AU2013206051A1 - Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme - Google Patents

Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme Download PDF

Info

Publication number
AU2013206051A1
AU2013206051A1 AU2013206051A AU2013206051A AU2013206051A1 AU 2013206051 A1 AU2013206051 A1 AU 2013206051A1 AU 2013206051 A AU2013206051 A AU 2013206051A AU 2013206051 A AU2013206051 A AU 2013206051A AU 2013206051 A1 AU2013206051 A1 AU 2013206051A1
Authority
AU
Australia
Prior art keywords
alkyl
heterocycle
cycloalkyl
mmol
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2013206051A
Other versions
AU2013206051B2 (en
AU2013206051B8 (en
AU2013206051A8 (en
Inventor
Jurgen Dinges
James T. Link
Jyoti R. Patel
Jeffrey J. Rohde
Qi Shuai
Bryan K. Sorensen
Martin Winn
Vince S. Yeh
Hong Yong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AbbVie Inc
Original Assignee
AbbVie Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2011253958A external-priority patent/AU2011253958B2/en
Application filed by AbbVie Inc filed Critical AbbVie Inc
Priority to AU2013206051A priority Critical patent/AU2013206051B8/en
Priority claimed from AU2013206051A external-priority patent/AU2013206051B8/en
Publication of AU2013206051A1 publication Critical patent/AU2013206051A1/en
Publication of AU2013206051B2 publication Critical patent/AU2013206051B2/en
Application granted granted Critical
Publication of AU2013206051B8 publication Critical patent/AU2013206051B8/en
Publication of AU2013206051A8 publication Critical patent/AU2013206051A8/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

ADAMANTYL DERIVATIVES AS INHIBITORS OF THE 11-BETA-HYDROXYSTEROID DEHYDROGENASE TYPE 1 Abstract The present invention relates to compounds which are inhibitors of the 1 1-beta-hydroxysteroid dehydrogenase Type 1 enzyme. The present invention further relates to the use of inhibitors of 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme for the treatment of non-insulin dependent type 2 diabetes, insulin resistance, obesity, lipid disorders, metabolic syndrome and other diseases and conditions that are mediated by excessive glucocorticoid action.

