AU2014200015B2 - Method and apparatus for dropping a pump down plug or ball - Google Patents
Method and apparatus for dropping a pump down plug or ball Download PDFInfo
- Publication number
- AU2014200015B2 AU2014200015B2 AU2014200015A AU2014200015A AU2014200015B2 AU 2014200015 B2 AU2014200015 B2 AU 2014200015B2 AU 2014200015 A AU2014200015 A AU 2014200015A AU 2014200015 A AU2014200015 A AU 2014200015A AU 2014200015 B2 AU2014200015 B2 AU 2014200015B2
- Authority
- AU
- Australia
- Prior art keywords
- ball
- valve
- plug
- valving member
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Check Valves (AREA)
Abstract
An improved method and apparatus for dropping a ball, plug or dart during oil and gas well operations (e.g., cementing operations) employs a specially configured valving member with curved and flat portions that alternatively direct fluid flow through a bore or opening in the 5 valving member via an inner channel or around the periphery of the valving member in an outer channel. In one embodiment, the ball(s), dart(s) or plug(s) are contained in a sliding sleeve that shifts position responsive to valve rotation.
Description
TITLE OF THE INVENTION
METHOD AND APPARATUS FOR DROPPING A PUMP DOWN PLUG OR BALL
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method and apparatus that is of particular utility in cementing operations associated with oil and gas well exploration and production. More specifically the present invention provides an improvement to cementing operations and related operations employing a plug or ball dropping head. 2. General Background of the Invention
Reference to any prior art in the specification is not, and should not be taken as, an acknowledgment, or any form of suggestion, that this prior art forms part of the common general knowledge in Australia or any other jurisdiction or that this prior art could reasonably be expected to be ascertained, understood and regarded as relevant by a person skilled in the art.
Patents have issued that relate generally to the concept of using a plug, dart or a ball that is dispensed or dropped into the well or "down hole" during oil and gas well drilling and production operations, especially when conducting cementing operations. The following possibly relevant patents are incorporated herein by reference. The patents are listed numerically. The order of such listing does not have any significance.
TABLE
PATENT NO. TITLE ISSUE DATE
BRIEF SUMMARY OF THE INVENTION
The present invention provides an improved method and apparatus for use in cementing and like operations, employing a plug or ball dropping head of improved configuration.
One aspect of the present invention provides a ball and plug dropping head for use in sequentially dropping one or more balls and plugs into a well tubing, comprising: a) a housing having an inlet at its upper end adapted to be fluidly connected in line with the lower end of a top drive, an outlet generally aligned with the inlet; b) the housing having an inner surface surrounding an outer bypass channel and an inner flow channel, wherein each said channel connects to the inlet and the outlet; c) a plurality of valving members spaced between the inlet and the outlet, each valving member having an inner valve with a flow bore, and being movable between open and closed positions, each valving member having an outer valve that is in an open position when the inner valve is closed and in a closed position when the inner valve is open, said outer valve presenting a curved surface to the housing inner surface when the inner valve is open, each outer valve not valving flow in the bypass channel when the inner flow channel is closed; d) canisters in the housing that separate said inner and bypass fluid flow channels, said bypass channel enabling fluid to bypass the inner valve and the inner flow channel when the outer valve is in the open position and the inner valve is in the closed position; e) wherein the inner valve does not valve fluid flow in the bypass flow channel when the inner valve is in the closed position; f) wherein fluid flow flows around the inner valve and in between the canisters and the housing inner surface when it is in the closed position and through the inner valve when it is in the open position; g) each canister being a sliding sleeve above each inner valve that is configured to support a ball or plug when the inner valve below the sleeve is closed; and h) wherein in the open position each inner valve flow bore permits a ball or plug to pass therethrough, and circulating fluid to pass downwardly therethrough when neither a ball nor plug is in the inner valve flow bore.
In another aspect of the invention there is provided a ball and plug dropping head for use in sequentially dropping one or more balls, darts or plugs into a well tubing, comprising: a) a housing having an inlet at its upper end adapted to be fluidly connected in line with the lower end of a top drive, an outlet generally aligned with the inlet and a mating inside surface; b) the housing having an inner surface surrounding an outer bypass channel and an inner flow channel, wherein each said channel connects to the inlet and the outlet; c) a plurality of valving members spaced between the inlet and the outlet, each valving member having an inner valve with a flow bore, and being movable between open and closed positions, each valving member having an outer valve that is in an open position when the inner valve is closed and in a closed position when the inner valve is open, said outer valve presenting a mating surface to the housing inner surface when the inner valve is open, each outer valve not valving flow in the bypass channel when the inner flow channel is closed; d) canisters in the housing that separate said inner and bypass secondary fluid flow channels, said bypass channel enabling fluid to bypass the inner valve and the inner flow channel when the outer valve is in the open position and the inner valve is in the closed position; e) wherein the inner valve does not valve fluid flow in the bypass flow channel when the inner valve is in the closed position; f) wherein fluid flow flows around the inner valve and in between the canisters and the housing inner surface when it is in the closed position and through the inner valve when it is in the open position; g) each canister being a sliding sleeve above each inner valve that is configured to support a ball, dart or plug when the inner valve below the sleeve is closed; h) wherein in the open position each inner valve flow bore permits a ball, dart or plug to pass therethrough, and circulating fluid to pass downwardly therethrough when neither a ball, dart nor plug is in the inner valve flow bore; and i) one or more members attached to and rotating with the valving member that close the secondary channel when the valving member opens the main channel, said member having a mating edge that tracks said mating inside surface.
In still another aspect of the invention there is provided a ball and plug dropping head for use in sequentially dropping one or more balls and plugs into a well tubing, comprising: a) a housing having an inlet at its upper end adapted to be fluidly connected in line with the lower end of a top drive, an outlet generally aligned with the inlet; b) the housing having an inner surface surrounding an outer bypass channel and an inner flow channel, wherein each said channel connects to the inlet and the outlet; c) a plurality of valving members spaced between the inlet and the outlet, each valving member having an inner part with a flow bore, and being movable between open and closed positions, each valving member having an outer part in the form of fins that present a curved surface to the housing inner surface when the inner part is open, each fin having a thickness that does not valve flow in the bypass channel when the inner flow channel is closed; d) canisters in the housing that separate said inner and bypass fluid flow channels, said bypass channel enabling fluid to bypass the valving members inner part and the inner flow channel when a valving member inner part is in the closed position; e) wherein the valving members inner parts does not valve fluid flow in the bypass flow channel when the inner part is in the closed position; f) wherein fluid flow in the main channel flows around the valving member and in between the canisters and the housing inner surface when the valving member inner part is in the closed position and through the valving member inner part when the inner part is in the open position; g) wherein each valving member is configured to support a ball or plug when closed; h) wherein in the open position each valve inner part flow bore permits a ball or plug to pass therethrough, and circulating fluid to pass downwardly therethrough when neither a ball nor plug is in the valve flow bore.
Preferably, at least one valve has a pair of opposed, generally flat surfaces. Preferably, at least one valving member has a valve opening that enables passage of a plug of a diameter of 6.5 inches (16.5 cm). Preferably, at least one valving member in the closed position has a generally cylindrically shaped cross section. Preferably, at least one valving member in the closed position has a generally rectangular shaped cross section. Preferably, the body has a working tension of two million pounds (907,200 kg). Preferably, the body has an internal working pressure of 15,000 psi (10,546,050 kg/m2). Preferably, the body has a working torque of 50.000 foot pounds (6912.75 kg-m), and more preferably the body has a working torque of 50.000 foot pounds (6912.75 kg-m) in either of two rotational directions. Preferably, there are multiple valving members that enable fluid flow around the valving member when the valving member is closed. Preferably, fluid can flow around the valving member when the valving member is closed.
There is also disclosed therein a ball and plug dropping head for use in sequentially dropping one or more balls and plugs into a well tubing, comprising a housing having an inlet at its upper end adapted to be fluidly connected in line with the lower end of a top drive, an outlet generally aligned with the inlet, a main flow channel that connects the inlet and the outlet, vertically sliding sleeves dividing the main flow channel into an inner channel and an outer channel, a plurality of valving members spaced between the inlet and the outlet, each valving member having a flow bore, and being movable between open and closed positions, the outer channel enabling fluid to bypass a valving member when a valving member is in the closed position, at least one of the valving members having a cross section that, in the open position, does not valve fluid flow in the main flow channel, wherein fluid flow flows around the valving member via the outer channel when it is in the closed position and through the valving member and inner channel when the valve is in the open position, wherein each valving member is configured to support a ball or plug when closed, and wherein in the open position each valve flow bore permits a ball or plug to pass therethrough, and circulating fluid to pass downwardly therethrough when neither a ball nor plug is in the valve flow bore. Preferably, at least one valve has a pair of opposed, generally flat surfaces. Preferably, at least one valving member has a valve opening that enables passage of a plug of a diameter of 6.5 inches (16.5 cm). Preferably, at least one valving member in the closed position has a generally cylindrically shaped cross section. Preferably, at least one valving member in the closed position has a generally rectangular shaped cross section. Preferably, the body has a working tension of two million pounds (907,200 kg). Preferably, the body has an internal working pressure of 15,000 psi (10,546,050 kg/m ). Preferably, the body has a working torque of 50,000 foot pounds (6912.75 kg-m), and more preferably the body has a working torque of 50,000 foot pounds (6912.75 kg-m) in either of two rotational directions. Preferably, there are multiple valving members that enable fluid flow around the valving member when the valving member is closed.
There is further disclosed herein a ball and plug dropping head for use in sequentially dropping one or more balls and plugs into a well tubing, comprising a housing having an inlet at its upper end adapted to be fluidly connected in line with the lower end of a top drive, an outlet generally aligned with the inlet, a main flow channel that connects the inlet and the outlet, a plurality of vertically sliding sleeves that divide the main channel into inner and outer channels, a plurality of valving members spaced between the inlet and the outlet, each valving member having a flow bore, and being movable between open and closed positions, the outer channel enabling fluid to bypass the valving members when a valving member is in the closed position, at least one of the valving members having a curved surface that closes the inner but not the outer channel in a closed position and wherein in the open position the valving member opening generally aligns with the inner channel, wherein fluid flow in the main channel flows around the valving member when it is in the closed position and through the valving member when it is in the open position, wherein each valving member is configured to support a ball or plug when closed, and wherein in the open position each valve flow bore permits a ball or plug to pass therethrough, and circulating fluid to pass downwardly therethrough when neither a ball nor plug is in the valve flow bore.
