AU2013212140A1 - Systems, methods, and devices for monitoring wellbore conditions - Google Patents
Systems, methods, and devices for monitoring wellbore conditions Download PDFInfo
- Publication number
- AU2013212140A1 AU2013212140A1 AU2013212140A AU2013212140A AU2013212140A1 AU 2013212140 A1 AU2013212140 A1 AU 2013212140A1 AU 2013212140 A AU2013212140 A AU 2013212140A AU 2013212140 A AU2013212140 A AU 2013212140A AU 2013212140 A1 AU2013212140 A1 AU 2013212140A1
- Authority
- AU
- Australia
- Prior art keywords
- flow device
- wellbore
- communications
- flow
- target device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000012544 monitoring process Methods 0.000 title claims abstract description 20
- 238000004891 communication Methods 0.000 claims abstract description 111
- 238000012545 processing Methods 0.000 claims description 24
- 238000003860 storage Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 description 15
- 230000015654 memory Effects 0.000 description 12
- 239000012530 fluid Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 238000005553 drilling Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- 230000012447 hatching Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/138—Devices entrained in the flow of well-bore fluid for transmitting data, control or actuation signals
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/14—Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
- E21B34/142—Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools unsupported or free-falling elements, e.g. balls, plugs, darts or pistons
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geophysics (AREA)
- Remote Sensing (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Traffic Control Systems (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
A method includes releasing a flow device into a wellbore to travel towards a target device that is positioned in the wellbore and that is actuated by the flow device, monitoring for communications transmitted by the flow device. The method further includes identifying a condition of the wellbore from the communications.
Description
WO 2013/112674 PCT/US2013/022875 SYSTEMS, METHODS, AND DEVICES FOR MONITORING WELLBORE CONDITIONS Cross-Reference to Related Applications [0001] This application claims priority to U.S. Provisional Patent Application No. 61/590,483 filed January 25, 2012, the disclosure of which is incorporated by reference herein in its entirety. Technical Field [0002] Aspects of the disclosure are related to the exploration and production of natural resources, and in particular, to technology for monitoring the condition of wellbore environments. Background [0003] In the field of oil and gas exploration and production, wellbore environments can be enhanced with specialized monitoring and communication technologies. Often referred to as smart wells, these environments are equipped with sensor networks and other monitoring equipment that provide above-ground operators with a detailed view of the well, which improves operating conditions and results. [00041 In many examples, well conditions are reported to the surface by way of communication cabling installed along the drill string. Conditions are monitored using a variety of equipment located in the wellbore, such as near field communications components that detect the presence or absence of downhole tools. For instance, a near-field tag may be applied to a piece of equipment that, as the equipment is positioned in the well, interacts with near-field sensors to report the position of the equipment.
I
WO 2013/112674 PCT/US2013/022875 [00051 These and other examples present attempt to address the difficult operating conditions found within a wellbore. The sheer depth of a well and the characteristics of the geology surrounding the well can make communicating with downhole elements challenging. In addition, the expense of outfitting a smart well can be prohibitive relative to the associated benefits. 2 WO 2013/112674 PCT/US2013/022875 SUMMARY [0006] Implementations are directed to systems, devices, methods, and software that enhance the monitoring of wellbore environments and their operation. According to implementations, a method can include releasing a flow device into a wellbore to travel towards a target device that is positioned in the wellbore and that is actuated by the flow device, monitoring for communications transmitted by the flow device, and identifying a condition of the wellbore from the communications. [0007] Additionally, according to implementations, a flow device for deployment in a wellbore environment can include a spherical shell encasing components, such as a sensor, a processing system, and an interface system. The sensor can detect at least one characteristic of the wellbore environment. The processing system generates communications based on the characteristic, and the interface system transmits the communications. [0008] Further, according to implementations, a system for monitoring a wellbore environment can include a device release assembly configured to release a flow device into a wellbore to travel towards a target device positioned in the wellbore and actuated by the flow device. The system can also include a wellbore communication system configured to monitor for communications transmitted by the flow device and identifying a condition of the wellbore from the communications. [0009] In implementations, the condition can comprise a level of obstruction of the wellbore derived from a location of the flow device indicated by the communications. In implementations, the flow device senses characteristics of the wellbore and generates the connunications based on the characteristics. Transmitting the communications can comprise transmitting the communications while traveling towards the target device. In 3 WO 2013/112674 PCT/US2013/022875 implementations, subsequent communications can be transmitted by the flow device indicative of the flow device having arrived at the target device. [00101 In implementations, the flow device can comprise a drop ball, the target device comprises a valve, including a landing and a valve seat. In implementations, the target device can comprise a down hole tool and seating the drop ball against the landing allows an application of hydraulic pressure to the down hole tool. [0011] This Summary is provided to introduce a selection of concepts in a simplified form that are further described below. It should be understood that this Summary is not intended to limit the scope of the claims. 4 WO 2013/112674 PCT/US2013/022875 BRIEF DESCRIPTION OF THE DRAWINGS [0012] Various features of the implementations can be more fully appreciated, as the same become better understood with reference to the following detailed description of the implementations when considered in connection with the accompanying figures, in which: [00131 Figure 1 is a diagram that illustrates an example of wellbore environment, according to various implementations; [0014] Figure 2 is a flow diagram that illustrates examples of processes related to wellbore operations, according to various implementations; [0015] Figure 3A is a diagram that illustrates another example of a wellbore environment, according to various implementations; [0016] Figure 3B is a diagram that illustrates an example of a wellbore communication system, according to various implementations; [0017] Figure 4 is a diagram that illustrates another example of a wellbore environment, according to various implementations; and [0018] Figure 5 is a diagram that illustrates another example of a wellbore environment, according to various implementations. 5 WO 2013/112674 PCT/US2013/022875 DETAILED DESCRIPTION [0019] For simplicity and illustrative purposes, the principles of the present teachings are described by referring mainly to examples of various implementations thereof. However, one of ordinary skill in the art would readily recognize that the same principles are equally applicable to, and can be implemented in, all types of information and systems, and that any such variations do not depart from the true spirit and scope of the present teachings. Moreover, in the following detailed description, references are made to the accompanying figures, which illustrate specific examples of various implementations. Electrical, mechanical, logical and structural changes can be made to the examples of the various implementations without departing from the spirit and scope of the present teachings. The following detailed description is, therefore, not to be taken in a limiting sense and the scope of the present teachings is defined by the appended claims and their equivalents. [0020] Various implementations described herein allow operators to release flow devices into wellbore environments. The flow devices can provide a dual purpose: both to actuate a downhole tool, but also to provide useful communications from which the condition of the wellbore can be determined. The flow devices and processes associated with the flow devices can provide a cost effective way in which the operation and monitoring of wellbore environments can be improved. [0021] In an example, a drop ball with integrated communication capability can released into a wellbore and flow towards a target device positioned in the well, such as a valve or a tool. The valve or tool can include a seat against which the drop ball can be positioned to actuate the valve or tool. Normally, an operator must wait an extended period of time before applying pressure to actuate the device to ensure that the drop ball has arrived at the target device so as to avoid shearing the seat due to the momentum of the pumping fluid. In this example, the operator can monitor the location of the drop ball and commence 6 WO 2013/112674 PCT/US2013/022875 pumping upon its arrival at the target device with less delay than what was previously incurred. In addition to monitoring the location of the drop ball, other wellbore conditions can be monitored, such as the level of obstruction within drill pipe. Thus, not only will the operator save valuable time, but the productivity and safety of the wellbore environment will be improved with the increased visibility into wellbore conditions. [0022] Figure 1 illustrates an example of a wellbore environment 100, according to various implementations. While Figure 1 illustrates various components contained in the wellbore environment 100, Figure 1 illustrates one example of a wellbore environment and additional components can be added and existing components can be removed. [0023] As illustrated, the wellbore environment 100 can include a drill pipe 101 extending through a wellbore 103 formed by rock and other surrounding geology 105. It should be understood that a single drill pipe, the drill pipe 101, is shown for purposes of simplicity and clarity even though additional piping is possible and indeed likely. It should also be understood that the drill pipe 101 can be replaced with other kinds of drill string equipment or tubing during drilling, completion, or production periods, or can be referred to by other names. Likewise, it should be understood that other layers and components can exist between the drill pipe 101 and the wellbore 103, such as cement and other elements that can make up the drill string, but are not shown for purposes of clarity. Regardless, implementations described herein are applicable to any kind of tubing that may be deployed in a wellbore environment during any stage of the life of a well. [0024] A target device 107 can be placed within the drill pipe 101. The target device 107 can include a landing 109 or other such instrument that, when engaged by a flow device 11, actuates the target device 107. Examples of the target device 107 can include valves and downhole tools, such as stabilizer, shock, and sledgehammer tools. The flow device 1 1 1 can be released into the drill pipe 101 and the wellbore 103 by a device release WO 2013/112674 PCT/US2013/022875 assembly (D.R.A.) 102. In an example, the flow device 111 can be a drop ball. However, other types of flow devices are possible, such as a dart, cone, sphere, cylinder, or other shaped devices. [0025] The wellbore environment 100 can also include a wellbore communication system 113. The wellbore communication system 113 can be capable of monitoring for communications transmitted by the flow device 11I as the flow device Ill moves towards the target device 107. These communications can provide indications of the progress made by the flow device 111 towards the target device 107 from which the location of the flow device 11I can be derived. Additionally, the communications from the flow device 111 can indicate in-depth information about the condition of the wellbore 103. For instance, the communications can contain data related to the temperature of fluid in the drill pipe 101, the viscosity of the fluid, or the movement of flow device II, itself (such as acceleration). Any number of characteristics of the wellbore 103 can be monitored by the flow device 111 and communicated to the wellbore communication system 113. [0026] The flow device 11I can communicate with the wellbore communication system 113 in a number of ways in order to transfer the characteristics of the wellbore 103 for processing and monitoring. For instance, the flow device 111 can communicate with the well communication system 113 by way of a communication network deployed along the drill string, for example, the drill pipe 101 and other components. Likewise, the flow device 111 can contain equipment sufficient enough to allow for direct communication between the flow device 111 and the wellbore communication system 113. It should be understood that many communication methods and modes are contemplated herein, as will be discussed in more detail below with respect to Figure 3A, Figure 4, and Figure 5. [0027] Figure 2 illustrates an example of a process 200 of operation of the wellbore environment 100, according to various implementations. The illustrated stages of the process 8 WO 2013/112674 PCT/US2013/022875 are examples and that any of the illustrated stages can be removed, additional stages can be added. and the order of the illustrated stages can be changed. Additionally, the following discussion references both the steps outlined by the process 200, but also the time sequence noted in Figure 1. It should be understood that the process 200 can be implemented by a variety of equipment deployed in the wellbore environment 100 and operated in a distributed manner. Likewise, the process 200 can be implemented in a single, stand-alone piece of equipment capable of performing the stages of the process 200. [0028] Referring to Figures 1 and 2, in 201, the D.R.A. 102 can release the flow device 111 into the wellbore 103 at time T]. At time T 2 after the flow device 111 has been released into wellbore 103, the flow device 111 proceeds to drop towards the target device 107 and transmits communications along the way. Communicating can occur continuously or periodically, or can occur at discrete intervals triggered by the proximity of the flow device 1 to another communication element. In addition, the flow device III can hold off with any communicating until it arrives at the target device 107. At that time, the flow device 11 can communicate its arrival, but withhold any other information or communications for later retrieval and processing at the surface. [0029] In 203, at time T 3 , the wellbore communication system 113 can monitor for the communications as the flow device 111 drops towards the target device 107. The flow device 111 can transmit the communications in a variety of forms, including wireless (e.g., radio frequency (RF) signals)., sound., pressure waves, electromagnetic signaling, or the like. The communications can be generated and transmitted in an active manner, but can also be considered passive communications, such as the case with some near-field communication technologies. [00301 In 205, upon receiving the communications, the wellbore communication system 113 can identify a condition of the wellbore 103 from the communications. For 9 WO 2013/112674 PCT/US2013/022875 instance, the wellbore communication system 113 can interpret the speed with which the flow device 111 reached the target device 107 as indicative of the level of obstruction of the drill pipe 101, or the viscosity of any fluid contained within the drill pipe 101. At time T 4 , the flow device 111 can eventually reach the target device 107 and actuates it by way of the landing 109. The arrival of the flow device Ill can cause actuation of the target device 107. Likewise, actuating the target device 107 can require steps other than the arrival of flow device 111. For instance, pumping can be required to seat the flow device I1I tightly against the landing 109. In some cases, this can actuate the target device 107 for its intended purpose, but in many cases the seating of the flow device Ill at landing 109 can trigger other elements, such as hydraulic pumps, that physically actuate the valves or tools represented by the target device 107. [0031] Figures 3A and 3B illustrate another example of a wellbore environment 300, according to various implementations. While Figures 3A and 3B illustrate various components contained in the wellbore environment 300, Figures 3A and 3B illustrate one example of a wellbore environment and additional components can be added and existing components can be removed. [0032] As illustrated in Figure 3A, the wellbore environment 300 can include a drill pipe 301 positioned within a wellbore 303. The wellbore 303 can be formed by geology 305 through which the wellbore 303 is drilled. As mentioned above with reference to Figure 1, the drill pipe 301 can include more than the single pipe depicted in Figure 3A. Likewise, the implementations described herein can be applied to tubing other than just drill pipe, such as any piping used in drilling, completion, or production stages. A target device 307 can be positioned within the drill pipe 301. The target device 307 can include a landing 309 against which the flow device 311 can be seated in order to actuate the target device 307. The flow 10 WO 2013/112674 PCT/US2013/022875 device 311 can transmit communications to a wellbore communication system (W.C.S.) 313 by way of nodes N 1 , N 2 , and N 3 as it flows towards the target device 307. [00331 Figure 3A also illustrates one example of a sequence of events for the operation of the wellbore environment 300. As indicated, at time T 1 , the flow device 3 11 has entered the drill pipe 301 and passed node N 1 as it flows towards target device 307. The flow device 3 11 can transmit communications that are detected by node N 1 as the flow device 311 passes by node N,. Node N1 can then relay those or other communications derived from them to the W.C.S. 313 by way of a communication network. [0034] Later at time T 2 , the flow device 311 has reached node N 2 . As with node N 1 , node N2 can detect communications transmitted by the flow device 311 and can relay those or other communications derived from them to the W.C.S. 313. Finally, flow device 311 nears node N3. Node N3 can detect and relay the communications, transmitted by flow device 311 as it flows towards target device 307, to the W.C.S. 313. The W.C.S. 313 can process the communications to determine the condition of the wellbore 303. [0035] For instance, the communications can contain information related to the temperature, pressure, viscosity, or obstniction levels of fluid contained within the drill pipe 301. These characteristics can be detected or sensed by the flow device 311 as it progresses through the drill pipe 301 towards the target device 307. It should be understood that any number of characteristics could be detected and reported to the W.CS. 313. It should also be understood that the information pertaining to the characteristics can be encoded in the communications such that the W.C.S. 313 can decode the communications to obtain the information. Any number of encoding protocols suitable for wireless communications within a wellbore can be utilized when generating the communications. [0036 Figure 3A further illustrates component elements of the flow device 311, the W.C.S. 313, and a communication node 341. The communication node 341 can be 11 WO 2013/112674 PCT/US2013/022875 representative of nodes N 1 , N 2 ., and/or N 3 . As illustrated the flow device 311, the W.C.S. 313, and the communication node 341 can contain some similar components, including processing systems (323, 333, and 343), memories (325, 335, and 345), and communication interfaces (327, 337, and 347). In addition, the W.C.S. 313 can include a user interface 339. The flow device 311 can include one or more of a sensor 329. [0037] In operation, the various processing systems 323, 333, and 343 can be operatively linked to the memories 325, 315, and 345 respectively, as well as the communication interfaces 327, 337, and 347 respectively. The processing systems 323, 333, and 343 can be capable of executing software stored in the corresponding memories 325, 335, and 345. When executing the software, the processing systems 323, 333, and 343 can drive associated ones of the flow device 311, the W.C.S. 313, and the communication node 341 to operate as described herein for each element. [0038] The processing systems 323, 333, and 343 can each be implemented within a single processing device but can also be distributed across multiple processing devices or sub-systems that cooperate in executing program instructions. Examples of the processing systems 323, 333, and 343 can include general purpose central processing units, microprocessors, application specific processors, and logic devices, as well as any other type of processing device. [0039] The communication interfaces 327, 337, and 347 can each include communication connections and devices that allow for communication between devices. For instance, the flow device 3 11 can communicate with the nodes N, N, and/or N 3 , while nodes
N
1 , N 2 , and/or N 3 can communicate with the W.C.S. 313. Likewise, the nodes 11 , N 2 ., and/or N3 can communicate with each other. Additionally, the flow device 311 can communicate directly with the W.C.S. 313. Examples of connections and devices that together allow for 12 WO 2013/112674 PCT/US2013/022875 inter-device communication can include network interface cards, antennas, power amplifiers, RF circuitry, transceivers, and other communication circuitry. [00401 The memories 325, 335, and 345 can comprise any storage media readable by processing systems 323, 333, and 343 respectively, and capable of storing software. The memories 325, 335, and 345 can include volatile and nonvolatile, removable and non removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. The memories 325, 335, and 345 can each be implemented as a single storage device but can also be implemented across multiple storage devices or sub-systems. The memories 325, 335, and 345 can each include additional elements, such as a controller, capable of communicating with the processing systems 323, 333, and 343. Examples of storage media can include random access memory, read only memory, and flash memory, as well as any combination or variation thereof, or any other type of storage media. In some embodiments, the storage media can be a non-transitory storage media. In some embodiments, at least a portion of the storage media can be transitory. It should be understood that in no case is the storage media a propagated signal. [0041] Software stored on or in the memories 325, 335. and 345 can include computer program instructions, firmware, or some other form of machine--readable processing instructions having processes that when executed by the processing systems 325, 335, and 345 direct associated ones of the flow device 311, the wireless communication system 313, and the communication node 341 to operated as described herein. For example, software can drive the flow device 3 11 to detect or measure characteristics of the flow device 311, or characteristics of elements external to the flow device 311, and then generate and transmit communications indicative of those characteristics to the W.C.S. 313 by way of the nodes N 1 , N 2 , and/or N3. Likewise, the software can drive the communication node 341 to 13 WO 2013/112674 PCT/US2013/022875 relay communications transmitted by the flow device 311 to the W.C.S. 313. The software can also drive the W.C.S. 313 to monitor for and receive those communications, and to process the communications to identify a condition of the wellbore 303. [0042] The software can be implemented as a single application or as multiple applications or modules. In general, the software can, when loaded into the processing systems 325, 335, and 345 and executed, transform the processing systems 325, 335, and 345, and the flow device 311, the communication node 341, and the W.C.S. 313 from general purpose devices into special-purpose devices customized to monitor the wellbore environment 300 as described herein. [0043] The flow device 311 can include one or more of the sensor 329. The sensor 329 can detect characteristics of the wellbore environment 300 as the flow device 311 moves through fluids and other materials towards the target device 307. The sensor 329 can interact with those fluids and materials to measure characteristics of them. However, the sensor 329 can be contained within the flow device 311 and can measure characteristics of the flow device 311 itself, such as the acceleration and change in acceleration of the flow device 311 as it moves through the fluid. The sensor 329 can be operatively coupled with the processing system 323, either directly or through the memory 325. It should be understood that, while only one sensor 329 is shown for purposes of clarity, multiple sensors can be integrated within the flow device 3 11 and deployed to monitor multiple characteristics. [0044] In an example where the flow device 311 is a drop ball or other similar device, the flow device 3 11 can be enclosed with a casing suitable for wellbore operations. The casing or shell can be sufficiently strong to withstand the temperatures, pressures, and other challenges of a wellbore environment, yet still allow for the transmission of wireless communications. While some metal or steel materials may suffice, other composite, plastic, or ceramic materials can also prove well suited to a wellbore environment. 14 WO 2013/112674 PCT/US2013/022875 [00451 As mentioned, the W.C.S. 313 can include one or more of a user interface 339. The user interface 339 can have input devices such as a keyboard, a mouse, a voice input device, or a touch input device, and comparable input devices. Output devices such as a display, speakers, printer, and other types of output devices can also be included with the user interface 339. The operation of the user interface 339 will be discussed in more detail with respect to Figure 3B. The user interface 339 can also be considered to be an integration between the user devices mentioned herein with software elements, such as operating system and application software. For instance, a user can navigate an application view using a user device, such as a mouse. The interface functionality provided by the integration of user interface software with user interface devices can be understood to be part of the user interface 339. [0046] Figure 3B illustrates two views 351 and 361 that can be displayed to a user by way of the user interface 339. For example, the views 351 and 361 can be displayed on a display of the user interface 339. The views 351 and 361 illustrate various ways in which the condition of the wellbore environment 300 can be presented. In particular, the view 351 can include two graphical representations 353 and 355 of the performance of the wellbore environment 300. The view 361 can include graphical representation 363 corresponding to the wellbore environment 300. The graphical representation 353, 355, and 363 can be made possible by the interaction of the W.C.S. 313 with the flow device 311. In particular, the communications transmitted by the flow device 311 can be processed by the W.C.S. 313 to generate the graphical representations 353, 355, and 363. [00471 In graphical representation 353, the location of a flow device, such as the flow device 311, can be demonstrated in a graphical manner. The wellbore 303 can be depicted as having several sections, including an upper section 302 and a middle section 304, as well as distance markings d2, d3, d4, and d5. Likewise, the flow device 311 can be 15 WO 2013/112674 PCT/US2013/022875 depicted as located in the upper section 302 of the wellbore 303. The graphical representation 353 can provide the operator with a visualization of the wellbore environment 300, allowing the operator to see a graphical representation of the flow device 311 and its progress as it travels towards the target device 307. This visualization can be useful in that it can allow the operator to plan for and commence pumping close in time to the arrival of the flow device 311 at the target device 307 and/or the bottom of the wellbore 303. In addition, this visualization can alert the operator to any obstructions that may inhibit the flow device 311 from reaching the target device 307. [0048] In the graphical representation 355, the expected distance traveled by the flow device 311 can be depicted by a plot 391 on a graph. Likewise, the actual distance traveled by the flow device 311 can be depicted by a plot 393 on the graph. These depictions can allow an operator to visualize the progress made by the flow device 311 as it travels towards the target device 307 against the expected experience of the flow device 311. Differences in the actual travel time compared against the expected travel time can alert the operator to problems in the wellbore 303. [0049] The view 361 can include a graphical representation 363 pertaining to the content or composition of fluid and material in various sections of the wellbore 303. For instance, the upper section 302 can be shown with cross hatching at an angle relative to the diagonal cross hatching of the middle section 304, while a lower section 306 can shown with a dotted fill. These graphical distinctions can be intended to demonstrate that the composition or state of each section is different relative to composition or state of the other sections. For instance, temperature, pressure, or viscosity differentials between the different sections can be represented by the varying graphical distinctions. These differential states can provide the operator with an indication about the performance of the wellbore environment 300. 16 WO 2013/112674 PCT/US2013/022875 [00501 It should be noted that the graphical representation 363 depicts a multi directional well that extends horizontally in some places. The graphical representation 363 can be useful with high angle or horizontal wells in that any geological shoulders or other obstructions created by the layout or path of a well can hinder the progress of a the flow device 311. By displaying the route of the well along with the position of the flow device 311, the operator will be better able to ascertain whether or not such shoulders may be impeding the flow of the flow device 311. [0051] Figure 4 illustrates another example of a wellbore environment 400 and its operation, according to various implementations. While Figure 4 illustrates various components contained in the wellbore environment 400, Figure 4 illustrates one example of a wellbore environment and additional components can be added and existing components can be removed. [0052] As illustrated, the wellbore environment 400 can include a drill pipe 401 surrounded by a wellbore 403. The wellbore 403 can be formed by surrounding geology 405 during the drilling process. A target device 407 can be situated in the drill pipe 401. The target device 407 can include a landing 409. Contact between the landing 409 and a flow device 411 can initiate an actuation of the target device 401. Additionally, due to a conical shape of the landing 409, contact can also cause the flow device 411 to break apart into component pails that drift towards the surface of the wellbore 403 and ultimately transmit communications to a wireless communication system (W.C.S.) 413. It should be understood that shapes other than a conical shape can be utilized to break apart the flow device 411, such as a spiked or spired landing. The W.C.S. 413 can derive a condition of the wellbore 403 from the communications from the flow device 411. [00531 Referring to the time sequence illustrated in Figure 4, at time T 1 , the flow device 411 can be released into the wellbore 403. As discussed above, a device release 17 WO 2013/112674 PCT/US2013/022875 assembly can be utilized to release the flow device 411. As the flow device 411 travels down the wellbore 403 in the drill pipe 401 towards the target device 407, the flow device 411 can detect characteristics of the wellbore environment for later reporting to the W.C.S. 413. At time T 2 , the flow device 411 can contact the landing 409 with sufficient force to break apart the flow device 411 into constituent components. At time T;, the components can float and/or can be propelled to the surface whereby they can be retrieved and interrogated for information. The W.C.S. 413 can process the information to determine a condition of the wellbore 403. Other methods or mechanisms may also be implemented that bring the flow device 411 to the surface, rather than breaking apart the flow device 411 into its component parts. For instance, the flow device 411 can be pumped to the surface intact. [0054] Figure 5 illustrates another example of a wellbore environment 500 and its operation, according to various implementations. While Figure 5 illustrates various components contained in the wellbore environment 500, Figure 5 illustrates one example of a wellbore environment and additional componients can be added and existing components can be removed. [0055] As illustrated, the wellbore environment 500 can includes a drill pipe 501 and a wellbore 503. The wellbore 503 can be formed by geology 505 surrounding it, created during the drilling process. A target device 507 can be placed within the drill pipe 501. In this example, multiple flow devices 51 IA, 51 1B, and 51 IC can be utilized to determine the conditions within the wellbore 503. The flow devices 51 IA, 51 lB, and 51 IC can be utilized to measure different conditions within the wellbore 503. Likewise., the flow device 51 IA, 511B, and 51 1C can be utilized to measure the conditions of the wellbore 503 at different times. In operations, the flow devices 511 A, 511B, and 511C can flow towards the target device 507. Any of the flow devices 51 IA, 511B, and 51 1C can actuate target device 507 upon engaging with a landing 509. 18 WO 2013/112674 PCT/US2013/022875 [00561 In operation, the flow devices 511A, 5111B, and 511C can be released into the drill pipe 501 within the wellbore 503 and can flow towards the target device 507, as indicated by the solid arrows with a downward direction. In this example, the flow devices 511 A, 511 B, and 511(C can be configured to relay communications to a wellbore communication system (W.C.S.) 513. The dotted arrows with an upward direction can represent communications transmitted by the flow device 51 IA and relayed by flow devices 511B and 51IC the W.C.S. 513. The W.C.S. 513 can process the communications to identify a condition of the wellbore 503. [0057] Certain implementations described above can be performed as a computer applications or programs. The computer program can exist in a variety of forms both active and inactive. For example, the computer program can exist as one or more software programs, software modules, or both that can be comprised of program instructions in source code, object code, executable code or other formats; firmware programss; or hardware description language (HDL) files. Any of the above can be embodied on a computer readable medium, which include computer readable storage devices and media, and signals, in compressed or uncompressed form. Examples of computer readable storage devices and media include conventional computer system RAM (random access memory), ROM (read only memory), EPROM (erasable., programmable ROM), EEPROM (electrically erasable, programmable ROM), and magnetic or optical disks or tapes. Examples of computer readable signals, whether modulated using a carrier or not, are signals that a computer system hosting or running the present teachings can be configured to access, including signals downloaded through the Internet or other networks. Concrete examples of the foregoing include distribution of executable software programs) of the computer program on a CD-ROM or via Internet download. In a sense, the Internet itself, as an abstract entity, is a computer readable medium. The same is true of computer networks in general. 19 WO 2013/112674 PCT/US2013/022875 [00581 While the teachings have been described with reference to examples of the implementations thereof, those skilled in the art will be able to make various modifications to the described implementations without departing from the true spirit and scope. The terms and descriptions used herein are set forth by way of illustration only and are not meant as limitations. In particular, although the method has been described by examples, the steps of the method may be performed in a different order than illustrated or simultaneously. Furthermore, to the extent that the terms "including", "includes", "having", "has", "with", or variants thereof are used in either the detailed description and the claims, such terms are intended to be inclusive in a manner similar to the term "comprising." As used herein, the terms "one or more of' and "at least one of" with respect to a listing of items such as, for example, A and B, means A alone, B alone, or A and B. Further, unless specified otherwise, the tern "set" should be interpreted as "one or more." [0059] Also, the term "couple" or "couples" is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect connection via other devices, components, and connections. In addition, as used herein, the terms "axial" and "axially" generally mean along or parallel to a central axis (e.g., central axis of a body or a port), while the terms "radial" and "radially" generally mean perpendicular to the central axis. For instance, an axial distance refers to a distance measured along or parallel to the central axis, and a radial distance means a distance measured perpendicular to the central axis. Those skilled in the art will recognize that these and other variations are possible within the spirit and scope as defined in the following claims and their equivalents. 20
Claims (21)
1. A method of operating a wellbore environment, the method comprising: releasing a flow device into a wellbore to travel towards a target device that is positioned in the wellbore and that is actuated by the flow device; monitoring for communications transmitted by the flow device and identifying at least one condition of the wellbore from the communications.
2. The method of claim 1, wherein the at least one condition comprises a level of obstruction of the wellbore derived from a location of the flow device indicated by the communications.
3. The method of claim 1, wherein the communications comprise characteristics of the wellbore sensed by the flow device while traveling towards the target device.
4. The method of claim 1, the method further comprising: monitoring for subsequent communications transmitted by the flow device indicative of the flow device having arrived at the target device: and upon detecting the subsequent communications, actuating the target device with the flow device by seating the flow device against a landing coupled to the target device. i.
The method of claim 4, wherein the flow device comprises a drop ball, wherein the target device comprises a valve, and wherein the landing comprises a valve seat. 21 WO 2013/112674 PCT/US2013/022875
6. The method of claim 4, wherein the flow device comprises a drop ball, wherein the target device comprises a downhole tool, and wherein seating the drop ball against the landing allows an application of hydraulic pressure to the downhole tool.
7. The method of claim I, the method further comprising: prior to releasing the flow device into the wellbore, releasing at least one other flow device into the wellbore; and monitoring for communications transmitted by the at least one other flow device while traveling towards the target device.
8. The method of claim 1, the method further comprising: prior to releasing the flow device into the wellbore, releasing at least one other flow device into the wellbore, wherein the communications from the flow device comprise communications from the at least one other flow device that are relayed by the flow device.
9. The method of claim 1, wherein monitoring for the conmunications transmitted by the flow device comprises monitoring for communications transmitted by each of a plurality of components of the flow device separated from each other upon the flow device reaching the target device.
10. A flow device for deployment in a wellbore environment, the flow device comprising: a shell encasing a plurality of components; and the plurality of components comprising: a sensor configured to detect at least one characteristic of the wellbore environment; 22 WO 2013/112674 PCT/US2013/022875 a processing system configured to generate communications based on the characteristic; and an interface system configured to transmit the communications.
11. The flow device of claim 10, wherein the interface system is configured to relay communications received from at least one other flow device.
12. A system for monitoring a wellbore environment, the system comprising: a device release assembly configured to release a flow device into a wellbore to travel towards a target device that is positioned in the wellbore and that is actuatable by the flow device; and a wellbore communication system configured to monitor for communications transmitted by the flow device and identify at least one condition of the wellbore from the communications.
13. The system of claim 12, wherein the at least one condition of the wellbore comprises a level of obstruction of the wellbore.
14. The system of claim 12, the system further comprising: the flow device, wherein the flow device is configured to sense characteristics of the wellbore, generate the communications based on the characteristics, and transmit the communications while traveling towards the target device.
15. The system of claim 12, the system further comprising: 23 WO 2013/112674 PCT/US2013/022875 the target device comprising a landing, wherein the target device is actuated with the flow device by seating the flow device against the landing on the target device.
16. The system of claim 15., wherein the flow device comprises a drop ball, wherein the target device comprises a valve, and wherein the landing comprises a valve seat.
17, The system of claim 15, wherein the flow device comprises a drop ball, wherein the target device comprises a downhole tool, and wherein seating the drop ball against the landing allows an application of hydraulic pressure to the downhole tool.
18. The system of claim 12, wherein the wellbore communication system is configured to monitor for subsequent communications transmitted by the flow device indicative of the flow device having arrived at the target device.
19. The system of claim 12, wherein: the device release assembly is further configured to, prior to release of the flow device into the wellbore., release at least one other flow device into the wellbore; and the wellbore communication system is further configured to monitor for communications transmitted by the at least one other flow device while traveling towards the target device.
20. A computer readable stora e medium comprising instructions that cause a processing system to perform a method comprising: 24 WO 2013/112674 PCT/US2013/022875 monitoring for communications transmitted by a flow device released into a wellbore to travel towards a target device that is positioned in the wellbore and that is actuated by the flow device; and processing the communications to identify at least one condition of the wellbore.
21. The computer readable storage medium of claim 20, wherein the at least one condition of the wellbore comprises a level of obstruction in the wellbore.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261590483P | 2012-01-25 | 2012-01-25 | |
US61/590,483 | 2012-01-25 | ||
PCT/US2013/022875 WO2013112674A2 (en) | 2012-01-25 | 2013-01-24 | Systems, methods, and devices for monitoring wellbore conditions |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2013212140A1 true AU2013212140A1 (en) | 2014-07-24 |
Family
ID=47748749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2013212140A Abandoned AU2013212140A1 (en) | 2012-01-25 | 2013-01-24 | Systems, methods, and devices for monitoring wellbore conditions |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130192823A1 (en) |
EP (1) | EP2807336A2 (en) |
AU (1) | AU2013212140A1 (en) |
BR (1) | BR112014018074A2 (en) |
WO (1) | WO2013112674A2 (en) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120006562A1 (en) * | 2010-07-12 | 2012-01-12 | Tracy Speer | Method and apparatus for a well employing the use of an activation ball |
US9726009B2 (en) | 2013-03-12 | 2017-08-08 | Halliburton Energy Services, Inc. | Wellbore servicing tools, systems and methods utilizing near-field communication |
WO2015038095A1 (en) * | 2013-09-10 | 2015-03-19 | Halliburton Energy Services, Inc. | Downhole ball dropping systems and methods with redundant ball dropping capability |
WO2015038096A1 (en) * | 2013-09-10 | 2015-03-19 | Halliburton Energy Services, Inc. | Downhole ball dropping systems and methods |
CA2955381C (en) * | 2014-09-12 | 2022-03-22 | Exxonmobil Upstream Research Company | Discrete wellbore devices, hydrocarbon wells including a downhole communication network and the discrete wellbore devices and systems and methods including the same |
EP3198115A1 (en) | 2014-09-26 | 2017-08-02 | Exxonmobil Upstream Research Company | Systems and methods for monitoring a condition of a tubular configured to convey a hydrocarbon fluid |
US10408047B2 (en) | 2015-01-26 | 2019-09-10 | Exxonmobil Upstream Research Company | Real-time well surveillance using a wireless network and an in-wellbore tool |
WO2016176643A1 (en) | 2015-04-30 | 2016-11-03 | Aramco Service Company | Method and device for obtaining measurements of downhole properties in a subterranean well |
US9869176B2 (en) * | 2016-04-07 | 2018-01-16 | Tubel Energy, Llc | Downhole to surface data lift apparatus |
US20170350241A1 (en) * | 2016-05-13 | 2017-12-07 | Ningbo Wanyou Deepwater Energy Science & Technology Co.,Ltd. | Data Logger and Charger Thereof |
US10697287B2 (en) | 2016-08-30 | 2020-06-30 | Exxonmobil Upstream Research Company | Plunger lift monitoring via a downhole wireless network field |
US10415376B2 (en) | 2016-08-30 | 2019-09-17 | Exxonmobil Upstream Research Company | Dual transducer communications node for downhole acoustic wireless networks and method employing same |
US10526888B2 (en) | 2016-08-30 | 2020-01-07 | Exxonmobil Upstream Research Company | Downhole multiphase flow sensing methods |
US10487647B2 (en) | 2016-08-30 | 2019-11-26 | Exxonmobil Upstream Research Company | Hybrid downhole acoustic wireless network |
US10344583B2 (en) | 2016-08-30 | 2019-07-09 | Exxonmobil Upstream Research Company | Acoustic housing for tubulars |
US10465505B2 (en) | 2016-08-30 | 2019-11-05 | Exxonmobil Upstream Research Company | Reservoir formation characterization using a downhole wireless network |
US10590759B2 (en) | 2016-08-30 | 2020-03-17 | Exxonmobil Upstream Research Company | Zonal isolation devices including sensing and wireless telemetry and methods of utilizing the same |
US10364669B2 (en) | 2016-08-30 | 2019-07-30 | Exxonmobil Upstream Research Company | Methods of acoustically communicating and wells that utilize the methods |
CN107795318B (en) * | 2016-09-07 | 2020-12-11 | 中国石油化工股份有限公司 | Contact type micro data transfer device and method for underground release |
CN109469475B (en) * | 2017-09-08 | 2021-11-09 | 中国石油化工股份有限公司 | Underground while-drilling data storage and release device and while-drilling data transmission method |
US10724363B2 (en) | 2017-10-13 | 2020-07-28 | Exxonmobil Upstream Research Company | Method and system for performing hydrocarbon operations with mixed communication networks |
US10837276B2 (en) | 2017-10-13 | 2020-11-17 | Exxonmobil Upstream Research Company | Method and system for performing wireless ultrasonic communications along a drilling string |
US10697288B2 (en) | 2017-10-13 | 2020-06-30 | Exxonmobil Upstream Research Company | Dual transducer communications node including piezo pre-tensioning for acoustic wireless networks and method employing same |
MX2020003297A (en) | 2017-10-13 | 2020-07-28 | Exxonmobil Upstream Res Co | Method and system for performing operations with communications. |
WO2019074657A1 (en) | 2017-10-13 | 2019-04-18 | Exxonmobil Upstream Research Company | Method and system for performing operations using communications |
WO2019074656A1 (en) | 2017-10-13 | 2019-04-18 | Exxonmobil Upstream Research Company | Method and system for performing communications using aliasing |
US10690794B2 (en) | 2017-11-17 | 2020-06-23 | Exxonmobil Upstream Research Company | Method and system for performing operations using communications for a hydrocarbon system |
MX2020007277A (en) | 2017-11-17 | 2020-08-17 | Exxonmobil Upstream Res Co | Method and system for performing wireless ultrasonic communications along tubular members. |
US12000273B2 (en) | 2017-11-17 | 2024-06-04 | ExxonMobil Technology and Engineering Company | Method and system for performing hydrocarbon operations using communications associated with completions |
US10844708B2 (en) | 2017-12-20 | 2020-11-24 | Exxonmobil Upstream Research Company | Energy efficient method of retrieving wireless networked sensor data |
US11156081B2 (en) | 2017-12-29 | 2021-10-26 | Exxonmobil Upstream Research Company | Methods and systems for operating and maintaining a downhole wireless network |
US11313215B2 (en) | 2017-12-29 | 2022-04-26 | Exxonmobil Upstream Research Company | Methods and systems for monitoring and optimizing reservoir stimulation operations |
US10711600B2 (en) | 2018-02-08 | 2020-07-14 | Exxonmobil Upstream Research Company | Methods of network peer identification and self-organization using unique tonal signatures and wells that use the methods |
US11268378B2 (en) | 2018-02-09 | 2022-03-08 | Exxonmobil Upstream Research Company | Downhole wireless communication node and sensor/tools interface |
US11293280B2 (en) | 2018-12-19 | 2022-04-05 | Exxonmobil Upstream Research Company | Method and system for monitoring post-stimulation operations through acoustic wireless sensor network |
US11952886B2 (en) | 2018-12-19 | 2024-04-09 | ExxonMobil Technology and Engineering Company | Method and system for monitoring sand production through acoustic wireless sensor network |
BR102019010175A2 (en) * | 2019-05-19 | 2020-12-01 | Ouro Negro Tecnologias Em Equipamentos Industriais S/A | PERMANENT MONITORING SYSTEM OF OPERATIONAL PARAMETERS OF OIL WELLS AND NATURAL GAS |
US11867049B1 (en) | 2022-07-19 | 2024-01-09 | Saudi Arabian Oil Company | Downhole logging tool |
US11913329B1 (en) | 2022-09-21 | 2024-02-27 | Saudi Arabian Oil Company | Untethered logging devices and related methods of logging a wellbore |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6443228B1 (en) * | 1999-05-28 | 2002-09-03 | Baker Hughes Incorporated | Method of utilizing flowable devices in wellbores |
US6915848B2 (en) * | 2002-07-30 | 2005-07-12 | Schlumberger Technology Corporation | Universal downhole tool control apparatus and methods |
US8297353B2 (en) * | 2007-04-02 | 2012-10-30 | Halliburton Energy Services, Inc. | Use of micro-electro-mechanical systems (MEMS) in well treatments |
US8316936B2 (en) * | 2007-04-02 | 2012-11-27 | Halliburton Energy Services Inc. | Use of micro-electro-mechanical systems (MEMS) in well treatments |
US20100155055A1 (en) * | 2008-12-16 | 2010-06-24 | Robert Henry Ash | Drop balls |
US9063252B2 (en) * | 2009-03-13 | 2015-06-23 | Saudi Arabian Oil Company | System, method, and nanorobot to explore subterranean geophysical formations |
US20110191028A1 (en) * | 2010-02-04 | 2011-08-04 | Schlumberger Technology Corporation | Measurement devices with memory tags and methods thereof |
-
2013
- 2013-01-24 BR BR112014018074A patent/BR112014018074A2/en not_active IP Right Cessation
- 2013-01-24 WO PCT/US2013/022875 patent/WO2013112674A2/en active Application Filing
- 2013-01-24 EP EP13705854.1A patent/EP2807336A2/en not_active Withdrawn
- 2013-01-24 US US13/748,660 patent/US20130192823A1/en not_active Abandoned
- 2013-01-24 AU AU2013212140A patent/AU2013212140A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20130192823A1 (en) | 2013-08-01 |
WO2013112674A2 (en) | 2013-08-01 |
BR112014018074A2 (en) | 2019-09-24 |
WO2013112674A3 (en) | 2014-03-13 |
EP2807336A2 (en) | 2014-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130192823A1 (en) | Systems, methods, and devices for monitoring wellbore conditions | |
US10801315B2 (en) | Degradable isolation devices with data recorders | |
WO2010088681A4 (en) | System and method of monitoring flow in a wellbore | |
US20160230533A1 (en) | Intelligent cement wiper plugs and casing collars | |
US11572751B2 (en) | Expandable meshed component for guiding an untethered device in a subterranean well | |
NO20130476A1 (en) | Tracer identification of downhole tool activation | |
CN106574497A (en) | Rig telemetry system | |
US20160115782A1 (en) | Wireless retrievable intelligent downhole production module | |
US10323509B2 (en) | Repeater for a wellbore | |
EP3058172B1 (en) | Systems and methods of tracking the position of a downhole projectile | |
EP2825728A2 (en) | Outward venting of inflow tracer in production wells | |
US9260960B2 (en) | Method and apparatus for subsea wireless communication | |
US20170211371A1 (en) | Fracture monitoring | |
Brechan et al. | Well Integrity-next developments | |
US20210238979A1 (en) | Method and system to conduct measurement while cementing | |
CN101220741B (en) | Hole depth sensing | |
EP3532705B1 (en) | Communication systems and methods | |
US20130180711A1 (en) | Wellbore Pressure Actuation of Downhole Valves | |
US11359482B2 (en) | Downhole leak monitor system | |
US11466526B1 (en) | Polymeric sleeve for guiding an untethered measurement device in a Christmas tree valve | |
CN105386755B (en) | Signal coupling apparatus based on drill string waveguide | |
US20230323767A1 (en) | Method And System For Remotely Signalling A Downhole Assembly Comprising One Or More Downhole Tool | |
US20240384641A1 (en) | Drilling with casing monitor | |
US10539003B2 (en) | Methods and networks to determine a boundary of a cement mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK5 | Application lapsed section 142(2)(e) - patent request and compl. specification not accepted |