AU2013206700A1 - Confectionery processing - Google Patents

Confectionery processing Download PDF

Info

Publication number
AU2013206700A1
AU2013206700A1 AU2013206700A AU2013206700A AU2013206700A1 AU 2013206700 A1 AU2013206700 A1 AU 2013206700A1 AU 2013206700 A AU2013206700 A AU 2013206700A AU 2013206700 A AU2013206700 A AU 2013206700A AU 2013206700 A1 AU2013206700 A1 AU 2013206700A1
Authority
AU
Australia
Prior art keywords
confectionery
extruder
product
mixing
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2013206700A
Inventor
Bharat Jani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intercontinental Great Brands LLC
Original Assignee
Kraft Foods Global Brands LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2010206706A external-priority patent/AU2010206706C1/en
Application filed by Kraft Foods Global Brands LLC filed Critical Kraft Foods Global Brands LLC
Priority to AU2013206700A priority Critical patent/AU2013206700A1/en
Publication of AU2013206700A1 publication Critical patent/AU2013206700A1/en
Abandoned legal-status Critical Current

Links

Abstract

In one embodiment of the invention, there is provided a method of improving homogeneity in confectionery mixing processes, which includes the steps of: mixing a predetermined amount of confectionery base and bulk sweeteners in a first direction for a first cycle period to provide a mixture; adding a predetermined amount of a flavoring component to the mixture; mixing the mixture in a second direction for a second cycle period; mixing the mixture in the first direction for a third cycle period. In another embodiment of the invention, there is provided a method of preparing a confectionery product, including the steps of: mixing a predetermined amount of products in a kettle to form a confectionery base; heating the mixed confectionery base to a predetermined temperature; feeding the heated confectionery base into a first extruder; extruding the confectionery base into a cooling apparatus to provide a cooled confectionery product; feeding the cooled confectionery product into a second extruder; extruding the cooled confectionery product from the second extruder; and passing the extruded confectionery product into a finishing apparatus to finish the confectionery pieces.