Still further disclosed herein is a method of sequentially dropping one or more balls, darts or plugs into an oil and gas well tubing, comprising the steps of providing a housing having an inlet at its upper end adapted to be fluidly connected in line with the lower end of a top drive, an outlet generally aligned with the inlet, a main flow channel that connects the inlet and the outlet and a plurality of valving members spaced between the inlet and the outlet, each valving member having a flow bore, and being movable between open and closed positions, enabling fluid to bypass the valving members when a valving member is in the closed position, preventing fluid flow in the main flow channel when a valving member is in a closed position, enabling fluid flow in the main channel around the valving member when the valving member is in the closed position and through the valving member when the valving member is in the open position, supporting a ball or plug with a valving member when the valving member is closed, and permitting a ball or plug to pass through a valving member when the valving member is in the closed position. Preferably, at least one valve has a pair of opposed, generally flat surfaces. Preferably, at least one valving member has a valve opening that enables passage of a plug of a diameter of 6.5 inches (16.5 cm). Preferably, at least one valving member in the closed position has a generally cylindrically shaped cross section. Preferably, at least one valving member in the closed position has a generally rectangular shaped cross section. Preferably, the body has a working tension of two million pounds (907,200 kg). Preferably, the body has an internal working pressure of 15,000 psi (10,546,050 kg/m2). Preferably, the body has a working torque of 50.000 foot pounds (6912.75 kg-m) and more preferably the body has a working torque of 50.000 foot pounds (6912.75 kg-m) in either of two rotational directions.
In yet another disclosure there is provided a method of dropping one or more balls or plugs into a well tubing, comprising providing a housing having an inlet at its upper end adapted to be fluidly connected in line with the lower end of a top drive, an outlet generally aligned with the inlet, a flow channel that connects the inlet and the outlet, a plurality of sleeves that divide the flow channel into an inner channel and an outer channel, a plurality of valving members spaced between the inlet and the outlet, each valving member having a flow bore, and being movable between open and closed positions, enabling fluid to bypass the valving members via the outer channel when a valving member is in the closed position, flowing fluid in the outer channel and around a valving member when a valving member is in the closed position and through the valving member via the inner channel when the valving member is in the open position, supporting a ball or plug with a valving member when closed, and permitting a ball or plug to pass a valving member when open.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein:
Figures ΙΑ, IB, 1C are partial sectional elevation views of the preferred embodiment of the apparatus of the present invention wherein line A-A of figure 1A matches line A-A of figure IB, and line B-B of figure IB matches line B-B of figure 1C;
Figure 2 is a partial, sectional, elevation view of the preferred embodiment of the apparatus of the present invention;
Figure 3 is apartial, sectional, elevation view of the preferred embodiment of the apparatus of the present invention;
Figure 4 is a sectional view taken long lines 4-4 of figure 2;
Figure 5 is a sectional view taken along lines 5-5 of figure 3;
Figure 6 is a partial perspective view of the preferred embodiment of the apparatus of the present invention;
Figure 7 is a sectional elevation view of the preferred embodiment of the apparatus of the present invention and illustrating a method step of the present invention;
Figure 8 is a sectional elevation view of the preferred embodiment of the apparatus of the present invention and illustrating a method step of the present invention;
Figure 9 is an elevation view of the preferred embodiment of the apparatus of the present invention and illustrating the method of the present invention;
Figure 10 is a sectional elevation view illustrating part of the method of the present invention and wherein line A-A of figure 10 matches line A-A of figure 9;
Figure 11 is a sectional elevation view illustrating part of the method of the present invention and wherein line A-A of figure 11 matches line A-A of figure 9;
Figure 12 is a sectional elevation view illustrating part of the method of the present invention;
Figure 13 is a sectional elevation view illustrating part of the method of the present invention;
Figure 14 is a sectional elevation view illustrating part of the method of the present invention and wherein line A-A of figure 14 matches line A-A of figure 9;
Figure 15 is a sectional elevation view illustrating part of the method of the present invention and wherein line A-A of figure 15 matches line A-A of figure 9;
Figure 16 is a sectional elevation view illustrating part of the method of the present invention;
Figure 17 is a partial perspective view of the preferred embodiment of the apparatus of the present invention;
Figure 18 is a partial view of the preferred embodiment of the apparatus of the present invention and showing a ball valving member;
Figure 19 is a partial side view of the preferred embodiment of the apparatus of the present invention and showing an alternate construction for the ball valving member;
Figure 20 is a partial view of the preferred embodiment of the apparatus of the present invention and showing a ball valving member;
Figure 21 is a partial side view of the preferred embodiment of the apparatus of the present invention and showing an alternate construction for the ball valving member;
Figure 22 is a sectional view of the preferred embodiment of the apparatus of the present invention showing an alternate sleeve arrangement;
Figure 23 is a sectional view of the preferred embodiment of the apparatus of the present invention showing an alternate sleeve arrangement;
Figure 24 is a fragmentary view of the preferred embodiment of the apparatus of the present invention;
Figure 25 is a fragmentary view of the preferred embodiment of the apparatus of the present invention; and
Figure 26 is a fragmentary view of the preferred embodiment of the apparatus of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Figure 9 shows generally an oil well drilling structure 10 that can provide a platform 11 such as a marine platform as shown. Such platforms are well known. Platform 11 supports a derrick 12 that can be equipped with a lifting device 21 that supports a top drive unit 13. Such a derrick 12 and top drive unit 13 are well known. A top drive unit can be seen for example in US Patent Nos. 4,854,383 and 4,722,389 which are incorporated herein by reference. A flow line 14 can be used for providing a selected fluid such as a fluidized cement or fluidized setable material to be pumped into the well during operations which are known in the industry and are sometimes referred to as cementing operations. Such cementing operations are discussed for example in prior US Patent Nos. 3,828,852; 4,427,065; 4,671,353; 4,782,894; 4,995,457; 5,236,035; 5,293,933; and 6,182,752, each of which is incorporated herein by reference. A tubular member 22 can be used to support plug dropping head 15 at a position below top drive unit 13 as shown in figure 9. String 16 is attached to the lower end portion of plug dropping head 15.
In figure 9, the platform 11 can be any oil and gas well drilling platform such as a marine platform shown in a body of water 18 that provides a seabed or mud line 17 and water surface 19. Such a platform 11 provides a platform deck 20 that affords space for well personnel to operate and for the storage of necessary equipment and supplies that are needed for the well drilling operation. A well bore 23 extends below mud line 17. In figures 10 and 11, the well bore 23 can be surrounded with a surface casing 24. The surface casing 24 can be surrounded with cement/concrete 25 that is positioned in between a surrounding formation 26 and the surface casing 24. Similarly, a liner or production casing 32 extends below surface casing 24. The production casing 32 has a lower end portion that can be fitted with a casing shoe 27 and float valve 28 as shown in figures 10-16. Casing shoe 27 has passageway 30. Float valve 28 has passageway 29.
The present invention provides an improved method and apparatus for dropping balls, plugs, darts or the like as a part of a cementing operation. Such cementing operations are in general known and are employed for example when installing a liner such as liner 32. In the drawings, arrows 75 indicate generally the flow path of fluid (e.g. cement, fluidized material or the like) through the tool body 34. In that regard, the present invention provides an improved ball or plug or dart dropping head 15 that is shown in figures 1-8 and 10-17. In figures ΙΑ, IB, 1C and 2-8, ball/plug dropping head 15 has an upper end portion 31 and a lower end portion 33. Ball/plug dropping head 15 provides a tool body 34 that can be of multiple sections that are connected together, such as with threaded connections. In figures 1A-1C, the tool body 34 includes sections 35, 36,37,38,39. The section 35 is an upper section. The section 39 is a lower section.
Ball/plug dropping head 15 can be pre-loaded with a number of different items to be dropped as part of a cementing operation. For example, in figures 1 A, IB, 1C there are a number of items that are contained in ball/plug dropping head 15. These include an upper, larger diameter ball dart 40,41 and smaller diameter ball 42. In figures 18-26, an alternate embodiment is shown which enables very small diameter balls, sometimes referred to as “fiac-balls” 102 (which can have a diameter of between about 1/2 and 5/8 inches (about 1.25-1.59 cm) to be dispensed into the well below toll body 34.
The tool body 34 supports a plurality of valving members at opposed openings 90. The valving members can include first valving member 43 which is an upper valving member. The valving members can include a second valving member 44 which is in between the first valving member 43 and a lower or third valving member 45. Valving member 43 attaches to tool body 34 at upper opening positions 61,62. Valving member 44 attaches to tool body 34 at middle opening positions 63, 64. Valving member 45 attaches to tool body 43 at lower opening positions 65,66.
Threaded connections 46,47,48,49 can be used for connecting the various body sections 35, 36, 37, 38, 39 together end to end as shown in figures ΙΑ, IB, 1C. Tool body 34 upper end 31 is provided with an internally threaded portion 50 for forming a connection with tubular member 22 that depends from top drive unit 13 as shown in figure 9. A flow bore 51 extends between upper end 31 and lower end 33 of tool body 34.
Sleeve sections 52 are secured to tool body 34 within bore 15 as shown in figures 1 A, IB, 1C. Sleeves 52 can be generally centered within bore 51 as shown in figures 1 A, IB, 1C using spacers 67 that extend along radial lines from the sections 35-39.
Each valving member 43,44,45 is movable between open and closed positions. In figures 1 A, IB, 1C each of the valving members 43,44,45 is in a closed position. In that closed position, each valving member 43,44,45 prevents downward movement of a plug, ball 40, 42, or dart 41 as shown. In figure 1A, the closed position of valving member 43 prevents downward movement of larger diameter ball 40. Similarly, in figure IB, a closed position of valving member 44 prevents a downward movement of dart 41. In figure IB, a closed position of valving member 45 prevents a downward movement of smaller diameter ball 42. In each instance, the ball, dart or plug rests upon the outer curved surface 68 of valving member 43,44 or 45 as shown in the drawings.
Each valving member43,44,45 provides a pair of opposed generally flat surfaces 69, 70 (see figures 3, 6, 17). Figure 17 shows in more detail the connection that is formed between each of the valving members 43,44,45 and the tool body 34. The tool body 34 provides opposed openings 90 that are receptive the generally cylindrically shaped valve stems 54,55 that are provided on the flat sections or flat surfaces 69,70 of each valving member 43,44,45. For example, in figures 6 and 17, the flat surface 69 provides valve stem 54. Openings 90 are receptive of the parts shown in exploded view in figure 17 that enable a connection to be formed between the valving member 43,44 or 45 and the tool body 34. For the stem 55, fastener 91 engages an internally threaded opening of stem 55. Bushing 92 is positioned within opening 90 and the outer surface of stem 55 registers within the central bore 95 of bushing 92. Bushing 92 is externally threaded at 93 for engaging a correspondingly internally threaded portion of tool body 34 at opening 90. O-rings 60 can be used to interface between stem 55 and bushing 92. A slightly different configuration is provided for attaching stem 54 to tool body 34. Sleeve 94 occupies a position that surrounds stem 54. Sleeve 54 fits inside of bore 95 of bushing 92. The externally threaded portion 93 of bushing 92 engages correspondingly shaped threads of opening 90. Pins 99 form a connection between the stem 54 at openings 98 and the sleeve 94. Fastener 96 forms a connection between bushing 92 and an internally threaded opening 97 of stem 54. As assembled, this configuration can be seen in figure 1A for example. The flat surfaces 69, 70 enable fluid to flow in bore 51 in a position radially outwardly or externally of sleeve or sleeve section 52 by passing between the tool body sections 35,36, 37, 38, 39 and sleeve 52. Thus, bore 51 is divided into two flow channels. These two flow channels 71, 72 include a central flow channel 71 within sleeves 52 that is generally cylindrically shaped and that aligns generally with the channel 53 of each valving member 43,44,45. The second flow channel is an annular outer flow channel 72 that is positioned in between a sleeve 52 and the tool body sections 35,36, 37,38,39. The channels 71,72 can be concentric. The outer channel 72 is open when the valving members 43, 44, 45 are in the closed positions of figures ΙΑ, IB and 1C, wherein central flow channel 71 is closed. When the valving members 43,44,45 are rotated to a closed position, fins 73 become transversely positioned with respect to the flow path of fluid flowing in channel 72 thus closing outer flow channel 72 (see figure 5). This occurs when a valving member 43,44,45 is opened for releasing a ball 40 or 42 or for releasing dart 41. Figure 4 illustrates a closed position (figure 4) of the valving member 45 just before releasing smaller diameter ball 42. Fins 73 are generally aligned with bore 15 and with flow channels 71, 72 when flow in channel 72 is desired (figure 4). In figure 4, valving member 45 is closed and outer flow channel 72 is open.
In figures 2-3,5 and 7-8, a tool 74 has been used to rotate valving member 45 to an open position that aligns its channel 53 with central flow channel 71 enabling smaller diameter ball 42 to fall downwardly via central flow channel 71 (figure 8). In figure 5, outer flow channel 72 has been closed by fins 73 that have now rotated about 90 degrees from the open position of figure 4 to the closed position. Fins 73 close channel 72 in figure 5. It should be understood that tool 74 can also be used to rotate valving member 44 from an open position of figure IB to a closed position such as is shown in figure 5 when it is desired that dart 41 should drop. Similarly, tool 74 can be used to rotate upper valving member 43 from the closed position of figure 1A to an open position such as is shown in figure 5 when it is desired to drop larger diameter ball 40.
Figures 7-16 illustrate further the method and apparatus of the present invention. In figure 8, lower or third valving member 45 has been opened as shown in figure 5 releasing smaller diameter ball 42. In figure 8, smaller diameter ball 42 is shown dropping wherein it is in phantom lines, its path indicated schematically by arrows 75.
Figure 10 shows a pair of commercially available, known plugs 76,77. These plugs 76,77 include upper plug 76 and lower plug 77. Each of the plugs 76, 77 can be provided with a flow passage 79, 81 respectively that enables fluid to circulate through it before ball 42 forms a seal upon the flow passage 81. Smaller diameter ball 42 has seated upon the lower plug 77 in figure 10 so that it can now be pumped downwardly, pushing cement 80 ahead of it. In figure 11, arrows 78 schematically illustrate the downward movement of lower plug 77 when urged downwardly by a pumped substance such as apumpable cement or like material 80. Each of the plugs 76,77 can be provided with a flow passage 79, 81 respectively that enables fluid to circulate through it before ball 42 forms a seal upon the flow passage 81 (see figure 11). When plug 77 reaches float valve 28, pressure can be increased to push ball 42 through plug 77, float valve 28 and casing shoe 27 so that the cement flows (see arrows 100, figure 11) into the space 101 between formation 26 and casing 32.
In figure 12, second valving member 44 is opened releasing dart 41. Dart41 can be used to push the cement 80 downwardly in the direction of arrows 82. A completion fluid or other fluid 83 can be used to pump dart 41 downwardly, pushing cement 80 ahead of it. Once valves 44 and 45 are opened, fluid 83 can flow through openings 84 provided in sleeves 52 below the opened valving member (see figure 7) as illustrated in figures 7 and 12. Thus, as each valving member 43 or 44 or 45 is opened, fluid moves through the openings 84 into central flow channel 71.
When valve 44 is opened, dart 41 can be pumped downwardly to engage upper plug 76, registering upon it and closing its flow passage 79, pushing it downwardly as illustrated in figures 14 and 15. Upper plug 79 and dart 41 are pumped downwardly using fluid 83 as illustrated in figures 14 and 15. In figure 16, first valving member 43 is opened so that larger diameter ball 40 can move downwardly, pushing any remaining cement 80 downwardly.
The ball 40 can be deformable, so that it can enter the smaller diameter section 86 at the lower end portion of tool body 34. During this process, cement or like mixture 80 is forced downwardly through float collar 28 and casing shoe 27 into the space that is in between production casing 32 and formation 26. This operation helps stabilize production casing 32 and prevents erosion of the surrounding formation 26 during drilling operations.