Description

Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme 5 Field of invention The present invention relates to compounds that are inhibitors of the 11-beta hydroxysteroid dehydrogenase Type 1 enzyme. The present invention further relates to the 10 use of inhibitors of 1 1-beta-hydroxysteroid dehydrogenase Type 1 enzyme for the treatment of non-insulin dependent type 2 diabetes, insulin resistance, obesity, lipid disorders, metabolic syndrome and other diseases and conditions that are mediated by excessive glucocorticoid action. 15 Background of the Invention Insulin is a hormone that modulates glucose and lipid metabolism. Impaired action of insulin (i.e., insulin resistance) results in reduced insulin-induced glucose uptake, oxidation and storage, reduced insulin-dependent suppression of fatty acid release from adipose tissue (i.e., lipolysis) and reduced insulin-mediated suppression of hepatic glucose production and 20 secretion. Insulin resistance frequently occurs in diseases that lead to increased and premature morbidity and mortality. Diabetes mellitus is characterized by an elevation of plasma glucose levels (hyperglycemia) in the fasting state or after administration of glucose during a glucose tolerance test. While this disease may be caused by several underlying factors, it is generally 25 grouped into two categories, Type 1 and Type 2 diabetes. Type 1 diabetes, also referred to as Insulin Dependent Diabetes Mellitus ("IDDM"), is caused by a reduction of production and secretion of insulin. In type 2 diabetes, also referred to as non-insulin dependent diabetes mellitus, or NIDDM, insulin resistance is a significant pathogenic factor in the development of hyperglycemia. Typically, the insulin levels in type 2 diabetes patients are elevated (i.e., 30 hyperinsulinemia), but this compensatory increase is not sufficient to overcome the insulin resistance. Persistent or uncontrolled hyperglycemia in both type 1 and type 2 diabetes mellitus is associated with increased incidence of macrovascular and/or microvascular 1 complications including atherosclerosis, coronary heart disease, peripheral vascular disease, stroke, nephropathy, neuropathy and retinopathy. Insulin resistance, even in the absence of profound hyperglycemia, is a component of the metabolic syndrome. Recently, diagnostic criteria for metabolic syndrome have been 5 established. To qualify a patient as having metabolic syndrome, three out of the five following criteria must be met: elevated blood pressure above 130/85 mmHg, fasting blood glucose above 110 mg/dl, abdominal obesity above 40" (men) or 35" (women) waist circumference and blood lipid changes as defined by an increase in triglycerides above 150 mg/dl or decreased HDL cholesterol below 40 mg/dl (men) or 50 mg/dl (women). It is 10 currently estimated that 50 million adults, in the US alone, fulfill these criteria. That population, whether or not they develop overt diabetes mellitus, are at increased risk of developing the macrovascular and microvascular complications of type 2 diabetes listed above. Available treatments for type 2 diabetes have recognized limitations. Diet and 15 physical exercise can have profound beneficial effects in type 2 diabetes patients, but compliance is poor. Even in patients having good compliance, other forms of therapy may be required to further improve glucose and lipid metabolism. One therapeutic strategy is to increase insulin levels to overcome insulin resistance. This may be achieved through direct injection of insulin or through stimulation of the 20 endogenous insulin secretion in pancreatic beta cells. Sulfonylureas (e.g., tolbutamide and glipizide) or meglitinide are examples of drugs that stimulate insulin secretion (i.e., insulin secretagogues) thereby increasing circulating insulin concentrations high enough to stimulate insulin-resistant tissue. However, insulin and insulin secretagogues may lead to dangerously low glucose concentrations (i.e., hypoglycemia). In addition, insulin secretagogues 25 frequently lose therapeutic potency over time. Two biguanides, metformin and phenformin, may improve insulin sensitivity and glucose metabolism in diabetic patients. However, the mechanism of action is not well understood. Both compounds may lead to lactic acidosis and gastrointestinal side effects (e.g., nausea or diarrhea). 30 Alpha-glucosidase inhibitors (e.g., acarbose) may delay carbohydrate absorption from the gut after meals, which may in turn lower blood glucose levels, particularly in the postprandial period. Like biguanides, these compounds may also cause gastrointestinal side 2 effects. Glitazones (i.e., 5-benzylthiazolidine-2,4-diones) are a newer class of compounds used in the treatment of type 2 diabetes. These agents may reduce insulin resistance in multiple tissues, thus lowering blood glucose. The risk of hypoglycemia may also be 5 avoided. Glitazones modify the activity of the Peroxisome Proliferator Activated Receptor ("PPAR") gamma subtype. PPAR is currently believed to be the primary therapeutic target for the main mechanism of action for the beneficial effects of these compounds. Other modulators of the PPAR family of proteins are currently in development for the treatment of type 2 diabetes and/or dyslipidemia. Marketed glitazones suffer from side effects including 10 bodyweight gain and peripheral edema. Additional treatments to normalize blood glucose levels in patients with diabetes mellitus are needed. Other therapeutic strategies are being explored. For example, research is being conducted concerning Glucagon-Like Peptide 1 ("GLP-1 ") analogues and inhibitors of Dipeptidyl Peptidase IV ("DPP-IV") that increase insulin secretion. Other examples 15 include: Inhibitors of key enzymes involved in the hepatic glucose production and secretion (e.g., fructose-1,6-bisphosphatase inhibitors) and direct modulation of enzymes involved in insulin signaling (e.g., Protein Tyrosine Phosphatase-1B, or "PTP-1B"). Another method of treating or prophylactically treating diabetes mellitus includes using inhibitors of 11-p-hydroxysteroid dehydrogenase Type 1 (11p-HSD1). Such methods 20 are discussed in J.R. Seckl et al., Endocrinology, 142: 1371-1376, 2001 and references cited therein. Glucocorticoids are steroid hormones that are potent regulators of glucose and lipid metabolism. Excessive glucocorticoid action may lead to insulin resistance, type 2 diabetes, dyslipidemia, increased abdominal obesity and hypertension. Glucocorticoids circulate in the blood in an active form (i.e., cortisol in humans) and an inactive form (i.e., cortisone in 25 humans). 11p-HSD1, which is highly expressed in liver and adipose tissue, converts cortisone to cortisol leading to higher local concentration of cortisol. Inhibition of 11 p-HSD 1 prevents or decreases the tissue specific amplification of glucocorticoid action thus imparting beneficial effects on blood pressure and glucose- and lipid-metabolism. Thus, inhibiting 11 P-HSD1 benefits patients suffering from non-insulin dependent 30 type 2 diabetes, insulin resistance, obesity, lipid disorders, metabolic syndrome and other diseases and conditions mediated by excessive glucocorticoid action. 3 Summary of the Invention All patents, patent applications and literature references cited in the specification are herein incorporated by reference in their entirety. One aspect of the present invention is directed toward a compound of formula (I)
A
3 RR R3 R 4 N <' D'E A t A4 0 5
A
2 (I), wherein A', A 2 , A 3 and A 4 are each individually selected from the group consisting of hydrogen, alkenyl, alkyl, alkyl-NH-alkyl, alkylcarbonyl, alkylsulfonyl, carboxyalkyl, 10 carboxycycloalkyl, cyano, cycloalkyl, cycloalkylcarbonyl, cycloalkylsulfonyl, aryl, arylalkyl, aryloxyalkyl, arylcarbonyl, arylsulfonyl, heteroaryl, heteroarylalkyl, heteroaryloxyalkyl, heteroarylsulfonyl, heterocycle, heterocyclealkyl, heterocycleoxyalkyl, heterocyclesulfonyl, halogen, haloalkyl, -NR 5
-[C(R
6
R
7 )],-C(O)-R', -O-[C(R 9
R'
0 )],-C(O)-R", -OR1 2 , -S-alkyl, -S(O)-alkyl, -N(R 13
R
1 4 ), -C0 2
R
15 , -C(O)-N(R 16
R
1 7 ), -C(R 1 8
R'
9
)-OR
20
,-C(R
2 1R 22
)-N(R
23
R
24 ), 15 -C(=NOH)-N(H) 2 , -C(R18aR1 9 a)-C(O)N(RR 2 4 ), -S(O) 2
-N(R
2 sR 26 ), and -C(R aR1 9 a)_ S(O)2-N(RsR26; R18a and R1 9 a are each independently selected from the group consisting of hydrogen and alkyl; n is 0 or 1; 20 p is 0 or 1; D is a member selected from the group consisting of a -0-, -S-, -S(O)- and -S(0) 2 -; E is a member selected from the group consisting of alkyl, alkoxyalkyl, carboxyalkyl, carboxycycloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, or R 4 and E taken together with the atoms to 25 which they are attached form a heterocycle; R' is a member selected from the group consisting of hydrogen and alkyl;
R
2 is a member selected from the group consisting of hydrogen, alkyl and cycloalkyl;
R
3 and R 4 are each independently selected from the group consisting of hydrogen, alkyl, carboxyalkyl, carboxycycloalkyl, cycloalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, 30 heteroarylalkyl, heterocycle and heterocyclealkyl, or R 3 and R 4 taken together with the atoms 4 to which they are attached form a ring selected from the group consisting of cycloalkyl and heterocycle; R5 is a member selected from the group consisting of hydrogen, alkyl, carboxyalkyl, cycloalkyl, carboxycycloalkyl, aryl, arylalkyl, aryloxyalkyl, hydroxy, alkoxy, heteroaryl, 5 heteroarylalkyl, heteroaryloxyalkyl, heterocycle, heterocyclealkyl and heterocycleoxyalkyl; R 6 and R 7 are each independently selected from the group consisting of hydrogen and. alkyl, or R 6 and R7 taken together with the atom to which they are attached form a ring selected from the group consisting of cycloalkyl and heterocycle;
R
8 is selected from the group consisting of hydrogen, alkyl, carboxy, carboxyalkyl, 10 cycloalkyl, carboxycycloalkyl, aryl, arylalkyl, aryloxy, aryloxyalkyl, hydroxy, alkoxy, cycloalkyloxy, heteroaryl, heteroarylalkyl, heteroaryloxy, heteroaryloxyalkyl, heterocycle, heterocyclealkyl, heterocycleoxy, heterocycleoxyalkyl and -N(R 2 7
R
28 );
R
9 and R 10 are each independently selected from the group consisting of hydrogen and alkyl, or R9 and R 10 taken together with the atom to which they are attached form a ring 15 selected from the group consisting of cycloalkyl and heterocycle; R" is selected from the group consisting of hydroxy and -N(R 29
R
3 ); R is selected from the group consisting of hydrogen, alkyl, carboxyalkyl, cycloalkyl, carboxycycloalkyl, aryl, arylalkyl, aryloxyalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroaryloxyalkyl, heterocycle, heterocyclealkyl and heterocycleoxyalkyl; 20 R1 3 and R1 4 are each independently selected from the group consisting of hydrogen, alkyl, alkylsufonyl, aryl, arylalkyl, aryloxyalkyl, arylsulfonyl, carboxyalkyl, cycloalkyl, carboxycycloalkyl, cycloalkylsulfonyl, heteroaryl, heteroarylalkyl, heteroaryloxyalkyl, heteroarylsulfonyl, heterocycle, heterocyclealkyl, heterocycleoxyalkyl and heterocyclesulfonyl; 25 R1 5 is selected from the group consisting of hydrogen, alkyl, carboxyalkyl, cycloalkyl, carboxycycloalkyl, aryl, arylalkyl, aryloxyalkyl, heteroaryl, heteroarylalkyl, heteroaryloxyalkyl, heterocycle, heterocyclealkyl and heterocycleoxyalkyl;
R
16 and R1 7 are each independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkylsufonyl, aryl, arylalkyl, aryloxy, aryloxyalkyl, arylsulfonyl, carboxy, 30 carboxyalkyl, carboxycycloalkyl, cycloalkyl, cycloalkyloxy, cycloalkylsulfonyl, heteroaryl, heteroarylalkyl, heteroaryloxyalkyl, heteroaryloxy, heteroarylsulfonyl, heterocycle, heterocyclealkyl, heterocycleoxyalkyl, heterocycleoxy, heterocyclesulfonyl, hydroxy, and 5 alkyl-C(O)N(R 201
R
2 02 ), or, R 16 and R 17 taken together with the atom to which they are attached form a heterocycle;
R
2 01 and R202 are independently selected from the group consisting of hydrogen and alkyl; 5 R" 8 , R 9 and R 20 are each independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl, carboxyalkyl, carboxycycloalkyl, cycloalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; R21 and R 2 are each independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylcarbonyl, arylsulfonyl, cycloalkyl, carboxyalkyl, 10 carboxycycloalkyl, cycloalkylcarbonyl, cycloalkylsulfonyl, heteroaryl, heteroarylcarbonyl, heteroarylsulfonyl, heterocycle, heterocyclecarbonyl and heterocyclesulfonyl; R3 and R 2 4 are each independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, alkoxy, alkylsulfonyl, aryl, arylcarbonyl, aryloxy, arylsulfonyl, carboxyalkyl, carboxycycloalkyl, cycloalkyl, cycloalkylcarbonyl, cycloalkyloxy, 15 cycloalkylsulfonyl, heteroaryl, heteroarylcarbonyl, heteroaryloxy, heteroarylsulfonyl, heterocycle, heterocyclecarbonyl, heterocycleoxy, heterocyclesulfonyl and hydroxy, or, R2 and R 2 4 taken together with the atom to which they are attached form a ring selected from the group consisting of heteroaryl and heterocycle; R and R 2 6 are each independently selected from the group consisting of hydrogen, 20 alkyl, alkoxy, alkylsufonyl, aryl, arylalkyl, aryloxy, aryloxyalkyl, arylsulfonyl, carboxy, carboxyalkyl, carboxycycloalkyl, cycloalkyl, cycloalkyloxy, cycloalkylsulfonyl, heteroaryl, heteroarylalkyl, heteroaryloxyalkyl, heteroaryloxy, heteroarylsulfonyl, heterocycle, heterocyclealkyl, heterocycleoxyalkyl, heterocycleoxy, heterocyclesulfonyl, and hydroxy, or, R and R6 taken together with the atom to which they are attached form a heterocycle; 25 R 27 and R 28 are each independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkylsufonyl, aryl, arylalkyl, aryloxy, aryloxyalkyl, arylsulfonyl, carboxy, carboxyalkyl, cycloalkyl, cycloalkyloxy, carboxycycloalkyl, cycloalkylsulfonyl, heteroaryl, heteroarylalkyl, heteroaryloxy, heteroaryloxyalkyl, heteroarylsulfonyl, heterocycle, heterocyclealkyl, heterocycleoxy, heterocycleoxyalkyl, heterocyclesulfonyl and hydroxy, or, 30 R2 and R 28 taken together with the atom to which they are attached form a heterocycle; and
R
9 and R 30 are each independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkylsufonyl, aryl, arylalkyl, aryloxy, aryloxyalkyl, arylsulfonyl, carboxy, 6 carboxyalkyl, cycloalkyl, cycloalkyloxy, carboxycycloalkyl, cycloalkylsulfonyl, heteroaryl, heteroarylalkyl, heteroaryloxy, heteroaryloxyalkyl, heteroarylsulfonyl, heterocycle, heterocyclealkyl, heterocycleoxy, heterocycleoxyalkyl, heterocyclesulfonyl, and hydroxy, or,
R
2 9 and R 30 taken together with the atom to which they are attached form a heterocycle; 5 provided that, if R 1 is hydrogen; then at least one of A', A 2 , A 3 and A 4 is not hydrogen. A further aspect of the present invention encompasses the use of the compounds of formula (I) for the treatment of disorders that are mediated by 1 1-beta-hydroxysteroid dehydrogenase Type 1 enzyme, such as non-insulin dependent type 2 diabetes, insulin 10 resistance, obesity, lipid disorders, metabolic syndrome and other diseases and conditions that are mediated by excessive glucocorticoid action, comprising administering a therapeutically effective amount of a compound of formula (). According to still another aspect, the present invention is directed to a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula (I) in 15 combination with a pharmaceutically suitable carrier. Detailed description of the Invention All patents, patent applications and literature references cited in the specification are herein incorporated by reference in their entirety. 20 One aspect of the present invention is directed toward a compound of formula (I), wherein
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen; and A', R 3 , R 4 , D and E are as described in the summary of the invention. 25 Another aspect of the present invention is directed toward a compound of formula (I), wherein
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen;
R
3 and R 4 are hydrogen; and A', D and E are as described in the summary of the 30 invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein 7
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen;
R
3 and R 4 are hydrogen; D is -0-; and A' and E are as described in the summary of the invention. 5 Another aspect of the present invention is directed toward a compound of formula (I), wherein
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen;
R
3 and R 4 are hydrogen; 10 D is -O-; E is as described in the summary of the invention; and A' is selected from the group consisting of A is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, heteroarylalkyl, -OR 1 2 , carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(R 8
R
19
)-OR
20 , -C(O)-N(R 6
R
17 ), -C(R18aR1 9 a)-C(O)N(R 23
R
24 ), 15 -C(=NOH)-N(H) 2 , -S(O) 2
-N(R
2 sR 26 ), -C0 2
R
1 5 , -C(R18aR1 9 a)-S(O) 2
-N(R
2 5
R
26 ), and C(RR 2
)-N(RR
2 4 ) wherein R 12 , R 15 , R 16 , R 17 , R 18 , R 19 , Ri 8 a, R19a R 2 , R 22 , R 23 , R 24 , R 25 , and R 26 are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein 20 A 2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen;
R
3 andR 4 are hydrogen; D is -O-; A is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, 25 heteroarylalkyl, -OR 12 , carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(R 1 8
R
19
)-OR
20 , -C(O)
N(R
16
R
17 ), -C(R18aR'a)-C(O)N(R 23
R
24 ), -C(=NOH)-N(H) 2 , -S(O) 2
-N(R
2 5
R
26 ), -C0 2 R", -C(R18aR1 9 a)-S(O) 2
-N(R
5
R
2 6 ), and -C(R 21
R
22
)-N(R
23
R
24 ) wherein R' 2 , R 15 , R1 6 , R 17 , R'g, R 19 , Ri 8 a, R 19 a, R, R 2 , R 23 , R 24 , R 2 1, and R 26 are as described in the summary of the invention; and 30 E is selected from the group consisting of aryl, cycloalkyl, heteroaryl, heterocycle, arylalkyl and cycloalkylalkyl. Another aspect of the present invention is directed toward a compound of formula (I), 8 wherein
A
2 , A3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen;
R
3 is hydrogen; 5 R 4 is alkyl; and A', D and E are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I); wherein
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen; 10 R 3 is hydrogen;
R
4 is alkyl; D is -0-; and A' and E are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein 15 A 2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen;
R
3 is hydrogen;
R
4 is alkyl; D is -0-; 20 E is as described in the summary of the invention; and A' is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, heteroarylalkyl, -OR 12, carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(R1'R1 9
)-OR
2 0 , -C(O)
N(R
16
R
17 ), -C(Ri 8 aRI 9 a)-C(O)N(R 2 3
R
2 4 ), -C(=NOH)-N(H) 2 , -S(O) 2
-N(R
25
R
2 6 ), -CO 2 R", -C(R18aR1 9 a)-S(O) 2
-N(R
25
R
26 ), and -C(R 2 1
R
22
)-N(R
2 3
R
2 4 ) wherein R 12 , R 15 , R 16 , R 17 , R 18 , R 19 , 25 Risa, R 9 a, R 21 , R 2 2 , R 2 3 , R 24 , R 25 , and R 2 6 are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein
A
2 , A 3 and A 4 are hydrogen; RI and R 2 are hydrogen; 30 R 3 is hydrogen;
R
4 is alkyl; D is -O-; 9 A' is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, heteroarylalkyl, -OR 12 , carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(R 18
R
19
)-OR
2 0 , -C(O)
N(R
16
R
17 ), -C(R18aR1 9 a)-C(O)N(R 2 3
R
24 ), -C(=NOH)-N(H) 2 , -S(O) 2
-N(R
25
R
26 ), -C0 2 R", -C(R18aRl 9 a)-S(O) 2
-N(R
25
R
26 ), and -C(R 21
R
22
)-N(R
2 3
R
24 ) wherein R, 12
R
15 , R 16 , R 17 , R 18 , R 19 , 5 Risa, R19a, R2, R2, R23, R24, R2, and R 2 6 are as described in the summary of the invention; and E is selected from the group consisting of aryl, cycloalkyl, heteroaryl, heterocycle, arylalkyl and cycloalkylalkyl. Another aspect of the present invention is directed toward a compound of formula (I), 10 wherein
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen;
R
3 and R 4 are alkyl; and A', D and E are as described in the summary of the invention. 15 Another aspect of the present invention is directed toward a compound of formula (I), wherein
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen;
R
3 and R 4 are alkyl; 20 D is -0-; and A and E are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen; 25 R 3 and R 4 are alkyl; D is -O-; E is as described in the summary of the invention; and A' is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, heteroarylalkyl, -OR 12 , carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(R 18
R
19
)-OR
2 0 , -C(O) 30 N(R 16
R
17 ), -C(R1 8 aR1 9 a)-C(O)N(R 23
R
24 ), -C(=NOH)-N(H) 2 , -S(O) 2
-N(R
25
R
26 ), -C0 2
R
15 , -C(R1 8 aRl 9 a)-S(O) 2
-N(R
2 5R 26 ), and -C(RR 2
)-N(R
2 3
R
2 4 ) wherein R , R , R 1, R , R8, R 1, Ri 8 a, R1 9 a, R 21 , R 22 , R 3 , R 24 , R 2 5 and R 26 are as described in the summary of the invention. 10 Another aspect of the present invention is directed toward a compound of formula (I), wherein
A
2 , A 3 and A 4 are hydrogen; R1 and R 2 are hydrogen; 5 R 3 and R 4 are alkyl; D is -O-; A' is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, heteroarylalkyl, -OR1 2 , carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(R 1 8
R'
9
)-OR
2 0 , -C(O) N(R1 6 R1 7 ), -C(RisaR1 9 a)-C(O)N(R23R24), -C(=NOH)-N(H) 2 , -S(O) 2
-N(RR
2 R6), -CO 2 R", 10 -C(RisaRl'a)-S(O) 2 -N(R2sR26), and -C(RR 2
)-N(R
2 3
R
2 4 ) wherein R , R , R 1, R , R1 8 , R 19 , 18a 9a 2 22 2 Ri, R , R R, R22 R23 R 2 4 , R 25 , and R 26 are as described in the summary of the invention; and E is selected from the group consisting of aryl, cycloalkyl, heteroaryl, heterocycle, arylalkyl and cycloalkylalkyl. 15 Another aspect of the present invention is directed toward a compound of formula (I), wherein
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen;
R
3 and R 4 taken together with the atoms to which they are attached form a ring 20 selected from the group consisting of cycloalkyl and heterocycle; and A', D and E are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein A2, A 3 and A 4 are hydrogen; 25 R1 and R 2 are hydrogen;
R
3 and R 4 taken together with the atoms to which they are attached form a cycloalkyl ring; and A', D and E are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein 30 A2, A 3 and A 4 are hydrogen;
R
1
R
2 are hydrogen;
R
3 and R 4 taken together with the atoms to which they are attached form a cycloalkyl 11 ring; D is -0-; and A' and E are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein 5 A2, A3 and A 4 are hydrogen;
R
1 and R2 are hydrogen; R3 and R 4 taken together with the atoms to which they are attached form a cycloalkyl ring; D is -O-; 10 E is as described in the summary of the invention; and A' is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, heteroarylalkyl, -OR 12 , carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(R 18
R
1 9
)-OR
2 0 , -C(O)
N(R
1 6
R
17 ), -C(R1 8 aRI 9 a)-C(O)N(R 23
R
24 ), -C(=NOH)-N(H) 2 , -S(O) 2
-N(R
25
R
2 6 ), -C0 2
R
15 , -C(R1 8 aRI 9 a)-S(O) 2
-N(R
2
R
2 6 ), and -C(RR 2
)-N(R
23
R
24 ) wherein R 12 , R 15 , R 16 , R 17 , R 18 , R 19 , 15 R 8 a, R19a, R 21 , R 22
R
23 , R 24 , R 2 5 and R 26 are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein A 2, A3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen; 20 RW and R 4 taken together with the atoms to which they are attached form a cycloalkyl ring; D is -O-; A' is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, heteroarylalkyl, -OR 12 , carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(R 8
R
19
)-OR
2 0 , -C(O) 25 N(R 16
R
17 ), -C(R18aRl 9 a)-C(O)N(R 2 3
R
24 ), -C(=NOH)-N(H) 2 , -S(O) 2
-N(R
25
R
26 ), -C0 2
R
15 -C(RaaR19a)-S(O)2-N(R2R26), and -C(RR 2
)-N(R
23
R
4 ) wherein R1 2 , R11, R1 6 , R 1 1, R11, R 19 , Ri 8 a, Ri 9 a, R 2 , R 22 , R 23 , R 24 , R 25 , and R 26 are as described in the summary of the invention; and E is selected from the group consisting of aryl, cycloalkyl, heteroaryl, heterocycle, 30 arylalkyl and cycloalkylalkyl. Another aspect of the present invention is directed toward a compound of formula (I), wherein 12
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen;
R
3 and R 4 taken together with the atoms to which they are attached form a cyclopropyl ring; 5 D is -O-; A' is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, heteroarylalkyl, -OR 12 , carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(R 18
R
19
)-OR
2 0 , -C(O)
N(R
1 6 R 17 ), -C(R1 8 aRl 9 a)-C(O)N(R 23
R
2 4 ), -C(=NOH)-N(H) 2 , -S(O) 2
-N(R
5
R
2 6 ), -C0 2
R
15 , 1 15 16 17 -C(R18aR1 9 a)-S(O) 2 -N(R5R 2 6 ), and -C(RR 2
)-N(R
23
R
2 4 ) wherein R , R15, R , R , R 18 , R 19 , 10 Risa, Ria, R 2 1, R 2 , R 23 , R 2 4 , R 2 5 , and R 2 6 are as described in the summary of the invention; and E is selected from the group consisting of aryl, cycloalkyl, heteroaryl, heterocycle, arylalkyl and cycloalkylalkyl. Another aspect of the present invention is directed toward a compound of formula (I), 15 wherein
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen;
R
3 and R 4 taken together with the atoms to which they are attached form a cyclobutyl ring; 20 D is -O-; A' is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, heteroarylalkyl, -OR 12 , carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(R 18
R
19
)-OR
2 0 , -C(O)
N(R
16
R
17 ), -C(R18aR1 9 a)-C(O)N(R 23
R
2 4 ), -C(=NOH)-N(H) 2 , -S(O) 2
-N(R
2 5
R
2 6 ), -C0 2
R
15 , -C(R18aR1 9 a)-S(O) 2
-N(R
2 sR 2 6 ), and -C(RR? 2
)-N(R
2 3
R
2 4 ) wherein R 12 , R 15 , R 16 , R 17 , R 18 , R 19 , 25 Ri 8 a, R 19 a, R? 1 , R? 2 , R? 3 , R 2 4 k 25 , and R 2 6 are as described in the summary of the invention; and E is selected from the group consisting of aryl, cycloalkyl, heteroaryl, heterocycle, arylalkyl and cycloalkylalkyl. Another aspect of the present invention is directed toward a compound of formula (I), 30 wherein
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen; and 13 R3 and R 4 taken together with the atoms to which they are attached form a heterocycle, and A', D and E are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein 5 A2, A3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen; R3 and R 4 taken together with the atoms to which they are attached form a heterocycle; D is -0-; and A and E are as described in the summary of the invention. 10 Another aspect of the present invention is directed toward a compound of formula (I), wherein
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen; R3 and R 4 taken together with the atoms to which they are attached form a 15 heterocycle; E is as described in the summary of the invention; D is -0-; and A' is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, heteroarylalkyl, -OR1 2 , carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(R 1 8
R'
9
)-OR
2 0 , -C(O) 20 N(R 1 6
R
17 ), -C(R18aR1 9 a)-C(O)N(R 2 3
R
24 ), -C(=NOH)-N(H) 2 , -S(0) 2
-N(R)
5 R , CO 2
R
15 , -C(R18aR1 9 a)-S(O) 2
-N(R
2 5R 2 6 ), and -C(R R )-N(R23R 24 ) wherein R , R , R 16, R , R18, R19, Ri a, R1 9 a, R 2 1, R2, R23, R24, R2, and R 2 6 are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein 25 A 2 , A 3 and A 4 are hydrogen; Ri and R 2 are hydrogen;
R
3 and R 4 taken together with the atoms to which they are attached form a heterocycle; D is -0-; 30 A is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, heteroarylalkyl, -OR 12 , carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(Rl 8
R
19
)-OR
2 0 , -C(O)
N(R
16
R
17 ), -C(R1 8 aR1 9 a)-C(O)N(R 23
R
24 ), -C(=NOH)-N(H) 2 , -S(O) 2
-N(R
25
R
26 ), -C0 2
R
15 , 14 -C(Ri 8 aR 9 a)-S(O) 2
-N(R
5
R
2 6 ), and -C(RR 2
)-N(R
2 3
R
2 4 ) wherein R 12 , R 15 , R 16 , R 17 , R 18 , R 19 , R ia, R1 9 a, R 1 , R2, R23, R 2 4 , R 5 , and R 2 6 are as described in the summary of the invention; and E is selected from the group consisting of aryl, cycloalkyl, heteroaryl, heterocycle, 5 arylalkyl and cycloalkylalkyl. Another aspect of the present invention is directed toward a compound of formula (I), wherein
A
2 , A 3 and A 4 are hydrogen;
R
1 and R 2 are hydrogen; 10 R 4 and E taken together with the atoms to which they are attached form a heterocycle; and A' and D are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein
A
2 , A 3 and A 4 are hydrogen; 15 R' and R 2 are hydrogen;
R
4 and E taken together with the atoms to which they are attached form a heterocycle; D is -0- and A' is as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein 20 A 2 , A 3 and A 4 are hydrogen;
R
1
R
2 are hydrogen;
R
4 and E taken together with the atoms to which they are attached form a heterocycle; D is -0-; and A' is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, 25 heteroarylalkyl, -OR 12 , carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(R 8 R 19
)-OR
20 , -C(O)
N(R
6 R1 7 ), -C(R1 8 aR1 9 a)-C(O)N(R 2 3
R
2 4 ), -C(=NOH)-N(H) 2 , -S(0) 2
-N(R
25
R
2 6 ), -C0 2
R
15 -C(R1 8 aR1 9 a)-S(0) 2
-N(RR
2 6 ), and -C(RR 2
)-N(R
2 3
R
2 4 ) wherein R 12 , R", R 6 , R 17 , R 18 , R 19 , Risa, R1 9 a, R 1 , R 2 , R 2 3
R
, R R, and R 26 are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), 30 wherein A' is selected from the group consisting of alkylsulfonyl, arylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl and heterocyclesulfonyl;
A
2 , A3 and A4 are hydrogen; 15 D is -0-; and R', R 2 , R, R 4 , and E are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (I), wherein A' is -S(0) 2
-N(R
2 sR 2 ) wherein R 2 5 and R 26 are as described in the summary of the invention; 5 A 2 , A 3 and A 4 are hydrogen; D is -O-; and R 1 , R 2 , R 3 , R 4 , and E are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (1), wherein A' is -C(O)-N(R 1 6
R
1 7 ) wherein R 16 is selected from the group consisting of hydrogen and alkyl and R" 7 is selected from the group consisting of arylalkyl and heteroarylalkyl; 10 D is -O-;
A
2 , A 3 and A4 are hydrogen; and R 1 , R 2 , R, R 4 , and E are as described in the summary of the invention. Another aspect of the present invention is directed toward a compound of formula (1), wherein 15 A 2 , A 3 and A4 are hydrogen;
R
1 and R 2 are hydrogen; D is selected from the group consisting of--S-, -S(O)- and -S(O) 2 ; and A' is selected from the group consisting of alkenyl, alkylsulfonyl, cyano, heteroaryl, heteroarylalkyl, -OR2, carboxyalkyl, -S-alkyl, -S(O)-alkyl, -C(R1"R1 9
)-OR
20 , -C(O) 20 N(R 1 6
R
1 7 ), -C(R 1 8 aR1 9 a)-C(O)N(R 23
R
24 ), -C(=NOH)-N(H) 2 , -S(O) 2
-N(R
2 5
R
2 6 ), -C0 2
R
1 5 , -C(R18aR1 9 a)-S(0) 2
-N(R
25
R
26 ), and -C(RlR 22
)-N(R
23
R
2 4 ) wherein R 12 , R 15 , R 16 , R 1 7 , R18, R 19 , Risa, R1 9 a, R 21 , R 22 , R 23 , R 2 4 , R 2 5 , and R 26 are as described in the summary of the invention; E is selected from the group consisting of aryl, cycloalkyl, heteroaryl, heterocycle, arylalkyl and cycloalkylalkyl; and 25 R and R 4 are each independently selected from the group consisting of hydrogen, alkyl and arylalkyl, or R 3 and R 4 together with the atom to which they are attached form a cycloalkyl ring. Another aspect of the present invention is directed to a compound selected from the following group 30 E-4-[(2-methyl-2-phenoxypropanoyl)amino]adamantane-1-carboxamide; E-4-[(2-methyl-2-{ [4-(trifluoromethyl)benzyl]oxy}propanoyl)amino]adamantane-1 carboxamide; 16 E-4-({2-methyl-2-[(2-methylcyclohexyl)oxy]propanoyl} amino)adamantane-1 carboxylic acid; E-4-({2-methyl-2-[(3-methylcyclohexyl)oxy]propanoyl} amino)adamantane-1 carboxylic acid; 5 E-4-{[2-(cycloheptyloxy)-2-methylpropanoyl] amino}adamantane-1-carboxylic acid; E-4-{[2-(cyclohexylmethoxy)-2-methylpropanoyl] amino} adamantane- 1 -carboxylic acid; E-4-{[2-(4-chlorophenoxy)-2-methylpropanoyl] amino } adamantane- 1 -carboxylic acid; E-4-{[2-(4-chlorophenoxy)-2-methylpropanoyl] amino } adamantane- 1 -carboxamide; 10 E-4-({2-methyl-2-[(4-methylcyclohexyl)oxy]propanoyl} amino)adamantane-1 carboxamide; E-4-[(2-phenoxypropanoyl)amino]adamantane-1-carboxamide; E-4-{[2-methyl-2-(2-methylphenoxy)propanoyl] amino} adamantane- 1 -carboxylic acid; 15 E-4-{[2-methyl-2-(4-methylphenoxy)propanoyl] amino} adamantane- 1 -carboxylic acid; E-4-{[2-(2-chlorophenoxy)-2-methylpropanoyl] amino } adamantane- 1 -carboxylic acid; E-4-{[2-(2-methoxyphenoxy)-2-methylpropanoyl] amino}adamantane-1-carboxamide; E-4-{[2-(4-methoxyphenoxy)-2-methylpropanoyl] amino}adamantane-1-carboxamide; 20 E-4-({2-methyl-2-[3-(trifluoromethyl)phenoxy]propanoyl} amino)adamantane-1 carboxamide; E-4-{[2-(3-methoxyphenoxy)-2-methylpropanoyl] amino}adamantane-1-carboxamide; E-2-(4-Chloro-phenoxy)-N-(5-hydroxy-adamantan-2-yl)-2-methyl-propionamide; E-{[2-Methyl-2-(4-methylphenoxy)propanoyl] amino}adamantane-1-carboxamide; 25 E-4-{[2-(3-Chlorophenoxy)-2-methylpropanoyl] amino}adamantane-1-carboxamide; E-4-({2-Methyl-2-[4-(trifluoromethoxy)phenoxy]propanoyl} amino)adamantane-1 carboxamide; E-4-{[2-(3 -Bromophenoxy)-2-methylpropanoyl] amino} adamantane- 1 -carboxylic acid; 30 4-({[((E)-4-{[2-(4-Chlorophenoxy)-2-methylpropanoyl] amino}-1 adamantyl)carbonyl] amino}methyl)benzoic acid; E-4-{[2-(2,3-Dimethylphenoxy)-2-methylpropanoyl]amino}adamantane-1-carboxylic 17 acid; tert-Butyl 4-(2- { [(E)-5-(aminocarbonyl)-2-adamantyl] amino} -1,1 -dimethyl-2 oxoethoxy)phenylcarbamate; E-N-[4-(Aminocarbonyl)benzyl]-4-{[2-(4-chlorophenoxy)-2 5 methylpropanoyl] amino} adamantane- 1 -carboxamide; E-N-[4-(Aminocarbonyl)methyl]-4-{[2-(4-chlorophenoxy)-2 methylpropanoyl]amino} adamantane- 1 -carboxamide; 3-({[((E)-4-{[2-(4-Chlorophenoxy)-2-methylpropanoyl] amino}-1 adamantyl)carbonyl] amino} methyl)benzoic acid; 10 E-4-({2-[(5-Bromopyridin-2-yl)oxy]-2-methylpropanoyl} amino)adamantane-1 carboxamide; E-4-{[2-(2-Cyanophenoxy)-2-methylpropanoyl] amino} adamantane- 1 -carboxamide; E-4-{[2-(4-Hydroxyphenoxy)-2-methylpropanoyl] amino} adamantane- 1 -carboxamide; ((E)-4-{[2-(4-Chlorophenoxy)-2-methylpropanoyl] amino} -1 -adamantyl)acetic acid; 15 N-[(E)-5-(2-Amino-2-oxoethyl)-2-adamantyl]-2-(4-chlorophenoxy)-2 methylpropanamide; 2-(4-Chlorophenoxy)-2-methyl-N-[(E)-5-(2H-tetraazol-5-ylmethyl)-2 adamantyl]propanamide; N-{(E)-5-[(Aminosulfonyl)methyl]-2-adamantyl}-2-(4-chlorophenoxy)-2 20 methylpropanamide; N-{(E)-5-[(Z)-Amino(hydroxyimino)methyl]-2-adamantyl}-2-(4-chlorophenoxy)-2 methylpropanamide; E-N-[4-(Aminosulfonyl)benzyl]-4-{[2-(4-chlorophenoxy)-2 methylpropanoyl] amino}adamantane-1-carboxamide; 25 E-4-{[2-(4-Chlorophenoxy)-2-methylpropanoyl] amino} -N-(4 {[(methylsulfonyl)amino]carbonyl}benzyl)adamantane-1-carboxamide; E-4-({2-[(4-Chlorophenyl)thio]-2-methylpropanoyl}amino)adamantane-1-carboxylic acid; E-4-({2-[(4-Methoxyphenyl)thio]-2-methylpropanoyl}amino)adamantane-1 30 carboxamide amide; E-4-({2-[(4-Methoxyphenyl)sulfinyl]-2-methylpropanoyl}amino)adamantane-1 carboxamide; 18 E-4-( {2-[(4-Methoxyphenyl)sulfonyl]-2-methylpropanoyl} amino)adamantane- 1 carboxamide; E-4-( {2-[4-Chloro-2-(pyrrolidin- 1-ylsulfonyl)phenoxy] -2 methylpropanoyl} amino) adamantane- 1-carboxamide; 5 E-4-( {2-Methyl-2-[4-(methylsulfonyl)phenoxy]propanoyl} amino)adamantane- 1 carboxamide; E-4-( {2-Methyl-2-[2--(methylsulfonyl)phenoxy]propanoyl} amino)adamnantane- 1 carboxamide; E-4-[(2- {4-Chloro-2-[(diethylamnino)sulfonyl]phenoxy} -2 10 methylpropanoyl)amino] adarnantane-l1-carboxamide; E-4-({2-Methyl-2-[4-(pyrrolidin-1 ylsulfonyl)phenoxy]propanoyl} amino)adamantane-l1-carboxamnide; 2-(2-Chloro-4-fluorophenoxy)-N-[(E)-5-hydroxy-2-adamantyl] -2 methyipropanamide; 15 2-(2-Chloro-4-fluorophenoxy)-2-methyl-N-[(E)-5-(2H-tetraazol-5-yl)-2 adamantyl]propanamnide; 2-(2-Chloro-4-fluorophenoxy)-2-methyl-N-[(E)-5-(methyltbio)-2 adamantyl]propanamide; 2-(2-Chloro-4-fluorophenoxy)-2-methyl-N-[(E)-5-(methylsulfonyl)-2 20 adamantyl]propanamide; 2-(2-Chloro-4-fluorophenoxy)-2-methyl-N-[(E)-5-(methysulfinyl)-2 adamnantyl]propanamide; N-[(E)-5-(Aminosulfonyl)-2-adamnantyl] -2-(4-chlorophenoxy)-2-methylpropanamnide; E-4-( {[1 -(4-Chlorophenoxy)cyclobutyl] carbonyl} amnino)adamantane- 1-carboxamnide; 25 4- [(1{ [((E)-4- {[2-(4-Chlorophenoxy)-2-methylpropanoyl] amino} -1 adamnantyl)methyl] sulfonyl} amino)methyl]benzoic acid; 2-(4-Chlorophenoxy)-N- [(E)-5-(1H-imidazol-2-yl)-2-adamantyl] -2 methyipropanamide; (2E)-3-((E)-4- {[2-(4-Chlorophenoxy)-2-methylpropanoyl] amnino} -1 30 adamantyl)acrylic acid; (E)-4-[(2-Methyl-2- {[5-(1H-pyrazol-1-yl)pyridin-2 yl] oxy} propanoyl) amino] adamantane- 1 -carboxamide; 19 2-(4.-Chlorophenoxy)-N-[(E)-5-isoxazol-5-yl-2-adamantyl]-2-mthylpropaalide; 2-(4-Chlorophonoxy)-2-mothyl-N- {(E)-5-[(2-morpholin-4-ylethoxy)methyl] -2 adamantyllpropanamide; N-[(L)-5-(Arniinosulfonyl)-2-adamantyl]-2-(2-chlorophenoxy)-2-methylpropanamide; 5 N-[(E)-5-(Aminosulfonyl)-2-adamantyl] -2-methyl-2-(2-methylphenoxy)propanamide; N-[(E)-5-(Aminosulfonyl)-2-adamantyl] -2-rnethyl-2-(4-methylphenoxy)propanamide; N-[(E)-5-(Aminosulfonyl)-2-adamantyl] -2-methyl-2-[2 (trifluoromethyl)phenoxy]propanamide; N-[(E)-5-(Aminosulfonyl)-2-adamantyl]-2-methyl-2-[2 10 (trifluoromethoxy)phenoxy]propanamide; N-[(E)-5-(Aminosulfonyl)-2-adamantyl] -2-(2-chloro-4-fluorophenoxy)-2 methylpropanamide; E-4- {[2-(2-chlorophenoxy)-2-methyl-3-phenylpropanoyl] amino} adamantane- 1 carboxamide; 15 2-(4-chlorophenoxy)-N-[(E)-5-hydroxy-2-adamantyl]-2-methylpropanamide; E-4-( {2-methyl-2-[(5-morpholin-4-ylpyridin-2-yl)oxy]propanoyl} amino)adamantane 1 -carboxamide; E-4- {[2-methyl-2-(pyridin-2-yloxy)propanoyl] amino}I adamantane- 1 -carboxamide; 2-(4-chlorophenoxy)-2-methyl-N- { E')-5 -[(methylamnino)sulfonyl]-2 20 adamantyllpropanamide; 3 -((E)-4- {[2-(4-chlorophenoxy)-2-methylpropanoyl] amino}I -1 -adamantyl)propanoic acid; 2-(4-chlorophenoxy)-N- {(E)-5-[(dimethylamnino)sulfonyl] -2-adamantyl} -2 methyipropanamide; 25 E-4-[(2- {[5-(1H-imidazol- 1-yl)pyridin-2-yl] oxy} -2 methylpropanoyl)amnino] adamnantane-l1-carboxamide; 2-(4-chlorophenoxy)-2-methyl-N-[(E)-5 -(1H-pyrazol-3-yl)-2 adamiantyl]propanamnide; N-[(F)-5-(amninosulfonyl)-2-adamantyl]-2-(3-chlorophenoxy)-2-methylpropanamide; 30 N-[(F)-5-(arninosulfonyl)-2-adamantyl] -2-methyl-2-(3-methylphenoxy)propanamnide; N-[(E)-5 -(aniinosulfonyl)-2-adamantyl] -2-(2-methioxyphenoxy) -2 methyipropanamide; 20 N-[(E)-5-(aminosulfonyl)-2-adamantyl]-2-(3-methoxyphenoxy)-2 methylpropanamide; N-[(E)-5-(aminosulfonyl)-2-adamantyl]-2-(4-methoxyphenoxy)-2 methylpropanamide; 5 N-[(E)-5-(aminosulfonyl)-2-adainantyl]-2-(4-cyanophenoxy)-2-methylpropanamide; E-4-{[2-methyl-2-(2-methylphenoxy)propanoyl] amino} adamantane- 1 -carboxamide; E-4-{[2-methyl-2-(3-methylphenoxy)propanoyl] amino} adamantane-1 -carboxamide; E-4-[(2-methyl-2- { [(1 S,2S)-2-methylcyclohexyl]oxy} prop anoyl)amino] adamantane 1-carboxylic acid; 10 E-4-({2-methyl-2-[(2-methylcyclohexyl)oxy]propanoyl} amino)adainantane-1 carboxamide E-4-{[2-(cycloheptyloxy)-2-methylpropanoyl] amino} adamantane-1 -carboxamide; E-4-{[2-(cyclohexylmethoxy)-2-methylpropanoyl] amino} adamantane- 1 carboxamide; 15 E-4-({2-methyl-2-[(3-methylcyclohexyl)oxy]propanoyl}amino)adamantane-1 carboxamide; E-4-{[2-(2-chlorophenoxy)-2-methylpropanoyl] amino} adamantane- 1 -carboxamide; 4-{[({(E)-4-[(2-methyl-2-phenoxypropanoyl)amino]-1 adamantyl}carbonyl)amino]methyl}benzoic acid; 20 E-4-({2-[(4,4-dimethylcyclohexyl)oxy]-2-methylpropanoyl}amino)adamantane-1 carboxylic acid; E-4-{[2-methyl-2-(1,2,3,4-tetrahydronaphthalen-2 yloxy)propanoyl] amino}adamantane-1-carboxylic acid; E-4-{[2-(4-bromophenoxy)-2-methylpropanoyl] amino}adamantane-1-carboxylic 25 acid; E-4-{[2-methyl-2-(1-naphthyloxy)propanoyl] amino} adamantane-1 -carboxylic acid; E-4-{[2-(2,3-dichlorophenoxy)-2-methylpropanoyl] amino} adamantane- 1 -carboxylic acid; E-4-{[2-(2,4-dichlorophenoxy)-2-methylpropanoyl] amino} adamantane- 1 -carboxylic 30 acid; E-4-{[2-(2,5-dichlorophenoxy)-2-methylpropanoyl]amino}adamantane-1-carboxylic acid; 21 E-4-{[2-(2,4-dimethylphenoxy)-2-methylpropanoyl] amino} adamantane- 1 -carboxylic acid; E-4- {[2-(2,5-dimethylphenoxy)-2-methylpropanoyl] amino} adamantane- 1 -carboxylic acid; 5 E-4-{[2-methyl-2-(2-naphthyloxy)propanoyl]amino}adamantane-1-carboxylic acid; E-4-{[2-(4-bromo-2-fluorophenoxy)-2-methylpropanoy1 amino} adamantane-1 carboxylic acid; E-4-({2-methyl-2-[(7-methyl-2,3-dihydro-1H-inden-4 yl)oxy]propanoyl}amino)adamantane-1-carboxylic acid; 10 E-4-{[2-(4-bromo-2-chlorophenoxy)-2-methylpropanoyl] amino} adamantane- 1 carboxylic acid; E-4-{[2-(1,1'-biphenyl-3-yloxy)-2-methylpropanoyl]amino}adanantane-1-carboxylic acid; E-4-{[2-(2-bromophenoxy)-2-methylpropanoyl] amino}adamantane-1-carboxylic 15 acid; E-N-[4-(aminocarbonyl)benzyl]-4-[(2-methyl-2 phenoxypropanoyl)amino]adamantane-1-carboxamide; E-4-{[2-(4-chlorophenoxy)-2-methylpropanoyl] amino} -N-(1,3-thiazol-5 ylmethyl)adamantane-1-carboxamide; 20 E-4- {[2-(4-chlorophenoxy)-2-methylpropanoyl] amino} -N-(pyridin-4 ylmethyl)adamantane-1-carboxamide; E-4-{[2-(4-aminophenoxy)-2-nethylpropanoyl] amino} adamantane-1 -carboxamide; E-4-({2-methyl-2-[2-(trifluoromethoxy)phenoxy]propanoyl} amino)adamantane-1 carboxamide; 25 E-4-({2-methyl-2-[2-(trifluoromethyl)phenoxy]propanoyl}amino)adamantane-1 carboxamide; E-4-({2-methyl-2-[4-(pyrrolidin-1 ylsulfonyl)phenoxy]propanoyl}amino)adamantane-1-carboxamide; 2-(2-chloro-4-fluorophenoxy)-N-[(E)-5-hydroxy-2-adamantyl]-2-methylpropanamide; 30 2-(2-chloro-4-fluorophenoxy)-N-[(E)-5-cyano-2-adamantyl]-2-methylpropanamide; E-4-[(2-methyl-2-{4-[(trifluoroacetyl)amino]phenoxy}propanoyl)amino] adamantane 1-carboxamide; 22 E-4-{[2-(3-bromo-4-methoxyphenoxy)-2-methylpropanoyl] amino} adamantane- 1 carboxamide; E-4-{[2-(2,5-dibromo-4-methoxyphenoxy)-2-methylpropanoyl]amino} adamantane- 1 carboxamide; 5 E-4-{[2-(2-bromo-4-methoxyphenoxy)-2-methylpropanoyl] amino} adamantane- 1 carboxamide; E-4-{[2-(2-cbloro-4-fluorophenoxy)-2-methylpropanoyl] amino} -N,N dimethyladamantane-1-carboxamide; 2-(4-chlorophenoxy)-N-((E)-5-{[(4-methoxy-6-methylpyrimidin-2-yl)amino]methyl} 10 2-adamantyl)-2-methylpropanamide; E-4-{[2-(4- { [(tert-butylamino)carbonyl] amino} phenoxy)-2 methylpropanoyl]amino} adamantane- 1-carboxamide; ethyl 4-(2-{[(E)-5-(aminocarbonyl)-2-adamantyl] amino}-1,1-dimethyl-2 oxoethoxy)phenylcarbamate; 15 E-4-[(2-methyl-2-{4-[(propylsulfonyl)amino]phenoxy}propanoyl)amino] adamantane-1-carboxamide; E-4-[(2-{4-[(3,3-dimethylbutanoyl)amino]phenoxy} -2-methylpropanoyl)amino] adamantane- 1 -carboxamide; E-4-{[2-methyl-2-(phenylsulfinyl)propanoyl] amino}adamantane-1-carboxylic acid; 20 E-4-{[2-methyl-2-(phenylsulfonyl)propanoyl]amino} adamantane- 1 -carboxylic acid; N-[(E)-5-cyano-2-adamantyl]-2-[(4-methoxyphenyl)sulfonyl]-2-methylpropanamide; 2-[(4-methoxyphenyl)sulfonyl]-2-methyl-N-[(E)-5-(2H-tetraazol-5-yl)-2 adamantyl]propanamide; and E-4-({2-[4-(benzyloxy)phenoxy]-2-methylpropanoyl} amino)adamantane-1 25 carboxamide. Another embodiment of the present invention discloses a method of inhibiting 11 beta-hydroxysteroid dehydrogenase Type I enzyme, comprising administering to a mammal, a therapeutically effective amount of the compound of formula (I). Another embodiment of the present invention discloses a method of treating disorders 30 in a mammal by inhibiting 11-beta-hydroxysteroid dehydrogenase Type I enzyme, comprising administering to a mammal, a therapeutically effective amount of the compound of formula (1). 23 Another embodiment of the present invention discloses a method of treating non insulin dependent type 2 diabetes in a mammal by inhibiting 1 1-beta-hydroxysteroid dehydrogenase Type I enzyme comprising administering to a mammal, a therapeutically effective amount of the compound of formula (). 5 Another embodiment of the present invention discloses a method of treating insulin resistance in a mammal by inhibiting 1 1-beta-hydroxysteroid dehydrogenase Type I enzyme comprising administering to a mammal, a therapeutically effective amount of the compound of formula (I). Another embodiment of the present invention discloses a method of treating obesity in 10 a mammal by inhibiting 1 1-beta-hydroxysteroid dehydrogenase Type I enzyme comprising administering to a mammal, a therapeutically effective amount of the compound of formula (I). Another embodiment of the present invention discloses a method of treating lipid disorders in a mammal by inhibiting 11 -beta-hydroxysteroid dehydrogenase Type I enzyme 15 comprising administering to a mammal, a therapeutically effective amount of the compound of formula (I). Another embodiment of the present invention discloses a method of treating metabolic syndrome in a mammal by inhibiting 1 1-beta-hydroxysteroid dehydrogenase Type I enzyme comprising administering to a mammal, a therapeutically effective amount of the 20 compound of formula (I). Another embodiment of the present invention discloses a method of treating diseases and conditions that are mediated by excessive glucocorticoid action in a mammal by inhibiting 1 1-beta-hydroxysteroid dehydrogenase Type I enzyme comprising administering to a mammal, a therapeutically effective amount of the compound of formula (I). 25 Another embodiment of the present invention discloses a pharmaceutical composition comprising a therapeutically effective amount of the compound of formula (I) in combination with a pharmaceutically suitable carrier. Definition of Terms 30 The term "alkenyl" as used herein, refers to a straight or branched chain hydrocarbon containing from 2 to 10 carbons and containing at least one carbon-carbon double bond formed by the removal of two hydrogens. Representative examples of alkenyl include, but 24 are not limited to, ethenyl, 2-propenyl, 2-methyl-2-propenyl, 3-butenyl, 4-pentenyl, 5 hexenyl, 2-heptenyl, 2-methyl-1-heptenyl, and 3-decenyl. Alkenyls of the present invention can be unsubstituted or substituted with one substituent selected from the group consisting of carboxy, alkoxycarbonyl and aryloxycarbonyl. 5 The term "alkoxy" as used herein, refers to an alkyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Representative examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert butoxy, pentyloxy and hexyloxy. The term "alkoxyalkyl" as used herein, refers to an alkoxy group, as defined herein, 10 appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of alkoxyalkyl include, but are not limited to, tert-butoxymethyl, 2 ethoxyethyl, 2-methoxyethyl and methoxymethyl. The term "alkoxycarbonyl" as used herein, refers to an alkoxy group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. 15 Representative examples of alkoxycarbonyl include, but are not limited to, methoxycarbonyl, ethoxycarbonyl and tert-butoxycarbonyl. The term "alkyl" as used herein, refers to a straight or branched chain hydrocarbon containing from 1 to 10 carbon atoms. Representative examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n 20 pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, n-heptyl, n-octyl, n-nonyl and n-decyl. The term "alkylcarbonyl" as used herein, refers to an alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of alkylcarbonyl include, but are not limited to, acetyl, 1-oxopropyl, 25 2,2-dimethyl-1-oxopropyl, 1-oxobutyl and 1-oxopentyl. The term "alkylsulfonyl" as used herein, refers to an alkyl group, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein. Representative examples of alkylsulfonyl include, but are not limited to, methylsulfonyl and ethylsulfonyl. 30 The term "alkyl-NH" as used herein, refers to an alkyl group, as defined herein, appended to the parent molecular moiety through a nitrogen atom. The term "alkyl-NH-alkyl" as used herein, refers to an alkyl-NH group, as defined 25 herein, appended to the parent molecular moiety through an alkyl group, as defined herein. The term "aryl" as used herein, means a phenyl group, or a bicyclic or a tricyclic fused ring system. Bicyclic fused ring systems are exemplified by a phenyl group appended to the parent molecular moiety and fused to a cycloalkyl group, as defined herein, a phenyl 5 group, a heteroaryl group, as defined herein, or a heterocycle, as defined herein. Tricyclic fused ring systems are exemplified by an aryl bicyclic fused ring system, as defined herein and fused to a cycloalkyl group, as defined herein, a phenyl group, a heteroaryl group, as defined herein, or a heterocycle, as defined herein. Representative examples of aryl include, but are not limited to, anthracenyl, azulenyl, fluorenyl, indanyl, indenyl, naphthyl, phenyl and 10 tetrahydronaphthyl. The aryl groups of this invention may be optionally substituted with 1, 2, 3, 4 or 5 substituents independently selected from alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonyl, alkylsulfonyl, alkynyl, aryl, arylalkoxy, arylcarbonyl, aryloxy, arylsulfonyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, 15 ethylenedioxy, formyl, haloalkoxy, haloalkyl, halogen, heteroaryl, heteroarylalkyl, heteroarylcarbonyl, heterocycle, heterocyclecarbonyl, heterocycleoxy, heterocyclesulfonyl, hydroxy, hydroxyalkyl, nitro, RfRgN-, RfRgNalkyl, RfRgNcarbonyl, -N(H)C(O)N(H)(alkyl), and RfRgNsulfonyl, wherein Rf and Rg are independently selected from the group consisting of hydrogen, alkyl, alkoxyalkyl, alkoxycarbonyl, alkylcarbonyl, alkylsulfonyl, cycloalkyl, 20 haloalkyl, haloalkylcarbonyl and cycloalkylalkyl wherein the cycloalkyl, the cycloalkyl of cycloalkylalkyl as represented by Rf and Rg are each independently unsubstituted or substituted with 1, 2 or 3 substituents independently selected from the group consisting of halogen, alkyl and haloalkyl. The substituent aryl, the aryl of arylalkoxy, the aryl of arylcarbonyl, the aryl of aryloxy, the aryl of arylsulfonyl, the substituent heteroaryl, the 25 heteroaryl of heteroarylalkyl, the heteroaryl of heteroarylcarbonyl, the substituent heterocycle, the heterocycle of heterocyclecarbonyl, the heterocycle of heterocycleoxy, the heterocycle of heterocyclesulfonyl may be optionally substituted with 1, 2 or 3 substituents independently selected from the group consisting of alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkynyl, carboxy, carboxyalkyl, cyano, haloalkyl, halogen, hydroxy, 30 hydroxyalkyl, nitro, RfRgN-, RfRgNalkyl, RfRgNcarbonyl and RfRgNsulfonyl wherein Rf and Rg are as described herein. The term "arylalkyl" as used herein, refers to an aryl group, as defined herein, 26 appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of arylalkyl include, but are not limited to, benzyl, 2-phenylethyl, 3 phenylpropyl and 2-naphth-2-ylethyl. The term "arylcarbonyl" as used herein, refers to an aryl group, as defined herein, 5 appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of arylcarbonyl include, but are not limited to, benzoyl and naphthoyl. The term "aryl-NH-" as used herein, refers to an aryl group, as defined herein, appended to the parent molecular moiety through a nitrogen atom. 10 The term "aryl-NH-alkyl" as used herein, refers to an aryl-NH- group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. The term "arylalkoxy" as used herein, refers to an aryl group, as defined herein, appended to the parent molecular moiety through an alkoxy moiety, as defined herein. The term "aryloxy" as used herein, refers to an aryl group, as defined herein, 15 appended to the parent molecular moiety through an oxy moiety, as defined herein. Representative examples of aryloxy include, but are not limited to phenoxy, naphthyloxy, 3 bromophenoxy, 4-chlorophenoxy, 4-methylphenoxy and 3,5-dimethoxyphenoxy. The term "aryloxyalkyl" as used herein, refers to an aryloxy group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. 20 The term "aryloxycarbonyl" as used herein, refers to an aryloxy group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. The term "arylsulfonyl" as used herein, refers to an aryl group, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein. Representative examples of arylsulfonyl include, but are not limited to, phenylsulfonyl, 4 25 bromophenylsulfonyl and naphthylsulfonyl. The term "carbonyl" as used herein refers to a -C(O)- group. The term "carboxy" as used herein refers to a -C(O)-OH group. The term "carboxyalkyl" as used herein refers to a carboxy group as defined herein, appended to the parent molecular moiety through an alkyl group as defined herein. 30 The term "carboxycycloalkyl" as used herein refers to a carboxy group as defined herein, appended to the parent molecular moiety through an cycloalkyl group as defined herein. 27 The term "cycloalkyl" as used herein, refers to a monocyclic, bicyclic, or tricyclic ring system. Monocyclic ring systems are exemplified by a saturated cyclic hydrocarbon group containing from 3 to 8 carbon atoms. Examples of monocyclic ring systems include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl. Bicyclic fused 5 ring systems are exemplified by a cycloalkyl group appended to the parent molecular moiety and fused to a cycloalkyl group, as defined herein, a phenyl group, a heteroaryl group, as defined herein, or a heterocycle, as defined herein. Tricyclic fused ring systems are exemplified by a cycloalkyl bicyclic fused ring system, as defined herein and fused to a cycloalkyl group, as defined herein, a phenyl group, a heteroaryl group, as defined herein, or [0 a heterocycle, as defined herein. Bicyclic ring systems are also exemplified by a bridged monocyclic ring system in which two non-adjacent carbon atoms of the monocyclic ring are linked by an alkylene bridge of between'one and three additional carbon atoms. Representative examples of bicyclic ring systems include, but are not limited to, bicyclo[3.1.1 ]heptane, bicyclo[2.2.1 ]heptane, bicyclo[2.2.2]octane, bicyclo[3.2.2]nonane, [5 bicyclo[3.3.1]nonane and bicyclo[4.2.1]nonane. Tricyclic ring systems are also exemplified by a bicyclic ring system in which two non-adjacent carbon atoms of the bicyclic ring are linked by a bond or an alkylene bridge of between one and three carbon atoms. Representative examples of tricyclic-ring systems include, but are not limited to, tricyclo[3.3.1 .0 3
,
7 ]nonane and tricyclo[3.3.1.1 3 7 ]decane (adamantane). 20 The cycloalkyl groups of this invention may be substituted with 1, 2, 3, 4 or 5 substituents independently selected from alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, arylsulfonyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, cycloalkyl, ethylenedioxy, formyl, haloalkoxy, haloalkyl, halogen, heteroaryl, heteroarylalkyl, 25 heteroarylcarbonyl, heterocycle, heterocyclealkyl, heterocyclecarbonyl, heterocycleoxy, hydroxy, hydroxyalkyl, nitro, RfRgN-, RfRgNalkyl, RrRgNcarbonyl and RfRgNsulfonyl, wherein Rf and Rg are independently selected from the group consisting of hydrogen, alkyl, alkoxyalkyl, alkoxycarbonyl, alkylcarbonyl, alkylsulfonyl, cycloalkyl, haloalkyl, haloalkylcarbonyl and cycloalkylalkyl wherein the cycloalkyl, the cycloalkyl of 30 cycloalkylalkyl as represented by Rf and Rg are each independently unsubstituted or substituted with 1, 2 or 3 substituents independently selected from the group consisting of halogen, alkyl and haloalkyl. The substituent aryl, the aryl of arylalkyl, the aryl of 28 arylcarbonyl, the aryl of aryloxy, the aryl of arylsulfonyl, the substituent heteroaryl, the heteroaryl of heteroarylalkyl, the heteroaryl of heteroarylcarbonyl, the substituent heterocycle, the heterocycle of heterocyclealkyl, the heterocycle of heterocyclecarbonyl, the heterocycle of heterocycleoxy, the heterocycle of heterocyclesulfonyl may be optionally 5 substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkynyl, carboxy, carboxyalkyl, cyano, haloalkyl, halogen, hydroxy, hydroxyalkyl, nitro, RfRgN-, RfRgNalkyl, RfRgNcarbonyl and RfRgNsulfonyl wherein Rf and Rg are as described herein. The term "cycloalkylalkyl" as used herein, refers to a cycloalkyl group, as defined 10 herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of cycloalkylalkyl include, but are not limited to, cyclopropylmethyl, 2-cyclobutylethyl, cyclopentylmethyl, cyclohexylmethyl and 4 cycloheptylbutyl. The term "cycloalkylcarbonyl" as used herein, refers to cycloalkyl group, as defined 15 herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of cycloalkylcarbonyl include, but are not limited to, cyclopropylcarbonyl, 2-cyclobutylcarbonyl and cyclohexylcarbonyl. The term "cycloalkyloxy" as used herein, refers to cycloalkyl group, as defined herein, appended to the parent molecular moiety through an oxy group, as defined herein. 20 The term "cycloalkylsulfonyl" as used herein, refers to cycloalkyl group, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein. Representative examples of cycloalkylsulfonyl include, but are not limited to, cyclohexylsulfonyl and cyclobutylsulfonyl. The term "halo" or "halogen" as used herein, refers to -Cl, -Br, -I or -F. 25 The term "haloalkyl" as used herein, refers to at least one halogen, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of haloalkyl include, but are not limited to, chloromethyl, 2 fluoroethyl, trifluoromethyl, pentafluoroethyl and 2-chloro-3-fluoropentyl. The term "haloalkylcarbonyl" as used herein, refers to a haloalkyl group, as defined 30 herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. The term "heteroaryl" as used herein, refers to an aromatic monocyclic ring or an aromatic bicyclic ring system. The aromatic monocyclic rings are five or six membered rings 29 containing at least one heteroatom independently selected from the group consisting of N, 0 and S. The five membered aromatic monocyclic rings have two double bonds and the six membered aromatic monocyclic rings have three double bonds. The bicyclic heteroaryl groups are exemplified by a monocyclic heteroaryl ring appended to the parent molecular 5 moiety and fused to a monocyclic cycloalkyl group, as defined herein, a monocyclic aryl group, as defined herein, a monocyclic heteroaryl group, as defined herein, or a monocyclic heterocycle, as defined herein. Representative examples of heteroaryl include, but are not limited to, benzimidazolyl,_benzofuranyl, benzothiazolyl, benzothienyl, benzoxazolyl, furyl, imidazolyl, indazolyl, indolyl, indolizinyl, isobenzofuranyl, isoindolyl, isoxazolyl, .0 isoquinolinyl, isothiazolyl, naphthyridinyl, oxadiazolyl, oxazolyl, phthalazinyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyrazolyl, pyrrolyl, quinolinyl, quinolizinyl, quinoxalinyl, quinazolinyl, tetrazolyl, thiadiazolyl, thiazolyl, thienyl, triazolyl and triazinyl. The term "heteroarylalkyl" as used herein, refers to a heteroaryl, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. L5 The heteroaryls of this invention may be optionally substituted with 1, 2 or 3 substituents independently selected from alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, arylsulfonyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, cycloalkyl, ethylenedioxy, formyl, haloalkoxy, haloalkyl, halogen, heteroaryl, heteroarylalkyl, 20 heterocycle, heterocyclealkyl, heterocyclecarbonyl, heterocycleoxy, hydroxy, hydroxyalkyl, nitro, RfRgN-, RfRgNalkyl, RfRgNcarbonyl and RfRgNsulfonyl, wherein Rf and Rg are independently selected from the group consisting of hydrogen, alkyl, alkoxyalkyl, alkoxycarbonyl, alkylcarbonyl, alkylsulfonyl, cycloalkyl, haloalkyl, haloalkylcarbonyl and cycloalkylalkyl wherein the cycloalkyl, the cycloalkyl of cycloalkylalkyl as represented by Rf 25 and Rg are each independently unsubstituted or substituted with 1, 2 or 3 substituents independently selected from the group consisting of halogen, alkyl and haloalkyl. The substituent aryl, the aryl of arylalkyl, the aryl of arylcarbonyl, the aryl of aryloxy, the aryl of arylsulfonyl, the substituent heteroaryl, the heteroaryl of heteroarylalkyl, the substituent heterocycle, the heterocycle of heterocyclealkyl, the heterocycle of heterocyclecarbonyl, the 30 heterocycle of heterocycleoxy may be optionally substituted with 1, 2 or 3 substituents independently selected from the group consisting of alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkynyl, carboxy, carboxyalkyl, cyano, haloalkyl, halogen, hydroxy, 30 hydroxyalkyl, nitro, RfRgN-, RfRgNalkyl, RfRgNcarbonyl and RfRgNsulfonyl wherein Rf and Rg are as described above. The term "heterocycle" as used herein, refers to a non-aromatic monocyclic ring or a non-aromatic bicyclic ring. The non-aromatic monocyclic ring is a three, four, five, six, 5 seven, or eight membered ring containing at least one heteroatom, independently selected from the group consisting of N, 0 and S. Representative examples of monocyclic ring systems include, but are not limited to, azetidinyl, aziridinyl, diazepinyl, dithianyl, imidazolinyl, imidazolidinyl, isothiazolinyl, isoxazolinyl, isoxazolidinyl, morpholinyl, oxazolinyl, oxazolidinyl, piperazinyl, piperidinyl, pyranyl, pyrazolinyl, pyrazolidinyl, .0 pyrrolinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydro-2H-pyranyl, tetrahydro-2H-pyran-2-yl, tetrahydro-2H-pyran-4-yl, tetrahydrothienyl, thiazolinyl, thiazolidinyl, thiomorpholinyl, 1,1 dioxidothiomorpholinyl (thiomorpholine sulfone) and thiopyranyl. The bicyclic heterocycles are exemplified by a monocyclic heterocycle appended to the parent molecular moiety and fused to a monocyclic cycloalkyl group, as defined herein, a monocyclic aryl group, a 15 monocyclic heteroaryl group, as defined herein, or a monocyclic heterocycle, as defined herein. Bicyclic ring systems are also exemplified by a bridged monocyclic ring system in which two non-adjacent atoms of the monocyclic ring are linked by a bridge of between one and three additional atoms selected from the group consisting o f carbon, nitrogen and oxygen. Representative examples of bicyclic ring systems include but are not limited to, for 20 example, benzopyranyl, benzothiopyranyl, benzodioxinyl, 1,3-benzodioxolyl, cinnolinyl, 1,5 diazocanyl, 3,9-diaza-bicyclo[4.2.1]non-9-yl, 3,7-diazabicyclo[3.3.1]nonane, octahydro pyrrolo[3,4-c]pyrrole, indolinyl, isoindolinyl, 2,3,4,5-tetrahydro-1H-benzo[c]azepine, 2,3,4,5-tetrahydro-1H-benzo[b]azepine, 2,3,4,5-tetrahydro-1H-benzo[d]azepine, tetrahydroisoquinolinyl and tetrahydroquinolinyl. 25 The heterocycles of this invention may be optionally substituted with 1, 2 or 3 substituents independently selected from alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkylcarbonyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, arylsulfonyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, ethylenedioxy, formyl, haloalkoxy, haloalkyl, halogen, heteroaryl, heteroarylalkyl, heterocycle, 30 heterocyclealkyl, heterocyclecarbonyl, heterocycleoxy, hydroxy, hydroxyalkyl, nitro, RfRgN-, RfRgNalkyl, RfRgNcarbonyl and RfRgNsulfonyl, wherein Rf and Rg are independently selected from the group consisting of hydrogen, alkyl, alkoxyalkyl, alkoxycarbonyl, 31 alkylcarbonyl, alkylsulfonyl, cycloalkyl, haloalkyl, haloalkylcarbonyl and cycloalkylalkyl wherein the cycloalkyl, the cycloalkyl of cycloalkylalkyl as represented by Rf and Rg are each independently unsubstituted or substituted with 1, 2 or 3 substituents independently selected from the group consisting of halogen, alkyl and haloalkyl. The substituent aryl, the aryl of 5 arylalkyl, the aryl of arylcarbonyl, the aryi of aryloxy, the aryl of arylsulfonyl, the heteroaryl, the heteroaryl of heteroarylalkyl, the substituent heterocycle, the heterocycle of heterocyclealkyl, the heterocycle of heterocyclecarbonyl, the heterocycle of heterocycleoxy, may be optionally substituted with 1, 2 or 3 substituents independently selected from the group consisting of alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkynyl, .0 carboxy, carboxyalkyl, cyano, haloalkyl, halogen, hydroxy, hydroxyalkyl, nitro, RfRgN-, RfRgNalkyl, RfRgNcarbonyl and RfRgNsulfonyl wherein Rf and Rg are as described herein. The term "heterocyclealkyl" as used herein, refers to a heterocycle, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of heterocyclealkyl include, but are not limited to, pyridin-3 L5 ylmethyl and 2-pyrimidin-2-ylpropyl. The term "heterocyclealkoxy" as used herein, refers to a heterocycle, as defined herein, appended to the parent molecular moiety through an alkoxy group, as defined herein. The term "heterocycleoxy" as used herein, refers to a heterocycle, as defined herein, appended to the parent molecular moiety through an oxy group, as defined herein. 20 The term "heterocycleoxyalkyl" as used herein, refers to a heterocycleoxy, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. The term "heterocycle-NH-" as used herein, refers to a heterocycle, as defined herein, appended to the parent molecular moiety through a nitrogen atom. . The term "heterocycle-NH-alkyl" as used herein, refers to a heterocycle-NH-, as 25 defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. The term "heterocyclecarbonyl" as used herein, refers to a heterocycle, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of heterocyclecarbonyl include, but are not limited to, 1 30 piperidinylcarbonyl, 4-morpholinylcarbonyl, pyridin-3-ylcarbonyl and quinolin-3-ylcarbonyl. The term "heterocyclesulfonyl" as used herein, refers to a heterocycle, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein. 32 Representative examples of heterocyclesulfonyl include, but are not limited to, 1 piperidinylsulfonyl, 4-morpholinylsulfonyl, pyridin-3-ylsulfonyl and quinolin-3-ylsulfonyl. The term "hydroxy" as used herein, refers to an -OH group. The term "hydroxyalkyl" as used herein, refers to a hydroxy group, as defined herein, 5 appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of hydroxyalkyl include, but are not limited to, hydroxymethyl, 2 hydroxyethyl, 3-hydroxypropyl and 2-ethyl-4-hydroxyheptyl. The term "oxo" as used herein, refers to a =0 group. The term "oxy" as used herein, refers to a -0- group. 0 The term "sulfonyl" as used herein, refers to a -S(0)2- group. Salts The present compounds may exist as therapeutically suitable salts. The term "therapeutically suitable salt," refers to salts or zwitterions of the compounds which are water 5 or oil-soluble or dispersible, suitable for treatment of disorders without undue toxicity, irritation and allergic response, commensurate with a reasonable benefit/risk ratio and effective for their intended use. The salts may be prepared during the final isolation and purification of the compounds or separately by reacting an amino group of the compounds with a suitable acid. For example, a compound may be dissolved in a suitable solvent, such 10 as but not limited to methanol and water and treated with at least one equivalent of an acid, like hydrochloric acid. The resulting salt may precipitate out and be isolated by filtration and dried under reduced pressure. Alternatively, the solvent and excess acid may be removed under reduced pressure to provide the salt. Representative salts include acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, 25 camphorsulfonate, digluconate, glycerophosphate, hemisulfate, heptanoate, hexanoate, form ate, isethionate, fumarate, lactate, maleate, methanesulfonate, naphthylenesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, 3-phenylpropionate, picrate, oxalate, maleate, pivalate, propionate, succinate, tartrate, trichloroacetate, trifluoroacetate, glutamate, para-toluenesulfonate, undecanoate, hydrochloric, hydrobromic, sulfuric, phosphoric and the 30 like. The amino groups of the compounds may also be quaternized with alkyl chlorides, bromides and iodides such as methyl, ethyl, propyl, isopropyl, butyl, lauryl, myristyl, stearyl and the like. 33 Basic addition salts may be prepared during the final isolation and purification of the present compounds by reaction of a carboxyl group with a suitable base such as the hydroxide, carbonate, or bicarbonate of a metal cation such as lithium, sodium, potassium, calcium, magnesium, or aluminum, or an organic primary, secondary, or tertiary amine. 5 Quaternary amine salts derived from methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine, tributylamine, pyridine, N,N-dimethylaniline, N methylpiperidine, N-methylmorpholine, dicyclohexylamine, procaine, dibenzylamine, N,N dibenzylphenethylamine, 1 -ephenamine and N,N'-dibenzylethylenediamine, ethylenediamine, ethanolamine, diethanolamine, piperidine, piperazine and the like, are contemplated as being 0 within the scope of the present invention. Prodrugs The present compounds may also exist as therapeutically suitable prodrugs. The term "therapeutically suitable prodrug," refers to those prodrugs or zwitterions which are suitable for use in contact with the tissues of patients without undue toxicity, irritation and allergic .5 response, are commensurate with a reasonable benefit/risk ratio and are effective for their intended use. The term "prodrug," refers to compounds that are rapidly transformed in vivo to the parent compounds of formula (I-IXc) for example, by hydrolysis in blood. The term "prodrug," refers to compounds that contain, but are not limited to, substituents known as "therapeutically suitable esters." The term "therapeutically suitable ester," refers to 20 alkoxycarbonyl groups appended to the parent molecule on an available carbon atom. More specifically, a "therapeutically suitable ester," refers to alkoxycarbonyl groups appended to the parent molecule on one or more available aryl, cycloalkyl and/or heterocycle groups as defined herein. Compounds containing therapeutically suitable esters are an example, but are not intended to limit the scope of compounds considered to be prodrugs. Examples of 25 prodrug ester groups include pivaloyloxymethyl, acetoxymethyl, phthalidyl, indanyl and methoxymethyl, as well as other such groups known in the art. Other examples of prodrug ester groups are found in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, Vol. 14 of the A.C.S. Symposium Series and in Edward B. Roche, ed., Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press, 1987, both of 30 which are incorporated herein by reference. Optical Tsomers-Diastereomers-Geometric Isomers Asymmetric centers may exist in the present compounds. Individual stereoisomers of 34 the compounds are prepared by synthesis from chiral starting materials or by preparation of racemic mixtures and separation by conversion to a mixture of diastereomers followed by separation or recrystallization, chromatographic techniques, or direct separation of the enantiomers on chiral chromatographic columns. Starting materials of particular 5 stereochemistry are either commercially available or are made by the methods described hereinbelow and resolved by techniques well known in the art. Geometric isomers may exist in the present compounds. The invention contemplates the various geometric isomers and mixtures thereof resulting from the disposal of substituents around a carbon-carbon double bond, a cycloalkyl group, or a heterocycloalkyl group. 10 Substituents around a carbon-carbon double bond are designated as being of Z or E configuration and substituents around a cycloalkyl or heterocycloalkyl are designated as being of cis or trans configuration. Furthermore, the invention contemplates the various isomers and mixtures thereof resulting from the disposal of substituents around an adamantane ring system. Two substituents around a single ring within an adamantane ring 15 system are designated as being of Z or E relative configuation. For examples, see C. D. Jones, M. Kaselj, R. N. Salvatore, W. J. le Noble J. Org. Chem. 63: 2758-2760, 1998. The compounds and processes of the present invention will be better understood in connection with the following synthetic schemes and Experimentals that illustrate a means by which the compounds of the invention may be prepared. 20 The compounds of this invention may be prepared by a variety of procedures and synthetic routes. Representative procedures and synthetic routes are shown in, but are not limited to, Schemes 1-18. Abbreviations which have been used in the descriptions of the Schemes and the Examples that follow are: Cbz for benzyloxycarbonyl; CbzCl for benzyloxycarbonyl 25 chloride; DCE for 1,2-dichloroethane; DCM for dichloromethane; DMAP for dimethylaminopyridine; DME for 1,2-dimethoxy ethane; DMF for N,N-dimethylform amide; DMSO for dimethylsulfoxide; DAST for (diethylamino)sulfur trifluoride; DIPEA for Hnig's base for diisopropylethylamine; DMPU for 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H) pyrimidinone; EDCI for (3-dimethylaminopropyl)-3-ethylcarbodiimide HCl; EtOAc for ethyl 30 acetate; Et 2 O for diethyl ether; EtOH for ethanol; HATU for O-(7-azabenzotriazol-1-yl)-N, N, N', N'-tetramethyluronium hexafluoro-phosphate; HOBt for hydroxybenzotriazole hydrate; iPrOH for isopropyl alcohol; KOTMS for potassium trimethylsilanolate; LAH for 35 lithium aluminum hydride; MeOH for methanol; NMO for N-methylmorpholine N-oxide; NaOAC for sodium acetate; OXONE for potassium peroxymonosulfate; tBuOK for potassium tert-butoxide; TBTU for 0-benzotriazol-1-yl-N,N,N',N'-tetramethyluronium tetrafluoroborate; THF for tetrahydrofuran; TosMIC for p-toluenesulfonylmethyl isocyanide; 5 TPAP for tetrapropylammonium perruthenate; TFAA for trifluoroacetic anhydride; tosyl for para-toluene sulfonyl, mesyl for methane sulfonyl, and triflate for trifluoromethane sulfonyl. Schemel
R
3
R
4
A
3 X
A
3
R
1
R
2
R
3
R
4 H, D-E R2 o (2)
A
4 A4 O
A
2
A
2 (1) (3) H
R
3
R
4 1. E-J (6) Y / 2. oxidation 0 (4)
A
3
R
1
R
2
R
3
R
4 A N Y AlA4
A
2 (5) Acids of general formula (2) wherein X = OH can be coupled to substituted 10 adamantamines of general formula (1) with reagents such as EDCI and HOBt to provide amides of general formula (3). Substituted adamantanes of general formula (3), wherein A',
A
2 , A 3 , A 4 , R1, R2, R, R 4 , D and E are as defined in formula I, may be prepared as in Scheme 1. Substituted adamantamines of general formula (1), purchased or prepared using methodology known to those in the art, may be treated with acylating agents of general 15 formula (4), wherein X is chloro, bromo, or fluoro, Y is a leaving group such as Br (or a protected or masked leaving group) to provide amides of general formula (5). The substituted 36 amides of general formula (5) may be treated with nucleophiles of general formula (6), wherein J is oxygen or sulfur and a base such as sodium hydride. When J is sulfur that reaction may be followed by oxidation with reagents like Oxone to provide amides of general formula (3) wherein D can become S(O) or S(0) 2 . In some examples, A', A 2 , A 3 and/or A 4 in 5 amines of formula (1) may exist as a group further substituted with a protecting group such as a carboxylic acid protected as the methyl ester. Examples containing a protected functional group may be required due to the synthetic schemes and the reactivity of said groups and could be later removed to provide the desired compound. Such protecting groups can be removed using methodology known to those skilled in the art or as described in T. W. .0 Greene, P. G. M. Wuts "Protective Groups in Organic Synthesis" 3 rd ed. 1999, Wiley & Sons, Inc. Scheme 2
A
3
A
3 H O N'R reductive amination A> A AiA 4
A
4
A
2
A
2 (8) Substituted adamantane amines of general formula (8), wherein A', A 2 , A 3 , A 4 , R1 and 15 R2 are as defined in formula I, may be prepared as in Scheme 2. Substituted adamantane ketones of general formula (7) can be purchased or prepared using methodology known to those in the art. Ketones of general formula (7) can be treated with ammonia or primary amines (R 2
NH
2 ) followed by reduction with reagents such as sodium borohydride or H2 over Pd/C in a solvent like methanol to provide amines of general formula (8). In some examples, 20 A', A 2 , A 3 and/or A4 in ketones of formula (7) may be a functional group substituted with a protecting group such as a carboxylic acid protected as the methyl ester. These protecting groups can be removed using methodology known to those in the art in amines of general formula (8) or in compounds subsequently prepared from ketones of general formula (7) or amines of general formula (8). 25 Scheme 3 37
A
3
A
3 0 0 HO A 4 carboxylation GO 2 C
A
2 (9) A 2 (10) Substituted adamantanes of general formula (10), wherein A 2 , A 3 and A 4 are as defined in formula I, may be prepared as in Scheme 3. Substituted adamantanes of general formula (9) can be purchased or prepared using methodology known to those skilled in the 5 art. Adamantanes of general formula (9) can be treated with oleum and formic acid followed by an alcohol GOH, where G is an alkyl, cycloalkyl, hydrogen, aryl, or acid protecting group, to provide adamantanes of general formula (10). In some examples, G in formula (10) may be a protecting group such as methyl. These protecting groups can be removed using methodology known to those skilled in the art from adamantanes of general formula (10) or 0 in compounds subsequently prepared from (10). Scheme 4 Amide coupling
A
3 R2 R 16 A3 1 R R A2 A 3 ) RN R1 R3 R4 O N E
R
1 7 (12) (11)
~
1 ) 2 13
I
3 R R' (13) A4 6 001-NA NJ A~ N
R
1 7 1 A2 (1) 2 Substituted adamantanes of general formula (14), wherein A 2 , A 3 , A 4 , R', R2, R3, R 4 , D, E, Rio and R' 7 are as defined in formula I, may be prepared as in Scheme 4. Adamantyl 15 acids of general formula (11) may be prepared as described herein or using methodology known to those skilled in the art. The acids of general formula (11) may be coupled with amines of general formula (12), wherein Rio and R 1 are defined as in formula I, with reagents such as O-(benzotrialzol- -yl)- 1,1,3 ,3-tetramethyluronium tetrafluoroborate (TBTU) 38 to provide amides of general formula (13). In some examples, A 2 , A 3 , A 4 , R', R 2 , R, R" 6 and
R
17 in amines of formula (13) may contain a functional group substituted with a protecting group, for example, a carboxy protected as an ester. These protecting groups may be removed using methodology known to those in the art to provide amides of general formula 5 (14). Scheme 5 HO CC1 3
R
3
R
4 H'D' E 16 , HO'V D'E alkylation O 15 17 HDE
R
3
R
4 aromatic R 3
R
4 15 R 3
R
4 PO D'H substitution, PO DE : 15 PO Br 0 0 0 18 19 20 Acids of general formulas (17) wherein R 3 , R 4 , D and E are as defined in formula (I) can be prepared as shown in Scheme 5. 10 Phenols and thiols of general formula (15) wherein D is -0- or -S-, purchased or prepared using methodology known to those skilled in the art, may be treated with a reagent like 1,1,1 -trichloro-2-methyl-propan-2-ol (16) in the presence of a base like sodium hydroxide in a solvent like acetone to provide acids of general formula (17). Esters of general formula (18) wherein P is an acid protecting group such as, but not 15 . limited to, C 1
-C
6 alkyl, aryl (substituted or unsubstituted) or arylalkyl (substituted or unsubstituted), may undergo an aromatic substitution or related reaction with halides of formula E-X 1 wherein X 1 is Cl, Br or I and E is as defined in formula (I), in the presence of a base like sodium hydride in a solvent like DMPU to afford compounds of formula (19). Removal of the acid protecting group, P, provides acids of formula (17). Cleavage of the 20 acid protecting group can be conducted by either acidic or basic hydrolysis when P is C 1
-C
6 alkyl, or hydrogenolyis when P is benzyl. Alternatively, esters of general formula (18) may be coupled with halides of formula 39
E-X
1 wherein X 1 is Cl, Br or I and E is aryl or heteroaryl, under with a metal catalyst like palladium along with ligands, to provide compounds of formula (19). Compounds of formula (19) can also be obtained from the reaction of bromoesters of general formula (20), with compounds of formula (15) wherein D is -0- or -S-and E is 5 defined as in formula (I), in the presence of a base such as, but not limited to, potassium carbonate, to provide esters of general formula (19). Scheme 6 A3 RF 2 R3 -A.
A
3 R12D 3
D
4 N ... E N E 0Rf 0 D
~A
4 0
-
40
HO
2 C' R17 A 2 RR17A 2 20 21 Substituted adamantane amides of general formula (21), wherein Rf and Rg are tO independently selected from the group consisting of hydrogen, alkyl, alkoxyalkyl, alkylsulfonyl, cycloalkyl, and cycloalkylalkyl wherein the cycloalkyl, the cycloalkyl of cycloalkylalkyl as represented by Rf and Rg are each independently unsubstituted or substituted with 1, 2 or 3 substituents independently selected from the group consisting of alkyl, halogen, and haloalkyl, Z is alkyl, aryl, heteroaryl, cycloalkyl, heterocycle, arylalkyl, 15 heteroarylalkyl or heterocyclealkyl, and A 2 , A 3 , A 4 , R 1 , R2, R3, R4, R 8 , R 2 , D and E are as defined in formula (I), can be prepared as shown in Scheme 6. . Adamantane acids of general formula (20) can be coupled with amines of formula RfRgNH, in the presence of a coupling agent such as, but not limited to, TBTU, and a base such as, but not limited, to diisopropylethylamine. The reaction is generally performed in a 20 solvent such as, but not limited to, DMF, at a temperature of about room temperature to about 50 'C to provide amides of general formula (21). 40 Scheme 7 A3RI R 2 R3 R 4 A3 I R 2 R3 R 4 A E 2 R3 R 4 N E N N E 0 D D P0 - A 40 2 4 NC4 A 40
A
2
A
2 A2 22 24 A3 I R 2 R3 R 4 A3R 2 R3R A3 R' 2 R3 R 4 FRiRli N N N EN D
HO
2 C E H2NOC E HNN E
A
2
A
2 HN, -N A 27 25 26 N2 Substituted adamantanes of general formula (25), (26), and (27), wherein A 2 , A 3 , A 4 ,
R
1 , R 2 , R 3 , R 4 , D and E are as defined in formula I, can be prepared as shown in Scheme 7. 5 Adamantanes of general formula (22) wherein P is hydrogen or an acid protecting group such as, but not limited to, C-C 6 alkyl, aryl (substituted or unsubstituted) or arylalkyl (substituted or unsubstituted), can be converted to aldehydes of formula (23) by (a) treatment with a reducing agent such as, but not limited to, lithium aluminum hydride, in a solvent like THF; and (b) treating the product from step (a) with an oxiding agent such as, but not limited 10 to, TPAP, in the presence of NMO, and in a solvent like dichloroethane. Adamantane aldehydes of general formula (23) can be treated with TosMIC and a base like t-BuOK in a solvent mixture like DME and ethanol to provide nitriles of general formula (24). Nitriles of general formula (24) can be hydrolyzed with potassium hydroxide in a solvent like ethylene glycol to provide acids of general formula (25). When treated with 15 hydrogen peroxide and sodium hydroxide in a solvent mixture like methanol and DMSO, nitriles of general formula (24) can be transformed to amides of formula (26). Tetrazoles of formula (27) can be prepared from adamantanes of general formula (24) when treated with reagents like sodium azide and zinc bromide in a solvent like water and isopropanol. 41 Scheme 8 A R1 R3 R 4 A R1I 2 R3 R 4 A R1 2 R3 R NN EN o D __ N N D
H
2
NA
4 0 NC 4 0 EHN E
A
2
A
2 29 A 2 30 28293
R
3
R
4
A
3 R1
A
3 R1H
A
3 R1 HO' DE 0NH 2 o N-p 1 -----I-H 2 017 2 P,..
A
4 H-N 4 NC A H
A
2 'H A 2
A
2 31 32 33 5 Substituted adamantanes of general formula (30), wherein A 2 , A 3 , A 4 , R1, R 2 , R 3 , R 4 , D and E are as defined in formula (I), can be prepared as shown in Scheme 8. Substituted adamantanes of general formula (28) can be dehydrated with a reagent like TBTU in the presence of a base like isopropylethylamine in a solvent like NN dimethylacetamide to provide nitriles of general formula (29). Nitriles of general formula 0 (29) can be treated with reagents like trimethyl tin chloride and sodium azide in a solvent like toluene to provide tetrazoles of general formula (30). Alternatively, adamantane amines of general formula (31) wherein P is hydrogen or
C
1
-C
6 alkyl, can be (a) treated with a reagent like CbzCl in a solvent like dichloromethane in the presence of a base like diisopropylethylamine; (b) treating the resulting product with a 15 reagent like KOTMS in a solvent like TIF; and (c) treating the acid from step (b) with ammonia or ammonium hydroxide in the presence of a reagent like EDCI and HOBt, and a base like diisopropylethylamine, in a solvent like DMF, to yield adamantane amides of general formula (32) wherein P is a protecting group like -C(O)OCH 2
C
6
H
5 . The amides of general formula (32) can be (a) treated with a reagent like trifluoroacetic anhydride in a 20 solvent like dichloromethane in the presence of a base like triethylamine; and (b) treating the intermediate from step (a) with a catalyst like Pd(OH) 2 on carbon under an atmosphere of hydrogen, to provide amines of formula (33). Amines of general formula (33) can be coupled to acids of general formula (17), in the presence of a reagent like HATU and a base like diisopropylethylamine, in a solvent like DMF, to provide compounds of general formula (29). 25 Scheme 9 42
ARF
2 R3 R 4 A3 R 2 3 R 4 NCE HO-N E NC7 A 40
H
2
NA
40
A
2 29
A
2 34 Substituted adamantanes of general formula (34), wherein A 2 , A 3 , A4, R 1 , R 2 , R, R 4 , D and E are as defined in formula I, can be prepared from treatment of compounds of formula (29) with hydroxylamine hydrochloride in a solvent like DMSO, in the presence of a base 5 like diisopropylethylamine. Scheme 10 A3 R 2 R3 R 4 A3 R 2 RD3 D 4 N E substitution RN E oxidation HOt M A 40 7 A 4 0
A
2 RO A 2 35 36 A3R1F 2 R3 A ARIR 3 R R D and/or RDE S 40 A 4 0
A
40 I R 1 1 A 2 3R I , A 2 3 37 38 Substituted adamantanes of general formula (37) and (38), wherein A 2 , A 3 , A4, R1, R, R, R 4 , D and E are as defined in formula I, and R 101 is alkyl, cycloalkyl, aryl, heteroaryl, or 10 heterocycle, can be prepared as shown in Scheme 10. Substituted adamantanes of general formula (35) can be (a) treated with trifluoroacetic anhydride in a solvent like trifluoroacetic acid; and (b) treating the product of step (a) with a thiol of formula R 101 SH at elevated temperature, typically at about 120 "C for a period of about 20 hours, in a solvent like trifluoroacetic acid to provide thioethers of general 15 formula (36). Thioethers of general formula (36) can be oxidized with an oxidizing agent such as, but not limited to, 3-chloroperbenzoic acid, in a solvent such as, but not limited to, dichloromethane, to provide sulfoxides of general formula (37) and/or sulfones of general formula (38). 43 Scheme 11 A2 2 A24 3923 A 40 D AAR1 R3 R 4 R1 R3 R 4 R2 N D'E N D'E
P
0 . A 40
A
40 Hs A 4 0
A
2 22 A 2 42 A2 40 A3e R 2 3 r 4 A 3R 2 R3 R 4 WIN ,EN DE R2, R26, D and E are as defined in formula (I), can be prepared as shown in Scheme 11. 5 Substituted adamantanes of general formula (22) wherein P is hydrogen or an acid protecting group such as, but not limited to, C-C 6 alkyl, aryl (substituted or unsubstituted) or arylalkyl (substituted or unsubstituted), can be converted alcohols of formula (39) by treatment with a reducing agent such as, but not limited to, lithium aluminum hydride or diisobutylaluminum hydride in a solvent like THF. Reaction of the alcohols of general 10 formula (39) with trifluoromethanesulfonic anhydride in the presence of a base like pyridine and in a solvent like dichloromethane provides the intermediate triflate that can be isolated. Treatment of the triflate with potassium thioacetate in a solvent like dimethylfonnamide yields adamantanes of general formula (40). Adamantane thioacetates of general formula (40), when treated with an oxidizing agent such as, but not limited to, hydrogen peroxide and 15 a base like sodium acetate in a solvent like acetic acid provides sulfonic acids of general fonnula (41). Sulfonic acids of general formula (41) can be coupled with an amine of formula
R
2 5 6NH wherein R 2 1 and R 2 6 are defined as in formula I to provide compounds of formula (42). Numerous reaction conditions for such a conversion are known to one skilled in the art. 20 One such coupling utilizes triphosgene in the presence of a base like triethylamine with a catalytic amount of dimethylformamide in a solvent like dichloromethane, followed by the addition an amine of formula R 25
R
26 NH Compounds of formula (42) wherein R 2 5 is as defined in formula (I) other than hydrogen and R26 is hydrogen, or R2 and R 2 6 are as defined in formula (I) other than 25 hydrogen, can also be obtained from the mono or dialkylation of compounds of formula (42) 44 wherein R 25 and R 2 6 are hydrogen. The mono alkylation can be facilitated with an alkylating reagent of formula R 2 5
X
1 wherein R 25 is methyl, benzyl, and allyl, and X 1 is a leaving group such as, but not limited to, Cl, Br, I, triflate or tosylate. The reaction is generally conducted in the presence of a base 5 such as, but not limited to, alkali metal carbonates (for example, cesium carbonate and the like), in a solvent such as, but not limited to, DMF, providing compounds of formula (42) wherein R 25 is methyl, benzyl, and allyl, and R 2 6 is hydrogen. Further alkylation with R 2 6
X
1 wherein R 26 is methyl, benzyl, and allyl and X 1 as defined above, using the aforementioned reaction condition, affords compounds of formula (42) wherein R 2 5 and R 2 6 are independently 0 selected from the group consisting of methyl, benzyl, and allyl. The reaction can be conducted stepwise or in situ without isolating the product of the monoalkylation. Alternatively, compounds of formula (42) wherein R 2 5 and R 2 6 are identical and are as defined in formula (I) other than hydrogen, can be prepared from the reaction of compounds of formula (42) wherein R 2 and R 26 are hydrogen and about two equivalents of the alkylating [5 agent. Scheme 12 3 Ra2nRaR4 3
R
1
R
2
R
3
R
4 amide N , carbonylation Nformation A Br A Br
A
2
A
2 43 44 AR1 i R3 R 4 15 A BN displacement RNN E R1 9 A 40 -Ne A 40 17 A 2 'R17 A 2 45 4 Substituted adamantanes of general formula (46), wherein A 2 , A 3 , A 4 , R 1 , R2, R3, R 4 , R 1, R", D and E are as defined in formula (1) can be prepared as shown in Scheme 12. 20 Substituted adamantanes of general formula (43) can be carbonylated with formic acid and oleum and poured into a solution of formula R 15 OH to provide an adamantane of general formula (44) wherein R1 5 is as defined in formula (I). Adamantanes of general formula (44) wherein R 15 is not hydrogen can be converted to admantanes of formula (44) wherein R 15 is hydrogen using methodologies listed in T. W. Greene, P. G. M. Wuts 25 "Protective Groups in Organic Synthesis" 3 rd ed. 1999, Wiley & Sons, Inc. The resulting 45 acids can be coupled to amines of general formula R R 17 NH to provide amides of formula (45) in the presence of coupling reagents such as, but not limited to, EDCI and HOBt in a solvent like dichloromethane. Adamantanes of general formula (45) may be treated with alcohols or thiols of general formula (15) wherein D is -0- or -S- and E is defined as in 5 formula (I), in the presence of a base like potassium carbonate in a solvent like toluene to provide adamantanes of general formula (46). Adamantanes of general formula (46) wherein D is -S- can be converted to compounds of formula (46) wherein D is -S(O)- or -S(0)2- by reacting with an oxidizing agent such as, but not limited to, oxone in a solvent like methanol. 0 Scheme 13 0 0 HO A 4 Br A 4 Br A 4
A
2
A
2
A
2 47 48 49 A 3 0
NH
2 N S R26A 2 54 50 0 A 0 A 0 01- A 3 0 O-' 4 4 R2 A 4
R
25 A \S R26A 2 R2 6
A
2
A
2 53 52 51 Substituted adamantanes of general formula (54), wherein A 2 , A 3 , A 4 , R 2 ' and R 2 6 are as defined in formula I, may be prepared as shown in Scheme 13. Substituted adamantanes of general formula (47) can be brominated with a reagent 15 like hydrobromic acid in a solvent like water to provide bromides of general formula (48). Adamantanes of general formula (48) when treated with ethylene glycol and a catalytic 46 amount of an acid like p-toluenesulfonic acid in a solvent like benzene provide adamantanes of general formula (49). Bromides of general formula (49) can be (a) treated with Rieke zinc in a solvent like tetrahydrofuran; and (b) followed by treatment with reagent (50) (prepared as described in Han, Z.; Krishnamurthy, D.; Grover, P.; Fang, Q. K.; Senanayake, C. H. J. Am. 5 Chem. Soc. 2002, 124, 7880-7881) in a solvent like tetrahydrofuran to provide adamantanes of general formula (51). Adamantanes of general formula (51) may be treated with lithium amide of formula LiNHR 25
R
26 (prepared in situ by reacting ammonia with lithium or amines of formula R 25
R
26 NH wherein R 25 and R 26 are other than hydrogen, with t-butyl lithium) in a solvent mixture like ammonia and tetrahydrofuran. The resulting sulfinamides can be .0 oxidized with a reagent like osmium tetroxide with a catalyst oxidant like NMO in a solvent like tetrahydrofuran to provide sulfonamides of general formula (52). Adamantanes of general formula (52) can be deketalized with reagents like hydrochloric acid in a solvent like water and tetrahydrofuran to provide ketones of formula (53). Ketones of formula (53) can be treated with amines of formula R 2 5
R
26 NH followed by reduction with reducing reagents 15 such as, but not limited to, sodium borohydride or hydrogen over Pd/C in a solvent like methanol to provide amines of general formula (54). Scheme 14 A3R1R2 R3 R 4 N D' DE OHC
A
40
A
2 A3 1R2 R3 R 4 23
R
23 3 R1R 2 R3 R 4 N DE R24 NE N D C.\A 4 0 A H A 2
A
2 55 A3 R1R2 R3 R 4 57 N E
R
102 00C D
A
4 0
A
2 56 Substituted adamantanes of general formula (55), (56) and (57) wherein Rio 2 is 20 hydrogen, alkyl or aryl, and A 2 , A 3 , A 4 , R', R 2 , R 3 , R 4 , R 23 , R 24 , D and E are as defined in formula (I), can be prepared as shown in Scheme 14. Substituted adamantanes of general formula (23) can be treated with reagents like ammonia and glyoxal in a solvent like water to provide imidazoles of general formula (55). 47 Reaction of compounds of formula (23) with Wittig reagent such as, but not limited to, triethyl phosphonoacetate and a base like sodium hydride in a solvent like dimethoxyethane provides esters of general formula (56) wherein Rio2 is alkyl or aryl. Esters of general formula (56) can be cleaved with lithium hydroxide in a solvent mixture like 5 tetrahydrofuran and water to provide acids of general formula (56) wherein R 10 2 is hydrogen. Adamantanes of general formula (23) can be reductively aminated with amines of general formula R23R24NH with a reagent like sodium triacetoxyborohydride in the presence of an acid like acetic acid in a solvent like dichloroethane to yield amines of general formula (57). .0 .Scheme 15
A,
3 1 R 2 R, R 4 kA, 3 R2 R 3 R O E aA2n N E oxidation D A 4 0
A
40
A
2
A
2 23 Q 58 A aR tR R 4 heterocycle A R1 A AR3 R 4 NhicE formation
N
#
A
40 Q
A
40 A2 __A 2 6 Q 59 Substituted adamantanes of general formula (60), wherein A 2 , A 3 , A 4 , R 1 , R 2 , R,, D and E are as defined in formula I and Q is hydrogen, alkyl, or cycloalkyl, can be prepared as shown in Scheme 15. 15 Substituted adamantanes of general formula (23) can be treated with a reagent like acetylenemagnesium chloride in a solvent like THF to yield alcohols of general formula (58). Adamantane alcohols of general formula (58) can be oxidized with a reagent like Dess Martin periodinane in a solvent like dichloromethane to provide alkynones of general formula (59). Alkynones of general formula (59) can be reacted with a reagent like hydroxylamine 20 hydrochloride in the presence of a base like potassium carbonate in a solvent like isopropanol to provide heterocycles of general formula (60). Scheme 16 48 A3 R 2 R3 R 4 A3 R 2 R3 D 4 HD E R - E HO/ FR A 40
A
2
A
2 39 61 Substituted adamantanes of general formula (61), wherein A 2 , A 3 , A 4 , R 1 , R 2 , R 3 , R 4 , R20, D and E are as defined in formula (I), can be prepared as shown in Scheme 16. Adamantanes of general formula (39) can be alkylated with a reagent of formula 5 R 20
X
1 , wherein X 1 is a halide or other leaving group like bromide, iodide, tosylate or triflate, in the presence of a base like sodium hydride in a solvent like dimethylformamide to yield ethers of general formula (61). Scheme 17 ANE'NAE~
.R
103
A
2
A
2 62 63 10 Substituted adamantanes of general formula (63), wherein E is aryl or heteroaryl and A', A2, A3, A4, R1, R2, R3, R4, and D are as defined in formula (I) and R 10 and R104 are alkyl, alkoxyalkyl, cycloalkyl, aryl, heteroaryl, heterocycle, heteroaryl, heteroarylalkyl, cycloalkylalkyl, arylalkyl, heteroarylalkyl, or heterocyclealkyl, or R' 03 and R 104 combined to the atom to which they are attached form a heterocycle or heteroaryl can be prepared as 15 shown in Scheme 17. Substituted adamantanes of general formula (62) wherein X 1 is a halide or triflate can be coupled with amines of formula NHR 0 3
R
1 04 with a reagent combination like copper iodide and N,N-dimethylglycine in a solvent like DMSO under microwave heating to provide adamantanes of general formula (63). 20 Scheme 18
(X
2 )m A 3 A 2 3 R 4 A 2R 3 R 4 Nl D El N DE
A
2
A
2 64 65 Substituted adamantanes of general formula (65), wherein m is 1 or 2, A 1 , A 2 , A 3 , A 4 , 49 R1, R 2 , R 3 , R 4 and D are as defined in formula (1), E is aryl or heteroaryl, and X 2 is halogen, can be prepared as shown in Scheme 18. Adamantanes of general formula (64) can be halogenated with a reagent like N bromosuccinimde in the presence of an acid like HBr in a solvent like dichloromethane to 5 yield aryl halides of general formula (65). It is understoond that the schemes described herein are for illustrative purposes and that routine experimentation, including appropriate manipulation of the sequence of the synthetic route, protection of any chemical functionality that are not compatible with the reaction conditions and deprotection are included in the scope of the invention. Protection 10 and Deprotection of carboxylic acids and amines are known to one skilled in the art and references can be found in "Protective Groups in Organic Synthesis", T.W. Greene, P.G.M. Wuts, 3rd edition, 1999, Wiley & Sons, Inc. The compounds and processes of the present invention will be better understood by reference to the following Examples, which are intended as an illustration of and not a 15 limitation upon the scope of the invention. Further, all citations herein are incorporated by reference. Compounds of the invention were named by ACD/ChemSketch version 5.01 (developed by Advanced Chemistry Development, Inc., Toronto, ON, Canada) or were given names consistent with ACD nomenclature. Adamantane ring system isomers were named 20 according to common conventions. Two substituents around a single ring within an adamantane ring system are designated as being of Z or E relative configuation (for examples see C. D. Jones, M. Kaselj, R. N. Salvatore, W. J. le Noble J. Org. Chem. 63: 2758-2760, 1998). 25 Example 1 E-4-(2-methyl-2-phenoxy-propionylamino)-adamantane-1-carboxylic acid amide Example 1A E- and Z- 5-hydroxy-2-adamantamine 30 A solution of 5-hydroxy-2-adamantanone (10 g, 60.161mmoles) and 4A molecular sieves (5 g) in methanolic ammonia (7N, 100 mL) was stirred overnight at room temperature. The mixture was cooled in an ice bath, treated by the portionwise addition of sodium 50 borohydride (9.1 g, 240.64 mmoles) and stirred at room temperature for 2 hours. The mixture was filtered and MeOH was removed under reduced pressure. The mixture was taken into DCM (100 mL), acidified with IN HCl to pH = 3 and the layers separated. The aqueous layer was treated with 2N NaOH solution to pH = 12 and extracted three times with 5 4:1 THF:DCM. The combined organic extracts were dried (MgSO 4 ) and filtered. The filtrate was concentrated under reduced pressure to provide the title compound as a white solid (9.84 g, 97.9%). Example 1B 10 E-2-bromo-N-(5-hydroxy-adamantan-2-yl)-2-methyl-propionamfide A solution of E- and Z-5-hydroxy-2-adamantamine (0.868g, 5.2 mmoles) in DCM (15.0 mL) and DIPEA (2.5 mL) was cooled in an ice bath and treated with 2-bromoisobutyryl bromide (0.72 mL, 5.8 mmoles) in DCM (2.5 mL). The mixture was stirred for 2 hours at room temperature and DCM was removed under reduced pressure. The residue was 15 partitioned between water and ethyl acetate. The organic layer was washed with saturated sodium bicarbonate, water, dried (MgSO 4 ) and filtered. The filtrate was concentrated under reduced pressure to provide the title compound as dark beige solid (1.17 g, 7 1%). The isomers were separated by column chromatography (silica gel, 5-35% acetone in hexane) to furnish 0.78 g of E-2-bromo-N-(5-hydroxy-adamantan-2-yl)-2-methyl-propionamide and 20 0.39 g of Z-2-bromo-N-(5-hydroxy-adamantan-2-yl)-2-methyl-propionamide. Example 1C E-4-(2-bromo-2-methyl-propionylamino)-adamantane-1-carboxylic acid methyl ester A solution of E- 2-bromo-N-(5-hydroxy-adamantan-2-yl)-2-methyl-propionamide (0.78 g, 2.48mmol) in 99% formic acid (2.5 mL) was added dropwise with vigorous gas 25 evolution over 10 minutes to a rapidly stirred 30% oleum solution (7.5 mL) heated to 60 0 C (W. J. le Noble, S. Srivastava, C. K. Cheung, J. Org. Chem. 48: 1099-1101, 1983). Upon completion of addition, more 99% formic acid (2.5 mL) was slowly added over the next 10 minutes. The mixture was stirred another 60 minutes at 60 0 C and then slowly poured into vigorously stirred iced water (30.0 mL) cooled to 0 0 C. The mixture was allowed to slowly 30 warm to 23 0 C, filtered and washed with water to neutral pH (100 mL). The precipitate was dried in a vacuum oven, taken into MeOH and treated with thionyl chloride at 0 0 C (0.2 mL, 2.8 mmoles). The reaction mixture was stirred at room temperature for 3 hours and then 51 MeOH was evaporated under reduced pressure to provide the title compound as an off-white solid. Example 1D 5 E-4-(2-methyl-2-phenoxy-propionlamino)-adamantane-1-carboxylic acid Step A A solution of phenol (20.7 mg, 0.22 mmoles) and sodium hydride (60%, 10.8 mg, 0.27 mmoles) in toluene (2 mL) was stirred at room temperature for 1 hour. Then E-4-(2 bromo-2-methyl-propionylamino)-adamantane- 1 -carboxylic acid methyl ester (71.6 mg, 0.2 10 mmoles) was added and the resulting mixture was shaken at 100 0 C for 48 hours. After that the reaction mixture was cooled and filtered. The filtrate was concentrated under reduced pressure to provide crude methyl ester of the title compound that was purified on reverse phase HPLC. Step B 15 The methyl ester of the title compound obtained from step A was hydrolyzed with 2N aqueous NaOH, THF and ethanol (2:1:1, 2 mL) at room temperature overnight. The reaction mixture was acidified with 1N HCl and extracted with ethyl acetate. The organic layer was separated, washed with water and brine respectively, dried (MgSO4) and filtered. The filtrate was concentrated under reduced pressure to provide the title compound. 20 Example 1E E-4-(2-methyl-2-phenoxy-propionylamino)-adamantane-1-carboxylic acid amide A solution of E-4-(2-methyl-2-phenoxy-propionylamino)-adamantane-1 -carboxylic acid (23 mg, 0.064 mmoles) in DCM (2 mL) was treated with HOBt (9.5 mg, 0.07 mmoles) 25 and EDCI (14.7 mg, 0.077 mmoles) and stirred at room temperature for 1 hour. Excess of aqueous (30%) ammonia (2 mL) was added and the reaction was stirred for additional 20 hours. The layers were separated and the aqueous layer extracted twice more with methylene chloride (2x2 mL). The combined organic extracts were washed with water (3x2 mL), brine (2 mL), dried (MgSO4) and filtered. The filtrate was concentrated under reduced pressure to 30 provide the crude title compound that was purified on reverse phase HPLC to provide the title compound. 1H NMR (500 MIHz, DMSO-D6) 8 ppm 7.26 - 7.31 (in, 2 H) 7.25 (d, J=7.49 Hz, 1 H) 7.02 (t, J=7.33 Hz, 1 H) 6.95 (s, 1 H) 6.91 (d, J=7.80 Hz, 2 H) 6.68 (s, 1 H) 3.79 - 3.88 52 (in, 1 H) 1.91 (s, 2 H) 1.76 - 1.87 (in, 5 H) 1.71 (s, 2 H) 1.65 (d, J=12.79 Hz, 2 H) 1.45 (s, 6 H) 1.38 (d, J=12.79 Hz, 2 H). MS (ESI+) m/z 357 (M+H)*. 5 Example 2 E-_4-[2-methyl-2-(4-(tifluoromthyl-benzyloxy)-proionylaminol-adamantane-1-carboxylic acid amide The title compound was prepared according to the procedure outlined in Example 1D 10 and 1E substituting 4-(trifluoromethyl)benzyl alcohol for phenol. 1 H NMR (500 MHz, DMSO-D6) 8 ppm 7.73 (d, J=8.11 Hz, 2 H) 7.62 (d, J=8.11 Hz, 2 H) 7.07 (d, J=7.49 Hz, 1 H) 6.95 (s, 1 H) 6.68 (s, 1 H) 4.60 (s, 2 H) 3.78 (d, J=7.49 Hz, 1 H) 1.88 (s, 2 H) 1.76 - 1.85 (in, 5 H) 1.72 (s, 2 H) 1.59 (d, J=13.10 Hz, 2 H) 1.39 - 1.44 (in, 8 H). MS (ESI+) m/z 439 (M+H)* 15 Example 3 E-4-[2-methyl-2-(2-methyl-cyclohexyloxy)-propionylaminol-adamantane-1-carboxylic acid A two phase suspension of E-4-(2-bromo-2-methyl-propionylamino)-adamantane-1 20 carboxylic acid methyl ester (71.6 mg, 0.2 mmoles), 2-methylcyclohexanol (0.033 mL, 0.24 mmoles) and tetrabutylammonium bromide (6 mg, 0.02 mmoles) in DCM (1.0 mL) and 50% aqueous NaOH (1.0 mL) was stirred at room temperature for 20 hours. After that the reaction mixture was diluted with DCM, neutralized with 3N HCl and layers separated. Organic layer was washed with water (3x2 mL), dried (MgSO4) and filtered. The filtrate was concentrated 25 under reduced pressure to provide crude methyl ester of the title compound that was purified on reverse phase HPLC and hydrolyzed with 2N aqueous NaOH, THF and ethanol (2:1:1, 2 mL) at room temperature for 20 hours. The reaction mixture was acidified with 1N HCl and extracted with ethyl acetate. The organic layer was separated, washed with water and brine respectively, dried (MgSO 4 ) and filtered. The filtrate was concentrated under reduced 30 pressure to provide the title compound. 1H NMR (400 Mfllz, DMSO-D6) 8 ppm 11.77 - 12.49 (in, 1 H) 7.27 (d, J=7.98 Hz, 1 H) 3.76 (d, J=6.75 Hz, 1 H) 3.19 - 3.28 (in, 1 H) 0.98 - 1.96 (in, 28 H) 0.85 - 0.96 (in, 3 H) MS (ESI+) m/z 378 (M+H)* 53 Example 4 E-4-[2-methyl-2-(3-methyl-cyclohexloxy- laminol-adamantane-1-carboxylic acid The title compound was prepared according to the procedure outlined in Example 3 5 substituting 3-methylcyclohexanol for 2-methylcyclohexanol. 1 H NMR (400 MHz, DMSO D6) 8 ppm 11.70 - 12.38 (in, 1 H) 7.16 (d, J=7.36 Hz, 1 H) 3.76 (s, 1 H) 3.41 - 3.53 (in, 1 H) 1.33 - 1.96 (in, 18 H) 1.05 - 1.31 (in, 8 H) 0.66 - 0.99 (in, 5 H). MS (ESI+) m/z 378 (M+H)* Example 5 10 E-4-(2-cycloheptyloxv-2-methyl-propionylamino)-adamantane-1-carboxylic acid The title compound was prepared according to the procedure outlined in Example 3 substituting cycloheptanol for 2-methylcyclohexanol. 'H NMR (400 MHz, DMSO-D6) 8 ppm 11.85 - 12.35 (in, 1 H) 7.21 (d, J=7.67 Hz, 1 H) 3.70 - 3.88 (in, 2 H) 1.37 - 1.96 (in, 25 H) 1.27 (s, 6 H). MS (ESI+) m/z 378 (M+H)* 15 Example 6 E-4-(2-(cyclohexylmethoxy-2-methl-propionylamino)-adamantane-l-carboxylic acid The title compound was prepared according to the procedure outlined in Example 3 substituting cyclohexylmethanol for 2-methylcyclohexanol. 1H NMR (400 MHz, DMSO-D6) 20 8 ppm 11.70 - 12.50 (in, 1 H) 7.06 (d, J=7.36 Hz, 1 H) 3.76 (d, J=7.98 Hz, 1 H) 3.19 (d, J=6.14 Hz, 2 H) 1.41 - 1.95 (in, 19 H) 1.26 (s, 6 H) 0.90 - 1.25 (in, 5 H). MS (ESI+) m/z 378 (M+H)* Example 7 25 E-4-[2-(4-chloro-phenoxy)-2-methyl-propionylaminol-adamantane-1-carboxylic acid Example 7A E-4-Amino-adamantane-1-carboxylic acid To 1.0 g (10 wt%) of 5% Pd/C is added 4-oxo-adamantane-1-carboxylic acid (10.0 g, 30 51.5 mmol) followed by 7M NH 3 in MeOH (200 mL). The reaction mixture is stirred under an atmosphere of H 2 at 23 0 C for 16-24 hours; water (200 mL) is added; and the catalyst is removed by filtration. The catalyst is washed with methanol and the filtrate solution is 54 concentrated under reduced pressure at a bath temperature of 35 (C until solvent stops coming over. Approximately 150 mL of a slurry remains. Acetonitrile (300 mL) is added to the slurry which is then stirred for 3 hours at 23 (C. The slurry is filtered and washed once with acetonitrile (100 mL). The wet cake is dried at 50 0 C and 20 mmHg under N 2 to yield 5 E-4-amino-adamantane-1-carboxylic acid (8.65 g, 86%, 13.1:1.0 E:Z ratio by 1 H-NMR in
D
2 0). Example 7B E-4-Amino-adamantane- 1 -carboxylic acid methyl ester 10 Methanol (85 mL) was cooled to 0 (C; acetyl chloride (15.5 mL) was added dropwise; and then the solution was warmed to 23 0 C for 15-20 minutes. E-4-Amino-adamantane-1 carboxylic acid (8.53 g, 43.7 mmol) was added and the reaction solution was heated to 45 0 C for 16 hours. The reaction solution was cooled to 23 0 C and acetonitrile (85 mL) was added. The reaction solution was concentrated under reduced pressure to ~1/4 volume. The reaction 15 solution was further chase distilled with acetonitrile (2x85 mL). The resulting suspension was cooled to 23 (C and filtered. The filtrate was recirculated twice to wash the wet cake. The product was dried at 50 0 C, 20 mmHg for 16 hours to afford E-4-amino-adamantane-1 carboxylic acid methyl ester as a white crystalline solid (10.02 g, 93%). 20 Example 7C E-4-[2-(4-chloro-phenoxv)-2-methyl-propionylaminol-adamantane-1-carboxylic acid To the solution of E-4-Adamantamine -1-carboxylic acid methyl ester (49 mg, 0.2 mmoles) and triethylamine (0.097 mL, 0.7 mmoles) in DCM (1.0 mL) was added a solution of 2-(4-chlorophenoxy)-2-methylpropionyl chloride (55 mg, 0.24 mmoles) in DCM (1.0 mL). 25 The resulting reaction mixture was stirred at room temperature for 20 hours and concentrated under reduced pressure. The residue was partitioned between ethylacetate and water. The organic layer was separated and washed with IN HCl, water and brine, dried (MgSO4) and filtered. The filtrate was concentrated under reduced pressure to provide the crude methyl ester of the title compound that was purified on reverse phase IHPLC and hydrolyzed with 2N 30 aqueous NaOH, THF and ethanol (2:1:1, 2 mL) at room temperature for 20 hours. The reaction mixture was acidified with iN HCl and extracted with ethyl acetate. The organic layer was separated, washed with water and brine respectively, dried (MgSO 4 ) and filtered. 55 The filtrate was concentrated under reduced pressure to provide the title compound. 1H NMR (500 MHz, DMSO-D6) 8 ppm 11.94 - 12.25 (m, 1 H) 7.30 - 7.36 (m, 3 H) 6.87 - 6.94 (m, 2 H) 3.80 - 3.87 (m, 1 H) 1.93 (s, 2 H) 1.85 (d, J=2.44 Hz, 3 H) 1.80 (d, J=2.75 Hz, 2 H) 1.75 (s, 2 H) 1.68 (d, J=12.82 Hz, 2 H) 1.46 (s, 6 H) 1.38 (d, J=12.82 Hz, 2 H). MS (ESI+) m/z 5 392 (M+H)* Example 8 E-4-[2-(4-chloro-phenoxy)-2-methyl-propionylaminol-adamantane-1-carboxylic acid amide The title compound was prepared according to the procedure outlined in Example 1E 10 from E-4-[2-(4-chloro-phenoxy)-2-methyl-propionylamino]-adamantane-1-carboxylic acid (Example 7C). 1 H NMR (400 MHz, DMSO-D6) 8 ppm 7.25 - 7.36 (m, 3 H) 6.94 - 6.99 (m, 1 H) 6.89 - 6.94 (m, 2 H) 6.69 (s, 1 H) 3.83 (d, J=7.67 Hz, 1 H) 1.91 (s, 2 H) 1.75 - 1.87 (m, 5 H) 1.63 - 1.73 (m, 4 H) 1.46 (s, 6 H) 1.32 - 1.42 (m, 2 H). MS (ESI+) m/z 391 (M+H)+ 15 Example 9 E-4-[2-methyl-2-(4-methyl-cyclohexloxv)-propionylaminol-adamantane-1-carboxylic acid. amide The title compound was prepared according to the procedures outlined in Example 3 20 and 1E, substituting 4-methylcyclohexanol for 2-methylcyclohexanol. 'H NMR (400 Mlz, DMSO-D6) 8 ppm 7.14 (d, 1 H) 6.98 (s, 1 H) 6.70 (s, 1 H) 3.72 - 3.82 (m, 1 H) 3.39 - 3.50 (m, 1 H) 1.19 - 1.96 (m, 26 H) 0.91 - 1.05 (m, 2 H) 0.81 - 0.89 (m, 3 H). MS (ESI+) m/z 377 (M+H)+. 25 Example 10 E-4-[(2-phenoxypropanoyl)aminoladamantane-1-carboxamide The title compound was prepared according to the procedure outlined in Example 7C and 1E substituting 2-phenoxy-propionyl chloride for 2-(4-chlorophenoxy)-2 methylpropionyl chloride. 1 H NMR (400 MHz, DMSO-D6) 8 ppm 7.74 (d, J=7.36 Hz, 1 H) 30 7.26 (t, J=7.98 Hz, 2 H) 6.83 - 6.99 (m, 4 H) 6.68 (s, 1 H) 4.86 (q, J=6.55 Hz, 1 H) 3.78 (d, J==7.06 Hz, 1 H) 1.69 - 1.92 (m, 11 H) 1.43 (d, J=6.44 Hz, 3 H) 1.37 (d, J=12.89 Hz, 2 H). MS (ESI+) m/z 343 (M+H)+ 56 Example 11 E-4-j[2-methyl-2-(2-methylphenoxv)propanoYllaminoladamantane-1-carboxylic acid The title compound was prepared according to the procedure outlined in Example 1D 5 substituting 2-methylphenol for phenol. 1H NMR (500 MHz, DMSO-D6) 8 ppm 11.58 12.61 (br. s, 1 H) 7.28 (d, J=7.32 Hz, 1 H) 7.19 (d, J=7.32 Hz, 1 H) 7.05 - 7.13 (m, 1 H) 6.91 (t, J=6.87 Hz, 1 H) 6.82 (d, J=7.93 Hz, 1 H) 3.79 - 3.88 (m, 1 H) 2.22 (s, 3 H) 1.95 (s, 2 H) 1.86 (d, J=2.75 Hz, 3 H) 1.82 (s, 2 H) 1.76 (s, 2 H) 1.68 (d, J=13.12 Hz, 2 H) 1.46 (s, 6 H) 1.43 (d, J=13.73 Hz, 2 H). MS (ESI+) m/z 372 (M+H)* [0 Example 12 E-4-{[2-methyl-2-(4-methylphenoxy)propanoyllaminoladamantane-1-carboxylic acid The title compound was prepared according to the procedure outlined in Example 1D substituting 4-methylphenol for phenol. 1H NMR (500 MHz, DMSO-D6) 8 ppm 11.75 15 12.46 (br.s, 1 H) 7.30 (d, J=7.32 Hz, 1 H) 7.08 (d, J=8.24 Hz, 2 H) 6.81 (d, J=8.54 Hz, 2 H) 3.80 - 3.86 (m, 1 H) 2.23 (s, 3 H) 1.94 (s, 2 H) 1.86 (d, J=2.44 Hz, 3 H) 1.82 (s, 2 H) 1.76 (s, 2 H) 1.69 (d, J=12.82 Hz, 2 H) 1.38 - 1.45 (m, 8 H). MS (ESI+) m/z 372 (M+H)* Example 13 20 E-4- I[2-(2-chlorophenoxy)-2-methylproanovll amino} adamantane- 1 -carboxylic acid The title compound was prepared according to the procedure outlined in Example 1D substituting 2-chlorophenol for phenol. 1H NMR (500 MHz, DMSO-D6) 8 ppm 11.50 - 12.76 (br. s, 1 H) 7.63 (d, J=7.63 Hz, 1 H) 7.57 (dd, J=7.93, 1.53 Hz, 1 H) 7.36 (t, 1 H) 7.24 (dd, J=8.24, 1.22 Hz, 1 H) 7.16 (t, 1 H) 3.88 - 3.98 (m, 1 H) 2.04 (s, 2 H) 1.94 (d, J=2.44 Hz, 5 H) 25 1.82 - 1.88 (m, 4 H) 1.52 - 1.59 (m, 8 H). MS (ESI+) m/z 392 (M+H)+ Example 14 E-4- f[2-(2-methoxyphenoxy)-2-methylpropanoylaminoladamantane-1-carboxamide The title compound was prepared according to the procedure outlined in Example 1D 30 and 1E substituting 2-methoxyphenol for phenol. 1 H NMR (400 MHz, DMSO-D6) 8 ppm 7.91 (d, J=7.67 Hz, 1 H) 7.05 - 7.11 (m, 3 H) 7.00 (s, 1 H) 6.86 - 6.93 (m, 1 H) 6.71 (s, 1 H) 3.81 - 3.88 (m, 1 H) 3.79 (s, 3 H) 1.96 (s, 2 H) 1.76 - 1.92 (m, 9 H) 1.54 (d, J=13.20 Hz, 2 H) 57 1.36 (s, 6 H). MS (ESI+) m/z 387 (M+H)* Example 15 E-4- f [2-(4-methoxyp~henoxy)-2-methylpropanovll aminol adamantane- 1 -carboxamide 5 The title compound was prepared according to the procedure outlined in Example 1D and 1E substituting 4-methoxyphenol for phenol. 1 H NMR (400 MHz, DMSO-D6) 6 ppm 7.30 (d, J=7.36 Hz, 1 H) 6.93 - 7.01 (m, 1 H) 6.82 - 6.92 (m, 4 H) 6.70 (s, 1 H) 3.85 (d, J=7.06 Hz, 1 H) 3.71 (s, 3 H) 1.92 - 1.97 (m, 2 H) 1.77 - 1.89 (m, 5 H) 1.74 (s, 3 H) 1.71 (s, 1 H) 1.44 (d, J=12.58 Hz, 2 H) 1.37 (s, 6 H). MS (ESI+) m/z 387 (M+H)* 10 Example 16 E-4-({2-methyl-2-[3-(trifluoromethyl)phenoxylpropanovl}amino)adamantane-1-carboxamide The title compound was prepared according to the procedure outlined in Example 1D and 1E substituting 3-trifluoromethylphenol for phenol. 1 H NMR (400 MHz, DMSO-D6) 6 15 ppm 7.53 (t, J=7.98 Hz, 1 H) 7.37 (dd, J=12.12, 7.21 Hz, 2 H) 7.19 (dd, 1 H) 7.14 (s, 1 H) 6.95 (s, 1 H) 6.68 (s, 1 H) 3.81 (s, 1 H) 1.90 (s, 2 H) 1.80 (d, J=7.67 Hz, 4 H) 1.76 (s, 1 H) 1.70 (s, 2 H) 1.61 (d, 2 H) 1.52 (s, 6 H) 1.32 (d, J=13.50 Hz, 2 H). MS (ESI+) m/z 425 (M+H)* 20 Example 17 E-4-{[2-(3-methoxyphenoxy)-2-methylpropanovllamino adamantane-1-carboxamide The title compound was prepared according to the procedure outlined in Example 1D and 1E substituting 3-methoxyphenol for phenol. 1 H NMR (500 MHz, DMSO-D6) 8 ppm 25 7.26 (d, J=7.32 Hz, 1 H) 7.17 (t, J=8.24 Hz, 1 H) 6.98 (s, 1 H) 6.71 (s, 1 H) 6.60 (dd, J=8.39, 1.98 Hz, 1 H) 6.43 - 6.48 (m, 2 H) 3.82 (d, J=7.02 Hz, 1 H) 3.70 (s, 3 H) 1.91 (s, 2 H) 1.76 1.86 (m, 5 H) 1.71 (s, 2 H) 1.66 (d, J=12.82 Hz, 2 H) 1.46 (s, 6 H) 1.36 (d, J=12.51 Hz, 2 H). MS (ESI+) m/z 387 (M+H)* 30 Example 18 N-adamantan-2-yl-2-(4-chloro-phenoxy)-2-methyl-propionamide The title compound was prepared according to the procedure outlined in Example 7C 58 substituting 4-adamantamine hydrochoride for E-4-adamantamine -I-carboxylic acid methyl ester. 1 H NMR (400 MHz, DMSO-D6) 8 ppm 7.30 - 7.35 (in, 2 H) 7.25 (d, J=7.36 Hz, 1 H) 6.89 - 6.94 (in, 2 H) 3.83 - 3.91 (in, 1 H) 1.82 (d, J=10.74 Hz, 2 H) 1.77 (s, 5 H) 1.64 - 1.73 (in, 5 H) 1.42 - 1.49 (in, 8 H). MS (ESI+) m/z 348 (M+H)*. 5 Example 19 E-2-(4-Chloro-phenoxy)-N-(5-hydroxy-adamantan-2-v1)-2-methl-propionamide The title compound was prepared according to the procedure outlined in Example 7C substituting E-4-aminoadamantan-1-ol for E-4-adamantamine -1-carboxylic acid methyl 10 ester. IH NMR (400 MHz, DMSO-D6) 8 ppm 7.30 - 7.35 (in, 2 H) 7.22 (d, J=7.06 Hz, 1 H) 6.88 - 6.94 (in, 2 H) 4.21 - 4.52 (br s, 1 H) 3.75 - 3.80 (in, 1 H) 1.96 (s, 2 H) 1.91 (s, 1 H) 1.64 - 1.71 (in, 2 H) 1.53 - 1.62 (in, 6 H) 1.45 (s, 6 H) 1.27 (d, J=12.58 Hz, 2 H). MS (ESI+) m/z 364 (M+H)*. 15 Example 20 E-{[2-Methyl-2-(4-methylphenoxy)propanoyllaminoladamantane-1-carboxanide A solution of the product of Example 12 (24 mg, 0.064 mmol) in DCM (2 mL) was treated with HOBt (9.5 mg, 0.07 mmol) and EDCI (14.7 mg, 0.077 mmol) and stirred at room temperature for 1 hour. Excess of aqueous (30%) ammonia (2 mL) was added and the 20 reaction was stirred for additional 20 hours. The layers were separated and the aqueous layer extracted with DCM (2x2 mL). The combined organic extracts were washed with water (3x2 mL), brine (2 mL), dried (MgSO 4 ) and filtered. The filtrate was concentrated under reduced pressure to provide the crude compound that was purified by reverse phase preparative HPLC on a Waters Symmetry C8 column (25mm X 100mm, 7um particle size) using a gradient of 25 10% to 100% acetonitrile:0.1% aqueous TFA over 8min (10min run time) at a flow rate of 40mL/min. to provide the title compound. lH NMR (500 Mz, DMSO-d 6 ) 8 ppm 7.28 (d, J = 7.36 Hz, 1H), 7.08 (d, J= 8.12 Hz, 2H), 6.98-6.99 (bs, 1H), 6.80-6.82 (in, 2H), 6.71-6.73 (bs, 1H), 3.81-3.86 (in, 1H), 2.23 (s, 3H), 1.91-1.93 (in, 2H), 1.77-1.87 (m, 5H), 1.71-1.73 (m, 2H), 1.65-1.70 (in, 2H), 1.41 (s, 6H), 1.37-1.42 (in, 2H). MS (ESI+) m/z 371 (M+H)*. 30 Example 21 E-4- f{2-(3-Chlorophenoxv)-2-methylpropanoyl] amino } adamantarie- 1 -carboxamide 59 Example 21A Example 21A was prepared according to the procedure outlined in Example 1D, substituting 3-chlorophenol for phenol. 5 Example 21B E-4-{[2-(3-Chlorophenoxv)-2-methylpropanoyllamino}adamantane-1-carboxamide The title compound was prepared using the procedure as described in Example 1E, substituting the product of Example 21A for the product of Example 1D. 1H NMR (500 10 MHz, DMSO-d 6 ) 8 ppm 7.35 (d, J= 6.93 Hz, 1H), 7.31 (t, J= 8.10 Hz, 1H), 7.07 (dd, J= 7.83, 1.91 Hz, 1H), 6.97-6.98 (bs, 1H), 6.92 (t, J = 2.15 Hz, 1H), 6.87 (dd, J= 8.22, 2.29 Hz, 1H), 6.70-6.72 (bs, 1H), 1.90-1.93 (m, 2H), 1.70-1.71 (m, 2H), 1.49 (s, 6H), 3.80-3.84 (m, 1H), 1.76-1.85 (m, 5H), 1.60-1.68 (m, 2H), 1.33-1.37 (m, 2H). MS (ESI+) m/z 391 (M+H)+. 15 Example 22 E-4-({2-Methyl-2-[4-(trifluoromethoxylphenoxylpropanovlI amino)adamantane-1 carboxamide Example 22A 20 Example 22A was prepared according to the procedure outlined in Example 1D, substituting 4-trifluoromethoxyphenol for phenol. Example 22B E-4-({2-Methyl-2-[4-(trifluoromethoxphenoxylproppanoyl}aminoladamantane-1 25 carboxamide The title compound was prepared using the procedure as described in Example 1E, substituting the product of Example 22A for the product of Example 1D. 1 H NMR (400 MHz, DMSO-d 6 ) 8 ppm 7.41 (t, J= 8.25 Hz, 1H), 7.33 (d, J= 6.94 Hz, 1H), 7.00 (d, J= 8.15 Hz, 1H), 6.90-6.96 (m, 2H), 6.82-6.84 (bs, 1H), 6.67-6.69 (bs, 1H), 3.79-3.84 (m, 1H), 1.87 30 1.90 (m, 2H), 1.75-1.86 (m, 5H), 1.69-1.71 (m, 2H), 1.63-1.69 (m, 2H), 1.51 (s, 6H), 1.29 1.37 (m, 2H). MS (ESI+) m/z 441 (M+H)*. 60 Example 23 E-4-{F2-(3-Bromophenoxy)-2-methylpropanovll aminoladamantane-1-carboxylic acid The title compound was prepared according to the procedure outlined in Example 1D, 5 substituting 3-bromo-phenol for phenol. 1 H NMR (500 MHz, DMSO-d 6 ) 6 ppm 12.05-12.10 (s, 1H), 7.38 (d, J= 6.82 Hz, 1H), 7.19-7.27 (in, 2H), 7.06 (t, J= 2.06 Hz, 1H), 6.91 (ddd, J= 8.09, 2.36, 1.18 Hz, 1H), 3.80-3.84 (in, 1H), 1.93-1.96 (in, 2H), 1.84-1.85 (in, 4H), 1.77-1.80 (m, 1H), 1.74-1.76 (in, 2H), 1.65-1.70 (in, 2H), 1.48 (s, 6H), 1.36-1.40 (in, 2H). MS (ESI+) m/z 437 (M+H)*. 10 Example 24 4-({[((E)-4- {2-(4-Cblorophenoxy)-2-methylpropanovllamino}-1 adamantyl)carbonyllaminolmethyl)benzoic acid To a solution of the product of Example 7C (200 mg, 0.51 mmol) and TBTU (246 15 mg, 0.77 mmol) in DMF (5 mL) was added NN-diisopropylethylamine (0.27 mL, 1.53 mmol) followed by 4-aminomethyl-benzoic acid methyl ester hydrochloride (123 mg, 0.61 mmol) and stirred at room temperature for 20 hours. The reaction mixture was concentrated in vacuo. The residue was taken in ethyl acetate and washed with water and brine respectively, dried (MgSO 4 ) and concentrated in vacuo to get crude methyl ester of the title 20 compound that was purified by reverse phase preparative HPLC on a Waters Symmetry C8 column (40mm X 100mm, 7um particle size) using a gradient of 10% to 100% acetonitrile:0.1% aqueous TFA over 12min (15min run time) at a flow rate of 70mL/min. and concentrated. The methyl ester of the title compound was hydrolyzed as described in step B of Example 1D. The crude acid product was purified by reverse phase preparative HPLC on 25 a Waters Symmetry C8 column (40mm X 100mm, 7um particle size) using a gradient of 10% to 100% acetonitrile:0.1% aqueous TFA over 12min (15min run time) at a flow rate of 70mL/min.to provide the title compound. 1H NMR (400 MHz, DMSO-d 6 ) 8 ppm 12.77 12.82 (bs, 1H), 8.08 (t, J= 5.96 Hz, 1H), 7.88 (d, J= 7.99 Hz, 2H), 7.29-7.36 (in, 5H), 6.91 6.93 (in, 2H), 4.31 (d, J= 5.86 Hz, 2H), 3.84-3.89 (in, 1H), 1.93-1.96 (in, 2H), 1.82-1.91 (in, 30 5H), 1.77-1.79 (in, 2H), 1.67-1.72 (in, 2H), 1.47 (s, 6H), 1.32-1.45 (in, 2H). MS (ESI+) m/z 525 (M+H)*. 61 Example 25 E-4- {[2-(2,3-Dimethylphenoxy)-2-methylpropanoyllaminoladamantane-1-carboxylic acid Example 25A 5 2-(2,3-Dimethylphenoxy)-2-methyl-propionic acid To an ice cold solution of 2,3-dimethylphenol (136 mg, 1.0 mmol) and 1,1,1 trichloro-2-methyl-2-propanol hydrate (492 mg, 2.75 mmol) in acetone (2 mL) was added powdered sodium hydroxide (393 mg, 9.83 mmol) in three equal portions at 1 hour interval. After each addition reaction mixture was allowed to come to room temperature. Before last 10 addition of sodium hydroxide, acetone (2 mL) was added to the reaction mixture. The reaction mixture was stirred at room temperature for 48 hours and concentrated in vacuo. The residue was diluted with water and acidified to pH 1 with aqueous HC and extracted with diethyl ether (3x5 mL). The organic layers were pooled, dried (Na 2
SO
4 ) and filtered. The filtrate was concentrated under reduced pressure to provide the crude that was purified 15 by reverse phase preparative HPLC on a Waters Symmetry C8 column (40mm X 100mm, 7um particle size) using a gradient of 10% to 100% acetonitrile:0.10o aqueous TFA over 12min (15min run time) at a flow rate of 70mL/min. to provide the title compound as a pale yellow solid (158 mg, 76%). 20 Example 25B E-4-{[2-(2,3-Dimethylphenoxy)-2-methylpropanoyllamino}adamantane-1-carboxylic acid To a solution of the product of Example 25A (20.8 mg, 0.1 mmol) and TBTU (48 mg, 0.15 nimol) in DMF (1 mL) was added NN-diisopropylethylamine (0.052 mL, 0.3 mmol) followed by the product of Example 7B (30 mg, 0.12 mmol) and stirred at room temperature 25 for 20 hours. The reaction mixture was concentrated in vacuo. The residue was purified by reverse phase preparative HPLC on a Waters Symmetry C8 column (25mm X 100mm, 7um particle size) using a gradient of 10% to 100% acetonitrile:0.1% aqueous TFA over 8min (10min run time) at a flow rate of 40mL/min. and hydrolyzed as described in step B of Example 1D to provide the title compound. 1 H NMR (500 MHz, DMSO-d 6 ) S ppm 12.03 30 12.14 (bs, 1H), 7.30 (d, J= 7.30 Hz, 1H), 6.98 (t, J= 7.79 Hz, 1H), 6.84 (d, J= 7.44 Hz, 1H), 6.68 (d, J= 8.14 Hz, 1H), 3.84-3.88 (m, 1H), 2.22 (s, 3H), 2.14 (s, 3H), 1.95-1.97 (in, 2H), 1.83-1.88 (m, 5H), 1.76-1.78 (m, 2H), 1.69-1.73 (m, 2H), 1.41-1.48 (m, 2H), 1.43 (s, 6H). 62 MS (ESI+) m/z 386 (M+H)+. Example 26 tert-Butyl 4-(2- {{(E)-5-(aminocarbonyl)-2-adamantyll amino} -1,1 -dimethyl-2 5 oxoethoxy)phenylcarbamate Example 26A Example 26A was prepared according to the procedure outlined in Example 25A, substituting (4-hydroxy-phenyl)-carbamic acid tert-butyl ester for 2,3-dimethylphenol. .0 Example 26B Example 26B was prepared using the procedure as described in Example 25B, substituting the product of Example 26A for the product of Example 25A. [5 Example 26C tert-Butyl 4-(2-{[(E)-5-(aminocarbonyl)-2-adamantyllaminol-1,1-dimethyl-2 oxoethoxy)phenylcarbamate The title compound was prepared using the procedure as described in Example 1E, substituting the product of Example 26B for the product of Example 1D. 1 H NMR (400 20 MHz, DMSO-d 6 ) 6 ppm 9.18-9.20 (bs, 1H), 7.34 (d, J= 8.50 Hz, 2H), 7.28 (d, J= 7.37 Hz, 1H), 6.96-6.98 (bs, 1H), 6.84 (d, J= 8.77 Hz, 2H), 6.68-6.70 (bs, 1H), 3.81-3.87 (m, 1H), 1.92-1.95 (m, 2H), 1.80-1.89 (m, 5H), 1.68-1.75 (m, 4H), 1.46 (s, 9H), 1.39-1.46 (m, 2H), 1.39 (s, 6H). MS (ESI+) m/z 472 (M+H)*. 25 Example 27 E-N-[4-(Aminocarbonyl)benzyll-4-{[2-(4-chlorophenoxy)-2 methylpropanoyllamino}adamantane-1-carboxamide The title compound was prepared according to the procedure outlined in Example 1E substituting the product of Example 24 for the product of Example 1D. IH NMR (400 MHz, 30 DMSO-d 6 ) 8 ppm 8.03-8.08 (m, 1H), 7.86-7.88 (bs, 1H), 7.80 (d, J= 8.09 Hz, 2H), 7.32-7.35 (m, 2H), 7.26-7.32 (m, 2H), 7.24-7.27 (m, 2H), 6.91-6.93 (m, 2H), 4.29 (d, J= 5.87 Hz, 2H), 3.83-3.89 (m, 1H), 1.82-1.96 (m, 7H), 1.77-1.79 (m, 2H), 1.66-1.72 (m, 2H), 1.46 (s, 6H), 63 1.37-1.42 (m, 2H). MS (ESI+) m/z 524 (M+H)*. Example 28 E-N-[4-(Aminocarbonyl)methyll-4-{[2-(4-chlorophenoxy)-2 5 methylpropanoyllaminol adamantane-1-carboxamide Example 28A Example 28A was prepared according to the procedure outlined in Example 24, substituting glycine methyl ester hydrochloride for 4-aminomethyl-benzoic acid methyl ester 10 hydrochloride. Example 28B E-N-[4-(Aminocarbonvl)methyll-4-{[2-(4-chlorophenoxy)-2 15 methylpropanoyll amino} adamantane- 1 -carboxamide The title compound was prepared using the procedure as described in Example 1E, substituting the product of Example 28A for the product of Example 1D. 1 H NMR (400 MHz, DMSO-d6) 8 ppm 7.49-7.54 (m, 1H), 7.32-7.35 (m, 2H), 7.31 (d, J= 7.21 Hz, 1H), 7.08-7.11 (bs, 1H), 6.93-6.97 (m, 1H), 6.91-6.93 (m, 2H), 3.82-3.87 (m, 1H), 3.58 (d, J= 20 5.68 Hz, 2H), 1.92-1.98 (m, 2H), 1.80-1.90 (m, 5H), 1.74-1.76 (m, 2H), 1.65-1.71 (i, 2H), 1.46 (s, 6H), 1.36-1.41 (m, 2H). MS (ESI+) m/z 448 (M+H)*. Example 29 3-({[((E)-4-{[2-(4-Chlorophenoxy)-2-iethylpropanovl lamino}-1 25 adamantyl)carbonyll amino}methyllbenzoic acid The title compound was prepared according to the procedure outlined in Example 24, substituting 3-aminomethyl-benzoic acid methyl ester hydrochloride for 4-aminomethyl benzoic acid methyl ester hydrochloride. 1 H NMR (400 MHz, DMSO-d 6 ) 8 ppm 12.81-12.91 (m, 1H), 8.06-8.12 (m, 1H), 7.77-7.82 (m, 2H), 7.40-7.44 (m, 2H), 7.31-7.35 (m, 2H), 7.30 30 7.32 (m, 1H), 6.91-6.93 (m, 2H), 4.30 (d, J= 5.89 Hz, 2H), 3.83-3.88 (m, 1H), 1.93-1.96 (m, 2H), 1.82-1.90 (m, 5H), 1.77-1.79 (m, 2H), 1.67-1.72 (m, 2H), 1.46 (s, 6H), 1.37-1.42 (m, 2H). MS (ESI+) m/z 525 (M+H)*. 64 Example 30 E-4-({2-[(5-Bromopyridin-2-yl)oxyl-2-methylpropanoyli amino)adamantane-1-carboxamide 5 Example 30A 2-(5-Bromo-pyridin-2-yloxy)-2-methyl-propionic acid Step A To a stirred and cooled (0 0 C) solution of 2-hydroxy-2-methyl-propionic acid methyl ester (2.6 mL, 22.70 mmol) and 5-bromo-2-fluoro-pyridine (3.32 g, 18.92 mmol) in THF (26 10 mL) and DMPU (13 mL) was added portionwise NaH (1g, 60% in oil, 24.59 mmol). After the addition, the resulting mixture was warmed to room temperature and stirred overnight. Saturated NH 4 Cl was then added to quench the reaction and Et 2 O was used to partition the mixture. The organic phase was washed with water, brine, dried over MgS04, and filtered. After concentration, the residue was purified over silica gel using 20% EtOAc / hexane and 15 concentrated to give a clear oil. Step B The product of Step A (1.56 g, 5.71 mmol) was dissolved in THF (30 mL) and KOTMS (1.1 g, 8.57 mmol) was added in one portion. The resulting solution was stirred at room temperature overnight. Et 2 0 (30 mL) and water (40 mL) were added to the reaction to 20 partition the mixture. The phases were separated, and the aqueous phase was acidified using 10% NaHSO 4 solution and extracted with EtOAc. The combined organic phases were dried over MgSO 4 , filtered and concentrated to give the title compound as a white solid. Example 30B 25 E-4-({2-[(5-Bromopyridin-2-yl)oxyl-2-methylpropanoyl} amino)adamantane-1-carboxamide Step A HATU (2.46 g, 6.48 mmol) was added in one portion to a solution of the product of Step B of Example 30A (1.40 g, 5.40 mmol), the product of Example 7B (1.45 g, 5.95 mmol), and DIPEA (2.82 mL, 16.2 mmol) in dry CH 2 C1 2 (20 mL). The resulting solution was 30 allowed to stir at room temperature overnight before it was diluted with CH 2 Cl 2 and washed with aqueous NaHSO4 solution, 1 M NaOH, dried (Na 2
SO
4 ) and evaporated. The residue was purified over silica gel using 30% EtOAc / hexanes and concentrated to give an oil. 65 Step B To the product of Step A (2.27 g, 5.04 mmol) in THF (15 mL) was added KOTMS (1.42 g, 11.08 mmol) and the resulting solution was stirred at room temperature overnight before it was diluted with Et 2 0 and water. The phases were separated and the aqueous phase 5 was acidified with NaHSO 4 solution and extracted with EtOAc. The combined organic phases were dried (MgSO 4 ) and evaporated to give a white solid. Step C EDCI (1.40 g, 7.25 mmol) was added to a solution of the product of Step B (2.17 g, 4.84 mmol), HOBt (1.17 g, 8.71 mmol), DIPEA (2.5 mL, 14.4 mmol) in dry CH 2 C1 2 (20 mL). 10 The resulting solution was allowed to stir at room temperature for 1 hr before NH 3 solution was added (12 mL, 2M in iPrOH). The mixture was stirred for 2 hours at 25"C, diluted with
CH
2 C1 2 and washed with NaHSO 4 solution, IM NaOH, brine, dried (Na 2
SO
4 ) and evaporated. The residue was purified over silica gel using 5% MeOH / CH 2 C1 2 to give the title compound as a white solid. 'H NMiR (300 MHz, CD 3 0D) 8 ppm 8.11 (d, J= 2.52 Hz, 15 1H), 7.82 (dd, J= 8.74, 2.60 Hz, 1H), 6.84 (d, J= 8.74 Hz, 1H), 3.89-3.92 (m, 1H), 1.91-1.99 (m, 6H), 1.83 (s, 3H), 1.66 (s, 6H), 1.41-1.62 (m, 4H). MS (ESI+) nm/z 436 (M+H)*. Example 31 E-4-{[2-(2-Cyanophenoxy)-2-methylpropanoyll amino} adamantane- 1 -carboxamide 20 Example 31A Example 3 1A was prepared according to the procedure outlined in Example 25A, substituting 2-hydroxy-benzonitrile for 2,3-dimethylphenol. 25 Example 31B Example 3 lB was prepared using the procedure as described in Example 25B, substituting the product of Example 31A for the product of Example 25A. Example 31 C 30 E-4- { [2-(2-Cyanophenoxy)-2-methylpropanoyl amino} adamantane-1 -carboxamide The title compound was prepared using the procedure as described in Example 1E, substituting the product of Example 31B for the product of Example ID. H NMR (500 66 MHz, DMSO-d 6 ) 8 ppm 7.78 (dd, J=7.68, 1.75 Hz, 1H), 7.62 (ddd, J= 8.54, 7.48, 1.68 Hz, 1H), 7.49 (d, J= 6.94 Hz, 1H), 7.17 (td, J= 7.58, 0.87 Hz, 1H), 7.08 (d, J= 8.53 Hz, 1H), 6.98-6.99 (bs, 1H), 6.71-6.72 (bs, 1H), 3.83-3.87 (in, 1H), 1.94-1.96 (in, 2H), 1.75-1.88 (in, 7H), 1.71-1.73 (in, 2H), 1.60 (s, 6H), 1.35-1.39 (in, 2H). MS (ESI+) m/z 382 (M+H)*. 5 Example 32 E-4-{[2-(4-Hydroxyphenoxy)-2-methylpropanoyll amino}adamantane-1-carboxamide Example 32 A LO Example 32A was prepared according to the procedure outlined in Example 25A, substituting 4-benzyloxy-phenol for 2,3-dimethylphenol. Example 32B Example 32B was prepared according to the procedure outlined in Example 25B, 15 substituting the product of Example 32A for the product of Example 25A. Example 32C Example 32C was prepared according to the procedure outlined in Example 1E, substituting the product of Example 32B for the product of Example ID. 20 Example 32D E-4-{r2-(4-Hydroxyphenoxy)-2-methylpropanollaminojadamantane-1-carboxamide The product of Example 32C (62 mg, 0.13 mmol) was debenzylated using 20% Pd(OH) 2 /C (63 mg) and methanol (2mL) at 60 psi at room temperature for 20 hours. The 25 reaction mixture was filtered and concentrated under reduced pressure to provide the crude product that was purified by reverse phase preparative HPLC on a Waters Symmetry CS column (25mm X 100mm, 7um particle size) using a gradient of 10% to 100% acetonitrile:0.1% aqueous TFA over 8min (10min run time) at a flow rate of 40mL/min. to provide title compound as a white solid. 1H NMR (400 MHz, DMSO-d 6 ) S ppm 9.12 (s, 1H), 30 7.28 (d, J= 7.49 Hz, 1H), 6.96-6.99 (bs, 1H), 6.77-6.79 (in, 2H), 6.69-6.71 (bs, 1H), 6.63 6.69 (in, 2H), 3.81-3.87 (in, 1H), 1.93-1.95 (m, 2H), 1.78-1.89 (in, 5H), 1.69-1.76 (in, 4H), 1.42-1.47 (m, 2H), 1.35 (s, 6H). MS (ESI+) m/z 373 (M+H)*. 67 Example 33 ((E)-4-{[2-(4-Chlorophenox)-2-mth Ipropafl 5 Example 33A 2-(4-chlorophenoxy)-N4(E)-5-(hydroxymethyl)-2-adamantyll-2-methylpropanamide To a cold (-30'C) solution of the methyl ester of Example 7C (870 mg, 2.15 mmol) in THF (3.0 mL) was added IN LAH in THF solution (3.22 ml, 3.22 mmol) slowly under N 2 flow. The reaction mixture was stirred from -30'C to 0 0 C for 3 hours. It was quenched with .0 water carefully, acidified with IN HC and extracted with DCM 3 times. The combined organic layer was dried over Na 2
SO
4 , filtered, concentrated under reduced pressure and the residue purified by flash chromatography with 30% ethyl acetate / 70% hexane to provide the title compound (690 mg, 85%). 'IH NMR (300 MHz, CDCl 3 ) 8 ppm 9.32 - 9.39 (m, 1 H), 7.17 - 7.29 (m, 2 H), 7.00 (d, 1 H), 6.81 - 6.91 (m, 2 H), 3.99 - 4.12 (m, 1 H), 1.44 - 2.15 (m, L5 21 H). MS (ESI+) m/z 378 (M+H)*. Example 33B E-4-[2-(4-Chlorophenoxy)-2-methyl-propionylaninol-adamantane-1-carbaldehyde To a solution of the product of Example 33A (990 mg, 2.63 mmol) in DCE (8.0 mL) 20 were added NMO (461 mg, 3.94 mmol), TPAP (46 mg, 0.13 mmol) and molecular sieves at room temperature under N 2 flow. The reaction mixture was stirred overnight at room temperature. It was filtered through Celite and washed with DCM 3 times. The combined filtrate was concentrated under reduced pressure and purified by flash chromatography with 30% ethyl acetate / 70% hexane to provide the title compound (740 mg, 75%). 'H NMR (300 25 MHz, CDCl 3 ) 8 ppm 9.36 (m, 1 H), 7.20 - 7.26 (m, 2 H), 6.95 - 7.05 (m, 1 H), 6.82 - 6.91 (m, 2 H), 4.00 - 4.10 (m, 1 H), 1.48 - 2.13 (m, 19 H). MS (ESI+) m/z 376 (M+H)*. Example 33C E-{4-[2-(4-Chlorophenoxy)-2-methyl-propionylaminol-adanantan-1-yl}-acetonitrile 30 To a cold (0 0 C) solution of the product of Example 33B (375 mg, 1 mmol) in DME (5.0 mL) / EtOH (0.15 ml) was added TosMIC (254 mg, 1.3 mmol) and t-BuOK (281 mg, 2.5 mmol) under N 2 flow. The reaction mixture was stirred at room temperature for 2 hrs, then 68 heated to 35-40'C for 30 minutes. It was filtered through A1 2 0 3 plug after it was cool down to room temperature and washed with DME (3 X). The combined filtrate was concentrated under reduced pressure and purified by flash chromatography with 30% ethyl acetate/ 70% hexane to provide the title compound (200 mg, 52%). 'H NMR (400 MHz, CDCl 3 ) 8 ppm 5 7.19 - 7.29 (m, 2 H), 6.91 - 7.01 (m, 1 H), 6.81 - 6.90 (in, 2 H), 3.96 - 4.05 (in, 1 H), 2.14 (s, 2 H), 1.94 - 2.08 (m, 3 H), 1.47 - 1.75 (m, 15 H). MS (ESI+) m/z 387 (M+H)+. Example 33D ((E)-4-{r2-(4-Chlorophenoxy)-2-methylpropanoyllamino} -1 -adamantyl)acetic acid 10 To a solution of the product of Example 33C (40 mg, 0.1 mmol) in ethylene glycol (0.5 ml) was added 25% KOH solution (0.2 ml). The reaction mixture was heated to 150'C overnight and concentrated. The residue was purified by reverse phase preparative HPLC on a Waters Symmetry C8 column (25mm X 100mm, 7um particle size) using a gradient of 10% to 100% acetonitrile:0.1% aqueous TFA over 8min (10min run time) at a flow rate of 15 40mL/min. to provide the title compound (19 mg, 45%). 'H NMR (400 MHz, CDCl 3 ) 6 ppm 7.19 - 7.25 (in, 2 H), 6.96 - 7.02 (m, 1 H), 6.82 - 6.90 (in, 2 H), 3.98 - 4.07 (in, 1 H), 2.11 2.18 (in, 2 H), 1.88 - 2.03 (m, 3 H), 1.47 - 1.85 (m, 16 H). MS (ESI+) m/z 406 (M+H)+. Example 34 20 N-[(E)-5-(2-Amino-2-oxoethyl)-2-adamantyll-2-(4-chlorophenoxy)-2-methylpropanamide To a solution of the product of Example 33C (22 mg, 0.057 mmol) in MeOH (0.15 ml) / DMSO (0.005 ml) were added 30% H 2 0 2 (0.011 ml) and 0.2 M NaOH (0.006 ml). The reaction mixture was heated to 50'C overnight and concentrated. The residue was purified by reverse phase preparative HPLC on a Waters Symmetry C8 column (25mm X 100mm, 7um 25 particle size) using a gradient of 10% to 100% acetonitrile:0.1% aqueous TFA over 8min (10min run time) at a flow rate of 40mL/min. to provide the title compound (13 mg, 56%). 'H NMR (500 MHz, CDCl 3 ) 8 ppm 7.21 - 7.26 (in, 2 H), 6.94 - 7.04 (in, 1 H), 6.84 - 6.91 (in, 2 H), 5.62 - 5.72 (in, 1 H), 5.35 - 5.43 (in, 1 H), 3.97 - 4.06 (m, 1 H), 1.89 - 2.05 (in, 5 H), 1.48 - 1.80 (in, 18 H). MS (ESI+) m/z 405 (M+H)*. 30 Example 35 2-(4-Chlorophenoxy)-2-methyl-N-[(E)-5-(2H-tetraazol-5-ylmethyl)-2 69 adamantyllpropanamide To a solution of the product of Example 33C (65 mg, 0.168 mmol) in water (0.2 ml) / isopropanol (0.1 ml) were added NaN 3 (22 mg, 0.337 mmol) and ZnBr 2 (19 mg, 0.084 mmol). The reaction mixture was heated to 150"C in a sealed tube for two days and 5 concentrated. The residue was purified by reverse phase preparative HPLC on a Waters Symmetry C8 column (25mm X 100mm, 7um particle size) using a gradient of 10% to 100% acetonitrile:0.1% aqueous TFA over 8min (10min run time) at a flow rate of 40mL/min. to provide the title compound (43 mg, 45%). 1 H NMR (400 MHz, CD 3 0D) 8 ppm 7.34 - 7.43 (m, 1 H), 7.23 - 7.31 (m, 2 H), 6.89 - 6.96 (m, 2 H), 3.84 - 3.92 (m, 1 H), 2.75 (s, 2 H), 1.86 10 2.02 (in, 3 H), 1.43 - 1.74 (m, 16 H). MS (ESI+) m/z 430 (M+H)*. Example 36 N-f(E)-5-[(Aminosulfonyl)methyll-2-adamantyl -2-(4-chlorophenoxy)-2 methylpropanamide 15 Example 36A N- {(E)-5-[(Thioacetyl)methyll-2-adamantyl} -2-(4-chlorophenoxy)-2-methylpropanamide To a 0 "C solution of the product of Example 33A (0.71 g, 1.88 mmol) in CH 2 Cl 2 (5.0 mL) and pyridine (0.46 mL, 5.64 mmol) was added trifluoromethanesulfonic anhydride (0.35 20 mL, 2.07 mmol). The reaction mixture was stirred under an atmosphere of N 2 for 30 min at 0 0 C. The crude products were diluted with EtOAc, washed with water and brine, dried over Na 2
SO
4 , filtered, and concentrated in vacuo. The resulting crude material was dissolved in DMF (5.0 mL), treated with potassium thioacetate (0.43 g, 3.76 mmol), and heated to 70'C overnight. The crude reaction mixture was diluted with EtOAc, washed with water (3x) and 25 brine, dried over Na 2
SO
4 , filtered, and concentrated in vacuo. The crude product was purified by silica gel chromatography employing a solvent gradient (hexane-*60:40 hexane:EtOAc) to yield the title compound(0.74 g, 90%) as a white solid. 'H NMR (300 MHz, CDCl 3 ) 8 ppm 7.23 (d, J- 8.82 Hz, 2 H), 6.95 (in, 1 H), 6.86 (d, J=8.82 Hz, 2 H), 3.98 (m, 1 H), 2.76 (s, 2 H), 2.35 (s, 3 H), 1.89 - 1.97 (m, 3 H) 1.45-1.68 (m, 10 H), 1.50 (s, 6H). 30 MS (ESI+) m/z 436 (M+H)+. Example 36B 70 N-{(E)-5-[(Sulfonic acid)methyl-2-adamantyll-2-(4-chlorophenoxy)-2-methylpropanamide To a solution of the product of Example 36A (0.74 g, 1.70 mmol) and NaOAc (0.1392 g, 1.70 mmol) in acetic acid (10 mL) was added 30% hydrogen peroxide in water (1.6 mL, 15.3 mmol). The reaction solution was stirred at room temperature overnight and excess 5 peroxide quenched by adding dimethylsulfide (1.9 mL, 25.5 mmol) and stirring for 2 h. The reaction solution was concentrated under reduced pressure to provide the crude product as a white solid. 'H NMR (300 Mz, CDCl 3 ) 6 ppm 7.22 (d, J= 8.85 Hz, 2 H), 7.07 (d, J= 7.94 Hz, 1 H), 6.86 (d, J=8.85 Hz, 2 H), 3.95 (m, 1 H), 2.80 (s, 2 H), 1.51 - 2.17 (m, 13 H) 1.46 (s, 6H). MS (ESI+) m/z 442 (M+H)*. 10 Example 36C N- {(E)-5-[(Aminosulfonyl)methyll-2-adamantyl} -2-(4-chlorophenoxy)-2 methylpropanamide To a solution of the product of Example 36B (55.8 mg, 0.126 mmol) in DCM (1.2 15 mL) and DMF (1 drop) was added triphosgene (27.4 mg, 0.0922 mmol) and triethylamine (0.018 mL, 0.126 mmol). The resulting reaction mixture was stirred at room temperature for 2 hours and ammonia (0.5 M in dioxane, 2.5 mL, 1.26 mmol) was added. After stirring for 2 h at room temperature the reaction was quenched with water and extracted with EtOAc. The organic layer was then rinsed with brine, dried over Na 2
SO
4 , filtered, and concentrated in 20 vacuo. The crude product was purified by reverse phase preparative HPLC using acetonitrile:10mM NH 4 0Ac on YMC Guardpak column to provide the title compound (20 mg, 36%) as a white solid. 'H NMR (400 MHz, CDCl 3 ) 6 ppm 7.24 (d, J= 8.9 Hz, 2 H), 6.98 (d, J= 8.28 Hz, 1 H), 6.86 (d, J=8.9 Hz, 2 H), 4.79 (s, 2H), 4.04 (m, 1 H), 3.04 (s, 2H), 1.87-2.04 (m, 8 H), 1.54-1.66 (in, 5 H), 1.50 (s, 6H). MS (ESI+) m/z 441 (M+H)*. 25 Example 37 N-{(E)-5-[(Z)-Amino(hydroxvimino)methyll-2-adamantyll-2-(4-chlorophenoxy)-2 methylpropanamide 30 Example 37A (5-Carbamoyl-adamantan-2-yl)-carbamic acid benzyl ester Step A 71 CbzCl (3.48 mL, 24.72 mmol) was added dropwise to a stirred and cooled (0 0 C) solution of the product of Example 7B (5.05 g, 20.60 mmol) and DIPEA (7.9 mL, 45.32 mmol) in dry CH 2 Cl 2 (100 mL). After the addition, the solution was allowed to warm to room temperature and stirred for another 2 hrs. Saturated NaHCO 3 solution was added to 5 quench the reaction and the phases were separated. The organic phase was washed with NaHSO 4 solution, NaHCO 3 solution, dried (Na 2
SO
4 ), filtered, and concentrated. The residue was purified over silica gel using 20% EtOAc in hexanes and concentrated. Step B The product of step A (6.49 g, 18.91 mmol) was dissolved in dry THF (90 mL) and 10 KOTMS (4.85 g, 37.82 mmol) was added at room temperature. The resulting solution was stirred overnight before water (100 mL) and Et 2 O (100 mL) were added and the phases were separated. The aqueous phase was acidified using solid NaHSO 4 until pH 1 was reached. The aqueous phase was then extracted using EtOAc. The combined organic extract was dried (MgSO 4 ), filtered, and concentrated. 15 Step C The product of Step B (18.91 mmol) was dissolved in dry CH 2 Cl 2 (60 mL) and DIPEA (10 mL, 56.7 mmol), HOBt (5.1 g, 37.82 mmol), and EDCI (5.4 g, 28.36 mmol) were added to the solution. The resulting mixture was stirred for 1 h before NH 3 (30 mL, 2 M in iPrOH, 56.7 mmol) was added. After 1 h of stirring at 25 C, the solution was diluted with 20 CH2Cl 2 (200 mL) and washed with NaHSO 4 solution, 1 M NaOH, water, dried (Na 2 SO4) and filtered. The residue was purified over silica gel using 5% MeOH in CH 2 Cl 2 to provide the title compound as a solid. Example 37B 25 E-4-Amino-adamantane-1-carbonitrile Step A The product of Step C of Example 37A, 18.91 mmol) was dissolved in dry CH 2 C1 2 (60 mL) and Et 3 N (10.5 mL, 75.64 mmol). TFAA (7.9 mL, 56.73 mmol) was added dropwise to the solution at 0 0 C. After the addition, the solution was allowed to warm to room 30 temperature and stirred for 3 hours before MeOH was added to quench the reaction. The solution was washed with NaHSO 4 solution, NaHCO 3 solution, dried (Na 2
SO
4 ), filtered and concentrated. The residue was purified over silica gel using 30% EtOAc in hexanes and 72 concentrated to yield an oil. Step B Pd(OH) 2 / C (0.9 g) was added to a solution of the product of Step A (3.22 g, 10.38 mmol). The solution was stirred at room temperature under H2 (balloon) until starting 5 material was consumed. The mixture was filtered through a pad of Celite and concentrated in vacuo to provide the title compound as a solid. Example 37C 2-(4-Chloro-phenoxv)-N-[(E)-5-(N-hydroxvcarbamimidoyl)-adamantan-2-yll-2-methyl 10 propionamide Step A HATU (0.64 g, 1.67 mmol) was added in one portion to a stirred solution of 2-(4 chloro-phenoxy)-2-methyl-propionic acid (0.3 g, 1.50 mmol) and the product of Step B of Example 37B (0.27 g, 1.53 mmol), and DIPEA (0.73 mL, 4.2 mmol) in dry DMF (7 mL). 15 The reaction was allowed to stir for 5 hours before it was diluted with CH 2 C1 2 and washed with NaHSO 4 solution, 1M NaOH, brine, and dried (Na 2
SO
4 ), and evaporated. The residue was purified over silica gel using 20% EtOAc / hexanes and concentrated to yield a white solid. Step B 20 To the product of Step A (87 mg, 0.209 mmol) was added NH30HCl (87 mg, 1.25 mmol), DIPEA (0.29 mL, 1.67 mmol) and dry DMSO (1 mL). The resulting solution was heated at 80'C for 8 hrs. The solvent was evaporated and the residue was purified on HPLC using CH 3 CN / water 1% TFA as eluent to provide the title compound as an oil. 1H NMR (300 MHz, CD 3 0D) 5 ppm 7.49-7.54 (in, 1H), 7.26-7.30 (in, 2H), 6.92-6.96 (in, 2H), 3.97 25 4.03 (in, 1H), 2.10-2.15 (in, 2H), 1.98-2.08 (in, 5H), 1.92-1.94 (in, 2H), 1.76-1.83 (in, 2H), 1.57-1.64 (in, 2H), 1.53 (s, 6H). MS (ESI+) m/z 406.1(M+H)+. Example 38 E-N-[4-(Aminosulfonylbenzyll-4-{[2-(4-chlorophenoxy)-2 30 methylpropanoyllamino}adamantane-1-carboxamide The title compound was prepared according to the procedure outlined in Example 24, substituting 4-aminomethyl-benzenesulfonamide hydrochloride for 4-aminomethyl-benzoic 73 acid methyl ester hydrochloride. 'HNMR (500 MHz, DMSO-d 6 ) 8 ppm 8.10-8.15 (m, 1H), 7.75 (d, J= 8.08 Hz, 2H), 7.37 (d, J= 8.03 Hz, 2H), 7.31-7.35 (m,.3H), 7.29-7.29 (bs, 2H), 6.91-6.93 (m, 2H), 4.30 (d, J= 5.87 Hz, 2H), 3.84-3.88 (m, 1H), 1.93-1.95 (m, 2H), 1.82 1.92 (m, 5H), 1.76-1.78 (m, 2H), 1.67-1.71 (m, 2H), 1.46 (s, 6H), 1.37-1.41 (m, 2H). MS 5 (ESI+) m/z 560 (M+H)*. Example 39 E-4-{[2-(4-Chlorophenoxy)-2-methylpropanoyllamino}-N-(4 {[(methylsulfonyl)aminolcarbonyllbenzyladamantane- 1-carboxamide 10 To a solution of the product of Example 24 (26 mg, 0.05 mmol) in DMF (1 mL) were added DMAP (7 mg, 0.055 mmol), EDCI (12 mg, 0.06 mmol) and methylsulfonamide (7 mg, 0.075 mmol). The reaction mixture was stirred at room temperature for 72 hours, concentrated in vacuo, and the residue was purified by reverse phase preparative HPLC on a Waters Symmetry C8 column (25mm X 100mm, 7um particle size) using a gradient of 10% 15 to 100% acetonitrile:0.1% aqueous TFA over 8min (10min run time) at a flow rate of 40mL/min. to provide the title compound. 1H NMR (400 MHz, DMSO-d 6 ) 8 ppm 12.01 12.05 (bs, 1H), 8.11 (t, J= 6.06 Hz, 1H), 7.87 (d, J= 8.19 Hz, 2H), 7.30-7.37 (m, 5H), 6.91 6.93 (m, 2H), 4.31 (d, J= 5.89 Hz, 2H), 3.83-3.87 (m, 1H), 3.36 (s, 3H), 1.82-1.96 (m, 7H), 1.77-1.79 (m, 2H), 1.67-1.72 (m, 2H), 1.47 (s, 6H), 1.37-1.42 (m, 2H). MS (ESI+) m/z 602 20 (M+H)*. Example 40 E-4-({2-[(4-Chlorophenyl)thiol-2-methylpropanoyl amino)adamantane-1-carboxylic acid 25 Example 40A Example 40A was prepared according to the procedure outlined in Example 25A, substituting 4-chloro-benzenethiol for 2,3-dimethylphenol. Example 40B 30 E-4-({2-[(4-Chlorophenyl)thiol-2-methylpropanoylIamino)adamantane-1-carboxylic acid The title compound was prepared according to the procedure outlined in Example 25B, substituting the product of Example 40A for the product of Example 25A. 'H NMR 74 (400 MHz, DMSO-d 6 ) 5 ppm 7.42-7.45 (m, 2H), 7.36-7.39 (m, 2H), 7.11-7.21 (in, 1H), 3.72 3.78 (m, 1H), 1.91-1.94 (in, 2H), 1.79-1.92 (m, 6H), 1.75-1.80 (m, 3H), 1.44 (s, 8H). MS (ESI+) m/z 408 (M+1H). 5 Example 41 E-4-({2-[(4-Methoxyphenyl)thiol-2-methylpropanoyllamino)adamantane-1-carboxamide amide Example 41A 10 E-4-(2-Bromo-2-methyl-propionylamino)-adamantane-1-carboxylic acid A solution of the product of Example 1B (0.78 g, 2.48 mmol) in 99% formic acid (2.5 mL) was added dropwise with vigorous gas evolution over 10 minutes to a rapidly stirred 30% oleum solution (7.5 mL) heated to 60'C (W. J. le Noble, S. Srivastava, C. K. Cheung, J. Org. Chem. 48: 1099-1101, 1983). Upon completion of addition, more 99% formic acid (2.5 15 mL) was slowly added over the next 10 minutes. The mixture was stirred for another 60 minutes at 60'C and then slowly poured into vigorously stirred iced water (30.0 mL) cooled to 0C. The mixture was allowed to slowly warm to 23'C, filtered and washed with water to neutral pH (100 mL). The precipitate was dried in a vacuum oven overnight to provide the title compound. 20 Example 41B E-4-(2-Bromo-2-methyl-propionylamino)-adamantane-1-carboxylic acid amide A solution of the product of Example 41A (250 mg, 0.670 mmol) in DCM (30 mL) was treated with HOBt (109 mg, 0.80 mmol) and EDCI (154 mg, 0.80 mmol) and stirred at 25 room temperature for 3 hour. Excess of aqueous (30%) ammonia (20 mL) was added and the reaction was stirred for additional 20 hours. The layers were separated and the aqueous layer extracted twice more with methylene chloride (2x40 mL). The combined organic extracts were washed with water (3x20 mL) and brine (20mL); dried (MgSO4) and filtered. The filtrate was concentrated under reduced pressure to provide the crude title compound that was 30 purified by normal phase column chromatography (silica gel, 5% methanol in DCM) to afford the title compound. MS (ESI+) m/z 343 (M+H)*. 75 Example 41C E-4-[2-(4-Methoxy-phenlsulfanl)-2-methl-proioylaminol-adamantane-l-carboxylic acid amide A solution of 4-methoxy-benzenethiol (44 mg, 0.31 mmol) and sodium hydride (60%, 5 15.0 mg, 0.37 mmol) in toluene (4 mL) was stirred at room temperature for 1 hour. The product of Example 41B (106.0 mg, 0.31 mmol) was added to the solution and the resulting mixture was stirred at 100'C for 24 hours. The reaction mixture was cooled and filtered. The filtrate was concentrated under reduced pressure to provide crude product that was purified by reverse phase preparative HPLC on a Waters Symmetry C8 column (25mm X 100mm, 10 7um particle size) using a gradient of 10% to 100% acetonitrile:0.1% aqueous TFA over 8min (10min run time) at a flow rate of 40mL/min. to afford the title compound. 1 H NMR (500 MHz, DMSO-d 6 ) 8 ppm 7.33-7.35 (in, 2H), 7.11 (d, J= 7.18 Hz, 1H), 6.99-7.01 (s, 1H), 6.93-6.95 (in, 2H), 6.72-6.74 (s, 1H), 3.75-3.79 (in, 1H), 3.77 (s, 3H), 1.79-1.95 (in, 9H), 1.75-1.77 (in, 2H), 1.44-1.48 (in, 2H), 1.39 (s, 6H). MS (ESI+) m/z 403 (M+H)+. 15 Example 42 E-4-({2-[(4-Methoxyphenvl)sulfinyl1-2-methylpropanoyl amino)adamantane-1-carboxamide A solution of the product of Example 41C (53 mg, 0.087 mmol) in methanol (5 mL) was treated with OXONE (80 mg, 0.130 mmol) and stirred at room temperature for 7 hours. 20 The reaction mixture was filtered. The filtrate was concentrated under reduced pressure to provide crude title compound that was subsequently purified by reverse phase preparative HPLC on YMC Guardpak column using a gradient of 0% to 70% acetonitrile:0.1% aqueous TFA over 8min (10min run time) at a flow rate of 40mL/min. to afford the title compound. 1H NMR (400 MHz, DMSO-d 6 ) 8 ppm 7.49-7.52 (in, 2H), 7.32 (d, J= 6.93 Hz, 1H), 7.09 25 7.12 (in, 2H), 6.96-6.99 (s, 1H), 6.68-6.71 (s, 1H), 3.82 (s, 3H), 3.75-3.81 (in, 1H), 1.89-1.92 (in, 3H), 1.73-1.86 (in, 8H), 1.42-1.51 (in, 2H), 1.34 (s, 3H), 1.25 (s, 3H). MS (ESI+) m/z 419 (M+H)*. Example 43 30 E-4-(12-[(4-Methoxvphenvl)sulfonvl-2-methylpropanoyl amino)adamantane-1-carboxamide A solution of the product of Example 41C (53 mg, 0.087 mmol) in methanol (5 mL) was treated with OXONE (80 mg, 0.130 mmol) and stirred at room temperature for 24 hour. 76 The reaction mixture was filtered. The filtrate was concentrated under reduced pressure to provide crude title compound that was subsequently purified by reverse phase preparative HPLC on a Waters Symmetry C8 column (25mm X 100mm, 7um particle size) using a gradient of 10% to 100% acetonitrile:0.1% aqueous TFA over 8min (10min run time) at a 5 flow rate of 40mL/nin. to afford the title compound. 1H NMR (400 MHz, DMSO-d 6 ) 8 ppm 7.72 (d, J= 8.65 Hz, 2H), 7.17-7.20 (m, 3H), 6.97-6.99 (s, 1H), 6.70-6.72 (s, 1H), 3.88 (s, 3H), 3.77-3.83 (m, 1H), 1.94-1.97 (m, 3H), 1.82-1.89 (m, 6H), 1.76-1.78 (m, 211), 1.49-1.54 (m, 2H), 1.45 (s, 6H). MS (ESI+) m/z 435 (M+H)*. 10 Example 44 E-4-({2-[4-Chloro-2-(pyrrolidin-1-ylsulfonylphenoxyl-2 methylpropanoyl} amino)adamantane-1-carboxamide Example 44A 15 2-Hydroxy-5-chlorobenzene sulfonyl chloride 4-Chlorophenol (4 g, 31.25 mmol) was added in portions to chlorosulfonic acid (10.3 mL, 156 mmol) while cooling in an ice bath. The resulting solution was stirred at 25'C for 20 hrs. This was then added drop-wise to ice and water resulting in an emulsion. This was extracted with CHCl 3 , dried (Na 2
SO
4 ) and concentrated in vacuo. Heptane was added and 20 evaporated and replaced with cyclohexane. The resulting mixture was filtered and concentrated to give the title compound as an oil (2.16 g). Example 44B 2-Hydroxy-5-chlorobenzene sulfonyl pyrrolidine 25 To a solution of the product of Example 44A (2.16 g, 9.51 mmol) in CHCl 3 (8 mL) was added, with ice cooling, pyrrolidine (4.05 g, 57.04 mmol). The mixture was stirred at 25 0 C for 2 hrs, then concentrated in vacuo. The residue was dissolved in toluene, washed with HCl and water, dried (Na 2
SO
4 ) and concentrated. The resulting oil was crystallized from hexane and chromatographed (CH 2 Cl 2 ) to yield the title compound (1.92 g), m.p.101 30 102 0 C. Example 44C 77 2-[4-Chloro-2-(pyrrolidine-1-sulfonyl)-phenoxyl-2-methyl-propionic acid The product of Example 44B (1.0 g, 3.82 mmol) and 1,1,1-trichloro-2-methyl-2 propanol hydrate (1.832 g, 10.32 mmol) were dissolved in acetone (8.5 mL). Powdered NaOH (0.47 g. 11.75 mmol) was added with cooling. The resulting mixture was stirred for 5 1.5 hr at 25*C. A second batch of powdered NaOH (0.47 g) was added and stirred for another 1.5 hrs. The last batch of powdered NaOH (0.47 g) was then added along with acetone (2.5 mL). The resulting mixture was stirred for 15 hrs at 25'C. Acetone was added and the solution was filtered. The resulting solution was concentrated. Water (3 mL) was added and concentrated HCl was added to acidify the mixture, which was extracted with 10 toluene, dried and concentrated. The residue was chromatographed on silica gel. Eluting with CH 2 Cl 2 gave 380 mg recovered starting material. Changing to 5% MeOH in ethyl acetate gave the title compound (357 mg, 27% yield). Example 44D 15 E-4-({2-[4-Chloro-2-(pyrrolidin-1-ylsulfonyl)phenoxyl-2 methylpropanoyl} amino)adamantane- 1 -carboxamide The product of Example 7B (75 mg, 0.305 mmol), the product of Example 44C (116 mg, 0.335 mmol), and TBTU (108 mg, 0.336 mmol) were suspended in dimethylacetamide (0.5 mL). Diisopropylethylamine (135 mg, 1.05 mmol) was added and the resulting solution 20 stirred at 25*C for 15 hrs. Toluene was added, and concentrated. More toluene was added, and washed with dil H 3
PO
4 , H 2 0, and then KHCO 3 . The organic phase was dried (Na 2
SO
4 ), and filtered. The solvents were removed in vacuo and the residue crystallized from ether and heptane to yield the title compound (133 mg), m.p. 152-154 0 C. 25 Example 44E E-4-{2-[4-Chloro-2-(pyrrolidine-1-sulfonyll)-phenoxyl-2-methyl-propionylamino adamantane-1-carboxylic acid A solution of the product of Example 44D (125 mg, 0.231 mmol) in MeOH (0.75 mL) was treated with NaOH (100 mg) in water (0.5 mL). The mixture was heated until all was 30 soluble and stirred at 60'C for 1 hour. The solvent was removed in vacuo and the residue acidified with HCl, extracted with CHCl 3 , dried (Na 2
SO
4 ), filtered, and concentrated. The residue was crystallized from ether to yield the title compound (92 mg, 77% yield), m.p. 226 78 228 0 C. Example 44F E-4-({2-[4-Chloro-2-(pyrrolidin-1-ylsulfonylphenoxyl-2 5 methylpropanoyl amino)adamantane- 1 -carboxamide The product of Example 44E (76 mg, 0.145 mmol), TBTU (52 mg, 0.162 mmol), and diisopropylethylamine (40 mg, 0.31 mmol) were dissolved in NN-dimethylacetamide (0.3 mL). After 25 min. at 25 0 C, a solution of 10% ammonia in THF was added. A solid formed and the mixture was stirred for3 hrs at 25*C. Toluene was added and the mixture .0 concentrated in vacuo. The residue was dissolved in CHC1 3 and washed with dil H 3
PO
4 ,
H
2 0, and KHCO 3 ; dried (Na 2
SO
4 ), filtered and concentrated in vacuo. The residue was crystallized from ether to yield the title compound (64 mg, m.p. 249-252 0 C). 'H NMR (400MHz, CDC1 3 ) 6 ppm 7.85 (d, J= 2 Hz, 1H), 7.37 (dd, J= 2, 9 Hz, 1H), 7.25 (d, J= 8 Hz, 1H), 7.05 (d, J= 9 Hz, 1H), 5.62 (br s 1H), 5.40 (br s, 1H), 3.96 (d, J= 8 Hz, 1H), 3.38-3.46 15 (m, 4H), 1.81-2.03, (m, 9H), 1.86-1.94 (m, 4H), 1.76 (s, 6H), 1.63 (d, J= 12 Hz, 2H), 1.44 (d, J= 12 Hz, 2H). MS (ESI+) m/z 524, 526 (M+H)+. Example 45 E-4-({2-Methyl-2-[4-(methylsulfonyl)phenoxylpropanoyl amino)adamantane-1-carboxamide 20 Example 45A Example 45A was prepared according to the procedure outlined in Example 44C, substituting 4-(methanesulfonyl)-phenol for the product of Example 44B. 25 Example 45B Example 45B was prepared according to the procedure outlined in Example 44D, substituting the product of Example 45A for the product of Example 44C. Example 45C 30 Example 45C was prepared according to the procedure outlined in Example 44E, substituting the product of Example 45B for the product of Example 44D. 79 Example 45D E-4-(f2-Methyl-2-[4-(methylsulfonylphenoxylpropanoyl amino)adamantane-1-carboxamide The title compound was prepared according to the procedure outlined in Example 44F, substituting the product of Example 45C for the product of Example 44E. The product 5 had m.p. 217-219 *C. 1 H NMR (500 MHz, CDCl 3 ) 8 ppm 7.85 (d, J= 8 Hz, 2H), 7.05 (d, J= 8 Hz, 2H), 6.66 (d, J= 7 Hz, 1H), 5.65 (br s, 1H), 5.49 (br s 1H), 4.06 (d, J= 7 Hz, 1H), 3.05 (s, 3H), 1.86-2.10 (m, 9H), 1.62 (s, 6H), 1.52 (s, 4H). MS (ESI+) m/z 435 (M+H)*. Example 46 10 E-4-({2-Methyl-2-r2-(methylsulfonylphenoxylpropanoyl} aminoadamantane-1-carboxamide Example 46A 2-Methyl-2-(2-methylsulfanyl-phenoxy)-propionic acid, ethyl ester 2-Methylsulfanyl-phenol (2.00 g, 14.29 mmol), 2-bromo-2-methyl-propionic acid, 15 ethyl ester (28 g, 142 .8 mmol) and powdered K 2 C0 3 (4.93 g, 35.7 mmol) were mixed (no solvent) and stirred at 105*C for 8 hrs. After cooling, water and CHCl 3 were added. The CHCl 3 was separated, dried (MgSO 4 ) and concentrated. Xylene was added and concentrated in vacuo (4 times) to remove the bromo ester. The resulting oil was chromatographed on silica, eluting with CH 2 Cl 2 to obtain the title compound (2.30 g, 63% yield). 20 Example 46B 2-Methyl-2-(2-methanesulfonyl-phenoxy)-propionic acid, ethyl ester To the product of Example 46A (1.00 g, 3.93 mmol) in CH 2 Cl 2 (15 mL), was added, in portions, 3-chloroperoxybenzoic acid (3.00 g of 70%, 12.16 mmol) while stirring and 25 cooling in a water bath. The mixture was stirred at 25*C for 20 hrs. Chloroform was added and the mixture was washed with KHCO 3 , Na 2
S
2
O
3 , and again with KHCO 3 . The solution was dried (Na 2 SO4), filtered and concentrated. Heptane was added and concentrated to obtain an oil that solidified (1.22 g, theory = 1.142 g). 30 Example 46C 2-Methyl-2-(2-methanesulfonyl-phenoxy)-propionic acid The product of Example 46B (1.22 g) was dissolved in MeOH (8 mL) and treated 80 with 50% NaOH (1.75 g, 21.27 mmol) and water (6 mL). The mixture was heated until all was soluble and stirred at 25'C for 1 hr. The solvents were removed in vacuo, water (6 mL) was added and the solution acidified with HCl. The mixture was extracted with CHC1 3 , dried (Na 2
SO
4 ), filtered and concentrated in vacuo. The residue was crystallized from ether and 5 heptane (1:4) to yield the title compound (0.953 g), m.p. 114-116'C. Example 46D Example 46D was prepared according to the procedure outlined in Example 44D substituting the product of Example 46C for the product of Example 44C. 10 Example 46E Example 46E was prepared according to the procedures outlined in Example 44E substituting the product of Example 46D for the product of Example 44D. 15 Example 46F E-4-({2-Methyl-2-[2-(methylsulfonyl)phenoxylpropanoyllamino)adamantane-1-carboxamide The title compound was prepared according to the procedure outlined in Example 44F, substituting the product of Example 46E for the product of Example 44E. 1 H NMR (500 20 MHz, CDCl 3 ) 5 ppm 7.99 (dd, J= 7, 2 Hz, 1H), 7.53 (m, 1H), 7.10-7.16 (m, 2H), 5.60 (br s 1H), 5.40 (br s, 1H), 3.95 (d, J= 8 Hz, 1H), 3.27 (s, 3H), 1.80-1.96 (m, 9H), 1.55 (d, J=12 Hz, 2H), 1.37 (d, J= 12 Hz, 2H). MS (ESI+) m/z 435 (M+H)*. Example 47 25 E-4-[(2-{4-Chloro-2-[(diethylamino)sulfonyl1phenoxy}-2 methylpropanoyl)aminoladamantane-1-carboxamide Example 47A Example 47A was prepared according to the procedure outlined in Example 44B, 30 substituting diethylamine for pyrrolidine. Example 47B 81 Example 47B was prepared according to the procedure outlined in Example 44C, substituting the product of Example 47A for the product of Example 44B. Example 47C 5 Example 47C was prepared according to the procedure outlined in Example 44D, substituting the product of Example 47B for the product of Example 44C. Example 47D Example 47D was prepared according to the procedure outlined in Example 44E, 10 substituting the product of Example 47C for the product of Example 44D. Example 47E E-4-[(2-{4-Chloro-2-[(diethylamino)sulfonyllphenoxy}-2 15 methylpropanoyl)aminoladamantane-1-carboxamide The title compound was prepared according to the procedure outlined in Example 44F, substituting the product of Example 47D for the product of Example 44E. The compound had m.p. 159-161*C. 'H NMR (400 MHz, CDCl 3 ) 8 ppm 7.83 (d, J= 2 Hz, 1H), 7.34 (dd, J= 2, 9 Hz, 1H), 7.05 (d, J= 8 Hz, 1H), 6.98 (d, J= 9 Hz, 1H), 5.58 (br s 1H), 5.38 20 (br s, 1H), 3.95 (d, J= 8 Hz, 1H), 3.40 (q, J= 7 Hz, 4H), 1.81-1.98, (m, 9H), 1.75 (s, 6H), 1.56 (d, J= 12 Hz, 2H), 1.42 (d, J= 12 Hz, 2H), 1.17 (t, J= 7 Hz, 6H). MS (ESI+) m/z 526, 528 (M+H)*. Example 48 25 E-4-({2-Methyl-2-[4-(pyrrolidin-1-ylsulfonyl)phenoxylpropanovl}amino)adamantane-1 carboxamide Example 48A 1-(4-Methoxy-benzenesulfonyl)-pyrrolidine 30 4-Methoxy-benzenesulfonyl chloride (3.00 g, 14.52 mmol) was slowly added to a solution of pyrrolidine (5.15 g, 72.6 mmol) in CHCl 3 (15 mL) with stirring at 0 0 C. The reaction mixture was allowed to warm up to room temperature and then stirred for 1 hour. 82 After that the reaction mixture was concentrated in vacuo. The residue was dissolved in toluene and washed with aqueous H 3
PO
4 solution, and then aqueous KHCO 3 solution. The organic phase was dried with Na 2
SO
4 , and filtered. The solvents were removed in vacuo and the residue crystallized from ether and heptane to provide the title compound (3.21 g, m.p. 5 88-89-C). Example 48B 1-(4-Hydroxy-benzenesulfonyl)-pyrrolidine The product of Example 48A (3.21 g, 13.3 mmol) was dissolved in CH 2 Cl 2 (30 mL), 10 cooled to -78'C and treated with BBr 3 (8.31 g, 3.26 mmol). The resulting dark red solution was stirred at 25'C for 4 min, then cooled to -78'C. Methanol (100 mL) was added slowly. The solution was concentrated in vacuo. Toluene was added to the crude and concentrated again. After adding more toluene, the solution was washed with water and concentrated in vacuo. The residue was dissolved in ether and extracted with NaOH (1.0 g) in water (8 mL). 15 The aqueous layer was removed and stirred 15 minutes, then acidified with concentrated HCl. This mixture was extracted with toluene, dried (Na 2
SO
4 ), filtered, concentrated in vacuo and the residue crystallized from ether and heptane (2:1) to provide the title compound (1.063 g, m.p. 122-125'C). 20 Example 48C Example 48C was prepared according to the procedure outlined in Example 44C, substituting the product of Example 48B for the product of Example 44B. Example 48D 25 Example 48D was prepared according to the procedure outlined in Example 44D, substituting the product of Example 48C for the product of Example 44C. Example 48E Example 48E was prepared according to the procedure outlined in Example 44E, 30 substituting the product of Example 48D for the product of Example 44D. Example 48F 83 E-4-({2-Methyl-2-[4-(pyrrolidin-1-ylsulfonyl)phenoxylpropanoyllamino)adamantane-1 carboxamide The title compound was prepared according to the procedure outlined in Example 44F, substituting the product of Example 48E for the product of Example 44E. The 5 compound had m.p. 206-209 0 C. 1 H NMR (500 MHz, CDC1 3 ) 8 ppm 7.76 (d, J= 8 Hz, 2H), 7.02 (d, J= 8 Hz, 2H), 6.71 (d, J= 8 Hz, 1H), 5.65 (br s, 1H), 5.54 (br s, iH), 4.067 (d, J= 8 Hz, 1H), 3.20-3.26 (m, 4H), 1.86-2.06 (m, 9H), 1.77-1.82 (m, 4H), 1.61 (s, 6H), 1.51 (s, 4H). MS (ESI+) m/z 490 (M+H)+. 10 Example 49 2-(2-Chloro-4-fluorophenoxy)-N-[(E)-5-hydroxy-2-adamantyll-2-methylpropanamide Example 49A 2-(4-Fluoro-2-chlorophenoxy)-2-methyl-propionic acid 15 4-Fluoro-2-chlorophenol (6.00g, 41.1 mmol) was reacted with 1,1,1-trichloro-2 methyl-2-propanol hydrate (120 g, 12.70 mmol) as described in Example 44C to provide the title compound (6.075 g, 64% yield, m.p. 63-65'C). Example 49B 20 2-(2-Chloro-4-fluorophenoxy)-N-[(E)-5-hydroxy-2-adamantvll-2-methylpropanamide The product of Example 1A (175 mg, 1.05 mmol), 2-(4-fluoro-2-chlorophenoxy)-2 methyl-propionic acid (232 mg, 1.00 mmol), and TBTU (353 mg, 1.1 mmol) were dissolved in N,N-dimethylacetamide. Di-isopropylethylamine (258 mg, 2.0 mmol) was added and the mixture was stirred for1 8 hrs at 25'C. After that the reaction mixture was concentrated in 25 vacuo. The residue was dissolved in toluene and washed with aqueous H 3
PO
4 solution, and then aqueous KHCO 3 solution. The organic phase was dried with Na 2
SO
4 , and filtered. The solvents were removed in vacuo and the residue crystallized from ether and heptane to provide the title compound (262 mg, m.p. 177-179 0 C). 1 H NMR (500 MHz, CDCl 3 ) 8 ppm 7.47 (d, J= 8 Hz, 1H), 7.18 (dd, J= 2, 8 Hz, 1H), 7.08 (dd, J= 5 Hz, 8 Hz, 1H), 6.94 (m, 30 1H), 4.07 (d, J= 8 Hz, 1H), 2.12-2.21 (m, 3H), 1.91 (d, J= 11 Hz, 2H), 1.70-1.84 (m, 6H), 1.43-1.65 (m, 3H), 1.53 (s, 6H). MS (ESI+) m/z 382, 384 (NM+H)+. 84 Example 50 2-(2-Chloro-4-fluorophenoxy)-2-methyl-N-[(E)-5-(2H-tetraazol-5-yl)-2 adamantyllpropanamide 5 Example 50A Example 50A was prepared according to the procedure outlined in Example 44D, substituting the product of Example 49A for the product of Example 44C. Example 50B 10 Example 50B was prepared according to the procedure outlined in Example 44E, substituting the product of Example 50A for the product of Example 44D. Example 50C E-4-[2-(2-Chloro-4-fluorophenoxy)-2-methyl-propionylaminol-adamantane-1-carbonitrile 15 Step A E-4-[2-(2-Chloro-4-fluoro-phenoxy)-2-methyl-propionylamino]-adamantane-1 carboxylic acid amide was prepared according to the procedure outlined in Example 44F, substituting the product of Example 50B for the product of Example 44E. Step B 20 The solution of the product of Step A (207 mg, 0.506 mmol) in dioxane (0.5 mL) and pyridine (100 mg) was treated with trifluoroacetic anhydride (167 mg, 0.795 mmol). The mixture was stirred 5 hr at 25'C and concentrated in vacuo after adding toluene. More toluene was added and the solution was washed with dilute H 3
PO
4 , water, and aqueous KHC0 3 solution respectively. After drying with Na 2
SO
4 , the solution was filtered, 25 concentrated in vacuo and the residue crystallized from ether and heptane to yield the title compound (115 mg, m.p. 159-160*C). Example 50D 2-(2-Chloro-4-fluorophenoxy)-2-methyl-N-[(E)-5-(2H-tetraazol-5-yl)-2 30 adamantyllpropanamide A solution of the product of step B of Example 50C (50 mg, 0.128 mmol), trimethyltin chloride (31 mg, 0.153 mmol) and NaN 3 (10 mg, 0.153 mmol) in toluene (0.3 85 mL) was stirred and heated for 64 hrs in a sealed vial at 120'C. The mixture was cooled and 4N HCl in dioxane (1 mL) was added. After stirring 90 min at 25*C the solution was concentrated in vacuo. Water and HCl were added and the mixture was extracted with CHCl 3 , dried with Na 2
SO
4 , filtered, concentrated and treated with ether to provide the title 5 compound (33 mg, m.p. 256-257 0 C). 1 H NMR (400 MHz, DMSO-d 6 ) 8 ppm 7.52 (d, J= 8 Hz, 1H), 7.15-7.23 (m, 2H), 3.98 (d, J= 8 Hz 1H), 1.98-2.12 (m, 9H), 1.90 (d, J= 13 Hz, 2H), 1.60 (d, J= 13 Hz, 2H), 1.46 (s, 6H). MS (ESI+) m/z 434, 435 (M+H)+. Example 51 10 2-(2-Chloro-4-fluorophenoxy)-2-methyl-N-[(E)-5-(methylthio)-2-adamantyllpropanamide A solution of the product of Example 49B (150 mg, 0.392 mmol) in CF 3 COOH (750 mg) was treated with trifluoroacetic anhydride (375 mg, 1.78 mmol) for 5 min. Then,
CF
3 COOH (1.68 g, 14.9 mmol) and NaSCH 3 (549 mg, 7.8 mmols) were added to the 7 mL sealed tube. This mixture was heated at 120'C for 20 hrs. After cooling, toluene was added, 15 and the mixture concentrated in vacuo. More toluene was added and this was shaken with
K
2 C0 3 solution. The toluene layer was separated, dried (Na 2
SO
4 ), concentrated and chromatographed in 4%EtOAc in DCM to give the title compound (132 mg, m.p. 100 101-C). 1 H NMR (400MHz, CDCl 3 ) 6 ppm 7.50 (d, J= 8 Hz, 1H), 7.17 (dd, J= 2, 8 Hz, 1H), 7.08 (dd, J= 5, 8Hz, 1H), 6.93 (m, 1H), 4.07 (d, J= 8 Hz, 1H), 1.82-2.15 (in, 9H), 2.03 20 (s, 3H), 1.82 (d, J= 13 Hz, 2H), 1.59 (d, J= 13 Hz, 2H), 1.54 (s, 6H),.MS (ESI+) m/z 412, 414 (M+H)+. Example 52 2-(2-Chloro-4-fluorophenoxy)-2-methyl-N-(E)-5-(methylsulfonyl-2 25 adamantyllpropanamide A solution of the product of Example 51 (100 mg, 0.235 mmol) in CH 2 Cl 2 (1 ml) was treated with 3-chloroperbenzoic acid (180 mg, 70%, 1.05 mmol). After stirring for 17 hrs at 25*C, CHCl 3 was added to the reaction mixture and the solution was extracted with KHCO 3 , Na 2
S
2
O
3 , and KHCO 3 . After drying (Na 2
SO
4 ), filtered and concentrating, the residue was 30 crystallized from heptane and ether to provide the title compound (89 mg, m.p. 172-173'C). H NMR (400MHz, CDCl 3 ) 6 ppm 7.55 (d, J= 8 Hz, 1H), 7.18 (dd, J= 2, 8 Hz, 1H), 7.09 (dd, J= 5, 8 Hz, 1H), 6.95 (in, 1H), 4.09 (d, J= 8 Hz, 1H), 2.76 (s, 3H), 2.07-2.25 (m, 9H), 86 1.90 (d, J= 13 Hz, 2H), 1.65 (d, J= 13 Hz, 2H), 1.54 (s, 6H). MS (ESI+) m/z 444, 446 (M+H) . Example 53 5 2-(2-Chloro-4-fluorophenoxy)-2-methyl-N-[(E)-5-(methylsulfinyl)-2 adamantyllpropanamide A-solution of the product of Example 51 (71 mg, 0.172 mmol) in acetic acid (75 mL) was prepared. Sodium perborate (NaBO 3
.H
2 0, 18 mg, 0.18 mmol) was added and the mixture was stirred 16 hr at 25*C. Toluene was added. The mixture was concentrated and 10 more toluene added. This was washed with K 2 C0 3 , dried (Na 2
SO
4 ), filtered, and concentrated in vacuo. The residue was crystallized from ether to get the title compound (44 mg, m.p. 134-135*C). 'H NMR (500MHz, CDC1 3 ) 6 ppm 7.58 (d, J= 8 Hz, 1H), 7.19 (dd, J = 2, 8 Hz, 1H), 7.10 (dd, J= 5, 8 Hz, 1H), 6.95 (m, 1H), 4.10 (d, J= 8 Hz, 1H), 2.42 (s, 3H), 2.17-2.30 (in, 3H), 2.01 (d, J= 13 Hz, 2H), 1.82-2.05 (m, 6H), 1.55 (d, J= 13 Hz, 2H), 1.54 15 (s, 6H). MS (ESI+) m/z 428, 430 (M+H)+. Example 54 N-[(E)-5-(Aminosulfonyl)-2-adamantyll-2-(4-chlorophenoxy)-2-methylpropanamide 20 Example 54A 1-Bromoadaman-4-one 5-Hydroxy-2-adamantanone (5.00 g, 30.1 mmol) was mixed with 48% hydrobromic acid (50 mL) and heated at 100"C for 48 hours (H. W. Geluk, J. L. M. A. Schlatmann, Tetrahedron 24: 5369-5377, 1968). Reaction diluted with water and extracted twice with 25 ether. Combined extracts dried (Na 2
SO
4 ), decanted, and evaporated under reduced pressure. The residue was purified on normal phase HPLC (silica gel, 5-10% ethyl acetate in hexane) to provide the title compound (4.19 g, 61%). Example 54B 30 1-Bromoadamantan-4-one ethylene ketal The product of Example 54A (4.19 g, 18.3 mmol), ethylene glycol (2.05 mL, 36.6 mmol), and a catalytic amount of p-toluenesulfonic acid (20 mg) were dissolved in benzene 87 (100 mL) and heated at reflux with a Dean-Stark apparatus attached for 16 hours (M. Xie, W. J. le Noble, J. Org. Chem. 54: 3836-3839, 1989). The reaction was cooled, washed with 2N sodium carbonate, water, and brine. The organic solution was dried (Na 2
SO
4 ), filtered, and evaporated under reduced pressure to provide the title compound. 5 Example 54C (1R, 2S)-1-Amino-2-indanol-N-4-toluene sulfonamide (1R, 2S)-Aminoindanol (5.00 g, 33.5 mmol) and ethyl acetate (75 mL) were added to a solution of sodium carbonate (6.89 g, 65.0 mmol) in water (30 mL) that had been stirring at 10 room temperature for 20 minutes. After stirring this mixture for 20 minutes, a solution of p toluenesulfonyl chloride (6.20 g, 32.5 mmol) in 1:1 THF/ethyl acetate (12 mL) was added drop-wise using an addition funnel over a period of 20 minutes (Z. Han, D. Krishnamurthy, P. Grover, Q. K. Fang, C. H. Senanayake, J. Am. Chem. Soc. 124: 7880-7881, 2002). Reaction stirred 16 hours at room temperature. Stirring was stopped, and the layers separated. 15 The organic phase was washed with water, 1N hydrochloric acid, and brine. The organic solution was dried (Na 2
SO
4 ), filtered, and evaporated under reduced pressure to provide the title compound. Example 54D 20 (2R, 4R, 5S)-3-(4-Toluenesulfonyll-3,3a,8,8a-tetrahydro-1-oxa-2-thia-3-aza cyclopentaralindene-2-oxide and (2S, 4R, 5S)-3-(4-Toluenesulfonyl)-3,3a,8,8a-tetrahydro-1-oxa-2-thia-3-aza cyclopenta[alindene-2-oxide A solution of the product of Example 54C (10.2 g, 33.5 mmol) at -45'C in anhydrous 25 THF (50 mL) was treated slowly, in one portion, with thionyl chloride (3.67 mL, 50.3 mmol). A solution of imidazole (6.84 g, 101mmol) in anhydrous THF (50 mL) was then added drop wise to this solution over 40 minutes using an addition funnel (Z. Han, D. Krishnamurthy, P. Grover, Q. K. Fang, C. H. Senanayake, J. Am. Chem. Soc. 124: 7880-7881, 2002). Reaction stirred two hours at -45'C and was then quenched at -45'C with saturated sodium 30 bicarbonate. The mixture was then diluted with ethyl acetate and warmed to room temperature with stirring. The layers were allowed to separate and the organic phase was washed with water and brine. The organic solution was dried (Na 2 SO4), filtered, and 88 evaporated under reduced pressure to provide the title compounds. Example 54E (S)-(4-Adamantanone ethylene ketall-1-sulfinic acid-(1R, 2S)-1-(4-toluenesulfonylamino) 5 indan-2-yl ester and (R)-(4-Adamantanone ethylene ketal)-1-sulfinic acid-(1R, 2S)-1-(4 toluenesulfonylamino)-indan-2-yl ester A 0.76M solution of Rieke Zinc (57 mL, 43.0 mmol) in THF was added at room temperature to a degassed solution under nitrogen containing the product of Example 54B (7.82 g, 28.6 mmol) in anhydrous THF (10 mL). Reaction stirred 16 hours at room 10 temperature. More 0.76M Rieke Zinc (50 mL, 38.0 mmol) in THF was added, and reaction mixture stirred an additional 20 hours. This reaction mixture containing the zinc bromide was added drop-wise using a cannule to a -45'C solution under nitrogen of the product of Example 54D (6.66 g, 19.1 mmol) in anhydrous THF (10 mL). Reaction stirred 16 hours at room temperature. Reaction mixture diluted with ethyl acetate, washed with brine, dried 15 (Na 2
SO
4 ), filtered, and evaporated under reduced pressure. The residue was purified on normal phase HPLC (silica gel, 30-40% ethyl acetate in hexane) to provide the title compound. Example 54F 20 1-((S)-Aminosulfinyl)adamantan-4-one ethylene ketal and 1-((R)-Aminosulfinyl)adamantan 4-one ethylene ketal A three-necked flask under argon equipped with a glass stir bar, a thermometer, a gas inlet, and an ammonia condenser (-78 0 C) in a -50'C bath was charged with anhydrous liquid ammonia (40 mL). A few crystals of iron nitrate nonahydrate (5 mg) were added to-the 25 ammonia, followed by portion-wise addition of lithium wire (650 mg, 93.7 mmol) in a controlled manner keeping the internal temperature at about -45'C. When all the lithium was added and the blue solution became a grey suspension, the mixture was stirred for an additional two hours at -45 0 C. The mixture was then cooled to -78"C, and a solution of the product of Example 54E (7.00 g, 12.9 mmol) in anhydrous THF (30 mL) was added drop 30 wise over a period of 30 minutes. Reaction mixture stirred 2 hours at -78 0 C and then quenched with saturated ammonium chloride. Reaction mixture allowed to warm to room temperature, and product extracted with ethyl acetate. Extracts washed with brine, dried 89 (Na 2
SO
4 ), filtered, and evaporated under reduced pressure. The residue was purified on normal phase HPLC (silica gel, 5% methanol in ethyl acetate) to provide the title compound (1.19 g, 36%). 5 Example 54G 1-Aninosulfonyladamantan-4-one ethylene ketal A solution of the product of Example 54F (1.19 g, 4.63 mmol) in anhydrous THF (10 mL) at room temperature was treated with a 2.5 wt. % solution of osmium tetroxide (0.35 mL) in 2-propanol and 4-methylmorpholine N-oxide (0.55 g, 4.67 mmol). Reaction stirred at 10 room temperature for 16 hours. Reaction diluted with ethyl acetate, washed with water and brine, dried (Na 2
SO
4 ), filtered, and evaporated under reduced pressure to provide the title compound. Example 54H 15 1-Aminosulfonyladamantan-4-one A solution of the product of Example 54G (1.26 g, 4.63 mmol) in THF (15 mL) at room temperature was treated with 1N hydrochloric acid (14 mL). Reaction heated at 60'C for 16 hours. Reaction quenched with saturated sodium bicarbonate, and product extracted with 20% methanol in chloroform (2X) and 40% THF in DCM (2X). Extracts dried 20 (Na 2
SO
4 ), filtered, and evaporated under reduced pressure to provide the title compound (0.880 g, 82%). Example 54I E-4-Amino-adamantane-1-sulfonic acid amide 25 The title compound was prepared according to the procedure outlined in Example 7A substituting the product of Example 54H for 4-oxo-adamantane-1-carboxylic acid. Example 54J N-[(E)-5-(Aminosulfonyl)-2-adamantyll-2-(4-chlorophenoxy)-2-methylpropanamide 30 The product of Example 541 (100 mg, 0.44 mmol), 2-(4-chlorophenoxy)-2 methylpropionic acid (93 mg, 0.44 mmol), and TBTU (209 mg, 0.65 mmol) were mixed in DMF (2 mL) at room temperature for 10 minutes. NN-diisopropylethylamine (0.15 mL, 0.87 90 mmol) was added to this solution, and the reaction stirred 16 hours at room temperature. Reaction was diluted with ethyl acetate, washed with water, saturated sodium bicarbonate, 1N phosphoric acid, and brine. Organic phase dried (Na 2
SO
4 ), filtered, and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (20-30% 5 ethyl acetate in hexane) to provide the title compound. 'H NMR (500 MIHz, DMSO-d 6 ) 5 ppm 7.43 (d, J=6 hz, 1 H) 7.33 (d, J=8 Hz, 2 H) 6.91 (d, J=8 Hz, 2 H) 6.58 (s, 2 H) 3.79 (m, 1 H) 2.04 (bs, 2 H) 2.00-1.80 (m, 7 H) 1.71 (m, 2 H) 1.46 (s, 6 H) 1.35 (m, 2 H). MS (ESI+) m/z 427 (M+H)*. 10 Example 55 E-4-({[1-(4-Chlorophenoxy)cyclobutyllcarbonyl}amino)adamantane-1-carboxamide Example 55A Ethyl 1-(4-chlorophenoxy cyclobutanecarboxylic acid 15 A mixture of p-chlorophenol (621 mg, 4.83 mmol), ethyl 1 bromocyclobutanecarboxylate (1.0 g, 4.83 mmol) and potassium carbonate (1.33 g, 9.66 mmol) in DMF (14.5 ml) was stirred and heated to about 55-60 'C under a nitrogen atmosphere for about 18 hours. The solvent was removed under high vacuum, the residue was taken up in diethyl ether (50 ml) and was washed with water and brine (15 ml each). The 20 organic layer was dried (MgSO4), and filtered. The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel using hexanes/ethyl acetate (2: 1) as the mobile phase to provide 320 mg (26 %) of the title compound. MS (DCI): m/z 272 (M+NH 4 )*. 25 Example 55B 1-(4-Chlorophenoxy)cyclobutanecarboxylic acid To the product of Example 55A (320 mg, 1.26 mmol) was added glacial acetic acid (10 ml) followed by 5% aqueous hydrochloric acid (2.5 ml) and the mixture was heated to reflux for about 18 hours. The mixture was cooled and was evaporated to dryness. The 30 residue was taken up in toluene and was evaporated to dryness two times to provide 250 mg (87 %) of the title compound. MS (DCI): n/z 244 (M+NH 4 )*. 91 Example 55C E-4-(f[1-(4-Chlorophenoxy)cyclobutvllcarbonyllamino)adamantane-1- carboxylic acid methyl ester A mixture of the product of Example 55B (207 mg, 0.81 mmol), the product of 5 Example 7B (200 mg, 0.81 mmol), 0-benzotriazol-1-yl-N,N,N',N'-tetramethyluronium tetrafluoroborate (523 mg, 1.63 mmol) and NN-diisopropylethylamine (0.57 ml, 3.26 mmol) in DMF (11 ml) was stirred at ambient temperature under a nitrogen atmosphere for about 18 hours. The solvent was evaporated in high vacuum and the residue was purified by flash column chromatography on silica gel using hexanes/ethyl acetate (2: 1) as the mobile phase 10 to provide 240 mg (70 %) of the title compound. MS (DCI) m/z 418 (M+H)*. Example 55D E-4-({[1-(4-Chlorophenoxy)cyclobutyllcarbonyl}amino)adamantane-1- carboxylic acid To a solution of the product of Example 55C (240 mg, 0.57 mmol) in dioxane (8 ml) 15 was added 2N aqueous hydrochloric acid (8 ml) and the mixture was heated to about 60 'C for about 18 hours. The mixture was cooled and concentrated in vacuo down to the water phase. The precipitate was filtered off and was dried under high vacuum to provide 200 mg (86 %) of the title compound. MS (DCI) m/z 404 (M+H)+. 20 Example 55E E-4-({1-(4-Chlorophenoxy cyclobutyllcarbonyl amino)adamantane-1-carboxamide A solution of the product of Example 55D (200 mg, 0.5 mmol), N-(3 dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (380 mg, 2.0 mmol) and 1 hydroxybenzotriazole hydrate (217 mg, 1.61 mmol) in dichloromethane (17 ml) was stirred at 25 ambient temperature under a nitrogen atmosphere for about 1 hour. A 0.5 M solution of ammonia in dioxane (9.9 ml, 4.95 mmol) was added and stirring was continued for about 2 hours. Ammonium hydroxide (8.5 ml) was added to the reaction mixture and stirring was continued for about 2 hours. The mixture was diluted with dichloromethane (55 ml), the layers were separated, the organic layer was dried (MgSO4), filtered, and was evaporated in 30 vacuo. The residue was purified by flash column chromatography on silica gel using dichloromethane/methanol (15 : 1) as the mobile phase to provide 113 mg (57 %) of the title compound. 1 H NMR (400 MIHz, DMSO-d 6 ) 8 ppm 7.33-7.29 (m, 2H), 7.08-7.07 (m, 1H), 92 6.92 (bs, 1H), 6.74-6.70 (m, 2H), 6.66 (bs, 1H), 3.76-3.74 (m, 1H), 2.68-2.62 (in, 2H), 2.33 2.25 (in, 2H), 1.89-1.64 (in, 11H), 1.37-1.34 (m, 2H), 1.22-1.19 (m, 2H). MS (ESI+) m/z 403 (M+H)*. 5 Example 56 4-[({{((E)-4-{{2-(4-Chlorophenoxy)-2-methylpropanoyl1aminoL-1 adamantyl)methyl]lsulfonyl amino)methyllbenzoic acid Step A To a solution of the product of Example 36B (395 mg, 0.895 mmol) in DCM (8.9 mL) 10 and DMF (1 drop) was added triphosgene (194 mg, 0.653 mmol) and triethylamine (0.125 mL, 0.895 mmol). The resulting reaction mixture was stirred at room temperature for 1.5 hours and then one half of the solution was added dropwise to a solution of methyl 4 (aminomethyl)-benzoate hydrochloride (67.6 mg, 0.447 mmol) and triethylamine (0.16 mL, 1.12 mmol) in DCM (1.0 mL). After stirring at room temperature overnight, the reaction was 15 quenched with water and extracted with EtOAc. The organic layer was then rinsed with brine, dried over Na 2
SO
4 , filtered, and concentrated in vacuo. Step B The product of Step A was dissolved in a mixture of THF, water, and ethanol and treated with excess NaOH. After stirring at room temperature overnight the reaction was 20 concentrated in vacuo. The crude product was purified by reverse phase preparative HPLC using acetonitrile:1OmM NH4OAc on YMC Guardpak column to provide the title compound (25 mg, 10%). 'H NMR (500 Mvllz, CDCl 3 ) 8 ppm 8.06 (d, J= 8.6 Hz, 2 H), 7.44 (d, J= 8.6 Hz, 2 H), 7.24 (d, J= 8.6 Hz, 2 H), 6.98 (d, J= 8.2 Hz, 1 H), 6.86 (d, J=8.6 Hz, 2 H), 4.92 (m, 1H), 4.37 (d, J= 5.5 Hz, 2 H), 4.03 (in, 1 H), 2.83 (s, 2H), 1.50-2.17 (m, 11 H), 1.50 (s, 25 6H). MS (ESI+) m/z 575 (M+H)*. Example 57 2-(4-Chlorophenoxy)-N-[E)-5-(1H-imidazol-2-yl)-2-adamantyll-2-methylpropanamide The product of Example 33B (0.1 g, 0.266 mmol) and glyoxal (0.11 g, 40 wt% in 30 water, 0.8 mmol) was dissolved in ammonia solution (6 mL, 7 N). The reaction vessel was sealed and stirred at room temperature for 1 day. The volatiles were evaporated and the residue was purified by reverse phase HPLC using CH 3 CN / 0.1% TFA in water to provide 93 the title compound as an oil. 1H NMR (300 MHz, CD 3 0D) 8 ppm 1.48 - 1.59 (s, 6 H) 1.60 1.73 (m, 2 H) 1.77 - 1.94 (m, 2 H) 2.02 - 2.12 (m, 3 H) 2.12 - 2.27 (m, 6 H) 4.01 - 4.12 (m, 1 H) 6.88 - 7.02 (m, 2 H) 7.21 - 7.35 (m, 2 H) 7.44 - 7.49 (m, 2 H) 7.49 - 7.60 (m, 1 H). MS (ESI+) m/z 414.1 (M+H)*. 5 Example 58 (2E)-3 -((E)-4- { [2-(4-Chlorophenoxy)-2-methylpropanoyllamino} -1 -adamantyl)acrylic acid Example 58A 10 (2E)-3-((E)-4- {2-(4-Chlorophenoxy)-2-methylpropanoyll amino}-1-adamantyl)acrylic acid ethyl ester To a cold (0*C) solution of triethyl phosphonoacetate (0.22 ml, 1.1 mmol) in DME (1.0 mL) was added NaH (60% in oil, 42 mg, 1.1 mmol) under N 2 flow. The reaction mixture was stirred for 10 minutes and a solution of the product of Example 33B (375 mg, 15 1mmol) in DME (0.2 ml) was added slowly at 0*C. It was allowed to warm up to room temperature and stirred for 5 hours. It was quenched with water and extracted with DCM 3 times. The combined organic layer was dried over Na 2 SO4, filtered, concentrated under reduced pressure and purified by flash chromatography with 30% ethyl acetate / 70% hexane to provide the title compound, 350 mg (79%). 'H NMR (300 MHz, CDCl 3 ) S ppm 7.20 20 7.26 (m, 2 H), 6.94 - 7.03 (m, 1 H), 6.84 - 6.91 (m, 2 H), 6.80 (d, 1 H), 5.69 (d, 1 H), 4.19 (q, 2 H), 3.98 - 4.08 (m, 1 H), 1.91 - 2.08 (m, 3 H), 1.46 - 1.83 (m, 16 H), 1.29 (t, 3 H). %). MS (ESI+) m/z 446 (M+H)*. Example 58B 25 (2E)-3-((E)-4-{[2-(4-Chlorophenoxy)-2-methylpropanoyllamino}-1-adamantyl)acrylic acid To a solution of the product of Example 58A (45 mg, 0.1 mmol) in THF / water (0.1 ml / 0.05 ml) was added LiOH.H 2 0 (26 mg, 0.6 mmol). It was stirred at room temperature overnight. It was acidified with 1N HCl and extracted with DCM 3 times. The combined organic layer was dried over Na 2 S04, filtered, concentrated under reduced pressure and 30 purified by flash chromatography with 30% ethyl acetate / 70% hexane to provide the title compound 35 mg (83%). 'H NMR (400 MHz, CDCl 3 ) 3 ppm 7.20 - 7.28 (m, 2 H), 6.96 7.04 (m, 1 H), 6.82 - 6.95 (m, 3 H), 5.70 (d, 1 H), 4.00 - 4.09 (m, 1 H), 1.93 - 2.08 (m, 3 H), 94 1.47 - 1.85 (m, 16 H). MS (ESI+) m/z 418 (M+H)*. Example 59 (E)-4-[(2-Methyl-2-{[5-(1H-pyrazol-1-yl)pyridin-2-ylloxy}propanoyl)aminoladamantane-1 5 carboxamide Cul (10.5 mg, 0.055 mmol), N,N,-dimethylglycine (11.3 mg, 0.109 mmol), K 2 C0 3 (76 mg, 0.549 mmol), pyrazole (22 mg, 0.329 mmol), and the product of step C of Example 30B (80 mg, 0.183 mmol) was dissolved in DMSO (1 mL) and the resulting mixture was heated in Personal Chemistry's Emry Optimizer microwave instrument at 160 0 C for 20 [0 minutes. The mixture was diluted with EtOAc and filtered through a pad of silica and after evaporation the residue was purified by reverse phase HPLC using CH 3 CN / 0.1% TFA in water to give the title compound. 1H NMR (300 MHz, CD 3 0D) 8 ppm 1.40 - 1.64 (in, 4 H) 1.66 - 1.76 (in, 7 H) 1.77 - 1.87 (in, 3 H) 1.90 - 2.04 (in, 7 H) 3.93 (s, 1 H) 6.53 (dd, J= 2.54, 1.86 Hz, 1 H) 7.01 (d, J= 8.82 Hz, 1 H) 7.72 (d, J= 2.03 Hz, 1 H) 8.07 (dd, J= 8.99, 2.88 15 Hz, 1 H) 8.15 (d, J= 3.05 Hz, 1 H) 8.45 (d, J= 2.71 Hz, 1 H) 8.45 (d, J= 2.71 Hz, 1 H). MS (ESI+) m/z 424.2 (.M+H)+. Example 60 2-(4-Chlorophenoxy)-N-[(E)-5-isoxazol-5-yl-2-adamanty11-2-methlpropanamide 20 Example 60A 2-(4-Chlorophenoxy)-2-methyl-N-[(E)-5-propynoyl-adamantan-2-yll-propionamide Step A Acetylenemagnesium chloride (8.22 mL, 0.5 M in THF, 4.11 mmol) was added 25 dropwise to a stirred and cooled (-78'C) solution of the product of Example 33B (0.514 g, 1.37 mmol) in dry THF. The resulting solution was warmed gradually to room temperature before it was quenched with saturated NH 4 Cl solution. The mixture was partitioned with Et 2 0 and water. The organic phase was washed with brine, dried (MgSO 4 ), filtered, and evaporated to give crude alcohol as an oil. 30 Step B Dess-Matin periodinane (1 g, 2.43 mmol) was added in one portion to a solution of the product of Step A (0.65 g, 1.62 mmol) in dry CH 2 Cl 2 . The resulting solution was stirred 95 for 3 hours at room temperature before it was quenched with saturated NaHCO 3 solution and Na 2
S
2 0 3 solution. The mixture was stirred for 1 hour before the phases were separated. The organic phase was dried (Na 2
SO
4 ), filtered, and the solvent was evaporated. The residue was purified over silica gel using 30% EtOAc in haxanes to provide the title compound as a 5 yellow solid. Example 60B 2-(4-Chlorophenoxy)-N-[(E)-5-isoxazol-5-yl-2-adamantvll-2-methylpropanamide
NH
2 OH.HC1 (0.23 g, 2.75 mmol) and K 2 C0 3 (0.38 g, 2.75 mmol) was added to a 10 solution of the product of Step B of Example 60A (0.11 g, 0.275 mmol) in isopropanol. The reaction was heated (80'C) for 3 hours. The reaction mixture was diluted with EtOAc and filtered through a pad of Celite and after evaporation the residue was purified by reverse phase HPLC using CH 3 CN / 0.1% TFA in water to provide the title compound. 1 H NMR (300 MiHz, CD 3 0D) 8 ppm 1.53 (s, 6 H) 1.65 (d, 2 H) 1.91 - 2.04 (in, 4 H) 2.11 (s, 6 H) 4.06 15 (d, J= 7.46 Hz, 1 H) 6.12 (d, J= 2.03 Hz, 1 H) 6.96 (d, J= 8.82 Hz, 2 H) 7.29 (d, J= 9.16 Hz, 2 H) 7.48 (d, J= 6.78 Hz, 1 H) 8.25 (d, J= 2.03 Hz, 1 H). MS (ESI+) m/z 415.1 (M+H)*. Example 61 2-(4-Chlorophenoxy)-2-methyl-N-{(E)-5-[(2-morpholin-4-ylethoxylmethv11-2 20 adamantylpropanamide A solution of the product of Example 33A (61 mg, 0.16 mmol) and 4-(2-Chloro ethyl)-morpholine hydrochloride (36 mg, 0.19 mmol) in DMF (4 mL) was treated with sodium hydride (60%, 20.0 mg, 0.5 mmol) and was stirred at 100'C for 24 hours. Then the reaction mixture was cooled and filtered. The filtrate was concentrated under reduced 25 pressure to provide crude title compound that was purified by reverse phase preparative HPLC using acetonitrile: 10mM NH 4 0Ac on YMC Guardpak column to afford the title compound. 'H NMR (500 MHz, CD 3 0D) 5 ppm 7.41 (s, 1 H) 7.26 - 7.30 (in, 2 H) 6.93 6.96 (in, 2 H) 3.92 (s, 1 H) 3.66 - 3.72 (in, 4 H) 3.56 (t, J= 5.49 Hz, 2 H) 3.03 (s, 2 H) 2.59 (t, J= 5.49 Hz, 2 H) 2.52 - 2.57 (in, 4 H) 1.96 (d, J= 2.14 Hz, 2 H) 1.86 (s, 1 H) 1.72 (s, 1 H) 30 1.69 (s, 1 H) 1.67 (s, 4 H) 1.57 (d, J= 3.36 Hz, 2 H) 1.53 (s, 2 H) 1.51 (s, 6 H). MS (ESI+) m/z 491 (M+H)*. 96 Example 62 N-[(E)-5-(Aminosulfonyl)-2-adamantyll-2-(2-chlorophenoxy)-2-methylpropanamide Example 62A 5 2-(2-Chlorophenoxy)-2-methylpropionic acid The title compound was prepared according to the procedure outlined in Example 44C substituting 2-chlorophenol for the product of Example 44B. Example 62B 10 N-[(E)-5-(Aminosulfonyl)-2-adamantyll-2-(2-chlorophenoxy)-2-methylpropanamide The title compound was prepared according to the procedure outlined in Example 54J substituting the product of Example 62A for 2-(4-chlorophenoxy)-2-methylpropionic acid. 'H NMR (400 MHz, CDCl 3 ) 8 ppm 7.61 (d, J=8 Hz, 1 H), 7.42 (dd, J=8 & 2 Hz, 1 H), 7.21 (m, 1 H), 7.13 (dd, J=8 & 2 Hz, 1 H), 7.05 (m, 1 H), 4.32 (s, 2 H), 4.09 (m, 1 H), 2.30-2.10 15 (m, 8 H), 1.90 (m, 2 H), 1.60 (m, 3 H), 1.46 (s, 6 H). MS (ESI+) m/z 427 (M+H)*. Example 63 N-[(E)-5-(Aminosulfonyl)-2-adamantyll-2-methyl-2-(2-methylphenoxy)propanamide 20 Example 63A 2-Methyl-2-(2-methylphenoxy)propionic acid The title compound was prepared according to the procedure outlined in Example 44C, substituting 2-methylphenol for the product of Example 44B. 25 Example 63B N-r(E)-5-(Aminosulfonyl)-2-adamantyll-2-methyl-2-(2-methylphenoxy)propanamide The title compound was prepared according to the procedure outlined in Example 54J substituting the product of Example 63A for 2-(4-chlorophenoxy)-2-methylpropionic acid. H NMR (400 MHz, CDCl 3 ) 8 ppm 7.19 (dd, J=8 & 2 Hz, 1 H), 7.14 (d, J=8 Hz, 1 H), 7.09 30 (m, 1 H), 6.96 (m, 1 H), 6.86 (dd, J=8 & 2 Hz, 1 H), 4.33 (s, 2 H), 4.09 (m, 1 H), 2.28 (s, 3 H), 2.30-2.05 (m, 8 H), 1.71 (m, 2 H), 1.59 (m, 3 H), 1.52 (s, 6 H). MS (ESI+) m/z 407 (M+H)*. 97 Example 64 N-[()-5-(Aminosulfonyl)-2-adamantll-2-methyl-2-(4-methylphenoxy)propanamide 5 Example 64A 2-Methyl-2-(4-methylphenoxy)propionic acid The title compound was prepared according to the procedure outlined in Example 44C, substituting 4-methylphenol for the product of Example 44B. [0 Example 64B N-[(E)-5-(Aminosulfonl)-2-adamantyll-2-methyl-2-(4-methylphenoxy)propanamide The title compound was prepared according to the procedure outlined in Example 54J substituting the product of Example 64A for 2-(4-chlorophenoxy)-2-methylpropionic acid. H NMR (400 MHz, CDCl 3 ) 8 ppm 7.14 (d, J=8 Hz, 2 H), 7.08 (d, J=8 Hz, 2 H), 6.82 (d, J=8 [5 Hz, 1 H), 4.46 (s, 2 H), 4.06 (m, 1 H), 2.31 (s, 3 H), 2.30-2.00 (m, 8 H), 1.72 (m, 2 H), 1.59 (m, 3 H), 1.49 (s, 6 H). MS (ESI+) m/z 407 (M+H)*. Example 65 N-(E)-5-(Aminosulfonyll-2-adamantyll-2-methyl-2-[2 20 (trifluoromethyl)phenoxylpropanamide Example 65A 2-Methyl-2-(2-trifluoromethylphenoxy)propionic acid The title compound was prepared according to the procedure outlined in Example 25 44C, substituting 2-trifluoromethylphenol for the product of Example 44B. Example 65B N-[(E)-5-(Aminosulfonyl)-2-adamantyll-2-methyl-2-r2 (trifluoromethyl)phenoxylpropanamide 30 The title compound was prepared according to the procedure outlined in Example 54J substituting the product of Example 65A for 2-(4-chlorophenoxy)-2-methylpropionic acid. H NMR (400 MHz, CDCl 3 ) 8 ppm 7.61 (dd, J=8 & 2 Hz, 1 H), 7.45 (m, 1 H), 7.11 (m, 2 H), 98 7.01 (d, J=8 Hz, 1 H), 4.42 (s, 2 H), 4.06 (m, 1 H), 2.30-2.05 (m, 8 H), 1.70 (m, 3 H), 1.64 (s, 6 H), 1.55 (m, 2 H). MS (ESI+) m/z 461 (M+H)*. Example 66 5 N-r(E)-5-(Aminosulfonyl)-2-adamantyll-2-methl-2-[2 (trifluoromethoxyphenoxylpropanamide Example 66A 2-Methyl-2-(2-trifluoromethoxyphenoxy)propionic acid l0 The title compound was prepared according to the procedure outlined in Example 44C, substituting 2-trifluoromethoxylphenol for the product of Example 44B. Example 66B N-[(E)-5-(Aminosulfonyl)-2-adamantyll-2-methl-2-[2 [5 (trifluoromethoxy)phenoxypropanamide The title compound was prepared according to the procedure outlined in Example 54J substituting the product of Example 66A for 2-(4-chlorophenoxy)-2-methylpropionic acid. 1 H NMR (400 Mz, CDCl 3 ) 8 ppm 7.31 (dd, J=8 & 2 Hz, 1 H), 7.22 (m, 1 H), 7.18 (d, J=8 Hz, 1 H), 7.08 (m, 2 H), 4.39 (s, 2 H), 4.05 (m, 1 H), 2.30-2.05 (m, 8 H), 1.75 (m, 2 H), 1.59 20 (m, 3 H), 1.55 (s, 6 H). MS (ESI+) m/z 427 (M+H)+. Example 67 N-[(E)-5-(Aminosulfonyl)-2-adamantyll-2-(2-chloro-4-fluorophenoxy)-2 methylpropanamide 25 The title compound was prepared according to the procedure outlined in Example 54J substituting the product of Example 49A for 2-(4-chlorophenoxy)-2-methylpropionic acid. H NMR (400 MHz, CDCl 3 ) 8 ppm 7.54 (d, J=8 Hz, 1 H), 7.17 (m, 1 H), 7.08 (m, 1 H), 6.93 (m, 1 H), 4.26 (s, 2 H), 4.08 (m, 1 H), 2.35-2.05 (m, 8 H), 1.87 (m, 2 H), 1.60 (m, 3 H), 1.54 (s, 6 H). MS (ESI+) m/z 445 (M+H)*. 30 Biological Data: Measurement of Inhibition Constants: 99 The ability of test compounds to inhibit human 11 p-HSD-1 enzymatic activity in vitro was evaluated in a Scintillation Proximity Assay (SPA). Tritiated-cortisone substrate, NADPH cofactor and titrated compound were incubated with truncated human 11p-HSD-I enzyme (24-287AA) at room temperature to allow the conversion to cortisol to occur. The 5 reaction was stopped by adding a non-specific 11 P-HSD inhibitor, 18p-glycyrrhetinic acid. The tritiated cortisol was captured by a mixture of an anti-cortisol monoclonal antibody and SPA beads coated with anti-mouse antibodies. The reaction plate was shaken at room temperature and the radioactivity bound to SPA beads was then measured on a p-scintillation counter. The 1 1-pHSD-1 assay was carried out in 96-well microtiter plates in a total volume [0 of 220 pl. To start the assay, 188 pl of master mix which contained 17.5 nM 3 H-cortisone, 157.5 nM cortisone and 181 mM NADPH was added to the wells. In order to drive the reaction in the forward direction, 1 mM G-6-P was also added. Solid compound was dissolved in DMSO to make a 10 mM stock followed by a subsequent 10-fold dilution with 3% DMSO in Tris/EDTA buffer (pH 7.4). 22 pl of titrated compounds was then added in 15 triplicate to the substrate. Reactions were initiated by the addition of 10 p.l of 0. 1mg/ml E.coli lysates overexpressing 11p-HSD-1 enzyme. After shaking and incubating plates for 30 minutes at room temperature, reactions were stopped by adding 10 pl of 1 mM glycyrrhetinic acid. The product, tritiated cortisol, was captured by adding 10 pl of 1 pM monoclonal anti cortisol antibodies and 100 pl SPA beads coated with anti-mouse antibodies. After shaking 20 for 30 minutes, plates were read on a liquid scintillation counter Topcount. Percent inhibition was calculated based on the background and the maximal signal. Wells that contained substrate without compound or enzyme were used as the background, while the wells that contained substrate and enzyme without any compound were considered as maximal signal. Percent of inhibition of each compound was calculated relative to the maximal signal and 25 IC 50 curves were generated. This assay was applied to 11 p-HSD-2 as well, whereby tritiated cortisol and NAD* were used as substrate and cofactor, respectively. Compounds of the present invention are active in the 11-pHSD-1 assay described above and show selectivity for human 1 1-p-HSD-1 over human 1 1-p-HSD-2, as indicated in Table 1. 30 Table 1. 1 1-p-HSD-1 and 1 1-p-HSD-2 activity for representative compounds. Compound 11-p-HSD-1 IC 50 (nM) 1 1-p-HSD-2 IC 50 (nM) 100 A 28 > 10,000 B 35 10,000 C 35 D 34 E 72 29,000 F 24 32,000 G 44 11,000 H 40 2,600 1 38 15,000 45 37,000 K 18 35,000 L 45 59,000 M 43 21,000 N 41 >100,000 0 96 100,000 P 41 >100,000 Q 29 10,000 R 68 65,000 S 53 10,000 T 28 10,000 U 26 14,000 V 89 90,000 W 48 18,000 X 30 >100,000 Y 30 >100,000 Z 89 >100,000 The data in Table 1 demonstrates that compounds A, B, C, D and E are active in the human 11 P-HSD-1 enzymatic SPA assay described above and that the tested compound showed selectivity for 11p-HSD-1 over 11p-HSD-2. The 1lp-HSD-1 inhibitors of this 5 invention generally have an inhibition constant IC 50 of less than 600 nM and preferably less than 50 nM. The compounds preferably are selective, having an inhibition constant IC 5 o 101 against 11 p-HSD-2 greater than 1000 nM and preferably greater than 10,000 nM. Generally, the IC 50 ratio for 11 p-HSD-2 to 11 p-HSD- 1 of a compound is at least 10 or greater and preferably 100 or greater. 5 Metabolic Stability Incubation conditions: Metabolic stability screen: each substrate (10 pM) was incubated with microsomal protein (0.1 - 0.5 mg/ml) in 50mM potassium phosphate buffer (pH 7.4) in 48-Well plate. The enzyme reaction was initiated by the addition of 1mM NADPH, then incubated at 37'C 10 in a Forma Scientific incubator (Marietta, OH, USA) with gentle shaking. The reactions were quenched by the addition of 800 pl of ACN/MeOH (1:1, v/v), containing 0.5 pM of internal standard (IS), after 30 min incubation. Samples were then filtered by using Captiva 96-Well Filtration (Varian, Lake Forest, CA, USA) and analyzed by LC/MS (mass spectrometry). Liver microsomal incubations were conducted in duplicate. 15 LC/MS analysis: The parent remaining in the incubation mixture was determined by LC/MS. The LC/MS system consisted of an Agilent 1100 series (Agilent Technologies, Waldbronn, Germany) and API 2000 (MDS SCIEX, Ontario, Canada). A Luna C8(2) (50 x 2.0 mm, particle size 3 pm, Phenomenex, Torrance, CA, USA) was used to quantify each compound 20 at ambient temperature. The mobile phase consisted of (A): 10 mM NIH 4 AC (pH 3.3) and (B): 100% ACN and was delivered at a flow rate of 0.2 ml/min. Elution was achieved using a linear gradient of 0-100% B over 3 min, then held 100% B for 4 min and returned to 100% A in 1 min. The column was equilibrated for 7 min before the next injection. The peak area ratios (each substrate over IS) at each incubation time were expressed 25 as the percentage of the ratios (each substrate over IS) of the control samples (0 min incubation). The parent remaining in the incubation mixture was expressed as the percentage of the values at 0 min incubation. The percentage turnover is calculated using the following equation (%turnover = 100%turnover - %parent remaining) and is recorded as the percentage turnover in the Table 2. 30 Table 2. Microsomal metabolic stability. Compound Human Liver Microsomal Mouse Liver Microsomal Turnover (%) Turnover (%) 102 A 19 37 B 47 25 E 0 EE 88 86 Compounds A, B and E contain a substituted adamantane, whereas the adamantane ring of compound EE is unsubstituted. The microsomal, metabolic, stability data in Table 2 demonstrates that substituted adamantane compounds of the present invention may exhibit an 5 increase in metabolic stability compared to unsubstituted adamantane compounds which may lead to longer in vivo half lives and pharmacokinetic advantages over unsubstituted adamantanes. Biochemical Mechanism [0 Glucocorticoids are steroid hormones that play an important role in regulating multiple physiological processes in a wide range of tissues and organs. For example, glucocorticoids are potent regulators of glucose and lipid metabolism. Excess glucocorticoid action may lead to insulin resistance, type 2 diabetes, dyslipidemia, visceral obesity and hypertension. Cortisol is the major active and cortisone is the major inactive form of 15 glucocorticoids in humans, while corticosterone and dehydrocorticosterone are the major active and inactive forms in rodents. Previously, the main determinants of glucocorticoid action were thought to be the circulating hormone concentration and the density of glucocorticoid receptors in the target tissues. In the last decade, it was discovered that tissue glucocorticoid levels may also be 20 controlled by 11 p-hydroxysteroid dehydrogenases enzymes (11 p-HSDs). There are two 11 p HSD isozymes which have different substrate affinities and cofactors. The 11 p hydroxysteroid dehydrogenases type 1 enzyme (11 P-HSD-1) is a low affinity enzyme with Km for cortisone in the micromolar range that prefers NADPH/NADP+ (nicotinamide adenine dinucleotide) as cofactors. 11p-HSD-1 is widely expressed and particularly high expression 25 levels are found in liver, brain, lung, adipose tissue and vascular smooth muscle cells. In vitro studies indicate that 11 p-HSD-1 is capable of acting both as a reductase and a dehydrogenase. However, many studies have shown that it is predominantly a reductase in vivo and in intact cells. It converts inactive 11 -ketoglucocorticoids (i.e., cortisone or 103 dehydrocorticosterone) to active 1 1-hydroxyglucocorticoids (i.e., cortisol or corticosterone) and therefore amplifies the glucocorticoid action in a tissue-specific manner. With only 20% homology to 11 p-HSD-1, the 1 1p-hydroxysteroid dehydrogenases type 2 enzyme (11 P-HSD-2) is a NAD+-dependent, high affinity dehydrogenase with a Km 5 for cortisol in the nanomolar range. 11 p-HSD-2 is found primarily in mineralocorticoid target tissues, such as kidney, colon and placenta. Glucocorticoid action is mediated by the binding of glucocorticoids to receptors, such as mineralocorticoid receptors and glucocorticoid receptors. Through binding to its receptor, the main mineralocorticoid aldosterone controls the water and salts balance in the body. However, the mineralocorticoid 10 receptors have a high affinity for both cortisol and aldosterone. 11p-HSD-2 converts cortisol to inactive cortisone, therefore preventing the non-selective mineralocorticoid receptors from being exposed to high levels of cortisol. Mutations in the gene encoding 1 1p-HSD-2 cause Apparent Mineralocorticoid Excess Syndrome (AME), which is a congenital syndrome resulting in hypokaleamia and severe hypertension. AME Patients have elevated cortisol 15 levels in mineralocorticoid target tissues due to reduced 11 p-HSD-2 activity. The AME symptoms may also be induced by administration of 11 j-HSD-2 inhibitor, glycyrrhetinic acid. The activity of 11 p-HSD-2 in placenta is probably important for protecting the fetus from excess exposure to maternal glucocorticoids, which may result in hypertension, glucose intolerance and growth retardation. Due to the potential side effects resulting from 11 P 20 HSD-2 inhibition, the present invention describes selective 11jP-HSD-1 inhibitors. Glucocorticoid levels and/or activity may contribute to numerous disorders, including Type II diabetes, obesity, dyslipidemia, insulin resistance and hypertension. Administration of the compounds of the present invention decreases the level of cortisol and other 11 hydroxysteroids in target tissues, thereby reducing the effects of glucucocrticoid activity in 25 key target tissues. The present invention could be used for the treatment, control, amelioration, prevention, delaying the onset of or reducing the risk of developing the diseases and conditions that are described herein. Since glucocorticoids are potent regulators of glucose and lipid metabolism, glucocorticoid action may contribute or lead to insulin resistance, type 2 diabetes, 30 dyslipidemia, visceral obesity and hypertension. For example, cortisol antagonizes the insulin effect in liver resulting in reduced insulin sensitivity and increased gluconeogenesis. 104 Therefore, patients who already have impaired glucose tolerance have a greater probability of developing type 2 diabetes in the presence of abnormally high levels of cortisol. Previous studies (B. R. Walker et al., J. of Clin. Endocrinology and Met., 80: 3155-3159, 1995) have demonstrated that administration of non-selective 11 p-HSD-1 inhibitor, carbenoxolone, 5 improves insulin sensitivity in humans. Therefore, administration of a therapeutically effective amount of an 11 p-HSD-1 inhibitor may treat, control, ameliorate, delay, or prevent the onset of type 2 diabetes. Administration of glucocorticoids in vivo has been shown to reduce insulin secretion in rats (B. Billaudel et al., Horm. Metab. Res. 11: 555-560, 1979). It has also been reported 10 that conversion of dehydrocorticosterone to corticosterone by 11 p-HSD-1 inhibits insulin secretion from isolated murine pancreatic P cells. (B. Davani et al., J. Biol. Chem., 275: 34841-34844, 2000), and that incubation of isolated islets with an 11 p-HSD-1 inhibitor improves glucose-stimulated insulin secretion (H Orstater et al., Diabetes Metab. Res. Rev.. 21: 359-366, 2005). Therefore, administration of a therapeutically effective amount of an 15 11 p-HSD- 1 inhibitor may treat, control, ameliorate, delay, or prevent the onset of type 2 diabetes by improving glucose-stimulated insulin secretion in the pancreas. Abdominal obesity is closely associated with glucose intolerance (C. T. Montaque et al., Diabetes, 49: 883-888, 2000), hyperinsulinemia, hypertriglyceridemia and other factors of metabolic syndrome (also known as syndrome X), such as high blood pressure, elevated 20 VLDL and reduced HDL. Animal data supporting the role of 11 p-HSD-1 in the pathogenesis of the metabolic syndrome is extensive (Masuzaki, et al.. Science. 294: 2166-2170, 2001; Paterson, J.M., et al.; Proc Natl. Acad. Sci. USA. 101: 7088-93, 2004; Montague and O'Rahilly. Diabetes. 49: 883-888, 2000). Therefore, administration of a therapeutically effective amount of an 11 P -HSD- 1 inhibitor may treat, control, ameliorate, delay, or prevent 25 the onset of obesity. Long-term treatment with an 11 p-HSD-1 inhibitor may also be useful in delaying the onset of obesity, or perhaps preventing it entirely if the patients use an 11 p HSD-1 inhibitor in combination with controlled diet, exercise, or in combination or sequence with other pharmacological approaches. By reducing insulin resistance and/or maintaining serum glucose at normal 30 concentrations and/or reducing obestity compounds of the present invention also have utility in the treatment and prevention of conditions that accompany Type 2 diabetes and insulin resistance, including the metabolic syndrome or syndrome X, obesity, reactive hypoglycemia, 105 and diabetic dyslipidemia. 11 p-HSD-1 is present in multiple tissues, including vascular smooth muscle, where local glucocorticoid levels that are thought to increase insulin resistance, leading to reductions in nitric oxide production, and potentiation of the vasoconstrictive effects of both 5 catecholamines and angiotensin II (M. Pirpiris et al., Hypertension, 19:567-574, 1992, C. Kornel et al., Steroids, 58: 580-587, 1993, B. R. Walker and B. C. Williams, Clin. Sci. 82:597-605, 1992; Hodge, G. et al Exp. Physiol 87: 1-8, 2002). High levels of cortisol in tissues where the mineralocorticoid receptor is present may lead to hypertension, as observed in Cushing's patients (See, D. N. Orth, N. Engl. J. Med. 332:791-803, 1995, M. Boscaro, et 10 al., Lancet, 357: 783-791, 2001, X. Bertagna, et al, Cushing's Disease. In: Melmed S., Ed. The Pituitary. 2 "d ed. Malden, MA: Blackwell; 592-612, 2002). Transgenic mice overexpressing 11 p-HSD-1 in liver and fat are also hypertensive, a phenotype believed to result from glucocorticoid activation of the renin angiotensin system (Paterson, J.M. et al, PNAS. 101: 7088-93, 2004; Masuzaki, H. et al, J. Clin. Invest. 112: 83-90, 2003). 15 Therefore, administration of a therapeutically effective dose of an 11 p-HSD-1 inhibitor may treat, control, ameliorate, delay, or prevent the onset of hypertension. Cushing's syndrome is a life-threatening metabolic disorder characterized by sustained and elevated glucocorticoid levels caused by the endogenous and excessive production of cortisol from the adrenal glands. Typical Cushingoid characteristics include 20 central obesity, diabetes and/or insulin resistance, moon face, buffalo hump, skin thinning, dyslipidemia, osteoporosis, reduced cognitive capacity, dementia, hypertension, sleep deprivation, and atherosclerosis among others (Principles and Practice of Endocrinology and Metabolism. Edited by Kenneth Becker, Lippincott Williams and Wilkins Pulishers, Philadelphia, 2001; pg 723-8). The same characteristics can also arise from the exogenous 25 administration of high doses of exogenous glucocorticoids, such as prednisone or dexamethasone, as part of an anti-inflammatory treatment regimen. Endogenous Cushings typically evolves from pituitary hyperplasia, some other ectopic source of ACTH, or from an adrenal carcinoma or nodular hyperplasia. Administration of a therapeutically effective dose of an 11 p-HSD-1 inhibitor may reduce local glucocorticoid concentrations and therefore 30 treat, control, ameliorate, delay, or prevent the onset of Cushing's disease and/or similar symptoms arising from glucocorticoid treatment. 111p-HSD-1 is expressed in mammalian brain, and published data indicates that 106 glucocorticoids may cause neuronal degeneration and dysfunction, particularly in the aged (de Quervain et al.; Hum Mol Genet. 13: 47-52, 2004; Belanoff et al. J Psychiatr Res. 35: 127-35, 2001). Evidence in rodents and humans suggests that prolonged elevation of plasma glucocorticoid levels impairs cognitive function that becomes more profound with aging. 5 (Issa, A.M. et al. J. Neurosci. 10: 3247-54, 1990; Lupien, S.J et al. Nat. Neurosci. 1: 69-73, 1998; Yau, J.L.W. et al Proc NatlAcad Sci USA. 98: 4716-4712, 2001). Thekkapat et al has recently shown that 11 -HSD-1 mRNA is expressed in human hippocampus, frontal cortex and cerebellum, and that treatment of elderly diabetic individuals with the non selective HSD1/2 inhibitor carbenoxolone improved verbal fluency and memory (Proc Natl 10 Acad Sci USA. 101: 6743-9, 2004). Additional CNS effects of glucocorticoids include glucocorticoid-induced acute psychosis which is of major concern to physicians when treating patients with these steroidal agents (Wolkowitz et al.; Ann NYAcad Sci. 1032: 191 4, 2004). Conditional mutagenesis studies of the glucocorticoid receptor in mice have also provided genetic evidence that reduced glucocorticoid signaling in the brain results in 15 decreased anxiety (Tronche, F. et al. (1999) Nature Genetics 23: 99-103). Therefore, it is expected that potent, selective 11 p-HSD-1 inhibitors would treat, control, ameliorate, delay, or prevent the onset of cognitive decline, dementia, steroid-induced acute psychosis, depression, and/or anxiety. In Cushing's patients, excess cortisol levels contributes to the development of 20 hypertension, dyslipidemia, insulin resistance, and obesity, conditions characteristic of metabolic syndrome (Orth, D.N. et al N. Engl. J. Med. 332:791-803, 1995; Boscaro, M. et al., Lancet, 357: 783-791, 2001, Bertagna, X. et al, Cushing's Disease. In: Melmed S., Ed. The Pituitary. 2 "d ed. Malden, MA: Blackwell; 592-612, 2002). Hypertension and dyslipidemia are also associated with development of atherosclerosis. 11p-HSD-1 knockout 25 mice are resistant to the dyslipidemic effects of a high fat diet and have an improved lipid profile vs wild type controls (Morton N.M. et al, JBC, 276: 41293-41300, 2001), and mice which overexpress 11 P -HSD-1 in fat exhibit the dyslipidemic phenotype characteristic of metabolic syndrome, including elevated circulating free fatty acids, and triclylgerides (Masuzaki, H., et al Science. 294: 2166-2170, 2001). Administration of a selective 111P 30 HSD-1 inhibitor has also been shown to reduce elevated plasma triglycerides and free fatty acids in mice on a high fat diet, and significantly reduce aortic content of cholesterol esters, and reduce progression of atherosclerotic plaques in mice (Hermanowski-Vosatka, A. et al. 107 J. Exp. Med. 202: 517-27, 2005). The administration of a therapeutically effective amount of an 11 P-HSD-1 inhibitor would therefore be expected to treat, control, ameliorate, delay, or prevent the onset of dyslipidemia and/or atherosclerosis. Glucocorticoids are known to cause a variety of skin related side effects including 5 skin thinning, and impairment of wound healing (Anstead, G. Adv Wound Care. 11: 277 85, 1998; Beer, et al.; Vitam Horm. 59: 217-39, 2000). 1 11-HSD-1 is expressed in human skin fibroblasts, and it has been shown that the topical treatment with the non-selective HSD1/2 inhibitor glycerrhetinic acid increases the potency of topically applied hydrocortisone in a skin vasoconstrictor assay (Hammami, MM, and Siiteri, PK. J. Clin. [0 Endocrinol. Metab. 73: 326-34, 1991). Advantageous effects of selective 11 -HSD-1 inhibitors such as BVT.2733 on wound healing have also been reported (WO 2004/11310). High levels of glucocorticoids inhibit blood flow and formation of new blood vessels to healing tissues. In vitro and in vivo models of angiogenesis have shown that systemic antagonism with the glucocorticoid receptor RU-486 enchances angiogenesis in subcutaneous 15 sponges as well as in mouse myocardium following coronary artery ligation (Walker, et al, PNAS, 102: 12165-70, 2005). 11p-HSD-1 knockout mice also showed enhanced angiogenesis in vitro and in vivo within sponges, wounds, and infarcted myocardium. It is therefore expected that potent, selective 11 P-HSD-1 inhibitors would treat, control, ameliorate, delay, or prevent the onset of skin thinning and/or promote wound healing and/or 20 angiogenesis. Although cortisol is an important and well-recognized anti-inflammatory agent (J. Baxer, Pharmac. Ther., 2:605-659, 1976), if present in large amount it also has detrimental effects. In certain disease states, such as tuberculosis, psoriasis and stress in general, high glucocorticoid activity shifts the immune response to a humoral response, when in fact a cell 25 based response may be more beneficial to patients. Inhibition of 11 p-HSD-1 activity may reduce glucocorticoid levels, thereby shifting the immuno response to a cell based response. (D. Mason, Immunology Today, 12: 57-60, 1991, G. A. W. Rook, Baillier's Clin. Endocrinol. Metab. 13: 576-581, 1999). Therefore, administration of 11p-HSD-1 specific inhibitors could treat, control, ameliorate, delay, or prevent the onset of tuberculosis, psoriasis, stress, 30 and diseases or conditions where high glucocorticoid activity shifts the immune response to a humoral response. One of the more significant side effects associated with topical and systemic 108 glucocorticoid therapy is glaucoma, resulting in serious increases in intraocular pressure, with the potential to result in blindness (Armaly et al.; Arch Ophthalmol. 78: 193-7, 1967; Stokes et al.; Invest Ophthalmol Vis Sci. 44: 5163-7, 2003; ). The cells that produce the majority of aqueous humor in the eye are the nonpigmented epithelial cells (NPE). These cells have been 5 demonstrated to express 11 p-HSD-1, and consistent with the expression of 11 p-HSD-1, is the finding of elevated ratios of cortisol:cortisone in the aqueous humor (Rauz et al.. Invest Ophthalmol Vis Sci. 42: 2037-2042, 2001). Furthermore, it has been shown that patients who have glaucoma, but who are not taking exogenous steroids, have elevated levels of cortisol vs. cortisone in their aqueous humor (Rauz et al. QJM. 96: 481-490, 2003.) 10 Treatment of patients with the nonselective HSD1/2 inhibitor carbenoxolone for 4 or 7 days significantly lowered intraocular pressure and local cortisol generation within the eye (Rauz et al.; QJM. 96: 481-490, 2003.). It is therefore expected that potent, selective 11p-HSD-1 inhibitors would treat, control, ameliorate, delay, or prevent the onset of glaucoma. Glucocorticoids (GCs) are known to increase bone resorption and reduce bone 15 formation in mammals (Turner et al. Calcif Tissue Int. 54: 311-5, 1995; Lane, NE et al. Med Pediatr Oncol. 41: 212-6, 2003). 11 p-HSD-1 mRNA expression and reductase activity have been demonstrated in primary cultures of human osteoblasts in homogenates of human bone (Bland et al.; J. Endocrinol. 161: 455-464, 1999; Cooper et al.; Bone, 23: 119-125, 2000). In surgical explants obtained from orthopedic operations, 11 p-HSD-1 expression in 20 primary cultures of osteoblasts was found to be increased approximately 3-fold between young and old donors (Cooper et al.; J. Bone Miner Res. 17: 979-986, 2002). Glucocorticoids, such as prednisone and dexamethasone, are also commonly used to treat a variety of inflammatory conditions including arthritis, inflammatory bowl disease, and asthma. These steroidal agents have been shown to increase expression of 11 P-HSD-1 25 mRNA and activity in human osteoblasts (Cooper et al.; J. Bone Miner Res. 17: 979-986, 2002). These studies suggest that 1 1p-HSD-1 plays a potentially important role in the development of bone-related adverse events as a result of excessive glucocorticoid levels or activity. Bone samples taken from healthy human volunteers orally dosed with the non selective HSD1/2 inhibitor carbenoxolone showed a significant decrease in markers of bone 30 resorption (Cooper et al.; Bone. 27: 375-81, 2000). It is therefore expected that potent, selective 11 P-HSD-1 inhibitors would treat, control, ameliorate, delay, or prevent the onset of conditions of glucocorticoid-induced or age-dependent osteoporosis. 109 The following diseases, disorders and conditions can be treated, controlled, prevented or delayed, by treatment with the compounds of this invention: (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) lipid disorders, (5) hyperlipidemia, (6) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, 5 (12), atherosclerosis and its sequelae, (13) vascular restensosis, (14) pancreatitis, (15) obdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropather, (19), neuropathy, (20) hypertension and other disorders where insulin resistance is a component, and (21) other diseases, disorders, and conditions that can benefit from reduced local glucocorticoid levels. 10 Therapeutic compositions of the present compounds comprise an effective amount of the same formulated with one or more therapeutically suitable excipients. The term "therapeutically suitable excipient," as used herein, generally refers to pharmaceutically suitable, solid, semi-solid or liquid fillers, diluents, encapsulating material, formulation auxiliary and the like. Examples of therapeutically suitable excipients include, but are not 15 limited to, sugars, cellulose and derivatives thereof, oils, glycols, solutions, buffers, colorants, releasing agents, coating agents, sweetening agents, flavoring agents, perfuming agents and the like. Such therapeutic compositions may be administered parenterally, intracisternally, orally, rectally, intraperitoneally or by other dosage forms known in the art. Liquid dosage forms for oral administration include, but are not limited to, emulsions, 20 microemulsions, solutions, suspensions, syrups and elixirs. Liquid dosage forms may also contain diluents, solubilizing agents, emulsifying agents, inert diluents, wetting agents, emulsifiers, sweeteners, flavorants, perfuming agents and the like. Injectable preparations include, but are not limited to, sterile, injectable, aqueous, oleaginous solutions, suspensions, emulsions and the like. Such preparations may also be 25 formulated to include, but are not limited to, parenterally suitable diluents, dispersing agents, wetting agents, suspending agents and the like. Such injectable preparations may be sterilized by filtration through a bacterial-retaining filter. Such preparations may also be formulated with sterilizing agents that dissolve or disperse in the injectable media or other methods known in the art. 30 The absorption of the compounds of the present invention maybe delayed using a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the compounds generally depends upon the rate of dissolution and 110 crystallinity. Delayed absorption of a parenterally administered compound may also be accomplished by dissolving or suspending the compound in oil. Injectable depot dosage forms may also be prepared by microencapsulating the same in biodegradable polymers. The rate of drug release may also be controlled by adjusting the ratio of compound to polymer and 5 the nature of the polymer employed. Depot injectable formulations may also prepared by encapsulating the compounds in liposomes or microemulsions compatible with body tissues. Solid dosage forms for oral administration include, but are not limited to, capsules, tablets, gels, pills, powders, granules and the like. The drug compound is generally combined with at least one therapeutically suitable excipient, such as carriers, fillers, extenders, 10 disintegrating agents, solution retarding agents, wetting agents, absorbents, lubricants and the like. Capsules, tablets and pills may also contain buffering agents. Suppositories for rectal administration may be prepared by mixing the compounds with a suitable non-irritating excipient that is solid at ordinary temperature but fluid in the rectum. The present drug compounds may also be microencapsulated with one or more 15 excipients. Tablets, dragees, capsules, pills and granules may also be prepared using coatings and shells, such as enteric and release or rate controlling polymeric and nonpolymeric materials. For example, the compounds may be mixed with one or more inert diluents. Tableting may further include lubricants and other processing aids. Similarly, capsules may contain opacifying agents that delay release of the compounds in the intestinal tract. 20 Transdermal patches have the added advantage of providing controlled delivery of the present compounds to the body. Such dosage forms are prepared by dissolving or dispensing the compounds in suitable medium. Absorption enhancers may also be used to increase the flux of the compounds across the skin. The rate of absorption may be controlled by employing a rate controlling membrane. The compounds may also be incorporated into a 25 polymer matrix or gel. For a given dosage form, disorders of the present invention may be treated, prophylatically treated, or have their onset delayed in a patient by administering to the patient a therapeutically effective amount of compound of the present invention in accordance with a suitable dosing regimen. In other words, a therapeutically effective amount of any one of 30 compounds of formulas I thra IX is administered to a patient to treat and/or prophylatically treat disorders modulated by the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme. The specific therapeutically effective dose level for a given patient population may depend upon a 111 variety of factors including, but not limited to, the specific disorder being treated, the severity of the disorder; the activity of the compound, the specific composition or dosage form, age, body weight, general health, sex, diet of the patient, the time of administration, route of administration, rate of excretion, duration of the treatment, drugs used in combination, 5 coincidental therapy and other factors known in the art. The present invention also includes therapeutically suitable metabolites formed by in vivo biotransformation of any of the compounds of formula I thru IX. The term "therapeutically suitable metabolite", as used herein, generally refers to a pharmaceutically active compound formed by the in vivo biotransform ation of compounds of formula I thru 10 IX. For example, pharmaceutically active metabolites include, but are not limited to, compounds made by adamantane hydroxylation or polyhydroxylation of any of the compounds of formulas I thru IX. A discussion of biotransformation is found in Goodman and Gilman's, The Pharmacological Basis of Therapeutics, seventh edition, MacMillan Publishing Company, New York, NY, (1985). 15 The total daily dose (single or multiple) of the drug compounds of the present invention necessary to effectively inhibit the action of 11 -beta-hydroxysteroid dehydrogenase type 1 enzyme may range from about 0.01 mg/kg/day to about 50 mg/kg/day of body weight and more preferably about 0.1 mg/kg/day to about 25 mg/kg/day of body weight. Treatment regimens generally include administering from about 10 mg to about 1000 mg of the 20 compounds per day in single or multiple doses. It is understood that the foregoing detailed description and accompanying examples are merely illustrative and are not to be taken as limitations upon the scope of the invention, which is defined solely by the appended claims and their equivalents, Various changes and modifications to the disclosed aspects will be apparent to those skilled in the art. Such 25 changes and modifications, including without limitation those relating to the chemical structures, substituents, derivatives, intermediates, syntheses, formulations and/or methods of use of the invention, may be made without departing from the spirit and scope thereof. 112

Claims (5)

1. A compound of formula (I) D i R 2 4 R Ra R 4 "N DE A2 (I), wherein A' is alkyl or alkyl substituted with cyano, sulfanylidene, or sulfo; A 2 , A 3 and A 4 are each individually hydrogen, alkenyl, alkyl, alkyl-NH-alkyl, alkylcarbonyl, alkylsulfonyl, carboxyalkyl, carboxycycloalkyl, cyano, cycloalkyl, cycloalkylcarbonyl, cycloalkylsulfonyl, aryl, arylalkyl, aryloxyalkyl, arylcarbonyl, arylsulfonyl, heteroaryl, heteroarylalkyl, heteroaryloxyalkyl, heteroarylsulfonyl, heterocycle, heterocyclealkyl, heterocycleoxyalkyl, heterocyclesulfonyl, halogen, haloalkyl, -NR 5 -[C(R 6 R 7 )1,-C(O)-R 8 , -0-[C(R 9 R )]1-C(O)-R", -OR", S-alkyl, -S(O)-alkyl, -N(R"R 4 ), -C0 2 R 15 , -C(O)-N(R 16 R 17 ), -C(R 1 8 R') -OR 2 0 , -C(R 21 R 2 )-N (R 23 R 2 4 ), C(-NOH) -N(H) 2 , -C(R1 8 aR 9 a)-C(O)N(R 23 R 24 ), -S(O) 2 -N(R 2 5 R 26 ), or -C(R1 8 aR 9 a)-S(O) 2 -N(R 2 R 2 6 ); n is 0 or 1; p is 0 or 1; D is -0-, -S-, -S(O)- or -S(O)2 E is alkyl, alkoxyalkyl, carboxyalkyl, carboxycycloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, or heterocyclealkyl; or R 4 and E taken together with the atoms to which they are attached form a heterocycle; R 1 is hydrogen or alkyl; R 2 is hydrogen, alkyl or cycloalkyl; R 3 and R 4 are each independently hydrogen, alkyl, carboxyalkyl, carboxycycloalkyl, cycloalkyl, haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycle or heterocyclealkyl, or R 3 and R 4 taken together with the atoms to which they are attached form a ring selected from the group consisting of cycloalkyl and heterocycle; R' is hydrogen, alkyl, carboxyalkyl, cycloalkyl, carboxycycloalkyl, aryl, arylalkyl, aryloxyalkyl, hydroxy, alkoxy, heteroaryl, heteroarylalkyl, heteroaryloxyalkyl, heterocycle, heterocyclealkyl or heterocycleoxyalkyl; R' and R' are each independently hydrogen or alkyl, or R and R' taken together with the atom to which they are attached form a ring of cycloalkyl or heterocycle; R' is hydrogen, alkyl, carboxy, carboxyalkyl, cycloalkyl, carboxycycloalkyl, aryl, arylalkyl, aryloxy, aryloxyalkyl, hydroxy, alkoxy, cycloalkyloxy, heteroaryl, heteroarylalkyl, heteroaryloxy, heteroaryloxyalkyl, heterocycle, heterocyclealkyl, heterocycleoxy, heterocycleoxyalkyl or -N(R 27 R 28 ); R 9 and R" are each independently hydrogen or alkyl, or R 9 and R" taken together with the atom to which they are attached form a ring of cycloalkyl or heterocycle; R" is hydroxy or -N(RR 3 ); R" is hydrogen, alkyl, carboxyalkyl, cycloalkyl, carboxycycloalkyl, aryl, arylalkyl, aryloxyalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroaryloxyalkyl, heterocycle, heterocyclealkyl or heterocycleoxyalkyl; R" and R" are each independently hydrogen, alkyl, alkylsulfonyl, aryl, arylalkyl, aryloxyalkyl, arylsulfonyl, carboxyalkyl, cycloalkyl, carboxycycloalkyl, cycloalkylsulfonyl, heteroaryl, heteroarylalkyl, heteroaryloxyalkyl, heteroarylsulfonyl, heterocycle, heterocyclealkyl, heterocycleoxyalkyl or heterocyclesulfonyl; R 5 is hydrogen, alkyl, carboxyalkyl, cycloalkyl, carboxycycloalkyl, aryl, arylalkyl, aryloxyalkyl, heteroaryl, heteroarylalkyl, heteroaryloxyalkyl, heterocycle, heterocyclealkyl or heterocycleoxyalkyl; R 6 and R 17 are each independently hydrogen, alkyl, alkoxy, alkylsulfonyl, aryl, arylalkyl, aryloxy, aryloxyalkyl, arylsulfonyl, carboxy, carboxyalkyl, carboxycycloalkyl, cycloalkyl, cycloalkyloxy, cycloalkylsulfonyl, heteroaryl, heteroarylalkyl, heteroaryloxyalkyl, heteroaryloxy, heteroarylsulfonyl, heterocycle, heterocyclealkyl, heterocycleoxyalkyl, heterocycleoxy, heterocyclesulfonyl, hydroxy, or alkyl-C(O)N(R 2 0 1 R 2 2 ), or R 16 and R 17 taken together with the atom to which they are attached form a heterocycle; R 2 0 1 and R 2 0 2 are independently hydrogen or alkyl; R 18 , R 19 and R 20 are each independently hydrogen, alkyl, aryl, arylalkyl, carboxyalkyl, carboxycycloalkyl, cycloalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle or heterocyclealkyl; R1 8 ' and R1 9 a are each independently hydrogen or alkyl; R 21 and R 22 are each independently hydrogen, alkyl, alkylcarbonyl, alkylsulfonyl, aryl, arylcarbonyl, arylsulfonyl, cycloalkyl, carboxyalkyl, carboxycycloalkyl, cycloalkylcarbonyl, 11 cycloalkylsulfonyl, heteroaryl, heteroarylcarbonyl, heteroarylsulfonyl, heterocycle, heterocyclecarbonyl or heterocyclesulfonyl; R 23 and R 24 are each independently hydrogen, alkyl, alkylcarbonyl, alkoxy, alkylsulfonyl, aryl, arylcarbonyl, aryloxy, arylsulfonyl, carboxyalkyl, carboxycycloalkyl, cycloalkyl, cycloalkylcarbonyl, cycloalkyloxy, cycloalkylsulfonyl, heteroaryl, heteroarylcarbonyl, heteroaryloxy, heteroarylsulfonyl, heterocycle, heterocyclecarbonyl, heterocycleoxy, heterocyclesulfonyl or hydroxy, or R 23 and R 24 taken together with the atom to which they are attached form a ring of heteroaryl or heterocycle; R 2 ' and R 2 ' are each independently hydrogen, alkyl, alkoxy, alkylsulfonyl, aryl, arylalkyl, aryloxy, aryloxyalkyl, arylsulfonyl, carboxy, carboxyalkyl, carboxycycloalkyl, cycloalkyl, cycloalkyloxy, cycloalkylsulfonyl, heteroaryl, heteroarylalkyl, heteroaryloxyalkyl, heteroaryloxy, heteroarylsulfonyl, heterocycle, heterocyclealkyl, heterocycleoxyalkyl, heterocycleoxy, heterocyclesulfonyl or hydroxy, or R 2 ' and R 26 taken together with the atom to which they are attached form a heterocycle; R 2 7 and R 2 8 are each independently hydrogen, alkyl, alkoxy, alkylsulfonyl, aryl, arylalkyl, aryloxy, aryloxyalkyl, arylsulfonyl, carboxy, carboxyalkyl, cycloalkyl, cycloalkyloxy, carboxycycloalkyl, cycloalkylsulfonyl, heteroaryl, heteroarylalkyl, heteroaryloxy, heteroaryloxyalkyl, heteroarylsulfonyl, heterocycle, heterocyclealkyl, heterocycleoxy, heterocycleoxyalkyl, heterocyclesulfonyl or hydroxy, or R 27 and R 28 taken together with the atom to which they are attached form a heterocycle; and R 2 and R 3 ' are each independently hydrogen, alkyl, alkoxy, alkylsulfonyl, aryl, arylalkyl, aryloxy, aryloxyalkyl, arylsulfonyl, carboxy, carboxyalkyl, cycloalkyl, cycloalkyloxy, carboxycycloalkyl, cycloalkylsulfonyl, heteroaryl, heteroarylalkyl, heteroaryloxy, heteroaryloxyalkyl, heteroarylsulfonyl, heterocycle, heterocyclealkyl, heterocycleoxy, heterocycleoxyalkyl, heterocyclesulfonyl or hydroxyl, or R 2 and R 3 1 taken together with the atom to which they are attached form a heterocycle; or a salt thereof.
2. The compound as in claim 1, wherein A' is alkyl substituted with cyano, sulfanylidene, or sulfo.
3. The compound as in claim 2, wherein E is substituted aryl.
4. The compound as in claim 1, that is E- {4-[2-(4-chlorophenoxy)-2-methyl-propionylamino]-adamantan-1 -yl} -acetonitrile; N- { (E)-5-[(thioacetyl)methyl]-2-adamantyl} -2-(4-chlorophenoxy)-2-methylpropanamide; or N- { (E)-5-[(sulfonic acid)methyl] -2-adamantyl} -2-(4-chlorophenoxy)-2-methylpropanamide; or a salt thereof.
5. A pharmaceutical composition comprising a therapeutically effective amount of the compound of formula (I) of claim 1, in combination with a pharmaceutically suitable carrier. AbbVie Inc, Patent Attorneys for the ApplicantVNominated Person SPRUSON & FERGUSON
AU2013206051A 2005-01-05 2013-05-28 Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme Ceased AU2013206051B8 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2013206051A AU2013206051B8 (en) 2005-01-05 2013-05-28 Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60/641,520 2005-01-05
US11/325,965 2006-01-05
AU2011253958A AU2011253958B2 (en) 2005-01-05 2011-12-12 Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme
AU2013206051A AU2013206051B8 (en) 2005-01-05 2013-05-28 Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2011253958A Division AU2011253958B2 (en) 2005-01-05 2011-12-12 Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme

Publications (4)

Publication Number Publication Date
AU2013206051A1 true AU2013206051A1 (en) 2013-06-13
AU2013206051B2 AU2013206051B2 (en) 2015-08-20
AU2013206051B8 AU2013206051B8 (en) 2016-02-18
AU2013206051A8 AU2013206051A8 (en) 2016-02-18

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006074244A2 (en) * 2005-01-05 2006-07-13 Abbott Laboratories Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006074244A2 (en) * 2005-01-05 2006-07-13 Abbott Laboratories Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme

Also Published As

Publication number Publication date
AU2013206051B2 (en) 2015-08-20
AU2013206051A8 (en) 2016-02-18

Similar Documents

Publication Publication Date Title
AU2006204017B2 (en) Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme
KR101302627B1 (en) Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme
US20050245745A1 (en) Inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme
EP2269977B1 (en) Inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme
AU2013206051B2 (en) Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme
US9290444B2 (en) Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme
AU2013206051B8 (en) Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme
AU2011253958B2 (en) Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme

Legal Events

Date Code Title Description
DA3 Amendments made section 104

Free format text: THE NATURE OF THE AMENDMENT IS: AMEND THE NAME OF THE INVENTOR TO READ SORENSEN, BRYAN K.; YONG, HONG; LINK, JAMES T.; ROHDE, JEFFREY J.; YEH, VINCE S.; PATEL, JYOTI R.; WINN, MARTIN; SHUAI, QI SHUAI AND DINGES, JURGEN

FGA Letters patent sealed or granted (standard patent)
TH Corrigenda

Free format text: IN VOL 27 , NO 22 , PAGE(S) 3416 UNDER THE HEADING APPLICATIONS OPI - NAME INDEX UNDER THE NAME ABBVIE INC., APPLICATION NO. 2013206051, UNDER INID (72) CORRECT THE CO-INVENTOR TO SHUAI, QI

Free format text: IN VOL 29 , NO 32 , PAGE(S) 4843 UNDER THE HEADING APPLICATIONS ACCEPTED - NAME INDEX UNDER THE NAME ABBVIE INC., APPLICATION NO. 2013206051, UNDER INID (72) CORRECT THE CO-INVENTOR TO SHUAI, QI

MK14 Patent ceased section 143(a) (annual fees not paid) or expired