Description

AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION Standard Patent Applicant(s): KRAFT FOODS GLOBAL BRANDS LLC Invention Title: Confectionery processing The following statement is a full description of this invention, including the best method for performing it known to me/us: - la CONFECTIONERY PROCESSING Cross-Reference to Related Applications: This application is a divisional of Australian Patent Application No. 2010206706. Field 5 The present invention relates to methods of forming confectionery products. In particular, the invention relates to methods of improving the homogeneity in the confectionery mixing process. Background Confectionery products may be formed through various processes. Typically, io confectionery products, especially chewing gum products, are formed through a process of mixing components, extruding the components, and cutting the components. However, through typical processes, the homogeneity of the confectionery product may not be optimized. Further, in typical confectionery processing, there is usually a need to allow the final product to set for a lengthy period of time so that the product may is expand or contract to its final size. In some situations, only after the confectionery has settled for the required period of time can it then be packaged for distribution. This lengthy period of time is undesirable, as it greatly slows down the process of making and processing confectioneries. The present invention seeks to avoid the problems associated with typical confectionery 20 processing by providing a process which improves the homogeneity in the confectionery, allowing for convenient processing and timely packaging of the product. It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country. 4475113_1 (GHMatters) P87575AU.I 2/07/13 2 Summary In one embodiment of the invention, there is provided a method of improving homogeneity in confectionery mixing processes, which includes the steps of: mixing a predetermined amount of confectionery base and bulk sweeteners in a first direction for 5 a first cycle period to provide a mixture; adding a predetermined amount of a flavoring component to the mixture; mixing the mixture in a second direction for a second cycle period; mixing the mixture in the first direction for a third cycle period. In another embodiment of the invention, there is provided a method of preparing a confectionery product, including the steps of: mixing a predetermined amount of io products in a kettle to form a confectionery base; heating the mixed confectionery base to a predetermined temperature; feeding the heated confectionery base into a first extruder; extruding the confectionery base into a cooling apparatus to provide a cooled confectionery product; feeding the cooled confectionery product into a second extruder; extruding the cooled confectionery product from the second extruder; and passing the 15 extruded confectionery product into a finishing apparatus to finish the confectionery pieces. In yet another embodiment, there is provided a method of preparing a multi-layered confectionery product, including the steps of: mixing a predetermined amount of confectionery product in a kettle; heating the mixed confectionery product to a 20 predetermined temperature; feeding the heated confectionery product into an extruder; extruding the confectionery product into a cooling apparatus to provide a cooled confectionery product; feeding the cooled confectionery product into a multi-layered extruder; extruding the cooled confectionery product to form a multi-layered confectionery product; and passing the multi-layered confectionery product into a 25 finishing apparatus. In yet another embodiment, there is provided a method of preparing a confectionery product, wherein the method comprises use of a recycling extruder. 44751131 (GHMatners) P87575.AU.1 2107/13 3 Brief Description of the Figures Figure 1 depicts one embodiment of processing a multi-layered chewing gum composition. Figure 2 depicts one embodiment of processing a multi-layered candy composition. 5 Figure 3 depicts one embodiment of processing a multi-layered chewing gum and candy composition. Detailed Description of the Preferred Embodiments As used herein, the term "confection", or "confectionery" may include any conventional confectionary composition, such as gummy candy or "gummi" confections (gummy io candy includes a hydrocolloid texturizing agent such as gelatin alone or in combination with other texturizing agents). Also included in those chewable forms are soft candies such as, but not limited to, gum drops, licorice, fruit snacks, starch based jellies, gelatin based jellies, pectin based jellies, carageenan based jellies, agar based jellies, konjac based jellies, chewy candy, starch candy, nougat, toffee, taffy, marshmallow, fondant, is fudge, chocolate, compound coating, carob coating, caramel, compressed tablets, candy floss (also known as cotton candy), marzipan, hard boiled candy, nut brittles, pastilles, pralines, nonpareils, dragees, lozenges, sugared nuts, comfits, aniseed balls, nougatine, and jelly beans. Also included in those chewable forms are chewing gums including bubble gums. In some embodiments, the confectionery is selected from the group 20 consisting of chewy candy, gummy candy, marshmallow, chewing gum, and combinations thereof. In one aspect of the invention, there is provided a method of processing a confectionery product. The confectionery product may be singled layered or may be multi-layered. Further, the confectionery product may include various confectioneries as defined 25 above. In one particular embodiment, the confectionery product includes chewing gum, candy, or combinations thereof With reference to Figure 1 , there is depicted a method of forming a chewing gum product. A process 100 forms a chewing gum product, which may be single-layered or it may be multi-layered, depending on the desired end product. In a first step 110, there 4475113_1 (GHMatters) P87575.Attj 2107/13 4 is mixed an initial combination of components in a heated environment. Such components may include, for example, flavors, colors, additives, fillers, and the like. Suitable sweeteners, flavors, potentiators, sensates, functional ingredients, and acids include those described in U.S. Patent Application Nos. 11/ 829232, filed July 27, 2007, 5 and 12/100,046, filed April 9, 2008, the entire contents of which are incorporated by reference herein.. For the chewing gum compositions, the initial combination may include a chewing gum base. In a chewing gum composition, the chewing gum base is heated to a predetermined temperature to sufficiently melt the chewing gum base. The heated environment