During drilling operations, a drill bit is lowered on a drill string using derrick 12, wherein the drill bit simply drills through the production casing 32 as it expands the well downwardly in search of oil.
Figures 18-26 show an alternate embodiment of the apparatus of the present invention, designated generally by the numeral 110 in figures 22-23. In figures 18-26, the flow openings 84 in sleeves 52 of ball/plug dropping head 110 of figures 1-17 have been eliminated. Instead, sliding sleeves 111 are provided that move up or down responsive to movement of a selected valving member 112,113. It should be understood that the same tool body 34 can be used with the embodiment of figures 18-26, connected in the same maimer shown in figures 1-17 to tubularmember 22 and string 16. In figures 18-26, valving members 112,113 replace thevalving members 43,44,45 of figures 1-17. In figures 18-26, sleeves 111 replace sleeves 52. While two valving members 112,113 are shown in figures 22, 23, it should be understood that three such valving members (and a corresponding sleeve 111) could be employed, each valving member 112, 113 replacing a valving member 43,44,45 of figures 1-17.
In figures 18-26, tool body 34 has upper and lower end portions 31,33. As with the preferred embodiment of figures 1-17, a flow bore 51 provides a central flow channel 71 and outer flow channel 72. Each valving member 112,113 provides a valve opening 114. Each valving member 112,113 provides a flat surface 115 (see figure 20). Each valving member 112,113 provides a pair of opposed curved surfaces 116 as shown in figure 20 and a pair of opposed flat surfaces 117, each having a stem 119 or 120.
An internal, generally cylindrically shaped surface 118 surrounds valve opening 114 as shown in figure 20. Each valving member 112,113 provides opposed stems 119, 120. Each valving member 112, 113 rotates between opened and closed positions by rotating upon stems 119,120. Each of the stems 119,120 is mounted in a stem opening 90 of tool body 34 at positions 61,62 and 63, 64 as shown in figure 22.
In figure 19, valving member 122, 123 is similar in configuration and in sizing to the valving members 43,44,45 of the preferred embodiment of figures 1-17, with the exception of a portion that has been removed which is indicated in phantom lines in figure 19. The milled or cut-away portion of the valving member 112,113 is indicated schematically by the arrow 121. Reference line 122 in figure 19 indicates the final shape of valving member 112, 113 after having been milled or cut. In figures 20 and 21, a beveled edge at 123 is provided for each valving member 112,113.
When a valving member 112, 113 is in the closed position of figure 22, flow arrows 124 indicate the flow of fluid through the tool body 34 bore 51 and more particularly in the outer channel 72 as indicated in figure 22.
In figure 23, the lower valving member 113 has been rotated to an open position as indicated schematically by the arrow 134, having been rotated with tool 74. In this position, fins 73 now block the flow of fluid in outer channel 72. Flat surface 115 now faces upwardly. In this position, the cut-away portion of valving member 113 that is indicated schematically by the arrow 121 in figure 19 now faces up. Sliding sleeve 111 drops downwardly as indicated schematically by arrows 130 when a valving member 112 or 113 is rotated to an open position (see valving member 113 in figure 23). In figure 22, a gap 129 was present in between upper valve 112 and sleeve 111 that is below the valve 112. The sleeve 111 that is in between the valves 112,113 is shown in figure 22 as being filled with very small diameter balls or “ffac-balls” 102.
When valving member 113 is rotated to the open position of figure 23, the gap is now a larger gap, indicated as 135. Gap 135 (when compared to smaller gap 129) has become enlarged an amount equal to the distance 121 illustrated by arrow 121 in figure 19. The frac-balls 102 now drop through valving member 113 as illustrated by arrows 127 in figure 23. Arrows 125,126 in figure 23 illustrate the flow of fluid downwardly through gap 135 and in central channel 71. A sleeve 111 above a valving member 112 or 113 thus move up and down responsive to a rotation of that valving member 112 or 113. Spacers 28 can be employed that extend from each sleeve 111 radially to slidably engage tool body 34. In figures 20 and 21, each stem 119,120 can be provided with one or more annular grooves 131 that are receptive of o-rings 60 or other sealing material. As with the preferred embodiment of figures 1-17, openings 132 in each stem 119,120 are receptive of pins 99. Likewise, each stem 119, 120 provides internally threaded openings 133. Thus, the same connection for attaching a valving member 112, 113 to tool body 34 can be the one shown in figures 1-17.
The following is a list of parts and materials suitable for use in the present invention.
PARTS LIST
Part Number Description 10 oil well drilling structure 11 platform 12 derrick 13 top drive unit 14 flow line 15 ball/plug dropping head 16 string 17 sea bed/mud line 18 body of water 19 water surface 20 platform deck 21 lifting device 22 tubular member 23 well bore 24 surface casing 25 cement/concrete 26 formation 27 casing shoe 28 float valve 29 passageway 30 passageway 31 upper end 32 liner/production casing 33 lower end portion 34 tool body 35 section 36 section 37 section 38 section 39 section 40 larger diameter ball 41 dart 42 smaller diameter ball 43 first valving member 44 second valving member 45 third valving member 46 threaded connection 47 threaded connection 48 threaded connection 49 threaded connection 50 threaded portion 51 flow bore 52 sleeve 53 channel 54 stem 55 stem 56 sleeve 57 sleeve 58 plug 59 plug 60 o-ring 61 opening position 62 opening position 63 opening position 64 opening position 65 opening position 66 opening position 67 spacer 68 outer curved surface 69 flat surface 70 flat surface 71 central flow channel 72 outer flow channel 73 fin 74 tool 75 arrow 76 upper plug 77 lower plug 78 arrows 79 flow passage 80 cement 81 flow passage 82 arrow . 83 fluid 84 opening 85 opening 86 smaller diameter section 87 arrow - fluid flow path 88 fastener 89 internally threaded opening 90 opening 91 fastener 92 bushing 93 external threads 94 sleeve 95 passageway/bore 96 fastener 97 internally threaded opening 98 opening 99 pin 100 arrows 101 space 102 ffac-ball 110 ball/plug dropping head 111 sleeve 112 valving member 113 valving member 114 valve opening 115 flat surface 116 curved surface 117 flat surface 118 internal surface 119 stem 120 stem 121 arrow . 122 reference line 123 beveled edge 124 arrow 125 arrow 126 arrow 127 arrow 128 spacer 129 smaller gap 130 arrow sleeve movement 131 annular groove 132 opening 133 internally threaded opening 134 arrow 135 larger gap
All measurements disclosed herein are at standard temperature and pressure, at sea level on Earth, unless indicated otherwise. All materials used or intended to be used in a human being are biocompatible, unless indicated otherwise.
The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims.
Claims (21)
- THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:1. A ball and plug dropping head for use in sequentially dropping one or more balls and plugs into a well tubing, comprising: a) a housing having an inlet at its upper end adapted to be fluidly connected in line with the lower end of a top drive, an outlet generally aligned with the inlet; b) the housing having an inner surface surrounding an outer bypass channel and an inner flow channel, wherein each said channel connects to the inlet and the outlet; c) a plurality of valving members spaced between the inlet and the outlet, each valving member having an inner valve with a flow bore, and being movable between open and closed positions, each valving member having an outer valve that is in an open position when the inner valve is closed and in a closed position when the inner valve is open, said outer valve presenting a curved surface to the housing inner surface when the inner valve is open, each outer valve not valving flow in the bypass channel when the inner flow channel is closed; d) canisters in the housing that separate said inner and bypass fluid flow channels, said bypass channel enabling fluid to bypass the inner valve and the inner flow channel when the outer valve is in the open position and the inner valve is in the closed position; e) wherein the inner valve does not valve fluid flow in the bypass flow channel when the inner valve is in the closed position; f) wherein fluid flow flows around the inner valve and in between the canisters and the housing inner surface when it is in the closed position and through the inner valve when it is in the open position; g) each canister being a sliding sleeve above each inner valve that is configured to support a ball or plug when the inner valve below the sleeve is closed; and h) wherein in the open position each inner valve flow bore permits a ball or plug to pass therethrough, and circulating fluid to pass downwardly therethrough when neither a ball nor plug is in the inner valve flow bore.
- 2. A ball and plug dropping head for use in sequentially dropping one or more balls, darts or plugs into a well tubing, comprising: a) a housing having an inlet at its upper end adapted to be fluidly connected in line with the lower end of a top drive, an outlet generally aligned with the inlet and a mating inside surface; b) the housing having an inner surface surrounding an outer bypass channel and an inner flow Channel, wherein each said channel connects to the inlet and the outlet; c) a plurality of valving members spaced between the inlet and the outlet, each valving member having an inner valve with a flow bore, and being movable between open and closed positions, each valving member having an outer valve that is in an open position when the inner valve is closed and in a closed position when the inner valve is open, said outer valve presenting a mating surface to the housing inner surface when the inner valve is open, each outer Valve not valving flow in the bypass channel when the inner flow channel is closed; d) canisters in the housing that separate said inner and bypass secondary fluid flow channels, said bypass channel enabling fluid to bypass the inner valve and the inner flow channel when the outer valve is in the open position and the inner valve is in the closed position; e) wherein the inner valve does not valve fluid flow in the bypass flow channel when the inner valve is in the closed position; f) wherein fluid flow flows around the inner valve and in between the canisters and the housing inner surface when it is in the closed position and through the inner valve when it is in the open position; g) each canister being a sliding sleeve above each inner valve that is configured to support a ball, dart or plug when the inner valve below the sleeve is closed; h) wherein in the open position each inner valve flow bore permits a ball, dart or plug to pass therethrough, and circulating fluid to pass downwardly therethrough when neither a ball, dart nor plug is in the inner valve flow bore; and i) one or more members attached to and rotating with the valving member that close the secondary channel when the valving member opens the main channel, said member having a mating edge that tracks said mating inside surface.
- 3. The ball and plug dropping head of claim 1 or 2, wherein at least one outer valve has a pair of opposed, generally flat surfaces.
- 4. The ball and plug dropping head of claim 1 or 2, wherein at least one inner valve has a valve opening that enables passage of a plug of a diameter of 6.5 inches (16.5 cm).
- 5. The ball and plug dropping head of claim 1 or 2, wherein at least one inner valve in the closed position has a generally cylindrically shaped cross section.
- 6. The ball and plug dropping head of claim 1 or 2, wherein at least one inner valve in the open position has a generally rectangular shaped longitudinal cross section.
- 7. The ball and plug dropping head of claim 1 or 2, wherein the body has a working tension of two million pounds.
- 8. The ball and plug dropping head of claim 1 or 2, wherein the body has an internal working pressure of 15,000 psi.
- 9. The ball and plug dropping head of claim 1 or 2, wherein the body has a working torque of 50,000 foot pounds.
- 10. The ball and plug dropping head of claim 8, wherein the body has a working torque of 50,000 foot pounds in either of two rotational directions.
- 11. The ball and plug dropping head of claim 1 or 2, wherein there are multiple valving members that enable fluid flow around the inner valve when the valving member is closed.
- 12. A ball and plug dropping head for use in sequentially dropping one or more balls and plugs into a well tubing, comprising: a) a housing having an inlet at its upper end adapted to be fluidly connected in line with the lower end of a top drive, an outlet generally aligned with the inlet; b) the housing having an inner surface surrounding an outer bypass channel and an inner flow channel, wherein each said channel connects to the inlet and the outlet; c) a plurality of valving members spaced between the inlet and the outlet, each valving member having an inner part with a flow bore, and being movable between open and closed positions, each valving member having an outer part in the form of fins that present a curved surface to the housing inner surface when the inner part is open, each fin having a thickness that does not valve flow in the bypass channel when the inner flow channel is closed; d) canisters in the housing that separate said inner and bypass fluid flow channels, said bypass channel enabling fluid to bypass the valving members inner part and the inner flow channel when a valving member inner part is in the closed position; e) wherein the valving members inner parts does not valve fluid flow in the bypass flow channel when the inner part is in the closed position; f) wherein fluid flow in the main channel flows around the valving member and in between the canisters and the housing inner surface when the valving member inner part is in the closed position and through the valving member inner part when the inner part is in the open position; g) wherein each valving member is configured to support a ball or plug when closed; h) wherein in the open position each valve inner part flow bore permits a ball or plug to pass therethrough, and circulating fluid to pass downwardly therethrough when neither a ball nor plug is in the valve flow bore.
- 13. The ball and plug dropping head of claim 12, wherein at least one valving member has a pair of opposed, generally flat surfaces.
- 14. The ball and plug dropping head of claim 12, wherein at least one valving member has a valve opening that enables passage of a plug of a diameter of 6.5 inches.
- 15. The ball and plug dropping head of claim 12, wherein at least one valving member in the closed position has a generally cylindrically shaped cross section.
- 16. The ball and plug dropping head of claim 12, wherein at least one valving member in the closed position has a generally rectangular shaped cross section.
- 17. The ball and plug dropping head of claim 12, wherein the housing has a working tension of two million pounds.
- 18. The ball and plug dropping head of claim 12, wherein the housing has an internal working pressure of 15,000 psi.
- 19. The ball and plug dropping head of claim 12, wherein the housing has a working torque of 50,000 foot pounds.
- 20. The ball and plug dropping head of claim 19, wherein the housing has a working torque of 50,000 foot pounds in either of two rotational directions.
- 21. The ball and plug dropping head of claim 12, wherein there are multiple valving members that enable fluid flow around the valving member when the valving member is closed.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2014200015A AU2014200015B2 (en) | 2007-05-16 | 2014-01-03 | Method and apparatus for dropping a pump down plug or ball |
AU2016204009A AU2016204009B2 (en) | 2007-05-16 | 2016-06-15 | Method and apparatus for dropping a pump down plug or ball |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/749,591 | 2007-05-16 | ||
US11/951,802 | 2007-12-06 | ||
AU2008254874A AU2008254874B2 (en) | 2007-05-16 | 2008-05-15 | Method and apparatus for dropping a pump down plug or ball |
AU2014200015A AU2014200015B2 (en) | 2007-05-16 | 2014-01-03 | Method and apparatus for dropping a pump down plug or ball |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2008254874A Division AU2008254874B2 (en) | 2007-05-16 | 2008-05-15 | Method and apparatus for dropping a pump down plug or ball |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2016204009A Division AU2016204009B2 (en) | 2007-05-16 | 2016-06-15 | Method and apparatus for dropping a pump down plug or ball |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2014200015A1 AU2014200015A1 (en) | 2014-01-23 |
AU2014200015B2 true AU2014200015B2 (en) | 2016-06-23 |
Family
ID=49956556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2014200015A Active AU2014200015B2 (en) | 2007-05-16 | 2014-01-03 | Method and apparatus for dropping a pump down plug or ball |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2014200015B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6672384B2 (en) * | 2002-01-31 | 2004-01-06 | Weatherford/Lamb, Inc. | Plug-dropping container for releasing a plug into a wellbore |
-
2014
- 2014-01-03 AU AU2014200015A patent/AU2014200015B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6672384B2 (en) * | 2002-01-31 | 2004-01-06 | Weatherford/Lamb, Inc. | Plug-dropping container for releasing a plug into a wellbore |
Also Published As
Publication number | Publication date |
---|---|
AU2014200015A1 (en) | 2014-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11821285B2 (en) | Method and apparatus for dropping a pump down plug or ball | |
US7918278B2 (en) | Method and apparatus for dropping a pump down plug or ball | |
CA2686270C (en) | Method and apparatus for dropping a pump down plug or ball | |
US7607481B2 (en) | Method and apparatus for dropping a pump down plug or ball | |
AU2014200015B2 (en) | Method and apparatus for dropping a pump down plug or ball | |
AU2016204009B2 (en) | Method and apparatus for dropping a pump down plug or ball |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |