AU2013213714A1 - Uses of myostatin antagonists - Google Patents
Uses of myostatin antagonists Download PDFInfo
- Publication number
- AU2013213714A1 AU2013213714A1 AU2013213714A AU2013213714A AU2013213714A1 AU 2013213714 A1 AU2013213714 A1 AU 2013213714A1 AU 2013213714 A AU2013213714 A AU 2013213714A AU 2013213714 A AU2013213714 A AU 2013213714A AU 2013213714 A1 AU2013213714 A1 AU 2013213714A1
- Authority
- AU
- Australia
- Prior art keywords
- myostatin
- seq
- binding
- peptide
- antagonist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Landscapes
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention provides methods for treating disorders arising from hypogonadism, rheumatoid cachexia, cachexia due to burns, cachexia due to administration of chemical agents, cachexia due to diabetes, diabetic nephropathy, Prader Willi syndrome, excessive TNF-a, and other muscle-related, metabolic and inflammatory disorders by administering myostatin antagonists to subjects suffering from such disorders. C:\po\word\SPEC-894591.docx
Description
USES OF MYOSTATIN ANTAGONISTS CROSS-REFERENCE TO RELATED APPLICATIONS The present application is a divisional application from Australian Patent Application Number 2010214673, the entire disclosure of which is incorporated herein by reference. Australian Patent Application Number 2010214673 claims the benefit of United States provisional application serial number 60/742,731 filed December 6, 2005, the entire disclosure of which is relied upon and incorporated by reference. FIELD OF THE INVENTION The invention relates to the transforming growth factor-a (TGF-) family member myostatin, myostatin antagonists, and the uses of these antagonists for the treatment of a variety of diseases. BACKGROUND Myostatin, also known as growth/differentiation factor 8 (GDF-8), is a transforming growth factor- f (TGF-) family member known to be involved in regulation of skeletal muscle mass. Most members of the TGF--GDF family are expressed non-specifically in many tissue types and exert a variety of pleiotropic actions. However, myostatin is largely expressed in the cells of developing and adult skeletal muscle tissue and plays an essential role in negatively controlling skeletal muscle growth (McPherron et al. Nature (London) 387, 83-90 (1997)). Recent studies indicate that myostatin expression can also be measured in cardiac, adipose and pre adipose tissues. The myostatin protein has been highly conserved evolutionarily (McPherron et al. PNAS USA 94:12457-12461 (1997)). The biologically active C-terminal region of myostatin has 100 percent sequence identity between human, mouse, rat, cow, chicken, and turkey sequences. The function of myostatin also appears to be conserved across species as well. This is evident from the phenotypes of animals having a mutation in the myostatin gene. Two breeds of cattle, the Belgian Blue (Hanset R., Muscle Hypertrophy of Genetic Origin and its Use to Improve Beef Production, eds, King, J.W.G. & Menissier, F. (Nijhoff, The Hague, The Netherlands) pp. 437-449) and the Piedmontese (Masoero, G. & Poujardieu, B, Muscle Hypertrophy of Genetic Origin and its Use to Improve Beef Production., eds, King, J.W.G. & Menissier, F. (Nijhoff, The Hague, The Netherlands) pp. 450-459) are characterized by a "double muscling" phenotype and increase in muscle mass. These breeds were shown to contain mutations in the coding region of the myostatin gene (McPherron et al, PNAS (1997) supra). In addition, mice containing a targeted deletion of the gene encoding myostatin (Mstn) demonstrate a dramatic increase in muscle mass without a corresponding increase in fat. Individual muscles of Mstn-'- mice weigh 1 WO 2007/067616 PCT/US2006/046546 approximately 100 to 200 percent more than those of control animals as a result of muscle fiber hypertrophy and hyperplasia (Zimmers et al. Science 296, 1486 (2002)). It has now been discovered that myostatin antagonists can be used to treat additional disorders to those already recognized. The present invention provides methods of treatments for 5 these additional disorders using myostatin antagonists. SUMMARY OF THE INVENTION The present invention provides methods of treatments for various disease conditions. These treatments comprise administering one or more myostatin antagonists to subjects in need of 10 such treatment. The myostatin antagonists can also be administered prophylactically to prevent the development of such condition, and can be administered to a subject either before or after a condition has developed, as needed. The present invention further provides for the use of myostatin antagonists in the preparation of a pharmaceutical composition for treating the conditions listed below. 15 In one embodiment, the invention provides a method of treating the effects of hypogonadism in a subject in need thereof comprising administering a therapeutically effective amount of at least one myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject. In one embodiment, the hypogonadism results from androgen deprivation therapy. In another embodiment, the hypogonadism results from age-related decrease in gonadal 20 functioning. The present invention also provides a method of treating rheumatoid cachexia in a subject suffering from such a condition comprising administering a therapeutically effective amount of at least one myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject. 25 The present invention also provides a method of treating cachexia due to bum injuries in a subject in need of such a treatment comprising administering a therapeutically effective amount of at least one myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject. The present invention also provides a method of treating cachexia due to treatment with 30 chemical agents such as chemotherapeutic agents to a subject in need to such a treatment comprising administering a therapeutically effective amount of at least one myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject. The present invention also provides a method of treating cachexia due to diabetes to a subject in need of such a treatment comprising administering a therapeutically effective amount of 2 WO 2007/067616 PCT/US2006/046546 at least one myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject. The present invention also provides a method of treating diabetic nephropathy in a subject suffering from such a condition comprising administering a therapeutically effective amount of at 5 least one myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject. The present invention also provides an alternative method of treating diseases or conditions currently treated by growth hormone, insulin growth factor-1 (IGF-1), growth hormone secretagogues, and other agents related to the growth hormone- IGF-l axis. Myostatin 10 antagonists provide a method of treating such diseases without the potentially dangerous side effects of growth hormone. In one embodiment, the present invention provides a method of treating the effects of Prader-Willi syndrome in a subject suffering from such a condition comprising administering a therapeutically effective amount of one or more myostatin antagonists in admixture with a pharmaceutically acceptable carrier to the subject. 15 The present invention also provides a method of reducing TNF-a in a subject suffering from an inflammatory disorder comprising administering a therapeutically effective amount of one or more myostatin antagonists to the subject. For the methods of treatment listed above, myostatin antagonists include, but are not limited to the following antagonists: follistatin, myostatin prodomain, GDF-1 1 prodomain, 20 prodomain fusion proteins, antagonistic antibodies or antibody fragments that bind myostatin, antagonistic antibodies or antibody fragments that bind to the activin type JIB receptor, soluble activin type JIB receptor, soluble activin type IIB receptor fusion proteins, soluble myostatin analogs, oligonucleotides, small molecules, peptidomimetics, and myostatin binding agents. Myostatin binding agents are described extensively in the Detailed Description provided 25 below. As used herein the term "myostatin binding agent" includes all binding agents described herein. For example, a myostatin antagonist useful for the treatments described herein is an exemplary binding agent comprises at least one peptide comprising the amino acid sequence WMCPP (SEQ ID NO: 633). In another embodiment, the myostatin binding agent comprises the amino acid sequence Gaia2Wa 3 WMCPP (SEQ ID NO: 352), wherein a,, a 2 and a 3 are selected 30 from a neutral hydrophobic, neutral polar, or basic amino acid. In another embodiment the myostatin binding agent comprises the sequence Cbib23Yb 3 WMCPP_(SEQ ID NO: 353), wherein b, is selected from any one of the amino acids T, , or R; b 2 is selected from any one of R, S, Q; b 3 is selected from any one of P, R and Q, and wherein the peptide is between 10 and 50 amino acids in length, and physiologically acceptable salts thereof. In another embodiment, the- myostatin 35 binding agent comprises the formula: 3 WO 2007/067616 PCT/US2006/046546 cic 2 c 3 c 4 csc6cycsWc 9 WMCPPciocI c 12 c 13 (SEQ ID NO: 354), wherein: c, is absent or any amino acid;
C
2 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; c 3 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; 5 c 4 is absent or any amino acid; cs is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;
C
6 is absent or a neutral hydrophobic, neutral polar, or basic amino acid; c7 is a neutral hydrophobic, neutral polar, or basic amino acid; c 8 is a neutral hydrophobic, neutral polar, or basic amino acid; 10 c 9 is a neutral hydrophobic, neutral polar or basic amino acid; and cIO to c 13 is any amino acid; and wherein the peptide is between 20 and 50 amino acids in length, and physiologically acceptable salts thereof. In another embodiment the myostatin binding agent comprises the formula: did 2 d 3 d 4 dsd 6 Qd 7 ds3Yd 9 WMCPP diod jd 12 dI 3 (SEQ ID NO: 355), wherein 15 d, is absent or any amino acid; d 2 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; d 3 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; d 4 is absent or any amino acid; d 5 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; 20 d 6 is absent or a neutral hydrophobic, neutral polar, or basic amino acid; d 7 is selected from any one of the amino acids T, I, or R; ds is selected from any one of R, S, Q; d 9 is selected from any one of P, R and Q, and dio to d1 3 is selected from any amino acid, 25 and wherein the peptide is between 20 and 50 amino acids in length, and physiologically. acceptable salts thereof. Additional embodiments of binding agents useful as myostatin antagonists for treatment of the disorders described herein comprise at least one of the following peptides: (1) a peptide capable of binding myostatin, wherein the peptide comprises the sequence 30 WYeje 2 Ye 3 G, (SEQ ID NO: 356) wherein el is P, S or Y, e 2 is C or Q, and e 3 is G or H, wherein the peptide is between 7 and 50 amino acids in length, and physiologically acceptable salts thereof; 35 (2) a peptide capable of binding myostatin, wherein the peptide comprises the sequence f 1 EMLfSLf 3 f 4 LL, (SEQ ID NO: 455), wherein f, is M or I, f 2 is any amino acid, f 3 is L or F, 40 f 4 is E, Q or D; and wherein the peptide is between 7 and 50 amino acids in length, and physiologically acceptable salts thereof; 4 WO 2007/067616 PCT/US2006/046546 (3) a peptide capable of binding myostatin wherein the peptide comprises the sequence _LgIgLLg 3 g 4 L, (SEQ ID NO: 456), wherein g, is Q, D or E, g2 is S, Q, D or E, 5 g 3 is any amino acid, g 4 is L, W, F, or Y, and wherein the peptide is between 8 and 50 amino acids in length, and physiologically acceptable salts thereof; (4) a peptide capable of binding myostatin, wherein the peptide comprises the sequence hih 2 h 3 h 4 hsh 6 h 7 h 8 h 9 (SEQ ID NO: 457), wherein 10 h, is R or D, h 2 is any amino acid, h 3 is A, T S or Q, h 4 is L or M, hs is L or S, 15 h 6 is any amino acid, h7 is F or E, hs is W, F or C, h 9 is L, F, M or K, and wherein the peptide is between 9 and 50 amino acids in length, and physiologically acceptable salts thereof. 20 In another embodiment, described more completely in the Detailed Description below, the binding agents useful as myostatin antagonists comprise at least one vehicle such as a polymer or an Fc domain, and may further comprise at least one linker sequence. In this embodiment, the binding agents of the present invention are constructed so that at least one myostatin binding peptide is attached to at least one vehicle. The peptide or peptides are attached directly or 25 indirectly through a linker sequence, to the vehicle at the N-terminal, C-terminal or an amino acid side chain of the peptide, thereby providing peptibodies. In this embodiment, the binding agents of the present invention have the following generalized structure: (X')a-F'-(X 2 )b, or multimers thereof; wherein F' is a vehicle; and X' and X 2 are each independently selected from 30 -(L).- PI; -(L')e.-P'-(L2 _p2. -(L')e-P -(L 2 )dPp2_-(L 3 p-(3. and -(L')e-P -(L-)~2_ ) 2 3 p3_ 4 fp4. wherein P', P 2 , p 3 , and P 4 are peptides capable of binding myostatin; and 35 L', L 2 , L 3 , and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof. In embodiments of binding agents having this generalized structure, the peptides P', P 2 ' p 3 , and P 4 can be independently selected from one or more of any of the peptide sequences provided herein, as 5 WO 2007/067616 PCT/US2006/046546 described in the Detailed Description below. For example, in exemplary embodiments, P', P2, P 3 , and P 4 are independently selected from one or more peptides comprising any of the following sequences: SEQ ID NO: 633, SEQ ID NO: 352, SEQ ID NO: 353, SEQ ID NO: 354, SEQ ID NO: 355, SEQ ID NO: 356, SEQ ID NO: 455, SEQ ID NO: 456, and SEQ ID NO: 457. In 5 another embodiment, P P', p 2 , p 3 , and P 4 are independently selected from one or more peptides comprising any of the following sequences SEQ ID NO: 305 through 351 and SEQ ID NO: 357 through 454. Additional embodiments of myostatin binding agents are provided in the Detailed Description of the Invention below. The present invention also provides pharmaceutically acceptable compositions 10 comprising one or more myostatin antagonists for treating hypogonadism, rheumatoid cachexia, cachexia due to bums, cachexia due to chemical agents, cachexia due to diabetes, diabetic nephropathy, Prader Willi syndrome, excessive TNF-a, in a subject, and other disorders. BRIEF DESCRIPTION OF THE FIGURES 15 Figure 1 shows myostatin activity as measured by expressed luciferase activity (y-axis) vrs. concentration (x-axis) for the TN8-19 peptide QGHCTRWPWMCPPY (Seq ID No: 32) and the TN8-19 peptibody (pb) to determine the IC 50 for each using the C2C 12 pMARE luciferase assay described in the Examples below. The peptibody has a lower IC 5 o value compared with the peptide. 20 Figure 2 is a graph showing the increase in total body weight for CD1 nu/nu mice treated with increasing dosages of the 1x mTN8-19-21 peptibody over a fourteen day period compared with mice treated with a huFc control, as described in Example 8. Figure 3A shows the increase in the mass of the gastrocnemius muscle mass at necropsy of the mice treated in Figure 2 (Example 8). Figure 3B shows the increase in lean mass as 25 determined by NMR on day 0 compared with day 13 of the experiment described in Example 8. Figure 4 shows the increase in lean body mass as for CD 1 nu/nu mice treated with biweekly injections of increasing dosages of 1x mTN8-1 9-32 peptibody as determined by NMR on day 0 and day 13 of the experiment described in Example 8. Figure 5A shows the increase in body weight for CD1 nu/nu mice treated with biweekly 30 injections of lx mTN8-19-7 compared with 2x mTN8-19-7 and the control animal for 35 days as described in Example 8. Figure 5B shows the increase in lean carcass weight at necropsy for the lx and 2x versions at 1 mg/kg and 3 mg/kg compared with the animals receiving the vehicle (huFc) (controls). Figure 6A shows the increase in lean muscle mass vrs. body weight for aged mdx mice 35 treated with either affinity matured 1x mTN8-19-33 peptibody or huFc vehicle at 10 mg/kg 6 WO 2007/067616 PCT/US2006/046546 subcutaneously every other day for three months. Figure 6B shows the change in fat mass compared to body weight as determined by NMR for the same mice after 3 months of treatment. Figure 7 shows the change in body mass over time in grams for collagen-induced arthritis (CIA) animals treated with the peptibody 2x mTN8-19-21/muFc or muFc vehicle, as well as 5 normal non-CIA animals. Figure 8 shows the relative body weight change over time in streptozotocin (STZ) induced diabetic mice treated with the peptibody 2x mTN8-l 9-21/muFc or the muFc vehicle control. Figure 9 shows creatine clearance rate in streptozotocin (STZ)-induced diabetic mice and 10 age-matched normal mice after treatment with peptibody 2x mTN8-19-21/muFc or the muFc vehicle. Figure IOA shows urine albumin excretion in streptozotocin (STZ)-induced diabetic mice and age-matched normal mice after treatment with peptibody 2x mTN8-19-21/muFc or the muFc vehicle. Figure lOB shows the 24 hour urine volume in streptozotocin (STZ)-induced diabetic 15 mice and age-matched normal mice after treatment with peptibody 2x mTN8-19-2 1/muFc or the muFc vehicle. Figure' 11 shows body weight change over time for 4 groups of C57B1/6 mice; 2 groups pretreated for 1 week with peptibody 2x mTN8-19-21/muFc, then treated with 5-fluoruracil (5 Fu) or vehicle (PBS); and 2 groups pretreated for 2 weeks with 2x mTN8-19-21/muFc, and then 20 treated with 5-fluorouracil or vehicle (PBS). The triangles along the bottom of the Figure show times of administration of 2 week pretreatment with 2x mTN8-1 9-21/muFc, times of administration of I week pretreatment with 2x mTN8-19-21/muFc, and times of administration of 5-Fu. Figure 12 shows the survival rate percentages the animals described in Figure 11 above, 25 showing normal mice not treated, animals treated with 5-Fu only, animals pretreated with 2x mTN8-19-2 1/muFc for I week and then treated with 5-Fu, and animals pretreated with 2x mTN8 19-21/muFc for 2 weeks and then treated with 5-Fu. DETAILED DESCRIPTION OF THE INVENTION 30 The present invention provides pharmaceutical compositions and methods of treating various disorders using myostatin antagonists including the myostatin binding agents. The invention provides a method of treating the effects of hypogonadism in a subject in need thereof comprising administering a therapeutically effective amount of at least one myostatin antagonist to the subject in admixture with a pharmaceutically acceptable carrier. In one embodiment the 7 WO 2007/067616 PCT/US2006/046546 hypogonadism results from androgen deprivation therapy. In a second embodiment, the hypogonadism results from age-related decrease in gonadal functioning. The present invention also provides a method of treating rheumatoid cachexia in a subject suffering from such a condition comprising administering a therapeutically effective amount of at 5 least one myostatin antagonists to the subject in admixture with a pharmaceutically acceptable carrier. The present invention also provides a method of reducing TNF-a in a subject suffering from an inflammatory condition characterized by excessive TNF-a. The present invention also provides a method of treating cachexia due to burn injuries in a subject in need thereof comprising administering a therapeutically effective amount of at least one myostatin antagonist to the subject 10 in admixture with a pharmaceutically acceptable carrier. The present invention also provides a method of treating cachexia due to treatment with chemical agents such as chemotherapeutic agents to a subject in need to such a treatment comprising administering a therapeutically effective amount of at least one myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject. 15 The present invention also provides a method of treating cachexia due to diabetes to a subject in need of such a treatment comprising administering a therapeutically effective amount of at least one myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject. The present invention also provides a method of treating diabetic nephropathy in a subject suffering from such a condition comprising administering a therapeutically effective 20 amount of at least one myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject. The present invention also provides an alternative method of treating diseases or conditions formerly treated by growth hormone, insulin growth factor-I (IGF-1), growth hormone secretagogues, and other agents related to the growth hormone- IGF-1 axis. Myostatin 25 antagonists provide a method of treating such diseases without the potentially dangerous side effects of these agents. In one embodiment, the present invention provides a method of treating the effects of Prader-Willi syndrome in a subject suffering from such a condition comprising administering a therapeutically effective amount of at least one myostatin antagonists to the subject in admixture with a pharmaceutically acceptable carrier. 30 According to the present invention, myostatin antagonists include, but are not limited to, follistatin, myostatin prodomain, GDF-1 1 prodomain, other TGF-8 prodomains, prodomain fusion proteins, antagonistic antibodies or antibody fragments that bind myostatin, antagonistic antibodies or antibody fragments that bind to the activin type II3 receptor, soluble activin type IIB receptor, soluble activin type IIB receptor fusion proteins, soluble myostatin analogs, 8 WO 2007/067616 PCT/US2006/046546 oligonucleotides, small molecules, peptidomimetics, and myostatin binding agents. These antagonists are described more completely below. In one embodiment, the myostatin antagonists are myostatin binding agents, described more completely below. 5 Myostatin Myostatin, a growth factor also known as GDF-8, is a member of the TGF-B family. Myostatin known to be a negative regulator of skeletal muscle tissue. Myostatin is synthesized as an inactive preproprotein which is activated by proteolyic cleavage (Zimmers et al., supra (2002)). The precurser protein is cleaved to produce an NH 2 -terminal inactive prodomain and an 10 approximately 109 amino acid COOH-terminal protein in the form of a homodimer of about 25 kDa, which is the mature, active form (Zimmers et al, supra (2002)). It is now believed that the mature dimer circulates in the blood as an inactive latent complex bound to the propeptide (Zimmers et al, supra (2002)). As used herein the term "full-length myostatin" refers to the full-length human 15 preproprotein sequence described in McPherron et al. PNAS USA 94, 12457 (1997), as well as related full-length polypeptides including allelic variants and interspecies homologs (McPherron et al. supra (1997)). As used herein, the term "prodomain" or "propeptide" refers to the inactive NH-terminal protein which is cleaved off to release the active COOH-terminal protein. As used herein the term "myostatin" or "mature myostatin" refers to the mature, biologically active 20 COOH-terminal polypeptide, in monomer, dimer, multimeric form or other form. "Myostatin" or "mature myostatin" also refers to fragments of the biologically active mature myostatin, as well as related polypeptides including allelic variants, splice variants, and fusion peptides and polypeptides. The mature myostatin COOH-terminal protein has been reported to have 100% sequence identity among many species including human, mouse, chicken, porcine, turkey, and rat 25 (Lee et al., PNAS 98, 9306 (2001)). Myostatin may or may not include additional terminal residues such as targeting sequences, or methionine and lysine residues and /or tag or fusion protein sequences, depending on how it is prepared. Myostatin Antagonists 30 As used herein the term "myostatin antagonist" is used interchangeably with "myostatin inhibitor". A myostatin antagonist according to the present invention inhibits or blocks at least one activity of myostatin, or alternatively, blocks expression of myostatin or its receptor. Inhibiting or blocking myostatin activity can be achieved, for example, by employing one or more inhibitory agents which interfere with the binding of myostatin to its receptor, and/or blocks 35 signal transduction resulting from the binding of myostatin to its receptor. Antagonists include 9 WO 2007/067616 PCT/US2006/046546 agents which bind to myostatin itself, or agents which bind to a myostatin receptor. For example, myostatin antagonists include but are not limited to follistatin, the myostatin prodomain, growth and differentiation factor 11 (GDF-1 1) prodomain, prodomain fusion proteins, antagonistic antibodies that bind to myostatin, antagonistic antibodies or antibody fragments that bind to the 5 activin type IIB receptor, soluble activin type IIB receptor, soluble activin type IIB receptor fusion proteins, soluble myostatin analogs (soluble ligands), oligonucleotides, small molecules, peptidomimetics, and myostatin binding agents. These are described in more detail below. Follistastin inhibits myostatin, as described, for example, in Amthor et al., Dev Biol 270, 19-30 (2004), and US patent 6,004,937, which is herein incorporated by reference. Other 10 inhibitors include, for example, TGF-B binding proteins including growth and differentiation factor-associated serum protein-1 (GASP) as described in Hill et al., Mo. Endo. 17 (6): 1144 1154 (2003). Myostatin antagonists include the propeptide region of myostatin and related GDF proteins including GDF-l 1, as described in PCT publication WO 02/09641, which is herein incorporated by reference. Myostatin antagonists further include modified and stabilized 15 propeptides including Fc fusions of the prodomain as described, for example, in Bogdanovisch et al, FASEB J 19, 543-549 (2005). Additional myostatin antagonists include antibodies or antibody fragments which bind to and inhibit or neutralize myostatin, including the myostatin proprotein and/or mature protein, which in monomeric or dimeric form. Such antibodies are described, for example, in US patent application US 2004/0142383, and US patent application 20 2003/1038422, and PCT publication WO 2005/094446, PCT publication WO 2006/116269, all of which are incorporated by reference herein. Antagonistic myostatin antibodies further include antibodies which bind to the myostatin proprotein and prevent cleavage into the mature active form. As used herein, the term "antibody" refers to refers to intact antibodies including 25 polyclonal antibodies (see, for example Antibodies: A Laboratory Manual, Harlow and Lane (eds), Cold Spring Harbor Press, (1988)), and monoclonal antibodies (see, for example, U.S. Patent Nos. RE 32,011, 4,902,614, 4,543,439, and 4,411,993, and Monoclonal Antibodies: A New Dimension in Biological Analysis, Plenum Press, Kennett, McKearn and Bechtol (eds.) (1980)). As used herein, the term "antibody" also refers to a fragment of an antibody such as 30 F(ab), F(ab'), F(ab') 2 , Fv, Fc, and single chain antibodies, or combinations of these, which are produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. The term "antibody" also refers to bispecific or bifunctional antibodies which are an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Bispecific antibodies can be produced by a variety of methods including fusion of 35 hybridomas or linking of Fab' fragments. (See Songsivilai et al, Clin. Exp. Immunol. 79:315-321 10 WO 2007/067616 PCT/US2006/046546 (1990), Kostelny et al., J. Immunol.148:1547-1 5 5 3 (1992)). As used herein the term "antibody" also refers to chimeric antibodies, that is, antibodies having a human constant antibody immunoglobulin domain is coupled to one or more non-human variable antibody immunoglobulin domain, or fragments thereof (see, for example, U.S. Patent No. 5,595,898 and U.S. Patent No. 5 5,693,493). The term "antibodies" also refers to "humanized" antibodies (see, for example, U.S. Pat. No. 4,816,567 and WO 94/10332), minibodies (WO 94/09817), single chain Fv-Fc fusions (Powers et al., JImmunol. Methods 251:123-135 (2001)), and antibodies produced by transgenic animals, in which a transgenic animal containing a proportion of the human antibody producing genes but deficient in the production of endogenous antibodies are capable of producing human 10 antibodies (see, for example, Mendez et al., Nature Genetics 15:146-156 (1997), and U.S. Patent No. 6,300,129). The term "antibodies" also includes multimeric antibodies, or a higher order complex of proteins such as heterdimeric antibodies. "Antibodies" also includes anti-idiotypic antibodies. Myostatin antagonists further include soluble receptors which bind to myostatin and 15 inhibit at least one activity. As used herein the term "soluble receptor" includes truncated versions or fragments of the myostatin receptor, modified or otherwise, capable of specifically binding to myostatin, and blocking or inhibiting myostatin signal transduction. These truncated versions of the myostatin receptor, for example, includes naturally occurring soluble domains, as well as variations due to proteolysis of the N- or C-termini. The soluble domain includes all or 20 part of the extracellular domain of the receptor, alone or attached to additional peptides or modifications. Myostatin binds activin receptors including activin type IIB receptor (ActRIB) and activin type HA receptor (ActRIIA), as described in Lee et al, PNAS 98 (16), 9306-9311 (2001). Soluble receptor fusion proteins can also act as antagonists, for example soluble receptor Fc as described in US patent application publication 2004/0223966, and PCT publication WO 25 2006/012627, both of which are herein incorporated by reference. Myostatin antagonists further include soluble ligands which compete with myostatin for binding to myostatin receptors. As used herein the term "soluble ligand antagonist" refers to soluble peptides, polypeptides or peptidomimetics capable of binding the myostatin activin type IIB receptor (or ActRIIA) and blocking myostatin-receptor signal transduction by competing with 30 myostatin. Soluble ligand antagonists include variants of myostatin, also referred to as "myostatin analogs" that maintain substantial homology to, but not the activity of the ligand, including truncations such an N- or C-terminal truncations, substitutions, deletions, and other alterations in the amino acid sequence, such as substituting a non-amino acid peptidomimetic for an amino acid residue. Soluble ligand antagonists, for example, may be capable of binding the 35 receptor, but not allowing signal transduction. For the purposes of the present invention a protein 11 WO 2007/067616 PCT/US2006/046546 is "substantially similar" to another protein if they are at least 80%, preferably at least about 90%, more preferably at least about 95% identical to each other in amino acid sequence. Myostatin antagonists further includes polynucleotide antagonists. These antagonists include antisense or sense oligonucleotides comprising a single-stranded polynucleotide sequence 5 (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences. Antisense or sense oligonucleotides, according to the invention, comprise fragments of the targeted polynucleotide sequence encoding myostatin or its receptor, transcription factors, or other polynucleotides involved in the expression of myostatin or its receptor. Such a fragment generally comprises at least about 14 nucleotides, typically from about 14 to about 30 nucleotides. 10 The ability to derive an antisense or a sense oligonucleotide, based upon a nucleic acid sequence encoding a given protein is described in, for example, Stein and Cohen, Cancer Res. 48:2659, 1988, and van der Krol et al. BioTechniques 6:958, 1988. Binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation of duplexes that block or inhibit protein expression by one of several means, including enhanced degradation of the mRNA 15 by RNAse H, inhibition of splicing, premature termination of transcription or translation, or by other means. The antisense oligonucleotides thus may be used to block expression of proteins. Antisense or sense oligonucleotides further comprise oligonucleotides having modified sugar phosphodiester backbones (or other sugar linkages, such as those described in WO 91/06629) and wherein such sugar linkages are resistant to endogenous nucleases. Such oligonucleotides with 20 resistant sugar linkages are stable in vivo (i.e., capable of resisting enzymatic degradation) but retain sequence specificity to be able to bind to target nucleotide sequences. Other examples of sense or antisense oligonucleotides include those oligonucleotides which are covalently linked to organic moieties, such as those described in WO 90/10448, and other moieties that increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly- (L)-lysine. Further 25 still, intercalating agents, such as ellipticine, and alkylating agents or metal complexes may be attached to sense or antisense oligonucleotides to modify binding specificities of the antisense or sense oligonucleotide for the target nucleotide sequence. Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid by any gene transfer method, including, for example, lipofection, CaPO 4 -mediated 30 DNA transfection, electroporation, or by using gene transfer vectors such as Epstein-Barr virus or adenovirus. Sense or antisense oligonucleotides also may be introduced into a cell containing the target nucleic acid by formation of a conjugate with a ligand-binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. 35 Preferably, conjugation of the ligand-binding molecule does not substantially interfere with the 12 WO 2007/067616 PCT/US2006/046546 ability of the ligand-binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid by formation of an oligonucleotide-lipid complex, as described in WO 5 90/10448. The sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous lipase. Additional methods for preventing expression of myostatin or myostatin receptors is RNA interference (RNAi) produced by the introduction of specific small interfering RNA (siRNA), as described, for example in Bosher et al., Nature Cell Biol 2, E31-E36 (2000). 10 The antagonistic nucleic acid molecules according to the present invention are capable of inhibiting or eliminating the functional activity of myostatin in vivo or in vitro. In one embodiment, the selective antagonist will inhibit the functional activity of myostatin by at least about 10%, in another embodiment by at least about 50%, in another embodiment by at least about 80%. 15 Myostatin antagonists further include small molecule antagonists which bind to either myostatin or its receptor. Small molecules are selected by screening for binding to myostatin or its receptor followed by specific and non-specific elutions similarly to the selection of binding agents described herein. Myostatin binding agents are described below. 20 As used herein the term "capable of binding to myostatin" or "having a binding affinity for myostatin" refers to a myostatin antagonist such as a binding agent described herein which binds to myostatin as demonstrated by as the phage ELISA assay, the BIAcore@ or KinExATm assays described in the Examples below. As used herein, the term "capable of modifying myostatin activity" refers to the action of 25 an agent as either an agonist or an antagonist with respect to at least one biological activity of myostatin. As used herein, "agonist" or "mimetic"activity refers an agent having biological activity comparable to a protein that interacts with the protein of interest, as described, for example, in International application WO 01/83525, filed May 2, 2001, which is incorporated herein by reference. 30 As used herein, the term "inhibiting myostatin activity" or "antagonizing myostatin activity" refers to the ability of myostatin antagonist to reduce or block myostatin activity or signaling as demonstrated or in vitro assays such as, for example, the pMARE C2C12 cell-based myostatin activity assay or by in vivo animal testing as described below. 13 WO 2007/067616 PCT/US2006/046546 The present invention contemplates the use of combinations of myostatin antagonists for example, those described herein, in a pharmaceutical composition to treat the disorders discussed herein. 5 Myostatin Binding Agents The myostatin binding agents of the present invention comprise at least one myostatin binding peptide. In one embodiment, the binding agents of the present invention comprise at least one myostatin binding peptide covalently attached to at least one vehicle such as a polymer or an Fc domain. The attachment of the myostatin-binding peptides to at least one vehicle is intended 10 to increase the effectiveness of the binding agent as a therapeutic by increasing the biological activity of the agent and/or decreasing degradation in vivo, increasing half-life in vivo, reducing toxicity or immunogenicity in vivo. The binding agents may further comprise a linker sequence connecting the peptide and the vehicle. The peptide or peptides are attached directly or indirectly through a linker sequence to the vehicle at the N-terminal, C-terminal or an amino acid sidechain 15 of the peptide. In this embodiment, the binding agents of the present invention have the following structure: (X')a-F'-(X 2 )b, or multimers thereof; wherein F1 is a vehicle; and X 1 and X 2 are each independently selected from -(L').- P'; 20 -(L')c-P'-(L 2 )d _p2; -(L')e-P'-(L2)d_p2_ 3 .p3. and -(L')c-P'-(L 2 )d-P 2
-(L
3 )e -P-(L 4
)P
4 wherein P', P 2 , p3, and P 4 are peptides capable of binding myostatin; and L', L 2 , L', and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, 25 provided that at least one of a and b is 1. Any peptide containing a cysteinyl residue may be cross-linked with another Cys containing peptide, either or both of which may be linked to a vehicle. Any peptide having more than one Cys residue may form an intrapeptide disulfide bond, as well. In one embodiment, the vehicle is an Fc domain, defined below. This embodiment is 30 referred to as a "peptibody". As used herein, the term "peptibody" refers to a molecule comprising an antibody Fc domain attached to at least one peptide. The production of peptibodies is generally described in PCT publication WO 00/24782, published May 4, 2000, which is herein incorporated by reference. Exemplary peptibodies are provided as 1x and 2x configurations with one copy and two copies of the peptide (attached in tandem) respectively, as described in the 35 Examples below. 14 WO 2007/067616 PCT/US2006/046546 Peptides As used herein the term "peptide" refers to molecules of about 5 to about 90 amino acids linked by peptide bonds. The peptides of the present invention are preferably between about 5 to about 50 amino acids in length, more preferably between about 10 and 30 amino acids in length, 5 and most preferably between about 10 and 25 amino acids in length, and are capable of binding to the myostatin protein. The peptides of the present invention may comprise part of a sequence of naturally occuring proteins, may be randomized sequences derived from naturally occuring proteins, or may be entirely randomized sequences. The peptides of the present invention may be generated 10 by any methods known in the art including chemical synthesis, digestion of proteins, or recombinant technology. Phage display and RNA-peptide screening, and other affinity screening techniques are particularly useful for generating peptides capable of binding myostatin. Phage display technology is described, for example, in Scott et al. Science 249: 386 (1990); Devlin et al., Science 249: 404 (1990); U.S. Patent No. 5,223,409, issued June 29, 1993; 15 U.S. Patent No. 5,733,731, issued March 31, 1998; U.S. Patent No. 5,498,530, issued March 12, 1996; U.S. Patent No. 5,432,018, issued July 11, 1995; U.S. Patent No. 5,338,665, issued August 16, 1994; U.S. Patent No. 5,922,545, issued July 13, 1999; WO 96/40987, published December 19, 1996; and WO 98/15833, published April 16, 1998, each of which is incorporated herein by reference. Using phage libraries, random peptide sequences are displayed by fusion with coat 20 proteins of filamentous phage. Typically, the displayed peptides are affinity-eluted either specifically or non-specifically against the target molecule. The retained phages may be enriched by successive rounds of affinity purification and repropagation. The best binding peptides are selected for further analysis, for example, by using phage ELISA, described below, and then sequenced. Optionally, mutagenesis libraries may be created and screened to further optimize the 25 sequence of the best binders (Lowman, Ann Rev Biophys Biomol Struct 26:401-24 (1997)). Other methods of generating the myostatin binding peptides include additional affinity selection techniques known in the art. A peptide library can be fused in the carboxyl terminus of the lac repressor and expressed in E.coli. Another E. coli-based method allows display on the cell's outer membrane by fusion with a peptidoglycan-associated lipoprotein (PAL). Hereinafter, 30 these and related methods are collectively referred to as "E. coli display." In another method, translation of random RNA is halted prior to ribosome release, resulting in a library of polypeptides with their associated RNA still attached. Hereinafter, this and related methods are collectively referred to as "ribosome display." Other methods employ chemical linkage of peptides to RNA. See, for example, Roberts and Szostak, Proc Natl Acad Sci USA, 94: 12297 35 303 (1997). Hereinafter, this and related methods are collectively referred to as "RNA-peptide 15 WO 2007/067616 PCT/US2006/046546 screening." Yeast two-hybrid screening methods also may be used to identify peptides of the invention that bind to myostatin. In addition, chemically derived peptide libraries have been developed in which peptides are immobilized on stable, non-biological materials, such as polyethylene rods or solvent-permeable resins. Another chemically derived peptide library uses 5 photolithography to scan peptides immobilized on glass slides. Hereinafter, these and related methods are collectively referred to as "chemical-peptide screening." Chemical-peptide screening may be advantageous in that it allows use of D-amino acids and other analogues, as well as non peptide elements. Both biological and chemical methods are reviewed in Wells and Lowman, Curr Opin Biotechnol 3: 355-62 (1992). 10 Additionally, selected peptides capable of binding myostatin can be further improved through the use of "rational design". In this approach, stepwise changes are made to a peptide sequence and the effect of the substitution on the binding affinity or specificity of the peptide or some other property of the peptide is observed in an appropriate assay. One example of this technique is substituting a single residue at a time with alanine, referred to as an "alanine walk" or 15 an "alanine scan". When two residues are replaced, it is referred to as a "double alanine walk". The resultant peptide containing amino acid substitutions are tested for enhanced activity or some additional advantageous property. In addition, analysis of the structure of a protein-protein interaction may also be used to suggest peptides that mimic the interaction of a larger protein. In such an analysis, the crystal 20 structure of a protein may suggest the identity and relative orientation of critical residues of the protein, from which a peptide may be designed. See, for example, Takasaki et al., Nature Biotech 15:1266 (1977). These methods may also be used to investigate the interaction between a targeted protein and peptides selected by phage display or other affinity selection processes, thereby suggesting further modifications of peptides to increase binding affinity and the ability of 25 the peptide to inhibit the activity of the protein. In one embodiment, the peptides of the present invention are generated as families of related peptides. Exemplary peptides are represented by SEQ ID NO: 1 through 132. These exemplary peptides were derived through an selection process in which the best binders generated by phage display technology were further analyzed by phage ELISA to obtain candidate peptides 30 by an affinity selection technique such as phage display technology as described herein. However, the peptides of the present invention may be produced by any number of known methods including chemical synthesis as described below. The peptides of the present invention can be further improved by the process of "affinity maturation". This procedure is directed to increasing the affinity or the activity of the peptides 35 and peptibodies of the present invention using phage display or other selection technologies. 16 WO 2007/067616 PCT/US2006/046546 Based on a consensus sequence, directed secondary phage display libraries, for example, can be generated in which the "core" amino acids (determined from the consensus sequence) are held constant or are biased in frequency of occurrence. Alternatively, an individual peptide sequence can be used to generate a biased, directed phage display library. Panning of such libraries under 5 more stringent conditions can yield peptides with enhanced binding to myostatin, selective binding to myostatin, or with some additional desired property. However, peptides having the affinity matured sequences may then be produced by any number of known methods including chemical synthesis or recombinantly. These peptides are used to generate binding agents such as peptibodies of various configurations which exhibit greater inhibitory activity in cell-based assays 10 and in vivo assays. Example 6 below describes affinity maturation of the "first round" peptides described above to produce affinity matured peptides. Exemplary affinity matured peptibodies are presented in Tables IV and V. The resultant lx and 2x peptibodies made from these peptides were then further characterized for binding affinity, ability to neutralize myostatin activity, specificity to 15 myostatin as opposed to certain other TGF-0 family members such as activin, and for additional in vitro and in vivo activity, as described below. Affinity-matured peptides and peptibodies are referred to by the prefix "m" before their family name to distinguish them from first round peptides of the same family. Exemplary first round peptides chosen for further affinity maturation according to the 20 present invention included the following peptides: TN8-19 QGHCTRWPWMCPPY (SEQ ID NO: 33), and the linear peptides Linear-2 MEMLDSLFELLKDMVPISKA (SEQ ID NO: 104), Linear-15 HHGWNYLRKGSAPQWFEAWV (SEQ ID NO: 117), Linear-17, RATLLKDFWQLVEGYGDN (SEQ ID NO: 119), Linear-20 YREMSMLEGLLDVLERLQHY (SEQ ID NO: 122), Linear-21 HNSSQMLLSELIMLVGSMMQ (SEQ ID NO: 123), Linear-24 25 EFFHWLHNHRSEVNHWLDMN (SEQ ID NO: 126). The affinity matured families of each of these is presented below in Tables IV and V. The peptides of the present invention also encompass variants and derivatives of the selected peptides which are capable of binding myostatin. As used herein the term "variant" refers to peptides having one or more amino acids inserted, deleted, or substituted into the original 30 amino acid sequence, and which are still capable of binding to myostatin. Insertional and substitutional variants may contain natural amino acids as well as non-naturally occuring amino acids. As used herein the term "variant" includes fragments of the peptides which still retain the ability to bind to myostatin. As used herein, the term "derivative" refers to peptides which have been modified chemically in some manner distinct from insertion, deletion, and substitution 17 WO 2007/067616 PCT/US2006/046546 variants. Variants and derivatives of the peptides and peptibodies of the present invention are described more fully below. Vehicles As used herein the term "vehicle" refers to a molecule that may be attached to one or 5 more peptides of the present invention. Preferably, vehicles confer at least one desired property on the binding agents of the present invention. Peptides alone are likely to be removed in vivo either by renal filtration, by cellular clearance mechanisms in the reticuloendothelial system, or by proteolytic degradation. Attachment to a vehicle improves the therapeutic value of a binding agent by reducing degradation of the binding agent and/or increasing half-life, reducing toxicity, 10 reducing immunogenicity, and/or increasing the biological activity of the binding agent. Exemplary vehicles include Fc domains; linear polymers such as polyethylene glycol (PEG), polylysine, dextran; a branched chain polymer (see for example U.S. Patent No. 4,289,872 to Denkenwalter et al., issued September 15, 1981; U. S. Patent No. 5,229,490 to Tam, issued July 20, 1993; WO 93/21259 by Frechet et al., published 28 October 1993); a lipid; a cholesterol 15 group (such as a steroid); a carbohydrate or oligosaccharide; or any natural or synthetic protein, polypeptide or peptide that binds to a salvage receptor. In one embodiment, the myostatin binding agents of the present invention have at least one peptide attached to at least one vehicle (F, F 2 ) through the N-terminus, C-terminus or a side chain of one of the amino acid residues of the peptide(s). Multiple vehicles may also be used; 20 such as an Fc domain at each terminus or an Fe domain at a terminus and a PEG group at the other terminus or a side chain. An Fc domain is one preferred vehicle. As used herein, the term "Fc domain" encompasses native Fc and Fc variant molecules and sequences as defined below. As used herein the term "native Fc" refers to a non-antigen binding fragment of an antibody or the amino acid 25 sequence of that fragment which is produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. A preferred Fe is a fully human Fc and may originate from any of the immunoglobulins, such as IgGI and IgG2. However, Fc molecules that are partially human, or originate from non-human species are also included herein. Native Fc molecules are made up of monomeric polypeptides that may be linked into dimeric or multimeric 30 forms by covalent (i.e., disulfide bonds) and non-covalent association. The number of intermolecular disulfide bonds between monomeric subunits of native Fc molecules ranges from I to 4 depending on class (e.g., IgG, IgA, IgE) or subclass (e.g., IgG1, IgG2, IgG3, IgAl, IgGA2). One example of a native Fe is a disulfide-bonded dimer resulting from papain digestion of an Igo (see Ellison et aL. (1982), NuclA cids Res 10: 4071-9). The term "native Fc" as used herein is 35 used to refer to the monomeric, dimeric, and multimeric forms. 18 WO 2007/067616 PCT/US2006/046546 As used herein, the term "Fe variant" refers to a modified form of a native Fc sequence provided that binding to the salvage receptor is maintained, as described, for example, in WO 97/34631 and WO 96/32478, both of which are incorporated herein by reference. Fc variants may be constructed for example, by substituting or deleting residues, inserting residues or truncating 5 portions containing the site. The inserted or substituted residues may also be altered amino acids, such as peptidomimetics or D-amino acids. Fc variants may be desirable for a number of reasons, several of which are described below. Exemplary Fc variants include molecules and sequences in which: 1. Sites involved in disulfide bond formation are removed. Such removal may avoid 10 reaction with other cysteine-containing proteins present in the host cell used to produce the molecules of the invention. For this purpose, the cysteine-containing segment at the N-terminus may be truncated or cysteine residues may be deleted or substituted with other amino acids (e.g., alanyl, seryl). Even when cysteine residues are removed, the single chain Fe domains can still form a dimeric Fc domain that is held together non-covalently. 15 2. A native Fc is modified to make it more compatible with a selected host cell. For example, one may remove the PA sequence near the N-terminus of a typical native Fc, which may be recognized by a digestive enzyme in E. coli such as proline iminopeptidase. One may also add an N-terminal methionyl residue, especially when the molecule is expressed recombinantly in a bacterial cell such as E. coli. 20 3. A portion of the N-terminus of a native Fe is removed to prevent N-terminal heterogeneity when expressed in a selected host cell. For this purpose, one may delete any of the first 20 amino acid residues at the N-terminus, particularly those at positions 1, 2, 3, 4 and 5. 4. One or more glycosylation sites are removed. Residues that are typically glycosylated (e.g., asparagine) may confer cytolytic response. Such residues may be deleted or substituted 25 with unglycosylated residues (e.g., alanine). 5. Sites involved in interaction with complement, such as the Clq binding site, are removed. For example, one may delete or substitute the EKK sequence of human IgG 1. Complement recruitment may not be advantageous for the molecules of this invention and so may be avoided with such an Fe variant. 30 6. Sites are removed that affect binding to Fe receptors other than a salvage receptor. A native Fc may have sites for interaction with certain white blood cells that are not required for the fusion molecules of the present invention and so may be removed. 7. The ADCC site is removed. ADCC sites are known in the art. See, for example, Molec Immunol 29 (5):633-9 (1992) with regard to ADCC sites in IgG1. These sites, as well, are 35 not required for the fusion molecules of the present invention and so may be removed. 19 WO 2007/067616 PCT/US2006/046546 8. When the native Fc is derived from a non-human antibody, the native Fc may be humanized. Typically, to humanize a native Fc, one will substitute selected residues in the non human native Fc with residues that are normally found in human native Fc. Techniques for antibody humanization are well known in the art. 5 The term "Fc domain" includes molecules in monomeric or multimeric form, whether digested from whole antibody or produced by other means. As used herein the term "multimer" as applied to Fc domains or molecules comprising Fc domains refers to molecules having two or more polypeptide chains associated covalently, noncovalently, or by both covalent and non covalent interactions. IgG molecules typically form dimers; IgM, pentamers; IgD, diners; and 10 IgA, monomers, dimers, trimers, or tetramers. Multimers may be formed by exploiting the sequence and resulting activity of the native Ig source of the Fc or by derivatizing such a native Fc. The term "dimer" as applied to Fc domains or molecules comprising Fc domains refers to molecules having two polypeptide chains associated covalently or non-covalently. Additionally, an alternative vehicle according to the present invention is a non-Fc domain 15 protein, polypeptide, peptide, antibody, antibody fragment, or small molecule (e.g., a peptidomimetic compound) capable of binding to a salvage receptor. For example, one could use as a vehicle a polypeptide as described in U.S. Patent No. 5,739,277, issued April 14, 1998 to Presta et al. Peptides could also be selected by phage display for binding to the FcRn salvage receptor. Such salvage receptor-binding compounds are also included within the meaning of 20 "vehicle"and are within the scope of this invention. Such vehicles should be selected for increased half-life (e.g., by avoiding sequences recognized by proteases) and decreased immunogenicity (e.g., by favoring non-immunogenic sequences, as discovered in antibody humanization). In addition, polymer vehicles may also be used to construct the binding agents of the 25 present invention. Various means for attaching chemical moieties useful as vehicles are currently available, see, e.g., Patent Cooperation Treaty ("PCT") International Publication No. WO 96/11953, entitled "N-Terminally Chemically Modified Protein Compositions and Methods," herein incorporated by reference in its entirety. This PCT publication discloses, among other things, the selective attachment of water soluble polymers to the N-terminus of proteins. 30 A preferred polymer vehicle is polyethylene glycol (PEG). The PEG group may be of any convenient molecular weight and may be linear or branched. The average molecular weight of the PEG will preferably range from about 2 kDa to about 100 kDa, more preferably from about 5 kDa to about 50 kDa, most preferably from about 5 kDa to about 10 kDa. The PEG groups will generally be attached to the compounds of the invention via acylation or reductive alkylation 35 through a reactive group on the PEG moiety (e.g., an aldehyde, amino, thiol, or ester group) to a 20 WO 2007/067616 PCT/US2006/046546 reactive group on the inventive compound (e.g., an aldehyde, amino, or ester group). A useful strategy for the PEGylation of synthetic peptides consists of combining, through forming a conjugate linkage in solution, a peptide and a PEG moiety, each bearing a special functionality that is mutually reactive toward the other. The peptides can be easily prepared with conventional 5 solid phase synthesis as known in the art. The peptides are "preactivated" with an appropriate functional group at a specific site. The precursors are purified and fully characterized prior to reacting with the PEG moiety. Ligation of the peptide with PEG usually takes place in aqueous phase and can be easily monitored by reverse phase analytical HPLC. The PEGylated peptides can be easily purified by preparative HPLC and characterized by analytical HPLC, amino acid 10 analysis and laser desorption mass spectrometry. Polysaccharide polymers are another type of water soluble polymer which may be used for protein modification. Dextrans are polysaccharide polymers comprised of individual subunits of glucose predominantly linked by al -6 linkages. The dextran itself is available in many molecular weight ranges, and is readily available in molecular weights from about 1 kDa to about 15 70 kDa. Dextran is a suitable water-soluble polymer for use in the present invention as a vehicle by itself or in combination with another vehicle (e.g., Fc). See, for example, WO 96/11953 and WO 96/05309. The use of dextran conjugated to therapeutic or diagnostic immunoglobulins has been reported; see, for example, European Patent Publication No. 0 315 456, which is hereby incorporated by reference. Dextran of about I kDa to about 20 kDa is preferred when dextran is 20 used as a vehicle in accordance with the present invention. Linkers The binding agents of the present invention may optionally further comprise a "linker" group. Linkers serve primarily as a spacer between a peptide and a vehicles or between two 25 peptides of the binding agents of the present invention. In one embodiment, the linker is made up of amino acids linked together by peptide bonds, preferably from 1 to 20 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids. One or more of these amino acids may be glycosylated, as is understood by those in the art. In one embodiment, the I to 20 amino acids are selected from glycine, alanine, proline, asparagine, 30 glutamine, and lysine. Preferably, a linker is made up of a majority of amino acids that are sterically unhindered, such as glycine and alanine. Thus, exemplary linkers are polyglycines (particularly (Gly)s, (Gly)s), poly(Gly-Ala), and polyalanines. As used herein, the designation "g" refers to a glycine homopeptide linkers. As shown in Table II, "gn" refers to a 5x gly linker~ at the N terminus, while "gc" refers to 5x gly linker at the C terminus. Combinations of Gly and 35 Ala are also preferred. One exemplary linker sequence useful for constructing the binding agents 21 WO 2007/067616 PCT/US2006/046546 of the present invention is the following: gsgsatggsgstassgsgsatg (Seq ID No: 305). This linker sequence is referred to as the "k" or 1k sequence. The designations "kc", as found in Table II, refers to the k linker at the C-terminus, while the designation "kn", refers to the k linker at the N terminus. 5 The linkers of the present invention may also be non-peptide linkers. For example, alkyl linkers such as -NH-(CH 2 )s-C(O)-, wherein s = 2-20 can be used. These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., Cj-C 6 ) lower acyl, halogen (e.g., Cl, Br), CN, NH 2 , phenyl, etc. An exemplary non-peptide linker is a PEG linker, and has a molecular weight of 100 to 5000 kDa, preferably 100 to 500 kDa. The peptide linkers 10 may be altered to form derivatives in the same manner as above. Exemplary Binding Agents The binding agents described herein comprise at least one peptide capable of binding myostatin. In one embodiment, the myostatin binding peptide is between about 5 and about 50 15 amino acids in length, in another, between about 10 and 30 amino acids in length, and in another, between about 10 and 25 amino acids in length. In one embodiment the myostatin binding peptide comprises the amino acid sequence WMCPP (SEQ ID NO: 633). In other embodiment, the myostatin binding peptide comprises the amino acid sequence Cal a2a 3 WMCPP (SEQ ID NO: 352), wherein a,, a 2 and a 3 are selected from a neutral hydrophobic, neutral polar, or basic 20 amino acid. In another embodiment the myostatin binding peptide comprises the amino acid sequence CbWb 2 LXb 3 WMCPP(SEQ ID NO: 353), wherein b, is selected from any one of the amino acids T, I, or R; b 2 is selected from any one of R, S, Q; b 3 is selected from any one of P, R and Q, and wherein the peptide is between 10 and 50 amino acids in length, and physiologically acceptable salts thereof. 25 In another embodiment, the myostatin binding peptide comprises the formula: cic 2 c 3 c 4 c 5 c6Cc 7 c Wc 9 WMCPPIOcI Ic 1 2 cIs (SEQ ID NO: 354), wherein: c, is absent or any amino acid; c 2 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; c 3 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; 30 c 4 is absent or any amino acid; c 5 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; c 6 is absent or a neutral hydrophobic, neutral polar, or basic amino acid; c 7 is a neutral hydrophobic, neutral polar, or basic amino acid; c 8 is a neutral hydrophobic, neutral polar, or basic amino acid; 35 c 9 is a neutral hydrophobic, neutral polar or basic amino acid; and c 1 0 to C13 is any amino acid; and wherein the peptide is between 20 and 50 amino acids in length, and physiologically acceptable salts thereof. 22 WO 2007/067616 PCT/US2006/046546 In a related embodiment the myostatin binding peptide comprises the formula: did 2 d 3 d 4 d 5 d6Cd 7 d 8 Wd 9 WMCPP diod jd 12 dI 3 (SEQ ID NO: 355), wherein di is absent or any amino acid; d 2 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; 5 d3 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; d 4 is absent or any amino acid; ds is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; dr is absent or a neutral hydrophobic, neutral polar, or basic amino acid; d 7 is selected from any one of the amino acids T, I, or R; 10 ds is selected from any one of R, S, Q; d 9 is selected from any one of P, R and Q, and do to d 13 is selected from any amino acid, and wherein the peptide is between 20 and 50 amino acids in length, and physiologically acceptable salts thereof. 15 Additional embodiments of binding agents comprise at least one of the following peptides: (1) a peptide capable of binding myostatin, wherein the peptide comprises the sequence WYeje 2 Ye 3 G, (SEQ ID NO: 356) wherein el is P, S or Y, 20 e 2 is C or Q, and e 3 is G or H, wherein the peptide is between 7 and 50 amino acids in length, and physiologically acceptable salts thereof. (2) a peptide capable of binding myostatin, wherein the peptide comprises the sequence f 1 EMLfSLf 3 f 4 LL, (SEQ ID NO: 455), 25 wherein f, is M or 1, f 2 is any amino acid, f 3 is L or F, f 4 is E, Q or D; and wherein the peptide is between 7 and 50 amino acids in length, and physiologically 30 acceptable salts thereof. (3) a peptide capable of binding myostatin wherein the peptide comprises the sequence Lgig2LLg 3 g 4 L, (SEQ ID NO: 456), wherein g, is Q, D or E, g 2 is S, Q, D or E, 35 g 3 is any amino acid, g 4 is L, W, F, or Y, and wherein the peptide is between 8 and 50 amino acids in length, and physiologically acceptable salts thereof. (4) a peptide capable of binding myostatin, wherein the peptide comprises the sequence hih 2 h 3 h 4 hsh 6 h 7 h s h 9 (SEQ ID NO: 457), wherein 40 h, is R or D, h 2 is any amino acid, 23 WO 2007/067616 PCT/US2006/046546 h 3 is A, T S or Q, h 4 is L or M, h 5 is L or S, h 6 is any amino acid, 5 h 7 is F or E, h 8 is W, F or C, h 9 is L, F, M or K, and wherein the peptide is between 9 and 50 amino acids in length, and physiologically acceptable salts thereof. In one embodiment, the binding agents of the present invention have the following 10 generalized structure: (X')a-F'-(X 2 )b, or multimers thereof; wherein F' is a vehicle; and X' and X 2 are each independently selected from -(LI).- PI;
-(L')-P-(L
2 )d _p 2 ; 15 -(L')e-P-Ld and -(L').-P -(L 2 )dp2_ (L 3 )e _p 3
_L
4 )p 4 ; wherein P', P 2 , p 3 , and P 4 are peptides capable of binding myostatin; and L', L 2 , L 3 , and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1. 20 In one embodiment of the binding agents having this generalized structure, the peptides PI, p 2 , p 3 , and P 4 can be selected from the peptides provided can be selected from one or more peptides comprising any of the following sequences: SEQ ID NO: 633, SEQ ID NO: 352, SEQ ID NO: 353, SEQ ID NO: 354, SEQ ID NO: 355, SEQ ID NO: 356, SEQ ID NO: 455, SEQ ID NO: 456, or SEQ ID NO: 457. In another embodiment, P P', P 2 ' p 3 , and P 4 are independently 25 selected from one or more peptides comprising any of the following sequences SEQ ID NO: 305 through 351 and SEQ ID NO: 357 through 454. In a further embodiment, the vehicles of binding agents having the general formula above are Fe domains. The peptides are therefore fused to an Fc domain, either directly or indirectly, thereby providing peptibodies. The peptibodies of the present invention display a high binding 30 affinity for myostatin and can inhibit the activity of myostatin as demonstrated by in vitro assays and in vivo testing in animals provided herein. The present invention also provides nucleic acid molecules comprising polynucleotides encoding the peptides, peptibodies, and peptide and peptibody variants and derivatives of the present invention. Exemplary nucleotides sequences are given below. 35 24 WO 2007/067616 PCT/US2006/046546 Variants and Derivatives of Peptides and Peptibodies The binding agents described herein also encompass variants and derivatives of the peptides and peptibodies described herein. Since both the peptides and peptibodies of the present invention can be described in terms of their amino acid sequence, the terms "variants" and 5 "derivatives" can be said to apply to a peptide alone, or a peptide as a component of a peptibody. As used herein, the term "peptide variants" refers to peptides or peptibodies having one or more amino acid residues inserted, deleted or substituted into the original amino acid sequence and which retain the ability to bind to myostatin and modify its activity. As used herein, fragments of the peptides or peptibodies are included within the definition of "variants". 10 It is understood that any given peptide or peptibody may contain one or two or all three types of variants. Insertional and substitutional variants may contain natural amino acids, as well as non-naturally occuring amino acids or both. Peptide and peptibody variants also include mature peptides and peptibodies wherein leader or signal sequences are removed, and the resulting proteins having additional amino 15 terminal residues, which amino acids may be natural or non-natural. Peptibodies with an additional methionyl residue at amino acid position -1 (Mef'-peptibody) are contemplated, as are peptibodies with additional methionine and lysine residues at positions -2 and -1 (Met 2 -Lys--). Variants having additional Met, Met-Lys, Lys residues (or one or more basic residues, in general) are particularly useful for enhanced recombinant protein production in bacterial host cells. 20 Peptide or peptibody variants of the present invention also includes peptides having additional amino acid residues that arise from use of specific expression systems. For example, use of commercially available vectors that express a desired polypeptide as part of glutathione-S transferase (GST) fusion product provides the desired polypeptide having an additional glycine residue at amino acid position-1 after cleavage of the GST component from the desired 25 polypeptide. Variants which result from expression in other vector systems are also contemplated, including those wherein histidine tags are incorporated into the amino acid sequence, generally at the carboxy and/or amino terminus of the sequence. In one example, insertional variants are provided wherein one or more amino acid residues, either naturally occurring or non-naturally occuring amino acids, are added to a peptide 30 amino acid sequence. Insertions may be located at either or both termini of the protein, or may be positioned within internal regions of the peptibody amino acid sequence. Insertional variants with additional residues at either or both termini can include, for example, fusion proteins and proteins including amino acid tags or labels. Insertional variants include peptides in which one or more amino acid residues are added to the peptide amino acid sequence or fragment thereof. 25 WO 2007/067616 PCT/US2006/046546 Insertional variants also include fusion proteins wherein the amino and/or carboxy termini of the peptide or peptibody is fused to another polypeptide, a fragment thereof or amino acids which are not generally recognized to be part of any specific protein sequence. Examples of such fusion proteins are immunogenic polypeptides, proteins with long circulating half lives, such as 5 immunoglobulin constant regions, marker proteins, proteins or polypeptides that facilitate purification of the desired peptide or peptibody, and polypeptide sequences that promote formation of multimeric proteins (such as leucine zipper motifs that are useful in dimer formation/stability). This type of insertional variant generally has all or a substantial portion of the native 10 molecule, linked at the N- or C-terminus, to all or a portion of a second polypeptide. For example, fusion proteins typically employ leader sequences from other species to permit the recombinant expression of a protein in a heterologous host. Another useful fusion protein includes the addition of an immunologically active domain, such as an antibody epitope, to facilitate purification of the fusion protein. Inclusion of a cleavage site at or near the fusion 15 junction will facilitate removal of the extraneous polypeptide after purification. Other useful fusions include linking of functional domains, such as active sites from enzymes, glycosylation domains, cellular targeting signals or transmembrane regions. There are various commercially available fusion protein expression systems that may be used in the present invention. Particularly useful systems include but are not limited to the 20 glutathione-S-transferase (GST) system (Pharmacia), the maltose binding protein system (NEB, Beverley, MA), the FLAG system (IBI, New Haven, CT), and the 6xHis system (Qiagen, Chatsworth, CA). These systems are capable of producing recombinant peptides and/or peptibodies bearing only a small number of additional amino acids, which are unlikely to significantly affect the activity of the peptide or peptibody. For example, both the FLAG system 25 and the 6xHis system add only short sequences, both of which are known to be poorly antigenic and which do not adversely affect folding of a polypeptide to its native conformation. Another N terminal fusion that is contemplated to be useful is the fusion of a Met-Lys dipeptide at the N-terminal region of the protein or peptides. Such a fusion may produce beneficial increases in protein expression or activity. 30 Other fusion systems produce polypeptide hybrids where it is desirable to excise the fusion partner from the desired peptide or peptibody. In one embodiment, the fusion partner is linked to the recombinant peptibody by a peptide sequence containing a specific recognition sequence for a protease. Examples of suitable sequences are those recognized by the Tobacco Etch Virus protease (Life Technologies, Gaithersburg, MD) or Factor Xa (New England Biolabs, 35 Beverley, MA). 26 WO 2007/067616 PCT/US2006/046546 The invention also provides fusion polypeptides which comprise all or part of a peptide or peptibody of the present invention, in combination with truncated tissue factor (tTF). tTF is a vascular targeting agent consisting of a truncated form of a human coagulation-inducing protein that acts as a tumor blood vessel clotting agent, as described U.S. Patent Nos.: 5,877,289; 5 6,004,555; 6,132,729; 6,132,730; 6,156,321; and European Patent No. EP 0988056. The fusion of tTF to the anti-myostatin peptibody or peptide, or fragments thereof facilitates the delivery of anti-myostatin antagonists to target cells, for example, skeletal muscle cells, cardiac muscle cells, fibroblasts, pre-adipocytes, and possibly adipocytes. In another aspect, the invention provides deletion variants wherein one or more amino 10 acid residues in a peptide or peptibody are removed. Deletions can be effected at one or both termini of the peptibody, or from removal of one or more residues within the peptibody amino acid sequence. Deletion variants necessarily include all fragments of a peptide or peptibody. In still another aspect, the invention provides substitution variants of peptides and peptibodies of the invention. Substitution variants include those peptides and peptibodies wherein 15 one or more amino acid residues are removed and replaced with one or more alternative amino acids, which amino acids may be naturally occurring or non-naturally occurring. Substitutional variants generate peptides or peptibodies that are "similar" to the original peptide or peptibody, in that the two molecules have a certain percentage of amino acids that are identical. Substitution variants include substitutions of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, and 20 amino acids within a 20 peptide or peptibody, wherein the number of substitutions may be up to ten percent of the amino acids of the peptide or peptibody. In one aspect, the substitutions are conservative in nature, however, the invention embraces substitutions that are also non-conservative and also includes unconventional amino acids. Identity and similarity of related peptides and peptibodies can be readily calculated by 25 known methods. Such methods include, but are not limited to, those described in Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York (1988); Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York (1993); Computer Analysis of Sequence Data, Part 1, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology, von Heinje, G., Academic 30 Press (1987); Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, New York (1991); and Carillo et al., SIAMJ. Applied Math., 48:1073 (1988). Preferred methods to determine the relatedness or percent identity of two peptides or polypeptides, or a polypeptide and a peptide, are designed to give the largest match between the sequences tested. Methods to determine identity are described in publicly available computer 27 WO 2007/067616 PCT/US2006/046546 programs. Preferred computer program methods to determine identity between two sequences include, but are not limited to, the GCG program package, including GAP (Devereux et al., Nucl. Acid. Res., 12:387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI, BLASTP, BLASTN, and FASTA (Altschul et al., J. Mol. Biol., 215:403-410 (1990)). The 5 BLASTX program is publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul et al. NCB/NLM/NIH Bethesda, MD 20894; Altschul et al., supra (1990)). The well-known Smith Waterman algorithm may also be used to determine identity. Certain alignment schemes for aligning two amino acid sequences may result in the 10 matching of only a short region of the two sequences, and this small aligned region may have very high sequence identity even though there is no significant relationship between the two full-length sequences. Accordingly, in certain embodiments, the selected alignment method will result in an alignment that spans at least ten percent of the full length of the target polypeptide being compared, i.e., at least 40 contiguous amino acids where sequences of at least 400 amino acids are 15 being compared, 30 contiguous amino acids where sequences of at least 300 to about 400 amino acids are being compared, at least 20 contiguous amino acids where sequences of 200 to about 300 amino acids are being compared, and at least 10 contiguous amino acids where sequences of about 100 to 200 amino acids are being compared. For example, using the computer algorithm GAP (Genetics Computer Group, University of Wisconsin, Madison, WI), two polypeptides for 20 which the percent sequence identity is to be determined are aligned for optimal matching of their respective amino acids (the "matched span", as determined by the algorithm). In certain embodiments, a gap opening penalty (which is typically calculated as 3X the average diagonal; the "average diagonal" is the average of the diagonal of the comparison matrix being used; the "diagonal" is the score or number assigned to each perfect amino acid match by the particular 25 comparison matrix) and a gap extension penalty (which is usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. In certain embodiments, a standard comparison matrix (see Dayhoff et al., Atlas ofProtein Sequence and Structure, 5(3)(1978) for the PAM 250 comparison matrix; Henikoff et al., Proc. Natt. Acad. Sci USA, 89:10915-10919 (1992) for the BLOSUM 62 30 comparison matrix) is also used by the algorithm. In certain embodiments, for example, the parameters for a polypeptide sequence comparison can be made with the following: Algorithm: Needleman et al., J. Mal. Biol., 48:443 453 (1970); Comparison matrix: BLOSUM 62 from Henikoff et al., supra (1992); Gap Penalty: 12; Gap Length Penalty: 4; Threshold of Similarity: 0, along with no penalty for end gaps. 28 WO 2007/067616 PCT/US2006/046546 In certain embodiments, the parameters for polynucleotide molecule sequence (as opposed to an amino acid sequence) comparisons can be made with the following: Algorithm: Needleman et al., supra (1970); Comparison matrix: matches =+10, mismatch = 0; Gap Penalty: 50: Gap Length Penalty: 3 5 Other exemplary algorithms, gap opening penalties, gap extension penalties, comparison matrices, thresholds of similarity, etc. may be used, including those set forth in the Program Manual, Wisconsin Package, Version 9, September, 1997. The particular choices to be made will be apparent to those of skill in the art and will depend on the specific comparison to be made, such as DNA-to-DNA, protein-to-protein, protein-to-DNA; and additionally, whether the 10 comparison is between given pairs of sequences (in which case GAP or BestFit are generally preferred) or between one sequence and a large database of sequences (in which case FASTA or BLASTA are preferred). Stereoisomers (e.g., D-amino acids) of the twenty conventional (naturally occuring) amino acids, non-naturally occuring amino acids such as a-, a-disubstituted amino acids, N-alkyl 15 amino acids, lactic acid, and other unconventional amino acids may also be suitable components for peptides of the present invention. Examples of non-naturally occuring amino acids include, for example: aminoadipic acid, beta-alanine, beta-aminopropionic acid, aminobutyric acid, piperidinic acid, aminocaprioic acid, aminoheptanoic acid, aminoisobutyric acid, aminopimelic acid, diaminobutyric acid, desmosine, diaminopimelic acid, diaminopropionic acid, N 20 ethylglycine, N-ethylaspargine, hyroxylysine, allO-hydroxylysine, hydroxyproline, isodesmosine, allo-isoleucine, N-methylglycine, sarcosine, N-methylisoleucine, N-methylvaline, norvaline, norleucine, orithine, 4-hydroxyproline, y-carboxyglutamate, a-N,NN-trimethyllysine, s-N acetyllysine, 0-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5 hydroxylysine, a--N-methylarginine, and other similar amino acids and amino acids (e.g., 4 25 hydroxyproline). Naturally occurring residues may be divided into (overlapping) classes based on common side chain properties: 1) neutral hydrophobic: Met, Ala, Val, Leu, Ile, Pro, Trp, Met, Phe; 2) neutral polar: Cys, Ser, Thr, Asn, Gln, Tyr, Gly; 30 3) acidic: Asp, Glu; 4) basic: His, Lys, Arg; 5) residues that influence chain orientation: Gly, Pro; and 6) aromatic: Trp, Tyr, Phe. 29 WO 2007/067616 PCT/US2006/046546 Substitutions of amino acids may be conservative, which produces peptides having functional and chemical characteristics similar to those of the original peptide. Conservative amino acid substitutions involve exchanging a member of one of the above classes for another member of the same class. Conservative changes may encompass unconventional amino acid 5 residues, which are typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems. These include peptidomimetics and other reversed or inverted forms of amino acid moieties. Non-conservative substitutions may involve the exchange of a member of one of these classes for a member from another class. These changes can result in substantial modification in 10 the functional and/or chemical characteristics of the peptides. In making such changes, according to certain embodiments, the hydropathic index of amino acids may be considered. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics. They are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine 15 (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5). The importance of the hydropathic amino acid index in conferring interactive biological function on a protein is understood in the art. Kyte et al., J. Mol. Biol., 157:105-131 (1982). It is known that certain amino acids may be substituted for other amino acids having a similar 20 hydropathic index or score and still retain a similar biological activity. In making changes based upon the hydropathic index, in certain embodiments, the substitution of amino acids whose hydropathic indices are within -2 is included. In certain embodiments, those which are within ±1 are included, and in certain embodiments, those within ±0.5 are included. It is also understood in the art that the substitution of like amino acids can be made 25 effectively on the basis of hydrophilicity, particularly where the biologically functional peptibody or peptide thereby created is intended for use in immunological embodiments, as in the present case. In certain embodiments, the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigenicity, i.e., with a biological property of the protein. 30 The following hydrophilicity values have been assigned to these amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0 + 1); glutamate (+3.0 1 1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5 h 1); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine ( 30 WO 2007/067616 PCT/US2006/046546 2.3); phenylalanine (-2.5) and tryptophan (-3.4). In making changes based upon similar hydrophilicity values, in certain embodiments, the substitution of amino acids whose hydrophilicity values are within +2 is included, in certain embodiments, those which are within +1 are included, and in certain embodiments, those within L0.5 are included. One may also 5 identify epitopes from primary amino acid sequences on the basis of hydrophilicity. These regions are also referred to as "epitopic core regions." Exemplary amino acid substitutions are set forth in Table 1 below. Amino Acid Substitutions Original Residues Exemplary Substitutions Preferred Substitutions Ala Val, Leu, Ile Val Arg Lys, Gln, Asn Lys Asn Gin, Glu, Asp Gln Asp Glu, Gln, Asp Glu Cys Ser, Ala Ser Gin Asn, Glu, Asp Asn Glu Asp, Gin, Asn Asp Gly Pro, Ala Ala His Asn, Gin, Lys, Arg Arg Ile Leu, Val, Met, Ala, Phe, Norleucine Leu Leu Norleucine, Ie, Val, Met, Ala, Phe Ile Lys Arg, 1,4 Diamino-butyric Acid, Gln, Asn Arg Met Leu, Phe, Ile Leu Phe Leu, Val, Ile, Ala, Tyr Leu Pro Ala Gly Ser Thr, Ala, Cys Thr Thr Ser Ser Trp Tyr, Phe Tyr Tyr Trp, Phe, Thr, Ser Phe Val Ile, Met, Leu, Phe, Ala, Norleucine Leu 10 One skilled in the art will be able to produce variants of the peptides and peptibodies of the present invention by random substitution, for example, and testing the resulting peptide or peptibody for binding activity using the assays described herein. 31 WO 2007/067616 PCT/US2006/046546 Additionally, one skilled in the art can review structure-function studies or three dimensional structural analysis in order to identify residues in similar polypeptides that are important for activity or structure. In view of such a comparison, one can predict the importance of amino acid residues in a protein that correspond to amino acid residues which are important for 5 activity or structure in similar proteins. One skilled in the art may opt for chemically similar amino acid substitutions for such predicted important amino acid residues. The variants can then be screened using activity assays as described herein. A number of scientific publications have been devoted to the prediction of secondary structure. See Moult J., Curr. Op. in Biotech., 7(4):422-427 (1996), Chou et al., Biochemistry, 10 13(2):222-245 (1974); Chou et al., Biochemistry, 113(2):211-222 (1974); Chou et al., Adv. Enzymol. Relat. Areas Mot. Biol., 47:45-148 (1978); Chou et al., Ann. Rev. Biochem., 47:251-276 and Chou et al., Biophys. J., 26:367-384 (1979). Moreover, computer programs are currently available to assist with predicting secondary structure. One method of predicting secondary structure is based upon homology modeling. For example, two polypeptides or proteins which 15 have a sequence identity of greater than 30%, or similarity greater than 40% often have similar structural topologies. The recent growth of the protein structural database (PDB) has provided enhanced predictability of secondary structure, including the potential number of folds within a protein's structure. See Holm et al., Nucl. Acid. Res., 27(1):244-247 (1999). It has been suggested (Brenner et al., Curr. Op. Struct. Biol., 7(3):369-376 (1997)) that there are a limited 20 number of folds in a given protein and that once a critical number of structures have been resolved, structural prediction will become dramatically more accurate. Additional methods of predicting secondary structure include "threading" (Jones, D., Curr. Opin. Struct. Biol., 7(3):377-87 (1997); Sippl et al., Structure, 4(1):15-19 (1996)), "profile analysis" (Bowie et al., Science, 253:164-170 (1991); Gribskov et al., Meth. Enzym., 183:146-159 25 (1990); Gribskov et al., Proc. Nat. Acad. Sci., 84(13):4355-4358 (1987)), and "evolutionary linkage" (See Holm, supra (1999), and Brenner, supra (1997)). In certain embodiments, peptide or peptibody variants include glycosylation variants wherein one or more glycosylation sites such as a N-linked glycosylation site, has been added to the peptibody. An N-linked glycosylation site is characterized by the sequence: Asn-X-Ser or 30 Asn-X-Thr, wherein the amino acid residue designated as X may be any amino acid residue except proline. The substitution or addition of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitutions which eliminate this sequence will remove an existing N-linked carbohydrate chain. Also provided is a rearrangement of N-linked carbohydrate chains wherein one or more N-linked 32 WO 2007/067616 PCT/US2006/046546 glycosylation sites (typically those that are naturally occurring) are eliminated and one or more new N-linked sites are created. The invention also provides "derivatives" of the peptides or peptibodies of the present invention. As used herein the term "derivative" refers to modifications other than, or in addition 5 to, insertions, deletions, or substitutions of amino acid residues which retain the ability to bind to myostatin. Preferably, the modifications made to the peptides of the present invention to produce derivatives are covalent in nature, and include for example, chemical bonding with polymers, lipids, other organic, and inorganic moieties. Derivatives of the invention may be prepared to 10 increase circulating half-life of a peptibody, or may be designed to improve targeting capacity for the peptibody to desired cells, tissues, or organs. The invention further embraces derivative binding agents covalently modified to include one or more water soluble polymer attachments, such as polyethylene glycol, polyoxyethylene glycol, or polypropylene glycol, as described U.S. Patent Nos.: 4,640,835; 4,496,689; 4,301,144; 15 4,670,417; 4,791,192; and 4,179,337. Still other useful polymers known in the art include monomethoxy-polyethylene glycol, dextran, cellulose, or other carbohydrate based polymers, poly-(N-vinyl pyrrolidone)-polyethylene glycol, propylene glycol homopolymers, a polypropylene oxide/ethylene oxide co-polymer, polyoxyethylated polyols (e.g., glycerol) and polyvinyl alcohol, as well as mixtures of these polymers. Particularly preferred are peptibodies 20 covalently modified with polyethylene glycol (PEG) subunits. Water-soluble polymers may be bonded at specific positions, for example at the amino terminus of the peptibodies, or randomly attached to one or more side chains of the polypeptide. The use of PEG for improving the therapeutic capacity for binding agents, e.g. peptibodies, and for humanized antibodies in particular, is described in US Patent No. 6, 133, 426 to Gonzales et al., issued October 17, 2000. 25 The invention also contemplates derivatizing the peptide and/or vehicle portion of the myostatin binding agents. Such derivatives may improve the solubility, absorption, biological half-life, and the like of the compounds. The moieties may alternatively eliminate or attenuate any undesirable side-effect of the compounds and the like. Exemplary derivatives include compounds in which: 30 1. The derivative or some portion thereof is cyclic. For example, the peptide portion may be modified to contain two or more Cys residues (e.g., in the linker), which could cyclize by disulfide bond formation. 2. The derivative is cross-linked or is rendered capable of cross-linking between molecules. For example, the peptide portion may be modified to contain one Cys residue and 33 WO 2007/067616 PCT/US2006/046546 thereby be able to form an intermolecular disulfide bond with a like molecule. The derivative may also be cross-linked through its C-terminus. 3. One or more peptidyl [-C(O)NR-] linkages (bonds) is replaced by a non-peptidyl linkage. Exemplary non-peptidyl linkages are -CH 2 -carbamate [-CH 2 -OC(O)NR-], phosphonate, 5 CH 2 -sulfonamide [-CH 2
-S(O)
2 NR-], urea [-NTHC(O)NH-j, -CH 2 -secondary amine, and alkylated peptide [-C(O)NRh- wherein R 6 is lower alkyl]. 4. The N-terminus is derivatized. Typically, the N-terminus may be acylated or modified to a substituted amine. Exemplary N-terminal derivative groups include -NRR (other than -NH 2 ), -NRC(O)R, -NRC(O)ORI, -NRS(O) 2
R
1 , -NHC(O)NHR 1 , succinimide, or benzyloxycarbonyl 10 NH- (CBZ-NH-), wherein R and RI are each independently hydrogen or lower alkyl and wherein the phenyl ring may be substituted with 1 to 3 substituents selected from the group consisting of
CI-C
4 alkyl, CI-C 4 alkoxy, chloro, and bromo. 5. The free C-terminus is derivatized. Typically, the C-terminus is esterified or amidated. For example, one may use methods described in the art to add (NH-CH 2
-CH
2
-NH
2
)
2 to 15 compounds of this invention at the C-terminus. Likewise, one may use methods described in the art to add -NH 2 , (or "capping" with an -NH 2 group) to compounds of this invention at the C terminus. Exemplary C-terminal derivative groups include, for example, -C(O)R 2 wherein R 2 is lower alkoxy or -NR 3
R
4 wherein R 3 and R 4 are independently hydrogen or CI-C 8 alkyl (preferably
CI-C
4 alkyl). 20 6. A disulfide bond is replaced with another, preferably more stable, cross-linking moiety (e.g., an alkylene). See, e.g., Bhatnagar et al., JMed Chem 39: 3814-9 (1996), Alberts et al., Thirteenth Am Pep Symp, 357-9 (1993). 7. One or more individual amino acid residues is modified. Various derivatizing agents are known to react specifically with selected side chains or terminal residues, as described in 25 detail below. Lysinyl residues and amino terminal residues may be reacted with succinic or other carboxylic acid anhydrides, which reverse the charge of the lysinyl residues. Other suitable reagents for derivatizing alpha-amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; 30 O-methylisourea; 2,4 pentanedione; and transaminase-catalyzed reaction with glyoxylate. Arginyl residues may be modified by reaction with any one or combination of several conventional reagents, including phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginyl residues requires that the reaction be performed in alkaline 34 WO 2007/067616 PCT/US2006/046546 conditions because of the high pKa of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group. Specific modification of tyrosyl residues has been studied extensively, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium 5 compounds or tetranitromethane. Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively. Carboxyl side chain groups (aspartyl or glutamyl) may be selectively modified by reaction with carbodiimides (R'-N=C=N-R') such as 1-cyclohexyl-3-(2-morpholinyl-(4-ethyl) carbodiimide or 1 -ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore, aspartyl and 10 glutamyl residues may be converted to asparaginyl and glutaminyl residues by reaction with ammonium ions. Glutaminyl and asparaginyl residues may be deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention. 15 Cysteinyl residues can be replaced by amino acid residues or other moieties either to eliminate disulfide bonding or, conversely, to stabilize cross-linking. See, e.g., Bhatnagar et al., (supra). Derivatization with bifunctional agents is useful for cross-linking the peptides or their functional derivatives to a water-insoluble support matrix or to other macromolecular vehicles. 20 Commonly used cross-linking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3' dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-1,8 octane. Derivatizing agents such as methyl-3-[(p-azidophenyl)dithiolpropioimidate yield 25 photoactivatable intermediates that are capable of forming crosslinks in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates described in U.S. Patent Nos. 3,969,287; 3,691,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization. Carbohydrate (oligosaccharide) groups may conveniently be attached to sites that are 30 known to be glycosylation sites in proteins. Generally, O-linked oligosaccharides are attached to seine (Ser) or threonine (Thr) residues while N-linked oligosaccharides are attached to asparagine (Asn) residues when they are part of the sequence Asn-X-Ser/Thr, where X can be any amino acid except proline. X is preferably one of the 19 naturally occurring amino acids other than proline. The structures of N-linked and O-linked oligosaccharides and the sugar residues 35 found in each type are different. One type of sugar that is commonly found on both is N 35 WO 2007/067616 PCT/US2006/046546 acetylneuraminic acid (referred to as sialic acid). Sialic acid is usually the terminal residue of both N-linked and O-linked oligosaccharides and, by virtue of its negative charge, may confer acidic properties to the glycosylated compound. Such site(s) may be incorporated in the linker of the compounds of this invention and are preferably glycosylated by a cell during recombinant 5 production of the polypeptide compounds (e.g., in mammalian cells such as CHO, BHK, COS). However, such sites may further be glycosylated by synthetic or semi-synthetic procedures known in the art. Other possible modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, oxidation of the sulfur atom in Cys, methylation 10 of the alpha-amino groups of lysine, arginine, and histidine side chains [see, for example, Creighton, Proteins: Structure and Molecule Properties (W. H. Freeman & Co., San Francisco), pp. 79-86 (1983)]. Compounds of the present invention may be changed at the DNA level, as well. The DNA sequence of any portion of the compound may be changed to codons more compatible with the 15 chosen host cell. For E. coli, which is the preferred host cell, optimized codons are known in the art. Codons may be substituted to eliminate restriction sites or to include silent restriction sites, which may aid in processing of the DNA in the selected host cell. The vehicle, linker and peptide DNA sequences may be modified to include any of the foregoing sequence changes. Additional derivatives include non-peptide analogs that provide a stabilized structure or 20 lessened biodegradation, are also contemplated. Peptide mimetic analogs can be prepared based on a selected inhibitory peptide by replacement of one or more residues by nonpeptide moieties. Preferably, the nonpeptide moieties permit the peptide to retain its natural confirmation, or stabilize a preferred, e.g., bioactive, confirmation which retains the ability to recognize and bind myostatin. In one aspect, the resulting analog/mimetic exhibits increased binding affinity for 25 myostatin. One example of methods for preparation of nonpeptide mimetic analogs from peptides is described in Nachman et al., Regul Pept 57:359-370 (1995). If desired, the peptides of the invention can be modified, for instance, by glycosylation, amidation, carboxylation, or phosphorylation, or by the creation of acid addition salts, amides, esters, in particular C-terminal esters, and N-acyl derivatives of the peptides of the invention. The peptibodies also can be 30 modified to create peptide derivatives by forming covalent or noncovalent complexes with other moieties. Covalently-bound complexes can be prepared by linking the chemical moieties to functional groups on the side chains of amino acids comprising the peptibodies, or at the N- or C terminus. In particular, it is anticipated that the peptides can be conjugated to a reporter group, 35 including, but not limited to a radiolabel, a fluorescent label, an enzyme (e.g., that catalyzes a 36 WO 2007/067616 PCT/US2006/046546 colorimetric or fluorometric reaction), a substrate, a solid matrix, or a carrier (e.g., biotin or avidin). The invention accordingly provides a molecule comprising a peptibody molecule, wherein the molecule preferably further comprises a reporter group selected from the group consisting of a radiolabel, a fluorescent label, an enzyme, a substrate, a solid matrix, and a carrier. 5 Such labels are well known to those of skill in the art, e.g., biotin labels are particularly contemplated. The use of such labels is well known to those of skill in the art and is described in, e.g., U.S. Patent Nos.3,817,837; 3,850,752; 3,996,345; and 4,277,437. Other labels that will be useful include but are not limited to radioactive labels, fluorescent labels and chemiluminescent labels. U.S. Patents concerning use of such labels include, for example, U.S. Patent Nos. 10 3,817,837; 3,850,752; 3,939,350; and 3,996,345. Any of the peptibodies of the present invention may comprise one, two, or more of any of these labels. Methods of Making Peptides and Peptibodies The peptides of the present invention can be generated using a wide variety of techniques 15 known in the art. For example, such peptides can be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Stewart and Young (supra); Tam et al., JAm Chem Soc, 105:6442, (1983); Merrifield, Science 232:341-347 (1986); Barany and Merrifield, The Peptides, Gross and Meienhofer, eds, Academic Press, New 20 York, 1-284; Barany et aL, IntJPep Protein Res, 30:705-739 (1987); and U.S. Patent No. 5,424,398, each incorporated herein by reference. Solid phase peptide synthesis methods use a copoly(styrene-divinylbenzene) containing 0.1-1.0 mM amines/g polymer. These methods for peptide synthesis use butyloxycarbonyl (t BOC) or 9-fluorenylmethyloxy-carbonyl(FMOC) protection of alpha-amino groups. Both 25 methods involve stepwise syntheses whereby a single amino acid is added at each step starting from the C-terminus of the peptide (See, Coligan et al., Curr Prot Immunol, Wiley Interscience, 1991, Unit 9). On completion of chemical synthesis, the synthetic peptide can be deprotected to remove the t-BOC or FMOC amino acid blocking groups and cleaved from the polymer by treatment with acid at reduced temperature (e.g., liquid HF- 10% anisole for about 0.25 to about 1 30 hours at 0*C). After evaporation of the reagents, the peptides are extracted from the polymer with 1% acetic acid solution that is then lyophilized to yield the crude material. This can normally be purified by such techniques as gel filtration on Sephadex G-15 using 5% acetic acid as a solvent. Lyophilization of appropriate fractions of the column will yield the homogeneous peptides or peptide derivatives, which can then be characterized by such standard techniques as amino acid 37 WO 2007/067616 PCT/US2006/046546 analysis, thin layer chromatography, high performance liquid chromatography, ultraviolet absorption spectroscopy, molar rotation, solubility, and quantitated by the solid phase Edman degradation. Phage display techniques can be particularly effective in identifying the peptides of the 5 present invention as described above. Briefly, a phage library is prepared (using e.g. ml 13, fd, or lambda phage), displaying inserts from 4 to about 80 amino acid residues. The inserts may represent, for example, a completely degenerate or biased array. Phage-bearing inserts that bind to the desired antigen are selected and this process repeated through several cycles of reselection of phage that bind to the desired antigen. DNA sequencing is conducted to identify the sequences 10 of the expressed peptides. The minimal linear portion of the sequence that binds to the desired antigen can be determined in this way. The procedure can be repeated using a biased library containing inserts containing part or all of the minimal linear portion plus one or more additional degenerate residues upstream or downstream thereof. These techniques may identify peptides of the invention with still greater binding affinity for myostatin than agents already identified herein. 15 Regardless of the manner in which the peptides are prepared, a nucleic acid molecule encoding each such peptide can be generated using standard recombinant DNA procedures. The nucleotide sequence of such molecules can be manipulated as appropriate without changing the amino acid sequence they encode to account for the degeneracy of the nucleic acid code as well as to account for codon preference in particular host cells. 20 The present invention also provides nucleic acid molecules comprising polynucleotide sequences encoding the peptides and peptibodies of the present invention. These nucleic acid molecules include vectors and constructs containing polynucleotides encoding the peptides and peptibodies of the present invention, as well as peptide and peptibody variants and derivatives. Exemplary nucleic acid molecules are provided in the Examples below. 25 Recombinant DNA techniques also provide a convenient method for preparing full length peptibodies and other large polypeptide binding agents of the present invention, or fragments thereof.. A polynucleotide encoding the peptibody or fragment may be inserted into an expression vector, which can in turn be inserted into a host cell for production of the binding agents of the present invention. Preparation of exemplary peptibodies of the present invention are 30 described in Example 2 below. A variety of expression vector/host systems may be utilized to express the peptides and peptibodies of the invention. These systems include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus 38 WO 2007/067616 PCT/US2006/046546 expression vectors (e.g., baculovirus); plant cell systems transfected with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with bacterial expression vectors (e.g., Ti or pBR322 plasmid); or animal cell systems. One preferred host cell line is E. coli strain 2596 (ATCC # 202174), used for expression of peptibodies as described 5 below in Example 2. Mammalian cells that are useful in recombinant protein productions include but are not limited to VERO cells, HeLa cells, Chinese hamster ovary (CHO) cell lines, COS cells (such as COS-7), W138, BHK, HepG2, 3T3, RIN, MDCK, A549, PC12, K562 and 293 cells. The term "expression vector" refers to a plasmid, phage, virus or vector, for expressing a polypeptide from a polynucleotide sequence. An expression vector can comprise a transcriptional 10 unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or sequence that encodes the binding agent which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular 15 secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionyl residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final peptide product. For example, the peptides and peptibodies may be recombinantly expressed in yeast using 20 a commercially available expression system, e.g., the Pichia Expression System (Invitrogen, San Diego, CA), following the manufacturer's instructions. This system also relies on the pre-pro alpha sequence to direct secretion, but transcription of the insert is driven by the alcohol oxidase (AOXI) promoter upon induction by methanol. The secreted peptide is purified from the yeast growth medium using the methods used to purify the peptide from bacterial and mammalian cell 25 supernatants. Alternatively, the cDNA encoding the peptide and peptibodies may be cloned into the baculovirus expression vector pVL1393 (PharMingen, San Diego, CA). This vector can be used according to the manufacturer's directions (PharMingen) to infect Spodoptera frugiperda cells in sF9 protein-free media and to produce recombinant protein. The recombinant protein can be 30 purified and concentrated from the media using a heparin-Sepharose column (Pharmacia). Alternatively, the peptide or peptibody may be expressed in an insect system. Insect systems for protein expression are well known to those of skill in the art. In one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) can be used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. The peptide coding 35 sequence can be cloned into a nonessential region of the virus, such as the polyhedrin gene, and 39 WO 2007/067616 PCT/US2006/046546 placed under control of the polyhedrin promoter. Successful insertion of the peptide will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein coat. The recombinant viruses can be used to infect S. frugiperda cells or Trichoplusia larvae in which the peptide is expressed (Smith et al., J Virol 46: 584 (1983); Engelhard et al., Proc Nat Acad Sci 5 (USA) 91: 3224-7 (1994)). In another example, the DNA sequence encoding the peptide can be amplified by PCR and cloned into an appropriate vector for example, pGEX-3X (Pharmacia). The pGEX vector is designed to produce a fusion protein comprising glutathione-S-transferase (GST), encoded by the vector, and a protein encoded by a DNA fragment inserted into the vector's cloning site. The 10 primers for PCR can be generated to include for example, an appropriate cleavage site. Where the fusion moiety is used solely to facilitate expression or is otherwise not desirable as an attachment to the peptide of interest, the recombinant fusion protein may then be cleaved from the GST portion of the fusion protein. The pGEX-3X/specific binding agent peptide construct is transformed into E. coli XL-i Blue cells (Stratagene, La Jolla CA), and individual transformants 15 isolated and grown. Plasmid DNA from individual transformants can be purified and partially sequenced using an automated sequencer to confirm the presence of the desired specific binding agent encoding nucleic acid insert in the proper orientation. The fusion protein, which may be produced as an insoluble inclusion body in the bacteria, can be purified as follows. Host cells are collected by centrifugation; washed in 0.15 M NaCl, 10 20 mM Tris, pH 8, 1 mM EDTA; and treated with 0.1 mg/ml lysozyme (Sigma, St. Louis, MO) for 15 minutes at room temperature. The lysate can be cleared by sonication, and cell debris can be pelleted by centrifugation for 10 minutes at 12,000 X g. The fusion protein-containing pellet can be resuspended in 50 mM Tris, pH 8, and 10 mM EDTA, layered over 50% glycerol, and centrifuged for 30 min. at 6000 X g. The pellet can be resuspended in standard phosphate 25 buffered saline solution (PBS) free of Mg++ and Ca++. The fusion protein can be further purified by fractionating the resuspended pellet in a denaturing SDS-PAGE (Sambrook et al., supra). The gel can be soaked in 0.4 M KCl to visualize the protein, which can be excised and electroeluted in gel-running buffer lacking SDS. If the GST/fusion protein is produced in bacteria as a soluble protein, it can be purified using the GST Purification Module (Pharmacia). 30 The fusion protein may be subjected to digestion to cleave the OST from the peptide of the invention. The digestion reaction (20-40 mg fusion protein, 20-30 units human thrombin (4000 U/mg, Sigma) in 0.5 ml PBS can be incubated 16-48 hrs at room temperature and loaded on a denaturing SDS-PAGE gel to fractionate the reaction products. The gel can be soaked in 0.4 M KCI to visualize the protein bands. The identity of the protein band corresponding to the expected 35 molecular weight of the peptide can be confirmed by.amino acid sequence analysis using an 40 WO 2007/067616 PCT/US2006/046546 automated sequencer (Applied Biosystems Model 473A, Foster City, CA). Alternatively, the identity can be confirmed by performing HPLC and/or mass spectometry of the peptides. Alternatively, a DNA sequence encoding the peptide can be cloned into a plasmid containing a desired promoter and, optionally, a leader sequence (Better et al., Science 240:1041 5 43 (1988)). The sequence of this construct can be confirmed by automated sequencing. The plasmid can then be transformed into E. coli strain MC1061 using standard procedures employing CaCl2 incubation and heat shock treatment of the bacteria (Sambrook et al., supra). The transformed bacteria can be grown in LB medium supplemented with carbenicillin, and production of the expressed protein can be induced by growth in a suitable medium. If present, 10 the leader sequence can effect secretion of the peptide and be cleaved during secretion. Mammalian host systems for the expression of recombinant peptides and peptibodies are well known to those of skill in the art. Host cell strains can be chosen for a particular ability to process the expressed protein or produce certain post-translation modifications that will be useful in providing protein activity. Such modifications of the protein include, but are not limited to, 15 acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation. Different host cells such as CHO, HeLa, MDCK, 293, W13 8, and the like have specific cellular machinery and characteristic mechanisms for such post-translational activities and can be chosen to ensure the correct modification and processing of the introduced, foreign protein. It is preferable that transformed cells be used for long-term, high-yield protein 20 production. Once such cells are transformed with vectors that contain selectable markers as well as the desired expression cassette, the cells can be allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The selectable marker is designed to allow growth and recovery of cells that successfully express the introduced sequences. Resistant clumps of stably transformed cells can be proliferated using tissue culture techniques appropriate 25 to the cell line employed. A number of selection systems can be used to recover the cells that have been transformed for recombinant protein production. Such selection systems include, but are not limited to, HSV thymidine kinase, hypoxanthine-guanine phosphoribosyltransferase and adenine phosphoribosyltransferase genes, in tk-, hgprt- or aprt- cells, respectively. Also, anti-metabolite 30 resistance can be used as the basis of selection for dhfr which confers resistance to methotrexate; gpt which confers resistance to mycophenolic acid; neo which confers resistance to the aminoglycoside G418 and confers resistance to chlorsulfuron; and hygro which confers resistance to hygromycin. Additional selectable genes that may be useful include trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of 41 WO 2007/067616 PCT/US2006/046546 histidine. Markers that give a visual indication for identification of transformants include anthocyanins, 8-glucuronidase and its substrate, GUS, and luciferase and its substrate, luciferin. Purification and Refolding of Binding Agents 5 In some cases, the binding agents such as the peptides and/or peptibodies of this invention may need to be "refolded" and oxidized into a proper tertiary structure and disulfide linkages generated in order to be biologically active. Refolding can be accomplished using a number of procedures well known in the art. Such methods include, for example, exposing the solubilized polypeptide agent to a pH usually above 7 in the presence of a chaotropic agent. The selection of 10 chaotrope is similar to the choices used for inclusion body solubilization, however a chaotrope is typically used at a lower concentration. Exemplary chaotropic agents are guanidine and urea. In most cases, the refolding/oxidation solution will also contain a reducing agent plus its oxidized form in a specific ratio to generate a particular redox potential which allows for disulfide shuffling to occur for the formation of cysteine bridges. Some commonly used redox couples include 15 cysteine/cystamine, glutathione/dithiobisGSH, cupric chloride, dithiothreitol DTT/dithiane DTT, and 2-mercaptoethanol (bME)/dithio-bME. In many instances, a co-solvent may be used to increase the efficiency of the refolding. Commonly used cosolvents include glycerol, polyethylene glycol of various molecular weights, and arginine. It may be desirable to purify the peptides and peptibodies of the present invention. 20 Protein purification techniques are well known to those of skill in the art. These techniques involve, at one level, the crude fractionation of the proteinaceous and non-proteinaceous fractions. Having separated the peptide and/or peptibody from other proteins, the peptide or polypeptide of interest can be further purified using chromatographic and electrophoretic techniques to achieve partial or complete purification (or purification to homogeneity). Analytical methods particularly 25 suited to the preparation of peptibodies and peptides or the present invention are ion-exchange chromatography, exclusion chromatography; polyacrylamide gel electrophoresis; isoelectric focusing. A particularly efficient method of purifying peptides is fast protein liquid chromatography or even HPLC. Certain aspects of the present invention concern the purification, and in particular 30 embodiments, the substantial purification, of a peptibody or peptide of the present invention. The term "purified peptibody or peptide" as used herein, is intended to refer to a composition, isolatable from other components, wherein the peptibody or peptide is purified to any degree relative to its naturally-obtainable state. A purified peptide or peptibody therefore also refers to a peptibody or peptide that is free from the environment in which it may naturally occur. 42 WO 2007/067616 PCT/US2006/046546 Generally, "purified" will refer to a peptide or peptibody composition that has been subjected to fractionation to remove various other components, and which composition substantially retains its expressed biological activity. Where the term "substantially purified" is used, this designation will refer to a peptide or peptibody composition in which the peptibody or 5 peptide forms the major component of the composition, such as constituting about 50%, about 60%, about 70%, about 80%, about 90%, about 95% or more of the proteins in the composition. Various methods for quantifying the degree of purification of the peptide or peptibody will be known to those of skill in the art in light of the present disclosure. These include, for example, determining the specific binding activity of an active fraction, or assessing the amount 10 of peptide or peptibody within a fraction by SDS/PAGE analysis. A preferred method for assessing the purity of a peptide or peptibody fraction is to calculate the binding activity of the fraction, to compare it to the binding activity of the initial extract, and to thus calculate the degree of purification, herein assessed by a "-fold purification number." The actual units used to represent the amount of binding activity will, of course, be dependent upon the particular assay 15 technique chosen to follow the purification and whether or not the peptibody or peptide exhibits a detectable binding activity. Various techniques suitable for use in purification will be well known to those of skill in the art. These include, for example, precipitation with ammonium sulphate, PEG, antibodies (immunoprecipitation) and the like or by heat denaturation, followed by centrifugation; 20 chromatography steps such as affinity chromatography (e.g., Protein-A-Sepharose), ion exchange, gel filtration, reverse phase, hydroxylapatite and affinity chromatography; isoelectric focusing; gel electrophoresis; and combinations of such and other techniques. As is generally known in the art, it is believed that the order of conducting the various purification steps may be changed, or that certain steps may be omitted, and still result in a suitable method for the preparation of a 25 substantially purified binding agent. There is no general requirement that the binding agents of the present invention always be provided in their most purified state. Indeed, it is contemplated that less substantially purified binding agent products will have utility in certain embodiments. Partial purification may be accomplished by using fewer purification steps in combination, or by utilizing different forms of 30 the same general purification scheme. For example, it is appreciated that a cation-exchange column chromatography performed utilizing an HPLC apparatus will generally result in a greater "-fold" purification than the same technique utilizing a low-pressure chromatography system. Methods exhibiting a lower degree of relative purification may have advantages in total recovery of the peptide or peptibody, or in maintaining binding activity of the peptide or peptibody. 43 WO 2007/067616 PCT/US2006/046546 It is known that the migration of a peptide or polypeptide can vary, sometimes significantly, with different conditions of SDS/PAGE (Capaldi et al., Biochem Biophys Res Comn, 76: 425 (1977)). It will therefore be appreciated that under differing electrophoresis conditions, the apparent molecular weights of purified or partially purified binding agent 5 expression products may vary. Activity of Myostatin Binding Agents and Other Antagonists The antagonists including the binding agents described herein were tested for their ability to bind myostatin and inhibit or block myostatin activity. Any number of assays or animal tests 10 may be used to determine the ability of the agent to inhibit or block myostatin activity. Several assays used for characterizing the peptides and peptibodies of the present invention are described in the Examples below. One assay is the C2Cl2 pMARE-luc assay which makes use of a myostatin-responsive cell line (C2C12 myoblasts) transfected with a luciferase reporter vector containing myostatin/activin response elements (MARE). Exemplary peptibodies are assayed by 15 pre-incubating a series of peptibody dilutions with myostatin, and then exposing the cells to the incubation mixture. The resulting luciferase activity is determined, and a titration curve is generated from the series of peptibody dilutions. The IC 5 o (the concentration of peptibody to achieve 50% inhibition of myostatin activity as measured by luciferase activity) was then determined. A second assay described below is a BlAcore@ assay to determine the kinetic 20 parameters k, (association rate constant), kcd (dissociation rate constant), and KD (dissociation equilibrium constant) for the myostatin binding agents and other antagonists such as antibodies capable of binding myostatin and its receptor. Lower dissociation equilibrium constants (KD, expressed in nM) indicated a greater affinity of the peptibody for myostatin. Additional assays include blocking assays, to determine whether a binding agent such as a peptibody is neutralizing 25 (prevents binding of myostatin to its receptor), or non-neutralizing (does not prevent binding of myostatin to its receptor); selectivity assays, which determine if the binding agents of the present invention bind selectively to myostatin and not to certain other TGF-8 family members; and KinEx ATm assays or solution-based equilibrium assays, which also determine KD and are considered to be more sensitive in some circumstances. These assays are described in Example 3. 30 Figure 1 shows the ICso of a peptide compared with the IC 50 of the peptibody form of the peptide. This demonstrates that the peptibody is significantly more effective at inhibiting myostatin activity than the peptide alone. In addition, affinity-matured peptibodies generally exhibit improved IC 5 0 and KD values compared with the parent peptides and peptibodies. The ICso values for a number of exemplary affinity matured peptibodies are shown in Table VII, 35 Example 7 below. Additionally, in some instances, making a 2x version of a peptibody, where 44 WO 2007/067616 PCT/US2006/046546 two peptides are attached in tandem, increase the activity of the peptibody both in vitro and in vivo. In vivo activities are demonstrated in the Examples below. The activities of the binding agents include but are not limited to increased lean muscle mass, increased muscle strength, and 5 decreased fat mass with respect to total body weight in treated animal models. The in vivo activities described herein further include attenuation of wasting of lean muscle mass and strength in animal models including models of hypogonadism, rheumatoid cachexia, cancer cachexia, and inactivity. 10 Uses of Myostatin Antagonists The present invention provides methods and treatments for muscle related and other disorders by administering a therapeutic amount of a myostatin antagonist or antagonists to subjects in need of such a treatment. Myostatin antagonists can also be administered prophylactically to protect against future muscle wasting and related disorders in a subject in need 15 of such as treatment. As used herein the term "subject"refers to any animal including mammals, and including human subjects in need of treatment for myostatin-related disorders. In one embodiment, the myostatin antagonists are the binding agents described herein. These myostatin-related disorders include, but are not limited to, various forms of muscle wasting, as well as metabolic disorders such as diabetes and related disorders, and bone 20 degenerative diseases such as osteoporosis. Myostatin antagonists also can be used to treat disorders resulting from hypogonadism, disorders resulting from inactivity, disorders which would otherwise be treated by growth hormones or growth hormone secretagogues, and various cachexias including tumor related cachexia, rheumatoid cachexia, and cachexia resulting from bums. 25 As shown in the examples below, myostatin antagonists such as the exemplary peptibodies described herein dramatically increases lean muscle mass, decreases fat mass, alters the ratio of muscle to fat, and increases muscle strength. Muscle wasting disorders include muscular dystrophies and neuromuscular disorders. These disorders include but are not limited to Duchenne's muscular dystrophy, progressive 30 muscular dystrophy, Becker's type muscular dystrophy, Dejerine-Landouzy muscular dystrophy, Erb's muscular dystrophy, Emery Dreifuss muscular dystrophy, limb girdle muscular dystrophy, rigid spine sydrome, muscle-eye-brain disease, amyotrophic lateral sclerosis, facioscapulohumeral muscular dytrophy, congenital muscular dystrophy, infantile neuroaxonal muscular dystrophy, myotonic dytrophy (Steinert's disease), nondytrophic myotonia, periodic paralyses spinal 35 muscular atrophy, heredity motor and sensory neuropathy, Carcot-Marie-Tooth disease, chronic 45 WO 2007/067616 PCT/US2006/046546 inflammatory neuropathy, distal myopathy, myotubular/centronuclear myopathy, nemaline myopathy, mini core disease, central core disease, desminopathy, inclusion body myositis, mitochondrial myopathy, congenital myasthenic syndrome, post-polio muscle dysfunction, and disorders described in Emery Lancet 359:687-695 (2002) and Khurana et al, Nat. Rev. Drug Disc 5 2:379-386 (2003). These disorders can be treated by adminstering a therapeutic amount of one or more myostatin antagonist to a subject in need thereof. This is demonstrated by administering an exemplary peptibody an aged mdx mouse model, as described in Example 11 below. Myostatin antagonists are also useful for treating metabolic disorders including type 2 diabetes, noninsulin-dependent diabetes mellitus, hyperglycemia, and obesity. For example, 10 myostatin may influence the development of diabetes in certain cases. It is known that, for example, skeletal muscle resistance to insulin-stimulated glucose uptake is the earliest known manifestation of non-insulin-dependent (type 2) diabetes mellitus (Corregan et al. Endocrinology 128:1682 (1991)). It has been shown that the lack of myostatin partially attenuates the obese and diabetes phenotypes of two mouse models, the agouti lethal yellow (AY) (Yen et al. FASEB J. 15 8:479 (1994)), and obese (Lep"bl'*). Fat accumulation and total body weight of the Ay"a, Mstn double mutant mouse was dramatically reduced compared with the Ay/a Mstn +'+mouse (McFerron et al., (2002) supra). In addition, blood glucose levels in the Al/', Mstn - mice was dramatically lower than in Aya Mstn +1+ mice following exogenous glucose load, indicating that the lack of myostatin improved glucose metabolism. Similarly Lep/'* Mstn ' mice showed decreased fat 20 accumulation when compared with the Lepo'b"b Mstn *'*phenotype. It has been demonstrated in the Examples below that decreasing or blocking myostatin activity by administering an exemplary peptibody decreases the fat to muscle ratio in an aged animal model. Therefore, individuals suffering from the effects of diabetes, obesity, and hyperglycemic conditions can be treated with a therapeutically effective dose of one or more myostatin antagonist, such as the myostatin binding 25 agents described herein. Other complications from diabetes includes cachexia as well as diabetic nephropathy due to high blood glucose and other effects of diabetes. As can be seen in Example 15 below, administration of a myostatin antagonist exemplified by 2x mTN8-19-21 significantly attenuated the body weight loss and preserved skeletal muscle mass and lean body mass in STZ-induced 30 diabetic mice. In addition to an increase in skeletal muscle and lean mass, the antagonists attenuated kidney hypertrophy, the increase in creatinine clearance rate and reduced 24 hour urine volume and urinary albumin excretion in STZ-induced diabetic mice. This shows improved kidney function in the early stage of development of diabetic nephropathy. Therefore myostatin antagonists are useful for treating cachexia caused by diabetes, and for treating diabetic 35 nephropathy. 46 WO 2007/067616 PCT/US2006/046546 Additional muscle wasting disorders arise from chronic disease including congestive obstructive pulmonary disease (COPD) and cystic fibrosis (pulmonary cachexia), cardiac disease or failure (cardiac cachexia), cancer (cancer or tumor related cachexia), wasting due to AIDS, wasting due to renal failure, cachexia associated with dialysis, uremia, and rheumatoid arthritis 5 (rheumatoid cachexia). For example, serum and intramuscular concentrations of myostatin immunoreactive protein was found to be increased in men exhibiting AIDS-related muscle wasting and was inversely related to fat-free mass (Gonzalez-Cadavid et al., PNAS USA 95: 14938-14943 (1998)). As used herein the term "cachexia" refers to the condition of accelerated muscle wasting and loss of lean body mass resulting from a number of diseases such as those 10 described above. Treatment of cachexia was demonstrated by treating a mouse model of tumor cachexia using an exemplary peptibody. Balb/c male mice (Charles River Labs, Wilmington, MA) bearing tumors generated by inoculation with murine colon-24 adenocarcinoma cell line (ATCC# CRL 2639) were treated with 2x mTN8-19-21 attached to murine Fc (2x mTN8-19 21/muFc) or a murine Fc vehicle. Animals treated with the peptibody showed attenuation of loss 15 of body weight, lean body mass, and the preservation of skeletal muscle mass compared with the control animals treated with an Fc vehicle. This occured in both young (3 months) and older (12 months) mice. This demonstrated that cachexia such as cancer cachexia can be treated with a therapeutic dosage of one or more myostatin antagonists, such as the myostatin binding agents described herein. 20 In addition, cachexia can be caused by chemotherapeutic agents themselves. Example 16 below shows the development of an chemotherapy cachexia animal model using 5-fluorouracil (5 Fu). Myostatin antagonists exemplified by 2x mTN8-19-21/muFc attenuated body weight loss in this model and increased survival in the animals treated with 5-Fu (see Example 16 and Figures 11 and 12). Chemotherapeutic agents refers to all chemical agents used to treat cancer. 25 Treatment of inflammation related cachexia Myostatin antagonists including the binding agents described herein can be used to treat cachexia due inflammation or other immune responses including rheumatoid arthritis. Rheumatoid arthritis (RA) is a common systemic autoimmune disease that leads to joint 30 inflammation, progressive cartilage/bone erosion, and rheumatoid cachexia. Rheumatoid cachexia is described as a loss of body cell mass, particularly muscle mass, that can occur in rheumatoid arthritis patients (Rall et al., Rheumatology 43, 1219-1223 (2004), Roubenoff et al, J Clin Invest 93, 2379-2386 (1994)). Collagen-induced arthritis (CIA) is a commonly used mouse model for RA. Example 12 describes the treatment of CIA mice with an exemplary peptibody 35 which prevented the rapid body weight loss due to cachexia found in the control, as shown in 47 WO 2007/067616 PCT/US2006/046546 Figure 7. This example demonstrates that myostatin antagonists, including the peptibodies described herein, are useful for treating rheumatoid cachexia. Further, myostatin antagonists have also been demonstrated to decrease levels of TNF-a (tumor necrosis factor-a ) in animals treated with LPS (E. coli lipopolysaccharide). This experiment is described in Example 14 below. This 5 demonstrates that myostatin antagonists are also useful for treating the inflammatory component of the immune disorders such as RA. In addition, injuries due to burns have been found to contribute to an increase in myostatin mRNA in animals (Land et al, FASEB 15 1807-1809 (2001). Myostatin antagonists including the binding agents described herein are useful for treatment of individuals from wasting 10 resulting from burns injuries. Additional conditions resulting in muscle wasting or atrophy may arise from inactivity due to disability such as confinement in a wheelchair or prolonged bedrest. Prolonged bedrest or inactivity may be due to stroke, heart disease, other chronic illness, spinal chord injury, coma, bone fracture or trauma, frailty due to old age or dementia, and recovery from surgeries such as 15 hip or knee replacement. For example, plasma myostatin immunoreactive protein was found to increase after prolonged bedrest (Zachwieja et al. J Gravit Physiol. 6(2):11(1999)). Prevention of loss of body weight, in particular lean body mass, has been demonstrated in a mouse model of disuse atrophy, a hindlimb suspension model. C57B11/6 male mice were tail suspended and received placebo or a peptibody 2x TN8-19-21 at 3 mg/kg every 3 days for 14 days. Treatment 20 with the exemplary peptibody attenuated the loss of lean body mass and muscle strength in the suspended mice compared with suspended control mice receiving a placebo. Other conditions resulting in muscle wasting is exposure to a microgravity environment (space flight). It was found, for example, that the muscles of rats exposed to a microgravity environment during a space shuttle flight expressed an increased amount of myostatin compared 25 with the muscles of rats which were not exposed (Lalani et al., J.Endocrin 167 (3): 417-28 (2000)). Therefore, myostatin antagonists including the myostatin binding agents described herein can be used to prevent muscle loss and weakness due to space flight. In addition, age related frailty/sarconpenia can be treated with myostatin antagonists including the myostatin binding agents described herein. These effects include age-related 30 increases in fat to muscle ratios, and age-related muscular atrophy and weakness. As used herein the term "sarcopenia" refers to the loss of muscle mass that occurs with age. Average serum myostatin-immunoreactive protein increased with age in groups of young (19-35 yr old), middle aged (36-75 yr old), and elderly (76-92 yr old) men and women, while the average muscle mass and fat-free mass declined with age in these groups (Yarasheski et al. J Nutr Aging 6(5):343-8 35 (2002)). It has also been shown that age-related increases in adipose tissue mass and decrease in 48 WO 2007/067616 PCT/US2006/046546 muscle mass were proportional to myostatin levels, as determined by a comparison of fat and muscle mass in Mstn +/+ when compared with Mstn -' adult knockout mice (McFerron et al. J. Clin. Invest 109, 595 (2002)). Mstn -- mice showed decreased fat accumulation with age compared with Mstn *'* mice. 5 Reducing myostatin levels in the heart muscle may improve recovery of heart muscle after infarct, since myostatin levels are expressed at low levels in heart muscle and expression is upregulated in cardiomyocytes after infarct (Sharma et al., J Cell Physiol. 180 (1):1-9 (1999)). In addition, increasing muscle mass by reducing myostatin levels may improve bone strength and reduce osteoporosis and other degenerative bone diseases. It has been found, for 10 example, that myostatin-deficient mice showed increased mineral content and density of the mouse humerus and increased mineral content of both trabecular and cortical bone at the regions where the muscles attach, as well as increased muscle mass (Hamrick et al. Calcif Tissue Int 71(1):63-8 (2002)). 15 Treatment Alternative to Growth Hormone Myostatin antagonists including the binding agents of the present invention may be further used to as an alternative treatment for disorders currently treated by the growth hormone (GH), insulin growth factor-1, growth hormone secretagogues, or androgens. Treatment with GH or growth hormone secretagogues is the classic anabolic treatment for growth and muscle related 20 disorders such as Prader-Willi disease described below. However, GH treatment will often have negative effects. Myostatin antagonists are useful as an alternative to this treatment, producing a more selective muscle response without the dangerous side-effects of GH related therapies. Myostatin antagonists are also useful for treating a GH resistant population, or aging individuals who have become resistant to GH. 25 Myostatin antagonists are useful, for example, for treating Prader-Willi syndrome, a genetic disorder usually involving chromosome 15. Prader-Willi is characterized by obesity, hypotonia, or poor muscle tone, and significant developmental delays in children afflicted with this disorder (Wattendorf et al, Amer Fam Physician 72 (5), 827-830 (2005)). This genetic disorder is currently treated with growth hormone, which can be dangerous to young children. 30 (Riedl et al, Acta Paedriatr 94(7):97407 (2005), Miller J, J Clin Endocrinol Metab epub Nov 29 (2005)). Myostatin antagonists including the binding agents described herein increase muscle mass and strerigth as well as decrease the ratio of fat to muscle, and are thereofore useful for treating this condition. 49 WO 2007/067616 PCT/US2006/046546 Treatment of Hypogonadism Myostatin antagonists including the binding agents of the present invention can be used to treat the results of hypogonadism in subjects in need of such a treatment. As used herein, the term "hypogonadism" refers to inadequate or reduced gonad functioning in both males and females, 5 resulting from deficiencies in the sexual organs or reduced secretion of gonadal hormones. As used herein hypogonadism includes the results of chemical or surgical castration (also referred to as orchiectomy or loss of one or both testes), and age-related hypgonadism. Androgen deprivation therapy through chemical or surgical castration is used to treat prostate cancer, other sex organ related cancers such as ovarian cancer, breast cancer, as well as endometriosis, and 10 other disorders. Hypogonadism can result in decreased body weight, in particular by decreased lean body mass and increased fat mass over time, and decreased muscle strength. The treatment of orchietomized mice with a myostatin antagonist is described in Example 13 below. The orchiectomized animals treated with the myostatin peptibody antagonist show an attenuation or reversal of lean body mass loss when compared with the animals treated with the Fc vehicle. This 15 demonstrates that myostatin antagonists are useful for treating the effects of hypogonadism, including patients subjected to androgen deprivation therapy. Myostatin antagonists can also prevent increases in fat mass in subjects suffering from hypogonadism. The present invention also provides methods and compositions for increasing muscle mass in food animals by administering an effective dosage of myostatin antagonists such as the 20 myostatin binding agents described herein to the animal. Since the mature C-terminal myostatin polypeptide is identical in all species tested, myostatin antagonists would be expected to be effective for increasing muscle mass and reducing fat in any agriculturally important species including cattle, chicken, turkeys, and pigs. The myostatin antagonists of the present invention may be used alone or in combination 25 with other therapeutic agents to enhance their therapeutic effects or decrease potential side effects. The binding agents are exemplary myostatin antagonists. The binding agents of the present invention possess one or more desirable but unexpected combination of properties to improve the therapeutic value of the agents. These properties include increased activity, increased solubility, reduced degradation, increased half-life, reduced toxicity, and reduced immunogenicity. Thus the 30 binding agents of the present invention are useful for extended treatment regimes. In addition, the properties of hydrophilicity and hydrophobicity of the compounds of the invention are well balanced, thereby enhancing their utility for both in vitro and especially in vivo uses. Specifically, compounds of the invention have an appropriate degree of solubility in aqueous media that permits absorption and bioavailability in the body, while also having a degree of solubility in 50 WO 2007/067616 PCT/US2006/046546 lipids that permits the compounds to traverse the cell membrane to a putative site of action, such as a particular muscle mass. The binding agents of the present invention are useful for treating a "subject" or any animal, including humans, when administered in an effective dosages in a suitable composition. 5 In addition, the mystatin binding agents of the present invention are useful for detecting and quantitating myostatin in a number of assays. These assays are described in more detail below. In general, the binding agents of the present invention are useful as capture agents to bind and immobilize myostatin in a variety of assays, similar to those described, for example, in Asai, 10 ed., Methods in Cell Biology, 37, Antibodies in Cell Biology, Academic Press, Inc., New York (1993). The binding agent may be labeled in some manner or may react with a third molecule such as an anti-binding agent antibody which is labeled to enable myostatin to be detected and quantitated. For example, a binding agent or a third molecule can be modified with a detectable moiety, such as biotin, which can then be bound by a fourth molecule, such as enzyme-labeled 15 streptavidin, or other proteins. (Akerstrom, JImmunol 135:2589 (1985); Chaubert, Mod Pathol 10:585 (1997)). Throughout any particular assay, incubation and/or washing steps may be required after each combination of reagents. Incubation steps can vary from about 5 seconds to several hours, preferably from about 5 minutes to about 24 hours. However, the incubation time will depend 20 upon the assay format, volume of solution, concentrations, and the like. Usually, the assays will be carried out at ambient temperature, although they can be conducted over a range of temperatures. Non-competitive binding assays: Binding assays can be of the non-competitive type in which the amount of captured 25 myostatin is directly measured. For example, in one preferred "sandwich" assay, the binding agent can be bound directly to a solid substrate where it is immobilized. These immobilized agents then bind to myostatin present in the test sample. The immobilized myostatin is then bound with a labeling agent, such as a labeled antibody against myostatin, which can be detected . In another preferred "sandwich" assay, a second agent specific for the binding agent can be added 30 which contains a detectable moiety, such as biotin, to which a third labeled molecule can specifically bind, such as streptavidin. (See, Harlow and Lane, Antibodies, A Laboratory Manual, Ch 14, Cold Spring Harbor Laboratory, NY (1988), which is incorporated herein by reference). 51 WO 2007/067616 PCT/US2006/046546 Competitive Binding Assays: Binding assays can be of the competitive type. The amount of myostatin present in the sample is measured indirectly by measuring the amount of myostatin displaced, or competed away, from a binding agent by the myostatin present in the sample. In one preferred competitive 5 binding assay, a known amount of myostatin, usually labeled, is added to the sample and the sample is then contacted with the binding agent. The amount of labeled myostatin bound to the binding agent is inversely proportional to the concentration of myostatin present in the sample. (following the protocols found in, for example Harlow and Lane, Antibodies, A Laboratory Manual, Ch 14, pp. 579-583, supra). 10 In another preferred competitive binding assay, the binding agent is immobilized on a solid substrate. The amount of myostatin bound to the binding agent may be determined either by measuring the amount of myostatin present in a myostatin/binding agent complex, or alternatively by measuring the amount of remaining uncomplexed myostatin. Other Binding Assays 15 The present invention also provides Western blot methods to detect or quantify the presence of myostatin in a sample. The technique generally comprises separating sample proteins by gel electrophoresis on the basis of molecular weight and transferring the proteins to a suitable solid support, such as nitrocellulose filter, a nylon filter, or derivatized nylon filter. The sample is incubated with the binding agents or fragments thereof that bind myostatin and the resulting 20 complex is detected. These binding agents may be directly labeled or alternatively may be subsequently detected using labeled antibodies that specifically bind to the binding agent. Diagnostic Assays The binding agents or fragments thereof of the present invention may be useful for the 25 diagnosis of conditions or diseases characterized by increased amounts of myostatin. Diagnostic assays for high levels of myostatin include methods utilizing a binding agent and a label to detect myostatin in human body fluids, extracts of cells or specific tissue extracts. For example, serum levels of myostatin may be measured in an individual over time to determine the onset of muscle wasting associated with aging or inactivity, as described, for example, in Yarasheski et al., supra. 30 Increased myostatin levels were shown to correlate with average decreased muscle mass and fat free mass in groups of men and women of increasing ages (Yarasheski et al., supra). The binding agents of the present invention may be useful for monitoring increases or decreases in the levels of myostatin with a given individual over time, for example. The binding agents can be used in such assays with or without modification. In a preferred diagnostic assay, the binding agents will 35 be labeled by attaching, e.g., a label or a reporter molecule. A wide variety of labels and reporter 52 WO 2007/067616 PCT/US2006/046546 molecules are known, some of which have been already described herein. In particular, the present invention is useful for diagnosis of human disease. A variety of protocols for measuring myostatin proteins using binding agents of myostatin are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), 5 radioimmunoassay (RIA) and fluorescence activated cell sorting faces) . For diagnostic applications, in certain embodiments the binding agents of the present invention typically will be labeled with a detectable moiety. The detectable moiety can be any one that is capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as 3 H, 4 C, 32 P, 3 5 S, or 1251, a fluorescent or 10 chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin; or an enzyme, such as alkaline phosphatase, pgalactosidase, or horseradish peroxidase (Bayer et al., Meth Enz, 184: 138 (1990)). Pharmaceutical Compositions 15 The present invention also provides pharmaceutical compositions of one or more mysotatin antagonists described herein for treating the targeted disease conditions. Such compositions comprise a therapeutically or prophylactically effective amount of one or more myostatin antagonist in admixture with a pharmaceutically acceptable agent. The pharmaceutical compositions comprise antagonists that inhibit myostatin partially or completely in admixture 20 with a pharmaceutically acceptable agent. Typically, the antagonists will be sufficiently purified for administration to an animal. The pharmaceutical composition may contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the 25 composition. Suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, arginine or lysine); antimicrobials; antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogen-sulfite); buffers (such as borate, bicarbonate, Tris-HCI, citrates, phosphates, other organic acids); bulking agents (such as mannitol or glycine), chelating agents (such as ethylenediamine tetraacetic acid (EDTA)); complexing agents (such as caffeine, 30 polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin); fillers; monosaccharides; disaccharides and other carbohydrates (such as glucose, mannose, or dextrins); proteins (such as serum albumin, gelatin or immunoglobulins); coloring; flavoring and diluting agents; emulsifying agents; hydrophilic polymers (such as polyvinylpyrrolidone); low molecular weight polypeptides; salt-forming counterions (such as sodium); preservatives (such as 35 benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, 53 WO 2007/067616 PCT/US2006/046546 methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide); solvents (such as glycerin, propylene glycol or polyethylene glycol); sugar alcohols (such as mannitol or sorbitol); suspending agents; surfactants or wetting agents (such as pluronics, PEG, sorbitan esters, polysorbates such as polysorbate 20, polysorbate 80, triton, tromethamine, lecithin, 5 cholesterol, tyloxapal); stability enhancing agents (sucrose or sorbitol); tonicity enhancing agents (such as alkali metal halides (preferably sodium or potassium chloride, mannitol sorbitol); delivery vehicles; diluents; excipients and/or pharmaceutical adjuvants. (Remington's Pharmaceutical Sciences, 18' Edition, A.R. Gennaro, ed., Mack Publishing Company, 1990). The optimal pharmaceutical composition will be determined by one skilled in the art 10 depending upon, for example, the intended route of administration, delivery format, and desired dosage. See for example, Remington's Pharmaceutical Sciences, supra. Such compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the binding agent. The primary vehicle or carrier in a pharmaceutical composition may be either aqueous or 15 non-aqueous in nature. For example, a suitable vehicle or carrier may be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration. Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles. Other exemplary pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, 20 which may further include sorbitol or a suitable substitute therefore. In one embodiment of the present invention, binding agent compositions may be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (Remington's Pharmaceutical Sciences, supra) in the form of a lyophilized cake or an aqueous solution. Further, the binding agent product may be formulated as a lyophilizate using appropriate 25 excipients such as sucrose. The pharmaceutical compositions can be selected for parenteral delivery. Alternatively, the compositions may be selected for inhalation or for enteral delivery such as orally, aurally, opthalmically, rectally, or vaginally. The preparation of such pharmaceutically acceptable compositions is within the skill of the art. 30 The formulation components are present in concentrations that are acceptable to the site of administration. For example, buffers are used to maintain the composition at physiological pH or at slightly lower pH, typically within a pH range of from about 5 to about 8. When parenteral administration is contemplated, the therapeutic compositions for use in this invention may be in the form of a pyrogen-free, parenterally acceptable aqueous solution 35 comprising the desired binding agent in a pharmaceutically acceptable vehicle. A particularly 54 WO 2007/067616 PCT/US2006/046546 suitable vehicle for parenteral injection is sterile distilled water in which a binding agent is formulated as a sterile, isotonic solution, properly preserved. Yet another preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio erodible particles, polymeric compounds (polylactic acid, polyglycolic acid), beads, or liposomes, 5 that provides for the controlled or sustained release of the product which may then be delivered via a depot injection. Hyaluronic acid may also be used, and this may have the effect of promoting sustained duration in the circulation. Other suitable means for the introduction of the desired molecule include implantable drug delivery devices. In another aspect, pharmaceutical formulations suitable for parenteral administration may 10 be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles 15 include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the ompounds and allow for the preparation of highly concentrated solutions.In another embodiment, a pharmaceutical composition may be formulated for inhalation. For 20 example, a binding agent may be formulated as a dry powder for inhalation. Polypeptide or nucleic acid molecule inhalation solutions may also be formulated with a propellant for aerosol delivery. In yet another embodiment, solutions may be nebulized. Pulmonary administration is further described in PCT Application No. PCT/US94/001875, which describes pulmonary delivery of chemically modified proteins. 25 It is also contemplated that certain formulations may be administered orally. In one embodiment of the present invention, binding agent molecules that are administered in this fashion can be formulated with or without those carriers customarily used in the compounding of solid dosage forms such as tablets and capsules. For example, a capsule may be designed to release the active portion of the formulation at the point in the gastrointestinal tract when 30 bioavailability is maximized and pre-systemic degradation is minimized. Additional agents can be included to facilitate absorption of the binding agent molecule. Diluents, flavorings, low melting point waxes, vegetable oils, lubricants, suspending agents, tablet disintegrating agents, and binders may also be employed. 55 WO 2007/067616 PCT/US2006/046546 Pharmaceutical compositions for oral administration can also be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by 5 the patient. Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, 10 mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate. 15 Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage. 20 Pharmaceutical preparations that can be used orally also include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as 25 fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers. Another pharmaceutical composition may involve an effective quantity of binding agent in a mixture with non-toxic excipients that are suitable for the manufacture of tablets. By dissolving the tablets in sterile water, or other appropriate vehicle, solutions can be prepared in unit dose form. Suitable excipients include, but are not limited to, inert diluents, such as calcium 30 carbonate, sodium carbonate or bicarbonate, lactose, or calcium phosphate; or binding agents, such as starch, gelatin, or acacia; or lubricating agents such as magnesium stearate, stearic acid, or talc. Additional pharmaceutical compositions will be evident to those skilled in the art, including formulations involving binding agent molecules in sustained- or controlled-delivery 35 formulations. Techniques for formulating a variety of other sustained- or controlled-delivery 56 WO 2007/067616 PCT/US2006/046546 means, such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See for example, PCT/US93/00829 that describes controlled release of porous polymeric microparticles for the delivery of pharmaceutical compositions. Additional examples of sustained-release preparations include semipermeable 5 polymer matrices in the form of shaped articles, e.g. films, or microcapsules. Sustained release matrices may include polyesters, hydrogels, polylactides (U.S. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., Biopolymers, 22:547-556 (1983), poly (2-hydroxyethyl-methacrylate) (Langer et al., J. Biomed. Mater. Res., 15:167-277, (1981); Langer et al., Chem. Tech., 12:98-105(1982)), ethylene vinyl acetate (Langer 10 et al., supra) or poly-D(-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomes, which can be prepared by any of several methods known in the art. See e.g., Eppstein et al.,PNAS (USA), 82:3688 (1985); EP 36,676; EP 88,046; EP 143,949. The pharmaceutical composition to be used for in vivo administration typically must be sterile. This may be accomplished by filtration through sterile filtration membranes. Where the 15 composition is lyophilized, sterilization using this method may be conducted either prior to or following lyophilization and reconstitution. The composition for parenteral administration may be stored in lyophilized form or in solution. In addition, parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle. 20 Once the pharmaceutical composition has been formulated, it may be stored in sterile vials as a solution, suspension, gel, emulsion, solid, or a dehydrated or lyophilized powder. Such formulations may be stored either in a ready-to-use form or in a form (e.g., lyophilized) requiring reconstitution prior to administration. In a specific embodiment, the present invention is directed to kits for producing a single 25 dose administration unit. The kits may each contain both a first container having a dried protein and a second container having an aqueous formulation. Also included within the scope of this invention are kits containing single and multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes). An effective amount of a pharmaceutical composition to be employed therapeutically will 30 depend, for example, upon the therapeutic context and objectives. One skilled in the art will appreciate that the appropriate dosage levels for treatment will thus vary depending, in part, upon the molecule delivered, the indication for which the binding agent molecule is being used, the route of administration, and the size (body weight, body surface or organ size) and condition (the age and general health) of the patient. Accordingly, the clinician may titer the dosage and modify 35 the route of administration to obtain the optimal therapeutic effect. A typical dosage may range 57 WO 2007/067616 PCT/US2006/046546 from about 0.1mg/kg to up to about 100 mg/kg or more, depending on the factors mentioned above. In other embodiments, the dosage may range from 0.1 mg/kg up to about 100 mg/kg; or 1 mg/kg up to about 100 mg/kg; or 5 mg/kg up to about 100 mg/kg. For any compound, the therapeutically effective dose can be estimated initially either in 5 cell culture assays or in animal models such as mice, rats, rabbits, dogs, pigs, or monkeys. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. The exact dosage will be determined in light of factors related to the subject requiring 10 treatment. Dosage and administration are adjusted to provide sufficient levels of the active compound or to maintain the desired effect. Factors that may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 15 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation. The frequency of dosing will depend upon the pharmacokinetic parameters of the binding agent molecule in the formulation used. Typically, a composition is administered until a dosage is reached that achieves the desired effect. The composition may therefore be administered as a 20 single dose, or as multiple doses (at the same or different concentrations/dosages) over time, or as a continuous infusion. Further refinement of the appropriate dosage is routinely made. Appropriate dosages may be ascertained through use of appropriate dose-response data. The route of administration of the pharmaceutical composition is in accord with known methods, e.g. orally, through injection by intravenous, intraperitoneal, intracerebral (intra 25 parenchymal), intracerebroventricular, intramuscular, intra-ocular, intraarterial, intraportal, intralesional routes, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, urethral, vaginal, or rectal means, by sustained release systems or by implantation devices. Where desired, the compositions may be administered by bolus injection or continuously by infusion, or by implantation device. 30 Alternatively or additionally, the composition may be administered locally via implantation of a membrane, sponge, or another appropriate material on to which the desired molecule has been absorbed or encapsulated. Where an implantation device is used, the device may be implanted into any suitable tissue or organ, and delivery of the desired molecule may be via diffusion, timed-release bolus, or continuous administration. 58 WO 2007/067616 PCT/US2006/046546 In some cases, it may be desirable to use pharmaceutical compositions in an ex vivo manner. In such instances, cells, tissues, or organs that have been removed from the patient are exposed to the pharmaceutical compositions after which the cells, tissues and/or organs are subsequently implanted back into the patient. 5 In other cases, a myostatin antagonist such as a peptibody can be delivered by implanting certain cells that have been genetically engineered, using methods such as those described herein, to express and secrete the polypeptide. Such cells may be animal or human cells, and may be autologous, heterologous, or xenogeneic. Optionally, the cells may be immortalized. In order to decrease the chance of an immunological response, the cells may be encapsulated to avoid 10 infiltration of surrounding tissues. The encapsulation materials are typically biocompatible, semi permeable polymeric enclosures or membranes that allow the release of the protein product(s) but prevent the destruction of the cells by the patient's immune system or by other detrimental factors from the surrounding tissues. Pharmaceutical compositions containing the myostatin antagonists of the present 15 invention can be administered to a subject in need thereof to treat any myostatin-related disorders. These include muscle-wasting disorders including but not limited to muscular dystrophy, muscle wasting in cancer, AIDS, muscle atrophy, rheumatoid arthritis, renal failure/uremia, chronic heart failure, prolonged bed-rest, spinal chord injury, stroke, and aging related sarcopenia. In addition these compositions can be administed to treat obesity, diabetes, hyperglycemia, and increase bone 20 density. The pharmaceutical compositions of the present invention can be administered to a subject in need thereof to treat the effects of hypogonadism, rheumatoid cachexia, excessive TNF a, cachexia due to bums injuries, diabetes, chemical exposure such as chemotherapy, diabetic nephropathy, and treatment of disorders currently treated with GH or GH-related agents, such as Prader-Willi syndrome. 25 In addition, the pharmaceutical compositions can be admininstered in combination with exisiting treatments for the disorders listed above. These include, for example, denosomaub used for treating bone osteoporesis and frailty, in combination with myostatin antagonists. The invention having been described, the following examples are offered by way of illustration, and not limitation. 30 Example 1 Identification of myostatin binding peptides Three filamentous phage libraries, TN8-IX (5X109 independent transformants), TN12-I (1.4X109 independent transformants), and linear (2.3X109 independent transformants) (Dyax 35 Corp.) were used to select for myostatin binding phage. Each library was incubated on myostatin 59 WO 2007/067616 PCT/US2006/046546 coated surfaces and subjected to different panning conditions: non-specific elution, and specific elution using recombinant human activin receptor IIB/Fc chimera (R&D Systems, Inc., Minneapolis, Minnesota), or myostatin propeptide elution as described below. For all three libraries, the phages were eluted in a non-specific manner for the first round of selection, while 5 the receptor and promyostatin was used in the second and third rounds of selection. The selection procedures were carried out as described below. Preparation of myostatin Myostatin protein was produced recombinantly in the E.coli K-12 strain 2596 (ATCC # 10 202174) as follows. Polynucleotides encoding the human promyostatin molecule were cloned into the pAMG21 expression vector (ATCC No. 98113), which was derived from expression vector pCFM1656 (ATCC No. 69576) and the expression vector system described in United States Patent No. 4,710,473, by following the procedure described in published International Patent Application WO 00/24782. The polynucleotides encoding promyostatin were obtained 15 from a mammalian expression vector. The coding region was amplified using a standard PCR method and the following PCR primers to introduce the restriction site for Ndel and BamHI. 5' primer: 5'-GAGAGAGAGCATATGAATGAGAACAGTGAGCAAAAAG-3' (Seq ID No: 292) 3'primer: 5'-AGAGAGGGATCCATTATGAGCACCCACAGCGGTC-3' (Seq ID No: 293) 20 The PCR product and vector were digested with both enzymes, mixed and ligated. The product of the ligation was transformed into E. cohl strain #2596. Single colonies were checked microscopically for recombinant protein expression in the form of inclusion bodies. The plasmid was isolated and sequenced through the coding region of the recombinant gene to verify genetic fidelity. 25 Bacterial paste was generated from a 1OL fermentation using a batch method at 37*C. The culture was induced with HSL at a cell density of 9.6 OD 6 oo and harvested six hours later at a density of 104 OD 600 . The paste was stored at -80*C. E. coli paste expressing promyostatin was lysed in a microfluidizer at 16,000psi, centrifuged to isolate the insoluble inclusion body fraction. Inclusion bodies were resuspended in guanidine hydrochloride containing dithiothreitol and 30 solubilized at room temperature. This was then diluted 30 fold in an aqueous buffer. The refolded promyostatin was then concentrated and buffer exchanged into 20mM Tris pH 8.0, and* applied to an anion exchange column. The anion exchange column was eluted with an increasing sodium chloride gradient. The fractions containing promyostatin were pooled. The promyostatin produced in E.coli is missing the first 23 amino acids and begins with a methionine before the 60 WO 2007/067616 PCT/US2006/046546 residue 24 asparagine. To produce mature myostatin, the pooled promyostatin was enzymatically cleaved between the propeptide and mature myostatin C terminal. The resulting mixture was then applied to a C4-rpHPLC column using a increasing gradient of acetonitrile containing 0.1% trifluoroacetic acid. Fractions containing mature myostatin were pooled and dried in a speed-vac. 5 The recombinant mature myostatin produced from E. coli was tested in the myoblast C2C12 based assay described below and found to be fully active when compared with recombinant murine myostatin commercially produced in a mammalian cell system (R&D Systems, Inc., Minneapolis, Minnesota). The E.coli-produced mature myostatin was used in the phage-display and screening assays described below. 10 Preparation of Myostatin-Coated Tubes Myostatin was immobilized on 5 ml Immuno T M Tubes (NUNC) at a concentration of 8 ug of myostatin protein in 1 ml of 0. 1M sodium carbonate buffer (pH 9.6). The myostatin-coated Immuno T m Tube was incubated with orbital shaking for 1 hour at room temperature. Myostatin coated Immuno TM Tube was then blocked by adding 5 ml of 2% milk-PBS and incubating at 15 room temperature for 1 hour with rotation. The resulting myostatin-coated Immuno TM Tube was then washed three times with PBS before being subjected to the selection procedures. Additional Immuno Tm Tubes were also prepared for negative selections (no myostatin). For each panning condition, five to ten ImmunoTm Tubes were subjected to the above procedure except that the Immuno Tm Tubes were coated with 1ml of 2% BSA-PBS instead of myostatin protein. 20 Negative Selection For each panning condition, about 100 random library equivalents for TN8-IX and TN12 I libraries (5X10' pfu for TN8-IX, and 1.4X10" pfu for TN12-I) and about 10 random library equivalents for the linear library (2.3X1 0'0 pfu) were aliquoted from the library stock and diluted to 1 ml with PBST (PBS with 0.05% Tween-20). The 1 ml of diluted library stock was added to 25 an ImmunoTM Tube prepared for the negative selection, and incubated for 10 minutes at room temperature with orbital shaking. The phage supernatant was drawn out and added to the second ImmunoTm Tube for another negative selection step. In this way, five to ten negative selection steps were performed. Selection for Myostatin Binding 30 After the last negative selection step above, the phage supernatant was added to the prepared myostatin coated ImmunoTM Tubes. The Immuno T M Tube was incubated with orbital shaking for one hour at room temperature, allowing specific phage to bind to myostatin. After the supernatant was discarded, the Immuno T" Tube was washed about 15 times with 2% milk-PBS, 10 times with PBST and twice with PBS for the three rounds of selection with all three libraries 61 WO 2007/067616 PCT/US2006/046546 (TN8-IX, TN12-I, and Linear libraries) except that for the second round of selections with TN8 IX and TN12-I libraries, the Immuno T" Tube was washed about 14 times with 2% milk-PBS, twice with 2% BSA-PBS, 10 times with PBST and once with PBS. Non-specific elution 5 After the last washing step, the bound phages were eluted from the Immuno T" Tube by adding 1 ml of 100 mM triethylamine solution (Sigma, St. Louis, Missouri) with 10-minute incubation with orbital shaking. The pH of the phage containing solution was then neutralized with 0.5 ml of I M Tris-HCI (pH 7.5). Receptor (Human Activin Receptor) elution of bound phage 10 For round 2 and 3, after the last washing step, the bound phages were eluted from the Immuno TM Tube by adding I ml of 1 pM of receptor protein (recombinant human activin receptor IIB/Fc chimera, R&D Systems, Inc., Minneapolis, Minnesota) with a 1-hour incubation for each condition. Propeptide elution of bound phage 15 For round 2 and 3, after the last washing step, the bound phages were eluted from the Immuno Tm Tube by adding 1 ml of 1 pM propeptide protein (made as described above) with a 1 hour incubation for each condition. Phage Amplification Fresh E.coli. (XL-1 Blue MIRF') culture was grown to OD 600 = 0.5 in LB media 20 containing 12.5 ug/mI tetracycline. For each panning condition, 20 ml of this culture was chilled on ice and centrifuged. The bacteria pellet was resuspended in 1 ml of the min A salts solution. Each mixture from different elution methods was added to a concentrated bacteria sample and incubated at 37 0 C for 15 minutes. 2 ml of NZCYM media (2x NZCYM, 50 ug/mI Ampicillin) was added to each mixture and incubated at 37*C for 15 minutes. The resulting 4 ml 25 solution was plated on a large NZCYM agar plate containing 50 ug/ml ampicillin and incubated overnight at 37*C. Each of the bacteria/phage mixture that was grown overnight on a large NZCYM agar plate was scraped off in 35 ml of LB media, and the agar plate was further rinsed with additional 35 ml of LB media. The resulting bacteria/phage mixture in LB media was centrifuged to pellet 30 the bacteria away. 50 ul of the phage supernatant was transferred to a fresh tube, and 12.5 ml of PEG solution (20% PEG8000, 3.5M ammonium acetate) was added and incubated on ice for 2 hours to precipitate phages. The precipitated phages were centrifuged down and resuspended in 6 ml of the phage resuspension buffer (250 mM NaCl, 100 mM Tris pH8, I mM EDTA). This phage solution was further purified by centrifuging away the remaining bacteria and precipitating 62 WO 2007/067616 PCT/US2006/046546 the phage for the second time by adding 1.5 ml of the PEG solution. After a centrifugation step, the phage pellet was resuspended in 400 ul of PBS. This solution was subjected to a final centrifugation to rid of remaining bacteria debris. The resulting phage preparation was titered by a standard plaque formation assay (Molecular Cloning, Maniatis et al., 3 'd Edition). 5 Additional rounds of selection and amplification In the second round, the amplified phage (10" pfu) from the first round was used as the input phage to perform the selection and amplification steps. The amplified phage (10" pfu) from the second round in turn was used as the input phage to perform third round of selection and amplification. After the elution steps of the third round, a small fraction of the eluted phage was 10 plated out as in the plaque formation assay above. Individual plaques were picked and placed into 96 well microtiter plates containing 100 ul of TE buffer in each well. These master plates were incubated at 4*C overnight to allow phages to elute into the TE buffer. Clonal Analysis Phage ELISA 15 The phage clones were subjected to phage ELISA and then sequenced. The sequences were ranked as discussed below. Phage ELISA was performed as follows. An E. Coli XL-1 Blue MRF'culture was grown until OD 6 0 o reached 0.5. 30 ul of this culture was aliquoted into each well of a 96 well microtiter plate. 10 ul of eluted phage was added to each well and allowed to infect bacteria for 15 min at 20 room temperature. About 120 ul of LB media containing 12.5 ug/mi of tetracycline and 50 ug/ml of ampicillin were added to each well. The microtiter plate was then incubated with shaking overnight at 37 *C. Myostatin protein (2 ug/mil in 0. 1M sodium carbonate buffer, pH 9.6) was allowed to coat onto a 96 well Maxisorpm plates (NUNC) overnight at 4"C. As a control, a separate Maxisorpm plate was coated with 2% BSA prepared in PBS. 25 On the following day, liquid in the protein coated Maxisorp m ' plates was discarded, washed three times with PBS and each well was blocked with 300 ul of 2% milk solution at room temperature for 1 hour. The milk solution was discarded, and the wells were washed three times with the PBS solution. After the last washing step, about 50 ul of PBST-4% milk was added to each well of the protein-coated Maxisorpm plates. About 50 ul of overnight cultures from each 30 well in the 96 well microtiter plate was transferred to the corresponding wells of the myostatin coated plates as well as the control 2% BSA coated plates. The 100 ul mixture in the two kinds of plates were incubated for 1 hour at room temperature. The liquid was discarded from the Maxisorp' plates, and the wells were washed about three times with PBST followed by two times with PBS. The HRP-conjugated anti-M13 antibody (Amersham Pharmacia Biotech) was 35 diluted to about 1:7,500, and 100 ul of the diluted solution was added to each well of the 63 WO 2007/067616 PCT/US2006/046546 MaxisorpTm plates for 1 hour incubation at room temperature. The liquid was again discarded and the wells were washed about three times with PBST followed by two time with PBS. 100 ul of LumiGlo TM Chemiluminescent substrate (KPL) was added to each well of the Maxisorp" plates and incubated for about 5 minutes for reaction to occur. The chemiluminescent unit of the 5 Maxisorp TM plates was read on a plate reader (Lab System). Sequencing of the phage clones For each phage clone, the sequencing template was prepared by a PCR method. The following oligonucleotide pair was used to amplify a 500 nucleotide fragment: primer #1: 5' 10 CGGCGCAACTATCGGTATCAAGCTG-3' (Seq ID No: 294) and primer #2: 5' CATGTACCGTAACACTGAGTTTCGTC-3'(Seq ID No: 295). The following mixture was prepared for each clone. Reagents Volume (tL) / tube distilled H20 26.25 50% glycerol 10 1oX PCR Buffer (w/o MgCl 2 ) 5 25 mM MgC1 2 4 10 mM dNTP mix 1 100 VM primer 1 0.25 100 pM primer 2 0.25 Taq polymerase 0.25 Phage in TE (section 4) 3 Final reaction volume 50 A thermocycler (GeneAmp PCR System 9700, Applied Biosystem) was used to run the following program: [94 0 C for 5min; 94 0 C for 30 sec, 55*C for 30 sec, 72*C for 45 sec.] x30 15 cycles; 72*C for 7 min; cool to 4*C. The PCR product from each reaction was cleaned up using the QIAquick Multiwell PCR Purification kit (Qiagen), following the manufacturer's protocol. The PCR cleaned up product was checked by running 10 ul of each PCR reaction mixed with 1 ul of dye (1OX BBXS agarose gel loading dye) on a 1% agarose gel. The remaining product was then sequenced using the ABI 377 Sequencer (Perkin Elmer) following the manufacturer 20 recommended protocol. Sequence Ranking and Analysis The peptide sequences that were translated from the nucleotide sequences were correlated to ELISA data. The clones that showed high chemiluminescent units in the myostatin-coated 64 WO 2007/067616 PCT/US2006/046546 wells and low chemiluminescent units in the 2% BSA-coated wells were identified. The sequences that occurred multiple times were identified. Candidate sequences chosen based on these criteria were subjected to further analysis as peptibodies. Approximately 1200 individual clones were analyzed. Of these approximately 132 peptides were chosen for generating the 5 peptibodies of the present invention. These are shown in Table I below. The peptides having SEQ ID NO: 1 to 129 were used to generate peptibodies of the same name. The peptides having SEQ ID NO: 130 to 141 shown in Table I comprise two or more peptides from SEQ ID NO: 1 to 132 attached by a linker sequence. SEQ ID NO: 130 to 141 were also used to generate peptibodies of the same name. 10 Consensus sequences were determined for the TN-8 derived group of peptides. These are as follows: KDXCXXWHWMCKPX (Seq ID No: 142) WIXXCXXXGFWCXNX (Seq ID No: 143) IXGCXWWDXXCYXX (Seq ID No: 144) 15 XXWCVSPXWFCXXX (Seq ID No: 145) XXXCPWFAXXCVDW (Seq ID No: 146) For all of the above consensus sequences, the underlined "core sequences" from each consensus sequence are the amino acid which always occur at that position. "X" refers to any naturally occurring or modified amino acid. The two cysteines contained with the core sequences were 20 fixed amino acids in the TN8-IX library. TABLE I PEPTIBODY NAME SEQ.ID No PEPTIDE SEQUENCE Myostatin-TN8-Conl 1 KDKCKMWHWMCKPP Myostatin-TN8-Con2 2 KDLCAMWHWMCKPP Myostatin-TN8-Con3 3 KDLCKMWKWMCKPP Myostatin-TN8-Con4 4 KDLCKMWHWMCKPK Myostatin-TN8-Con5 5 WYPCYEFHFWCYDL Myostatin-TN8-Con6 6 WYPCYEGHFWCYDL Myostatin-TN8-Con7 7 IFGCKWWDVQCYQF Myostatin-TN8-Con8 8 IFGCKWWDVDCYQF Myostatin-TN8-Con9 9 ADWCVSPNWFCMVM Myostatin-TN8-Con10 10 HKFCPWWALFCWDF Myostatin-TN8-1 11 KDLCKMWHWMCKPP Myostatin-TN8-2 12 IDKCAIWGWMCPPL Myostatin-TN8-3 13 WYPCGEFGMWCLNV Myostatin-TN8-4 14 WFTCLWNCDNE Myostatin-TN8-5 15 HTPCPWFAPLCVEW Myostatin-TN8-6 16 KEWCWRWKWMCKPE Myostatin-TN8-7 17 FETCPSWAYFCLDI Myostatin-TN8-8 18 AYKCEANDWGCWWL 65 WO 2007/067616 PCT/US2006/046546 Myostatin-TN8-9 19 NSWCEDQWHRCWWL Myostatin-TN8-10 20 WSACYAGHFWCYDL Myostatin-TN8-11 21 ANWCVSPNWFCMVM Myostatin-TN8-12 22 WTECYQQEFWCWNL Myostatin-TN8-13 23 ENTCERWKWMCPPK Myostatin-TN8-14 24 WLPCHQEGFWCMNF Myostatin-TN8-15 25 STMCSQWHWMCNPF Myostatin-TN8-16 26 IFGCHWWDVDCYQF Myostatin-TN8-17 27 IYGCKWWDIQCYDI Myostatin-TN8-18 28 PDWCIDPDWWCKFW Myostatin-TN8-19 29 QGHCTRWPWMCPPY Myostatin-TN8-20 30 WQECYREGFWCLQT Myostatin-TN8-21 31 WFDCYGPGFKCWSP Myostatin-TN8-22 32 GVRCPKGHLWCLYP Myostatin-TN8-23 33 HWACGYWPWSCKWV Myostatin-TN8-24 34 GPACHSPWWWCVFG Myostatin-TN8-25 35 TTWCISPMWFCSQQ Myostatin-TN8-26 36 HKFCPPWAIFCWDF Myostatin-TN8-27 37 PDWCVSPRWYCNMW Myostatin-TN8-28 38 VWKCHWFGMDCEPT Myostatin-TN8-29 39 KKHCQIWTWMCAPK Myostatin-TN8-30 40 WFQCGSTLFWCYNL Myostatin-TN8-31 41 WSPCYDHYFYCYTI Myostatin-TN8-32 42 SWMCGFFKEVCMWV Myostatin-TN8-33 43 EMLCMIFHPVFCNPH Myostatin-TN8-34 44 LKTCNLWPWMCPPL Myostatin-TN8-35 45 VVGCKWYEAWCYNK( Myostatin-TN8-36 46 PIHCTQWAWMCPPT Myostatin-TN8-37 47 DSNCPWYFLSCVIF Myostatin-TN8-38 48 HIWCNLAMMKCVEM Myostatin-TN8-39 49 NLQCIYFLGKCIYF Myostatin-TN8-40 50 AWRCMWFSDVCTPG Myostatin-TN8-41 51 WFRCFLDADWCTSV Myostatin-TN8-42 52 EKICQMWSWMCAPP Myostatin-TN8-43 53 WFYCHLNKSECTEP Myostatin-TN8-44 54 FWRCAIGIDKCKRV Myostatin-TN8-45 55 NLGCKWYEVWCFTY Myostatin-TN8-46 56 IDLCNMWDGMCYPP Myostatin-TN8-47 57 EMPCN1WGWMCPPV Myostatin-TN12-1 58 WFRCVLTGIVDWSECFGL Myostatin-TN12-2 59 GFSCTFGLDEFYVDCSPF Myostatin-TN12-3 60 LPWCHDQVNADWGFCMLW Myostatin-TN12-4 61 YPTCSEKFWIYGQTCVLW Myostatin-TN12-5 62 LGPCPIHHGPWPQYCVYW Myostatin-TN12-6 63 PFPCETHQISWLGHCLSF Myostatin-TN12-7 64 HWGCEDLMWSWHPLCRRP Myostatin-TN12-8 65 LPLCDADMMPTIGFCVAY Myostatin-TN12-9 66 SHWCETTFWMNYAKCVHA Myostatin-TN12-10 67 LPKCTHVPFDQGGFCLWY 66 WO 2007/067616 PCT/US2006/046546 Myostatin-TN12-11 68 FSSCWSPVSRQDMFCVFY Myostatin-TN12-13 69 SHKCEYSGWLQPLCYRP Myostatin-TN12-14 70 PWWCQDNYVQHMLHCDSP Myostatin-TN12-15 71 WFRCMLMNSFDAFQCVSY Myostatin-TN12-16 72 PDACRDQPWYMFMGCMLG Myostatin-TN12-17 73 FLACFVEFELCFDS Myostatin-TN12-18 74 SAYCITESDPYVLCVPL Myostatin-TN12-19 75 PSICESYSTMWLPMCQHN Myostatin-TN12-20 76 WLDCHDDSWAWTKMCRSH Myostatin-TN12-21 77 YLNCVMMNTSPFVECVFN Myostatin-TN12-22 78 YPWCDGFMIQQGITCMFY Myostatin-TN12-23 79 FDYCTWLNGFKDWKCWSR Myostatin-TN 12-24 80 LPLCNLKEISHVQACVLF Myostatin-TN12-25 81 SPECAFARWLGIEQCQRD Myostatin-TN12-26 82 YPQCFNLHLLEWTECDWF Myostatin-TN12-27 83 RWRCEIYDSEFLPKCWFF Myostatin-TN12-28 84 LVGCDNVWHRCKLF Myostatin-TN12-29 85 AGWCHVWGEMFGMGCSAL Myostatin-TN12-30 86 HHECEWMARWMSLDCVGL Myostatin-TN12-31 87 FPMCGIAGMKDFDFCVWY Myostatin-TN12-32 88 RDDCTFWPEWLWKLCERP Myostatin-TN12-33 89 YNFCSYLFGVSKEACQLP Myostatin-TN12-34 90 AHWCEQGPWRYGNICMAY Myostatin-TN12-35 91 NLVCGKISAWGDEACARA Myostatin-TN12-36 92 HNVCTIM\GPSMKWFCWND Myostatin-TN12-37 93 NDLCAMWGWRNTIWCQNS Myostatin-TN12-38 94 PPFCQNDNDMLQSLCKLL Myostatin-TN12-39 95 WYDCNVPNELLSGLCRLF Myostatin-TN12-40 96 YGDCDQNHWMWPFTCLSL Myostatin-TN12-41 97 GWMCHFDLHDWGATCQPD Myostatin-TN12-42 98 YFHCMFGGHEFEVHCESF Myostatin-TN12-43 99 AYWCWHGQCVRF Myostatin-Linear-1 100 SEHWTFTDWDGNEWWVRPF Myostatin-Linear-2 101 MEMLDSLFELLKDMVPISKA Myostatin-Linear-3 102 SPPEEALMEWLGWQYGKFT Myostatin-Linear-4 103 SPENLLNDLYILMTKQEWYG Myostatin-Linear-5 104 FHWEEGIPFHVVTPYSYDRM Myostatin-Linear-6 105 KRLLEQFMNDLAELVSGHS Myostatin-Linear-7 106 DTRDALFQEFYEFVRSRLVI Myostatin-Linear-8 107 RMSAAPRPLTYRDIMDQYWH Myostatin-Linear-9 108 NDKAHFFEMFMFDVHNFVES Myostatin-Linear-10 109 QTQAQKIDGLWELLQSIRNQ Myostatin-Linear-1 1 110 MLSEFEEFLGNLVHRQEA Myostatin-Linear-12 111 YTPKMGSEWTSFWHJNRIHYL Myostatin-Linear-13 112 LNDTLLRELKMVLNSLSDMK Myostatin-Linear-14 113 FDVERDLMRWLEGFMQSAAT Myostatin-Linear-15 114 HHGWNYLRKGSAPQWFEAWV Myostatin-Linear-16 115 VESLHQLQMWLDQKLASGPH 67 WO 2007/067616 PCT/US2006/046546 Myostatin-Linear-17 116 RATLLKDFWQLVEGYGDN Myostatin-Linear-1 8 117 EELLREFYRFVSAFDY Myostatin-Linear-19 118 GLLDEFSHFIAEQFYQMPGG Myostatin-Linear-20 119 YREMSMLEGLLDVLERLQHY Myostatin-Linear-21 120 HNSSQMLLSELIMLVGSMMQ Myostatin-Linear-22 121 WREHFLNSDYIRDKLIAIDG Myostatin-Linear-23 122 QFPFYVFDDLPAQLEYWIA Myostatin-Linear-24 123 EFFHWLHNHRSEVNHWLDMN Myostatin-Linear-25 124 EALFQNFFRDVLTLSEREY Myostatin-Linear-26 125 QYWEQQWMTYFRENGLHVQY Myostatin-Linear-27 126 NQRMMLEDLWRIMTPMFGRS Myostatin-Linear-29 127 FLDELKAELSRHYALDDLDE Myostatin-Linear-30 128 GKLIEGLLNELMQLETFMPD Myostatin-Linear-31 129 ILLLDEYKKDWKSWF Myostatin-2xTN8-19 kc 130 QGHCTRWPWMCPPYGSGSATGGS GSTASSGSGSATGQGHCTRWPWM CPPY Myostatin-2xTN8-con6 131 WYPCYEGHFWCYDLGSGSTASSG SGSATGWYPCYEGHFWCYDL Myostatin-2xTN8-5 kc 132 HTPCPWFAPLCVEWGSGSATGGSG STASSGSGSATGHTPCPWFAPLCV EW Myostatin-2xTN8-18 kc 133 PDWCIDPDWWCKFWGSGSATGGS GSTASSGSGSATGPDWCIDPDWW CKFW Myostatin-2xTN8-1 1 kc 134 ANWCVSPNWFCMVMGSGSATGG SGSTASSGSGSATGANWCVSPNWF CMVM Myostatin-2xTN8-25 kc 135 PDWCIDPDWWCKFWGSGSATGGS GSTASSGSGSATGPDWCIDPDWW CKFW Myostatin-2xTN8-23 kc 136 HWACGYWPWSCKWVGSGSATGG SGSTASSGSGSATGHWACGYWPW SCKWV Myostatin-TN8-29-19 kc 137 KKHCQIWTWMCAPKGSGSATGGS GSTASSGSGSATGQGHCTRWPWM CPPY Myostatin-TN8-19-29 kc 138 QGHCTRWPWMCPPYGSGSATGGS GSTASSGSGSATGKKHCQIWTWM CAPK Myostatin-TN8-29-19 kn 139 KKHCQIWTWMCAPKGSGSATGGS GSTASSGSGSATGQGHCTRWPWM CPPY Myostatin-TN8-29-19-8g 140 KKHCQIWTWMCAPKGGGGGGGG QGHCTRWPWMCPPY Myostatin-TN8-19-29-6gc 141 QGHCTRWPWMCPPYGGGGGGKK HCQIWTWMCAPK 68 WO 2007/067616 PCT/US2006/046546 Example 2 Generating peptibodies Construction of DNA encoding peptide-Fc fusion proteins Peptides capable of binding myostatin were used alone or in combination with each other 5 to construct fusion proteins in which a peptide was fused to the Fc domain of human IgG1. The amino acid sequence of the Fc portion of each peptibody is as follows (from amino terminus to carboxyl terminus): DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL 10 HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS LSPGK (Seq ID No: 296) The peptide was fused in the N configuration (peptide was attached to the N-terminus of 15 the Fc region), the C configuration (peptide was attached to the C-terminus of the Fc region), or the N,C configuration (peptide attached both at the N and C terminus of the Fc region). Separate vectors were used to express N-terminal fusions and C-terminal fusions. Each peptibody was constructed by annealing pairs of oligonucleotides ("oligos") to the selected phage nucleic acid to generate a double stranded nucleotide sequence encoding the peptide. These polynucleotide 20 molecules were constructed as ApaL to XhoI fragments. The fragments were ligated into either the pAMG21 -Fc N-terminal vector for the N-terminal orientation, or the pAMG2 1 -Fc-C-terminal vector for the C-terminal orientation which had been previously digested with ApaLI and Xhol . The resulting ligation mixtures were transformed by electroporation into E. coli strain 2596 or 4167 cells (a hsdR- variant of strain 2596 cells) using standard procedures. Clones were screened 25 for the ability to produce the recombinant protein product and to possess the gene fusion having a correct nucleotide sequence. A single such clone was selected for each of the modified peptides. Many of constructs were created using an alternative vector designated pAMG21-2xBs N(ZeoR) Fc. This vector is simlar to the above-described vector except that the vector digestion was performed with BsmBI. Some constructs fused peptide sequences at both ends of the Fc. In 30 those cases the vector was a composite of pAMG21-2xBs-N(ZeoR) Fc and pAMG21-2xBs-C-Fc. Construction of pAMG21 Expression plasmid pAMG21 (ATCC No. 98113) is derived from expression vector pCFM1656 (ATCC No. 69576) and the expression vector system described in United States Patent No. 4,710,473, by following the procedure described in published International Patent 35 Application WO 00/24782, all of which are incorporated herein by reference. 69 WO 2007/067616 PCT/US2006/046546 Fc N-terminal Vector The Fc N-terminal vector was constructed using the pAMG21 Fc_Gly5_ Tpo vector as a template. A 5' PCR primer (below) was designed to remove the Tpo peptide sequence in pAMG Tpo Gly5 and replace it with a polylinker containing ApaLI and XhoI sites. Using this vector as a 5 template, PCR was performed with Expand Long Polymerase, using the following 5' primer and a universal 3' primer: 5'primer: 5 -ACAAACAAACATATGGGTGCACAGAAAGCGGCCGCAAAAAAA CTCGAGGGTGGAGGCGGTGGGGACA-3' (Seq ID No: 297) 3' primer: 5'-GGTCATTACTGGACCGGATC-3' (Seq ID No: 298) 10 The resulting PCR product was gel purified and digested with restriction enzymes NdeI and BsrGI. Both the plasmid and the polynucleotide encoding the peptide of interest together with its linker were gel purified using Qiagen (Chatsworth, CA) gel purification spin columns. The plasmid and insert were then ligated using standard ligation procedures, and the resulting ligation mixture was transformed into E. coli cells (strain 2596). Single clones were selected and 15 DNA sequencing was performed. A correct clone was identified and this was used as a vector source for the modified peptides described herein. Construction of Fc C-terminal Vector The Fc C-terminal vector was constructed using pAMG21 FcGly5_ Tpo vector as a template. A 3' PCR primer was designed to remove the Tpo peptide sequence and to replace it 20 with a polylinker containing ApaLI and XhoI sites. PCR was performed with Expand Long Polymerase using a universal 5' primer and the 3' primer. 5' Primer: 5'-CGTACAGGTTACGCAAGAAAATGG-3' (Seq ID No: 299) 3' Primer: 5'-TTTGTTGGATCCATTACTCGAGTTTTTTTGCGGCCGCT TTCTGTGCACCACCACCTCCACCTTTAC-3' (Seq ID No: 300) 25 The resulting PCR product was gel purified and digested with restriction enzymes BsrGI and BamHI. Both the plasmid and the polynucleotide encoding each peptides of interest with its linker were gel purified via Qiagen gel purification spin columns. The plasmid and insert were then ligated using standard ligation procedures, and the resulting ligation mixture was transformed into E. coli (strain 2596) cells. Strain 2596 (ATCC # 202174) is a strain of E. coli K 30 12 modified to contain the lux promoter and two lambda temperature sensitive repressors, the c185 7s7 and the lac IQ repressor. Single clones were selected and DNA sequencing was performed. A correct clone was identified and used as a source of each peptibody described herein. 70 WO 2007/067616 PCT/US2006/046546 Expression in E. coli. Cultures of each of the pAMG21 -Fc fusion constructs in E. coli strain 2596 were grown at 37*C in Terrific Broth medium (See Tartof and Hobbs, "Improved media for growing plasmid and cosmid clones", Bethesda Research Labs Focus, Volume 9, page 12, 1987, cited in 5 aforementioned Sambrook et al. reference). Induction of gene product expression from the luxPR promoter was achieved following the addition of the synthetic autoinducer, N-(3-oxohexanoyl) DL-homoserine lactone, to the culture medium to a final concentration of 20 nanograms per milliliter (ng/ml). Cultures were incubated at 37"C for an additional six hours. The bacterial cultures were then examined by microscopy for the presence of inclusion bodies and collected by 10 centrifugation. Refractile inclusion bodies were observed in induced cultures, indicating that the Fc-fusions were most likely produced in the insoluble fraction in E. coli. Cell pellets were lysed directly by resuspension in Laemmli sample buffer containing 10% p-mercaptoethanol and then analyzed by SDS-PAGE. In most cases, an intense coomassie-stained band of the appropriate molecular weight was observed on an SDS-PAGE gel. 15 Folding and purifying peptibodies Cells were broken in water (1/10 volume per volume) by high pressure homogenization (3 passes at 15,000 PSI) and inclusion bodies were harvested by centrifugation (4000 RPM in J-6B for 30 minutes). Inclusion bodies were solubilized in 6 M guanidine, 50 mM Tris, 8 mM DTT, pH 8.0 for 1 hour at a 1/10 ratio at ambient temperature. The solubilized mixture was diluted 25 20 times into 4 M urea, 20% glycerol, 50 mM Tris, 160 mM arginine, 3 mM cysteine, 1 mM cystamine, pH 8.5. The mixture was incubated overnight in the cold. The mixture was then dialyzed against 10 mM Tris pH 8.5, 50 mM NaCl, 1.5 M urea. After an overnight dialysis the pH of the dialysate was adjusted to pH 5 with acetic acid. The precipitate was removed by centrifugation and the supernatant was loaded onto a SP-Sepharose Fast Flow column equilibrated 25 in 10 mM NaAc, 50 mM NaCl, pH 5 , 4"C). After loading the column was washed to baseline with 10 mM NaAc, 50 mM NaCl, pH 5.2. The column was developed with a 20 column volume gradient from 50mM -500 mM NaCl in the acetate buffer. Alternatively, after the wash to baseline, the column was washed with 5 column volumes of 10 mM sodium phosphate pH 7.0 and the column developed with a 15 column volume gradient from 0-400 mM NaCl in phosphate 30 buffer. Column fractions were analyzed by SDS-PAGE. Fractions containing dimeric peptibody were pooled. Fractions were also analyzed by gel filtration to determine if any aggregate was present. A number of peptibodies were prepared from the peptides of Table I. The peptides were attached to the human IgG 1 Fc molecule to form the peptibodies in Table II. Regarding the 35 peptibodies in Table II, the C configuration indicates that the peptide named was attached at the 71 WO 2007/067616 PCT/US2006/046546 C-termini of the Fc. The N configuration indicates that the peptide named was attached at the N termini of the Fc. The NC configuration indicates that one peptide was attached at the N-termini and one at the C-termini of each Fc molecule. The 2x designation indicates that the two peptides named were attached in tandem to each other and also attached at the N or the C termini, or both 5 the N,C of the Fc, separated by the linker indicated. Two peptides attached in tandem separated by a linker, are indicated, for example, as Myostatin-TN8-29-19-8g, which indicates that TN8-29 peptide is attached via a (gly)s linker to TN8-19 peptide. The peptide(s) were attached to the Fc via a (gly)s linker sequence unless otherwise specified. In some instances the peptide(s) were attached via a k linker. The linker designated k or Ik refers to the gsgsatggsgstassgsgsatg (Seq ID 10 No: 30 1) linker sequence, with ke referring to the linker attached to the C-terminus of the Fc, and kn referring to the linker attached to the N-terminus of the Fe. In Table II below, column 4 refers to the linker sequence connecting the Fc to the first peptide and the fifth column refers to the configuration N or C or both. Since the Fc molecule dimerizes in solution, a peptibody constructed so as to have one 15 peptide will actually be a dimer with two copies of the peptide and two Fc molecules, and the 2X version having two peptides in tandem will actually be a dimer with four copies of the peptide and two Fc molecules. Since the peptibodies given in Table II are expressed in E. coli, the first amino acid residue is Met (M). Therefore, the peptibodies in the N configuration are Met-peptide-linker-Fe, 20 or Met-peptide-linker-peptide-linker-Fc, for example. Peptibodies in the C configuration are arranged as Met-Fe-linker-peptide or Met-Fc-linker-peptide-linker-peptide, for example. Peptibodies in the CN configuration are a combination of both, for example, Met-peptide-linker Fc-linker-peptide. Nucleotide sequences encoding exemplary peptibodies are provided below in Table I. 25 The polynucleotide sequences encoding an exemplary peptibody of the present invention includes a nucleotide sequence encoding the Fc polypeptide sequence such as the following: 5'-GACAAAACTCACACATGTCCACCTTGCCCAGCACCTGAACTC CTGGGGGGACCGTCAGTTTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCA TGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACG 30 AAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATA ATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTG GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATC TCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCA 35 TCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAA GGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTCT TCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACG 72 WO 2007/067616 PCT/US2006/046546 TCTrCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAA GAGCCTCTCCCTGTCTCCGGGTAAA-3' (Seq ID No: 301) In addition, the polynucleotides encoding the ggggg linker such as the following are 5 included: 5'-GGTGGAGGTGGTGGT-3' (Seq ID No: 302) The polynucleotide encoding the peptibody also includes the codon encoding the methionine ATG and a stop codon such as TAA. 10 Therefore, the structure of the first peptibody in Table II is TN8-Con1 with a C configuration and a (gly) 5 linker is as follows: M-Fc-GGGGG-KDKCKMWHWMCKPP (Seq ID No: 303). Exemplary polynucleotides encoding this peptibody would be: 5'- ATGGACAAAACTCACACATGTCCACCTTGCCCAGCACCTGAA CTCCTGGGGGGACCGTCAGTTTTCCTCTTCCCCCCAAAACCCAAGGACACCC 15 TCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCC ACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGC ATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGT GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAG TACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACC 20 ATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCC CCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTC AAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGG 25 AACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAAGGTGGAGGTGGTGGTAAGACAA ATGCAAAATGTGGCACTGGATGTGCAAACCGCCG-3' (Seq ID No: 304) 30 TABLE H Peptibody Name Peptide Nucleotide Sequence (Seq ID No) Myostatin-TN8- KDKCKMWHWMCKPP AAAGACAAATGCAAAATGTGGCACTG 5 gly C conI GATGTGCAAACCGCCG (Seq. ID No: 147) Myostatin-TN8- KDLCAMWHWMCKPP AAAGACCTGTGCGCTATGTGGCACTG 5 gly C con2 GATGTGCAAACCGCCG (Seq. ID No: 148) Myostatin-TN8- KDLCKMWKWMCKPP AAAGACCTGTGCAAAATGTGGAAATG 5 gly C con3 GATGTGCAAACCGCCG (Seq ID No: 149) Myostatin-TN8- KDLCKMWHWMCKPK AAAGACCTGTGCAAAATGTGGCACTG 5 gly C con4 GATGTGCAAACCGAAA (Seq ID No: 150) Myostatin-TN8- WYPCYEFHFWCYDL TGGTACCCGTGCTACGAATTCCACTTC 5 gly C con5 TGGTGCTACGACCTG (Seq ID No: 151) . Myostatin-TN8- WYPCYEFHFWCYDL TGGTACCCGTGCTACGAATTCCACTTC 5 gly N con5 TGGTGCTACGACCTG (Seq ID No: 152) 73 WO 2007/067616 PCT/US2006/046546 Myostatin-TN8- WYPCYEGHFWCYDL TGGTACCCGTGCTACGAAGGTCACTT 5 gly C con6 CTGGTGCTACGACCTG (Seq ID No: 153) Myostatin-TN8- WYPCYEGHFWCYDL TGGTACCCGTGCTACGAAGGTCACTT 5 gly N con6 CTGGTGCTACGACCTG (Seq ID No: 154) Myostatin-TN8- IFGCKWWDVQCYQF ATCTTCGGTTGCAAATGGTGGGACGT 5 gly C con7 TCAGTGCTACCAGTTC (Seq ID No: 155) Myostatin-TN8- IFGCKWWDVDCYQF ATCTTCGGTTGCAAATGGTGGGACGT 5 gly C con8 TGACTGCTACCAGTTC (Seq ID No: 156) Myostatin-TN8- IFGCKWWDVDCYQF ATCTTCGGTTGCAAATGGTGGGACGT 5 gly N con8 TGACTGCTACCAGTTC (Seq ID No: 157) Myostatin-TN8- ADWCVSPNWFCMVM GCTGACTGGTGCGTTTCCCCGAACTG 5 gly C con9 GTTCTGCATGGTTATG (Seq ID No: 158) Myostatin-TN8-. HKFCPWWALFCWDF CACAAATTCTGCCCGTGGTGGGCTCT 5 gly C con10 GTTCTGCTGGGACTTC (Seq ID No: 159) Myostatin-TN8-1 KDLCKMWHWMCKPP AAAGACCTGTGCAAAATGTGGCACTG 5 gly C GATGTGCAAACCGCCG (Seq ID No: 160 Myostatin-TN8-2 IDKCAIWGWMCPPL ATCGACAAATGCGCTATCTGGGGTTG 5 gly C GATGTGCCCGCCGCTG (Seq ID No: 161) Myostatin-TN8-3 WYPCGEFGMWCLNV TGGTACCCGTGCGGTGAATTCGGTAT 5 gly C GTGGTGCCTGAACGTT (Seq ID No: 162) Myostatin-TN8-4 WFTCLWNCDNE TGGTTCACCTGCCTGTGGAACTGCGA 5 gly C CAACGAA (Seq ID No: 163) Myostatin-TN8-5 HTPCPWFAPLCVEW CACACCCCGTGCCCGTGGTTCGCTCC 5 gly C GCTGTGCGTTGAATGG (Seq ID No: 164) Myostatin-TN8-6 KEWCWRWKWMCKPE AAAGAATGGTGCTGGCGTTGGAAATG 5 gly C GATGTGCAAACCGGAA (Seq ID No: 165) Myostatin-TN8-7 FETCPSWAYFCLDI TTCGAAACCTGCCCGTCCTGGGCTTA 5 gly C CTTCTGCCTGGACATC (Seq ID No: 166) Myostatin-TN8-7 FETCPSWAYFCLDI TTCGAAACCTGCCCGTCCTGGGCTTA 5 gly N C'TTCTGCCTGGACATC (Seq ID No: 167) Myostatin-TN8-8 AYKCEANDWGCWWL GCTTACAAATGCGAAGCTAACGACTG 5 gly C GGGTTGCTGGTGGCTG (Seq ID No: 168) Myostatin-TN8-9 NSWCEDQWHRCWWL AACTCCTGGTGCGAAGACCAGTGGCA 5 gly C CCGTTGCTGGTGGCTG (Seq ID No: 169) Myostatin-TN8-10 WSACYAGHFWCYDL TGGTCCGCTTGCTACGCTGGTCACTTC 5 gly C TGGTGCTACGACCTG (Seq ID No: 170) Myostatin-TN8-11 ANWCVSPNWFCMVM GCTAACTGGTGCGTTTCCCCGAACTG 5 gly C GTTCTGCATGGTTATG (Seq ID No: 171) Myostatin-TN8-12 WTECYQQEFWCWNL TGGACCGAATGCTACCAGCAGGAATT 5 gly C CTGGTGCTGGAACCTG (Seq ID No: 172) Myostatin-TN8-13 ENTCERWKWMCPPK GAAAACACCTGCGAACGTTGGAAATG 5 gly C GATGTGCCCGCCGAAA (Seq ID No: 173) Myostatin-TN8-14 WLPCHQEGFWCMNF TGGCTGCCGTGCCACCAGGAAGGTTT 5 gly C CTGGTGCATGAACTTC (Seq ID No: 174) Myostatin-TN8-15 STMCSQWHWMCNPF TCCACCATGTGCTCCCAGTGGCACTG 5 gly C GATGTGCAACCCGTTC (Seq ID No: 175) Myostatin-TN8-16 IFGCHWWDVDCYQF ATCTTCGGTTGCCACTGGTGGGACGT 5 gly C TGACTGCTACCAGTTC (Seq ID No: 74 WO 2007/067616 PCT/US2006/046546 176) Myostatin-TN8-17 IYGCKWWDIQCYDI ATCTACGGTTGCAAATGGTGGGACAT 5 gly C CCAGTGCTACGACATC (Seq ID No: 177) Myostatin-TN8-18 PDWCIDPDWWCKFW CCGGACTGGTGCATCGATCCGGACTG 5 gly C GTGGTGCAAATTCTGG (Seq ID No: 178) Myostatin-TN8-19 QGHCTRWPWMCPPY CAGGGTCACTGCACCCGTTGGCCGTG 5 gly C GATGTGCCCGCCGTAC (Seq ID No: 179) Myostatin-TN8-20 WQECYREGFWCLQT TGGCAGGAATGCTACCGTGAAGGTTT 5 gly C CTGGTGCCTGCAGACC (Seq ID No: 180) Myostatin-TN8-21 WFDCYGPGFKCWSP TGGTTCGACTGCTACGGTCCGGGTTTC 5 gly C AAATGCTGGTCCCCG (Seq ID No: 181) Myostatin-TN8-22 GVRCPKGHLWCLYP GGTGTTCGTTGCCCGAAAGGTCACCT 5 gly C GTGGTGCCTGTACCCG (Seq ID No: 182) Myostatin-TN8-23 HWACGYWPWSCKWV CACTGGGCTTGCGGTTACTGGCCGTG 5 gly C GTCCTGCAAATGGGTT (Seq ID No: 183) Myostatin-TN8-24 GPACHSPWWWCVFG GGTCCGGCTTGCCACTCCCCGTGGTG 5gly C GTGGTGCGTTCGGT (Seq ID No: 184) Myostatin-TN8-25 TTWCISPMWFCSQQ ACCACCTGGTGCATCTCCCCGATGTG 5 gly C GTTCTGCTCCCAGCAG (Seq ID No: 185) Myostatin-TN8-26 HKFCPPWAIFCWDF CACAAATTCTGCCCGCCGTGGGCTAT 5 gly N CTTCTGCTGGGACTTC (Seq ID No: 186) Myostatin-TN8-27 PDWCVSPRWYCNMW CCGGACTGGTGCGTTTCCCCGCGTTG 5 gly N GTACTGCAACATGTGG (Seq ID No: 187) Myostatin-TN8-28 VWKCHWFGMDCEPT GTTGGAAATGCCACTGGTTCGGTAT 5 gly N GGACTGCGAACCGACC (Seq ID No: 188) Myostatin-TN8-29 KKHCQIWTWMCAPK AAAAAACACTGCCAGATCTGGACCTG 5 gly N GATGTGCGCTCCGAAA (Seq ID No: 189) Myostatin-TN8-30 WFQCGSTLFWCYNL TGGTTCCAGTGCGGTTCCACCCTGTTC 5 gly N TGGTGCTACAACCTG (Seq ID No: 190) Myostatin-TN8-31 WSPCYDHYFYCYTI TGGTCCCCGTGCTACGACCACTACTTC 5 gly N TACTGCTACACCATC (Seq ID No: 191) Myostatin-TN8-32 SWMCGFFKEVCMWV TCCTGGATGTGCGGTTCAAAGA 5 gly N AGTTrGCATGTGGGTT (Seq ID No: 192) Myostatin-TN8-33 EMLCMIHPVFCNPH GAAATGCTGTGCATGATCCACCCGGT 5gly N TTTCTGCAACCCGCAC (Seq ID No: 193) Myostatin-TN8-34 LKTCNLWPWMCPPL CTGAAAACCTGCAACCTGTGGCCGTG 5 gly N GATGTGCCCGCCGCTG (Seq ID No: 194) Myostatin-TN8-35 VVGCKWYEAWCYNK GTTGTTGGTTGCAAATGGTACGAAGC 5 gly N TTGGTGCTACAACAAA (Seq ID No: 195) Myostatin-TN8-36 PIHCTQWAWMCPPT CCGATCCACTGCACCCAGTGGGCTTG 5 gly N GATGTGCCCGCCGACC (Seq ID No: 196) Myostatin-TN8-37 DSNCPWYFLSCVIF GACTCCAACTGCCCGTGGTACTrCCT 5 gly N GTCCTGCGTTATCTTC (Seq ID No: 197) Myostatin-TN8-38 HIWCNLAMMKCVEM CACATCTGGTGCAACCTGGCTATGAT 5gly N 75 WO 2007/067616 PCT/US2006/046546 GAAATGCGTTGAAATG (Seq ID No: 198) Myostatin-TN8-39 NLQCIYFLGKCIYF AACCTGCAGTGCATCTACTTCCTGGG 5 gly N TAAATGCATCTACTTC (Seq ID No: 199) Myostatin-TN8-40 AWRCMWFSDVCTPG GCTTGGCGTTGCATGTGGTI'CTCCGAC 5 gly N GTTTGCACCCCGGGT (Seq ID No: 200) Myostatin-TN8-41 WFRCFLDADWCTSV TGGTTTCGTTGTTTTCTTGATGCTGAT 5 gly N TGGTGTACTTCTGTT (Seq ID No: 201) Myostatin-TN8-42 EKICQMWSWMCAPP GAAAAAATTTGTCAAATGTGGTCTTG 5 gly N GATGTGTGCTCCACCA (Seq ID No: 202) Myostatin-TN8-43 WFYCHLNKSECTEP TGGTTITATrGTCATCTTAATAAATCT 5 gly N GAATGTACTGAACCA (Seq ID No: 203) Myostatin-TN8-44 FWRCAIGIDKCKRV TrTGGCGTTGTGCTATTGGTATTGAT 5 gly N AAATGTAAACGTGTT (Seq ID No: 204) Myostatin-TN8-45 NLGCKWYEVWCFTY AATCTTGGTTGTAAATGGTATGAAGT 5 gly N TTGGTGTIACTTAT (Seq ID No: 205) Myostatin-TN8-46 IDLCNMWDGMCYPP ATTGATCTTTGTAATATGTGGGATGGT 5 gly N ATGTGTTATCCACCA (Seq ID No: 206) Myostatin-TN8-47 EMPCNIWGWMCPPV GAAATGCCATGTAATATTTGGGGTTG 5 gly N GATGTGTCCACCAGTT (Seq ID No: 207) Myostatin-TN12-1 WFRCVLTGIVDWSECF TGGTTCCGTTGCGTTCTGACCGGTATC 5 gly N GL GTTGACTGGTCCGAATGCTTCGGTCT G (Seq ID No: 208) Myostatin-TN12-2 GFSCTFGLDEFYVDCSP GGTTTCTCCTGCACCTTCGGTCTGGAC 5 gly N F GAATTCTACGTTGACTGCTCCCCGTTC (Seq ID No: 209) Myostatin-TN12-3 LPWCHDQVNADWGFC CTGCCGTGGTGCCACGACCAGGTTAA 5 gly N MLW CGCTGACTGGGGTTTCTGCATGCTGT GG (SeqID No: 210) Myostatin-TN12-4 YPTCSEKFWIYGQTCV TACCCGACCTGCTCCGAAAAATTCTG 5 gly N LW GATCTACGGTCAGACCTGCGTTCTGT GG (Seq ID No: 211) Myostatin-TN12-5 LGPCPIHHGPWPQYCV CTGGGTCCGTGCCCGATCCACCACGG 5gly N YW TCCGTGGCCGCAGTACTGCGTTTACT GG (Seq ID No: 212) Myostatin-TN12-6 PFPCETHQISWLGHCLS CCGTTCCCGTGCGAAACCCACCAGAT 5gly N F CTCCTGGCTGGGTCACTGCCTGTCCTT C (Seq ID No: 213) Myostatin-TN12-7 HWGCEDLMWSWHPLC CACTGGGGTTGCGAAGACCTGATGTG 5 gly N RRP GTCCTGGCACCCGCTGTGCCGTCGTC CG (Seq ID No: 214) Myostatin-TN12-8 LPLCDADMMPTIGFCV CTGCCGCTGTGCGACGCTGACATGAT 5gly N AY GCCGACCATCGGTTTCTGCGTTGCTrA C (Seq ID No: 215) Myostatin-TN12-9 SHWCETTFWMNYAKC TCCCACTGGTGCGAAACCACCTTCTG 5 gly N VHA GATGAACTACGCTAAATGCGTTCACG CT (Seq ID No: 216) Myostatin-TN12- LPKCTHVPFDQGGFCL CTGCCGAAATGCACCCACGTTCCGTT 5 gly N 10 WY CGACCAGGGTGGTTCTGCCTGTGGT AC (Seq ID No: 217) Myostatin-TN12- FSSCWSPVSRQDMFCV TrCTCCTCCTGCTGGTCCCCGGTTrCC 5 gly N 11 FY CGTCAGGACATGTTCTGCGTTTTCTAC (Seq ID No: 218) Myostatin-TN12- SHKCEYSGWLQPLCYR TCCCACAAATGCGAATACTCCGGTTG 5 gly N 76 WO 2007/067616 PCT/US2006/046546 13 P GCTGCAGCCGCTGTGCTACCGTCCG (Seq ID No: 219) Myostatin-TN12- PWWCQDNYVQHMLH CCGTGGTGGTGCCAGGACAACTACGT 5 gly N 14 CDSP TCAGCACATGCTGCACTGCGACTCCC CG (Seq ID No: 220) Myostatin-TN12- WFRCMLMNSFDAFQC TGGTTCCGTTGCATGCTGATGAACTCC 5 gly N 15 VSY TTCGACGCTTTCCAGTGCGTITCCTAC (Seq ID No: 221) Myostatin-TN12- PDACRDQPWYMFMGC CCGGACGCTTGCCGTGACCAGCCGTG 5 gly N 16 MLG GTACATGTTCATGGGTTGCATGCTGG GT (Seq ID No: 222) Myostatin-TN12- FLACFVEFELCFDS TTCCTGGCTTGCTTCGTTGAATTCGAA 5 gly N 17 CTGTGCTTCGACTCC (Seq ID No: 223) Myostatin-TN12- SAYCIITESDPYVLCVP TCCGCTTACTGCATCATCACCGAATCC 5 gly N 18 L GACCCGTACGTTCTGTGCGTTCCGCTG (Seq ID No: 224) Myostatin-TN12.- PSICESYSTMWLPMCQ CCGTCCATCTGCGAATCCTACTCCACC 5 gly N 19 HN ATGTGGCTGCCGATGTGCCAGCACAA C (Seq ID No: 225) Myostatin-TNI2- WLDCHDDSWAWTKM TGGCTGGACTGCCACGACGACTCCTG 5 gly N 20 CRSH GGCTTGGACCAAAATGTGCCGTTCCC AC (Seq ID No: 226) Myostatin-TN12- YLNCVMMNTSPFVEC TACCTGAACTGCGTTATGATGAACAC 5 gly N 21 VFN CTCCCCGTTCGTTGAATGCGTTTTCAA C (Seq ID No: 227) Myostatin-TN12- YPWCDGFMIQQGITCM TACCCGTGGTGCGACGGTTTCATGAT 5 gly N 22 FY CCAGCAGGGTATCACCTGCATGTTCT AC (Seq ID No: 228) Myostatin-TN12- FDYCTWLNGFKDWKC TTCGACTACTGCACCTGGCTGAACGG 5 gly N 23 WSR TTTCAAAGACTGGAAATGCTGGTCCC GT (Seq ID No: 229) Myostatin-TN12- LPLCNLKEISHVQACVL CTGCCGCTGTGCAACCTGAAAGAAAT 5 gly N 24 F CTCCCACGTTCAGGCTTGCGTTCTGTT C (Seq ID No: 230) Myostatin-TN12- SPECAFARWLGIEQCQ TCCCCGGAATGCGCTTTCGCTCGTTGG 5 gly N 25 RD CTGGGTATCGAACAGTGCCAGCGTGA C (Seq ID No: 231) Myostatin-TN12- YPQCFNLHLLEWTECD TACCCGCAGTGCTTCAACCTGCACCT 5 gly N 26 WF GCTGGAATGGACCGAATGCGACTGGT TC (Seq ID No: 232) Myostatin-TN12- RWRCEIYDSEFLPKCW CGTTGGCGTTGCGAAATCTACGACTC 5 gly N 27 FF CGAATTCCTGCCGAAATGCTGGTTCTT C (Seq ID No: 233) Myostatin-TN12- LVGCDNVWHRCKLF CTGGTFGGTTGCGACAACGTTFGGCA 5 gly N 28 CCGTTGCAAACTGTTC (Seq ID No: 234) Myostatin-TN12- AGWCHVWGEMFGMG GCTGGTTGGTGCCACGTTTGGGGTGA 5 gly N 29 CSAL AATGTTCGGTATGGGTTGCTCCGCTCT G (Seq ID No: 235) Myostatin-TN12- HHECEWMARWMSLD CACCACGAATGCGAATGGATGGCTCG 5 gly N 30 CVGL TTGGATGTCCCTGGACTGCGTTGGTCT G (Seq ID No: 236) Myostatin-TN12- FPMCGIAGMKDFDFCV TTCCCGATGTGCGGTATCGCTGGTAT 5 gly N 31 WY GAAAGACTTCGACTTCTGCG7TGGT AC (Seq ID No: 237) Myostatin-TN12- RDDCTFWPEWLWKLC CGTGATGATTGTACTTTTTGGCCAGAA 5 gly N 77 WO 2007/067616 PCT/US2006/046546 32 ERP TGGCTTTGGAAACTTTGTGAACGTCC A (Seq ID No: 238) Myostatin-TN12- YNFCSYLFGVSKEACQ TATAATTITrGTTCTTATCTrTGGTG 5 gly N 33 LP TTTCTAAAGAAGCTTGTCAACTTCCA (Seq ID No: 239) Myostatin-TN12- AHWCEQGPWRYGNIC GCTCATTGGTGTGAACAAGGTCCATG 5 gly N 34 MAY GCGTTATGGTAATATT GTATGGCTTA C T (Seq ID No: 240) Myostatin-TN12- NLVCGKISAWGDEACA AATCTTGTTTGTGGTAAAATTTCTGCT 5 gly N 35 RA TGGGGTGATGAAGCTTGTGCTCGTGC T (Seq ID No: 241) Myostatin-TN12- HNVCTIMGPSMKWFC CATAATGTTTGTACTATTATGGGTCCA 5 gly N 36 WND TCTATGAAATGGTTTTGTTGGAATGAT C (Seq ID No: 242) Myostatin-TN12- NDLCAMWGWRNTIWC AATGATCTTTGTGCTATGTGGGGTTGG 5 gly N 37 QNS CGTAATACTATTTGGTGTCAAAATTCT C (Seq ID No: 243) Myostatin-TN12- PPFCQNDNDMLQSLCK CCACCATTTlGTCAAAATGATAATGA 5 gly N 38 LL TATGCTTCAATCTCTTTGTAAACTTCT T (Seq ID No: 244) Myostatin-TN12- WYDCNVPNELLSGLCR TGGTATGATTGTAATGTTCCAAATGA 5 gly N 39 LF ACTTCTTTCTGGTCTTTGTCGTCTTT (Seq ID No: 245) Myostatin-TN12- YGDCDQNHWMWPFTC TATGGTGATTGTGATCAAAATCATTG 5 gly N 40 LSL GATGTGGCCATTTACTTGTCTTTCTCT C T (Seq ID No: 246) Myostatin-TN12- GWMCHFDLHDWGAT GGTTGGATGTGTCATTTTGATCTTCAT 5 gly N 41 CQPD GATTGGGGTGCTACTTGTCAACCAGA T (Seq ID No: 247) Myostatin-TN12- YFHCMFGGHEFEVHCE TATTCATTGTATGTTTGGTGGTCAT 5 gly N 42 SF GAATTrGAAGTTCATTGTGAATCTTIT C (Seq ID No: 248) Myostatin-TN12- AYWCWHGQCVRF GCTTATTGGTG TGGCATGGTCAATGT 5 gly N 43 GTTCGTTTT (Seq ID No: 249) Myostatin-Linear- SEHWTFTDWDGNEW TCCGAACACTGGACCTTCACCGACTG 5 gly N 1 WVRPF GGACGGTAACGAATGGTGGGTTCGTC CGTTC (Seq ID No: 250) Myostatin-Linear- MEMLDSLFELLKDMVP ATGGAAATGCTGGACTCCCTGTTCGA 5 gly N 2 ISKA ACTGCTGAAAGACATGGTTCCGATCT CCAAAGCT (Seq ID No: 251) Myostatin-Linear- SPPEEALMEWLGWQY TCCCCGCCGGAAGAAGCTCTGATGGA 5 gly N 3 GKFT ATGGCTGGGTTGGCAGTACGGTAAAT TCACC (Seq ID No: 252) Myostatin-Linear- SPENLLNDLYILMTKQ TCCCCGGAAAACCTGCTGAACGACCT 5 gly N 4 EWYG GTACATCCTGATGACCAAACAGGAAT GGTACGGT (Seq ID No: 253) Myostatin-Linear- FHWEEGIPFHVVTPYS TTCCACTGGGAAGAAGGTATCCCGTT 5 gly N 5 YDRM CCACGTTGTTACCCCGTACTCCTACGA CCGTATG (Seq ID No: 254) Myostatin-Linear- KRLLEQFMNDLAELVS AAACGTCTGCTGGAACAGTTCATGAA 5 gly N 6 GHS CGACCTGGCTGAACTGGTTTCCGGTC ACTCC (Seq ID No: 255) Myostatin-Linear- DTRDALFQEFYEFVRS GACACCCGTGACGCTCTGTTCCAGGA 5 gly N 7 RLVI ATTCTACGAATTCGCTTCCCGTCT GGTTATC (Seq ID No: 256) Myostatin-Linear- RMSAAPRPLTYRDIMD CGTATGTCCGCTGCTCCGCGTC5GCTG_ gly N 78 WO 2007/067616 PCT/US2006/046546 8 QYWH ACCTACCGTGACATCATGGACCAGTA CTGGCAC (Seq ID No: 257) Myostatin-Linear- NDKAHFFEMFMFDVH AACGACAAAGCTCACTTCTTCGAAAT 5 gly N 9 NFVES GTTCATGTTCGACGTrCACAACTTCGT TGAATCC (Seq Id No: 258) Myostatin-Linear- QTQAQKIDGLWELLQS CAGACCCAGGCTCAGAAAATCGACGG 5 gly N 10 IRNQ TCTGTGGGAACTGCTGCAGTCCATCC GTAACCAG (Seq ID No: 259) Myostatin-Linear- MLSEFEEFLGNLVHRQ ATGCTGTCCGAATTCGAAGAATTCCT 5 gly N 11 EA GGGTAACCTGGTTCACCGTCAGGAAG CT (Seq ID No: 260) Myostatin-Linear- YTPKMGSEWTSFWHN TACACCCCGAAAATGGGTTCCGAATG 5 gly N 12 RIHYL GACCTCCTTCTGGCACAACCGTATCC ACTACCTG (Seq ID No: 261) Myostatin-Linear- LNDTLLRELKMVLNSL CTGAACGACACCCTGCTGCGTGAACT 5 gly N 13 SDMK GAAAATGGTTCTGAACTCCCTGTCCG ACATGAAA (Seq ID No: 262) Myostatin-Linear- FDVERDLMRWLEGFM TTCGACGTTGAACGTGACCTGATGCG 5 gly N 14 QSAAT TTGGCTGGAAGGTTTCATGCAGTCCG CTGCTACC (Seq ID No: 263) Myostatin-Linear- HHGWNYLRKGSAPQW CACCACGGTTGGAACTACCTGCGTAA 5 gly N 15 FEAWV AGGTTCCGCTCCGCAGTGGTTCGAAG CTTGGGTT (Seq ID No: 264) Myostatin-Linear- VESLHQLQMWLDQKL GTTGAATCCCTGCACCAGCTGCAGAT 5 gly N 16 ASGPH GTGGCTGGACCAGAAACTGGCTTCCG GTCCGCAC (Seq ID No: 265) Myostatin-Linear- RATLLKDFWQLVEGY CGTGCTACCCTGCTGAAAGACTTCTG 5 gly N 17 GDN GCAGCTGGTTGAAGGTTACGGTGACA AC (Seq ID No: 266) Myostatin-Linear- EELLREFYRFVSAFDY GAAGAACTGCTGCGTGAATTCTACCG 5 gly N 18 TTTCGTTTCCGCTTTCGACTAC (Seq ID No: 267) Myostatin-Linear- GLLDEFSHFIAEQFYQ GGTCTGCTGGACGAATTCTCCCACTTC 5 gly N 19 MPGG ATCGCTGAACAGTTCTACCAGATGCC GGGTGGT (Seq ID No: 268) Myostatin-Linear- YREMSMLEGLLDVLER TACCGTGAAATGTCCATGCTGGAAGG 5 gly N 20 LQHY TCTGCTGGACGTTCTGGAACGTCTGC AGCACTAC (Seq ID No: 269) Myostatin-Linear- HNSSQMLLSELIMLVG CACAACTCCTCCCAGATGCTGCTGTC 5 gly N 21 SMMQ CGAACTGATCATGCTGGTGGTTCCA TGATGCAG (Seq ID No: 270) Myostatin-Linear- WREHFLNSDYIRDKLI TGGCGTGAACACTTCCTGAACTCCGA 5 gly N 22 AIDG CTACATCCGTGACAAACTGATCGCTA TCGACGGT (Seq ID No: 271) Myostatin-Linear- QFPFYVFDDLPAQLEY CAGTTCCCGTTCTACGTTTTCGACGAC 5 gly N 23 WIA CTGCCGGCTCAGCTGGAATACTGGAT CGCT (Seq ID No: 272) Myostatin-Linear- EFFHWLHNHRSEVNH GAATTCTTCCACTGGCTGCACAACCA 5 gly N 24 WLDMN CCGTTCCGAAGTTAACCACTGGCTGG ACATGAAC (Seq ID No: 273) Myostatin-Linear- EALFQNFFRDVLTLSER GAAGCTCTTTTCAAAATTTTTTCGT 5 gly N 25 EY GATGTTCTTACTCTTTCTGAACGTGAA C TAT (Seq ID No: 274) Myostatin-Linear QYWEQQWMTYFRENG CAATATTGGGAACAACAATGGATGAC 5 gly N -26 LHVQY TTATTCGTGAAAATGGTCTTCATGT .__TCAATAT (Seq ID No: 275) 79 WO 2007/067616 PCT/US2006/046546 Myostatin-Linear- NQRMMLEDLWRIMTP AATCAACGTATGATGCTTGAAGATCT 5gly N 27 MFGRS TTGGCGTATTATGACTCCAATGTTGG C TCGTTCT (Seq ID No: 276) Myostatin-Linear- FLDELKAELSRHYALD TTTCTTGATGAACTTAAAGCTGAACTT 5 gly N 29 DLDE TCTCGTCATTATGCTCTTGATGATCIT GATGAA (Seq ID No: 277) Myostatin-Linear- GKLIEGLLNELMQLETF GGTAAACTTATTGAAGGTCTTCTTAAT 5 gly N 30 MPD GAACTTATGCAACTTGAAACTTTTATG C CCAGAT (Seq ID No: 278) Myostatin-Linear- ILLLDEYKKDWKSWF ATTCTrCTTCTTGATGAATATAAAAAA 5 gly N 31 GATTGGAAATCTTGGT (Seq ID No: 279) Myostatin- QGHCTRWPWMCPPYG CAGGGCCACTGTACTCGCTGGCCGTG 1k N 2XTN8-19 kc SGSATGGSGSTASSGSG GATGTGCCCGCCGTACGGTTCTGGTf SATGQGHCTRWPWMC CCGCTACCGGTGGTTCTGGTTCCACTG PPY CTFCTTCTGGTTCCGGTTCTGCTACTG GTCAGGGTCACTGCACTCGTTGGCCA TGGATGTGTCCACCGTAT (Seq ID No: 280) Myostatin- WYPCYEGHFWCYDLG TGGTATCCGTGTTATGAGGGTCACTrC 5gly C 2XTN8-CON6 SGSTASSGSGSATGWY TGGTGCTACGATCTGGGTTCTGGTTCC PCYEGHFWCYDL ACTGCTTCTTCTGGTTCCGGTTCCGCT ACTGGTTGGTACCCGTGCTACGAAGG TCACTTTTGGTGTIATGATCTG (Seq ID No: 281) Myostatin- HTPCPWFAPLCVEWGS CACACTCCGTGTCCGTGGTTTGCTCCG 1k C 2XTN8-5 kc GSATGGSGSTASSGSGS CTGTGCGTTGAATGGGGTTCTGGTTCC ATGHTPCPWFAPLCVE GCTACTGGTGGTTCCGGTTCCACTGCT W TCTTCTGGTTCCGGTTCTGCAACTGGT CACACCCCGTGCCCGTGGTTTGCACC GCTGTGTGTAGAGTGG (Seq ID No: 282) Myostatin- PDWCIDPDWWCKFWG CCGGATTGGTGTATCGACCCGGACTG 1k C 2XTN8-1 8 kc SGSATGGSGSTASSGSG GTGGTGCAAATTCTGGGGTTCTGGTTC SATGPDWCIDPDWWC CGCTACCGGTGGTTCCGGTTCCACTG KFW CTTCTTCTGGTTCCGGTTCTGCAACTG GTCCGGACTGGTGCATCGACCCGGAT TGGTGGTGTAAATTITGG (Seq ID No: 283) Myostatin- ANWCVSPNWFCMVM CCGGATTGGTGTATCGACCCGGACTG 1k C 2XTN8-11 kc GSGSATGGSGSTASSGS GTGGTGCAAATTCTGGGGTTCTGGTTC GSATGANWCVSPNWF CGCTACCGGTGGTTCCGGTTCCACTG CMVM CTTCTTCTGGTTCCGGTTCTGCAACTG GTCCGGACTGGTGCATCGACCCGGAT TGGTGGTGTAAATTTTGG (Seq ID No; 284) Myostatin- PDWCIDPDWWCKFWG ACCACTTGGTGCATCTCTCCGATGTG 1k C 2XTN8-25 kc SGSATGGSGSTASSGSG GTTCTGCTCTCAGCAGGGTTCTGGTTC SATGPDWCIDPDWWC CACTGCTTCTTCTGGTTCCGGTTCTGC KFW AACTGGTACTACTrGGTGTATCTCTCC AATGTGGTTGTTCTCAGCAA (Seq ID No: 285) Myostatin- HWACGYWPWSCKWV CACTGGGCATGTGGCTATTGGCCGTG 1k C 2XTN8-23 kc GSGSATGGSGSTASSGS GTCCTGCAAATGGGTTGGTTCTGGTTC GSATGHWACGYWPWS CGCTACCGGTGGTTCCGGTrCCACTG CKWV CTTCTTCTGGTTCCGGTTCTGCAACTG GTCACTGGGCTTGCGGTTACTGGCCG 80 WO 2007/067616 PCT/US2006/046546 TGGTCTTGTAAATGGGTT (Seq ID No: 286) Myostatin-TN8- KKHCQIWTWMCAPKG AAAAAACACTGTCAGATCTGGACTTG 1k C 29-19 kc SGSATGGSGSTASSGSG GATGTGCGCTCCGAAAGGTTCTGGTT SATGQGHCTRWPWMC CCGCTACCGGTGGTTCTGGTTCCACTG PPY CTTCTTCTGGTTCCGGTTCCGCTACTG GTCAGGGTCACTGCACTCGTTGGCCA TGGATGTGTCCGCCGTAT (Seq ID No: 287) Myostatin-TN8- QGHCTRWPWMCPPYG CAGGGTCACTGCACCCGTTGGCCGTG 1k C 19-29 kc SGSATGGSGSTASSGSG GATGTGCCCGCCGTACGGTTCTGGTr SATGKKHCQIWTWMC CCGCTACCGGTGGTTCTGGTTCCACTG APK C'TTCTTCTGGTTCCGGTTCTGCTACTG GTAAAAAACACTGCCAGATCTGGACT TGGATGTGCGCTCCGAAA (Seq ID No: 288) Myostatin-TN8- KKHCQIWTWMCAPKG AAAAAACACTGTCAGATCTGGACTTG 1k N 29-19 kn SGSATGGSGSTASSGSG GATGTGCGCTCCGAAAGGTTCTGGTT SATGQGHCTRWPWMC CCGCTACCGGTGGTTCTGGTTCCACTG PPY CTrCTTCTGGTTCCGGTTCCGCTACTG GTCAGGGTCACTGCACTCGTTGGCCA TGGATGTGTCCGCCGTAT (Seq ID No: 289) Myostatin-TN8- KKHCQIWTWMCAPKG AAAAAACACTGCCAGATCTGGACTTG 8 gly C 29-19-8g GGGGGGGQGHCTRWP GATGTGCGCTCCGAAAGGTGGTGGTG WMCPPY GTGGTGGCGGTGGCCAGGGTCACTGC ACCCGTTGGCCGTGGATGTGTCCGCC GTAT (Seq ID No: 290) Myostatin-TN8- QGHCTRWPWMCPPYG CAGGGTCACTGCACCCGTTGGCCGTG 6 gly C 19-29-6gc GGGGGKKHCQIWTWM GATGTGCCCGCCGTACGGTGGTGGTG CAPK GTGGTGGCAAAAAACACTGCCAGATC TGGACTTGGATGTGCGCTCCGAAA (Seq ID No: 291) Example 3 In vitro Assays 5 C2C12 Cell Based Myostatin Activity Assay This assay demonstrates the myostatin neutralizing capability of the inhibitor being tested by measuring the extent that binding of myostatin to its receptor is inhibited. A myostatin-responsive reporter cell line was generated by transfection of C2C12 myoblast cells (ATCC No: CRL-1772) with a pMARE-luc construct. The pMARE-luc construct 10 was made by cloning twelve repeats of the CAGA sequence, representing the myostatin/activin response elements (Dennler et al. EMBO 17: 3091-3100 (1998)) into a pLuc-MCS reporter vector (Stratagene cat # 219087) upstream of the TATA box. The myoblast C2C12 cells naturally express myostatin/activin receptors on its cell surface. When myostatin binds the cell receptors, the Smad pathway is activated, and phosphorylated Smad binds to the response element (Macias 81 WO 2007/067616 PCT/US2006/046546 Silva et al. Cell 87:1215 (1996)), resulting in the expression of the lucerase gene. Luciferase activity is then measured using a commercial luciferase reporter assay kit (cat # E4550, Promega, Madison, WI) according to manufacturer's protocol. A stable line of C2C12 cells that had been transfected with pMARE-luc (C2C12/pMARE clone #44) was used to measure myostatin activity 5 according to the following procedure. Equal numbers of the reporter cells (C2Cl2/pMARE clone #44) were plated into 96 well cultures. A first round screening using two dilutions of peptibodies was performed with the myostatin concentration fixed at 4 nM. Recombinant mature myostatin was pre-incubated for 2 hours at room temperature with peptibodies at 40 nM and 400 nM respectively. The reporter cell 10 culture was treated with the myostatin with or without peptibodies for six hours. Myostatin activity was measured by determining the luciferase activity in the treated cultures. This assay was used to initially identify peptibody hits that inhibited the myostatin signaling activity in the reporter assay. Subsequently, a nine point titration curve was generated with the myostatin concentration fixed at 4 nM. The myostatin was preincubated with each of the following nine 15 concentrations of peptibodies: 0.04 mM, 0.4 nM, 4 nM, 20 nM, 40 nM, 200 nM, 400 nM, 2 uM and 4 uM for two hours before adding the mixture to the reporter cell culture. The ICso values were for a number of examplary peptibodies are provided in Tables III and for affinity matured peptibodies, in Table VIII. 20 BlAcore* assay An affinity analysis of each candidate myostatin peptibody was performed on a BIAcore 0 3000 (Biacore, Inc., Piscataway, NJ), apparatus using sensor chip CM5, and 0.005 percent P20 surfactant (Biacore, Inc.) as running buffer. Recombinant mature myostatin protein was immobilized to a research grade CM5 sensor chip (Biacore, Inc.) via primary amine groups 25 using the Amine Coupling Kit (Biacore, Inc.) according to the manufacturer's suggested protocol. Direct binding assays were used to screen and rank the peptibodies in order of their ability to bind to inmobilized myostatin. Binding assays were carried by injection of two concentrations (40 and 400 nM) of each candidate myostatin-binding peptibody to the immobilized myostatin surface at a flow rate of 50 ptl/min for 3 minutes. After a dissociation time 30 of 3 minutes, the surface was regenerated. Binding curves were compared qualitatively for binding signal intensity, as well as for dissociation rates. Peptibody binding kinetic parameters including ka (association rate constant), kd (dissociation rate constant) and KD (dissociation equilibrium constant) were determined using the BIA evaluation 3.1 computer program (Biacore, Inc.). The lower the dissociation equilibrium constants (expressed in nM), the greater the affinity 82 WO 2007/067616 PCT/US2006/046546 of the peptibody for myostatin. Examples of peptibody KD values are shown in Table III and Table VI for affinity-matured peptibodies below. Blocking assay on ActRIIB/Fc surface 5 Blocking assays were carried out using immobilized ActRIIB/Fc (R&D Systems, Minneapolis, MN) and myostatin in the presence and absence of peptibodies with the BlAcore* assay system. Assays were used to classify peptibodies as non-neutralizing (those which did not prevent myostatin binding to ActRIIB/Fc) or neutralizing (those that prevented myostatin binding to ActRIIB/Fc). Baseline myostatin-ActRIIB/Fc binding was first determined in the absence of 10 any peptibody. For early screening studies, peptibodies were diluted to 4 nM, 40 nM, and 400 nM in sample buffer and incubated with 4 nM myostatin (also diluted in sample buffer). The peptibody: ligand mixtures were allowed to reach equilibrium at room temperature (at least 5 hours) and then were injected over the immobilized ActRIB/Fc surface for 20 to 30 minutes at a 15 flow rate of 10 uL/min. An increased binding response (over control binding with no peptibody) indicated that peptibody binding to myostatin was non-neutralizing. A decreased binding response (compared to the control) indicated that peptibody binding to myostatin blocked the binding of myostatin to ActRIIB/Fc. Selected peptibodies were further characterized using the blocking assay of a full concentration series in order to derive IC 50 values (for neutralizing 20 peptibodies) or EC 5 o (for non-neutralizing peptibodies). The peptibody samples were serially diluted from 200 nM to 0.05 mM in sample buffer and incubated with 4 mM myostatin at room temperature to reach equilibrium (minimum of five hours) before injected over the immobilized ActRIIB/Fc surface for 20 to 30 minutes at a flow rate of 10 uL/min. Following the sample injection, bound ligand was allowed to dissociate from the receptor for 3 minutes. Plotting the 25 binding signal vrs. peptibody concentration, the IC 50 values for each peptibody in the presence of 4 nM myostatin were calculated. It was found, for example, that the peptibodies TN8-19, L2 and L17 inhibit myostatin activity in cell-based assay, but binding of TN-8-19 does not block myostatin/ActRIIB/Fc interactions, indicating that TN-8-19 binds to a different epitope than that observed for the other two peptibodies. 30 Epitope binning for peptibodies A purified peptibody was immobilized on a BlAcore chip to capture myostatin before injection of a second peptibody, and the amount of secondary peptibody bound to the captured myostatin was determined. Only peptibodies with distinct epitopes will bind to the captured 35 myostatin, thus enabling the binning of peptibodies with similar or distinct epitope binding 83 WO 2007/067616 PCT/US2006/046546 properties. For example, it was shown that peptibodies TN8-19 and L23 bind to different epitopes on myostatin. Selectivity Assays 5 These assays were performed using BlAcore" technology, to determine the selectivity of binding of the peptibodies to other TGFB family members. ActRIIB/Fc, TGFBRII/Fc and BMPP 1 A/Fec (all obtained from R & D Systems, Minneapolis, MN) were covalently coupled to research grade sensor chips according to manufacturer's suggested protocol. Because BlAcore assays detects changes in the refractive index, the difference between the response detected with 10 injection over the immobilized receptor surfaces compared with the response detected with injection over the control surface in the absence of any peptibody represents the actual binding of Activin A, TGFP 1, TGFp3, and BMP4 to the receptors, respectively. With pre-incubation of peptibodies and TGFp molecules, a change (increase or decrease) in binding response indicates peptibody binding to the TGFP family of molecules. The peptibodies of the present invention all 15 bind to myostatin but not to Activin A, TGFp1, TGFp3, or BMP4. KinEx ATm Equilibrium Assays Solution-based equilibrium-binding assays using KinExATm technology (Sapidyne Instruments, Inc.) were used to determine the dissociation equilibrium (KD) of myostatin binding 20 to peptibody molecules. This solution-based assay is considered to be more sensitive than the BlAcore assay in some instances. Reacti-GelTm 6X was pre-coated with about 50 ug/ml myostatin for over-night, and then blocked with BSA. 30pM and 100pM of peptibody samples were incubated with various concentrations (0.5 pM to 5 nM) of myostatin in sample buffer at room temperature for 8 hours before being run through the myostatin-coated beads. The amount 25 of the bead-bound peptibody was quantified by fluorescent (Cy5) labeled goat anti-human-Fe antibody at 1 mg/ml in superblock. The binding signal is proportional to the concentration of free peptibody at equilibrium with a given myostatin concentration. K 0 was obtained from the nonlinear regression of the competition curves using a dual-curve one-site homogeneous binding model provided in the KinEx ATM software (Sapidyne Instruments, Inc.). 30 Example 4 Comparison of Myostatin Inhibitors The ability of three exemplary first-round peptibodies to bind to (KD) and inhibit (IC 50 ) were compared with the K 0 and IC 50 values obtained for the soluble receptor fusion protein 35 actRIIB/Fc (R &D Systems, Inc., Minneapolis, Minn.). The IC 5 0 values were determined using 84 WO 2007/067616 PCT/US2006/046546 the pMARE luc cell-based assay described in Example 3 and the KD values were determined using the Biacore@D assay described in Example 3. TABLE III Inhibitor ICs 0 (nM) KD (nM) ActRIIB/Fc -83 -7 2xTN8-19-kc -9 -2 TN8-19 -23 -2 TN8-29 ~26 -60 TN12-34 -30
-
Linear-20 -11 5 The peptibodies have an IC 5 o that is improved over the receptor/Fc inhibitor and binding affinities which are comparable in two peptibodies with the receptor/Fc. Example 5 Comparison of Ability of Peptide and Peptibody to Inhibit Myostatin 10 The following peptide sequence: QGHCTRWPWMCPPY (TN8-19) (SEQ ID NO: 33) was used to construct the corresponding peptibody TN8-19(pb) according to the procedure described in Example 2 above. Both the peptide alone and the peptibody were screened for myostatin inhibiting activity using the C2C12 based assay described in Example 3 above. It can be seen from Figure 1 the IC 50 (effective concentration for fifty percent inhibition of myostatin) 15 for the peptibody is significantly less than that of the peptide, and thus the ability of the peptide to inhibit myostatin activity has been substantially improved by placing it in the peptibody configuration. Example 6 Generation of Affinity-Matured Peptides and Peptibodies 20 Several of the first round peptides used for peptibody generation were chosen for affinity maturation. The selected peptides included the following: the cysteine constrained TN8-19, QGHCTRWPWMCPPY (SEQ ID NO: 33), and the linear peptides Linear-2 MEMLDSLFELLKDMVPISKA (SEQ 1D NO: 104); Linear-15 HHGWNYLRKGSAPQWFEAWV (SEQ. ID NO: 117); Linear-17 25 RATLLKDFWQLVEGYGDN (SEQ ID NO: 119); Linear-20 YREMSMLEGLLDVLERLQHY (SEQ ID NO: 122), Linear-21 HNSSQMLLSELMLVGSMMQ (SEQ ID NO: 123), Linear-24 EFFHWLHNHRSEVNIHWLDMN (SEQ ID NO: 126). Based on a consensus sequence, directed 85 WO 2007/067616 PCT/US2006/046546 secondary phage display libraries were generated in which the "core"amino acids (determined from the consensus sequence) were either held constant or biased in frequency of occurrence. Alternatively, an individual peptide sequence could be used to generate a biased, directed phage display library. Panning of such libraries under more stringent conditions can yield peptides with 5 enhanced binding to myostatin, selective binding to myostatin, or with some additional desired property. Production of doped oligos for libraries Oligonucleotides were synthesized in a DNA synthesizer which were 91% "doped" at the 10 core sequences, that is, each solution was 91% of the represented base (A, G, C, or T), and 3% of each of the other 3 nucleotides. For the TN8-19 family, for example, a 91% doped oligo used for the construction of a secondary phage library was the following: 5'-CAC AGT GCA CAG GGT NNK NNK NN-K caK ggK caK tgK acK cgK tgK 15 ccK tgK atK tgK ccK ccK taK NNK NNK NNK CAT TCT CTC GAG ATC A-3' (SEQ ID NO: 634) wherein "N" indicates that each of the four nucleotides A, T, C, and G were equally represented, K indicates that G and T were equally represented, and the lower case letter represents a mixture 20 of 91% of the indicated base and 3% of each of the other bases. The family of oligonucleotides prepared in this manner were PCR amplified as described above, ligated into a phagemid vectors, for example, a modified pCES1 plasmid (Dyax), or any available phagemid vector according to the protocol.described above. The secondary phage libraries generated were all 91% doped and had between 1 and 6.5x 109 independent transformants. The libraries were panned as described 25 above, but with the following conditions: Round 1 Panning: Input phage number: 1012 -- 103 cfu of phagemid Selection method: Nunc Immuno Tube selection Negative selection: 2 X with Nunc Immuno Tubes coated with 2% BSA at 10 min. each 30 Panning coating: Coat with I p~g of Myostatin protein in I ml of 0.1M Sodium carbonate buffer (pH 9.6) Binding time: 3 hours Washing conditions: 6 X 2%-Milk-PBST; 6 X PBST; 2 X PBS Elution condition: 100 mM TEA elution 35 Round 2 Panning: Input phage number: 10" cfu of phagemid Selection method: Nunc Immuno Tube selection Negative selection: 2 X with Nunc Immuno Tubes coated with 2% BSA at 30 min. each 40 Panning coating: Coat with 1 pg of Myostatin protein in 1 ml of 0.1M Sodium carbonate buffer (pH 9.6) Binding time: 1 hour 86 WO 2007/067616 PCT/US2006/046546 Washing conditions: 15 X 2%-Milk-PBST, 1 X 2%-Milk-PBST for 1 hr., 10 X 2%-BSA-PBST, 1 X 2%-BSA-PBST for 1 hr., 10 X PBST and 3 X PBS Elution condition: 100 mM TEA elution 5 Round 3 Panning: Input phage number: 10'0 cfu of phagemid Selection method: Nunc Immuno Tube selection Negative selection: 6 X with Nunc Immuno Tubes coated with 2% BSA at 10 min. each Panning coating: Coat with 0.1 pg of Myostatin protein in 1 ml of 0.1M Sodium carbonate buffer 10 (pH 9
.
6 ) Binding time: 1 hour Washing conditions: 15 X 2%-Milk-PBST, 1 X 2%-Milk-PBST for 1 hr., 10 X 2%-BSA-PBST, 1 X 2%-BSA-PBST for 1 hr., 10 X PBST and 3 X PBS Elution condition: 100 mM TEA elution 15 Panning of the secondary libraries yielded peptides with enhanced binding to myostatin. Individual selected clones were subjected phage ELISA, as described above, and sequenced. The following affinity matured TN8-19 family of peptides are shown in Table IV below. 87 WO 2007/067616 PCT/US2006/046546 TABLE IV Affinity- matured SEQ ID Peptide sequence peptibody NO: mTN8-19-1 305 VALHGQCTRWPWMCPPQREG mTN8-19-2 306 YPEQGLCTRWPWMCPPQTLA mTN8-1 9-3 307 GLNQGHCTRWPWMCPPQDSN mTN8-19-4 308 MITQGQCTRWPWMCPPQPSG mTN8-19-5 309 AGAQEHCTRWPWMCAPNDWI mTN8-19-6 310 GVNQGQCTRWRWMCPPNGWE mTN8-1 9-7 311 LADHGQCIRWPWMCPPEGWE mTN8-19-8 312 ILEQAQCTRWPWMCPPQRGG mTN8-19-9 313 TQTHAQCTRWPWMCPPQWEG mTN8-1 9-10 314 VVTQciHCTLWPWMCPPQRWR mTN8-19-l 1 315 IYPHDQCTRWPWMCPPQPYP mTN8-19-12 316 SYWQGQCTRWPWMGPPQWRG mTN8-19-13 317 MWQQGHCTRWPWMCPPQGWG mTN8-1 9-14 318 EFTQWHCTRWiPWMCPPQRSQ mTN8-19-l5 319 LDDQWQCTRWPWMCPPQGFS mTN8-1 9-16 320 YQTQGLCTRWPWMCPPQSQR mTN8-19-17 321 ESNQGQCTR.WPWMCPPQGGW mTN8-19-18 322 WTDRGPCTRWPWMCPPQANG mTN8-1 9-19 323 VGTQGQCTRWPWMCPPYETG mTN8-19-2O 324 PYEQGKGTRWPWMCPPYEVE mTN8-1 9-21 325 SEYQGLCTRWPWMCPPQGWK mTN8-1 9-22 326 TFSQGHGTRWPWMGPPQGWG mTN8-19-23 327 PGAIIDHCTRWPWMCPPQSRY mTN8-19-24 328 VAEEWHCRRWPWMCPPQDWR mTN8-19-25 329 VGTQGHCTfRWPWMCPPQPAG mTN8-19-26 330 EEDQAHCRSWPWMCPPQGWV mTN8-19-27 331 ADTQGHCTRWPWMCPPQHWF mTN8-19-28 332 SGPQGHCTRWPWMCAPQGWF mTN8-19-29 333 TLVQGHCTRWPWMCPPQRWV mTN8-19-30 334 GMAHGKCTRWAWMCPPQSWK mTNS-1 9-31 335 ELYHGQCTRWPWMCPPQSWA mTN8-19-32 336 VADHGHGTRWPWMCPPQGWG mTN8-19-33 337 PESQGHCTRWPWMCPPQGWG mTN8-19-34 338 IPAHGHCTRWPWMGPPQRWR mTN8-19-35 339 FTVHGHCTRWPWMCPPYGWV mTN8-19-36 340 PDFPGHGTRWRWMCPPQGWE mTN8-19-37 341 QLWQGPCTQWPWMCPPKGRY mTN8-19-38 342 HANDGHGTRWQWMCPPQWGG mTN8-1 9-39 343 ETDHGLCTRWPWMCPPYGAR mTN8-1 9-40 344 GTWQGLGTRWPWMCPPQGWQ mTN8-1 9 coni 345 VATQGQCTRWPWMCPPQGWG imTNS-19 con2 1346 VYATQGQCTRWPWMCPPQRWG WO 2007/067616 PCT/US2006/046546 mTN8 con6-1 347 QREWYPCYGGHLWCYDLHKA mTN8 con6-2 348 ISAWYSCYAGHFWCWDLKQK mTN8 con6-3 349 WTGWYQCYGGHLWCYDLRRK mTN8 con6-4 350 KTFWYPCYDGHFWCYNLKSS 5 mTN8 con6-5 351 ~ ESRWYPCYEGHLWCFDLTET The consensus sequence derived from the affinity- matured TN-8-19- 1 through Con2 (excluding the mTN8 con6 sequences) shown above is: _Caa2Wa3WMCPP (SEQ ID NO: 352). All of these peptide comprise the sequence WMCPP (SEQ ID NO: 633). The underlined amino 10 acids represent the core amino acids present in all embodiments, and a,, a 2 and a 3 are selected from a neutral hydrophobic, neutral polar, or basic amino acid. In one embodiment of this consensus sequence, Gblb2Wb 3 WMCPP (SEQ ID NO: 353), b, is selected from any one of the amino acids T, I, or R; b 2 is selected from any one of R, S, Q; and b 3 is selected from any one of P, R and Q. All of the peptides comprise the sequence WMCPP (SEQ ID NO: 633). A more 15 detailed analysis of the affinity matured TN8 sequences comprising SEQ ID NO: 352 provides the following formula: cic 2 c 3 c 4 c 5 c&cycs_Wc 9 WMCPPCIoca c 1 2 c 1 3 (SEQ ID NO: 354), wherein: ci is absent or any amino acid; c 2 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; 20 c 3 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; c 4 is absent or any amino acid; c 5 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; c5 is absent or a neutral hydrophobic, neutral polar, or basic amino acid; c 7 is a neutral hydrophobic, neutral polar, or basic amino acid; 25 cs is a neutral hydrophobic, neutral polar, or basic amino acid; c, is a neutral hydrophobic, neutral polar or basic amino acid; and wherein c 10 to c13 is any amino acid. In one embodiment of the above formulation, b 7 is selected from any one of the amino acids T, I, or R; bs is selected from any one of R, S, Q; and bg is selected from any one of P, R 30 and Q. This provides the following sequence: did 2 d 3 d 4 d 5 d 6 Cd 7 d 8 Wd 9 WMCPP diodjjd 12 d 13 (SEQ ID NO: 355). d, is absent or any amino acid; d 2 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; d 3 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; 35 d 4 is absent or any amino acid; ds is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; d 6 is absent or a neutral hydrophobic, neutral polar, or basic amino acid; d 7 is selected from any one of the amino acids T, I, or R; ds is selected from any one of R, S, Q; 40 d 9 is selected from any one of P, R and Q 89 WO 2007/067616 PCT/US2006/046546 and dio through d 13 are selected from any amino acid. The consensus sequence of the mTN8 con6 series is Weie 2 jYe 3 _, (SEQ ID NO: 356) wherein el is P, S or Y; e 2 is C or Q, and e 3 is G or H. 5 In addition to the TN-19 affinity matured family, additional affinity matured peptides were produced from the linear L-2, L-15, L-17, L-20, L-21, and L-24 first round peptides. These families are presented in Table V below. Affinity TABLE V matured SEQ ID Peptide Sequence peptibody NO: L2 104 MEMLDSLFELLKDMVPISKA mL2-Con1 357 RMEMLESLLELLKEIVPMSKAG mL2-Con2 358 RMEMLESLLELLKEIVPMSKAR mL2-1 359 RMEMLESLLELLKDIVPMSKPS mL2-2 360 GMEMLESLFELLQEIVPMSKAP mL2-3 361 RMEMLESLLELLKDIVPISNPP mL2-4 362 RIEMLESLLELLQEIVPISKAE mL2-5 363 RMEMLQSLLELLKDIVPMSNAR mL2-6 364 RMEMLESLLELLKEIVPTSNGT mL2-7 365 RMEMLESLFELLKEIVPMSKAG mL2-8 366 RMEMLGSLLELLKEIVPMSKAR mL2-9 367 QMELLDSLFELLKEIVPKSQPA mL2-10 368 RMEMLDSLLELLKEIVPMSNAR mL2-11 369 RMEMLESLLELLHEIVPMSQAG mL2-12 370 QMEMLESLLQLLKEIVPMSKAS mL2-13 371 RMEMLDSLLELLKDMVPMTIGA mL2-14 372 * RIEMLESLLELLKDMVPMANAS mL2-15 373 RMEMLESLLQLLNEIVPMSRAR mL2-16 374 RMEMLESLFDLLKELVPMSKGV mL2-17 375 RIEMLESLLELLKDIVPIQKAR mL2-18 376 RMELLESLFELLKDMVPMSDSS mL2-19 377 RMEMLESLLEVLQEIVPRAKGA mL2-20 378 RMEMLDSLLQLLNEIVPMSHAR mL2-21 379 RMEMLESLLELLKDIVPMSNAG mL2-22 380 RMEMLQSLFELLKGMVPISKAG mL2-23 381 RMEMLESLLELLKEIVPNSTAA mL2-24 382 RMEMLQSLLELLKEIVPISKAG mL2-25 383 RIEMLDSLLELLNELVPMSKAR L-15 117 HHGWNYLRKGSAPQWFEAWV mL15-con1 384 QVESLQQLLMWLDQKLASGPQG mL15-1 385 RMELLESLFELLKEMVPRSKAV mL 15-2 386 QAVSLQHLLMWLDQKLASGPQH 90 WO 2007/067616 PCT/US2006/046546 mL15-3 387 DEDSLQQLLMWLDQKLASGPQL mL15-4 388 PVASLQQLLIWLDQKLAQGPHA mL15-5 389 EVDELQQLLNWLDHKLASGPLQ mL15-6 390 DVESLEQLLMWLDHQLASGPHG mL15-7 391 QVDSLQQVLLWLEHKLALGPQV mL15-8 392 GDESLQHLLMWLEQKLALGPHG mL15-9 393 QIEMLESLLDLLRDMVPMSNAF mL15-10 394 EVDSLQQLLMWLDQKLASGPQA mL15-11 395 EDESLQQLLIYLDKMLSSGPQV mL15-12 396 AMDQLHQLLIWLDHKLASGPQA mL15-13 397 RIEMLESLLELLDEIALIPKAW mL15-14 398 EVVSLQHLLMWLEHKLASGPDG mL15-15 399 GGESLQQLLMWLDQQLASGPQR mL15-16 400 GVESLQQLLIFLDHMLVSGPHD mL15-17 401 NVESLEHLMMWLERLLASGPYA mL15-18 402 QVDSLQQLLIWLDHQLASGPKR mL15-19 403 EVESLQQLLMWLEHKLAQGPQG mL15-20 404 EVDSLQQLLMWLDQKLASGPHA mL15-21 405 EVDSLQQLLMWLDQQLASGPQK mL15-22 406 GVEQLPQLLMWLEQKLASGPQR mL15-23 407 GEDSLQQLLMWLDQQLAAGPQV mL15-24 408 ADDSLQQLLMWLDRKLASGPHV mL15-25 409 PVDSLQQLLIWLDQKLASGPQG L-17 119 RATLLKDFWQLVEGYGDN mL17-con1 410 DWRATLLKEFWQLVEGLGDNLV mL17-con2 411 QSRATLLKEFWQLVEGLGDKQA nL17-1 412 DGRATLLTEFWQLVQGLGQKEA mL17-2 413 LARATLLKEFWQLVEGLGEKVV mL17-3 414 GSRDTLLKEFWQLVVGLGDMQT mL17-4 415 DARATLLKEFWQLVDAYGDRMV mL17-5 416 NDRAQLLRDFWQLVDGLGVKSW mL17-6 417 GVRETLLYELWYLLKGLGANQG mL17-7 418 QARATLLKEFCQLVGCQGDKLS mL17-8 419 QERATLLKEFWQLVAGLGQNMR mL17-9 420 SGRATLLKEFWQLVQGLGEYRW mL17-10 421 TMRATLLKEFWLFVDGQREMQW mL17-11 422 GERATLLNDFWQLVDGQGONTG mL17-12 423 DERETLLKEFWQLVHGWGDNVA mL17-13 424 GGRATLLKELWQLLEGQGANLV mL17-14 425 TARATLLNELVQLVKGYGDKLV mL17-15 426 GMRATLLQEFWQLVGGQGDNWM mL17-16 427 STRATLLNDLWQLMKGWAEDRG mL17-17 428 SERATLLKELWQLVGGWGDNFG mL17-18 429 VGRATLLKEFWQLVEGLVGQSR mL17-19 430 EIRATLLKEFWQLVDEWREQPN 91 WO 2007/067616 PCT/US2006/046546 mL17-20 431 QLRATLLKEFLQLVHGLGETDS mL17-21 432 TQRATLLKEFWQLIEGLGGKHV mL17-22 433 HYRATLLKEFWQLVDGLREQGV mL17-23 434 QSRVTLLREFWQLVESYRPIVN mL17-24 435 LSRATLLNEFWQFVDGQRDKRM mL17-25 436 WDRATLLNDFWHLMEELSQKPG mL17-26 437 QERATLLKEFWRMVEGLGKNRG mL17-27 438 NERATLLREFWQLVGGYGVNQR L-20 122 YREMSMLEGLLDVLERLQHY mL20-1 439 HQRDMSMLWELLDVLDGLRQYS mL20-2 440 TQRDMSMLDGLLEVLDQLRQQR mL20-3 441 TSRDMSLLWELLEELDRLGHQR mL20-4 442 MQHDMSMLYGLVELLESLGHQI mL20-5 443 WNRDMRMLESLFEVLDGLRQQV mL20-6 444 GYRDMSMLEGLLAVLDRLGPQL mL20 conI 445 TQRDMSMLEGLLEVLDRLGQQR mL20 con2 446 WYRDMSMLEGLLEVLDRLGQQR L-21 123 HNSSQMLLSELIMLVGSMMQ mL21-1 447 TQNSRQMLLSDFMMLVGSMIQG mL21-2 448 MQTSRHILLSEFMMLVGSIMHG mL21-3 449 HDNSRQMLLSDLLHLVGTMIQG mL21-4 450 MENSRQNLLRELIMLVGNMSHQ mL21-5 451 QDTSRHMLLREFMMLVGEMIQG mL21 con1 452 DQNSRQMLLSDLMILVGSMIQG L-24 126 EFFHWLHNHRSEVNHWLDMN mL24-1 453 NVFFQWVQKHGRVVYQWLDINV mL24-2 454 FDFLQWLQNHRSEVEHWLVMDV The affinity matured peptides provided in Tables IV and V are then assembed into peptibodies as described above and assayed using the in vivo assays. 5 The affinity matured L2 peptides comprise a consensus sequence of f2EMLfSLff 4 LL, (SEQ ID NO: 455), wherein f, is M or I; f 2 is any amino acid; f 3 is L or F; and f 4 is E, Q or D. The affinity matured L15 peptide family comprise the sequence Lgig2LLg 3 g 4 L, (SEQ ID NO: 456), wherein gi is Q, D or E, g2 is S, Q, D or E, g3 is any amino acid, and g 4 is L, W, F, or 10 Y. The affinity matured L17 family comprises the sequence: hih 2 h 3 1ah 5 h 6 h 7 h 8 h, (SEQ ID NO: 457) wherein h, is R or D; h 2 is any amino acid; h 3 is A, T S or Q; h 4 is L or M; h 5 is L or S; h 6 is any amino acid; h 7 is F or E; hs is W, F or C; and hg is L, F, M or K. Consensus sequences may also be determined for the mL20, mL21 and mL24 families of peptides shown above. Peptibodies were constructed from these affinity matured peptides as described above, 15 using a linker attached to the Fc domain of human IgG1, having SEQ ID NO: 296, at the N 92 WO 2007/067616 PCT/US2006/046546 terminus (N configuration), at the C terminus (C configuration) of the Fc, or at both the N and C terminals (NC configurations), as described in Example 2 above. The peptides named were attached to the C or N terminals via a 5 glycine (5G), 8 glycine or k linker sequence. In the 2X peptibody version the peptides were linked with linkers such as 5 gly, 8 gly or k. Affinity 5 matured peptides and peptibodies are designated with a small "in" such as mTN8-19-22 for example. Peptibodies of the present invention further contain two splice sites where the peptides were spliced into the phagemid vectors. The position of these splice sites are AQ-peptide-LE. The peptibodies generally include these additional amino acids (although they are not included in the peptide sequences listed in the tables). In some peptibodies the LE amino acids were removed 10 from the peptides sequences. These peptibodies are designated -LE. Exemplary peptibodies, and exemplary polynucleotide sequences encoding them, are provided in Table VI below. This table includes examples of peptibody sequences (as opposed to peptide only), such as the 2x mTN8-19-7 (SEQ ID NO: 615) and the peptibody with the LE sequences deleted (SEQ ID NO: 617). By way of explanation, the linker sequences in the 2x 15 versions refers to the linker between the tandem peptides. These peptibody sequences contain the Fc, linkers, AQ and LE sequences. The accompanying nucleotide sequence encodes the peptide sequence in addition to the AQ/LE linker sequences, if present, but does not encode the designated linker. 20 TABLE VI Peptibody Name Peptide Nucleotide Sequence (SEQ ID No) Linker Term -inus mL2-Conl RMEMLESLLELL CGTATGGAAATGCTTGAATCTCTTC 5 gly N KEIVPMSKAG TTGAACTTCTrAAAGAAATTGTTCC AATGTCTAAAGCTGGT (SEQ ID NO: 458) mL2-Con2 RMEMLESLLELL CGTATGGAAATGCTTGAATCTCTTC 5 gly N KEIVPMSKAR TTGAACTTCTTAAAGAAATTGTTCC AATGTCTAAAGCTCGT (SEQ ID NO: 459) mL2-1 RMEMLESLLELL CGTATGGAAATGCTTGAATCTCTTC 5 gly N KDIVPMSKPS TTGAACTTCTTAAAGATATTGTTCC AATGTCTAAACCATCT (SEQ ID NO: 460) mL2-2 GMEMLESLFELL GGTATGGAAATGCTTGAATCTCTTT 5 gly N QEIVPMSKAP TTGAACTTCTTCAAGAAATTGTTCC AATGTCTAAAGCTCCA (SEQ ID NO: 461) mL2-3 RMEMLESLLELL CGTATGGAAATGCTTGAATCTCTTC 5 gly N KDIVPISNPP TFGAACTTCTTAAAGATATTGTTCC AATTTCTAATCCACCA (SEQ ID NO: 1_ 1462) 93 WO 2007/067616 PCT/US2006/046546 nL2-4 RIEMLESLLELLQ CGTATTGAAATGCTTGAATCTCTTC 5 gly N EIVPISKAE TTGAACTTCTTCAAGAAATTGTTCC AATTTCTAAAGCTGAA (SEQ ID NO: 463) mL2-5 RMEMLQSLLELL CGTATGGAAATGCTTCAATCTCTTC 5 gly N KDIVPMSNAR TTGAACTTCTTAAAGATATTGTTCC AATGTCTAATGCTCGT (SEQ ID NO: 464) mL2-6 RMEMLESLLELL CGTATGGAAATGCTTGAATCTCTTC 5 gly N KEIVPTSNGT TTGAACTTCTTAAAGAAATTGTTCC AACTTCTAATGGTACT (SEQ ID NO: 465) mL2-7 RMEMLESLFELL CGTATGGAAATGCTTGAATCTCTTT 5 gly N KEIVPMSKAG TTGAACTTCTTAAAGAAATTGTTCC AATGTCTAAAGCTGGT (SEQ ID NO: 466) mL2-8 RMEMLGSLLELL CGTATGGAAATGCTTGGTTCTCTTC 5 gly N KEIVPMSKAR TTGAACTTCTTAAAGAAATTGTTCC AATGTCTAAAGCTCGT(SEQ ID NO: 467) mL2-9 QMELLDSLFELL CAAATGGAACTTCTTGATTCTCTTT 5 gly N KEIVPKSQPA TTGAACTTCTTAAAGAAATTGTTCC AAAATCTCAACCAGCT (SEQ ID NO: 468) mL2-10 RMEMLDSLLELL CGTATGGAAATGCTTGATTCTCTTC 5 gly N KEIVPMSNAR TTGAACTTCTTAAAGAAATTGTTCC AATGTCTAATGCTCGT (SEQ ID NO: 469) mL2-11 RMEMLESLLELL CGTATGGAAATGCTTGAATCTCTTC 5 gly N HEIVPMSQAG TTGAACTTCTTCATGAAATTGTTCC AATGTCTCAAGCTGGT (SEQ ID NO: 470) mL2-12 QMEMLESLLQLL CAAATGGAAATGCTTGAATCTCTTC 5 gly N KEIVPMSKAS TTCAACTTCTrAAAGAAATTGTTCC AATGTCTAAAGCTTCT (SEQ ID NO: 471) mL2-13 RMEMLDSLLELL CGTATGGAAATGCTTGATTCTCTTC 5 gly N KDMVPMTTGA TTGAACTrCTTAAAGATATGGTTCC AATGACTACTGGTGCT (SEQ ID NO: 472) mL2-14 RIEMLESLLELLK CGTATTGAAATGCTTGAATCTCTTC 5 gly N DMVPMANAS TTGAACTTCTTAAAGATATGGTTCC AATGGCTAATGCTTCT (SEQ ID NO: 473) nL2-15 RMEMLESLLQLL CGTATGGAAATGCTTGAATCTCTTC 5 gly N NEIVPMSRAR TTCAACTTCTTAATGAAATTGTTCC AATGTCTCGTGCTCGT (SEQ ID NO: 474) mL2-16 RMEMLESLFDLL CGTATGGAAATGCTTGAATCTCTTT 5 gly N KELVPMSKGV TTGATCTTCTrAAAGAACTTGTTCC AATGTCTAAAGGTGTT (SEQ ID NO: 475) mL2-17 RIEMLESLLELLK CGTATTGAAATGCTTGAATCTCTTC 5 gly N DIVPIQKAR TTGAACTTCTTAAAGATATTGTTCC AATTCAAAAAGCTCGT (SEQ ID NO: 476) 94 WO 2007/067616 PCT/US2006/046546 mL2-18 RMELLESLFELLK CGTATGGAACTTCTTGAATCTCTTT 5 gly N DMVPMSDSS TTGAACTTCTTAAAGATATGGTTCC AATGTCTGATTCTTCT (SEQ ID NO: 477) mL2-19 RMEMLESLLEVL CGTATGGAAATGCTTGAATCTCTTC 5 gly N QEIVPRAKGA TTGAAGTTCTTCAAGAAATTGTTCC ACGTGCTAAAGGTGCT (SEQ ID NO: 478) mL2-20 RMEMLDSLLQLL CGTATGGAAATGCTTGATTCTCTTC 5 gly N NEIVPMSHAR TTCAACTTCTTAATGAAATTGTTCC AATGTCTCATGCTCGT (SEQ ID NO: 479) mL2-21 RMEMLESLLELL CGTATGGAAATGCTTGAATCTCTTC 5 gly N KDIVPMSNAG TTGAACTTCTTAAAGATATTGTTCC AATGTCTAATGCTGGT (SEQ ID NO: 480) mL2-22 RMEMLQSLFELL CGTATGGAAATGCTTCAATCTCTIT 5 gly N KGMVPISKAG TrGAACTTCTTAAAGGTATGGTTCC AAYTCTAAAGCTGGT (SEQ ID NO: 481) mL2-23 RMEMLESLLELL CGTATGGAAATGCTTGAATCTCTTC 5 gly N KEIVPNSTAA TTGAACTTCTTAAAGAAATTGTTCC AAATTCTACTGCTGCT (SEQ ID NO: 482) mL2-24 RMEMLQSLLELL CGTATGGAAATGCTTCAATCTCTTC 5 gly N KEIVPISKAG TTGAACTTCTTAAAGAAATTGTTCC AAfTCTAAAGCTGGT (SEQ ID NO: 483) mL2-25 RIEMLDSLLELLN CGTATTGAAATGCTTGATTCTCITC 5 gly N ELVPMSKAR TTGAACTTCTTAATGAACTTGTTCC AATGTCTAAAGCTCGT (SEQ ID NO: 484) mL17-Conl DWRATLLKEFW GATTGGCGTGCTACTCTTCTTAAAG 5 gly N QLVEGLGDNLV AATTTGGCAACTTGTTGAAGGTCT TGGTGATAATCTTGTT (SEQ ID NO: 485) mL17-1 DGRATLLTEFWQ GATGGTCGTGCTACTCITCTTACTG 5 gly N LVQGLGQKEA AATTTTGGCAACTTGTTCAAGGTCT TGGTCAAAAAGAAGCT (SEQ ID NO: 486) mL17-2 LARATLLKEFWQ CTTGCTCGTGCTACTCTTCTTAAAG 5 gly N LVEGLGEKVV AATYTGGCAACTTGTTGAAGGTCT TGGTGAAAAAGTTGTT (SEQ ID NO: 487) mL17-3 GSRDTLLKEFWQ GGTTCTCGTGATACTCTTCTTAAAG 5 gly N LVVGLGDMQT AATTITGGCAACTTGTTGTTGGTCT TGGTGATATGCAAACT (SEQ ID NO: 488) mL17-4 DARATLLKEFWQ GATGCTCGTGCTACTCTTCTTAAAG 5 gly N LVDAYGDRMV AAT=TGGCAACTTGTTGATGCTTA TGGTGATCGTATGGTT (SEQ ID NO: 489) mL17-5 NDRAQLLRDFWQ AATGATCGTGCTCAACTTCTTCGTG 5 gly N LVDGLGVKSW ATTTGGCAACTTGTTGATGGTCT TGGTGTTAAATCTTGG (SEQ ID NO: 5490) 95 WO 2007/067616 PCT/US2006/046546 nL17-6 GVRETLLYELWY GGTGTTCGTGAAACTCTTCTTTATG 5 gly N LLKGLGANQG AACTTTGGTATCTTCTTAAAGGTCT TGGTGCTAATCAAGGT (SEQ ID NO: 491) mL17-7 QARATLLKEFCQ CAAGCTCGTGCTACTCTTCTTAAAG 5 gly N LVGCQGDKLS AATTTGTCAACTTGTTGGTTGTCA AGGTGATAAACTTTCT (SEQ ID NO: 492) mL17-8 QERATLLKEFWQ CAAGAACGTGCTACTCTTCTTAAA 5 gly N LVAGLGQNMR GAATTTTGGCAACTTGTTGCTGGTC TTGGTCAAAATATGCGT (SEQ ID NO: 493) mL17-9 SGRATLLKEFWQ TCTGGTCGTGCTACTCTTCTTAAAG 5 gly N LVQGLGEYRW AATTTGGCAACTTGTTCAAGGTCT TGGTGAATATCGTTGG (SEQ ID NO: 494) mL17-10 TMRATLLKEFWL ACTATGCGTGCTACTCTTCTTAAAG 5 gly N FVDGQREMQW AATTITGGCTTTTGTTGATGGTCA ACGTGAAATGCAATGG (SEQ ID NO: 495) mL17-11 GERATLLNDFWQ GGTGAACGTGCTACTCTTCTTAATG 5 gly N LVDGQGDNTG ATITTTGGCAACTTGTTGATGGTCA AGGTGATAATACTGGT (SEQ ID NO: 496) mL17-12 DERETLLKEFWQ GATGAACGTGAAACTCTrTAAA 5 gly N LVHGWGDNVA GAATTTTGGCAACTTGTTCATGGTT GGGGTGATAATGTTGCT (SEQ ID NO: 497) nL17-13 GGRATLLKELWQ GGTGGTCGTGCTACTGCTTTTAAAG 5 gly N LLEGQGANLV AACTTTGGCAACTTCTTGAAGGTCA AGGTGCTAATCTTGTT (SEQ ID NO: 498) mL17-14 TARATLLNELVQ ACTGCTCGTGCTACTCTTCTTAATG 5 gly N LVKGYGDKLV AACTTGTTCAACTTGTFAAAGGTTA TGGTGATAAACTTGTT (SEQ ID NO: 499) mL17-15 GMRATLLQEFWQ GGTATGCGTGCTACTCTFCTTCAAG 5 gly N LVGGQGDNWM AATTGGCAACTTGTTGGTGGTCA AGGTGATAATTGGATG (SEQ ID NO: 500) mL17-16 STRATLLNDLWQ TCTACTCGTGCTACTCTTCTTAATG 5 gly N LMKGWAEDRG ATCTITGGCAACTTATGAAAGGTTG GGCTGAAGATCGTGGT (SEQ ID NO: 501) mL17-17 SERATLLKELWQ TCTGAACGTGCTACTCTTCTTrAAAG 5 gly N LVGGWGDNFG AACTITGGCAACTrGTTGGTGGTTG GGGTGATAATTTGGT (SEQ ID NO: 502) mL17-18 VGRATLLKEFWQ GTTGGTCGTGCTACTCTTCTTAAAG 5 gly N LVEGLVGQSR AATTTGGCAACTTGTTGAAGGTCT TGTTGGTCAATCTCGT (SEQ ID NO: 1503) 96 WO 2007/067616 PCT/US2006/046546 2x mTN8-Con6- M-GAQ- TGGTATCCGTGTTATGAGGGTCACT 1K N (N)-IK WYPCYEGHFWC TCTGGTGCTACGATCTGGGTTCTGG YDL- TTCCACTGCTrCTTCTGGTTCCGGT GSGSATGGSGST TCCGCTACTGGTTGGTACCCGTGCT ASSGSGSATG- ACGAAGGTCACTTGGTGTTATGA WYPCYEGHFWC TCTG (SEQ ID NO: 505) YDL-LE-5G-FC (SEQ ID NO: 504) 2x mTN8-Con6- FC-5G-AQ- TGGTATCCGTGTTATGAGGGTCACT 1K C (C)-1K WYPCYEGHFWC TCTGGTGCTACGATCTGGGTTCTGG YDL- TTCCACTGCTTCTTCTGGTTCCGGT GSGSATGGSGST TCCGCTACTGGTTGGTACCCGTGCT ASSGSGSATG- ACGAAGGTCACTTTTGGTGTTATGA WYPCYEGHFWC TCTG (SEQ ID NO: 507) YDL-LE (SEQ ID NO: 506) 2x mTN8-Con7- M-GAQ- ATCTTTGGCTGTAAATGGTGGGAC 1K N (N)-1K IFGCKWWDVQC GTTCAGTGCTACCAGTTCGGTTCTG YQF- GTTCCACTGCTTCTTCTGGTTCCGG GSGSATGGSGST TTCCGCTACTGGTATCTTCGGTTGC ASSGSGSATG- AAGTGGTGGGATGTACAGTGTTAT IFGCKWWDVQC CAGTTT (SEQ ID NO: 509) YQF-LE-5G-FC (SEQ ID NO: 508) 2x mTNS-Con7- FC-5G-AQ- ATCTTTGGCTGTAAATGGTGGGAC 1K C (C)-IK IFGCKWWDVQC GTTCAGTGCTACCAGTTCGGTTCTG YQF- GTrCCACTGCTTCTTCTGGTT7CCGG GSGSATGGSGST TTCCGCTACTGGTATCTTCGGTTGC ASSGSGSATG- AAGTGGTGGGATGTACAGTGTTAT IFGCKWWDVQC CAGTT (SEQ ID NO: 511) YQF-LE (SEQ ID NO: 510) 2x mTN8-Con8- M-GAQ- ATCTTTGGCTGTAAGTGGTGGGAC 1K N (N)-1K IFGCKWWDVDC GTTGACTGCTACCAGTTCGGTTCTG YQF- GTTCCACTGCTTCTTCTGGTTCCGG GSGSATGGSGST TTCCGCTACTGGTATCTTCGGTTGC ASSGSGSATG- AAATGGTGGGACGTTGATTGTTAT IFGCKWWDVDC CAGT (SEQ ID NO: 513) YQF-LE-5G-FC (SEQ ID NO: 512) 2x mTN8-Con8- FC-5G-AQ- ATCTTTGGCTGTAAGTGGTGGGAC 1K C (C)-1K IFGCKWWDVDC GTTGACTGCTACCAGTTCGGTTCTG YQF- GTTCCACTG=CTTCTGGTTCCGG GSGSATGGSGST TTCCGCTACTGGTATCTTCGGTTGC ASSGSGSATG- AAATGGTGGGACGTTGATTGTTAT IFGCKWWDVDC CAGTTT (SEQ ID NO: 515) YQF-LE (SEQ ID NO: 514) ML15-Conl QVESLQQLLMWL CAGGTTGAATCCCTGCAGCAGCTG 5 gly C DQKLASGPQG CTGATGTGGCTGGACCAGAAACTG GCTTCCGGTCCGCAGGGT (SEQ ID NO: 516) ML15-1 RMELLESLFELLK CGTATGGAACTGCTGGAATCCCTG 5 gly C EMVPRSKAV TTCGAACTGCTGAAAGAAATGGTT CCGCGTTCCAAAGCTGTT (SEQ ID NO: 517) 97 WO 2007/067616 PCT/US2006/046546 mL15-2 QAVSLQHLLMW CAGGCTGTTTCCCTGCAGCACCTGC 5 gly C LDQKLASGPQH TGATGTGGCTGGACCAGAAACTGG CTTCCGGTCCGCAGCAC (SEQ ID NO: 518) mL 15-3 DEDSLQQLLMWL GACGAAGACTCCCTGCAGCAGCTG 5 gly C DQKLASGPQL CTGATGTGGCTGGACCAGAAACTG GCTTCCGGTCCGCAGCTG (SEQ ID NO: 519) nLl5-4 PVASLQQLLIWL CCGGTTGCTTCCCTGCAGCAGCTGC 5 gly C DQKLAQGPHA TGATCTGGCTGGACCAGAAACTGG CTCAGGGTCCGCACGCT (SEQ ID NO: 520) mL15-5 EVDELQQLLNWL GAAGTTGACGAACTGCAGCAGCTG 5 gly C DHKLASGPLQ CTGAACTGGCTGGACCACAAACTG GCTTCCGGTCCGCTGCAG (SEQ ID NO: 521) mL15-6 DVESLEQLLMWL GACGTTGAATCCCTGGAACAGCTG 5 gly C DHQLASGPHG CTGATGTGGCTGGACCACCAGCTG GCTTCCGGTCCGCACGGT (SEQ ID NO: 522) iL1 5-7 QVDSLQQVLLWL CAGGTTGACTCCCTGCAGCAGGTT 5 gly C EHKLALGPQV CTGCTGTGGCTGGAACACAAACTG GCTCTGGGTCCGCAGGTT (SEQ ID NO: 523) mL15-8 GDESLQHLLMWL GGTGACGAATCCCTGCAGCACCTG 5 gly C EQKLALGPHG CTGATGTGGCTGGAACAGAAACTG GCTCTGGGTCCGCACGGT (SEQ ID NO: 524) mL15-9 QIEMLESLLDLLR CAGATCGAAATGCTGGAATCCCTG 5 gly C DMVPMSNAF CTGGACCTGCTGCGTGACATGGTTC CGATGTCCAACGCTTTC (SEQ ID NO: 525) mL15-10 EVDSLQQLLMWL GAAGTTGACTCCCTGCAGCAGCTG 5 gly C DQKLASGPQA CTGATGTGGCTGGACCAGAAACTG GCTTCCGGTCCGCAGGCT (SEQ ID NO: 526) mL15-11 EDESLQQLLIYLD GAAGACGAATCCCTGCAGCAGCTG 5 gly C KMLSSGPQV CTGATCTACCTGGACAAAATGCTG TCCTCCGGTCCGCAGGTT (SEQ ID NO: 527) mL15-12 AMDQLHQLLIWL GCTATGGACCAGCTGCACCAGCTG 5 gly C DHKLASGPQA CTGATCTGGCTGGACCACAAACTG GCTTCCGGTCCGCAGGCT (SEQ ID NO: 528) mL 15-13 RIEMLESLLELLD CGTATCGAAATGCTGGAATCCCTG 5 gly C EIALIPKAW CTGGAACTGCTGGACGAAATCGCT CTGATCCCGAAAGCTTGG (SEQ ID NO: 529) mL1 5-14 EVVSLQHLLMWL GAAGTTGTTTCCCTGCAGCACCTGC 5 gly C EHKLASGPDG TGATGTGGCTGGAACACAAACTGG CTTCCGGTCCGGACGGT (SEQ ID NO: 530) mL15-15 GGESLQQLLMWL GGTGGTGAATCCCTGCAGCAGCTG 5 gly C DQQLASGPQR CTGATGTGGCTGGACCAGCAGCTG GCTTCCGGTCCGCAGCGT (SEQ ID NO: 531)9 98 WO 2007/067616 PCT/US2006/046546 mL15-16 GVESLQQLLIFLD GGTGTTGAATCCCTGCAGCAGCTG 5 gly C HMLVSGPHD CTGATCTTCCTGGACCACATGCTGG CTCGGTCCGCACGAC (SEQ ID NO: 532) mL15-17 NVESLEHLMMW AACGTTGAATCCCTGGAACACCTG 5 gly C LERLLASGPYA ATGATGTGGCTGGAACGTCTGCTG OCTTCCGGTCCGTACGCT (SEQ ID NO: 533) mL15-18 QVDSLQQLLIWL CAGGTTGACTCCCTGCAGCAGCTG 5 gly C DHQLASGPKR CTGATCTGGCTGGACCACCAGCTG GCTTCCGGTCCGAAACGT (SEQ ID NO: 534) mL15-19 EVESLQQLLMWL GAAGTTGAATCCCTGCAGCAGCTG 5 gly C EHKLAQGPQG CTGATGTGGCTGGAACACAAACTG GCTCAGGGTCCGCAGGGT (SEQ ID NO: 535) mL15-20 EVDSLQQLLMWL GAAGTTGACTCCCTGCAGCAGCTG 5 gly C DQKLASGPHA CTGATGTGGCTGGACCAGAAACTG GCTTCCGGTCCGCACGCT (SEQ ID NO: 536) mL15-21 EVDSLQQLLMWL GAAGTTGACTCCCTGCAGCAGCTG 5 gly C DQQLASGPQK CTGATGTGGCTGGACCAGCAGCTG GCTTCCGGTCCGCAGAAA (SEQ ID NO: 537) mLl5-22 GVEQLPQLLMWL GGTGTTGAACAGCTGCCGCAGCTG 5 gly C EQKLASGPQR CTGATGTGGCTGGAACAGAAACTG GCTTCCGGTCCGCAGCGT (SEQ ID NO: 538) mL15-23 GEDSLQQLLMWL GGTGAAGACTCCCTGCAGCAGCTG 5 gly C DQQLAAGPQV CTGATGTGGCTGGACCAGCAGCTG GCTGCTGGTCCGCAGGTT (SEQ ID NO: 539) mL15-24 ADDSLQQLLMW GCTGACGACTCCCTGCAGCAGCTG 5 gly C LDRKLASGPHV CTGATGTGGCTGGACCGTAAACTG GCTTCCGGTCCGCACGTT (SEQ ID NO: 540) mL15-25 PVDSLQQLLIWL CCGGTTGACTCCCTGCAGCAGCTG 5 gly C DQKLASGPQG CTGATCTGGCTGGACCAGAAACTG GCTTCCGGTCCGCAGGGT (SEQ ID NO: 541) mL17-Con2 QSRATLLKEFWQ CAGTCCCGTGCTACCCTGCTGAAA 5 gly C LVEGLGDKQA GAATTCTGGCAGCTGGTTGAAGGT CTGGGTGACAAACAGGCT (SEQ ID NO: 542) mL17-19 EIRATLLKEFWQL GAAATCCGTGCTACCCTGCTGAAA 5 gly C VDEWREQPN GAATTCTGGCAGCTGGTTGACGAA TGGCGTGAACAGCCGAAC (SEQ ID NO: 543) mL17-20 QLRATLLKEFLQL CAGCTGCGTGCTACCCTGCTGAAA 5 gly C VHGLGETDS GAATTCCTGCAGCTGGTTCACGGTC TGGGTGAAACCGACTCC (SEQ ID NO: 544) nL17-21 TQRATLLKEFWQ ACCCAGCGTGCTACCCTGCTGAAA 5 gly C LIEGLGGKHV GAATTCTGGCAGCTGATCGAAGGT CTGGGTGGTAAACACGTT (SEQ ID NO: 545) 99 WO 2007/067616 PCT/US2006/046546 mL17-22 HYRATLLKEFWQ CACTACCGTGCTACCCTGCTGAAA 5 gly C LVDGLREQGV GAATTCTGGCAGCTGGTTGACGGT CTGCGTGAACAGGGTGTT (SEQ ID NO: 546) mL17-23 QSRVTLLREFWQ CAGTCCCGTGTTACCCTGCTGCGTG 5 gly C LVESYRPIVN AATTCTGGCAGCTGGTTGAATCCTA CCGTCCGATCGTTAAC (SEQ ID NO: 547) mL17-24 LSRATLLNEFWQ CTGTCCCGTGCTACCCTGCTGAACG 5 gly C FVDGQRDKRM AATTCTGGCAGTTCGTTGACGGTCA GCGTGACAAACGTATG (SEQ ID NO: 548) mL17-25 WDRATLLNDFW TGGGACCGTGCTACCCTGCTGAAC 5 gly C HLMEELSQKPG GACTTCTGGCACCTGATGGAAGAA CTGTCCCAGAAACCGGGT (SEQ ID NO: 549) mL17-26 QERATLLKEFWR CAGGAACGTGCTACCCTGCTGAAA 5 gly C MVEGLGKNRG GAATTCTGGCGTATGGTTGAAGGT CTGGGTAAAAACCGTGGT (SEQ ID NO: 550) mL17-27 NERATLLREFWQ AACGAACGTGCTACCCTGCTGCGT 5 gly C LVGGYGVNQR GAATTCTGGCAGCTGGTTGGTGGTT ACGGTGTTAACCAGCGT (SEQ ID NO: 551) mTN8Con6-1 QREWYPCYGGHL CAGCGTGAATGGTACCCGTGCTAC 5 gly C WCYDLHKA GGTGGTCACCTGTGGTGCTACGAC CTGCACAAAGCT (SEQ ID NO: 552) mTN8Con6-2 ISAWYSCYAGHF ATCTCCGCTTGGTACTCCTGCTACG 5 gly C WCWDLKQK CTGGTCACTTCTGGTGCTGGGACCT GAAACAGAAA (SEQ ID NO: 553) mTN8Con6-3 WTGWYQCYGGH TGGACCGGTTGGTACCAGTGCTAC 5 gly C LWCYDLRRK GGTGGTCACCTGTGGTGCTACGAC CTGCGTCGTAAA (SEQ ID NO: 554) mTN8Con6-4 KTFWYPCYDGHF AAAACCTTCTGGTACCCGTGCTAC 5 gly C WCYNLKSS GACGGTCACTTCTGGTGCTACAAC CTGAAATCCTCC (SEQ ID NO: 545) mTN8Con6-5 ESRWYPCYEGHL GAATCCCGTTGGTACCCGTGCTAC 5 gly C WCFDLTET GAAGGTCACCTGTGGTGCTTCGAC CTGACCGAAACC (SEQ ID NO: 546) mL24-1 NVFFQWVQKHG AATGT TITTITCAATGGGTTCAAA 5 gly C RVVYQWLDINV AACATGGTCGTGTTGTTTATCAATG GCTTGATATTAATGTT (SEQ ID NO: 557) mL24-2 FDFLQWLQNHRS TTTGATTTTCTrCAATGGCTTCAAA 5 gly C EVEHWLVMDV ATCATCGTTCTGAAGTTGAACATTG GCTTGTTATGGATGTT (SEQ ID NO: 558) mL20-1 HQRDMSMLWEL CATCAACGTGATATGTCTATGCTTT 5 gly C LDVLDGLRQYS GGGAACTTCTTGATGTTCTTGATGG TCTTCGTCAATATTCT (SEQ ID NO: 559) mL20-2 TQRDMSMLDGLL ACTCAACGTGATATGTCTATGCTTG 5 gly C EVLDQLRQQR ATGGTCTTCTTGAAGTTCTTGATCA ACTTCGTCAACAACGT (SEQ ID 100 WO 2007/067616 PCT/US2006/046546 NO: 560) mL20-3 TSRDMSLLWELL ACCTCCCGTGACATGTCCCTGCTGT 5 gly C EELDRLGHQR GGGAACTGCTGGAAGAACTGGACC GTCTGGGTCACCAGCGT (SEQ ID NO: 561) mL20-4 MQHDMSMLYGL ATGCAACATGATATGTCTATGCTTT 5 gly C VELLESLGHQI ATGGTCTTGTTGAACTTCTTGAATC TCTTGGTCATCAAATr (SEQ ID NO: 562) mL20-5 WNRDMRMLESL TGGAATCGTGATATGCGTATGCTTG 5 gly C FEVLDGLRQQV AATCTCT-TGAAGTTCTrGATGG TCTTCGTCAACAAGTT (SEQ ID NO: 563) mL20-6 GYRDMSMLEGLL GGTTATCGTGATATGTCTATGCTTG 5 gly C AVLDRLGPQL AAGGTCTTCTTGCTGTTCTTGATCG TCTTGGTCCACAACTT (SEQ ID NO: 564) mL20 ConI TQRDMSMLEGLL ACTCAACGTGATATGTCTATGCTTG 5 gly C EVLDRLGQQR AAGGTCTTCTTGAAGTTCTTGATCG TCTTGGTCAACAACGT (SEQ ID NO: 565) mL20 Con2 WYRDMSMLEGL TGGTACCGTGACATGTCCATGCTG 5 gly C LEVLDRLGQQR GAAGGTCTGCTGGAAGTTCTGGAC CGTCTGGGTCAGCAGCGT (SEQ ID NO: 566) mL21-1 TQNSRQMLLSDF ACTCAAAATTCTCGTCAAATGCTTC 5 gly C MMLVGSMIQG TTTCTGATTTTATGATGCTrGTTGG TTCTATGATTCAAGGT (SEQ ID NO: 567) mL21-2 MQTSRHILLSEFM ATGCAAACTTCTCGTCATATTCTTC 5 gly C MLVGSIMHG TTTCTGAATTTATGATGCTTGTTGG TTCTATTATGCATGGT (SEQ ID NO: 568) mL21-3 HDNSRQMLLSDL CACGACAACTCCCGTCAGATGCTG 5 gly C LHLVGTMIQG CTGTCCGACCTGCTGCACCTGGTTG GTACCATGATCCAGGGT (SEQ ID NO: 569) mL21-4 MENSRQNLLRELI ATGGAAAACTCCCGTCAGAACCTG 5 gly C MLVGNMSHQ CTGCGTGAACTGATCATGCTGGTTG GTAACATGTCCCACCAG (SEQ ID NO: 570) mL21-5 QDTSRHMLLREF CAGGACACCTCCCGTCACATGCTG 5 gly C MMLVGEMIQG CTGCGTGAATTCATGATGCTGGTTG GTGAAATGATCCAGGGT (SEQ ID NO: 571) mL21 Con1 DQNSRQMLLSDL GACCAGAACTCCCGTCAGATGCTG 5 gly C MILVGSMIQG CTGTCCGACCTGATGATCCTGGTTG GTTCCATGATCCAGGGT (SEQ ID NO: 572) mTN8-19-1 VALHGQCTRWP GTrGCTCTTCATGGTCAATGTACTC 5 gly C WMCPPQREG GTTGGCCATGGATGTGTCCACCAC AACGTGAAGGT (SEQ ID NO: 573) 101 WO 2007/067616 PCT/US2006/046546 mTN8-19-2 YPEQGLCTRWPW TATCCAGAACAAGGTCTTTGTACTC 5 gly C MCPPQTLA GTTGGCCATGGATGTGTCCACCAC AAACTCTTGCT (SEQ ID N: 574) mTN8-19-3 GLNQGHCTRWP GGTCTGAACCAGGGTCACTGCACC 5 gly C WMCPPQDSN CGTTGGCCGTGGATGTGCCCGCCG CAGGACTCCAAC (SEQ ID NO: 575) mTN8-19-4 MITQGQCTRWPW ATGATTACTCAAGGTCAATGTACTC 5 gly C MCPPQPSG GTTGGCCATGGATGTGTCCACCAC AACCATCTGGT (SEQ ID NO: 576) mTN8-19-5 AGAQEHCTRWP GCTGGTGCTCAGGAACACTGCACC 5 gly C WMCAPNDWI CGTrGGCCGTGGATGTGCGCTCCG AACGACTGGATC (SEQ ID NO: 577) mTN8-19-6 GVNQGQCTRWR GGTGTTAACCAGGGTCAGTGCACC 5 gly C WMCPPNGWE CGTTGGCGTTGGATGTGCCCGCCG AACGGTTGGGAA (SEQ ID NO: 578) mTN8-19-7 LADHGQCIRWPW 5 gly C MCPPEGWE CTGGCTGACCACGGTCAGTGCATC CGTTGGCCGTGGATGTGCCCGCCG GAAGGTTGGGAA (SEQ ID NO: 579) mTN8-19-8 ILEQAQCTRWPW ATCCTGGAACAGGCTCAGTGCACC 5 gly C MCPPQRGG CGTTGGCCGTGGATGTGCCCGCCG CAGCGTGGTGGT (SEQ ID NO: 580) mTN8-19-9 TQTHAQCTRWP ACTCAAACTCATGCTCAATGTACTC 5 gly C WMCPPQWEG GTTGGCCATGGATGTGTCCACCAC AATGGGAAGGT (SEQ ID NO: 581) mTN8-19-10 VVTQGHCTLWP GTTGTTACTCAAGGTCATTGTACTC 5 gly C WMCPPQRWR TTTGGCCATGGATGTGTCCACCACA ACGTTGGCGT (SEQ ID NO: 582) mTN8-19-11 IYPHDQCTRWPW AfTATCCACATGATCAATGTACTC 5 gly C MCPPQPYP GTTGGCCATGGATGTGTCCACCAC AACCATATCCA (SEQ ID NO: 583) mTN8-19-12 SYWQGQCTRWP TCTTATTGGCAAGGTCAATGTACTC 5 gly C WMCPPQWRG GTTGGCCATGGATGTGTCCACCAC AATGGCGTGGT (SEQ ID NO: 584) mTN8-19-13 MWQQGHCTRWP ATGTGGCAACAAGGTCATTGTACT 5 gly C WMCPPQGWG CGTTGGCCATGGATGTGTCCACCA CAAGGTTGGGGT (SEQ ID NO: 585) mTN8-19-14 EFTQWHCTRWP GAATTCACCCAGTGGCACTGCACC 5 gly C WMCPPQRSQ CGTTGGCCGTGGATGTGCCCGCCG CAGCGTTCCCAG (SEQ ID NO: 586) mTN8-19-15 LDDQWQCTRWP CTGGACGACCAGTGGCAGTGCACC 5 gly C WMCPPQGFS CGTTGGCCGTGGATGTGCCCGCCG CAGGGTTTCTCC (SEQ ID NO: 587) mTN8-19-16 YQTQGLCTRWP TATCAAACTCAAGGTCTTGTACTC 5 gly C WMCPPQSQR GTTGGCCATGGATGTGTCCACCAC AATCTCAACGT (SEQ ID NO: 588) mTN8-19-17 ESNQGQCTRWP GAATCTAATCAAGGTCAATGTACT 5 gly C WMCPPQGGW CGTTGGCCATGGATGTGTCCACCA CAAGGTGGTTGG (SEQ ID NO: 589) 102 WO 2007/067616 PCT/US2006/046546 mTN8-19-18 WTDRGPCTRWP TGGACCGACCGTGGTCCGTGCACC 5 gly C WMCPPQANG CGTTGGCCGTGGATGTGCCCGCCG CAGGCTAACGGT (SEQ ID NO: 590) mTN8-19-19 VGTQGQCTRWP GTTGGTACCCAGGGTCAGTGCACC 5 gly C WMCPPYETG CGTTGGCCGTGGATGTGCCCGCCG TACGAAACCGGT (SEQ ID NO: 591) mTN8-19-20 PYEQGKCTRWP CCGTACGAACAGGGTAAATGCACC 5 gly C WMCPPYEVE CGTTGGCCGTGGATGTGCCCGCCG TACGAAGTTGAA (SEQ ID NO: 592) mTN8-19-21 SEYQGLCTRWPW TCCGAATACCAGGGTCTGTGCACC 5 gly C MCPPQGWK CGTTGGCCGTGGATGTGCCCGCCG CAGGGTTGGAAA (SEQ ID NO: 593) mTN8-19-22 TFSQGHCTRWPW ACCTTCTCCCAGGGTCACTGCACCC 5 gly C MCPPQGWG GTTGGCCGTGGATGTGCCCGCCGC AGGGTTGGGGT (SEQ ID NO: 594) mTN8-19-23 PGAHDHCTRWP CCGGGTGCTCACGACCACTGCACC 5 gly C WMCPPQSRY CGTTGGCCGTGGATGTGCCCGCCG CAGTCCCGTTAC (SEQ ID NO: 595) mTN8-19-24 VAEEWHCRRWP GTTGCTGAAGAATGGCACTGCCGT 5 gly C WMCPPQDWR CGTTGGCCGTGGATGTGCCCGCCG CAGGACTGGCGT (SEQ ID NO: 596) mTN8-19-25 VGTQGHCTRWP GTTGGTACCCAGGGTCACTGCACC 5 gly C WMCPPQPAG CGTTGGCCGTGGATGTGCCCGCCG CAGCCGGCTGGT (SEQ ID NO: 597) mTN8-19-26 EEDQAHCRSWP GAAGAAGACCAGGCTCACTGCCGT 5 gly C WMCPPQGWV TCCTGGCCGTGGATGTGCCCGCCG CAGGGTTGGGTT (SEQ ID NO: 598) mTN8-19-27 ADTQGHCTRWP GCTGACACCCAGGGTCACTGCACC 5 gly C WMCPPQHWF CGTTGGCCGTGGATGTGCCCGCCG CAGCACTGGTTC (SEQ ID NO: 599) mTN8-19-28 SGPQGHCTRWPW TCCGGTCCGCAGGGTCACTGCACC 5 gly C MCAPQGWF CGTTGGCCGTGGATGTGCGCTCCG CAGGGTTGGTTC (SEQ ID NO: 600) mTN8-19-29 TLVQGHCTRWP ACCCTGGTTCAGGGTCACTGCACC 5 gly C WMCPPQRWV CGTTGGCCGTGGATGTGCCCGCCG CAGCGTTGGGTT (SEQ ID NO: 601) mTN8-19-30 GMAHGKCTRWA GGTATGGCTCACGGTAAATGCACC 5 gly C WMCPPQSWK CGTTGGGCTTGGATGTGCCCGCCG CAGTCCTGGAAA (SEQ ID NO: 602) mTN8-19-31 ELYHGQCTRWP GAACTGTACCACGGTCAGTGCACC 5 gly C WMCPPQSWA CGTTGGCCGTGGATGTGCCCGCCG CAGTCCTGGGCT (SEQ ID NO: 603) mTN8-19-32 VADHGHCTRWP GTTGCTGACCACGGTCACTGCACC 5 gly C WMCPPQGWG CGTTGGCCGTGGATGTGCCCGCCG CAGGGTTGGGGT (SEQ ID NO: 604 mTN8-19-33 PESQGHCTRWPW CCGGAATCCCAGGGTCACTGCACC 5 gly C MCPPQGWG CGTTGGCCGTGGATGTGCCCGCCG CAGGGTTGGGGT (SEQ ID NO: 605) 103 WO 2007/067616 PCT/US2006/046546 mTN8-19-34 IPAHGHCTRWPW 5 gly C MCPPQRWR ATCCCGGCTCACGGTCACTGCACC CGTTGGCCGTGGATGTGCCCGCCG CAGCGTTGGCGT (SEQ ID NO: 606) mTN8-19-35 FTVHGHCTRWP TTCACCGTTCACGGTCACTGCACCC 5 gly C WMCPPYGWV GTTGGCCGTGGATGTGCCCGCCGT ACGGTTGGGTT (SEQ ID NO: 607) mTN8-19-36 PDFPGHCTRWRW CCAGATTTCCAGGTCATTGTACTC 5 gly C MCPPQGWE GTTGGCGTTGGATGTGTCCACCAC AAGGTTGGGAA (SEQ ID NO: 608) mTN8-19-37 QLWQGPCTQWP CAGCTGTGGCAGGGTCCGTGCACC 5 gly C WMCPPKGRY CAGTGGCCGTGGATGTGCCCGCCG AAAGGTCGTTAC (SEQ ID NO: 609) mTN8-19-38 HANDGHCTRWQ CACGCTAACGACGGTCACTGCACC 5 gly C WMCPPQWGG CGTTGGCAGTGGATGTGCCCGCCG CAGTGGGGTGGT (SEQ ID NO: 610) mTN8-19-39 ETDHGLCTRWPW GAAACCGACCACGGTCTGTGCACC 5 gly C MCPPYGAR CGTTGGCCGTGGATGTGCCCGCCG TACGGTGCTCGT (SEQ ID NO: 611) mTN8-19-40 GTWQGLCTRWP GGTACCTGGCAGGGTCTGTGCACC 5 gly C WMCPPQGWQ CGTTGGCCGTGGATGTGCCCGCCG CAGGGTTGGCAG (SEQ ID NO: 612) mTN8-19 ConI VATQGQCTRWP GTTGCTACCCAGGGTCAGTGCACC 5 gly C WMCPPQGWG CGTTGGCCGTGGATGTGCCCGCCG CAGGGTTGGGGT (SEQ ID NO: 613) mTN8-19 Con2 VATQGQCTRWP GTTGCTACCCAGGGTCAGTGCACC 5 gly C WMCPPQRWG CGTrGGCCGTGGATGTGCCCGCCG CAGCGTTGGGGT (SEQ ID NO: 614) 2X mTN8-19-7 FC-5G-AQ- CTTGCTGATCATGGTCAATGTATTC 1K C LADHGQCIRWPW GTTGGCCATGGATGTGTCCACCAG MCPPEGWELEGS AAGGTTGGGAACTCGAGGGTTCCG GSATGGSGSTASS GTTCCGCTACCGGCGGCTCTGGCTC GSGSATGLADHG CACTGCTTCTTCCGGTTCCGGTTCT QCIRWPWMCPPE GCTACTGGTCTGGCTGACCACGGT GWE-LE (SEQ ID CAGTGCATCCGTTGGCCGTGGATG NO: 615) TGCCCGCCGGAAGGTTGGGAACTG GAA (SEQ ID NO: 616) 2X mTN8-19-7 FC-5G-AQ- CTTGCTGATCATGGTCAATGTATTC 1K C ST-GG del2x LADHGQCIRWPW GTTGGCCATGGATGTGTCCACCAG LE MCPPEGWEGSGS AAGGTTGGGAAGGTTCCGGTTCCG ATGGSGGGASSG CTACCGGCGGCTCTGGCGGTGGCG SGSATGLADHGQ CTTCTTCCGGTTCCGGTTCTGCTAC CIRWPWMCPPEG TGGTCTGGCTGACCACGGTCAGTG WE (SEQ ID NO: CATCCGTTGGCCGTGGATGTGTCCA 617) CCAGAAGGTTGGGAA (SEQ ID NO: 1618) 104 WO 2007/067616 PCT/US2006/046546 2X mTN8-19-21 FC-5G-AQ- TCTGAATATCAAGGTCTTTGTACTC 1K C SEYQGLCTRWPW GTTGGCCATGGATGTGTCCACCAC MCPPQGWKLEGS AAGGTTGGAAACTCGAGGGTTCCG GSATGGSGSTASS GTTCCGCTACCGGCGGCTCTGGCTC GSGSATGSEYQG CACTGCTTCTTCCGGTTCCGGTTCT LCTRWPWMCPPQ GCTACTGGTTCTGAGTATCAAGGC GWK-LE (SEQ CTCTGTACTCGCTGGCCATGGATGT ID NO: 619) GTCCACCACAAGGCTGGAAGCTGG AA (SEQ ID NO: 620) 2X mTNS-19-21 FC-5G-AQ- TCTGAATATCAAGGTCTTTGTACTC 1K C ST-GG del2x SEYQGLCTRWPW GTTGGCCATGGATGTGTCCACCAC LE MCPPQGWKGSGS AAGGTTGGAAAGGTTCCGGTTCCG ATGGSGGGASSG CTACCGGCGGCTCTGGCGGTGGCG SGSATGSEYQGL CTTCTTCCGGTTCCGGTTCTGCTAC CTRWPWMCPPQ TGGTTCTGAGTATCAAGGCCTCTGT GWK (SEQ ID NO: ACTCGCTGGCCATGGATGTGTCCA 621) CCACAAGGTTGGAAA (SEQ ID NO: 622) 2X mTN8-19-22 FC-5G-AQ- ACTTTTTCTCAAGGTCATTGTACTC 1K C TFSQGHCTRWPW G'TTGGCCATGGATGTGTCCACCAC MCPPQGWGLEGS AAGGTTGGGGTCTCGAGGGTTCCG GSATGGSGSTASS GTTCCGCTACCGGCGGCTCTGGCTC GSGSATGTFSQG CACTGCTTCTTCCGGTTCCGGTTCT HCTRWPWMCPP GCTACTGGTACTTITCTCAAGGCC QGWG -L E (SEQ ATTGTACTCGCTGGCCATGGATGTG ID NO: 623) TCCACCACAAGGCTGGGGCCTGGA A (SEQ ID NO: 624) 2X mTN8-19-32 FC-5G-AQ- GTTGCTGATCATGGTCATTGTACTC 1K C VADHGHCTRWP GTTGGCCATGGATGTGTCCACCAC WMCPPQGWGLE AAGGTTGGGGTCTCGAGGGTTCCG GSGSATGGSGST GTTCCGCAACCGGCGGCTCTGGCT ASSGSGSATGVA CCACTGCTTCTrCCGGTTICCGGTTC DHGHCTRWPWM TGCTACTGGTGTTGCTGACCACGGT CPPQGWG-LE CACTGCACCCGTTGGCCGTGGATG (SEQ ID NO: 625) TGCCCGCCGCAGGGTTGGGGTCTG GAA (SEQ ID NO: 626) 2X mTN8-19-32 FC-5G-AQ- GTTGCTGATCATGGTCATTGTACTC 1K C ST-GG del2x VADHGHCTRWP GTrGGCCATGGATGTGTCCACCAC LE WMCPPQGWGGS AAGGTTGGGGTGGTTCCGGTTCCG GSATGGSGGGAS CTACCGGCGGCTCTGGCGGTGGTG SGSGSATGVADH CTTCTTCCGGTTCCGGTTCTGCTAC GHCTRWPWVCPP TGGTGTTGCTGACCACGGTCACTGC QGWG (SEQ ID ACCCGTTGGCCGTGGGTGTGTCCA NO: 627) CCACAAGGTTGGGGT (SEQ ID NO: 628) 105 WO 2007/067616 PCT/US2006/046546 2X mTN8-19-33 FC-5G-AQ- CCAGAATCTCAAGGTCATTGTACTC 1K C PESQGHCTRWPW GTTGGCCATGGATGTGTCCACCAC MCPPQGWGLEGS AAGGTTGGGGTCTCGAGGGTTCCG GSATGGSGSTASS GTTCCGCTACCGGCGGCTCTGGCTC GSGSATGPESQG CACTGCTTCTTCCGGTTCCGGTTCT HCTRWPWMCPP GCTACTGGTCCGGAATCCCAGGGT QGWGLE (SEQ CACTGCACCCGTTGGCCGTGGATG ID NO: 629) TGCCCGCCGCAGGGTTGGGGTCTG GAA (SEQ ID NO: 630) 2X mTN8-19-33 FC-5G-AQ- CCAGAATCTCAAGGTCATTGTACTC 1K C ST-GG del2x PESQGHCTRWPW GTTGGCCATGGATGTGTCCACCAC LE MCPPQGWGGSGS AAGGTTGGGGTGGTTCCGGTTCCG ATGGSGGGASSG CTACCGGCGGCTCTGGCGGTGGTG SGSATGPESQGH CTTCTTCCGGTTCCGGTTCTGCTAC CTRWPWMCP TGGTCCGGAATCCCAGGGTCACTG PQGWG (SEQ ID CACCCGTTGGCCGTGGATGTGTCC NO: 631) ACCACAAGGTTGGGGT (SEQ ID NO: 632) Example 7 In vitro screening of affinity matured peptibodies 5 The following exemplary peptibodies were screened according to the protocols set forth above to obtain the following KD and IC 50 values. Table VII shows the range of KD values for selected affinity matured peptibodies compared with the parent peptibodies, as determined by KinExATM{ solution based assays or BlAcore@ assays. These values demonstrate increased binding affinity of the affinity matured peptibodies for myostatin compared with the parent 10 peptibodies. Table VIII shows ICso values for a number of affinity matured peptibodies. A range of values is given in this table. TABLE VII peptibodies KD TN8-19 (parent) >lnM 2xmTN8-19 (parent) > 1 nM lx mTN8-19-7 10 pM 2x mTN8-19-7 12 pM Ix mTN8-19-21 6pM 2x mTN8-19-21 6pM fx mTN8-19-32 9 pM lx mTN8-19-33 21 pM 2x mTN8-19-33 3pM lx mTN8-19-22 4 pM lx mTN8-19-conl 20 M 15 106 WO 2007/067616 PCT/US2006/046546 TABLE VIII Affinity Matured Peptibody IC 5 o (nM) mTN8-19 Con1 1.0-4.4 mTN8-19-2 7.508-34.39 mTN8-19.4 16.74 mTN8-19-5 7.743 - 3.495 mTN8-19-6 17.26 mTN8-19-7 1.778 mTN8-19-9 22.96-18.77 mTN8-19-10 5.252 -7.4 mTN8-19-11 28.66 mTN8-19-12 980.4 mTN8-19-13 20.04 mTN8-19-14 4.065 - 6.556 mTN8-19-16 4.654 mTN8-19-21 2.767-3.602 mTN8-19-22 1.927-3.258 mTN8-19-23 6.584 mTN8-19-24 1.673-2.927 mTN8-19-27 4.837-4.925 mTN8-19-28 4.387 mTN8-19-29 6.358 mTN8-19-32 1.842-3.348 mTN8-19-33 2.146-2.745 mTN8-19-34 5.028 - 5.069 mTN8Con6-3 86.81 mTN8Con6-5 2385 mTN8-19-7(-LE) 1.75-2.677 mTN8-19-21(-LE) 2.49 mTN8-19-33(-LE) 1.808 2xmTN8-19-7 0.8572 -2.649 2xmTN8-19-9 1.316-1.228 2xmTN8-19-14 1.18-1.322 2xmTN8-19-16 0.9903 -1.451 2xmTN8-19-21 0.828 -1.434 2xmTN8-19-22 0.9937-1.22 2xmTN8-19-27 1.601-3.931 2xmTN8-19-7(-LE) 1.077-1.219 2xmTN8-19-2 1(-LE) 0.8827-1.254 2xmTN8-19-33(-LE) 1.12-1.033 mL2-7 90.24 mL2-9 105.5 mL15-7 32.75 mL15-9 354.2 mL20-2 122.6 mL20-3 157.9 mL20-4 160 107 WO 2007/067616 PCT/US2006/046546 Example 8 In vivo Anabolic Activity of Exemplary Peptibodies The CD 1 nu/nu mouse model (Charles River Laboratories, Massachusettes) was used to 5 determine the in vivo efficacy of the peptibodies of the present invention which included the human Fc region (huFc). This model responded to the inhibitors of the present invention with a rapid anabolic response which was associated with increased dry muscle mass and an increase in myofibrillar proteins but was not associated with accumulation in body water content. In one example, the efficacy of 1x peptibody mTN8-19-21 in vivo was demonstrated by 10 the following experiment. A group of 10 8 week old CDI nu/nu mice were treated twice weekly or once weekly with dosages of 1mg/kg, 3 mg/kg and 10 mg/kg (subcutaneous injection). The control group of 10 8 week old CDI nu/nu mice received a twice weekly (subcutaneous) injection of huFc (vehicle) at 10 mg/kg. The animals were weighed every other day and lean body mass determined by NMR on day 0 and day 13. The animals are then sacrified at day 14 15 and the size of the gastrocnemius muscle determined. The results are shown in Figures 2 and 3. Figure 2 shows the increase in total body weight of the mice over 14 days for the various dosages of peptibody compared with the control. As can be seen from Figure 2 all of the dosages have show an increase in body weight compared with the control, with all of the dosages showing statistically significant increases over the control by day 14. Figure 3 shows the change in lean 20 body mass on day 0 and day 13 as determined by nuclear magnetic resonance (NMR) imaging (EchoMRI 2003, Echo Medical Systems, Houston, Tx), as well as the change in weight of the gastrocnemius muscle dissected from the animals at day 14. In another example, the lx mTN8-19-32 peptibody was administered to CD1 nu/nu mice in a biweekly injection of 1 mg/kg, 3 mg/kg, 10 mg/kg, and 30 mg/kg compared with the huFc 25 control (vehicle). The peptibody- treated animals show an increase in total body weight (not shown) as well as lean body mass on day 13 compared with day 0 as determined by NMR measurement. The increase in lean body mass is shown in Figure 4. In another example, a 1x affinity-matured peptibody was compared with a 2x affinity matured peptibody for in vivo anabolic efficacy. CDI nu/nu male mice (10 animals per group) 30 were treated with twice weekly injections of 1 mg/kg and 3 mg/kg of Ix mTN8-19-7 and 2x mTN8-19-7 for 35 days, while the control group (10 animals) received twice weekly injections of huFc (3 mg/kg). As shown in Figure 5, treatment with the 2x peptibody resulted in a greater body weight gain and leans carcass weight at necropsy compared with the lx peptibody or control. 35 108 WO 2007/067616 PCT/US2006/046546 Example 9 Increase in muscular strength Normal age-matched male 4 month old male C57B11/6 mice were treated for 30 days with 2 injections per week subcutaneous injections 5 mg/kg per week of 2x mTN8-19-33, 2x mTN8 5 19-7, and huFc vehicle control group (10 animals/group). The animals were allowed to recover without any further injections. Gripping strength was measured on day 18 of the recovery period. Griping strength was measured using a Columbia Instruments meter, model 1027 dsm (Columbus, Ohio). Peptibody treatment resulted in significant increase in gripping strength, with 2x mTN8 19-33 pretreated animals showing a 14 % increase in gripping strength compared with the control 10 treated mice, while 2x mTN8 -19-7 showed a 15% increase in gripping strength compared with the control treated mice. Example 10 Pharmacokinetics 15 In vivo phamacokinetics experiments were performed using representative peptibodies without the LE sequences. 10 mg/kg and 5mg/kg dosages were administered to CD1 nu/nu mice and the following parameters determined: Cmax (ug/mL), area under the curve (AUC) (ug hr/mL), and half-life (hr). It was found that the 2x versions of the affinity matured peptibodies have a significantly longer half-life than the Ix versions. For example Ix affinity matured mTN8 20 19-22 has a half-life in the animals of about 50.2 hours, whereas 2x mTN8-19-22 has a half- life of about 85.2 hours. Affmity matured 1x mTN8-7 has a half-life of about 65 hours, whereas 2x mTN8-19-7 has a half-life of about 106 hours. Example 11 25 Treatment of mdx Mice The peptibodies of the present invention have been shown to increase lean muscle mass in an animal and are useful for the treatment of a variety of disorders which involve muscle wasting. Muscular dystrophy is one of those disorders. The mouse model for Duchenne's muscular dystrophy is the Duchenne mdx mouse (Jackson Laboratories, Bar Harbor, Maine). Aged (10 30 month old) mdx mice were injected with either the peptibody lx mTN8-19-33 (n=8/group) or with the vehicle huFc protein (N=6/group) for a three month period of time. The dosing schedule was every other day, 10 mg/kg, by subcutaneous injection. The peptibody treatment had a positive effect on increasing and maintaining body mass for the aged mdx mice. Significant increases in body weight were observed in the peptibody-treated group compared to the hu-Fc-treated control 35 group, as shown in Figure 6A. In addition, NMR analysis revealed that the lean body mass to fat 109 WO 2007/067616 PCT/US2006/046546 mass ratio was also significantly increased in the aged mdx mice as a result of the peptibody treatment compared with the control group, and that the fat percentage of body weight decreased in the peptibody treated mice compared with the control group, as shown in Figure 6B. 5 Example 12 Treatment of CIA Arthritis Mouse Model The collagen-induced arthritis mouse model is widely used as a model for rheumatoid arthritis. 8 week old DBA/1J mice (Jackson Labs, Bar Harbor, Maine) were immunized on day 1 and day 21 of the experiment with 100 ug bovine collagen II (Chrondex, Redmond, WA) at the 10 base of the tail to induce arthritis. Arthritic conditions of the mice were scored by joint and paw redness and/or swelling, and animals were selected on this basis. Three groups of animals were established: normal animals not receiving collagen (normal, 12 animals), animals receiving collagen plus a murine Fc vehicle (CIA/vehicle, 6 animals), and animals receiving collagen plus the peptibody 2x mTN8-19-21 attached to a marine Fc (2x mTN8-19-21/muFc, also referred to as 15 2x-21) (CIA/peptibody, 8 animals). The murine Fc used in these experiments and in the examples below is an Fc from a murine IgG. The CIA/vehicle animals and the CIA/peptibody animals, in addition to receving collagen on day I and day 21, were injected subcutaneously (s.c.) with 5mg/kg myostatin peptibody 2x mTN8-19-21/muFc or murine Fc vehicle alone twice a week begining on day 8 and continuing to day 50. The animals were weighed every four days. The 20 results are shown in Figure 7. Figure 7 shows an increase in body weight for CIA/peptibody (2x21) animals compared with CIA/vehicle animals who lost weight, indicating that myostatin antagonists including the peptibodies described herein can counteract the rheumatoid cachexia displayed in the control animals. 25 Example 13 Treatment of Orchietomized Mice The following example describes the treatment of orchietomized C57B1/6 mice with an exemplary peptibody. Two groups of age and weight matched six month old surgically orchiectomized C57B1/6 mice (Charles River Laboratories, Wilmington, MA) were treated with 30 either murine Fe, or with peptibody 2x mTN8-19-21/muFc (11 animals per group). The two groups of mice were injected IP with 3 mg/kg peptibody or murine Fc IP 2x per week. Treatment began 3 weeks after surgery and continued for 10 weeks. Nuclear magnetic resonance (NMR) imaging was performed on each live animal to assess lean mass at the beginning of the study, at 7 weeks and at 10 weeks. As can be seen in the table below, orchietomized mice treated with the 35 murine Fc are begining to lose lean mass by week 10. Comparison of the orchiectomized group 110 WO 2007/067616 PCT/US2006/046546 receiving the peptibody vs. the Fc vehicle indicated that the peptibody improved the gain of lean body weight in the orchietomized animals compared with animals treated with murine Fc. This result is shown in the Table below. group lean mass lean mass A mass lean A mass (g) day 0 (g) week 7 week 7 mass(g) week 10 week 10 orchiectomized mean wt. 23.8809 24.5691 0.6882 24.5009 0.6200 MuFc orchiectomized mean wt. 23.7840 1.7462 25.9473 25.9473 2.2318 2x mTN8-19 21/muFc 5 In addition, treatment of orchiectomized mice with the anti-myostatin peptibody did not result in an increase in testosterone levels. These results show that myostatin antagonists such as the peptibodies described herein can be used to treat androgen deprived states. 10 Example 14 Reduction of TNF-a levels Female BALB/c mice, 8-10 weeks, (Charles River Laboratories, Wilmington, MA) were pretreated with PBS control or 10 mg/kg of peptibody 2x TN8-19-21/muFc one day before the LPS challenge. There were 5 animals in each group. On day 1, LPS (lipopolysaccharide from 15 E.coli 055, B5 (Sigma) was administered intravenously at 0.5 mg/kg (10ug/mouse). Serum samples were collected 30 minutes after the LPS administration. mTNF-a (tumor necrosis factor a) levels were measured. The results showed that animals pretreated with the peptibody had reduced levels of mTNF-a in their blood. PBS treated animals averaged approximately 380 pg/mI of mTNF-a in their blood. Peptibody treated animals averaged only approximately 120 pg/ml 20 mTNF--a in their blood. This demonstrates that myostatin antagonists can reduce at least one cytokine responsible for inflammation, contributing to the antagonist's effectiveness in treating rheumatoid arthritis and other immune disorders. Example 15 25 STZ -Induced Model of Diabetes The purpose of the following experiments was to determine the effects of myostatin antagonists in the streptozotocin-induced (STZ) induced diabetic animal model. In addition, the 111 WO 2007/067616 PCT/US2006/046546 experiments were designed to determine if a myostatin antagonist will delay or prevent the progression or development of diabetic nephropathy. The peptibody used was 2x mTN8-19-21 attached to a murine Fe (2x mTN8-19-2l/muFc or 2x-21). The control vehicle was murine Fe alone. 5 Streptozotocin-induced diabetes: A diabetic animal model was created by multiple low dose streptozotocin injection. Eight week old C57B11/6 mice were purchased from Charles River Laboratory. All animals were hosted in individual cages for one week. The animal body weights were measured and then randomly divided into 2 groups (n=20/group). 20 mice were injected with low dose streptozotocin (STZ, 10 Sigma Co.) at 40 mg/kg (dissolved in 0.1 ml of citrate buffer solution) for 5 consecutive days. Another group of 20 mice was injected with vehicle (0.1 ml citrate buffer solution) for 5 consecutive days. The blood glucose levels were measured using glucose oxidase method (Glucometer Elite, Bayer Corp., Elkhart, IN). The induction of diabetes was defined by measurement of the blood glucose levels. The blood glucose levels over 11 mmol/L or 200 mg/dl 15 were considered as hyperglycemia. Then the diabetic and age-matched normal mice were maintained for another 4 months. The body weight, food intake and blood glucose levels were measured monthly. Four months after STZ injection, 16 out of 20 mice developed diabetes, and these were used in later studies. The diabetic mice were divided into two treatment groups according their body weight. The age-matched normal mice were also divided into two treatment 20 groups. Experimental Desian: Starting on day 0, both diabetic groups were subcutaneously injection with vehicle (mu Fc) or 2x mTN8-19-21 at 5 mg/kg, 3 times per week for 6 weeks. The body weight and food intake were measured 3 times per week. The non-diabetic mice, which had not been injected with 25 STZ were treated with vehicle (muFc) and at the same dose and same schedule for 6 weeks. The blood glucose levels were measured using glucose oxidase method at day 0, day 15, day 30, and at the end of the study. The design of the study is presented in the Table below. 112 WO 2007/067616 PCT/US2006/046546 Group Animal Animal N Treatment Dose Dosing Study No group No. (mg/kg) Schedule Duration I STZ-diabetes 1-8 8 2x mTN8-19- 5 3x/week 6 week 21/muFc 2 STZ-diabetes 9-18 8 Vehicle 5 3x/week 6 week (muFc) 3 Normal 19-24 8 2x mTN8-19- 5 3x/week 6 week 21/muFc 4 Normal 25-32 8 Vehicle 5 3x/week 6 week (muFc) To assess changes in lean and fat masses in the diabetic and age matched normal mice treated with 2x mTN8-19-21/muFc, the body composition was measured using Bruker Minispec NMR (Echo Medical Systems, Houston, TX) at the beginning (day 0), 2 weeks (day 15), 4 weeks 5 (day 30) and at the end of the study (day 45). At the end of the study (day 45), the mice were detained in individual metabolic cages for 24 hours for urine collection. The 24-h urine volume was measured gravimetrically, and urinary albumin concentration was determined with an enzyme-linked immunosorbent assay using a murine microalbumin-uria assay kit (Alpha Diagnostic, San Antonio, TX). 0 Renal function was evaluated by calculating creatinine clearance rate. The plasma and urinary creatinine levels were measured by an enzymatic method (CRE, Mizuho medy, Saga, Japan) using the autoanalyzer Hitachi 717 Clinical Chemistry Auto Analyzer (Boehringer Mannheim, Indianapolis, IN). The blood urea nitrogen levels were measured by using the autoanalyzer. 15 All animals were terminated upon completion of the study (day 46). Mice were euthanized in CO 2 chamber and cardiac blood samples were collected and whole body tissue dissection was performed. Serum samples and stored at - 80 "C for biochemistry analysis. Serum levels of blood glucose, blood urine nitrogen (BUN), creatinine levels were measured. Immediately following euthanization, the gastrocnemius muscle, and lean carcass mass were 20 removed and weighted. Half middle portion of right side kidney was fixed with isopentane NZ solution, and embedded in paraffin. The slices were stained with H&E and PSA (periodic acid Schiff) for analysis glomerular structures. The results were expressed as mean A standard error of the mean (SEM). Non-pair T-test was performed to determine statistical differences between groups. Statistical significant was 25 considered when p value less than 0.05. 113 WO 2007/067616 PCT/US2006/046546 Results: body weight and blood glucose changes in STZ induced diabetic mice Multiple low dose STZ injection on body weight and blood glucose of C57B1/6 mice resulted in STZ treated mice having significantly higher blood glucose levels than that the age matched normal mice group, the average of 20 animals beginning at normal levels of an average 5 of about 120 mg/dl average blood sugar for 20 animals, increasing to an average of about 250-280 mg/dl at week 2 after STZ injection, and up to between 350 mg/dl 8 to 18 weeks after injection. Statistically significant differences were found on body weight changes between STZ treated and control group throughout the 4 month period before starting the anti-myostatin peptibody treatment. The control group steadily gained body weight, averaging a weight gain of up to 40%' 10 over 20 weeks (average of 25 g increasing up to 34 or 35 grams after 20 weeks), whereas the STZ group gained little weight over the 20 week period, inceasing only about about 12 to 14% over 20 weeks (25 g to about 28 or 29 g after 20 weeks). The six week treatment with 2x mTN8-19-21/muFc and vehicle in STZ diabetic and age matched normal mice treatment for 6 weeks resulted in significantly increased body weight gain 15 in 2x-21 treated STZ diabetic mice compared to that of the vehicle treated diabetic group. Total body weight increased up to about 1.5 grams in addition for the STZ-treated mice receiving 2x-21 compared with the mice receiving the vehicle. The delta body weight are presented as the net changes in body weight after the 6 weeks treatment with 2x mTN8-19-21/muFc or vehicle compared to their respective day 0 baseline value. This is shown in Figure 8. The 6 weeks 20 treatment with 2x-21 significantly attenuated the body weight loss in diabetic animals. Body composition changes in STZ diabetic and age matched normal mice treated with 2x -21 The lean body mass are presented as the net changes in lean body mass after the 6 week treatment with 2x-21 or vehicle compared to their day 0 baseline values. These values are presented in the Table below. Treatment with 2x-21 significantly increase (p<0.05) the net gain 25 of lean body mass in both the STZ diabetic mice and age matched normal mice (6.16 Z0.81 g and 8.56 ±0.75 g) as compared to vehicle-treated control mice (0.94±1.94 g and 1.60 + 1.28 g). The % change of fat mass represent the net change after 6 week treatment with 2x-21 or vehicle compared to their baseline day 0 values in each group (see second Table below). The % of fat mass gain in STZ diabetic mice did not differ significantly between 2x-21 (-15.60 1 7.01) and 30 vehicle treated group (-21.59 A 6.84). 2x-21 treatment decreased net fat mass gain in age matched normal mice (- 1.53 ± 3.42 vs. 7.13 ± 3.38) but did not reach statistically significant amounts. 114 WO 2007/067616 PCT/US2006/046546 Table. Effect of 2X-21 on body lean mass in STZ-induced diabetic mice and age-matched normal mice (NMR measurement) Body ean Mass Treatment Baseline % Change Animal Sc. Injection (g) 5 mg/kg, DO D15 D30 D45 3/wk STZ-diabetic Mu-Fc 20.33 ± 0.33 (2.85 = 1.79) (2.50 ± 1.42) (0.94 : 1.93) mice 2x-21 20.16±0.26 (3.75±+1.34) (6.50+t (6.161 0.89)* 0.81)* Normal Mu-Fc 22.38-0.57 (1.82±1.18) (3.87L1.21) (1.60+1.28) C57BL/6 Mice ... 2x-21 21.82 t 0.42 (3.15 0.74) (7.60 i (8.56 h 1.05)* 0.75)* 5 Table. Effect of 2X-21 on body fat mass in STZ-induced diabetic mice and age-matched normal mice (NMR measurement) 10 Bo0dy F at Ma ss Treatment Baseline % Change Animal Sc. Injection (g) 5 mg/kg, DO D15 D30 D45 3/wk STZ-diabetic Mu-Fc 3.13 ±10.36 (-12.73 ± 7.66) (-16.61 : (-21.59± mice 6.16) 6.84) 2x-21 2.95 0.22 (-15. 43 ± 4.14) (-14.66±* (-15.60+ 6.83) 7.01) Normal Mu-Fc 8.43 - 0.54 (-4.76 1.10) (1.91 ±12.74) (7.13 ± 3.38) C57BL/6 Mice 2x-21 8.90 ±0.56 (-7.08 0.52) (-6.14 + (-1.53± 2.75) 3.42) Blood glucose changes in STZ diabetic and age matched normal mice treated with 2x -21 The Table below shows the effect of 2x mTN8-19-21/muFc on blood glucose changes in STZ diabetic and age matched normal mice. The blood glucose levels did not differ significantly 115 WO 2007/067616 PCT/US2006/046546 between the 2x-21 treated and the vehicle treated groups in either STZ diabetic mice or in the age matched normal mice. Table. Effect of 2X-21 on blood glucose level in STZ-induced diabetic mice and age-matched normal mice 5 Blood Glucose Treatment Baseline % Change Animal Sc. Injection (mg/dl) 5 mg/kg, DO D15 D30 3/wk STZ-diabetic Mu-Fc 430.50: (5.53 + 7.81) (9.44 7.51) mice 19.15 2x-21 425.63 1 (6.68 ± 2.26) (-3.70± 20.99 10.35) Normal Mu-Fc 123.50 (9.56 L 1.49) (7.46 J 5.80) C57BL/6 3.26 Mice 2x-21 122.88 ± (3.84 - 2.83) (6.20 L 2.52) _ 1_ 3.75 Kidney weight /body weight: The hyperglycemia in STZ diabetic mice appears to be associated with kidney hypertrophy. The kidney weight over body weight ratio of STZ diabetic mice was higher than 10 that in age matched normal mice (0.98 + 0.04 vs. 0.67 ± 0.02). 2x-21 treatment for 6 weeks significantly reduced the kidney/body weight ratio from 0.98 = 0. 04 to the value of 0.84 - 0.04 (p<0.05) in vehicle treated diabetic mice. Creatinine clearance rate There was a trend for diabetic mice to increase creatinine clearance rate compared to non 15 diabetic normal control mice (Figure 9). The average creatinine clearance rate of diabetic mice was more than two fold higher than the age matched normal mice. Treatment with 2x-21 decreased creatinine clearance rate in diabetic mice compared to vehicle treated diabetic mice as shown in Figure 9, indicating kidney function. 24-hour urine volume and urinary albumin excretion: 20 Urinary albumin excretion and 24-hour urine volume are very important biomarkers in determination of renal injury during the early stage of diabetic nephropathy. The results demonstrated that both urine albumin excretion (Figure IOA) and 24 hour urine volume were increased in STZ diabetic mice as compared to age matched normal mice. 2x-21 treatment decreased urine albumin levels in diabetic mice and also reduced the 24 hour urine volume 25 (Figure 10B). This demonstrated a normalization of kidney function. 116 WO 2007/067616 PCT/US2006/046546 Administration of myostatin peptibody 2x mTNF8-19-21/muFc significantly attenuated the body weight loss and preserved skeletal muscle mass and lean body mass in STZ-induced diabetic mice. In addition to an increase in skeletal muscle and lean mass, 2x mTN8-19-21/muFc attenuated kidney hypertrophy, the increase in creatinine clearance rate and reduced 24 hour urine 5 volume and urinary albumin excretion in STZ-induced diabetic mice. This shows improved kidney function in the early stage of development of diabetic nephropathy. Example 16 Effects of Myostatin Antagonist in a Murine Model of 5-Fluorouracil Chemotherapy 10 induced Cachexia The compound 5-fluorouracil (5-Fu) is commonly used as a therapeutic agent in patients with colorectal, breast, stomach or pancreatic cancer. A side effect of 5-Fu therapy is body weight loss and muscle atrophy. The potential therapeutic benefit of anti-myostatin antagonist 15 therapy in treating 5-Fu-induced cachexia was investigated. The peptibody used was 2x mTN8 19-21/muFc (also referred to as 2x-21) or 2x mTN8-19-21 attached to a murine Fc. The control vehicle was murine Fc alone. In this study, normal male C57B1/6 mice were divided into 4 groups (n = 24) and subjected to intraperitoneally (IP) administered 5-Fu (45 to 50 mg/kg) or vehicle phosphate 20 buffered solution (PBS) for 5 consecutive days (day 0 to day 4). Two groups were pretreated with 2x21, at 10 mg/kg twice weekly, starting at 2 weeks (day -13) or 1 week (day -6) before 5-Fu treatment began (on day 0), and continued after 5-Fu treatment to the end of the study on day 24. Body weight, lean body mass, and food intake were monitored twice per week or more frequently before and after 5-Fu therapy. Serum was collected at 0, 2, 24, 96, 168, 336 hours after last 25 dosing for terminal study. On day 0 and prior to 5-FU therapy, average body weight changes of the groups pretreated with 2x21 for 1 or 2 weeks were 12.6% and 13.9%, respectively, compared with 6.4% for the 5-Fu control group (both p <0.0001). This was paralleled with 14.7% and 16.2% increase in lean body mass in the groups pretreated for 1 or 2 weeks with peptibody compared with 7.4% 30 increase in the 5-Fu only group (p = 0.001 and p < 0.0001). On day 6 post 5-Fu dosing, the body weight changes of the I or 2 weeks 2x21 pretreated groups were -1.9% and -1.4% compared with -8.6% of 5-Fu only group (both p values were <0.0001); lean body mass changed to -1.3% and 0.9% compared to -8.8% of 5-FU only group (both p values <0.0001). On day 8 during recovery, body weight changes of the 1 or 2 weeks 2x21 pretreated groups significantly increased to 6.8% 117 WO 2007/067616 PCT/US2006/046546 and 8.5 %, respectively, compared with the 0.6% increase in the 5-Fu only group (p = 0.0006 and p < 0.0001). Similarly, lean body mass changed to 4.9% and 6.0% in the 1 or 2 weeks. 2x21 pretreated groups compared to -3.3% for the 5-Fu only group (p = 0.00 1 and p <0.000 1 respectively). The results are summarized in Figure 11. 5 From day 8 to day 24, almost all mice developed severe neutropenia and some mice died due to severe side effects. The survival rates for groups pretreated for 1 or 2 weeks with 2x21 prior to 5-Fu administration were 46%, compared to 13% survival rate for 5-Fu only group (p = 0.001 and p =0.009, respectively). The survival results are summarized in Figure 12. Statistical analysis using ANOVA repeat measurement methods indicated that groups 10 pretreated for I or 2 weeks with 2x21 peptibody prior to 5-Fu treatment, had significantly higher body weight and lean body mass throughout the course of the study, from day -13 to day 8, compared with the group treated with 5-Fu only (p values for both less than 0.0001). Results from this study demonstrated that pretreatment with anti-myostatin peptibody, 2x21, at 10 mg/kg twice weekly, for 1 or 2 weeks was effective in significantly ameliorating 5-Fu 15 induced body weight loss and muscle atrophy in C57B1/6 mice. In addition, pretreatment with the peptibody increased the survival rate and duration in response to the 5-Fu chemotherapy. Therefore, myostatin antagonists such as the myostatin binding agents of the present invention can be used prior to and during treatment with chemotherapeutics or other chemical agents to prevent or ameliorate chemical cachexia. 20 The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are invention. Indeed, various modifications of 25 the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims. 118
Claims (42)
1. A method of treating the effects of hypogonadism in a subject in need thereof comprising administering a therapeutically effective amount of a myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject.
2. The method of claim 1, wherein hypogonadism results from androgen deprivation therapy.
3. The method of claim 1, wherein hypogonadism results from age related decrease in gonadal functioning.
4. The method of claim 1, wherein the myostatin antagonist is selected from the group consisting of follistatin, myostatin prodomain, GDF-1 1 prodomain, prodomain fusion proteins, antagonistic antibodies or antibody fragments that bind myostatin, antagonistic antibodies or antibody fragments that bind to the activin type IIB receptor, soluble activin type IB receptor, soluble activin type IIB receptor fusion proteins, soluble myostatin analogs, oligonucleotides, small molecules, peptidomimetics, and myostatin binding agents.
5. The method of claim 1, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent comprises at least one peptide capable of binding myostatin, wherein the peptide comprises the sequence Cbib2bWMCPP (SEQ ID NO: 353), wherein b, is selected from any one of the amino acids T, I, or R; b 2 is selected from any one of R, S, Q; b 3 is selected from any one of P, R and Q, and wherein the peptide is between 10 and 50 amino acids in length, and physiologically acceptable salts thereof.
6. The method of claim 1, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent has the structure: (X')e-F'-(X 2 )b, or multimers thereof; wherein F' is a vehicle; and X' and X 2 are each independently selected from -(LI).- P'; -(L)c-P'-(L 2 )d _p 2 ; -(L')e-P'-(L 2)d_p2_ 31p3. 119 WO 2007/067616 PCT/US2006/046546 and -(L).4' (L 2 )d_p2_(L 3 ) _p 3 _(L 4 )p 4 ; wherein P', P 2 , P 3 , and P 4 are peptides capable of binding myostatin, and wherein L', L 2 , L, and L4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.
7. The method of claim 1, wherein the myostatin antagonist is a myostatin binding agents, wherein the binding agent has the structure: (X').-F'-(X2)b, or multimers thereof; wherein F' is a vehicle; and X' and X 2 are each independently selected from -(L').- P'; -(L')C-P'-(L2)d _p2; -(L')e-P'-(L 2 d_p2 3 3.3 and -(L').-P'-(L 2 )dp 2 (L 3 )e _p 3 _L 4 Xp 4 ; wherein P', P 2 , p 3 , and P 4 are peptides capable of binding myostatin, and are independently selected from SEQ ID NO: 305 through 351 and SEQ ID NO: 357 through 454; wherein L', L 2 , L 3 , and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.
8. A method of treating cachexia due to rheumatoid arthritis in a subject in need thereof comprising administering a therapeutically effective amount of a myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject.
9. The method of claim 8, wherein the myostatin antagonist is selected from the group consisting of follistatin, myostatin prodomain, GDF-1 1 prodomain, prodomain fusion proteins, antagonistic antibodies or antibody fragments that bind myostatin, antagonistic antibodies or antibody fragments that bind to the activin type IIB receptor, soluble activin type IIB receptor, soluble activin type IIB receptor fusion proteins, soluble myostatin analogs, oligonucleotides, small molecules, peptidomimetics, and myostatin binding agents.
10. The method of claim 8, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent comprises at least one peptide capable of binding myostatin, wherein the peptide comprises the sequence.CbIb2Wb 3 WMCPP (SEQ ID NO: 353), wherein bi is selected from any one of the amino acids T, I, or R; b 2 is selected from any one of R, S, Q; b 3 is selected from any one of P, R and Q, 120 WO 2007/067616 PCT/US2006/046546 and wherein the peptide is between 10 and 50 amino acids in length, and physiologically acceptable salts thereof.
11. The method of claim 8, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent has the structure: (X')a-F'-(X 2 )b, or multimers thereof; wherein F 1 is a vehicle; and X1 and X 2 are each independently selected from -(L')- P'; -(L')c-P'-(L 2 )d _p2; -(L').-P'-(L2)dp2_( 3 .p3; and -(L')-P'-()d_p2_(L 3 )e -P 3 L 4 )rP 4 ; wherein P', P 2 , P 3 , and P 4 are peptides capable of binding myostatin, and wherein L 1, L2, L 3 , and L4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.
12. The method of claim 8, wherein the myostatin antagonist is a myostatin binding agents, wherein the binding agent has the structure: (X')a-F'-(X 2 )b, or multimers thereof; wherein F 1 is a vehicle; and X' and X 2 are each independently selected from -(L')e- P'; -(Ll)c-P'-(L 2 )_p2; -(Ll)e-Pl-(L2 )dp2_ 3 cp3. and -(L').-P'-(L 2 )d-P 2 _(L 3 ). p-(L 4 ) p4; wherein P 1 , P 2 p 3 , and P 4 are peptides capable of binding myostatin, and are independently selected from SEQ ID NO: 305 through 351 and SEQ ID NO: 357 through 454; wherein L!, L2, L 3 , and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.
13. A method of treating the effects of Prader-Willi syndrome in a subject afflicted with such a condition, comprising administering a therapeutically effective amount of a myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject.
14. The method of claim 13, wherein the myostatin antagonist is selected from the group consisting of follistatin, myostatin prodomain, GDF- I1 prodomain, prodomain fusion proteins, 121 WO 2007/067616 PCT/US2006/046546 antagonistic antibodies or antibody fragments that bind myostatin, antagonistic antibodies or antibody fragments that bind to the activin type IIB receptor, soluble activin type IIB receptor, soluble activin type IIB receptor fusion proteins, soluble myostatin analogs, oligonucleotides, small molecules, peptidomimetics, and myostatin binding agents
15. The method of claim 13, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent comprises at least one peptide capable of binding myostatin, wherein the peptide comprises the sequenceCbibYb 3 WMCPP (SEQ ID NO: 353), wherein b, is selected from any one of the amino acids T, I, or R; b 2 is selected from any one of R, S, Q; b 3 is selected from any one of P, R and Q, and wherein the peptide is between 10 and 50 amino acids in length, and physiologically acceptable salts thereof.
16. The method of claim 13, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent has the structure: (X')a-F'-(X 2 )b, or multimers thereof; wherein F' is a vehicle; and X and X 2 are each independently selected from -(L')c- P'; -(Ll)c-P'-(L2)d _p2. -(L')c-P'-(L 2 )d_p2_L 3 )p 3 ; and -(L')r-P'-(L 2 )d_p2p(Ls)e _p 3 L 4 )p 4 ; wherein P', P 2 , p 3 , and P 4 are peptides capable of binding myostatin; wherein L', L 2 , L 3 , and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.
17. The method of claim 13, wherein the myostatin antagonist is a myostatin binding agents, wherein the binding agent has the structure: (XI)a-F'-(X2)b, or multimers thereof; wherein F' is a vehicle; and X and X 2 are each independently selected from -(L')c- P'; -(L')c-P'-(L 2 )p 2 ; -(Li _-P'-(L2)dp2_ L3 _p3. and -(L')c-P'-(L 2 )d_p2_l 3 ) -P 3 -(L 4 ) fP 4 ; wherein P' , p2 p3, and P 4 are peptides capable of binding myostatin, and are independently selected from SEQ ID NO: 305 through 351 and SEQ ID NO: 357 through 454; 122 WO 2007/067616 PCT/US2006/046546 wherein L', L 2 , L 3 , and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.
18. A method of treating cachexia due to bum injuries in a subject in need thereof comprising administering a therapeutically effective amount of a myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject.
19. The method of claim 18, wherein the myostatin antagonist is selected from the group consisting of follistatin, myostatin prodomain, GDF-1 1 prodomain, prodomain fusion proteins, antagonistic antibodies or antibody fragments that bind myostatin, antagonistic antibodies or antibody fragments that bind to the activin type IIB receptor, soluble activin type IIB receptor, soluble activin type IIB receptor fusion proteins, soluble myostatin analogs, oligonucleotides, small molecules, peptidomimetics, and myostatin binding agents
20. The method of claim 18, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent comprises at least one peptide capable of binding myostatin, wherein the peptide comprises the sequence CbIb 2 Yb 3 WMCPP (SEQ ID NO: 353), wherein b, is selected from any one of the amino acids T, I, or R; b 2 is selected from any one of R, S, Q; b 3 is selected from any one of P, R and Q, and wherein the peptide is between 10 and 50 amino acids in length, and physiologically acceptable salts thereof.
21. The method of claim 18, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent has the structure: (X')a-F' -(X 2 )b, or multimers thereof; wherein F 1 is a vehicle; and X' and X 2 are each independently selected from -(L').- P'; -(L'),,-P'-(L 2)d _p2. -(L').-P'-(L2 d_p2_ 3 ._p3. and -(L')e-P'-(L 2 )d_p 2 (L 3 ). -p3_(L 4 )i-p 4 ; wherein P', P 2 , p 3 , and P 4 are peptides capable of binding myostatin; wherein L', L 2 , L3, and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof. 123 WO 2007/067616 PCT/US2006/046546
22. The method of claim 18, wherein the myostatin antagonist is a myostatin binding agents, wherein the binding agent has the structure: (X')a-F'-(X 2 )b. or multimers thereof; wherein F' is a vehicle; and X' and X 2 are each independently selected from -(L')e- P'; -(L').-P'-(L 2 )_p2. -(L'),-P'-(L 2 d_p2_ 3 p3. and -(L')e-P'-(L 2 )d-P 2 -(L 3)V _p 3 (L 4 )rP 4 ; wherein P', p 2 , p 3 , and P 4 are peptides capable of binding myostatin, and are independently selected from SEQ ID NO: 305 through 351 and SEQ ID NO: 357 through 454; wherein L', L 2 , L, and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.
23. A method of treating cachexia due to diabetes in a subject in need thereof comprising administering a therapeutically effective amount of a myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject.
24. The method of claim 23, wherein the myostatin antagonist is selected from the group consisting of follistatin, myostatin prodomain, GDF-l 1 prodomain, prodomain fusion proteins, antagonistic antibodies or antibody fragments that bind myostatin, antagonistic antibodies or antibody fragments that bind to the activin type IIB receptor, soluble activin type IIB receptor, soluble activin type IIB receptor fusion proteins, soluble myostatin analogs, oligonucleotides, small molecules, peptidomimetics, and myostatin binding agents
25. The method of claim 23, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent comprises at least one peptide capable of binding myostatin, wherein the peptide comprises the sequenceCblb2Wb 3 WMCPP (SEQ ID NO: 353), wherein b, is selected from any one of the amino acids T, I, or R; b 2 is selected from any one of R, S, Q; b 3 is selected from any one of P, R and Q, and wherein the peptide is between 10 and 50 amino acids in length, and physiologically acceptable salts thereof.
26. The method of claim 23, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent has the structure: 124 WO 2007/067616 PCT/US2006/046546 (XI)a-Fl-(X 2 )b, or multimers thereof; wherein F' is a vehicle; and X' and X 2 are each independently selected from -(L')e- P'; -(L')e-P'-(L 2 )_p2; -(Ll)c-P'-(L 2 )p2 (3) _p3. and -(L').-P' -(L 2 )d-P 2 _(L 3 ). _p 3 ( 4 )rp 4 ; wherein P', P 2 , p 3 , and P 4 are peptides capable of binding myostatin; wherein L', L 2 , LV, and L4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.
27. The method of claim 23, wherein the myostatin antagonist is a myostatin binding agents, wherein the binding agent has the structure: (X')a-F'-(X 2 )b, or multimers thereof; wherein F1 is a vehicle; and X1 and X 2 are each independently selected from -(L').- P'; -(L')e-P'-(L 2 )_p2; -(L' )e-Pl-(L2 )dp2_(L3. _p3; and -(L')-P'-(L 2 )dp 2 L) -P 3 -(L 4 ) fp 4 ; wherein P', P 2 , p 3 , and P 4 are peptides capable of binding myostatin, and are independently selected from SEQ ID NO: 305 through 351 and SEQ ID NO: 357 through 454; wherein L', L 2 , L 3 , and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.
28. A method of treating diabetic nephropathy in a subject in need thereof comprising administering a therapeutically effective amount of a myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject.
29. The method of claim 28, wherein the myostatin antagonist is selected from the group consisting of follistatin, myostatin prodomain, GDF-1 1 prodomain, prodomain fusion proteins, antagonistic antibodies or antibody fragments that bind myostatin, antagonistic antibodies or antibody fragments that bind to the activin type IIB receptor, soluble activin type IIB receptor, soluble activin type IIB receptor fusion proteins, soluble myostatin analogs, oligonucleotides, small molecules, peptidomimetics, and myostatin binding agents. 125 WO 2007/067616 PCT/US2006/046546
30. The method of claim 28, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent comprises at least one peptide capable of binding myostatin, wherein the peptide comprises the sequence Cblb2Yb 3 WMCPP (SEQ ID NO: 353), wherein b, is selected from any one of the amino acids T, I, or R; b 2 is selected from any one of R, S, Q; b 3 is selected from any one of P, R and Q, and wherein the peptide is between 10 and 50 amino acids in length, and physiologically acceptable salts thereof.
31. The method of claim 28, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent has the structure: (X')a-F' -(X 2 )b, or multimers thereof; wherein F' is a vehicle; and X1 and X 2 are each independently selected from -(L').- P'; -(L') -P'-(L 2)d _p2. -(L')e-P' -(L2 )d_p2_ L3 .3; and -(L')c-P'-( L 2 d_p2_L 3 )e _p 3 _(L 4 )fF 4 ; wherein Pl 2 , P 3 , and P 4 are peptides capable of binding myostatin; wherein L', L 2 , L 3 , and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.
32. The method of claim 28, wherein the myostatin antagonist is a myostatin binding agents, wherein the binding agent has the structure: (X')a-F'-(X 2 ). or multimers thereof; wherein F1 is a vehicle; and X' and X 2 are each independently selected from -(L').- P'; -(L').-P'-(L2)d _p2. -(' _-'(L23 p2 3)e_p3. and -(L')c-P'-(L 2 )dp 2 _La)e P 3 (L 4 )P 4 wherein P', P 2 , p3, and P 4 are peptides capable of binding myostatin, and are independently selected from SEQ ID NO: 305 through 351 and SEQ ID NO: 357 through 454; wherein L', L 2 , L, and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof. 126 WO 2007/067616 PCT/US2006/046546
33. A method of treating cachexia due to treatment with a chemotherapeutic agent in a subject in need thereof comprising administering a therapeutically effective amount of a myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject.
34. The method of claim 33, wherein the myostatin antagonist is selected from the group consisting of follistatin, myostatin prodomain, GDF-1 I prodomain, prodomain fusion proteins, antagonistic antibodies or antibody fragments that bind myostatin, antagonistic antibodies or antibody fragments that bind to the activin type IB receptor, soluble activin type IIB receptor, soluble activin type II3 receptor fusion proteins, soluble myostatin analogs, oligonucleotides, small molecules, peptidomimetics, and myostatin binding agents.
35. The method of claim 33, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent comprises at least one peptide capable of binding myostatin, wherein the peptide comprises the sequenceCbb2Wb 3 WMCPP (SEQ ID NO: 353), wherein b, is selected from any one of the amino acids T, I, or R; b 2 is selected from any one of R, S, Q; b 3 is selected from any one of P, R and Q, and wherein the peptide is between 10 and 50 amino acids in length, and physiologically acceptable salts thereof.
36. The method of claim 33, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent has the structure: (X')aF'-(X 2 )b. or multimers thereof; wherein F' is a vehicle; and X1 and X 2 are each independently selected from -(L'),- P'; -(L'))-P'-(L 2 )d _P2; -(L').-P'-(L2)d p2_L p3 and -(L2),-P'-(L2 )dp2_ L3) _p3_ 4 rp4. wherein P', P 2 , p 3 , and P 4 are peptides capable of binding myostatin; wherein L', L 2 , L 3 , and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.
37. The method of claim 33, wherein the myostatin antagonist is a myostatin binding agents, wherein the binding agent has the structure: (X')aF'-(X 2 )b, or multimers thereof; 127 WO 2007/067616 PCT/US2006/046546 wherein F' is a vehicle; and X' and X 2 are each independently selected from -(L').- P'; -(L')c--P'-(L2)d _p2. -(Ll)c-P'-(L 2 )_p2-(L3).-P3; and -(L').-P' -(L 2 )d_p2-(L 3 ). -P 3 -(L 4 )P 4 ; wherein P', P 2 , P 3 , and P 4 are peptides capable of binding myostatin, and are independently selected from SEQ ID NO: 305 through 351 and SEQ ID NO: 357 through 454; wherein L', L 2 , L 3 , and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.
38. A method of treating excessive TNF-a in a subject suffering from an inflammatory condition comprising administering a therapeutically effective amount of a myostatin antagonist in admixture with a pharmaceutically acceptable carrier to the subject.
39. The method of claim 38, wherein the myostatin antagonist is selected from the group consisting of follistatin, myostatin prodomain, GDF- 11 prodomain, prodomain fusion proteins, antagonistic antibodies or antibody fragments that bind myostatin, antagonistic antibodies or antibody fragments that bind to the activin type IIB receptor, soluble activin type IIB receptor, soluble activin type IIB receptor fusion proteins, soluble myostatin analogs, oligonucleotides, small molecules, peptidomimetics, and myostatin binding agents.
40. The method of claim 38, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent comprises at least one peptide capable of binding myostatin, wherein the peptide comprises the sequenceCb,b 2 yb 3 WMCPP (SEQ ID NO: 353), wherein b, is selected from any one of the amino acids T, I, or R; b 2 is selected from any one of R, S, Q; b 3 is selected from any one of P, R and Q, and wherein the peptide is between 10 and 50 amino acids in length, and physiologically acceptable salts thereof.
41. The method of claim 38, wherein the myostatin antagonist is a myostatin binding agent, and wherein the agent has the structure: (X')a-F'-(X 2 )b, or multimers thereof; wherein F' is a vehicle; and X' and X 2 are each independently selected from 128 WO 2007/067616 PCT/US2006/046546 -(L').- P'; -(L').-P'-(L2) _p2. -(L')c-P'-(L2)dp2 -L3 e_p3. and -(L').-P' (L 2 )dp 2 (L 3 ). -P 3 -(L 4 )r-P 4 ; wherein P', p 2 , p3, and P 4 are peptides capable of binding myostatin; wherein L', L 2 , L 3 , and L 4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.
42. The method of claim 38, wherein the myostatin antagonist is a myostatin binding agents, wherein the binding agent has the structure: (X')aF'-(X 2 )b, or multimers thereof; wherein F1 is a vehicle; and X' and X 2 are each independently selected from -(L')c- P'; -(L')e-P1-(L2d _p2. -(L').-P'-(L 2 )dP 2 _L 3 _p 3 ; and -(L')c-P'-(L 2 )d_p2 -(L 3 )e _p3_(L 4 )p 4 ; wherein Pl, p 2 , p 3 , and P 4 are peptides capable of binding myostatin, and are independently selected from SEQ ID NO: 305 through 351 and SEQ ID NO: 357 through 454; wherein L', L 2 , L 3 , and L4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof. 129
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2013213714A AU2013213714A1 (en) | 2005-12-06 | 2013-08-08 | Uses of myostatin antagonists |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60/742,731 | 2005-12-06 | ||
AU2010214673A AU2010214673B2 (en) | 2005-12-06 | 2010-08-26 | Uses of myostatin antagonists |
AU2013213714A AU2013213714A1 (en) | 2005-12-06 | 2013-08-08 | Uses of myostatin antagonists |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2010214673A Division AU2010214673B2 (en) | 2005-12-06 | 2010-08-26 | Uses of myostatin antagonists |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2013213714A1 true AU2013213714A1 (en) | 2013-08-22 |
Family
ID=48986449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2013213714A Abandoned AU2013213714A1 (en) | 2005-12-06 | 2013-08-08 | Uses of myostatin antagonists |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2013213714A1 (en) |
-
2013
- 2013-08-08 AU AU2013213714A patent/AU2013213714A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006321906C1 (en) | Uses of myostatin antagonists | |
US8920798B2 (en) | Myostatin binding agents, nucleic acids encoding the same, and methods of treatment | |
US20160038588A1 (en) | Myostatin Antagonism in Human Subjects | |
AU2013216655B2 (en) | Binding agents which inhibit myostatin | |
AU2013213714A1 (en) | Uses of myostatin antagonists | |
AU2016202981A1 (en) | Binding agents which inhibit myostatin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK5 | Application lapsed section 142(2)(e) - patent request and compl. specification not accepted |