may include a heated kettle. Preferably, the chewing gum base is io heated to a temperature of about 85*C. Further, the chewing gum base may be heated and mixed in a series of cycles. For example, the mixing step 110 may include one cycle, two cycles, or more than two cycles. The mixing step 110 may include three mixing cycles, where the first cycle is a forward mixing cycle, the second cycle is a backward mixing cycle, and the third cycle is a forward mixing cycle. The mixing step is 110 may be any length of time, and in a preferred embodiment is about 15-3 5 minutes in total. In some embodiments, a shorter mixing time may be desired, such as about 15 to about 20 minutes in total, while in other embodiments, a longer mixing time may be desired, such as about 30 to about 35 minutes in total. The first mixing cycle, the second mixing cycle and the third mixing cycle may be 20 different lengths of time or they may be approximately the same length of time. In one embodiment, the first cycle may be about 5 to about 14 minutes, may be about 5 to about 10 minutes, or may be about 10 to about 14 minutes. If used, the second cycle may be about 1 to about 5 minutes. If used, the third cycle may be about 10 to about 20 minutes, and more preferably about 15 to about 20 minutes. Any combination of first, 25 second and third mixing cycles may be performed as desired. In some embodiments, it may be desirable to begin the first mixing cycle prior to adding a flavoring component. For example, it may be desirable to perform the first mixing cycle for about 5 to about 10 minutes, then mix for about 5 to about 10 minutes while adding a flavoring component. Optionally, a second mixing cycle may then be 30 performed, which may run for about 1 to about 5 minutes, and then a third optional mixing cycle may be performed, which may run for about 15 to about 20 minutes. 4475113_1 (GHMatters} P87575 AU, 1 2/07113 5 For such chewing gum compositions formed by the process 100, the heated and mixed product then undergoes a step 120 of adding bulk sweeteners to the gum base mixture. In addition to bulk sweeteners, any other components may be added if desired, including colors, flavors, additives, fillers, and the like. The step 120 of adding bulk 5 sweeteners may occur at any time, and desirably occurs after the step 110 of mixing has completed. Preferably, the mixture may be cooled down to a lower temperature prior to adding bulk sweeteners to the mixture. For example, the mixture may be cooled to a temperature of about 50 to about 600C prior to step 120 of adding bulk sweeteners. The step 120 of adding bulk sweeteners may optionally occur during the step 110 of mixing io the chewing gum base. For example, sweeteners may be added between one or more of the mixing cycles, or may be added during a mixing cycle. After the sweeteners have been mixed for a sufficient time period to provide a homogenous mixture, the mixture may go through a step 130 of passing the mixture through a first extruder. The first extruder may be a recycling extruder, which has an 15 input port for accepting the mixture and at least two extruding ports for extruding the mixture. In this embodiment, at least one extruding port leads the extruded mixture back into the first extruder, where it is extruded at least one more time. In a desired embodiment, about 50% of the mixture is fed back into the extruder after extruding, and about 50% is extruded to the next step of the formation process. Any amount of the 20 mixture may be fed back into the first extruder, and may be extruded any desired amount of times. The portion of the mixture that is extruded and not fed back into the first extruder may continue to a next step 140 of passing through a cooling tunnel. Desirably, upon extrusion, the mixture is extruded in a rope, but may be extruded in any desired fashion, 25 including rope, tube, or sheet. The cooling tunnel may be any apparatus that operates to cool the mixture. The cooling tunnel is preferably maintained at a temperature below room temperature, and is most desirably about 15'C. Depending upon the desired level of cooling of the extruded product, the cooling tunnel may be any temperature sufficient to achieve the level of cooling desired. The cooling tunnel may force the extruded 30 mixture along a "zig zag" path, thereby maintaining the mixture within the cooling tunnel for an extended period of time. For example, the cooling tunnel may have several 4475113_1 (GHNalters)P87575.AU.I 2/0713 6 zig zagging pathways, such that the mixture is passed along a plurality of separate paths before exiting the cooling tunnel. For example, the cooling tunnel may include a pathway that passes the extruded product about 5 times before exiting the cooling tunnel. It will be understood that the term "cooling tunnel" does not specifically require s a tunnel through which the confectionery is passed, and includes any area whereby a cooling temperature may be applied to the confectionery. For example, the extruded confectionery may be transported through a cooled room, or there may simply be a cooling element which directs cool temperature to the extruded confectionery. Desirably, after the step 140 of passing through a cooling tunnel, the extruded and 10 cooled chewing gum mixture has a temperature of about 30-50 0 C. In particular, for chewing gum compositions, the cooled product preferably has a temperature of about 45-50 0 C after exiting the cooling tunnel. It is to be understood that, to achieve the temperature desired, the step 140 of passing the product through a cooling tunnel may be unnecessary. 15 Once the product has achieved the desired temperature, whether through passing through a cooling tunnel or otherwise, the product may then undergo the step 150 of entering a second extruder. The second extruder may be a single layered extruder or it may be a multi-layered extruder, which will be described in more detail below. Further, the second extruder may include one input port or it may include more than one input 20 port. For example, the second extruder may include a plurality of input ports, designed to accept more than one product, which is then processed in the extruder and extruded through an output port. In embodiments where the second extruder is a multi-layered extruder, the extruded product may be a multi-layered extrudate, having the same or different layers. 25 Desirably, the composition is extruded from the second extruder in the form of a rope of confectionery, in both single-layered and multi-layered forms. After the composition exits the second extruder, the extruded composition may optionally go through the step 160 of entering a rope sizing apparatus. The rope sizing apparatus desirably is capable of sizing the extruded composition to a desired height and/or width. In a desired 30 embodiment, the rope sizing apparatus is capable of providing both vertical and horizontal sizing to the extruded composition. One example of a rope sizing apparatus 44751 13_1 (GHMatters) P87575.AU.1 2/07113 7 is that disclosed in Applicant's co-pending application, U.S. Patent Application No. 12/180,207, filed July 25, 2008, which is incorporated in its entirety herein. After the confection has gone through the rope sizing apparatus, the confectionery is sized to the appropriate height and/or width. s Once the confectionery composition has been appropriately sized, the sized composition may optionally enter another cooling tunnel 170, where the composition is cooled to a desired temperature. As with above, the cooling tunnel may be capable of providing multiple passes of the composition in a zig zag formation, and in a desired embodiment the cooling tunnel 170 provides between about 9-13 passes of the 10 composition. The cooling tunnel may be cooled to any desired temperature so as to cool the composition to the desired end temperature. The cooling tunnel is preferably kept at a temperature of about 15'C. Again, depending upon the temperature of the confectionery product after it has been sized, and the desired end temperature, the step 170 of entering another cooling tunnel may be rendered unnecessary. 15 After the cooled composition has reached the desired temperature, the cooled composition may optionally be fed through a pre-sizing apparatus and/or a relaxation table 180. One example of a relaxation table is that disclosed in Applicant's co-pending application U.S. Patent Application No. 12/180,207, filed July 25, 2008, which is incorporated in its entirety herein. The cooled composition may be fed through the pre 20 sizing apparatus and/or relaxation table for any desired time to allow the composition to reach a desired relaxed state. It is generally known that after stretching and extending confectionery ropes, specifically chewing gums, the rope has a tendency to "spring back" and shrink to its normal size. By "relaxation table," it is contemplated that any mechanism to allow the composition to "relax" and shrink prior to cutting may be used. 25 The relaxation table provides a sufficient time delay between extrusion and cutting, to allow the composition to get to a more stable form. After this step 180 has been completed, the composition is in its final size and form. The composition is ready to be finished. Once the composition has been appropriately sized and has reached its desired 30 temperature, the composition undergoes a finishing step 190, which completes the composition forming process. The finishing step 190 may include any desired steps to 4475113_1 (GHMatters)P87575AU.I 2107113 8 prepare the composition for final packaging and/or distribution. For example, the finishing step 190 may include the steps of cutting the composition, forming individual pieces of the composition, coating the final composition, wrapping the composition, packaging the formation, and combinations thereof. In one embodiment, the finishing 5 step 190 includes the step of cutting and wrapping individual pieces of chewing gum to be packaged into a rigid package. In another embodiment, the finishing step 190 may include the steps of rolling and scoring the confectionery composition. As set forth in Figure 2, the present invention also provides a process 200 of forming a candy composition. The term "candy composition" is used to refer to any non-chewing 10 gum confectionery. For example, candy compositions formed through the process described herein include gummy candy or "gummi" confections, gum drops, licorice, fruit snacks, starch based jellies, gelatin based jellies, pectin based jellies, carageenan based jellies, agar based jellies, konjac based jellies, chewy candy, starch candy, nougat, toffee, taffy, marshmallow, fondant, fudge, chocolate, compound coating, carob 15 coating, caramel, compressed tablets, candy floss (also known as cotton candy), marzipan, hard boiled candy, nut brittles, pastilles, pralines, nonpareils, dragees, lozenges, sugared nuts, comfits, aniseed balls, nougatine, and jelly beans. In some embodiments, the confectionery is selected from the group consisting of chewy candy, gummy candy, marshmallow, chewing gum, and combinations thereof. 20 The formation of a candy composition is similar to the process 100 for the chewing gum composition described above. However, for formation of candy compositions, there is a step 210 of mixing the candy composition in any desired fashion. Preferably, the candy composition is mixed in a kettle for a sufficient time to provide a substantially homogenous mixture. The particular temperature and time of mixing is not 25 critical to the step 210 of mixing the candy composition. After the step 210 of mixing the candy composition, the candy composition may then be fed into and through a candy extruder 220. The candy extruder may or may not be a recycling extruder, as described above, depending upon the desired confectionery product being processed. The candy composition is preferably extruded in the form of a rope of candy. 30 After the step 220 of feeding through a candy extruder, the extruded candy preferably has a temperature of about 35-40 0 C. The extruded candy composition may have a 4475113_1 (GHManlers) P87575AJ,1 2107/13 9 higher or lower temperature, depending upon the particular process desired. To achieve the desired temperature, the candy composition may optionally enter a cooling tunnel. Generally, however, the candy composition may simply reach the desired temperature through the step 210 of mixing and the extrusion at room temperature. s Once the extruded candy composition has achieved the desired temperature, whether through passing through a cooling tunnel or otherwise, the candy composition may then undergo the step 250 of entering a second extruder. The second extruder may be a single layered extruder or it may be a multi-layered extruder, as will be described in more detail below. The second extruder may include one input port or it may include io more than one input port. For example, the second extruder may include a plurality of input ports, designed to accept more than one product, which is then processed in the extruder and extruded through an output port. As with the chewing gum process 100, more than one type of confectionery may be fed into the second extruder, including both a candy and a chewing gum composition. is Desirably, the composition is extruded from the second extruder in the form of a rope of confectionery, in both single-layered and multi-layered forms. After the composition exits the second extruder, the extruded composition may optionally go through the step 260 of entering a rope sizing apparatus. The rope sizing apparatus desirably is capable of sizing the extruded composition to a desired height and/or width. In a desired 20 embodiment, the rope sizing apparatus is capable of providing both vertical and horizontal sizing to the extruded composition. One example of a rope sizing apparatus is that disclosed in Applicant's co-pending application, U.S. Patent Application No. 12/180,207, filed July 25, 2008, which is incorporated in its entirety herein. After the confection has gone through the rope sizing apparatus, the confectionery is sized to the 25 appropriate height and/or width. Once the confectionery composition has been appropriately sized, the sized composition may optionally enter another cooling tunnel 270, where the composition is cooled to a desired temperature. As with above, the cooling tunnel may be capable of providing multiple passes of the composition in a zig zag formation, and in a desired 30 embodiment the cooling tunnel 270 provides between about 9-13 passes of the composition. The cooling tunnel may be cooled to any desired temperature so as to cool 4475113_1 (GHMalters) P87575 AU I 2/07113 10 the composition to the desired end temperature. In one embodiment, the cooling tunnel is kept at a temperature of about 15 C. Again, depending upon the temperature of the confectionery product after it has been sized, and the desired end temperature, the step 270 of entering another cooling tunnel may be rendered unnecessary. s After the cooled composition has reached the desired temperature, the cooled composition may optionally be fed through a pre-sizing apparatus and/or a relaxation table 280. One example of a relaxation table is that disclosed in Applicant's co-pending application, U.S. Patent Application No. 12/180,207, filed July 25, 2008, which is incorporated in its entirety herein. As explained above, the composition may be fed i0 through the pre-sizing apparatus and/or relaxation table for any desired length of time so as to allow the composition to settle to its desired shape and size. After this step 280 has been completed, the composition is in its final size and form. The composition is ready to be finished. Once the composition has been appropriately sized and has reached its desired is temperature, the composition undergoes a finishing step 290, which completes the composition forming process. The finishing step 290 may include any desired steps to prepare the composition for packaging. For example, the finishing step 290 may include the steps of cutting the composition, coating the final composition, forming the final composition, wrapping the composition, packaging the formation, and combinations 20 thereof In one embodiment, the finishing step 290 includes the step of cutting and wrapping individual pieces of candy to be packaged into a rigid package. In another embodiment, the finishing step 290 may include the steps of rolling and scoring the confectionery composition. With reference to Figure 3, there is provided a process 300 of forming a multi-layered 25 candy/chewing gum composition. As with the processes of forming a chewing gum product 100 and a candy confectionery product 200, the process 300 of forming a multi layered candy/chewing gum composition includes various mixing and extruding steps. Products formed by the process 300 have a multi-layered configuration, which includes any combination of chewing gum and candy composition layers. 4475113_1 (GHMatters) PS7575AU I 2107)13 11 With reference to Figure 3, there is depicted a method of forming a multi-layered chewing gum and candy product. A process 300 forms the multi-layered product, which steps are similar to that described above. In a first step 305, there is mixed an initial combination of components in a heated environment. As with the process of forming a 5 chewing gum 100 described above, at this stage, other components may be added if desired. For example, flavors, colors, additives, fillers, and the like may be added. For the chewing gum compositions, the initial combination may include a chewing gum base. In a chewing gum composition, the chewing gum base is heated to a predetermined temperature to sufficiently melt the chewing gum base. The heated io environment may include a heated kettle. Preferably, the chewing gum base is heated to a temperature of about 85 0 C. Further, the chewing gum base may be heated and mixed in a series of cycles. For example, the mixing step 305 may include one cycle, two cycles, or more than two cycles. The mixing step 305 may include three mixing cycles, where the first cycle is a forward mixing cycle, the second cycle is a backward mixing is cycle, and the third cycle is a forward mixing cycle. The mixing step 305 may be any length of time, and in a preferred embodiment is about 15-35 minutes. As with the process for a multi-layered chewing gum described above, in some embodiments, a shorter mixing time may be desired, such as about 15 to about 20 minutes in total, while in other embodiments, a longer mixing time may be desired, such as about 30 to about 20 35 minutes in total. The first mixing cycle, the second mixing cycle and the third mixing cycle may be different lengths of time or they may be approximately the same length of time. In one embodiment, the first cycle may be about 5 to about 14 minutes. Optionally the first cycle may be about 5 to about 10 minutes, or it may be about 10 to about 14 minutes. If 25 used, the second cycle may be about I to about 5 minutes. If used, the third cycle may be about 10 to about 20 minutes, and more preferably about 15 to about 20 minutes. Any combination of first, second and third mixing cycles may be performed as desired. In some embodiments, it may be desirable to begin the first mixing cycle prior to adding a flavoring component. For example, it may be desirable to perform the first 30 mixing cycle for about 5 to about 10 minutes, then mix for about 5 to about 10 minutes while adding a flavoring component. Optionally, a second mixing cycle may then be 4475113_1 (GHMaters)P87575AU 1 2/07/13 12 performed, which may run for about 1 to about 5 minutes, and then a third optional mixing cycle may be performed, which may run for about 15 to about 20 minutes. For such chewing gum compositions formed by the process 300, the heated and mixed product then undergoes a step 310 of adding bulk sweeteners to the gum base mixture. 5 Other components may be added at this stage if desired, including flavors, colors, additives, fillers, and the like. The step 310 of adding bulk sweeteners may occur at any time, and desirably occurs after the step 305 of mixing has completed. Preferably, the mixture may be cooled down to a lower temperature prior to adding bulk sweeteners to the mixture. For example, the mixture may be cooled to a temperature of about 50 to 10 about 60 0 C prior to step 310 of adding bulk sweeteners. The step 310 of adding bulk sweeteners may optionally occur during the step 305 of mixing the chewing gum base. For example, sweeteners may be added between one or more of the mixing cycles, or may be added during a mixing cycle. After the sweeteners have been mixed for a sufficient time period to provide a is homogenous mixture, the mixture may go through a step 315 of passing the mixture through a first extruder. The first extruder may be a recycling extruder, which has an input port for accepting the mixture and at least two extruding ports for extruding the mixture. In this embodiment, at least one extruding port leads the extruded mixture back into the first extruder, where it is extruded at least one more time. In a desired 20 embodiment, about 50% of the mixture is fed back into the extruder after extruding, and about 50% is extruded to the next step of the formation process. Any amount of the mixture may be fed back into the first extruder, and may be extruded any desired amount of times. The portion of the mixture that is extruded and not fed back into the first extruder may 25 continue to a next step 320 of passing through a cooling tunnel. Desirably, upon extrusion, the mixture is extruded in a rope, but may be extruded in any desired fashion, including rope, tube, or sheet. The cooling tunnel may be any apparatus that operates to cool the mixture. The cooling tunnel is preferably maintained at a temperature below room temperature, and is most desirably about 15'C. Depending upon the desired level 30 of cooling of the extruded product, the cooling tunnel may be any temperature sufficient to achieve the level of cooling desired. The cooling tunnel may force the extruded 4475113_ (GHMauers) P87575 AU,1 2)07/13 13 mixture along a "zig zag" path, thereby maintaining the mixture within the cooling tunnel for an extended period of time. For example, the cooling tunnel may have several zig zagging pathways, such that the mixture is passed along a plurality of separate paths before exiting the cooling tunnel. For example, the cooling tunnel may include a s pathway that passes the extruded product about 5 times before exiting the cooling tunnel. It will be understood that the term "cooling tunnel" does not specifically require a tunnel through which the confectionery is passed, and includes any area whereby a cooling temperature may be applied to the confectionery. For example, the extruded confectionery may be transported through a cooled room, or there may simply be a io cooling element which directs cool temperature to the extruded confectionery. Desirably, after the step 320 of passing through a cooling tunnel, the extruded and cooled chewing gum mixture has a temperature of about 30-50 0 C. In particular, for chewing gum compositions, the cooled product preferably has a temperature of about 45-500C after exiting the cooling tunnel. It is to be understood that, to achieve the 15 temperature desired, the step 320 of passing the product through a cooling tunnel may be unnecessary. The process 300 also includes the formation of a candy composition. For formation of candy compositions, there is a step 325 of mixing the candy composition in any desired fashion. Preferably, the candy composition is mixed in a kettle for a sufficient time to 20 provide a substantially homogenous mixture. The particular temperature and time of mixing is not important to the step 325 of mixing the candy composition. After the step 325 of mixing the candy composition, the candy composition may then be fed into and through a candy extruder 330. The candy extruder may or may not be a recycling extruder, as described above, depending upon the desired confectionery product being 25 processed. The candy composition is preferably extruded in the form of a rope of candy. After the step 330 of feeding through a candy extruder, the extruded candy preferably has a temperature of about 35-40 0 C. The extruded candy composition may have a higher or lower temperature, depending upon the particular process desired. To achieve the desired temperature, the candy composition may optionally enter a 30 cooling tunnel. Generally, however, the candy composition may simply reach the 4475113_1 (GHMatters) P87575.AU.t12/07/13 14 desired temperature through the step 325 of mixing and the extrusion at room temperature. Once the chewing gum composition and the candy composition have reached their respective desired temperatures, the compositions are separately fed into a second 5 extruder 340. To form a multi-layered confectionery product, the second extruder may be a multi-layered extruder. The multi-layered extruder may include one input port, or it may include two or more input ports, which are designed to accept more than one composition. The compositions to be inputted may be the same or they may be different. Once the composition is fed into one of the input ports, the composition is io processed in a separate extruding compartment from the other compositions which may have been fed into a separate input port. The compositions may then be extruded through one or more output ports to form a second extruded product. The compositions that are to be extruded from the second extruder may be extruded simultaneously to form a multi-layered confectionery extrudate, as will be described in more detail below. is If desired, the process may include more than one type of confectionery fed into the second extruder. In some embodiments, the process may include a chewing gum composition fed into one input port of the second extruder and a non-chewing gum candy composition fed into a second input port of the second extruder. Preferably, the chewing gum and non-chewing gum candy compositions are fed into distinct 20 compartments in the second extruder. In this fashion, the chewing gum composition and the non-chewing gum candy composition may be processed separately and extruded via separate output ports. Desirably, the output ports are located at positions proximal to each other, such that the extruded compositions are touching, or are nearly touching, upon extrusion. Thus, the second extruder may form a multi-layered confectionery 25 extrudate. There may be two or more simultaneous output ports for forming the confectionery extrudate. For example, the extruded composition may have a layer of candy extruded between two layers of chewing gum, and vice versa. Alternatively, the extruded composition may have a plurality of layers of chewing gum, or it may have a plurality 30 of layers of candy. In embodiments wherein a chewing gum/candy multi-layered confectionery is to be formed, the candy preferably has a temperature that is about 5 44751131 (GHMalters) P87575AU. I 2/07/13 15 1 0 0 C cooler than the chewing gum composition upon extrusion. For example, if the chewing gum component of the confection is extruded at a temperature of about 45 50 0 C, the candy composition preferably is extruded at a temperature of about 35-40 0 C. Desirably, the composition is extruded from the second extruder in the form of a multi s layered rope of confectionery. After the composition exits the second extruder, the extruded composition may optionally go through the step 350 of entering a rope sizing apparatus. The rope sizing apparatus desirably is capable of sizing the extruded composition to a desired height and/or width. In a desired embodiment, the rope sizing apparatus is capable of providing both vertical and horizontal sizing to the extruded 10 composition. One example of a rope sizing apparatus is that disclosed in Applicant's co pending application, U.S. Patent Application No. 12/180,207, filed July 25, 2008, which is incorporated in its entirety herein. After the confection has gone through the rope sizing apparatus, the confectionery is sized to the appropriate height and/or width. Once the confectionery composition has been appropriately sized, the sized is composition may optionally enter another cooling tunnel 360, where the composition is cooled to a desired temperature. As with above, the cooling tunnel may be capable of providing multiple passes of the composition in a zig zag formation, and in a desired embodiment the cooling tunnel 360 provides between about 9-13 passes of the composition. The cooling tunnel may be cooled to any desired temperature so as to cool 20 the composition to the desired end temperature. In one embodiment, the cooling tunnel is kept at a temperature of about 15*C. Again, depending upon the temperature of the confectionery product after it has been sized, and the desired end temperature, the step 360 of entering another cooling tunnel may be rendered unnecessary. After the cooled composition has reached the desired temperature, the cooled 25 composition may optionally be fed through a pre-sizing apparatus and/or a relaxation table 370. One example of a relaxation table is that disclosed in Applicant's co-pending application, U.S. Patent Application No. 12/180,207, filed July 25, 2008, which is incorporated in its entirety herein. After this optional step 370 has been completed, the composition is in its final size and form. The composition is ready to be finished. 4475113_1 (GHMatters) P8775AU 12/07/13 16 Once the composition has been appropriately sized and has reached its desired temperature, the composition undergoes a finishing step 380, which completes the composition forming process. In one embodiment, the finishing step 380 may include any desired steps to prepare the composition for packaging. For example, the finishing 5 step 380 may include the steps of cutting the composition, forming the finished composition, coating the composition, wrapping the composition, packaging the formation, and combinations thereof. In one embodiment, the finishing step 380 includes the step of cutting and wrapping individual pieces of confectionery to be packaged into a rigid package. In another embodiment, the finishing step 380 may io include the steps of rolling and scoring the confectionery composition. Any combination of chewing gum compositions and/or candy compositions may be processed in this fashion. For example, in any given confectionery product, there may be more than one flavor of candy composition, which may be extruded to form a multi layered candy composition, wherein each layer has a separate flavor. Alternatively, is there may be more than one flavor of chewing gum composition fed into the multi layered extruder and a candy composition fed into the multi-layered extruder, which may then be co-extruded. Each layer in the confectionery product may have a different flavor, color, texture, composition, or any desired quality. Through the particular heating, cooling, and sizing steps described above for chewing 20 gum processing and/or for candy composition processing, the final product is capable of being directly cut and wrapped and packaged into a rigid packaging without the traditional need for allowing the composition to settle for a length of time. The heating, cooling, and sizing steps described herein allow for the formation of a composition that is not subject to undesirable expansion or contraction after it is individually formed, 25 which allows the cut and wrapped composition to be packaged into the rigid package. The processing methods described herein may be better understood through reference to the following Examples, which are intended to describe the invention and are not intended to be limiting in any way. EXAMPLES Example 1 - Process of Mixing Gum 4475113_1 (GHMaiters)P87575AU.1 2107/13 17 A gum base is first melted in a jacketed sigma blade melter at a temperature sufficient to melt the gum base. The jacket is set at a temperature to obtain a product temperature between 83-884C. Once melted, the gum base is fed into a gum base holding tank. A separate kettle is heated to about 45-50 0 C. Into the kettle, the following components 5 are added at the times indicated in Table 1 below: Table 1 - Gum Mixing Process Time Step (min) 0 Add powdered components (including sweeteners, colors) I Mix powdered components in forvard direction for I minute then mix for 2 minutes in reverse direction T Add melted gum base I Add melted emulsifiers and polyols (including emulsifiers such as lecithin, and polyols such as Lycasin) 7 Mix for 6 minutes fonvard 13 Continue to mix for 6 minutes forward, while adding flavoring components 15 Mix for 2 minutes in reverse 17 Mix for 2 minutes forward 17 Add sweeteners and acids 17 Continue to mix fro 12 minutes forward 29 Mix for 2 minutes reverse 31 Mix for 2 minutes forward 33 Finish mixing At the completion of the mixing process, the mixed gum temperature should be about 52 to about 58*C. The mixed gum then may then be extruded and formed into to individual pieces. This process of mixing may be useful for any type of final gum product, whether single layered, multi-layered, or multi-layered with gum and candy layers. In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, is the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention. 4475113_1 (GHMaters) P87575 AU, 1 2107/13

Claims (54)

1. A method of improving homogeneity in confectionery mixing processes, comprising the steps of: a. mixing a predetermined amount of confectionery base and bulk sweeteners in a first direction for a first cycle period to provide a mixture; b. adding a 5 predetermined amount of a flavoring component to said mixture; c. mixing said mixture in a second direction for a second cycle period; d. mixing said mixture in said first direction for a third cycle period.
2. The method of claim 1, wherein said flavoring component comprises a material selected from the group consisting of flavors, sweeteners, acids, and combinations 10 thereof.
3. The method of claim 1 or 2, wherein said first cycle period is about 10 to about 14 minutes.
4. The method of claim 1 or 2, wherein said first cycle period is about 5 to about 10 minutes. is
5. The method of any one of claims 1 to 4, wherein said flavoring component is added to said mixture during said first cycle period.
6. The method of any one of claims I to 4, wherein said flavoring component is added to said mixture after said first cycle period.
7. The method of any one of claims 1 to 6, wherein said step adding a predetermined 20 amount of a flavoring component to said mixture comprises adding said flavoring component while mixing for about 5 to about 10 minutes.
8. The method of any one of claims 1 to 7, wherein said second cycle period is about I to about 5 minutes.
9. The method of any one of claims 1 to 8, wherein said second cycle period is about 2 25 to about 4 minutes.
10. The method of any one of claims 1 to 9, wherein said third cycle period is about 15 to about 20 minutes. 44751131 (GHMa*tcrs) P87575,AU 1 4107113 19
11. The method of any one of claims 1 to 10, further comprising the step of passing said mixture into an extruder after said third cycle period.
12. The method of claim 11, wherein said mixture is transferred to a holding area for less than one hour before said step of passing said mixture into an extruder. s
13. The method of any one of claims I to 12, further comprising the step of heating said mixture during at least one of said first, second, or third cycle periods.
14. The method of claim 13, wherein said mixture is heated to a temperature of about 85*C during said first cycle period.
15. The method of claim 13, wherein said mixture is heated to a temperature of about 10 55 0 C prior to said step of adding a predetennined amount of flavoring component.
16. The method of any one of claims I to 15, wherein said confectionery base comprises a chewing gum base.
17. The method of claim 16, wherein said mixture comprises about 30% to about 50% gum base. is
18. The method of claim 16 or 17, wherein said mixture comprises about 30% to about 50% bulk sweeteners.
19. A method of preparing a confectionery product, comprising the steps of: a. mixing a predetermined amount of products in a kettle to form a confectionery base; b. heating the mixed confectionery base to a predetermined temperature; c. feeding the heated 20 confectionery base into a first extruder; d. extruding said confectionery base into a cooling apparatus to provide a cooled confectionery product; e. feeding said cooled confectionery product into a second extruder; f. extruding said cooled confectionery product from said second extruder; and g. passing said extruded confectionery product into a finishing apparatus to finish the confectionery pieces. 25
20. The method of claim 19, further comprising the step of sizing said confectionery product after it has been extruded from said second extruder. 44751131 (GHM taaers) P87575.AU.1 4/07/13 20
21. The method of claim 20, wherein said step of sizing said confectionery product comprises passing said confectionery product through a rope sizing apparatus.
22. The method of claim 21, wherein said rope sizing apparatus comprises a vertical sizer. 5
23. The method of claim 21, wherein said rope sizing apparatus comprises a horizontal sizer.
24. The method of claim 21, wherein said rope sizing apparatus comprises a vertical sizer and a horizontal sizer.
25. The method of claim 19, further comprising the step of passing said confectionery io product through a cooling apparatus after it has been extruded from said second extruder.
26. The method of claim 19, wherein said first extruder comprises a recycling extruder.
27. The method of claim 19, further comprising the step of adding a predetermined amount of sweeteners to said confectionery base after it has been heated to a is predetermined temperature.
28. The method of claim 19, wherein said step of mixing a predetermined amount of confectionery base in a kettle comprises mixing said confectionery base in multiple mixing cycles.
29. The method of claim 28, comprising at least three mixing cycles. 20
30. The method of claim 19, wherein said confectionery base comprises a chewing gum base.
31. The method of claim 19, further comprising the step of packaging said finished confectionery pieces into a hard package.
32. A method of preparing a multi-layered confectionery product, comprising the steps 25 of: a. mixing a predetermined amount of confectionery product in a kettle; 4475113_1 (G [MatersP87575,AU.1 2107/13 21 b. heating the mixed confectionery product to a predetermined temperature; c. feeding the heated confectionery product into an extruder; d. extruding said confectionery product into a cooling apparatus to provide a cooled confectionery product; s e. feeding said cooled confectionery product into a multi-layered extruder; f. extruding said cooled confectionery product to form a multi-layered confectionery product; and g. passing said multi-layered confectionery product into a finishing apparatus.
33. The method of claim 32, further comprising the step of sizing said confectionery 10 product after it has been extruded from said second extruder.
34. The method of claim 33, wherein said step of sizing said confectionery product comprises passing said confectionery product through a rope sizing apparatus.
35. The method of claim 34, wherein said rope sizing apparatus comprises a vertical sizer, is
36. The method of claim 34, wherein said rope sizing apparatus comprises a horizontal sizer.
37. The method of claim 34, wherein said rope sizing apparatus comprises a vertical sizer and a horizontal sizer.
38. The method of claim 32, further comprising the step of passing said confectionery 20 product through a cooling apparatus after it has been extruded from said second extruder.
39. The method of claim 32, wherein said first extruder comprises a recycling extruder.
40. The method of claim 32, further comprising the step of adding a predetermined amount of sweeteners to said confectionery base after it has been heated to a 25 predetermined temperature. 4475113_1 (GHMaiters) P87575AUI 2/07113 22
41. The method of claim 32, wherein said step of mixing a predetermined amount of confectionery base in a kettle comprises mixing said confectionery base in multiple mixing cycles.
42. The method of claim 41, comprising at least three mixing cycles. s
43. The method of claim 32, wherein said multi-layered extruder is capable of extruding a product having at least three layers.
44. The method of claim 32, wherein at least two cooled confectionery products are fed into said multi-layered extruder.
45. The method of claim 44, wherein at least one of said cooled confectionery products io comprises a chewing gum base.
46. The method of claim 45, wherein said multi-layered confectionery product comprises a layer of a first chewing gum product, a layer of a confectionery product, and a layer of a second chewing gum product.
47. The method of claim 46, wherein said first and second confectionery products are is the same.
48. The method of claim 32, wherein said finishing apparatus comprises a cut & wrap apparatus to form individually wrapped confectionery pieces.
49. The method of claim 48, further comprising the step of packaging said individually wrapped confectionery pieces into a rigid package. 20
50. A method of preparing a confectionery product, wherein said method comprises use of a recycling extruder.
51. The method of claim 50, wherein a confectionery product is extruded from said recycling extruder and fed directly into said recycling extruder.
52. The method of claim 51, wherein said confectionery product that has been extruded 25 and fed directly into said recycling extruder is extruded from said recycling extruder more than one time. 4475111_1 (GHMaIters) P8757S.AU.1 2/07113 23
53. The method of claim 50, wherein said recycling extruder comprises at least two extrusion ports.
54. The method of claim 53, wherein one of said extrusion ports feeds an extruded product back into the recycling extruder. 5 4475113_1 (GHMauers) P8775 AU.1 2/07/13
AU2013206700A 2009-01-22 2013-07-04 Confectionery processing Abandoned AU2013206700A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2013206700A AU2013206700A1 (en) 2009-01-22 2013-07-04 Confectionery processing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US61/146,351 2009-01-22
AU2010206706A AU2010206706C1 (en) 2009-01-22 2010-01-22 Confectionery processing
AU2013206700A AU2013206700A1 (en) 2009-01-22 2013-07-04 Confectionery processing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2010206706A Division AU2010206706C1 (en) 2009-01-22 2010-01-22 Confectionery processing

Publications (1)

Publication Number Publication Date
AU2013206700A1 true AU2013206700A1 (en) 2013-07-25

Family

ID=48805248

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2013206701A Abandoned AU2013206701A1 (en) 2009-01-22 2013-07-04 Confectionery processing
AU2013206700A Abandoned AU2013206700A1 (en) 2009-01-22 2013-07-04 Confectionery processing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU2013206701A Abandoned AU2013206701A1 (en) 2009-01-22 2013-07-04 Confectionery processing

Country Status (1)

Country Link
AU (2) AU2013206701A1 (en)

Also Published As

Publication number Publication date
AU2013206701A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
AU2010206706B2 (en) Confectionery processing
US6558727B2 (en) High precision multiple-extrusion of confectionary products
US8048470B2 (en) Coated confectionary product
EP1699298B1 (en) Coated confectionery product
US20130280372A1 (en) Confectionery product and methods of production thereof
EP2653037A1 (en) Confectionery products
CN106659183A (en) Confection coating and process for making
EP2117336B1 (en) Method of preparing a coated confectionary product
AU2013206700A1 (en) Confectionery processing
AU2002216325C1 (en) Three phase confectionary made by extrusion
AU2002216325A1 (en) Three phase confectionary made by extrusion

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted