, translocation and TM fusions, where the TM is N-terminal to the translocation domain. In this example, a flanking 15 amino acid glycine 15 serine spacer (G 4 S)3 is engineered into the interdomain sequence ensure accessibility of the ligand to its receptor, but other spacers are applicable. Preparation of spacer-human SST28 insert The LC-HN inter-domain polypeptide linker region exists between the 20 cysteines of the disulphide bridge between LC and HN. For insertion of a protease cleavage site, spacer and a targeting moiety (TM) region into the activation loop, one of a variety of reverse translation software tools (for example Backtranslation tool v2.0 (Entelechon) are used to determine the DNA sequence encoding the linker region. For central presentation of an 25 SST28 sequence at the N-terminus of the HN domain, a DNA sequence is designed for the GS spacer and targeting moiety (TM) regions allowing incorporation into the backbone clone (SEQ ID1). The DNA sequence can be arranged as BamH I-SaI-spacer-protease activation site-SST28-spacer-Pstl Xbal-stop codon-Hindll (SEQ ID5). Once the TM DNA is designed, the 30 additional DNA required to encode the preferred spacer is created in silico. It is important to ensure the correct reading frame is maintained for the spacer, SST28 and restriction sequences and that the Xbal sequence is not preceded by the bases TC, which would result in DAM methylation. The DNA sequence is screened for restriction sequence incorporated and any additional sites are 35 removed manually from the remaining sequence ensuring common E. coli 126 codon usage is maintained. E. coli codon usage is assessed by reference to software programs such as Graphical Codon Usage Analyser (Geneart), and the %GC content and codon usage ratio assessed by reference to published codon usage tables (for example GenBank Release 143, September 13 5 2004). This optimised DNA sequence is then commercially synthesized (for example by Entelechon, Geneart or Sigma-Genosys) and is provided in the pCR 4 vector. Assembly and confirmation of the backbone clone 10 In order to create a LC-spacer-activation site-SST28-spacer-HN construct (SEQ ID25) using the backbone construct (SEQ ID1) and the newly synthesised pCR 4-spacer-activation site-TM-spacer vector encoding the SST28 TM (SEQ ID5), a one or two step method can be used; typically the two step method is used when the TM DNA is less than 100 base pairs. 15 Using the one step method the SST28 linker region can be inserted directly into the backbone construct buy cutting the pCR 4- spacer-activation site-TM spacer vector with Sal and Pstl restriction enzymes and inserting the TM encoding DNA fragment into a similarly cut pET backbone construct. Using the two-step method the LC domain is excised from the backbone clone using 20 restriction enzymes BamHI and Sa/I and ligated into similarly digested pCR 4 spacer-activation site-TM-spacer vector. This creates a LC-spacer-activation site-SST28-spacer ORF in pCR 4 that can be excised from the vector using restriction enzymes BamHI and Pstl for subsequent ligation into similarly pET expression construct. The final construct contains the LC-spacer-activation 25 site-SST28-spacer-HN DNA (SEQ ID25) which will result in a fusion protein containing the sequence illustrated in SEQ ID26. Example 3 Expression and purification of a LHN/A-CP-SST28 fusion protein 30 This example is based on preparation of an LHN/A protein that incorporates a SST28 TM polypeptide into the interdomain linker region (SEQ ID26), where the pET expression vector ORF also encodes a histidine purification tag. These procedures and methods are equally applicable to the other fusion protein such as those shown in SEQ ID7-14, 42-48, 57, 60-91. Where 35 appropriate, the activation enzyme should be selected to be compatible with 127 the protease activation site within each sequence Expression of LHN/A-CP-SST28 Expression of the LHN/A-CP-SST28 protein is achieved using the following 5 protocol. Inoculate 100 ml of modified TB containing 0.2 % glucosamine and 30 pg/ml kanamycin in a 250 ml flask with a single colony from the LHA-CP SST28 expression strain. Grow the culture at 370C, 225 rpm for 16 hours. Inoculate 1 L of modified TB containing 0.2 % glucosamine and 30 pg/ml kanamycin in a 2 L flask with 10 ml of overnight culture. Grow cultures at 370C 10 until an approximate OD 600 nm of 0.5 is reached at which point reduce the temperature to 160C. After 1 hour induce the cultures with 1 mM IPTG and grow at 1 60C for a further 16 hours. Purification of LHN/A-CP-SST28 protein 15 Defrost falcon tube containing 35 ml 50 mM HEPES pH 7.2 200 mM NaCI and approximately 10 g of E. coli BL21 (DE3) cell paste. Homogenise the cell paste (20 psi) ensuring the sample remains cool. Spin the lysed cells at 18 000 rpm, 40C for 30 minutes. Load the supernatant onto a 0.1 M NiSO4 charged Chelating column (20-30 ml column is sufficient) equilibrated with 50 20 mM HEPES pH 7.2 200 mM NaCI. Using a step gradient of 10, 40 and 100 mM imidazole, wash away the non-specific bound protein and elute the fusion protein with 200 mM imidazole. The eluted fusion protein is dialysed against 5 L of 50 mM HEPES pH 7.2 200 mM NaCI at 40C overnight and the OD 28 0 nm measured to establish the protein concentration. Add 3.2 pl enterokinase 25 (New England Biolabs) per mg fusion protein and incubate static overnight at 250C. Load onto a 0.1 M NiSO4 charged Chelating column (20-30 ml column is sufficient) equilibrated with 50 mM HEPES pH 7.2 200 mM NaCI. Wash column to baseline with 50 mM HEPES pH 7.2 200 mM NaCI. Using a step gradient of 10, 40 and 100 mM imidazole, wash away the non-specific bound 30 protein and elute the fusion protein with 200 mM imidazole. Dialyse the eluted fusion protein against 5L of 50 mM HEPES pH 7.2 150 mM NaCI at 40C overnight and concentrate the fusion to about 2 mg/ml, aliquot sample and freeze at -200C. Test purified protein using OD 2 80 , BCA and purity analysis. 35 Example 4 Construction of LHN/D-CT-GS20-CST28 128 The following procedure creates a clone for use as an expression construct for multidomain fusion expression where the targeting moiety (TM) is presented C-terminally to the translocation domain. This example is based on preparation of the LHN/D-CT-GS20-CST28 fusion (SEQ ID17), though the 5 procedures and methods are equally applicable to create other protease, translocation and TM fusions, where the TM of C-terminal to the translocation domain. In this example, a flanking 20 amino acid glycine-serine spacer is engineered into the interdomain sequence ensure accessibility of the ligand to its receptor, but other spacers are applicable. 10 Preparation of spacer-human CST28 insert For presentation of a CST28 sequence at the C-terminus of the HN domain, a DNA sequence is designed to flank the spacer and targeting moiety (TM) regions allowing incorporation into the backbone clone (SEQ ID4). The DNA 15 sequence can be arranged as BamH|-Sal-Pst|-Xbal-spacer-CST28-stop codon-Hindll (SEQ ID6). The DNA sequence can be designed using one of a variety of reverse translation software tools (for example EditSeq best E. coli reverse translation (DNASTAR Inc.), or Backtranslation tool v2.0 (Entelechon)). Once the TM DNA is designed, the additional DNA required to 20 encode the preferred spacer is created in silico. It is important to ensure the correct reading frame is maintained for the spacer, CST28 and restriction sequences and that the Xbal sequence is not preceded by the bases TC, which would result on DAM methylation. The DNA sequence is screened for restriction sequences incorporated and any additional sequences are 25 removed manually from the remaining sequence ensuring common E. coli codon usage is maintained. E. coli codon usage is assessed by reference to software programs such as Graphical Codon Usage Analyser (Geneart), and the %GC content and codon usage ratio assessed by reference to published codon usage tables (for example GenBank Release 143, September 13 30 2004). This optimised DNA sequence is then commercially synthesized (for example by Entelechon, Geneart or Sigma-Genosys) and is provided in the pCR 4 vector. Assembly and confirmation of the backbone clone 129 In order to create a LHN/D-GS20-CST28 construct (SEQ ID17) using the backbone construct (SEQ ID4) and the newly synthesised pCR 4-spacer-TM vector encoding the CST28 TM (SEQ ID6), a one or two step method can be used; typically the two step method is used when the TM DNA is less than 5 100 base pairs. Using the one step method the CST28 can be inserted directly into the backbone construct buy cutting the pCR 4-spacer-TM vector with Xbal and HindIll restriction enzymes and inserting the TM encoding DNA fragment into a similarly cut pET backbone construct. Using the two-step method the LHN domain is excised from the backbone clone using restriction 10 enzymes BamHI and Xbal and ligated into similarly digested pCR 4-spacer CST28 vector. This creates an LHN-Spacer-CST28 ORF in pCR 4 that can be excised from the vector using restriction enzymes BamHI and HindIll for subsequent ligation into the similarly cleaved pET expression construct. The final construct contains the LC-linker-HN-Spacer-CST28 DNA (SEQ ID17) 15 which will result in a fusion protein containing the sequence illustrated in SEQ ID18. Example 5 Expression and purification of a LHN/D-CT-CST28 fusion protein 20 This example is based on preparation of an LHN/D protein that incorporates a CST28 TM polypeptide at the carboxyl terminus of the HN domain (SEQ ID 18), where the pET expression vector ORF also encodes a histidine purification tag. These procedures and methods are equally applicable to fusion protein sequences such as those shown in SEQ ID15, 16, 18-24, 27 25 31, 33-41, 58-59, and 93-94. Where appropriate, the activation enzyme should be selected to be compatible with the protease activation site within each sequence. Expression of LHN/D-CT-CST28 30 Expression of the LHN/D-CT-CST28 protein is achieved using the following protocol. Inoculate 100 ml of modified TB containing 0.2 % glucosamine and 30 pg/ml kanamycin in a 250 ml flask with a single colony from the LHN/D-CT CST28 expression strain. Grow the culture at 370C, 225 rpm for 16 hours. Inoculate 1 L of modified TB containing 0.2 % glucosamine and 30 pg/ml 35 kanamycin in a 2 L flask with 10 ml of overnight culture. Grow cultures at 370C 130 until an approximate OD 600 nm of 0.5 is reached at which point reduce the temperature to 160C. After 1 hour induce the cultures with 1 mM IPTG and grow at 1 60C for a further 16 hours. 5 Purification of LHN/D-CT-CST28 protein Defrost falcon tube containing 35 ml 50 mM HEPES pH 7.2 200 mM NaCI and approximately 10 g of E. coli BL21 (DE3) cell paste. Homogenise the cell paste (20psi) ensuring the sample remains cool. Spin the lysed cells at 18 000 rpm, 40C for 30 minutes. Load the supernatant onto a 0.1 M NiSO 4 10 charged Chelating column (20-30 ml column is sufficient) equilibrated with 50 mM HEPES pH 7.2 200 mM NaCI. Using a step gradient of 10, 40 and 100 mM imidazole, wash away the non-specific bound protein and elute the fusion protein with 200 mM imidazole. The eluted fusion protein is dialysed against 5 L of 50 mM HEPES pH 7.2 200 mM NaCI at 40C overnight and the OD 28 0 nm 15 measured to establish the protein concentration. Add 3.2 pl enterokinase (New England Biolabs) per mg fusion protein and incubate static overnight at 250C. Load onto a 0.1 M NiSO 4 charged Chelating column (20-30 ml column is sufficient) equilibrated with 50 mM HEPES pH 7.2 200 mM NaCI. Wash column to baseline with 50 mM HEPES pH 7.2 200 mM NaCI. Using a step 20 gradient of 10, 40 and 100 mM imidazole, wash away the non-specific bound protein and elute the fusion protein with 200 mM imidazole. Dialyse the eluted fusion protein against 5 L of 50 mM HEPES pH 7.2 150 mM NaCI at 40C overnight and concentrate the fusion to about 2 mg/ml, aliquot sample and freeze at -200C. Test purified protein using OD 2 80 , BCA and purity analysis. 25 Figures 1 and 2 demonstrate purification of fusion proteins as analysed by SDS-PAGE. Example 6 Chemical conjugation of LHN/A to SST TM The following procedure creates a chemically conjugated molecule containing 30 the LHN/A amino acid sequence (SEQ ID49), prepared from SEQ ID1 using the production method outlined in example 3, and a SST Octreotide peptide which has been chemically synthesised (SEQ ID54). However, the procedures and methods are equally applicable for the conjugation of other peptides such as SEQ ID55 and SEQ ID56 to other protease/translocation 131 domain proteins such as those containing the amino acid sequences SEQ ID50, 51, 52 and 53. The LHN/A protein was buffer exchanged from 50 mM Hepes 150 mM salt into 5 PBSE (100mM 14.2g NA2HPO4, 100mM 5.85g NaCI, 1mM EDTANa 2 pH 7.5 with 1 M HCI) using the Bio-rad PD1 0 column. This was done by washing one column volume of PBSE through the PD10 column, the protein was then added to the column until no more drops exit the end of the PD10 column. 8 mis of PBSE was then added and 0.5ml fractions are collected. The collected 10 fractions are the measured using the A 28 0 reading and fractions containing protein are pooled. A concentration of 1.55 mg/ml of LHN/A was obtained from the buffer exchange step and this was used to set up the following reactions: LHN/A 1.55 mg/ml 20 mM SPDP or Sulfo-LC-SPDP A 200 pl 0 B 200 pl 4 fold increase 0.62 pl C 200 pl 8 fold increase 1.24 pl 15 Sample were left to tumble at RT for 3 hours before being passed down another PD10 column to buffer exchange into PBSE and the protein containing fractions pooled. A final concentration of 25 mM DTT was then added to derivatised protein and then the samples left at room temperature for 20 10 minutes. A 280 and A 34 3 readings were then taken to work out the ratio of SPDP:LHN/A interaction and the reaction which resulted in a derivatisation ration of between 1 and 3 was used for the peptide conjugation. The SPDP reagent binds to the primary amines of the LHN/A via an N hydroxysuccinimide (NHS) ester, leaving the sulphydryl-reactive portion to 25 form a disulphide bond to the free SH group on the free cysteine on the synthesised peptide. In this case the peptide sequence is Octreotide which has been synthesised with a free cysteine on the N-terminus (SEQ ID91). The SPDP-derivatised LHN/A was mixed with a 4-fold excess of the Octreotide ligand and the reaction was then left at RT for 90 minutes whilst tumbling. 30 The excess octreotide was then removed using either a PD10 column leaving LHN/A-Octreotide conjugated molecule. 132 Example 7 Activity of SST-LHN/A in cultured endocrine cells (AtT20) The rat pituitary tumour cell line AtT20 is an example of a cell line of endocrine origin. It thus represents a model cell line for the investigation of 5 inhibition-of-release effects of the agents. AtT20 cells possess surface receptors that allow for the binding, and internalisation, of SST-LHN/A. In contrast, AtT20 cells lack suitable receptors for clostridial neurotoxins and are therefore not susceptible to botulinum 10 neurotoxins (BoNTs). Figure 3 (a) illustrates the inhibition of release of ACTH from AtT20 cells after prior incubation with SST-LHN/A. It is clear that dose-dependent inhibition is observed, indicating that SST-LHN/A can inhibit the release of ACTH from an 15 endocrine cell model. Inhibition of ACTH release was demonstrated to correlate with cleavage of the SNARE protein SNAP25 (Fig 3 (a) and (b)) Thus, inhibition of release of chemical messenger is due to a clostridial endopeptidase-mediated effect of SNARE-protein cleavage. 20 Materials and Methods ACTH enzyme immunoassay kits were obtained from Bachem Research Inc., CA, USA. Western blotting reagents were obtained from Invitrogen and Sigma. AtT20 cells were seeded onto 12 well plates and cultured in DMEM containing 10% foetal bovine serum, 4 mM Glutamax. After 1 day SST-LHN/A 25 was applied for 72 hours then the cells washed to remove unbound SST LHN/A. Secretion of ACTH was stimulated by elevating the concentration of extracellular potassium (60 mM KCI) and calcium (5 mM CaCl 2 ) for 30 min. The medium was harvested from the cells and stored at - 2 0)C until assayed for ACTH content using the immunoassay kit and following the manufacturer's 30 instructions. Cells were solubilised in 1x LDS electrophoresis reducing sample buffer, heated for 10 minutes at 9 0LC then stored at -20 c until used for Western blotting. Stimulated secretion was calculated by subtracting basal release from total release under stimulating conditions. Solubilised cell samples were separated by SDS-PAGE and transferred to nitrocellulose 35 membrane. Proteolysis of SNAP-25, a crucial component of the 133 neurosecretory process and the substrate for the zinc-dependent endopeptidase activity of BoNT/A, was then detected by probing with an antibody that recognises both the intact and cleaved forms of SNAP-25. Quantitation of proteolysis was achieved by image analysis using a Synoptics 5 Syngene GeneGnome imaging system and GeneTools software. Example 8 Activity of SST-LHN/D in cultured neuroendocrine cells (GH3) The rat pituitary cell line GH3 is an example of a cell line of neuroendocrine 10 origin. It thus represents a model cell line for the investigation of inhibition-of release effects of the agents. GH3 cells possess surface receptors that allow for the binding, and internalisation of SST-LHN/D. In contrast, GH3 cells lack suitable receptors 15 for clostridial neurotoxins and are therefore not susceptible to botulinum neurotoxins (BoNTs). Figure 4 illustrates the inhibition of release of growth hormone (GH) from GH3 cells after prior incubation with SST-LHN/D It is clear that dose-dependent 20 inhibition is observed, indicating that SST-LHN/D can inhibit the release of GH from a neuroendocrine cell model. Comparison of the inhibition effects observed with conjugate and the untargeted LHN/D demonstrate the contribution of the targeting moiety (TM) to 25 efficient inhibition of transmitter release. Materials and Methods GH enzyme immunoassay kits were obtained from Millipore, MA, USA. GH3 cells were cultured on 24 well plates in F-10 nutrient mixture (Ham) 30 supplemented with 15 % Horse Serum, 2.5 % FBS, 2 mM L-Glutamine. Cells were treated with SST-LHN/D or LHN/D for 72 hours then the cells washed to remove unbound SST-LHN/D. Secretion was stimulated by exposing the cells to 10 pIM tetradecanoyl phorbol acetate (TPA, PMA) over 30 min. The medium was harvested from the cells and stored at -20 C until assayed for GH content 35 using the immunoassay kit and following the manufacturer's instructions. 134 Stimulated secretion was calculated by subtracting basal release from total release under stimulating conditions. Example 9 Method for alleviating acromegalic symptoms by reducing 5 elevated GH and IGF-1 levels resulting from pituitary adenoma A 35 year old male member of a regional badminton team undergoes a spinal X-ray for lower back pain. The consultant notices abnormal bone growth and, on questioning, the man reports increasing incidents of sleep apnoea and also 10 increasingly oily skin. The physician recommends measurement of circulating IGF-1 and these are found to be elevated. Subsequent tests also show above-normal circulating GH levels so a cranial MRI scan is carried out. This shows a pituitary tumour 15 of 9mm diameter. The patient is treated with a cortistatin or somatostatin peptide TM fusion protein (eg. SEQ ID 7-16, 18-24, 26-31) by i.v. injection. At intervals of 1 week circulating IGF-1 levels are measured and are seen to be lower at the first measurement and to reduce steadily to 15% above normal 20 over the following six weeks. The level of circulating GH is found to be normal at this time. A further dose of the medication with two-weekly IGF-1 measurements shows this hormone to have stabilised at the upper end of normal. At six weeks after the second treatment a cranial MRI scan reveals shrinkage of the tumour to 6 mm. The therapy is continued at a reduced 25 dosage at two-monthly intervals with IGF-1 and GH levels measured on the seventh week. These are both stable in the normal range and the sleep apnoea and oily skin are now absent. A spinal X-ray at one year following the first treatment shows no increased bone size from the original observation. 30 Example 10 Method for normalising swollen hirsute fingers by reducing elevated GH and IGF-1 levels resulting from pituitary adenoma A 50 year old female confectionery worker has increasing difficulty removing her wedding ring and eventually visits her medical practitioner. The physician 35 also notices the patient's fingers are hairier than expected and, on 135 questioning, the patient admits that both these conditions have arisen gradually. Subsequent clinical tests reveal a higher-than-average level of circulating GH that does not change following a high-glucose drink. An acromegalic condition is suspected and a cranial CT scan confirms the 5 presence of a small pituitary tumour. Surgery is considered inappropriate so the patient is treated with an i.v. injection of a somatostatin or cortistatin peptide TM fusion protein (eg. SEQ ID 7-16, 18-24, 26-31). Within four weeks the glucose tolerance test shows a 10 response in GH levels and IGF-1 levels are near normal. Treatment continues at six-weekly intervals and by the end of the eighteenth week the patient is able to remove her ring easily and the hirsutism has disappeared. Example 11 Method for ameliorating the consequences of re-emerging 15 growth-hormone-secreting pituitary adenoma A 52 year-old male scuba diver presents with increasingly noticeable acromegalic symptoms, including soft tissue swelling and enlargement of the extremities. Thorough tests confirm the presence of a 12mm pituitary adenoma. Somatostatin analogues are poorly tolerated by the patient so the 20 tumour is resected and regular tests over 2 years show circulating GH and IGF-1 levels to be in the upper range of normal and no further medication is given. Eighteen months later, upon presenting with hyperhydrosis and moderate hypertension, GH and IGF-1 levels are found to be above normal and a CT scan reveals regrowth of the pituitary adenoma. Repeat resection is 25 considered undesirable. The man is treated by i.v. administration of a somatostatin or cortistatin peptide TM fusion protein (eg. SEQ ID 7-16, 18-24, 26-31). A course of radiotherapy is also given and after four weeks the hyperhydrosis and 30 hypertension are near normal as are the GH and IGF-1 levels. Over the next three years symptoms do not recur and there is no tumour regrowth at five years post-treatment. Example 12 Method for treating acromegalic patients resistant to 35 somatostatin analogues 136 After six years' successful control of circulating GH and IGF-1 by somatostatin analogues, a 60-year-old acromegalic fairground tarot reader reports increasingly obvious oily skin and also prominent body odour as a result of hyperhydrosis. She is found to be glucose-intolerant and to have elevated 5 circulating IGF-1 levels and raising the SSA dosage does not control these. She is treated by localised injection of a somatostatin or cortistatin peptide TM fusion protein (eg. SEQ ID 7-16, 18-24, 26-31). Within 14 days the patient reports a significant reduction in sweating. Over the following month her oily 10 skin returns to normal and at this time her GH and IGF-1 levels are both within the normal range. This situation remains over the next five years. Example 13 Method for treating Cushing's disease in patients intolerant of somatostatin analogues 15 A 30 year old female mature student visits her GP to request treatment for anxiety and depression. The physician observes the woman has a rounded face with increased fat around the neck and also thinner than normal arms and legs. Upon questioning she confirms an irregular menstrual cycle. A 24-hour urinary free cortisol level of 150pg is measured suggesting Cushing's 20 syndrome. Abdominal MRI scan shows no adrenal tumours to be present but cranial MRI scan reveals a small pituitary tumour. The patient is considered unsuitable for surgical intervention so is treated with a somatostatin or cortistatin peptide TM fusion protein (eg. SEQ ID 7-16, 18 25 24, 26-31). Example 14 Method for reversing female sexual impotence by treating prolactinoma A 36 year old woman visits her doctor, worried about her recent expression of 30 breast milk, despite her negative pregnancy test. Examination also indicates vaginal dryness and she confirms that she has lost her libido. Clinical test results are largely normal with the notable exception of moderate hyperprolactinaemia. A cranial MRI scan indicates a pituitary adenoma, consistent with the elevated prolactin levels. 35 137 She is treated by oral administration with a preparation of a somatostatin or cortistatin peptide TM fusion protein (eg. SEQ ID 7-16, 18-24, 26-31). After eight days she no longer expresses breast milk and her vaginal moisture levels have significantly improved. After seven weeks the dryness begins to 5 return but is almost immediately reversed by a second treatment. Treatments continue at six-weekly visits to the sexual health clinic where the woman reports a return to normal sexual activity. Example 15 Method for bringing about weight loss by treating 10 insulinoma A 64 year old female with a BMI of 39 has been diagnosed with inoperable insulinoma. She wishes to achieve a sustained reduction in appetite and weight to enable her to maintain an active interest in aerobics so is treated by a systemic injection of a fusion protein comprising a somatostatin or cortistatin 15 peptide TM (eg. SEQ ID 7-16, 18-24, 26-31). Within 10 to 14 days following treatment her weight gain has stabilised and by 30 days weight loss has occurred. The patient maintains a significant weight loss provided medication continues as a series of 24-weekly injections 20 Example 16 Method for treating glucagonoma A 63-year-old woman visits her doctor in a distressed state, having had rashes develop on her buttocks, around her groin and on her lower legs. Blood tests show her to be anaemic and diabetic. She also has frequent diarrhoeal episodes. The physician suspects the presence of glucagonoma 25 and a CT scan confirms the existence of a tumour in the tail of the pancreas. The patient is treated with a fusion protein comprising a somatostatin or cortistatin peptide TM (eg. SEQ ID 7-16, 18-24, 26-31). After 4 weeks the diarrhoeal episodes have subsided and the rashes have cleared significantly. 30 Her red-cell count has also returned to near normal. The treatment is repeated at six-weekly intervals and the symptoms remain largely under control. Example 17 Method for treating diarrhoea and flushing caused by 35 VIPoma 138 A 49 year old man suffers from secretory diarrhoea associated with chronic flushing. Clinical tests indicate metabolic acidosis, and an abdominal CT scan reveals a tumour - almost certainly a VIPoma - near the pancreas. 5 Surgery is not available to the patient so he is treated with a fusion protein comprising a somatostatin or cortistatin peptide TM (eg. SEQ ID 7-16, 18-24, 26-31). Within 3 weeks the flushing has stopped and the diarrhoea has become less frequent. By seven weeks after treatment all symptoms have disappeared and remain absent providing therapy is repeated at 10 approximately 8-week intervals. Example 18 Method for treating gastrinoma A 47-year-old man suffers from severe peptic ulceration that causes debilitating abdominal pain. He also experiences unexplained diarrhoeal 15 episodes and eventually is diagnosed with intrapancreatic gastrinoma by blood tests and abdominal ultrasound study. He is treated by intra-tumoural injection of a medication consisting of a fusion protein comprising a somatostatin or cortistatin peptide TM (eg. SEQ ID 7-16, 20 18-24, 26-31), or fusion comprising a GnRH peptide TM (eg. SEQ ID 93-94). Within a week painful gastric symptoms start to improve. The hypergastrinaemia has subsided and the diarrhoeal episodes have reduced in severity and frequency. This status pertains for 7 weeks but blood gastrin levels start to rise thereafter. The therapy is repeated at 7 week intervals and 25 this maintains blood gastrin at normal levels and no other symptoms recur. Example 19 Method for treating thyrotoxicosis caused by thyrotrophinoma A 39-year-old female airline cabin crew member visits her physician 30 complaining of excessive sweating, coupled with previously unknown nervousness, that have started to affect her ability to perform her job. During the consultation a fine tremor is evident and the doctor suspects thyrotoxicosis. The woman is referred to an endocrinologist who carries out a number of blood tests. The major abnormalities detected are elevated 35 thyroxine levels but also elevated TSH (thyrotrophin) levels, indicative of a 139 thyrotrophinoma. An MRI scan of the head confirms the presence of a pituitary tumour. The woman is treated with a medication consisting of a fusion protein 5 comprising somatostatin or cortistatin peptide TM (eg. SEQ ID 7-16, 18-24, 26-31). Both the sweating and nervousness decline over the following two weeks. Two-weekly follow-up blood tests show both thyroxine and thyrotrophin levels falling and they reach normal levels by six weeks. The patient is able to resume full employment activity. 10 Example 20 Method for treating recurrent soft tissue swelling caused by acromegaly A 72-year-old woman, having already had transsphenoidal surgery to remove a pituitary macroadenoma, shows recurrence of acromegalic symptoms 15 (primarily swelling of fingers and tongue and increasing tiredness and lethargy). Cranial MRI scanning reveals the presence of a putative pituitary microadenoma and subsequent blood tests confirm elevated circulating GH and IGF-1 levels. 20 Surgery is deemed incompatible with pre-existing medical conditions so she is treated with a medication consisting of a fusion protein comprising a somatostatin or cortistatin peptide TM (eg. SEQ ID 7-16, 18-24, 26-31). After a week she reports feeling generally more active and that the swelling of her fingers and tongue has reduced noticeably. By three weeks the recurrent 25 symptoms have reverted completely and endocrinological examination confirms a normalisation of GH and IGF-1 levels. She is monitored on a monthly basis and given repeat treatments at 10-weekly intervals. This dosage regimen keeps the hormone levels within the normal range and prevents recurrence of symptoms. 30 Example 21 Method for treating excessive facial hirsutism caused by Cushing's Disease A 27-rear-old beauty consultant starts to develop noticeable facial hair growth. This is not adequately treated by standard hair-removal methods and is 35 causing her severe psychological problems (anxiety, depression) in relation to 140 both her employment and her personal life. Her physician suspects Cushing's syndrome so she is referred to an endocrinologist. Blood and urine tests show elevated levels of cortisol and ACTH levels, and a CRH stimulation test proves positive, confirming the likelihood of an ACTH-secreting pituitary 5 tumour. Adrenal and pituitary CT-scans confirm the presence of a pituitary tumour but no adrenal abnormality. Following discussions with consultants the patient opts for medical intervention and is treated with a medication consisting of a fusion protein 10 comprising a somatostatin or cortistatin peptide TM (eg. SEQ ID 7-16, 18-24, 26-31), or fusion comprising a GnRH peptide TM (eg. SEQ ID 93-94). Within ten days the woman is starting to feel more positive and by the two week time point she has to use hair bleaching or depilatory creams with much lower frequency. The symptoms start to reappear at around ten to twelve weeks so 15 a second treatment is given. A similar pattern of symptom remission, gradual reappearance and treatment occurs. During the third treatment, the patient elects for surgical removal of the pituitary tumour. Follow-up monitoring for the next two years shows no recurrence of symptoms or tumour. 20 Example 22 Method for treating male galactorrhea caused by prolactinoma A 40-year-old male rugby player has been worried for some time about increasing breast size beyond that expected from training. He becomes highly stressed when a trickle of milk appears at the left breast. His physician 25 immediately suspects the existence of a pituitary prolactinoma and refers him to a radiologist and endocrinologist. Blood tests show hyperprolactinaemia but normal thyroid function. A cranial MRI scan shows a pituitary tumour to be present. 30 In the absence of any tumour-mass effect the man is treated with a medication consisting of a fusion protein comprising a somatostatin or cortistatin peptide TM (eg. SEQ ID 7-16, 18-24, 26-31). After only four days the milk expression has ceased and after six weeks there has been a measurable reduction in non-muscle breast tissue. During this period the 35 blood prolactin levels were measured fortnightly and had returned to normal 141 by the four-week measurement. The treatment is repeated at 12-week intervals during which time there is no recurrence of symptoms and no indication of tumour growth. Surgery or other tumour-reduction treatment is considered unnecessary while these conditions pertain. 5 Example 23 Method for treating multiple symptoms caused by insulinoma A 51-year-old man is diagnosed with insulinoma after presenting to the doctor with a variety of recently occurring conditions including blurred vision, 10 palpitations, weakness, amnesia and, on two occasions in three months has passed out. The diagnosis is confirmed by endocrinological and radiographic tests. He is treated with a medication consisting of a fusion protein comprising a 15 somatostatin or cortistatin peptide TM (eg. SEQ ID 7-16, 18-24, 26-31), or fusion comprising a GnRH peptide TM (eg. SEQ ID 93-94). Within a week his vision and energy levels have returned to near normal and continue to improve over the following fortnight. At four weeks he is no longer hypoglycaemic and at that point laparoscopic enucleation of a pancreatic 20 head tumour is performed. Subsequent patient monitoring records no return of symptoms or tumour mass and the patient remains healthy after three years. Example 24 Method for treating acromegalic patients resistant to 25 somatostatin analogues After 3 years' successful control of circulating GH and IGF-1 by somatostatin analogues, a 54-year-old acromegalic office worker reports increasingly obvious oily skin and also prominent body odour as a result of hyperhydrosis. She is found to be glucose-intolerant and to have elevated circulating IGF-1 30 levels and raising the SSA dosage does not control these. She is treated by intravenous injection of a fusion protein comprising a growth hormone releasing hormone peptide TM (eg. SEQ ID 34, 42-47, 60-92). Within 14 days the patient reports a significant reduction in sweating. Over 35 the following month her oily skin returns to normal and at this time her GH and 142 IGF-1 levels are both within the normal range. This situation remains over the next five years. Example 25 Method for treating Cushing's disease in patients intolerant 5 of somatostatin analogues A 37 year old female receptionist visits her GP to request treatment for anxiety and depression. The physician observes the woman has a rounded face with increased fat around the neck and also thinner than normal arms and legs. Upon questioning she confirms an irregular menstrual cycle. A 24-hour 10 urinary free cortisol level of 150 pg is measured suggesting Cushing's syndrome. Abdominal MRI scan shows no adrenal tumours to be present but cranial MRI scan reveals a small pituitary tumour. The patient is considered unsuitable for surgical intervention so is treated with 15 an intravenous injection of fusion protein comprising a urotensin peptide TM (eg. SEQ ID 48). Example 26 Method for reversing female sexual impotence by treating prolactinoma 20 A 28 year old woman visits her doctor, worried about her recent expression of breast milk, despite her negative pregnancy test. Examination also indicates vaginal dryness and she confirms that she has lost her libido. Clinical test results are largely normal with the notable exception of moderate hyperprolactinaemia. A cranial MRI scan indicates a pituitary adenoma, 25 consistent with the elevated prolactin levels. She is treated by an intravenous injection of a fusion protein comprising a ghrelin peptide (GHRP) TM (eg. SEQ ID 33, 35, 38), or fusion comprising a GnRH peptide TM (eg. SEQ ID 93-94). After four days she no longer 30 expresses breast milk and her vaginal moisture levels have significantly improved. After thirteen weeks the dryness begins to return but is almost immediately reversed by a second treatment. Treatments continue at twelve weekly visits to the sexual health clinic where the woman reports a return to normal sexual activity. 35 143 Example 27 Method for treating Cushing's disease A 30 year old female typist visits her GP to request treatment for anxiety and depression. The physician observes the woman has a rounded face with increased fat around the neck and also thinner than normal arms and legs. 5 Upon questioning she confirms an irregular menstrual cycle. A 24-hour urinary free cortisol level of 200 pg is measured suggesting Cushing's syndrome. Abdominal MRI scan shows no adrenal tumours to be present but cranial MRI scan reveals a small pituitary tumour. 10 The patient is considered unsuitable for surgical intervention so is treated with a fusion protein comprising a bombesin peptide (GRP) TM (eg. SEQ ID 40 41), or fusion comprising a GnRH peptide TM (eg. SEQ ID 93-94). Example 28 Method for treating gastrinoma 15 A 63-year-old man suffers from severe peptic ulceration that causes debilitating abdominal pain. He also experiences unexplained diarrhoeal episodes and eventually is diagnosed with intrapancreatic gastrinoma by blood tests and abdominal ultrasound study. 20 He is treated by intra-tumoural injection of a medication consisting of a fusion protein comprising a somatostatin or cortistatin peptide TM analogue (octreotide - SEQ ID 54), which has been chemically conjugated to the protease-translocation protein (eg. SEQ ID 49-53). Within a week painful gastric symptoms start to improve. The hypergastrinaemia has subsided and 25 the diarrhoeal episodes have reduced in severity and frequency. This status pertains for 8 weeks but blood gastrin levels start to rise thereafter. The therapy is repeated at 8 week intervals and this maintains blood gastrin at normal levels and no other symptoms recur. 30 Example 29 Method for alleviating acromegalic symptoms by reducing elevated GH and IGF-1 levels resulting from pituitary adenoma A 50 year old female reports to her GP increasing incidents of sleep apnoea and also increasingly oily skin and the GP observes abnormal bone growth. 35 144 The GP recommends measurement of circulating IGF-1 and these are found to be elevated. Subsequent tests also show above-normal circulating GH levels so a cranial MRI scan is carried out. This shows a pituitary tumour of 5mm diameter. The patient is treated with a MCH fusion protein (eg. SEQ ID 5 57) by i.v. injection. At intervals of 1 week circulating IGF-1 levels are measured and are seen to be lower at the first measurement and to reduce steadily to 5% above normal over the following eight weeks. The level of circulating GH is found to be 10 normal at this time. A further dose of the medication with two-weekly IGF-1 measurements shows this hormone to have stabilised at the upper end of normal. At six weeks after the second treatment a cranial MRI scan reveals shrinkage of the tumour to 3 mm. The therapy is continued at a reduced dosage at two-monthly intervals with IGF-1 and GH levels measured on the 15 seventh week. These are both stable in the normal range and the sleep apnoea and oily skin are now absent. Example 30 Method for treating acromegalic patients resistant to somatostatin analogues 20 After 1 years' successful control of circulating GH and IGF-1 by somatostatin analogues, a 40-year-old acromegalic digger driver reports increasingly obvious oily skin and also prominent body odour as a result of hyperhydrosis. He is found to be glucose-intolerant and to have elevated circulating IGF-1 levels and raising the SSA dosage does not control these. 25 He is treated by intravenous injection of a fusion protein comprising a KISS1 R binding peptide TM (eg. SEQ ID 58), or fusion comprising a GnRH peptide TM (eg. SEQ ID 93-94). Within 14 days the patient reports a significant reduction in sweating. Over the following month his oily skin returns to normal and at 30 this time her GH and IGF-1 levels are both within the normal range. This situation remains over the next five years. Example 31 Method for treating acromegaly A patient reports to her GP that she can no longer fit into her size 8 shoes, a 35 size she have worn for the past 25 years, and that her wedding ring will no 145 longer fit. After ruling out obesity, the GP suspects this could be the result of a pituitary disorder the GP refers the patient for tests which confirm significantly elevated IGF-1 and GH levels. A cranial MRI confirms the presence of a pituitary adenoma. 5 She is treated by intravenous injection of a fusion protein comprising a prolactin releasing hormone receptor binding peptide TM (eg. SEQ ID 59). Over the following months GH and IGF-1 levels return to normal and this is maintained by a quarterly injection on the fusion protein. 10 Example 32 Activity of CP-GHRH-LHD on rat IGF-1 levels in vivo Aims To assess the impact of i.v. adminisation of CP-GHRH-LHD fusion on IGF-1 levels in rats five days after treatment compared with vehicle only treated 15 control. Materials and Methods Animals: Adult male Sprague-Dawley rats maintained under standard housing conditions with lights on at 05.00h (14L:10D), food and water available ad 20 libitum and habituated to housing conditions for at least 1 week prior to surgery. Surgery: On day 1 of the study rats (200-250g) will be anaesthetised with a combination of Hypnorm (0.32 mg/kg fentanyl citrate and 10 mg/kg fluanisone, 25 i.m.) and diazepam (2.6 mg/kg i.p.). The right jugular vein is exposed and a silastic tipped (i.d. 0.50 mm, o.d. 0.93 mm) polythene cannula (Portex, UK) inserted into the vessel until it lies close to the entrance of the right atrium. Cannulae will be prefilled with heparinised (101U/ml) isotonic saline. The free end of the cannulae will be exteriorised through a scalp incision and then 30 tunnelled through a protective spring anchored to the skull using two stainless steel screws and self-curing dental acrylic. Following recovery animals are housed in individual cages in the automated blood sampling room. The end of the protective spring is attached to a mechanical swivel that allows the animal maximum freedom of movement. Cannulae are flushed daily with heparinised 35 saline to maintain patency. 146 Treatment: At 09:00 on day 2 of the study rats will receive in i.v. injection of CP-GHRH-LHD or vehicle only control. 5 Sampling: The automated blood-sampling system (ABS) has been previously described (Clark et al., 1986; Windle et al., 1997). Three to four days after surgery the jugular vein cannula of each animal will be connected to the automated blood-sampling system. At 07:00 on day 6 sampling will begin. Blood samples will be collected at 10 minute intervals using the automated 10 system for a 24 hour period. A total of 144 blood samples will be collected for each will contain no more than 38pl of whole blood. Results The IGF-1 levels were measure using an IGF-1 ELISA kit. Figure 5 illistrates 15 a statistically significant reduction in the IGF-1 levels in the fusion treated rats compared to the vehicle only control with a t-test P value = 0.0416 after only five days. Example 33 Activity of CP-GHRH-LHD on rat IGF-1 levels in vivo 20 Aims: This study is designed to investigate the activity timecourse for CP-GHRH LHD fusion identifying the time delay between administration and initall effect of the compound in IGF-1 levels. 25 Materials and Methods: Animals: Adult male Sprague-Dawley rats maintained under standard housing conditions with lights on at 05.00h (14L:10D), food and water available ad libitum and habituated to housing conditions for at least 1 week prior to surgery. 30 Surgery: On day 1 of the study rats (260-280g) will be anaesthetised with a combination of Hypnorm and diazepam. The right jugular vein is then exposed and a silastic tipped (i.d. 0.50 mm, o.d. 0.93 mm) polythene cannula (Portex, UK) inserted into the vessel until it lies close to the entrance of the right. 35 Cannulae will be prefilled with heparinised (10 IU/ml) isotonic saline. The free 147 end of the cannulae will be exteriorised through a scalp incision and passed through a spring anchored to the skull using stainless steel screws and dental cement. Following recovery animals will be housed in individual cages in the ABS room. The spring will be attached to a swivel that allows the animal 5 maximum freedom of movement. Cannulae will be flushed daily with heparinised saline to maintain patency. Treatment: At 10:00h on day 5 of the study rats will receive in i.v. injection of the CP-GHRH-LHD or vehicle (sterile saline). 10 Blood sampling: After flushing the cannulae a single manual blood sample (100pl) will be taken from each rat at 09.30h. Samples will be taken from day 5 to day 18 of the experiment (or until the cannulae block). Plasma from blood samples will be stored at -20C for later analysis of IGF-1 content by ELISA kit. 15 Results Figure 6 illistrates a statistically significant reduction in the IGF-1 levels in the fusion treated rats compared to the vehicle only control from day four after treatment. 20 Example 34 Activity of CP-GHRH-LHD on rat growth hormone levels in vivo Aims To assess the impact of i.v. adminisation of CP-GHRH-LHD fusion on growth 25 hormone levels in rats five days after treatment compared with vehicle only treated and Octreotide infusion controls. Materials and Methods Animals: Adult male Sprague-Dawley rats maintained under standard housing 30 conditions with lights on at 05.00h (14L:10D), food and water available ad libitum and habituated to housing conditions for at least 1 week prior to surgery. Surgery: On day 1 of the study rats (200-250g) will be anaesthetised with a 35 combination of Hypnorm (0.32 mg/kg fentanyl citrate and 10 mg/kg fluanisone, 148 i.m.) and diazepam (2.6 mg/kg i.p.). The right jugular vein is exposed and a silastic tipped (i.d. 0.50 mm, o.d. 0.93 mm) polythene cannula (Portex, UK) inserted into the vessel until it lies close to the entrance of the right atrium. Cannulae will be prefilled with heparinised (101U/ml) isotonic saline. The free 5 end of the cannulae will be exteriorised through a scalp incision and then tunnelled through a protective spring anchored to the skull using two stainless steel screws and self-curing dental acrylic. Following recovery animals are housed in individual cages in the automated blood sampling room. The end of the protective spring is attached to a mechanical swivel that allows the animal 10 maximum freedom of movement. Cannulae are flushed daily with heparinised saline to maintain patency. Treatment: At 09:00 on day 2 of the study rats will receive in i.v. injection of the Syntaxin active compound or vehicle. A 12 hour infusion of somatostatin 15 (or an analogue) will begin 6 hours after the start of sampling (administered via one of the dual cannulae lines) and will continue for 12 hours only. [This infusion timing should be an excellent GH assay control as we should see baseline secretion then complete inhibition and then rapid recovery/rebound] 20 Sampling: The automated blood-sampling system (ABS) has been previously described (Clark et al., 1986; Windle et al., 1997). Three to four days after surgery the jugular vein cannula of each animal will be connected to the automated blood-sampling system. At 07:00 on day 6 sampling will begin. Blood samples will be collected at 10 minute intervals using the automated 25 system for a 24 hour period. A total of 144 blood samples will be collected for each will contain no more than 38pl of whole blood. Results The growth hormone levels were measure using an RIA assay. Figure 7a 30 illistrates the vehical treated animals which show typical pulsatile release of growth hormone, figure 7b illustrates the complete ablation of the pulsatile growth hormone release after treatment with GHRH-LHD chimera and figure 7c shows the blocking of the pulsatile growth hormone release and subsequent recovery when the Octreotide infusion is stopped. 35 149

Claims (9)

1. Use of a polypeptide for the preparation of a medicament for treatment of Cushing's disease by administration in an effective amount of said polypeptide 5 comprising: (a) a non-cytotoxic protease, which protease is capable of cleaving a protein of the exocytic fusion apparatus in a pituitary tumour cell; (b) a peptide Targeting Moiety (TM) that binds to a Binding Site on a 10 pituitary tumour cell, which Binding Site is capable of undergoing endocytosis to be incorporated into an endosome within the pituitary tumour cell, wherein the TM comprises a growth hormone releasing hormone (GHRH) peptide, a somatostatin peptide, a cortistatin peptide, a ghrelin 15 peptide, a bombesin peptide, a urotensin peptide, melanin-concentrating hormone peptide, a KISS-1 peptide, a gonadotropin-releasing hormone (GnRH) peptide, or a prolactin-releasing peptide, and wherein the pituitary tumour cell is derived from or contributes to corticotrophinomas; and 20 (c) a bacterial or viral translocation domain that translocates the protease from within the endosome, across the endosomal membrane and into the cytosol of said pituitary tumour cell; wherein the polypeptide lacks the native H., binding domain of a clostridial neurotoxin. 25
2. A use according to Claim 1, wherein the TM comprises: a growth hormone-releasing hormone (GHRH) peptide that binds to a growth hormone-releasing hormone (GHRH) receptor; a somatostatin peptide that binds to a somatostatin (SST) receptor; 30 a cortistatin peptide that binds to a cortistatin (CST) receptor; a grehlin peptide that binds to a ghrelin receptor; a bombesin peptide that binds to a bombesin receptor; a urotensin peptide that binds to a urotensin receptor; 150 a melanin-concentrating hormone peptide that binds to a melanin concentrating hormone receptor 1; a KiSS-1 peptide that binds to a KiSS-1 receptor; a gonadotropin-releasing hormone (GnRH) peptide that binds to a 5 gonadotropin-releasing hormone (GnRH) receptor; and/or a prolactin-releasing peptide that binds to a prolactin-releasing peptide receptor.
3. A use according to Claim 1 or Claim 2, wherein the non-cytotoxic protease 10 comprises a clostridial neurotoxin L-chain or an IgA protease.
4. A use according to any one of Claims 1 to 3, wherein the translocation domain comprises a clostridial neurotoxin translocation domain. 15
5. A polypeptide when used for treating Cushing's disease, the polypeptide comprising: (a) a non-cytotoxic protease, which protease is capable of cleaving a protein of the exocytic fusion apparatus in a pituitary tumour cell; 20 (b) a peptide Targeting Moiety (TM) that binds to a Binding Site on a pituitary tumour cell, which Binding Site is capable of undergoing endocytosis to be incorporated into an endosome within the pituitary tumour cell, wherein said TM comprises a growth hormone-releasing hormone 25 (GHRH) peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 34, 42, 43, 44, 45, 46, 47, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91 or 92; 30 wherein said TM comprises a somatostatin peptide and wherein said polypeptide comprises an amino acid sequence having at least 90 92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 11, 12, 13, 14, 20, 21, 22, 23, 24, 26, 27 or 37; 151 wherein said TM comprises a cortistatin peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 7, 8, 9, 15, 16, 18, 19, 29, 30 or 31; 5 wherein said TM comprises a ghrelin peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 33, 35, 36, 38 or 39; wherein said TM comprises a bombesin peptide and wherein said 10 polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 40 or 41; wherein said TM comprises a urotensin peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, 15 or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 48; wherein said TM comprises a melanin-concentrating hormone peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence 20 identity to any one of SEQ ID NOs: 57; wherein said TM comprises a KiSS-1 peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 58; 25 wherein said TM comprises a gonadotrophin-releasing hormone (GnRH) peptide and wherein said polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 93 or 94; or wherein said TM comprises a prolactin-releasing peptide and 30 wherein said polypeptide comprises an amino acid sequence having at least 90-92%, or at least 95-97%, or at least 98-99% sequence identity to any one of SEQ ID NOs: 59, and wherein the pituitary tumour cell is derived from or contributes to corticotrophinomas; and 152 (c) a bacterial or viral translocation domain that translocates the protease from within the endosome, across the endosomal membrane and into the cytosol of said pituitary tumour cell; wherein the polypeptide lacks the native Hc binding domain of a clostridial 5 neurotoxin.
6. A polypeptide when used for treating Cushing's disease according to Claim 5, wherein the TM comprises: a growth hormone-releasing hormone (GHRH) peptide that binds to a 10 growth hormone-releasing hormone (GHRH) receptor; a somatostatin peptide that binds to a somatostatin (SST) receptor; a cortistatin peptide that binds to a cortistatin (CST) receptor; a grehlin peptide that binds to a ghrelin receptor; a bombesin peptide that binds to a bombesin receptor; 15 a urotensin peptide that binds to a urotensin receptor; a melanin-concentrating hormone peptide that binds to a melanin concentrating hormone receptor 1; a KiSS-1 peptide that binds to a KiSS-1 receptor; a gonadotropin-releasing hormone (GnRH) peptide that binds to a 20 gonadotropin-releasing hormone (GnRH) receptor; and/or a prolactin-releasing peptide that binds to a prolactin-releasing peptide receptor.
7. A polypeptide when used for treating Cushing's disease according to Claim 5 or 25 Claim 6, wherein the translocation domain comprises a clostridial neurotoxin translocation domain; and/ or wherein the non-cytotoxic protease comprises a clostridial neurotoxin protease or an IgA protease.
8. A nucleic acid encoding a polypeptide according to any one of Claims 5 to 7, 30 wherein the nucleic acid is used for treating Cushing's disease.
9. A method of treating Cushing's disease, comprising the step of administering to a subject in need thereof a therapeutically effective amount of a polypeptide comprising: 153 (a) a non-cytotoxic protease, which protease is capable of cleaving a protein of the exocytic fusion apparatus in a pituitary tumour cell; (b) a peptide Targeting Moiety (TM) that binds to a Binding Site on a pituitary tumour cell, which Binding Site is capable of undergoing 5 endocytosis to be incorporated into an endosome within the pituitary tumour cell, wherein the TM comprises a growth hormone releasing hormone (GHRH) peptide, a somatostatin peptide, a cortistatin peptide, a ghrelin peptide, a bombesin peptide, a urotensin peptide, melanin-concentrating 10 hormone peptide, a KISS-1 peptide, a gonadotropin-releasing hormone (GnRH) peptide, or a prolactin-releasing peptide, and wherein the pituitary tumour cell is derived from or contributes to cortinotrophinomas; and (c) a bacterial or viral translocation domain that translocates the protease 15 from within the endosome, across the endosomal membrane and into the cytosol of said pituitary tumour cell; wherein the polypeptide lacks the native Hc binding domain of a clostridial neurotoxin. 154
AU2014200449A 2008-06-12 2014-01-28 Suppression of neuroendocrine diseases Ceased AU2014200449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2014200449A AU2014200449B2 (en) 2008-06-12 2014-01-28 Suppression of neuroendocrine diseases

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
GB0810782.3 2008-06-12
GB0810785.6 2008-06-12
GB0820884.5 2008-11-14
GB0820965.2 2008-11-17
AU2009259033A AU2009259033B2 (en) 2008-06-12 2009-06-11 Suppression of neuroendocrine diseases
AU2014200449A AU2014200449B2 (en) 2008-06-12 2014-01-28 Suppression of neuroendocrine diseases

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2009259033A Division AU2009259033B2 (en) 2008-06-12 2009-06-11 Suppression of neuroendocrine diseases

Publications (2)

Publication Number Publication Date
AU2014200449A1 AU2014200449A1 (en) 2014-02-13
AU2014200449B2 true AU2014200449B2 (en) 2016-04-21

Family

ID=47560959

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2011203060A Abandoned AU2011203060A1 (en) 2009-06-11 2011-06-23 Suppression of neuroendocrine diseases
AU2014200449A Ceased AU2014200449B2 (en) 2008-06-12 2014-01-28 Suppression of neuroendocrine diseases

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU2011203060A Abandoned AU2011203060A1 (en) 2009-06-11 2011-06-23 Suppression of neuroendocrine diseases

Country Status (1)

Country Link
AU (2) AU2011203060A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059113A2 (en) * 2004-12-01 2006-06-08 Health Protection Agency Fusion proteins comprising a non-cytotoxic protease, a targeting moiety, a protease cleavage site and a translocation domain
US20080038274A1 (en) * 1999-09-23 2008-02-14 Foster Keith A Inhibition of secretion from non-neuronal cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080038274A1 (en) * 1999-09-23 2008-02-14 Foster Keith A Inhibition of secretion from non-neuronal cells
WO2006059113A2 (en) * 2004-12-01 2006-06-08 Health Protection Agency Fusion proteins comprising a non-cytotoxic protease, a targeting moiety, a protease cleavage site and a translocation domain

Also Published As

Publication number Publication date
AU2014200449A1 (en) 2014-02-13
AU2011203060A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
AU2009259033B2 (en) Suppression of neuroendocrine diseases
US8796216B2 (en) Suppression of neuroendocrine diseases
AU2009259034B2 (en) Suppression of cancers
EP2326665B1 (en) Non-cytotoxic fusion proteins comprising egf muteins
US20110158973A1 (en) Suppression of cancers
AU2014200449B2 (en) Suppression of neuroendocrine diseases
AU2011203062A1 (en) Suppression of cancers

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
HB Alteration of name in register

Owner name: IPSEN BIOINNOVATION LIMITED

Free format text: FORMER NAME(S): SYNTAXIN LIMITED

MK14 Patent ceased section 143(a) (annual fees not paid) or expired