AU2013205160A1 - Processes for producing cycloalkylcarboxamido-pyridine benzoic acids - Google Patents

Processes for producing cycloalkylcarboxamido-pyridine benzoic acids Download PDF

Info

Publication number
AU2013205160A1
AU2013205160A1 AU2013205160A AU2013205160A AU2013205160A1 AU 2013205160 A1 AU2013205160 A1 AU 2013205160A1 AU 2013205160 A AU2013205160 A AU 2013205160A AU 2013205160 A AU2013205160 A AU 2013205160A AU 2013205160 A1 AU2013205160 A1 AU 2013205160A1
Authority
AU
Australia
Prior art keywords
compound
organic solvent
reaction
acid
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2013205160A
Other versions
AU2013205160B2 (en
Inventor
David Siesel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertex Pharmaceuticals Inc
Original Assignee
Vertex Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48483478&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=AU2013205160(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from AU2008335440A external-priority patent/AU2008335440B2/en
Application filed by Vertex Pharmaceuticals Inc filed Critical Vertex Pharmaceuticals Inc
Priority to AU2013205160A priority Critical patent/AU2013205160B2/en
Publication of AU2013205160A1 publication Critical patent/AU2013205160A1/en
Application granted granted Critical
Publication of AU2013205160B2 publication Critical patent/AU2013205160B2/en
Priority to AU2016204422A priority patent/AU2016204422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The present invention relates to presses for preparing Cystic Fibrosis transmembrane conductance regulator (CFTR) correctors such as the compound 3-(6-( (2,2difliuorobenzo [d] [1.3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin 2-yl)benzoic acid (Compound 1) in substantially free form useful in the treatment of cystic fibrosis, F O N N N CO 2 H Compound 1.

Description

WO 2009/076142 PCT/US2008/085458 PROCESSES FOR PRODUCING CYCLOALKYLCARBOXAMIDO-PYRIDINE BENZOIC ACIDS CROSS REFERENCE TO RELATED APPLICATIONS [0011 This application claims the benefit under 35 U.S.C. § 119 to United States provisional patent application serial numbers 61/012,181, filed December 7, 2007, and 61/109,573, filed October 30, 2008, the entire contents of both applications are incorporated herein by reference. TECHNICAL FIELD OF THE INVENTION 10021 The present invention relates to processes for the preparation of compounds useful for treating a CFTR mediated disease such as cystic fibrosis. BACKGROUND OF THE INVENTION 10031 CFTR is a cAMP/ATP-mediated anion channel that is expressed in a variety of cells types, including absorptive and secretory epithelia cells, where it regulates anion flux across the membrane, as well as the activity of other ion channels and proteins. In epithelia cells, normal functioning of CFTR is critical for the maintenance of electrolyte transport throughout the body, including respiratory and digestive tissue. CFTR_ is composed of approximately 1480 amino acids that encode a protein made up of a tandem repeat of transmembrane domains, each containing six transmembrane helices and a nucleotide binding domain. The two transmembrane domains are linked by a large, polar, regulatory (R)-domain with multiple phosphorylation sites that regulate channel activity and cellular trafficking. 10041 The gene encoding CFTR has been identified and sequenced (See Gregory, R. J. et aL. (1990) Nature 3 4 7 :38 2 -3 86 ; Rich, D. P. et al. (1990) Nature 347:358-362), (Riordan, J. R. et al. (1989) Science 245:1066-1073). A defect in this gene causes mutations in CFTR resulting in cystic fibrosis ("CF"), the most common fatal genetic disease in humans. Cystic fibrosis affects approximately one in every 2,500 infants in the United States. Within the general United States population, up to 10 million people carry a single copy of the defective gene without apparent ill effects. In contrast, individuals with two copies of the CF associated gene suffer from the debilitating and fatal effects of CF, including chronic lung disease. [0051 In patients with cystic fibrosis, mutations in CFTR endogenously expressed in respiratory epithelia leads to reduced apical anion secretion causing an imbalance in ion and fluid transport. The resulting decrease in anion transport contributes to enhanced mucus accumulation WO 2009/076142 PCT/US2008!085458 in the lung and the accompanying microbial infections that ultimately cause death in CF patients. In addition to respiratory disease, CF patients typically suffer from gastrointestinal problems and pancreatic insufficiency that, if left untreated, results in death. In addition, the majority of males with cystic fibrosis are infertile and fertility is decreased among females with cystic fibrosis. In contrast to the severe effects of two copies of the CF associated gene, individuals with a single copy of the CF associated gene exhibit increased resistance to cholera and to dehydration resulting from diarrhea - perhaps explaining the relatively high frequency of the CF gene within the population. 1006] Sequence analysis of the CFTR gene of CF chromosomes has revealed a variety of disease causing mutations (Cutting, G. R. et al. (1990) Nature 346:366-369; Dean, M. et al. (1990) Cell 61:863:870; and Kerem, B-S. et al. (1989) Science 245:1073-1080; Kerem, B-S et al. (1990) Proc. Nat]. Acad. Sci. USA 87:8447-8451). To date, > 1000 disease causing mutations in the CF gene have been identified (htt://www.genet.sickkidsxon.ca/cti/). The most prevalent mutation is a deletion of phenylalanine at position 508 of the CFTR amino acid sequence, and is commonly referred to as AF508-CFTR. This mutation occurs in approximately 70% of the cases of cystic fibrosis and is associated with a severe disease. [007] The deletion of residue 508 in AF508-CFTR prevents the nascent protein from folding correctly. This results in the inability of the mutant protein to exit the ER, and traffic to the plasma membrane. As a result, the number of channels present in the membrane is far less than observed in cells expressing wild-type CFTR. In addition to impaired trafficking, the mutation results in defective channel gating. Together, the reduced number of channels in the membrane and the defective gating lead to reduced anion transport across epithelia leading to defective ion and fluid transport. (Quinton, P. M. (1990). FASEB J. 4: 2709-2727). Studies have shown, however, that the reduced numbers of AF508-CFTR in the membrane are functional, albeit less than wild-type CFTR. (Dalemans et al. (1991), Nature Lond. 354: 526-528; Denning et al., supra; Pasyk and Foskett (1995), J. Cell. Biochem. 270: 12347-50). In addition to AF508 CFTR, other disease causing mutations in CFTR that result in defective trafficking, synthesis, and/or channel gating could be up- or down-regulated to alter anion secretion and modify disease progression and/or severity. 1008] Although CFTR transports a variety of molecules in addition to anions, it is clear that this role (the transport of anions) represents one element in an important mechanism of transporting ions and water across the epithelium. The other elements include the epithelial Na' WO 2009/076142 PCT/US2008!085458 channel, ENaC, NaV/2Cl~/K co-transporter, Na -K -ATPase pump and the basolateral membrane K channels, that are responsible for the uptake of chloride into the cell. [009] These elements work together to achieve directional transport across the epithelium via their selective expression and localization within the cell. Chloride absorption takes place by the coordinated activity of ENaC and CFTR present on the apical membrane and the Na-KrATPase pump and Cl- channels expressed on the basolateral surface of the cell. Secondary active transport of chloride from the luminal side leads to the accumulation of intracellular chloride, which can then passively leave the cell via C- channels, resulting in a vectorial transport. Arrangement of Na7/2Cl-I/K co-transporter, Na--K_-ATPase pump and the basolateral membrane K channels on the basolateral surface and CFTR on the luminal side coordinate the secretion of chloride via CFTR on the luminal side. Because water is probably never actively transported itself, its flow across epithelia depends on tiny transepithelial osmotic gradients generated by the bulk flow of sodium and chloride. [00101 As discussed above, it is believed that the deletion of residue 508 in AF508-CFTR prevents the nascent protein from folding correctly, resulting in the inability of this mutant protein to exit the ER, and traffic to the plasma membrane. As a result, insufficient amounts of the mature protein are present at the plasma membrane and chloride transport within epithelial tissues is significantly reduced. Infact, this cellular phenomenon of defective ER processing of ABC transporters by the ER machinery, has been shown to be the underlying basis not only for CF disease, but for a wide range of other isolated and inherited diseases. The two ways that the ER machinery can malfunction is either by loss of coupling to ER export of the proteins leading to degradation, or by the ER accumulation of these defective/misfolded proteins [Aridor M, et al., Nature Med., 5(7), pp 745- 751 (1999); Shastry, B.S., et al., Neurochem. International, 43, pp I-7 (2003); Rutishauser., J., et al., Swiss Med Wkly, 132, pp 211-222 (2002); Morello, JP et al., TIPS, 21, pp. 466- 469 (2000); Bross P., et al., Human Mut., 14, pp. 186-198 (1999)]. 10011] 3-(6-(1-(2,2 -Difluorobenzo [d] [1,3]dioxol-5-yl) cyclopropanecarboxamido)-3 methylpyridin-2-yl)benzoic acid in salt form is disclosed in International PCT Publication WO 2007056341 (said publication being incorporated herein by reference in its entirety) as a modulator of CFTR activity and thus useful in treating CFTR-mediated diseases such as cystic fibrosis. There remains, however, a need for economical processes for the preparation of the cycloalkyicarboxamidopyridine benzoic acids described herein. SUMMARY OF THE INVENTION 10012] As described herein, the present invention provides processes for preparing CFTR -- 3- WO 2009/076142 PCT/US2008!085458 correctors useful in the treatment of cystic fibrosis. Such compounds include 3-(6-(1-(2,2 difliuorobenzo [d] [1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid (hereinafter "Compound l") which has the structure below: F O N N CO2H Compound 1 10013] Compound I and pharmaceutically acceptable compositions thereof are useful for treating or lessening the severity of a variety of CFTR mediated diseases. Compound I is in a substantially crystalline and salt free form referred to as Form I as described and characterized herein. [0014] BRIEF DESCRIPTION OF THE DRAWINGS [001] Figure 1 is an X-ray diffraction pattern calculated from a single crystal structure of Compound I in Form I. [002] Figure 2 is an actual X-ray powder diffraction pattern of Compound I in Form . [0031 Figure 3 is an overlay of an X-ray diffraction pattern calculated from a single crystal of Compound I in Form I, and an actual X-ray powder diffraction pattern of Compound 1 in Form I. [004] Figure 4 is a differential scanning calorimetry (DSC) trace of Compound I in Form I. 1005] Figure 5 is a conformational picture of Compound I in Form I based on single crystal X-ray analysis. [006] Figure 6 is a conformational picture of Compound 1 in Form I based on single crystal X-ray analysis as a dimer formed through the carboxylic acid groups. [007] Figure 7 is a conformational picture of Compound 1 in Form I based on single crystal X-ray analysis showing that the molecules are stacked upon each other. 1008] Figure 8 is conformational picture of Compound 1 in Form I based on single crystal X-ray analysis showing a different view (down a). [0091 Figure 9 is an IHNMR analysis of Compound I in Form I in a 50 mg/mL, 0.5 methyl cellulose-polysorbate 80 suspension at T(0). -4- WO 2009/076142 PCT/US2008!085458 [0010] Figure 10 is an 1 HfNMR analysis of Compound I in Form I in a 50 mg/mL, 0.5 methyl cellulose--polysorbate 80 suspension stored at room temperature for 24 hours. [0015] Figure 11 is an 'HNMR analysis of Compound 1 * HCI standard. 10016] DETAILED DESCRIPTION OF THE INVENTION 10017] The present invention relates to a process for preparing Compound 1: H ON N OZ H F OC; O O Compound I comprising the steps of: i) providing 2-bromo-3-methylpyridine (compound 2) and 3-(t butoxycarbony)phenylboronic acid (compound 3), (H O) 2 B N Br CO 2 tBu ii) cross coupling compound 2 and compound 3 in a biphasic mixture comprising water, an organic solvent, a base, and a transition metal catalyst to produce compound 4, N
CO
2 tBu 4 iii) oxidizing compound 4 to produce compound 5, N'N I- I 4 0~ OOA
CO
2 tBu 5 WO 2009/076142 PCT/US2008!085458 iv) adding an amine group to the 6 position of the pyridyl moiety to produce compound 6.
H
2 N N 41,
CO
2 tBu 6; v) reacting compound 6 with compound 7, F O C; in an organic solvent in the presence of a base to produce compound 8, F 0 N N CO 2 tBu H 8; vi) de-esterifying compound 8 in a biphasic mixture comprising water, an organic solvent, and an acid to produce compound 9, F 0O~0 - F O N N CO 2 H H acid 9 vii) slurrying or dissolving compound 9 in an appropriate solvent for an effective amount of time to produce Compound 1, which is a free form of compound 9 and is sometimes referred to as Form I as characterized herein. [0018] In other embodiments, the process for preparing Compound 1 comprises the step of: i) reacting compound 6, -6- WO 2009/076142 PCT/US2008!085458
H
2 N N CO 2 tBu ; 6 with compound 7, F~e D F O C1 in an organic solvent in the presence of a base to produce compound 8, F 0 N NN C2 H 8; ii) de-esterifying compound 8 in a biphasic mixture comprising water, an organic solvent, and an acid to produce compound 9, F 0O FN N N CO 2 H F 01 * acid 9 [0019] iii) scurrying or dissolving compound 9 in an appropriate solvent for an effective amount of time to produce Compound 1. [0020] The present invention also provides a process for preparing a compound of formula 1: Al N N R(R1)
R
WO 2009/076142 PCT/US2008!085458 comprising the step of: ia) reacting a compound of formula 6a: (R HN N (R1)p R 6a wherein, R is H, C 1 6 aliphatic, aryl, aralkyl, heteroaryl, cycloalkyl, or heterocycloalkyl; R, is independently selected from -R', -OR, -N(R ) 2 , -NO 2 , halogen, -CN, -Cl 4 haloalkyl, -Cy 4 haloalkoxy, -C(O)N(R )2, -NR!C(O)R , -SOR!, -SO 2 R!, -SO 2 N(R!)2, -NRSO 2 R, COR', -CO,R, -NR'SO 2 N(R-),, -COCOR'; R! is hydrogen or C 1 6 aliphatic; o is an integer from 0 to 3 inclusive;, and p is an integer from 0 to 5 inclusive; with a compound of formula 7a:
(R
1 )m Al x 7a wherein, A is a fused cycloalkyl, heterocycloalkyl, aryl, or heteroaryl ring;
R
1 is independently selected from -Ri, -OR, -N(R ), -NO 2 , halogen, -CN, -Cp 4 haloalkyl,
-CI
4 haloalkoxy, -C(O)N(R) 2 , -NR 2 C(O)R', -SOR, -SO 2 R', -SO 2
N(R
2 ,, -NR'SO2R COR, -CO0 2 R', -NRSO 2 N(Ri) 2 , -COCOR; Rj is hydrogen or C 1
.
6 aliphatic; in is an integer from 0 to 3 inclusive; n is an integer from I to 4 inclusive; and -8- WO 2009/076142 PCT/US2008!085458 X is a halo or OH; in an organic solvent in the presence of a base. [0021] The present invention provides a process for preparing a compound of fornula 6a:
(R
1 )o HN N R - (R1), 6a wherein. R is 1-, C 1
.
6 aliphatic, aryl, aralkyl, heteroaryl, cycloalkyl, or heterocycloalkyl; R1 is independently selected from - .R, -OR!, -N(R)2, -NO., halogen, -CN, -CI 4 haloalkyl, -Cp4haloalkoxy, -C(O)N(R )2, -NRIC(O)R , -SOR', -S02R, -SO2N(R)2, -NR SO 2 R , COR', -CO 2 RI, -NR'SO 2 N(R!), -COCOR' R1 is hydrogen or C 1 6 aliphatic; o is an integer from 0 to 3 inclusive; and p is an integer from 0 to 5 inclusive; comprising the steps of: ib) providing compound 2a and compound 3a, /s (H O)2B N Hal 2a 3a wherein, R, is independently selected from -Ri, -OR' -N(R,)2, -NO 2 , halogen, -CN, -CI4haloalkyl, -Cp 4 lialoalkoxv, -C(O)N(R )2, -NR C(O)Rj, -SOR, -SO 2 RT, -SON(R) 2 , NR SO 2 R, COR', -CO 2 RJ, -NR'SO2N(R) 2 , -COCOR'; R' is hydrogen or C 6 aliphatic; o is an integer from 0 to 4 inclusive; and p is an integer from 0 to 5 inclusive; -9- WO 2009/076142 PCT/US2008!085458 iib) cross coupling compound 2a and compound 3a in a biphasic mixture comprising water, an organic solvent, a base, and a transition metal catalyst to produce compound 4a, (R1)o N 4a wherein, R 1 , o, and p are as defined for compounds 2a and 3a above; iiib) oxidizing compound 4a to produce compound 5a, (R1)o N I I -=(Rj) 0 5a wherein, R 1 o, and p are as defined for compounds 2a and 3a above; ivb) adding an amine group to the 6 position of the pyridyl moiety to produce compound 6a, (R1)O H N N R 6a wherein, R is H, C 1 6 aliphatic, aryl, aralkyl, heteroaryl, cycloalkyl, or heterocycloalkyl; and 10022] R 1 , o, and p are as defined for compounds 2a and 3a above. [00231 The present invention also provides a process for preparing a compound of formula 7a: (R1) A 0
X
WO 2009/076142 PCT/US2008!085458 7a wherein, A is a fused cycloalkyl, heterocycloalkyl, aryl, or heteroaryl ring;
R
1 is independently selected from -Ri, -OR', -N(R,) 2 . -NO2, halogen, -CN, -C[ 4 haloalkyl, -CI4haloalkoxy, -C(O)N(R . -NRC(O)R', -SORI, -SO2R', -SO 2
N(R')
2 , -NRJSO 2 R, COR', -CO2R -NR/SO 2 N(R ), -COCOR ; Rj is hydrogen or C 1-6 aliphatic; m is an integer from 0 to 3 inclusive; n is an integer from I to 4 inclusive; and X is a halide or OH; comprising the steps of ib) reducing Compound I Ob: (R1)m CO2H l0b whererin, A is a fused cycloalkyl, heterocycloalkyl, aryl, or heteroaryl ring; R1 is independently selected from -Ri, -OR!, -- N(R) 2 , -NO., halogen, -CN, -CI 4 haloalkyl, -CI-4haloalkoxy, -C(O)N(R-)2, -NR C(O)R , -SOR', -S02R', -SO 2 N(R')2, -NR SO 2 R , COR', -CO 2 R', -NR'SO2N(R )2, -COCOR'; R'is hydrogen or C1 6 aliphatic; and m is an integer from 0 to 3 inclusive, with a reducing agent to produce Compound I1b: (R1.)m 14 OH I1b wherein, ring A, R 1 ,. and m are as defined in Compound 10b above; -I1- WO 2009/076142 PCT/US2008!085458 iib) reacting Compound 11 b with a halogenating agent to produce Compound 12b: ,Hal 12b wherein, ring A, R-, and m are as defined in Compound 10 b above, and Hal is a halide; iiib) reacting Compound 12b with a cyanide to produce Compound 13b: (R1)mn CN 13b wherein, ring A, R 1 ,. and m are as defined in Compound 10b above; ivb) reacting Compound 13b with a compound of formula 13bb in the presence of a base: Hal Hal q 13bb wherein, Hal is a halide; and q is an integer from 0 to 3 inclusive; to produce a compound of formula 14b:
(R
1 )m A 1Al CN 14b wherein, r is an integer from I to 4 inclusive; and ring A, R 1 , and m are as defined in Compound 10b above; vb) sequentially reacting Compound 14b with a hydroxide base and acid to form Compound 15b, which is compound 7a when X = OH: -12- WO 2009/076142 PCT/US2008!085458 (R1,)m OH OO H 15b wherein, r, ring A, R 1 , and m are as defined in Compound 14b above; and vib) reacting Compound 15b with a halogenating agent to form Compound 16b, which is compound 7a when X = halide: A |Ha 16b wherein, Hal is halide; and r, ring A, R 1 , and n are as defined in Compound 14b above. [0024] The present invention also provides a process for preparing Compound I from compound 9 below: HC O N CN OH F9 F O F O:( N N C2 H " HCl 9; said process comprising the step of slurrying compound 9 in an appropriate solvent and stirring for an effective amount of time to produce Compound 1. [0025] The present invention also provides a process for preparing Compound I from compound 9 below: -13- WO 2009/076142 PCT/US2008!085458 H N N OH F0 F O O O F O:1: N N CO2 1-4 *HCl 9; said process comprising the steps of scurrying compound 9, adding aqueous NaOH, and effecting recrystallization to produce Compound 1. [0026] The present invention also provides a compound of formula 6b: (RI )0 H N N 6b wherein, R is H, C 1 6 aliphatic, aryl, aralkyl, heteroaryl, cycloalkyl, or heterocycloalkyl;
R
1 and R 2 are independently selected from -R, -ORI, -N(R!)2, -NO 2 , halogen, -CN,
-CI-
4 haloalkyl. -CI- 4 haloalkoxy, -C(O)N(R 2 , -NR'C(O)R/, -SOR', -S0 2 R, -SO2,N(R ) 2 , -NR'SO2R , -COR, -CO2R, -NR'SO2N(R)2, -COCOR; R' is hydrogen or C1 6 aliphatic; o is an integer from 0 to 3 inclusive; and p is an integer from 0 to 5 inclusive. [0027] De fnitions [0028] As used herein, the following definitions shall apply unless otherwise indicated. [0029] The term "CFTR" as used herein means cystic fibrosis transmembrane conductance regulator or a mutation thereof capable of regulator activity, including, but not limited to, AF508 CFTR and G55 ID CFTR (see, e.g., http://ww.genet.sickkids.on.ca/cftr/, for CFTR mutations). -14- WO 2009/076142 PCT/US2008!085458 [0030] As used herein "crystalline" refers to compounds or compositions where the structural units are arranged in fixed geometric patterns or lattices, so that crystalline solids have rigid long range order. The structural units that constitute the crystal structure can be atoms, molecules, or ions. Crystalline solids show definite melting points. [0031] As art-recognized the bidentate ligand (dppf) as in Pd(dppf)Cl 2 stands for diphenylphosph inoferrocene and as the formula Ph 2
PC
5 -LFeC 5
H
4 PPh 2 . [00321 The term "modulating" as used herein means increasing or decreasing, e.g. activity, by a measurable amount. 10033] As described herein, a bond drawn from a substituent to the center of one ring within a multiple-ring system (as shown below) represents substitution of the substituent at any substitutable position in any of the rings within the multiple ring system. For example, Figure a represents possible substitution in any of the positions shown in Figure b. RB B R RB RB Figure a Figure b 10034] Unless otherwise stated, structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational)) forms of the structure; for example, the R and S configurations for each asymmetric center, (Z) and (E) double bond isomers, and (Z) and (E) conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the present compounds are within the scope of the invention. Unless otherwise stated, all tautomeric forms of the compounds of the invention are within the scope of the invention. Additionally, unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13C- or 1 "C--enriched carbon are within the scope of this invention. Such compounds are useful, for example, as analytical tools, probes in biological assays, or CFTR correctors with improved therapeutic profile. [0035] In one embodiment, the present invention provides a process for preparing Compound 1: -15- WO 2009/076142 PCT/US2008!085458 H N N O H F N Compound 1. [0036] In some embodiments, the process for preparing Compound I comprises the steps of: i) providing 2--bromo-3 -methylpyridine (compound 2) and 3--(t butoxycarbonyl)pheny]boronic acid (compound 3), (H O) 2 B cc N Br CO 2 tBu 2 3 ii) cross coupling compound 2 and compound 3 in a biphasic mixture comprising water, a first organic solvent, a first base, and a transition metal catalyst to produce compound 4, NI N N- CO 2 tBu 4 iii) oxidizing compound 4 to produce compound 5, N 0~
CO
2 tBu 5; iv) adding an amine group to the 6 position of the pyridyl moiety to produce compound 6.
H
2 N N
CO
2 tB u -16- WO 2009/076142 PCT/US2008!085458 6 v) reacting compound 6 with compound 7, F O Ci in a second organic solvent in the presence of a second base to produce compound 8, F)KO F O N N CO 2 tBu H 8 vi) de-esterifying compound 8 in a biphasic mixture comprising water, a third organic solvent, and a first acid to produce compound 9, H 02 acid 9 vii) slurring or dissolving compound 9 in an appropriate solvent for an effective amount of time to produce Compound 1. [0037] In some embodiments, the first organic solvent is an aprotic solvent. [0038] In some embodiments, the first organic solvent is slected from 1,2 dimethoxyethane, dioxane, acetonitrile, toluene, benzene, xylenes, methyl t-butyl ether, methyl ethyl ketone, methyl isobutyl ketone, acetone, N;N-dimethyiformamide, N-dimethylacetamide, N-methylpyrrolidinone, or dimethylsulfoxide. 10039] In some embodiments., the first organic solvent is selected from acetonitrile, toluene, benzene, or xylenes. In some embodiments, the first organic solvent is toluene. [00401 In other embodiments, the first organic solvent is a protic solvent. In some embodiments, the first organic solvent is selected from methanol, ethanol, or isopropanol. [0041] In some embodiments, the first base is an inorganic base. -17- WO 2009/076142 PCT/US2008!085458 [0042] In some embodiments, the first base is selected from potassium carbonate, cesium carbonate, potassium phosphate, sodium carbonate, sodium phosphate, sodium hydroxide, potassium hydroxide or lithium hydroxide. [00431 In some other embodiments, the first base is selected from potassium carbonate, cesium carbonate or potassium phosphate. In yet other embodiments, the first base is selected from potassium carbonate. [00441 In some embodiments, the transition-metal catalyst is a palladium-based catalyst. [0045] In some embodiments, the palladium-based catalyst is selected from palladium(II)acetate, Pd(dppf)C1 2 , tetrakis(triphenylphosphine)palladium(O) or tris(dibenzvlideineacetone)dipaliadium(0). In yet other embodiments, the palladium-based catalyst is Pd(dppf)C1 2 . 10046] In some embodiments., the cross coupling reaction is run at between about 60'C and about 100. C [00471 In other embodiments, the cross coupling reaction is run at between about 70'C and about 90"C. In yet other embodiments, the cross coupling reaction is run at about 80"C. [0048] In some embodiments, the oxidation reaction is carried out using a peroxide. [00491 In some embodiments, the oxidation reaction is carried out using a peroxide selected from urea-hydrogen peroxide, peracetic acid, methyl ethyl ketone peroxide, sodium peroxide, hydrogen peroxide, potassium peroxide, lithium peroxide, barium peroxide, calcium peroxide, strontium peroxide, magnesium peroxide, zinc peroxide, cadmium peroxide, or mercury peroxide. In some embodiments the oxidation reaction is carried out using peracetic acid. [00501 In some embodiments, the oxidation reaction is carried out in the presence of an anhydride. 10051] In some embodiments, the oxidation reaction is carried out in the presence of an anhydride selected from acetic anhydride, phthalic anhydride, or maleic anhydride. In some embodiments, the oxidation reaction is carried out in the presence of phthalic anhydride. 10052] In some embodiments, the oxidation reaction is run at between about 25'C and about 65 0 C. [00531 In some embodiments, the oxidation reaction is run at between about 35'C and about 55'C. In yet other embodiments, the oxidation reaction is run at about 45'C. -18-- WO 2009/076142 PCT/US2008!085458 [0054] In some embodiments, the amination reaction is carried out in the presence of a sulfonyl compound. [0055] In some embodiments, the amination reaction is carried out in the presence of a sulfonyl compound selected from p-toluenesulfonyl chloride, methanesulfonic anhydride, methansulfonyl chloride, or p-toluenesulfonic anhydride. In some embodiments, the amination reaction is carried out in the presence of methanesulfonic anhydride. [00561 In some embodiments, the amination reaction is carried out at ambient temperatures. 10057] In some embodiments, the amination reagent used in the amination reaction is an alcohol amine. [0058] In some embodiments, the amination reagent used in the amination reaction is an alcohol amine selected from methanolamine., ethanolamine, propanolamine, butanolamine, pentanolamine, or hexanolamine. In some embodiments, the amination reagent used in the amination reaction is ethanolamine. 10059] In some embodiments., the second organic solvent is an aprotic solvent. [0060] In some embodiments, the second organic solvent is an aprotic solvent selected from 1.2--dimethoxyethane, dioxane, acetonitrile, toluene, benzene, xylenes, methyl t-butyl ether, methylene chloride, chloroform, methyl ethyl ketone, methyl isobutyl ketone, acetone, NN dimethiylformamide, iNN-dimethylacetamide, N-methylpyrrolidinone, or dimethylsulfoxide. In some embodiments, the second organic solvent is toluene. [00611 In some embodiments, the second base is an organic base. 10062] In some embodiments, the second base is an organic base selected from triethylamine, trimethylamine, methylamine, diethylamine, tripropylamine, ethylmethylamine, diethylmethylamine, or pyridine. In some embodiments, the second base is triethylamine. 10063] In some embodiments, the reaction between compound 6 and compound 7 is carried out in the presence of a catalytic amine. In some embodiments, the reaction between compound 6 and compound 7 is carried out in the presence of a catalytic amount of dimethylaminopyridine. [0064] In some embodiments, the third organic solvent is an aprotic solvent. [00651 In some embodiments, the third organic solvent is an aprotic solvent selected from 1,2-dimethoxyethane, dioxane, acetonitrile, toluene, benzene, xylenes, methyl t-butyl ether, -19- WO 2009/076142 PCT/US2008!085458 methylene chloride, chloroform, methyl ethyl ketone, methyl isobutyl ketone, acetone, NVN dimethylformamide, N,N-dimethylacetamide, A-methylpyrrolidinone, or dimethylsulfoxide. In some embodiments, the third organic solvent is acetonitrile. [00661 In some embodiments, the first acid is an inorganic acid. [0067] In some embodiments, the first acid is an inorganic acid selected from hydrochloric, sulfuric, nitric, phosphoric, or boric acid. In some embodiments, the first acid is hydrochloric acid. [0068] In some embodiments, the de-esterification reaction is run at between about 20'C and about 60'C. [0069] In other embodiments, the de-esterification reaction is run at between about 30'C and about 50'C. In still other embodiments, the de-esterification reaction is run at about 40'C. 10070] In some embodiments, the appropriate solvent is selected from water or an alcohol/water mixture. In some embodiments, the appropriate solvent is selected from water or an about 50% methanol/water mixture. In other embodiments, the appropriate solvent is water. [0071] In some embodiments, the effective amount of time is between about 2 and about 24 hours. [00721 In some embodiments, the effective amount of time is between about 2 and about 18 hours. In other embodiments, the effective amount of time is between about 2 and about 12 hours. In still other embodiments, the effective amount of time is between about 2 and about 6 hours. [00731 In other embodiments, the process further comprises the step of filtering the slurry of Compound 1 or concentrating the solution of Compound I to effect recrystallization and filter the recrystallized Compound 1. [0074] In other embodiments, Compound I is further purifed by recrystallization from an organic solvent. Examples of organic solvents include, but are not limited to., toluene, cumene, anisole, 1-butanol, isopropyl acetate, butyl acetate, isobutyl acetate, methyl t-butyl ether, methyl isobutyl ketone, or 1-propanol/water (at various ratios). For example, in one embodiment, Compound 1 is dissolved in 1-butanol at about 75 'C until it is completely dissolved. Cooling down the solution to about 10 'C at a rate of about 0.2 'C/min yields crystals of Compound I which may be isolated by filtration. -20- WO 2009/076142 PCT/US2008!085458 [0075] In other embodiments, the process for preparing Compound 1 comprises the step of: i) reacting compound 6,
H
2 N N
CO
2 tBu ; 6 with compound 7, F O C1 in a second organic solvent in the presence of a second base to prodLce compound 8, F> N
C
2 tBu F 0 N N CO H 8; ii) de-esterifying compound 8 in a biphasic mixture comprising water, a third organic solvent, and a first acid to produce compound 9, FO ~ N F 7N N CO 2 H * acid 9 iii) slurrying or dissolving compound 9 in an appropriate solvent for an effective amount of time to produce Compound 1. 10076] In some embodiments, the second organic solvent is an aprotic solvent. [0077] In some embodiments, the second organic solvent is an aprotic solvent selected from 1,2-dimethoxyethane, dioxane, acetonitrile, toluene, benzene, xylenes, methyl [-butyl ether, methylene chloride, chloroform, methyl ethyl ketone, methyl isobutyl ketone, acetone, NN -21- WO 2009/076142 PCT/US2008!085458 dimethyformamide, NN-dimethylacetamide, N-methylpyrrolidinone, or dimethylsulfoxide. In some embodiments, the second organic solvent is toluene. [0078] In some embodiments, the second base is an organic base. [00791 In some embodiments, the second base is an organic base selected from triethylamine, trimethylamine. methylamine, diethylamine, tripropylamine, ethyimethylamine, diethylmethylamine, or pyridine. In some embodiments, the second base is triethylamine. [00801 In some embodiments, the reaction between compound 6 and compound 7 is carried out in the presence of a catalytic amine. In some embodiments, the reaction is carried out in the presence of a catalytic amount of dimethylaminopyridine. [0081] In some embodiments, the third organic solvent is an aprotic solvent. [0082] In some embodiments, the third organic solvent is an aprotic solvent selected from 1,2-dimethoxyethane, dioxane, acetonitrile, toluene., benzene, xylenes, methyl !-butyl ether, methylene chloride, chloroform, methyl ethyl ketone, methyl isobutyl ketone, acetone, AA dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidinone. or dimethylsulfoxide. In some embodiments, the third organic solvent is acetonitrile. 10083] In some embodiments, the first acid is an inorganic acid. [00841 In some embodiments, the first acid is an inorganic acid selected from hydrochloric, sulfuric, nitric, phosphoric, or boric acid. In some embodiments, the first acid is hydrochloric acid. [0085] In some embodiments, the de-esterification reaction is run at between about 20'C and about 60'C. 10086] In other embodiments, the de-esterification reaction is run at between about 30'C and about 50'C. In still other embodiments, the de-esterification reaction is run at about 40 0 C. [00871] In some embodiments, the appropriate solvent is selected from water or an alcohol/water mixture. In some embodiments., the appropriate solvent is selected from water or an about 50% methanol/water mixture. In other embodiments, the appropriate solvent is water. [00881 In some embodiments, the effective amount of time is between about 2 and about 24 hours. [0089] In some embodiments, the effective amount of time is between about 2 and about 18 hours. In other embodiments, the effective amount of timeis between about 2 and about 12 -22- WO 2009/076142 PCT/US2008!085458 hours. In still other embodiments, the effective amount of time is between about 2 and about 6 hours. [0090] In other embodiments, the process further comprises the step of filtering the slurry of Compound 1 or concentrating the solution of Compound I to effect recrystallization and filter the recrystallized Compound 1. 10091] In some embodiments, Compound 1 is further purified by recrystallization from an organic solvent. In other embodiments, Compound I is further purifed by recrystallization from an organic solvent. Examples of organic solvents include, but are not limited to, toluene, cumene, anisole, 1--butanol, isopropyl acetate, butyl acetate, isobutyl acetate, methyl t-butyl ether, methyl isobutyl ketone, or I -propanol/water (at various ratios). For example, in one embodiment, Compound I is dissolved in 1-butanol at about 75 'C until it is completely dissolved. Cooling down the solution to about 10 'C at a rate of about 0.2 'C/min yields crystals of Compound I which may be isolated by filtration. [00921 In another embodiment, the present invention provides a process for preparing a compound of formula 1: (R) (R)O A 0 &1 Al N N ( I I , (R1) comprising the step of: ia) reacting a compound of formula 6a: (R1), HN N ( 1
R(R
1 ) 6a wherein, R is H, C 1 6 aliphatic, aryl, aralkyl, heteroaryl, cycloalkyl, or heterocycloalkyl; -23- WO 2009/076142 PCT/US2008!085458
R
1 is independently selected from -Ri, -OR, -N(R), NO 2 , halogen, -CN, -Cp 4 haloalkyl, -CI4haloalkoxy, -C(O)N(R ) 2 , -NRC(O)R', -SOR', -SO2R'. -SO2N(R)2, -NR/SO 2 R', COR', -CO 2 R , -NR'SO2N(R ) 2 , -COCOR ; R' is hydrogen or C1 6 aliphatic; o is an integer from 0 to 3 inclusive; and p is an integer from 0 to 5 inclusive; with a compound of formula 7a: (R1)m A0 x 7a wherein, A is a fused cycloalkyl, heterocycloalkyl, aryl, or heteroaryl ring;
R
1 is independently selected from -Ri, -OR', -N(R ) 2 , -NO, halogen, -CN, -C[ 4 haloalkyl, -CI4haloalkoxy, -C(O)N(R') 2 , -NR'C(O)R', -SOR, -SO2R', -SO 2
N(R')
2 , -NRSO 2 R', COR', -CO ,-NR!SO 2
N(R)
2 , -. COCOR ; Rj is hydrogen or C 1-6 aliphatic; m is an integer from 0 to 3 inclusive; n is an integer from I to 4 inclusive; and X is a halo or OH; in a second organic solvent in the presence of a second base. [00931 In some embodiments, the second organic solvent is an aprotic solvent. [0094] In some embodiments, the second organic solvent is an aprotic solvent selected from 1,2-dimethoxyethane, dioxane, acetonitrile, toluene, benzene, xylenes, methyl t-butyl ether, methylene chloride, chloroform, methyl ethyl ketone, methyl isobutyl ketone, acetone, NN dimethylformamide, AAdimethylacetamide, AT-methylpyrrolidinone, or dimethylsulfoxide. In some embodiments, the second organic solvent is toluene. [0095] In some embodiments, the second base is an organic base. -24- WO 2009/076142 PCT/US2008!085458 [0096] In some embodiments, the second base is an organic base selected from triethylamine, trimethylamine. methylamine, diethylamine, tripropylamine, ethylmethylamine, diethylmethylamine, or pyridine. In some embodiments, the second base is triethylamine. [00971 In some embodiments, the reaction of compound 6a with compound 7a is carried out in the presence of a catalytic amine. In some embodiments, the reaction is carried out in the presence of a catalytic amount of dimethylaminopyridine. [00981 In some embodiments, when R1 on the phenyl ring in formula I is an ester, the process further comprises de-esterifying the compound in a biphasic mixture comprising water, a third organic solvent, and a first acid to give an acid salt. [0099] In some embodiments, the third organic solvent is an aprotic solvent selected from 1, 2 -dimethoxyethane, dioxane, acetonitrile, toluene, benzene, xylenes, methyl t-butyl ether, methylene chloride, chloroform, methyl ethyl ketone, methyl isobutyl ketone, acetone, NN dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidinone, or dimethylsulfoxide. In some embodiments, the third organic solvent is acetonitrile. [001001 In some embodiments, the first acid is an inorganic acid. [001011 In some embodiments, the third acid is an inorganic acid selected from hydrochloric, sulfuric, nitric, phosphoric, or boric acid. In some embodiments, the first acid is hydrochloric acid. 1001021 In some embodiments, the de-esterification reaction is run at between about 20'C and about 60'C. [001031 In other embodiments, the de-esterification reaction is run at between about 30'C and about 50'C. In still other embodiments, the de-esterification reaction is run at about 40 C. [001041 In some embodiments, the acid salt can be converted to the free form, Form I, by scurrying or dissolving the acid salt in an appropriate solvent for an effective amount of time. [001051 In some embodiments, the appropriate solvent is selected from water or an alcohol/water mixture. In some embodiments, the appropriate solvent is selected from water or an about 50% methanol/water mixture. In other embodiments, the appropriate solvent is water. [001061 In some embodiments, the effective amount of time is between about 2 and about 24 hours. -25- WO 2009/076142 PCT/US2008!085458 [001071 In some embodiments, the effective amount of time is between about 2 and about 18 hours. In other embodiments, the effective amount of time is between about 2 and about 12 hours. In still other embodiments, the effective amount of time is between about 2 and about 6 hours. [001081 In other embodiments, the process further comprises the step of filtering the slurry of the compound of formula I in Form I, or concentrating the solution of the compound of formula I in Form I to effect recrystallization and filtering the recrystallized compound of formula I in Form . 1001091 In other embodiments, Compound 1 is further purified by recrystallization from an organic solvent. Examples of organic solvents include, but are not limited to, toluene, cumene, anisole, or 1-butanol. For example, in one embodiment, Compound I is dissolved in I butanol at about 75 'C until it is completely dissolved. Cooling down the solution to about 10 'C at a rate of about 0.2 'C/min yields crystals of Compound I which may be isolated by filtration. [001101 In another embodiment, the present invention provides a process for preparing a compound of formula 6a: (R1), HN N (R 1)p R 6a wherein, R is H, C 1 6 aliphatic, aryl. aralkyl, heteroaryl, cycloalkyl, or heterocycloalkyl;
R
1 is independently selected from -R, -OR', -N(R)2 -NO,, halogen, -CN, -Cp~haloalkyl, -CI4haloalkoxy, -C(O)N(R/) 2 , -NR'C(O)R', -SOR, -SO2R', -SO 2
N(R')
2 , -NRiSO 2 R', COR', -CO2R -NR/SO 2 N(R/), -COCOR ; Rj is hydrogen or C 1-6 aliphatic; o is an integer from 0 to 3 inclusive; and p is an integer from 0 to 5 inclusive; comprising the steps of: ib) providing compound 2a and compound 3a, -26- WO 2009/076142 PCT/US2008!085458 /s (HO)2B C(R1) N Hal 2a 3a wherein, R, is independently selected from -R', -OR' N(R)2 -NO2, halogen, -CN, -CI-4haloalkyl, -Cp 4 lialoalkoxv, -C(O)N(R )2, -NR C(O)R', -SOR!, -SO 2 R , -SO2N(R) 2 , -NR'SO 2 R', COR', -CO 2 R', -NR'SO2N(R) 2 , -COCOR'; R! is hydrogen or C 6 aliphatic; o is an integer from 0 to 4 inclusive; and p is an integer from 0 to 5 inclusive; iib) cross coupling compound 2a and compound 3a in a biphasic mixture comprising water, a first organic solvent, a first base, and a transition metal catalyst to produce compound 4a,
(R
1
)
0 N 4a wherein, R 1 , o, and p are as defined for compounds 2a and 3a above; iiib) oxidizing compound 4a to produce compound 5a, (R1)0 N 5a; wherein, R1, o, and p are as defined for compounds 2a and 3a above; ivb) adding an amine group to the 6 position of the pyridyl moiety to produce compound 6a, -27- WO 2009/076142 PCT/US2008!085458 (R1), H N N (R) R 6a wherein, R is H, C 1 6 aliphatic, aryl, aralkyl, heteroaryl, cycloalkyl, or heterocycloalkyl; and
R
1 , o, and p are as defined for compounds 2a and 3a above. [001111 In some embodiments, the first organic solvent is an aprotic solvent. [001121 In some embodiments, the first organic solvent is selected from 1,2 dimethoxyethane, dioxane, acetonitrile, toluene, benzene, xylenes, methyl t-butyl ether, methyl ethyl ketone, methyl isobutyl ketone, acetone, N.VN-dimethylformamide, N,N-dimethylacetamide, AT-methylpyrrolidinone, or dimethylsulfoxide. [001131 In some embodiments, the first organic solvent is selected from acetonitrile, toluene, benzene, or xylenes. In some embodiments, the first organic solvent is toluene. [001141 In other embodiments, the first organic solvent is a protic solvent. In some embodiments, the first organic solvent is selected from methanol, ethanol, or isopropanol. 1001151 In some embodiments, the first base is an inorganic base. [001161 In some embodiments, the first base is selected from potassium carbonate, cesium carbonate, potassium phosphate, sodium carbonate, sodium phosphate, sodium hydroxide, potassium hydroxide or lithium hydroxide. [001171 In some other embodiments, the first base is selected from potassium carbonate, cesium carbonate or potassium phosphate. In yet other embodiments, the first base is potassium carbonate. [001181 In some embodiments, the transition-metal catalyst is a palladium-based catalyst. 1001191 In some embodiments, the palladium-based catalyst is selected from palladium(II)acetate, Pd(dppf)Cl,, tetrakis(triphenylphosphine)palladium(0) or tris(dibenzylideneacetone)dipaliadium(O). In yet other embodiments, the palladium--based catalyst is Pd(dppf)Cl 2 . -28- WO 2009/076142 PCT/US2008!085458 [001201 In some embodiments, the cross coupling reaction is run at between about 60C and about 100"C. [001211 In other embodiments, the cross coupling reaction is run at between about 70"C and about 90C. In yet other embodiments, the cross coupling reaction is run at about 80 0 C. 1001221 In some embodiments, the oxidation reaction is carried out using a peroxide. [001231 In some embodiments, the oxidation reaction is carried out using a peroxide selected from urea-hydrogen peroxide, peracetic acid, methyl ethyl ketone peroxide, sodium peroxide, hydrogen peroxide, potassium peroxide, lithium peroxide, barium peroxide, calcium peroxide, strontium peroxide, magnesium peroxide, zinc peroxide, cadmium peroxide, or mercury peroxide. In some embodiments the oxidation reaction is carried out using peracetic acid. [001241 In some embodiments, the oxidation reaction is carried out in the presence of an anhydride. 1001251 In some embodiments, the oxidation reaction is carried out in the presence of an anhydride selected from acetic anhydride, phthalic anhydride, or maleic anhydride. In some embodiments, the oxidation reaction is carried out in the presence of phthalic anhydride. [001261 In some embodiments, the oxidation reaction is run at between about 25'C and about 65'C. [001271 In some embodiments, the oxidation reaction is run at between about 35'C and about 55'C. In yet other embodiments, the oxidation reaction is run at about 45'C. 1001281 In some embodiments, the amination reaction is carried out in the presence of a sulfonyl compound. [001291 In some embodiments, the amination reaction is carried out in the presence of a sulfonyl compound selected from p-toluenesulfonyl chloride, methanesulfonic anhydride, methansulfonyl chloride, or p-toluenesulfonic anhydride. In some embodiments, the amination reaction is carried out in the presence of metlianesulfonic anhydride. 1001301 In some embodiments, the amination reaction is carried out at ambient temperatures. [001311 In some embodiments, the amination reagent used in the amination reaction is an alcohol amine. -29- WO 2009/076142 PCT/US2008!085458 [00132] In some embodiments, the amination reagent used in the amination reaction is an alcohol amine selected from methanolamine, ethanolamine, propanolamine, butanolamine, pentanolarnine, or hexanolamine. In some embodiments, the amination reagent used in the amination reaction is ethanolamine. [00133] The present invention also provides a process for preparing a compound of fomula 7a: A l (x 7a wherein, A is a fused cycloalkyl, heterocycloalkyl, aryl, or heteroaryl ring; R1 is independently selected from -Ri, -OR, -N(R) 2 , -NO 2 , halogen, -CN, -C1 4 haloalkyl, -C1_4haloalkoxy, -C(O)N(R) 2 , -NRC(O)R 2 , -SOR, -SO2R, -SO 2 N(R")2, -NR'SO 2 R , COR', -CO 2 , NR 2
SO
2
N(R)
2 , -COCOR'; Ri is hydrogen or C1 6 alipiatic; m is an integer from 0 to 3 inclusive n is an integer from I to 4 inclusive; and X is a halide or OH; comprising the steps of ic) reducing Compound 10a in a fourth organic solvent: (R1)m1 CO2H 10a whererin, A is a fused cycloalkyl, heterocycloalkyl, aryl, or heteroaryl ring; -30- WO 2009/076142 PCT/US2008!085458
R
1 is independently selected from -Ri, -OR, -N(R), INO 2 , halogen, -CN, -C 1 4 haloalkyl, -Cp4haloalkoxy, -C(O)N(R ) 2 , -NRC(O)R', -SOR', -SO2R', -SO2N(R')2, -NR/SO 2 R', COR', -CO 2 R , -NR'SO2N(R ) 2 , -COCOR ; R' is hydrogen or C1 6 aliphatic; and m is an integer from 0 to 3 inclusive, with a reducing agent to produce Compound I I a: (R1.)m 14 OH Ila wherein, ring A, R 1 ,. and m are as defined in Compound 10a above; iic) reacting Compound I Ia with a first halogenating agent in a fifth organic solvent to produce Compound 12a: (R1.)m H al 1 2a wherein, ring A, R 1 , and m are as defined in Compound 10a above, and Hal is a halide; iiic) reacting Compound 1 2 a with a cyanide to produce Compound 13a: (R1)m, 13a wherein, ring A, R 1 ,. and m are as defined in Compound 10a above; ive) reacting Compound 13a with a compound of formula 13aa in the presence of a third base: Hal Hal q 13aa wherein, -31- WO 2009/076142 PCT/US2008!085458 Hal is a halide; and q is an integer from 0 to 3 inclusive; to produce a compound of formula 14a: (RI)m A| CN 14a wherein, r is an integer from I to 4 inclusive; and ring A, R 1 , and in are as defined in Compound 1Oa above; ve) sequentially reacting Compound 14a with a hydroxide base and second acid to form Compound 15a, which is compound 7a when X = OH: (R1 )m A l OH r 15a wherein, r, ring A, R 1 , and i are as defined in Compound 14a above; and vie) reacting Compound 15a with a second halogenating agent in a sixth organic solvent to form Compound 16a, which is compound 7a when X = halide: (R1)m A | Hal 16a wherein, Hal is halide; and r, ring A, R-, and n are as defined in Compound 14a above. 1001341 In some embodiments, the fourth organic solvent is an aprotic solvent. -32- WO 2009/076142 PCT/US2008!085458 [001351 In some embodiments, the fourth organic solvent is an aprotic solvent selected from I,2-dimethoxyethane, dioxane, acetonitrile, toluene, benzene, xylenes. methyl t-butyl ether, methyl ethyl ketone, methyl isobutyl ketone, acetone, N, -dimethylformamide, N,N dimethylacetamide, AT-methylpyrrolidinone, or dimethylsulfoxide. [001361 In some embodiments, the fourth organic solvent is selected from acetonitrile, toluene, benzene, or xylenes. In some embodiments, the fourth organic solvent is toluene. [001371 In some embodiments, the reducing agent is a hydride. [001381 In some embodiments, the reducing agent is sodium hydride, lithium aluminum hydride, sodium borohydride, or sodium bis(2 -methoxyethoxy)aluminium hydride. In some embodiments, the reducing agent is sodium bis(2-methoxyethoxy)aluminum hydride. [001391 In some embodiments, the reducing reaction is run at between about 5'C and about 50'C. In other embodiments, the reducing reaction is run at between about 15'C and about 40 0 C. [001401 In some embodiments, the fifth organic solvent is an aprotic solvent. 1001411 In some embodiments, the fifth organic solvent is an aprotic solvent selected from 1,2-dimethoxyethane, dioxane, acetonitrile, toluene, benzene, xylenes, methyl t-butyl ether, methyl ethyl ketone, methyl isobutyl ketone, acetone, A,N-dimethylformamide, N,N dimethylacetamide, A-methylpyrrolidinone, or dimethylsulfoxide. 1001421 In some embodiments, the fifth organic solvent is selected from acetonitrile, toluene, methyl t-butyl ether, benzene, or xylenes. In some embodiments, the fifth organic solvent is methyl t-butyl ether. 1001431 In some embodiments, the first halogenating agent is a thionyl halide. In other embodiments., the first halogenating agent is thionyl chloride. [001441 In some embodiments, the reaction between Compound I a and the first halogenating agent is run at between about 10 C and about 35 0 C. In other embodiments, the halogenating reaction is run at between about I 5 0 C and about 30'C. [001451 In some embodiments the cyanide is an alkali metal cyanide. In other embodiments, the cyanide is sodium cyanide. [001461 In some embodiments, Compound 19 is dissolved in an organic solvent and added to a slurry of an alkali metal cyanide. In other embodiments, the organic solvent is DMSO. -33- WO 2009/076142 PCT/US2008!085458 [001471 In some embodiments, reaction of Compound I 2a with a cyanide is run at between about 10 0 C and about 60'C. In other embodiments, the reaction is run at between about 20'C and about 50'C. In other embodiments, the reaction is run at between about 30'C and about 40'C. [001481 In some embodiments, the third base in step ive) is an inorganic base. [001491 In some embodiments, the third base is selected from potassium carbonate, cesium carbonate, potassium phosphate, sodium carbonate, sodium phosphate, sodium hydroxide, potassium hydroxide or lithium hydroxide. 1001501 In some embodiments, the third base is sodium hydroxide or potassium hydroxide. In some embodiments, the third base is potassium hydroxide. [001511 In some embodiments, Compound 13aa is selected from dichloroethane, dichloropropane, dichlorobutane, dichloropentane, dibromoethane, dibromopropane, dibromobutane, dibromopentane, 1-bromo-2-chloroethane, I -bromo-3-chloropropane, I -bromo 4-chlorobutane, or 1-bromo-5-chloropentane. 1001521 In some embodiments, Compound 13aa is 1--bromo-2-chloroethane. [001531 In some embodiments the reaction of Compound 13a with a compound of formula 13aa is run at between about 0 0 C and about 90'C. In some embodiments the reaction is run at between about 60'C and about 80'C. In some embodiments the reaction is run at about 70 0 C. [001541 In some embodiments, the hydroxide base is sodium hydroxide, lithium hydroxide, or potassium hydroxide. In other embodiments, the hydroxide base is sodium hydroxide. [001551 In some embodiments the second acid is an inorganic acid. In some embodiments, the second acid is selected from hydrochloric, sulfuric, nitric, phosphoric, or boric acid. In some embodiments, the second acid is hydrochloric acid. [001561 In some embodiments, the sequential reaction of Compound 14a with hydroxide base and second acid is run at between about 70'C and about 90'C. In some embodiments, the reaction is rn at about 80'C. [001571 In some embodiments, treating Compound 14a with a hydroxid base is done in the presence of a cosolvent. In other embodiments, the cosolvent is an alcohol. In other embodiments, the alcohol is ethanol. -34- WO 2009/076142 PCT/US2008!085458 [001581 In some embodiments, after treating Compound 14a with a hydroxide base, it is isolated before treatment with a second acid. In other embodiments, it is isolated as a different base than what was used to hydrolyze Compound 14a. In other embodiments, the different base used is cyclohexylamine to form the cyclohexylammonium salt. [001591 In some embodiments, the sixth organic solvent is an aprotic solvent. [001601 In some embodiments, the sixth organic solvent is an aprotic solvent selected from 1.2--dimethoxyethane., dioxane, acetonitrile, toluene, benzene, xylenes, methyl t-butyl ether, methyl ethyl ketone, methyl isobutyl ketone, acetone, N,N-dimethylformamide, ,NA dimethylacetamide, N-methylpyrrolidinone, or dimethylsulfoxide. [001611 In some embodiments, the sixth organic solvent is selected from acetonitrile, toluene, benzene, or xylenes. In some embodiments, the sixth organic solvent is toluene. 1001621 In some embodiments, the second halogenating agent is a thionyl halide. In some embodiments the second halogenating agent is thionyl chloride. [001631 In some embodiments, the reaction of Compound 15a with a second halogenating agent is run at between about 40'C and about 80'C. In some embodiments, the reaction is run at between about 50'C and about 70'C. In some embodiments, the reaction is run at about 70'C. [001641 The present invention also provides a process for preparing Compound I from compound 9 below: HC O N N, OH FI F00 F O N N C2 H *H-Cl 9 said process comprising the step of slurrying compound 9 in an appropriate solvent and stirring for an effective amount of time to produce Compound 1. [001651 The present invention also provides a process for preparing Compound 1 from compound 9 below: -35 - WO 2009/076142 PCT/US2008!085458 H N N OH F0 F O O O 1 .1-IC' 9; said process comprising the steps of scurrying compound 9, adding aqueous NaOl, and effecting recrystallization to produce Compound 1. [001661 In some embodiments, recrystallization is achieved by adding concentrated HCL. 1001671 In some embodiments, the appropriate solvent is water or an about 50% methanol/water mixture. In some embodiments., the appropriate solvent is water. [001681 In some embodiments, the effective amount of time is between about 2 hours and about 24 hours. In some embodiments, the effective amount of time is between about 2 hours and about 18 hours. In some embodiments, the effective amount of time is between about 2 hours and about 12 hours. In some embodiments, the effective amount of time is between about 2 hours and about 6 hours. [00169] In some embodiments, the process further comprises the step of filtering the slurry of Compound 1. [001701 In other embodiments, compound 9 is produced from compound 8 below: F N N CO 2 tBu 8; said process comprising the step of de-esterifying compound 8 in a biphasic mixture comprising water, a third organic solvent, and a first acid to produce compound 9. [001711 In some embodiments, the third organic solvent is an aprotic solvent. In some embodiments, the third organic solvent is an aprotic solvent selected from 1 ,2-dimethoxyethane, dioxane, acetonitrile, toluene, benzene, xylenes, methyl t-butyl ether, methylene chloride, -36- WO 2009/076142 PCT/US2008!085458 chloroform, methyl ethyl ketone, methyl isobutyl ketone, acetone, NN-dimethylformamide, AJN, dimethylacetamide, AT-methylpyrrolidinone, or dimethylsulfoxide. In some embodiments, the third organic solvent is acetonitrile. [001721 In some embodiments, the first acid is an inorganic acid. In some embodiments, the first acid is selected from hydrochloric, sulfuric, nitric, phosphoric, or boric acid. In some embodiments, the first acid is hydrochloric acid. [001731 In some embodiments, the de-esterification reaction is run at between about 20'C and about 60'C. In some embodiments, the de-esterification reaction reaction is run at between about 30'C and about 50'C. In some embodiments, the de-esterification reaction is run at about 40 0 C. [001741 In some embodiments, compound 8 is prepared from compound 6 and compound 7 below:
H
2 N N F loo BF O : C 1
CO
2 tB u 6 said process comprising the step reacting compound 6 with compound 7 in a second organic solvent in the presence of a second base to produce compound 8, F O N N CO 2 tBu H K 1001751 In some embodiments, the second organic solvent is an aprotic solvent. In some embodiments. the second organic solvent is an aprotic solvent selected from 1,2dim ethoxyethane, dioxane, acetonitrile, toluene, benzene, xylenes, methyl t-butyl ether, methylene chloride, chloroform, methyl ethyl ketone, methyl isobutyl ketone, acetone, N,N dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidinone, or dimethylsulfoxide. In some embodiments, the second organic solvent is toluene. [001761 In some embodiments, the second base is an organic base. In some embodiments, the second base is selected from triethylamine, trimethylamine, methylamine, diethylamine, tripropylamine, ethylmethylamine, diethylmethylamine, or pyridine. In some embodiments, the second base is triethylamine. -37- WO 2009/076142 PCT/US2008!085458 [001 77 In some embodiments, the process is carried out in the presence of a catalytic amine. In some embodiments, the catalytic amine is dimethylaminopyridine. [001781 In some embodiments, compound 6 is prepared from compound 4 below: N CO 2 tBu 4 said process comprising the steps of: oxidizing compound 4 to prodLce compound 5 N CO 2 tBu 5 aminating compound 5 to add an amine group to the 6-position of the pyridyl moiety on compound 5 to produce compound 6,
H
2 N N
CO
2 tBu 6 [001791 In some embodiments, the oxidation reaction is carried out using a peroxide. In some embodiments, the peroxide is selected from urea-hydrogen peroxide, peracetic acid, methyl ethyl ketone peroxide, sodium peroxide, hydrogen peroxide, potassium peroxide, lithium peroxide, barium peroxide, calcium peroxide, strontium peroxide, magnesium peroxide, zinc peroxide, cadmium peroxide, or mercury peroxide. In some embodiments, the peroxide is peracetic acid. [001801 In some embodiments, the oxidation reaction is carried out in the presence of an anhydride. In some embodiments, the anhydride is selected from acetic anhydride, phthalic anhydride, or maleic anhydride. In some embodiments, the anhydride is phthalic anhydride. -38- WO 2009/076142 PCT/US2008!085458 [001811 In some embodiments, the oxidation reaction is run at between about 25'C and about 65'C. In some embodiments, the oxidation reaction is run at between about 35'C and about 55'C. In some embodiments, the oxidation reaction is run at about 45'C. [001821 In some embodiments, the amination reaction is carried out in the presence of a sulfonyl compound. In some embodiments, the sulfonyl compound is selected fromp toluenesulfonyl chloride, methanesulfonic anhydride, methansulfonyl chloride, or p toluenesulfonic anhydride. In some embodiments, the sulfonyl compound is methanesulfonic anhydride. 1001831 In some embodiments, the amination reaction is carried out at ambient temperature. [001841 In some embodiments, the aminating reagent used in the amination reaction is an alcohol amine. In some embodiments, the alcohol amine is selected from methanolamine, ethanolamine, propanolamine, butanolamine, pentanolamine, or hexanolamine. In some embodiments, the alcohol amine is ethanolamine. [00185] The present invention also provides a compound of formula 6b: (RI )0 H N N R -(Rb), 6b wherein. R is H, C1-6 aliphatic, aryl, aralkyl, heteroaryl, cycloalkyl, or heterocycloalkyl;
R-
1 and R 2 are independently selected from -Ri, -ORg, -N(R) 2 , -NO, halogen, -CN,
-C
1 4 haloalkyl, -C 1 4 haloalkoxy, -C(O)N(R-, -NR-C(O)Ri, -SOR', -S0 2 R!, -SO 2 N(Rj) 2 , -NR SO 2 R, -COR, -CO2R', -NR 3
SO
2 N(R)2, -COCOR ; R is hydrogen or C1 6 aliphatic; o is an integer from 0 to 3 inclusive; and p is an integer from 0 to 5 inclusive. [001861 In some embodiments, the present invention relates to a compound of formula 6b and the attendant definitions wherein R is H. -39- WO 2009/076142 PCT/US2008!085458 [001871 In some embodiments, the present invention relates to a compound of formula 6b and the attendant definitions wherein R1 is C- 6 aliphatic and o is 1. [001881 In some embodiments, the present invention relates to a compound of formula 6b and the attendant definitions wherein R 1 is methyl and o is 1. 1001891 In some embodiments, the present invention relates to a compound of formula 6b and the attendant definitions wherein R 2 is -CO 2 R and p is 1. [001901 In some embodiments, the present invention relates to a compound of formula 6b and the attendant definitions wherein R2 is -CO2R', R is C 6 aliphatic, and p is 1. 1001911 In some embodiments, the present invention relates to the compound 0
H
2 N N 0 1001921 In some embodiments, Compound I may contain a radioactive isotope. In some embodiments, Compound I may contain a 'C atom. In sone embodiments, the aide carbonyl carbon of Compound I is a 4 C atom. 1001931 Methodis of Preparing Compound L. [001941 Compound I is a free form of 3 -(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxaniido)-3-methyilpyridin-2-yl)benzoic acid and, in one embodiment, is prepared from dispersing or dissolving a salt form, such as HC], of 3-(6-(1-(2,2 difluorobenzoid][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3 -methylpyridin-2-yl)benzoic acid in an appropriate solvent for an effective amount of time. In another embodiment, Form I is formed directly from 3-(6-(1-(2,2-difluorobenzo[d][ 1,3]dioxol-5-yl) cyclopropanecarboxamido) 3-nethylpyridin-2-yl)-t-butylbenzoate and an appropriate acid, such as formic acid. In one embodiment, the HCl salt form of 3--(6-(1-(2.2-difluorobenzo [d] [1,3]dioxol-.5-yl) cyclopropanecarboxamido)-3- methylpyridin-2 -yl)benzoic acid is the starting point and in one embodiment can be prepared by coupling an acid chloride moiety with an amine moiety according to Schem es 1-3. -40- WO 2009/076142 PCT/US2008!085458 [001951 Scheme 1. Synthesis of the acid chloride moiety. FJ~ ____:_a,- F 0_ ....... ____14 FO0 CO 2 H O OH C1 17 18 19 Fe O F) O) F O OH F 0 CNF 0 CN 22 21 20 F O C 7 [001961 In Scheme 1, carboxylic acid 17 is reduced with a reducing agent in a suitable solvent (e.g. toluene) to produce alcohol 18. Treatment of Compound 18 with a chlorinating agent in a suitable solvent (e.g. methyl-t-butyl ether (MTBE)) produces Compound 19. A cyanide group displaces the chloride to yield compound 20. Reaction of compound 20 with a base and alkyl dihalide (e.g. 1-bromo-2-chlioroethane) yields the spirocycloalkane compound 21. Hvdrolization of the cyanide group gives the carboxylic acid 22 which is chlorinated to yield the acid halide 7. 1001971 In one embodiment, Compound 17 is commercially available. In one embodiment, the reducing agent is sodium bis(2-methoxyethoxy)alumiinum hydride [or NaAlH(OCH 2 CH-11 2
OCH
3
)
2 1, 65 wgt% solution in toluene, which is sold under the name Vitride@9 by Aldrich Chemicals. [001981 In one embodiment, the chlorinating agent that converts Compound 18 to Compound 19 is thionyl chloride. In another embodiment, the thionyl chloride is added to Compound 18 while maintaining the temperature of the reaction mixture at 15'C to 25'C and then stirring for an additional hour continues at 30'C. [00199] In one embodiment, the cyanide group of compound 20 results from reacting Compound 19 with sodium cyanide in a suitable solvent (e.g. DMSO). In another embodiment, -41- WO 2009/076142 PCT/US2008!085458 the temperature of the reaction mixture is maintained at 30'C to 40'C while the sodium cyanide is being added. [00200] In one embodiment, compound 20 is reacted with potassium hydroxide and an alkyl dihalide to yield the spirocyclic compound 21 in a suitable solvent (e.g. water). Although, a spirocyclic propane ring is depicted in Scheme 1, the process is easily adaptable to other spirocyclic rings by choosing the appropriate alkyl dihalide. For example, a spirocylic butane ring can be produced by reacting compound 20 with, for example, 1-bromo-3-chloropropane. It has been found that a mixed bromo and chloro dihalide works best on an economic scale as it is believed that the thermodynamics of the reaction are more favorable. [002011 In one embodiment, compound 21 is hydrolized to the carboxylic acid compound 22 in the presence of water and a base (e.g. sodium hydroxide) in a suitable solvent (e.g. ethanol). Subseqent treatment with an acid such as hydrochloric acid yields compound 22. In another embodiment, compound 22 is worked up by reacting it with dicyclohexylamine (DCHA) to give the DCHA salt which is taken up in a suitable solvent (e.g. MTBE) and stirred with citric acid until the solids are dissolved. The MTBE layer is then washed with water and brine and a solvent swap with heptane followed by filtration gives compound 22. [002021 In one embodiment, chlorination of compound 22 is carried out in a suitable solvent (e.g. toluene) with thionyl chloride to yield compound 7. In one embodiment, this step directly proceeds the coupling between compound 7 and compound 6 and is carried out in the same reaction vessel. [002031 There are several non-limiting advantages to forming compound 7 according to Scheme 1 and the embodiments described above and elsewhere in the application. These advantages are apparent even more so when manufacturing compound 7 on an economic scale and include the following. Use of Vitride@g over other reducing agents, such as lithium aluminum hydride, to reduce Compound 17 to Compound 18 allows controlled (manageable exothermic reaction and gas evolution) and safe addition of the reducing agent. Use of DMAP as a catalyst in the halogenating reaction of Compound 18 to Compound 19 as opposed to certain other bases such as DMF avoids formation of dimethylcarbamoyl chloride, a known carcinogen. Adding a solution of Compound 19 in an organic solvent such as DMSO to a slurry of the cyanide in an organic solvent such as DMSO controls the temperature of the exothermic reaction aid minimizes the handling of the cyanide. Using ethanol as the cosolvent in hydrolyzing compound 21 to compound 22 results in a homogeneous reaction mixture making sampling and -42- WO 2009/076142 PCT/US2008!085458 monitoring the reaction easier. Purification of compound 21 as the dicyclohexylammonium salt after the initial hydrolization eliminates chromatography of any of the intermediates. [00204] Scheme 2. Synthesis of the amine moiety. N Br (HO)2B N_____ N Br __ _ _ _ _
CO
2 tBu CO 2 tBu 2 3 4 H2N N
CO
2 tBu 0
CO
2 tBu 6 5 1002051 2-Bromo-3-methylpyridine (compound 2) is reacted with 3-(t-butoxycarbonyl) phenylboronic acid (compound 3) in a suitable solvent (e.g. toluene) to yield the ester compound 4. The coupling reaction is catalyzed by a transition metal catalyst such as a palladium catalyst. Oxidation of compound 4 with a peroxide in a suitable solvent (e.g. a ethyl acetate --- water mixture) yields compound 5. Amination of compound 5 with an aminating agent (e.g. an alcohol amine) yields compound 6. [002061 In one embodiment, the palladium catalyst is Pd(dppf)Cl 2 which comprises a bidentate ferrocene ligand. In another embodiment, the catalyst is used only at 0.025 to 0.005 equivalents to compound 2. In another embodiment, the catalyst is used only at 0.020 to 0.010 equivalents to compound 2. In another embodiment, the catalyst is used only at 0.015 equivalents to compound 2. [00207] In one embodiment, oxidation of compound 4 is carried out with urea-hydrogen peroxide or peracetic acid. Peracetic acid is preferred as it is more economically favorable to obtain and easier to isolate and dispose afterwards. In one embodiment, an anhydride is added portion-wise to the reaction mixture to maintain the temperature in the reaction vessel below 45'C. In one embodiment, the anhydride is phthalic anhydride and it is added in solid form. After completion of the anhydride addition., the mixture is heated to 45'C and stirred for four hours before isolating compound 5. -43- WO 2009/076142 PCT/US2008!085458 [002081 In one embodiment, an amine group is added to compound 5 to yield compound 6 in a suitable solvent (e.g. pyridine-acetonitrile mixture). In one embodiment, amination occurs after compound 5 is is first reacted with a sulfonic anhydride. In one embodiment, the sulfonic anhydride is methanesulfonic anhydride dissolved in acetonitrile and added over the course of 50 minutes to compound 5 dissolved in pyridine. In another embodiment, the temperature is maintained below 75'C during addition. In another embodiment, the amination agent is ethanolamine. In another embodiment, the amount of ethanolamine is 10 equivalents relative to compound 5. 1002091 There are several non-limiting advantages to forming compound 6 according to Scheme 2 and the embodiments described above and elsewhere in the application. These advantages are apparent even more so when manufacturing compound 6 on an economic scale and include the following. Increasing the concentration of potassium carbonate in the coupling reaction of compounds 2 and 3 to form compound 4 reduces the level of boronic acid homo coupling. The level of boronic acid homo-coupling is also reduced by adding the transition metal catalyst last to the reaction mixture after heating under N 2 . Extracting compound 4 with aquesous MsOI eliminates the need for chromatographic purification. Using peracetic acid as the oxidizing agent when converting compound 4 to compound 5 is more economical than other oxidizing agents and results in more manageable by-products. Use of Ms 2 0 instead of other similar reagents, such as p-toluenesulfonyl chloride, in converting compound 5 to compound 6 eliminates formation of chloro impurities. Addition of water at the completion of the reaction crystallizes compound 6 directly from the reaction mixture improving yield and facilitating isolation. -44- WO 2009/076142 PCT/US2008!085458 [002101 Scheme 3. Formation of an acid salt of 3-(6-(I-(2,2-difluorobenzodl[1,3]dioxol 5 -- yi) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid. F C1 i H2N N O H
CO
2 tBu CO 2 tBu 6 F O N H HCi CO 2 H 9 [002111 An acid-base reaction between compound 7 and compound 6 in a suitable solvent (e.g. toluene) yields the ester compound 8. De-esterification of compound 8 with an acid (hydrochloric acid shown) yields compound 9 which is the precursor to Compound 1. [002121 In one embodiment, the acid chloride compound 7 is prepared from compound 22 as depicted in Scheme 1 in the same reaction vessel and is not isolated. In another embodiment, the acid-based reaction is carried out in the presence of a base such as triethylamine (TEA) and a catalytic amount of a second base such as dimethylaminopyridine (DMAP). In one embodimrent, the amount of TEA is 3 equivalents relative to compound 6. In another embodiment, the amount of DMAP is 0.02 equivalents relative to compound 6. In one embodiment, after a reaction time of two hours, water is added to the mixture and stirred for an additional 30 minutes. The organic phase is separated and compound 9 is isolated by adding a suitable solvent (e.g. acetonitrile) and distilling off the reaction solvent (e.g. t). Compound 9 is collected by filtration. 1002131 Using compound 9, for example, as a starting point, Compound I can be formed in high yields by dispersing or dissolving compound 9in an appropriate solvent for an effective amount of time. Other salt forms of 3 -(6-(I-(2,2-difluorobenzo[d]l[1,i]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin--2-yl)benzoic acid may be used such as, for example, other mineral or organic acid forms. The other salt forms result from hydrolysis of the t-butyl ester with the corresponding acid. Other acids/salt forms include nitric, sulfuric, phosphoric, boric, acetic, benzoic, malonic, and the like. Compound 9 may or may not be soluble depending upon the solvent used, but lack of solubility does not hinder formation of Compound 1. For example, in one embodiment, the appropriate solvent may be water or an alcohol/water mixture -45 - WO 2009/076142 PCT/US2008!085458 such as an about 50% methanol/water mixture, even though compound 9 is only sparingly soluble in water. In one embodiment, the appropriate solvent is water. [002141 The effective amount of time for formation of Compound 1 from the compound 9 can be any time between 2 to 24 hours or greater. Generally, greater than 24 hours is not needed to obtain high yields (~98%), but certain solvents may require greater amounts of time. It is also recognized that the amount of time needed is inversely proportional to the temperature. That is, the higher the temperature the less time needed to affect dissociation of HCI to form Compound 1. When the solvent is water, stirring the dispersion for approximately 24 hours at room temperature gives Compound 1 in an approximately 98% yield. If a solution of the compound 9 is desired for process purposes, an elevated temperature and organic solvent may be used. After stirring the solution for an effective amount of time at the elevated temperature, recrystallization upon cooling yields substantially pure forms of Compound 1. In one embodiment, substantially pure refers to greater than 90% purity. In another embodiment, substantially pure refers to greater than 95% purity. In another embodiment, substantially pure refers to greater than 98% purity. In another embodiment, substantially pure refers to greater than 99% purity. The temperature selected depends in part on the solvent used and is well within the capabilities of someone of ordinary skill in the art to determine. In one embodiment, the temperature is between room temperature and 80 'C. In another embodiment, the temperature is between room temperature and 40 'C. In another embodiment, the temperature is between 40 'C and 60 'C. In another embodiment, the temperature is between 60 'C and 80 C. [002151 In some embodiments, Compound 1 may be further purified by recrystallization from an organic solvent. Examples of organic solvents include, but are not limited to, toluene, cumene, anisole, 1-butanol, isopropylacetate, butyl acetate, isobutyl acetate, methyl t-butyl ether, methyl isobutyl ketone, or 1-propanol/water (at various ratios). Temperature may be used as described above. For example, in one embodiment, Compound I is dissolved in I -butanol at 75 'C until it is completely dissolved. Cooling down the solution to 10 'C at a rate of 0.2 'C/min yields crystals of Compound I which may be isolated by filtration. [002161 There are several non-limiting advantages to forming compound 9 according to Scheme 3 and the embodiments described above and elsewhere in the application. These advantages are apparent even more so when manufacturing compound 9 on an economic scale and include the following. Crystallizing compound 8 after reacting compound 7 with compound 6 eliminates chromatographic purification. Direct crystallization of compound 9 after treating compound 8 with an acid versus deprotection with another acid, such as trifluoroacetic acid, -46- WO 2009/076142 PCT/US2008!085458 concentration, and exchange with the desired acid, such as 1-ICI, eliminates steps and improves yields. [002171 In some embodiments, Compound I may comprise a radioactive isotope. In some embodiments, the radioactive isotope is 1 "C. In some embodiments, the amide carbonyl carbon of Compound I is 1 4 C. The 14 C is introduced at this position by reacting compound 19 with a radiolabeled cyanide as depicted in Scheme 4. [002181 Scheme 4. Introduction of a radioactive isotope into Compound 1. FO :01 C F) 01 X 4 C F X Fc0 CN 19 23 [002191 In one embodiment, the radiolabeled cyanide group of compound 23 results from reacting Compound 19 with radiolabeled sodium cyanide in a suitable solvent (e.g. DMSO). In another embodiment, the temperature of the reaction mixture is maintained at 30'C to 40'C while the sodium cyanide is being added. Compound 23 may then be further reacted according to Schemes 1-3 to produce radiolabeled Compound 1. 1002201 Characterization of Comround 1 [002211 Compound I exists as the substantially free forn of 3-(6-(1 -(2,2 difluorobenzo[d] [1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methvlpyridin-2-yl)benzoic acid, Form I. as characterized herein by X-ray powder diffraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and 1 HNMR spectroscopy. [00111 In one embodiment, Compound 1 is characterized by one or more peaks at 15.2 to 15.6 degrees, 16.1 to 16.5 degrees, and 14.3 to 14.7 degrees in an X-ray powder diffraction obtained using Cu K alpha radiation. In another embodiment, Compound 1 is characterized by one or more peaks at 15.4, 16.3, and 14.5 degrees. In another embodiment, Compound I is further characterized by a peak at 14.6 to 15.0 degrees. In another embodiment, Compound 1 is further characterized by a peak at 14.8 degrees. In another embodiment, Compound I is further characterized by a peak at 17.6 to 18.0 degrees. In another embodiment, Compound I is further characterized by a peak at 17.8 degrees. In another embodiment, Compound 1 is further characterized by a peak at 16.4 to 16.8 degrees. In another embodiment, Compound 1 is further characterized by a peak at 16.4 to 16.8 degrees. In another embodiment, Compound I is further characterized by a peak at 16.6 degrees. In another embodiment, Compound I is further characterized by a peak at 7.6 to 8.0 degrees. In another embodiment, Compound I is further -47- WO 2009/076142 PCT/US2008!085458 characterized by a peak at 7.8 degrees. In another embodiment, Compound I is further characterized by a peak at 25.8 to 26.2 degrees. In another embodiment, Compound I is further characterized by a peak at 26.0 degrees. In another embodiment, Compound I is further characterized by a peak at 21.4 to 21.8 degrees. In another embodiment, Compound 1 is further characterized by a peak at 21.6 degrees. In another embodiment, Compound I is further characterized by a peak at 23.1 to 23.5 degrees. In another embodiment, Compound I is further characterized by a peak at 23.3 degrees. [0012] In some embodiments, Compound I is characterized by a diffraction pattern substantially similar to that of Figure 1. [002221 In some embodiments, Compound 1 is characterized by a diffraction pattern substantially similar to that of Figure 2. [002231 In another embodiment, Compound I has a monoclinic crystal system, a P2 1 /n space group, and the following unit cell dimensions: a = 4.9626 (7) ; b = 12.2994 (18) A; = 33.075 (4) A; u = 900; P = 93.938 (9)'; and yv = 90'. [002241 In another embodiment, Compound 1 is characterized by the DSC trace shown in Figure 4. 1002251 In another embodiment, Compound I is characterized by the 'HNMR spectra of Compound I shown in Figures 8-10. [002261 In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner. EXAMPLES [002271 Methods & Materials 1002281 Differential Scanning Calorimetry (DSC) [002291 The Differential scanning calorimetry (DSC) data of Compound 1 were collected using a DSC Q100 V9.6 Build 290 (TA Instruments, New Castle, DE). Temperature was calibrated with indium and heat capacity was calibrated with sapphire. Samples of 3-6 mng were weighed into aluminum pans that were crimped using lids with I pin hole. The samples were scanned from 25'C to 350'C at a heating rate of 1.0 0 C/min and with a nitrogen gas purge of 50 ml/min. Data were collected by Thermal Advantage Q SeriesTM version 2.2.0.248 software and -48- WO 2009/076142 PCT/US2008!085458 analyzed by Universal Analysis software version 4. ID (TA Instruments, New Castle, DE). The reported numbers represent single analyses. [002301 XRPD (X-ray Powder Diffraction) [002311 The X-Ray diffraction (XRD) data of Form I were collected on a Bruker D8 DISCOVER powder diffractometer with HI-STAR 2-dimensional detector and a flat graphite monochromator. Cu sealed tube with Ka. radiation was used at 40 kV, 35mA. The samples were placed on zero-background silicon wafers at 25'C. For each sample, two data frames were collected at 120 seconds each at 2 different 02 angles: 8' and 26". The data were integrated with GADDS software and merged with DIFFRACT"SEVA software. Uncertainties for the reported peak positions are ± 0.2 degrees. [002321 Vitride@R (sodium bis(2-methoxyethoxyaliuminum hydride [or NaAIH 2
(OCH
2
CH
2 OCH,)2], 65 wgt% solution in toluene) was purchased from Aldrich Chemicals. [002331 2,2-Difluoro- 1,3 -benzodioxole-5-carboxylic acid was purchased from Saltigo (an affiliate of the Lanxess Corporation). [002341 Anywhere in the present application where a name of a compound may not correctly describe the structure of the compound, the structure supersedes the name and governs. [002351 Synthesis of 3-(6 -(2,2-difluoroben zold 13tdioxo1-5-vl) cvclopropanecarboxamido)-3-netiylpyridin-2-vl)benzoic acid - HCL [002361 Acid Chloride Moiety [002371 Synthesis of (2,2-difluoro- 1,3 -benzodi oxol-5 -yl)-methanol (Compound 18). 1. Vitride (2 equiv) PhCH-1 3 (10 vol) 2. 10% aq (w/w) NaOH (4 equiv) X X >OH F O CO 2 H 86-92% yield F O [002381 Commercially available 2,2-difluoro-1,3-benzodioxole-5-carboxylic acid (1.0 eq) is slurried in toluene (10 vol). Vitride@> (2 eq) is added via addition funnel at a rate to maintain the temperature at 15-25 'C. At the end of addition the temperature is increased to 40 'C for 2 h then 10% (w/w) aq. NaOlH (4.0 eq) is carefully added via addition funnel maintaining the temperature at 40-50 'C. After stirring for an additional 30 minutes, the layers are allowed to separate at 40 'C. The organic phase is cooled to 20 'C then washed with water (2 x 1.5 vol), dried (Na 2
SO
4 ), filtered, and concentrated to afford crude Compound 18 that is used directly in -49- WO 2009/076142 PCT/US2008!085458 the next step. 1002391 Synthesis of 5-chloromethyl-2,2-difluoro-1,3-benzodioxole (Compound 19). 1. SOCl 2 (1.5 equiv) DMAP (0.01 equiv) MTBE (5 vol) 2. water (4 vol) 82-100 % yield 1002401 Compound 18 (1.0 eq) is dissolved in MTBE (5 vol). A catalytic amount of DMAP (1 mol %) is added and SOC] 2 (1.2 eq) is added via addition funnel. The SOClI is added at a rate to maintain the temperature in the reactor at 15-25 'C. The temperature is increased to 30 'C for 1 hour then cooled to 20 'C then water (4 vol) is added via addition funnel maintaining the temperature at less than 30 'C. After stirring for an additional 30 minutes, the layers are allowed to separate. The organic layer is stirred and 10% (w/v) aq. NaOH (4.4 vol) is added. After stirring for 15 to 20 minutes, the layers are allowed to separate. The organic phase is then dried (Na 2
SO
4 ), filtered, and concentrated to afford crude Compound 19 that is used directly in the next step. [002411 Synthesis of (2,2-difluoro-1,3-benzodioxol-5-yl)-acetonitrile (compound 20). 1. NaCN (1.4 equiv) DMSO (3 vol) 30-40 degrees C 2. water (6 vol) cl lMTBE (4 vol) FC 95-100% yield [00242] A solution of Compound 19 (1 eq) in DMSO (1.25 vol) is added to a slurry of NaCN (1.4 eq) in DMSO (3 vol) maintaining the temperature between 30-40 'C. The mixture is stirred for 1 hour then water (6 vol) is added followed by MTBE (4 vol). After Stirring for 30 min, the layers are separated. The aqueous layer is extracted with MTBE (1.8 vol). The combined organic layers are washed with water (1.8 vol), dried (Na 2
SO
4 ), filtered, and concentrated to afford crude compound 20 (95%) that is used directly in the next step. -50- WO 2009/076142 PCT/US2008!085458 [002431 Synthesis of (2,2-difluoro-1,3-benzodioxol-5-yl)-cyclopropanecarbonitrile (compound 21). 1--bromo-2-chloroethane (1.5 equiv) 50% KOH (5.0 equiv) Oct 4 NBr (0.02 equiv) FCN 70degrees C F 0 88-100% yield [002441 A mixture of compound 20 (1.0 eq), 50 wt % aqueous KOI (5.0 eq) 1-bromo-2 chloroethane (1.5 eq), and Oct 4 NBr (0.02 eq) is heated at 70 'C for I h. The reaction mixture is cooled then worked up with MTBE and water. The organic phase is washed with water and brine then the solvent is removed to afford compound 21. [002451 Synthesis of 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-cyclopropanecarboxylic acid (compound 22). 1. 6 M NaOH (8 equiv) EtOH (5 vol), 80 degrees C 2. MTBE (10 voli F 0 dicyclohexylamine (1 equiv) . F O FXO CN FOO 3. M TBE (10 vol) 10% aq citric acid (8 vol) 69% yield [002461 Compound 21 is hydrolyzed using 6 M NaOI-1 (8 equiv) in ethanol (5 vol) at 80 0 C overnight. The mixture is cooled to room temperature and ethanol is evaporated under vacuum. The residue is taken into water and MTBE, I M HCI was added and the layers are separated. The MTBE layer was then treated with dicyclohexylamine (0.97 equiv). The slurry is cooled to 0 'C, filtered and washed with heptane to give the corresponding DCHA salt. The salt is taken into MTBE and 10% citric acid and stirred until all solids dissolve. The layers are separated and the MTBE layer was washed with water and brine. Solvent swap to heptane followed by filtration gives compound 22 after drying in a vacuum oven at 50 'C overnight. 1002471 Synthesis of 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-cyclopropanecarbonyl chloride (compound 7).
SOCI
2 , PhCH 3 , 0 60 degrees C F 0 F -O OH F 0 CI -51-.
WO 2009/076142 PCT/US2008!085458 [002481 Compound 22 (1.2 eq) is slurried in toluene (2.5 vol) and the mixture heated to 60 'C. SOC1 2 (1.4 eq) is added via addition funnel. The toluene and SOCi 2 are distilled from the reaction mixture after 30 minutes. Additional toluene (2.5 vol) is added and distilled again. [002491 Synthesis of 1 4 C-(2,2-difluoro-1,3-benzodioxol-5-yl)-acetonitrile (compound 23). 1. Na 4 CN (1.4 equiv) DMSO (3 vol) 30-40 degrees C CI 2. water(6 vol) F0CN CIMTBE_(4_vol) F.. 1 4 CN 1002501 A solution of Compound 19 (1 eq) in DMSO (1.25 vol) is added to a slurry of Na 14 CN (1.4 eq) in DMSO (3 vol) maintaining the temperature between 30-40 'C. The mixture is stirred for 1 hour then water (6 vol) is added followed by MTBE (4 vol). After stirring for 30 min, the layers are separated. The aqueous layer is extracted with MTBE (1.8 vol). The combined organic layers are washed with water (1.8 vol), dried (Na2SO4), filtered, and concentrated to afford crude compound 23 that is purified by chromatography. [00251] Synthesis of 14 C-(2,2-difluoro-1,3-benzodioxol-5-y) cyclopropanecarbonitrile (compound 24). 1,2-dibromoethane LH D 1 iS F O N 4CN F- 4 CN [002521 A mixture of compound 23 (1.0 eq) and 1,2-dibromoethane (1.8 eq) in THF (3 vol) is cooled to -10 C via external chiller. I M LHNDS in THF (2.5 eq) is added via an addition funnel and at a rate to maintain the temperature in the reactor below 10 'C. One hour after addition is complete, 20% w/v aq. citric acid (13 vol) is added via addition funnel maintaining the temperature in the reactor below 20 C. The external chiller is turned off and after stirring for 30 min the layers are separated. The organic layer is filtered and concentrated to afford crude compound 24 that is purified by chromatography. -52- WO 2009/076142 PCT/US2008!085458 [00253] Synthesis of 4 C-1-(2,2-difluoro-1,3-benzodioxo-5-yl) cyclopropanecarboxylic acid (compound 25). 1. 6 M NaOH (8 equiv) EtOH (5 vol), 80 degrees C 2 MTBE F N2 F 0 O X ........ X IIN 14 F O .4CN F 0 OH [00254] Compound 24 is hydrolyzed using 6 M NaOH (8 equiv) in ethanol (5 vol) at 80 'C overnight. The mixture is cooled to room temperature and ethanol is evaporated under vacuum. The residue is taken into water and MTBE. I M HCi is added to the mixture and the organic layer is filtered and concentrated to afford compound 25. [00255] Synthesis of 4 C-1-(2,2-difluoro-1,3-benzodioxoI-5-yl)-cyclopropanecarbonvI chloride (compound 26). SOCl 2 ,
CH
2 Cl 2 , F 0 DMAP F 0 OH F 0 CI 1002561 A mixture of Compound 25, 4-dimethylaminopyridine, and thionyl chloride
(SOC
2 ) in C-1 2 Cl 2 is stirred to produce compound 26, which may be further reacted with compound 6 without isolation. [00257] Amine Moiety 1002581 Synthesis of tert-butyl-3-(3-methylpyridin-2-vI)benzoate (compound 4). 1. toluene, 2M KCO, Pd(dppf)Cl. 80 degrees C H. aq. MsOH N 3. aq.NaOH N Br
CO
2 tBu
CO
2 tBu [002591 2-Bromo-3-methylpyridiine (1.0 eq) is dissolved in toluene (12 vol). K 2
CO
3 (4.8 eq) is added followed by water (3.5 vol) and the mixture heated to 65 'C under a stream of N2 for 1 hour. 3-(t-Butoxycarbonyl)phenylboronic acid (1.05 eq) and Pld(dppf)Cl 2
-CH
2
C]
2 (0.015 eq) are then added and the mixture is heated to 80 'C. After 2 hours, the heat is turned off, water is added (3.5 vol) and the layers are allowed to separate. The organic phase is then washed with water (3.5 vol) and extracted with 10% aqueous methanesulfonic acid (2 eq MsOH, 7.7 vol). The aqueous phase is made basic with 50% aqueous NaOI- (2 eq) and extracted with EtOAc (8 vol). -53- WO 2009/076142 PCT/US2008!085458 The organic layer is concentrated to afford crude compound 4 (82%) that is used directly in the next step. [00260] Synthesis of 2-(3-(tert-butoxycarbonyl)phenyl)-3-methylpyridine- -oxide (compound 5). urea-hydrogen peroxide phthalic anhydride N EtOAc, water N 0
CO
2 tBu CO 2 tBu [002611 Compound 4 (1.0 eq) is dissolved in EtOAc (6 vol). Water (0. 3 vol) is added followed by urea-hydrogen peroxide (3 eq). The phthalic anhydride (3 eq) is added portion-wise as a solid to maintain the temperature in the reactor below 45 C. After completion of phthalic anhydride addition, the mixture is heated to 45 'C. After stirring for an additional 4 hours, the heat is turned off. 10% w/w aqueous Na2SO 3 (1.5 eq) is added via addition funnel. After completion of Na 2
SO
3 addition, the mixture is stirred for an additional 30 minutes and the layers separated. The organic layer is stirred and 10% w/w aq. Na 2
CO
3 (2 eq) is added. After stirring for 30 minutes, the layers are allowed to separate. The organic phase is washed 13% w/v aq NaCl. The organic phase is then filtered and concentrated to afford crude compound 5 (95%) that is used directly in the next step. [002621 Synthesis of tert-butyl-3-(6-amino-3-methylpyridin-2-yl)benzoate (compound 6). 1. Ms 2 O, py, MeCN, 70 degrees C 2. ethanolamine
H
2 N N 0~
CO
2 tBu
CO
2 tBu [002631 A solution of compound 5 (1 eq) and pyridine (4 eq) in MeCN (8 vol) is heated to 70 'C. A solution of methanesulfonic anhydride (1.5 eq) in MeCN (2 vol) is added over 50 min via addition funnel maintaining the temperature at less than 75 'C. The mixture is stirred for an additional 0.5 hours after complete addition. The mixture is then allowed to cool to ambient. Ethanolamine (10 eq) is added via addition funnel. After stirring for 2 hours, water (6 vol) is added and the mixture is cooled to 10 'C. After stirring for NLT 3 hours, the solid is collected by filtration and washed with water (3 vol), 2:1 MeCN/water (3 vol), and MeCN (2 x 1.5 vol). The solid is dried to constant weight (<1% difference) in a vacuum oven at 50 'C with a slight N 2 bleed to afford compound 6 as a red-yellow solid (53% yield).
WO 2009/076142 PCT/US2008!085458 [002641 Synthesis of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yi) cyclopropanecarboxamido)-3-methylpyridin-2-yl)-t-butVlbenzoate (compound 8). F 0 CF F o c F H2N N C2tBu TEA, cat DMAP F 0 N NC6 r PhC H 3 COAtLu [002651 Compound 7 is dissolved in toluene (2.5 vol based on acid chloride) and added via addition funnel to a mixture of compound 6 (1 eq), dimethylaminopyridine (DMAP, 0.02 eq), and triethylamine (3.0 eq) in toluene (4 vol based on compound 6). After 2 hours, water (4 vol based on compound 6) is added to the reaction mixture. After stirring for 30 minutes, the layers are separated. The organic phase is then filtered and concentrated to afford a thick oil of compound 8 (quantitative crude yield). MeCN (3 vol based on crude product) is added and distilled until crystallization occurs. Water (2 vol based on crude product) is added and the mixture stirred for 2 h. The solid is collected by filtration, washed with 1:1 (by volume) MeCN/water (2 x 1 vol based on crude product), and partially dried on the filter under vacuum. The solid is dried to constant weight (<1% difference) in a vacuum oven at 60 'C with a slight N2 bleed to afford 3-(6-(i-(2,2-difluorobenzol d] [1,3]dioxol-5-yl) cyclopropanecarboxamido)-3 methylpyridin-2--yl)-t-butylbenzoate as a brown solid. [002661 Syntheisis of Syntheisis of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid * HCL salt (compound 9). 6 N NC MeCN F O N N COtBu 40 de agrees C F O02 0 O N N CO 2 H HCI [002671 To a slurry of compound 8 (1.0 eq) in MeCN (3.0 vol) is added water (0.83 vol) followed by concentrated aqueous HCl (0.83 vol). The mixture is heated to 45 ± 5 'C. After stirring for 24 to 48 hours the reaction is complete and the mixture is allowed to cool to ambient. Water (1.33 vol) is added and the mixture stirred. The solid is collected by filtration, washed WO 2009/076142 PCT/US2008!085458 with water (2 x 0.3 vol), and partially dried on the filter under vacuum. The solid is dried to constant weight (<1% difference) in a vacuum oven at 60 'C with a slight N 2 bleed to afford compound 9 as an off-white solid. [002681 Synthesis of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yI) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid (Compound I). F C O slurry in F O N N
CO
2 H water 98% 0> N C0 2 H F O:3 N N C2 H 1 Compound 1 [002691 A slurry of 3-(6-(1-(2,2-difluorobenzo[di[1 ,3 ]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid - HCi (1 eq) in water (10 vol) is stirred at ambient temperature. A sample is taken after stirring for 24 hours. The sample is filtered and the solid washed with water (2 x). The solid sample is submitted for DSC analysis. ' hen DSC analysis indicates complete conversion to Compound 1, the solid is collected by filtration, washed with water (2 x 1.0 vol), and partially dried on the filter under vacuum. The solid is dried to constant weight (<1% difference) in a vacuum oven at 60 'C with a slight N2 bleed to afford Compound 1 as an off-white solid (98% yield). 1002701 Synthesis of 3-(6-(1-(2,2-difluorobenzo d][1,3]dioxol-5-yl) cyclopropanecarboxam ido)-3-methylpyridin-2-yl)benzoic acid (Compound 1) using water and base. F0O 1. H2O, 50% NaOH H N : CO2H 2. cone HCI H |60-90 *C F 0 N N j C0 2 H
H
WO 2009/076142 PCT/US2008!085458 Compound I 100271 To a slurry of 3--(6-(1-(2 .2-difluorobenzo[d] [1 ,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid HCI (1 eq) in water (10 vol) stirred at ambient temperature is added 50% w/w aq. NaOH (2.5 eq). The mixture is stirred for NLT 15 min or until a homogeneous solution. Concentrated HCI (4 eq) is added to crystallize Compound 1. The mixture is heated to 60 'C or 90 'C if needed to reduce the level of the t butylbenzoate ester. The mixture is heated until HPLC analysis indicates NMT 0.8% (AUC) t butylbenzoate ester. The mixture is then cooled to ambient and the solid is collected by filtration, washed with water (3 x 3.4 vol), and partially dried on the filter under vacuum. The solid is dried to constant weight (<1% difference) in a vacuum oven at 60 'C with a slight N2 bleed to afford Compound 1 as an off-white solid (97% yield). [002721 Synthesis of 3-(6-(I-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-metiylpyridin-2-yl)benzoic acid (Compound 1) directly from benzoate. FO 0 1. formic acid, F 0 N N CO 2 tBu 70 GC 2. water F ON N
CO
2 H Compound 1 [002731 A solution of 3-(6-(I-(2,2-difluorobenzod] [1,3]dioxol-5-yl) cyclopropanecarboxamido)-3--methylpyridin-2-yi)-t-butylbenzoate (1.0 eq) in formic acid (3.0 vol) is heated to 70 + 10 'C. The reaction is continued until the reaction is complete (NiMT 1.0% AUC 3-(6-(1-(2,2-difluorobenzo[d]i [1,3] dioxol-5-yI) cyclopropanecarboxamido)-3 methylpyridin-2-yl)-t-butylbenzoate) or heating for NMT 8 h. The mixture is allowed to cool to ambient. The solution is added to water (6 vol) heated at 50 'C and the mixture stirred. The mixture is then heated to 70 ± 10 'C until the level of 3-(6-(1-(2,2-difluorobenzo[d][i,3]dioxol-5 y]) cyclopropanecarboxamido)-3 -methylpyridin-2-yl)-t-butylbenzoate is NMT 0.8% (AUC). The solid is collected by filtration, washed with water (2 x 3 vol), and partially dried on the filter -57 - WO 2009/076142 PCT/US2008!085458 under vacuum. The solid is dried to constant weight (<1% difference) in a vacuum oven at 60 'C with a slight N2 bleed to afford Compound I as an off-white solid. [00274] An X-ray diffraction pattern calculated from a single crystal structure of Compound 1 in Form I is shown in Figure 1. Table I lists the calculated peaks for Figure 1. [00275] Table 1. P a k 2 0 A n gee s R e a iv e I n e i t 1i 14.41 48.2 8 14.64 58.8 1 15.23 100.0 2 16.11 94.7 3 17.67 81.9 7 19.32 61.3 4 21.67 76.5 5 23.40 68.7 9 23.99 50.8 6 26.10 67.4 10 28.54 50.1 [002761 An actual X-ray powder diffraction pattern of Compound I in Form I is shown in Figure 2. Table 2 lists the actual peaks for Figure 2. [00277] Table 2. Peak 20) Angle Relative Iatensity Rank degrees] t% 7 7.83 37.7 3 14.51 74.9 4 14.78 73 5 1 15.39 100.0 2 16.2 6 75.6 6 16.62 42.6 5 17.81 70.9 9 21.59 36.6 10 23.32 34.8 11 24.93 26.4 8 25.99 36.9 1002781 An overlay of an X-ray diffraction pattern calculated from a single crystal structure of Compound 1 in Form I, and an actual X-ray powder diffraction pattern of Compound 1 in Form I is shown in Figure 3. The overlay shows good agreement between the calculated and actual peak positions, the difference being only about 0.15 degrees.
WO 2009/076142 PCT/US2008!085458 [002791 The DSC trace of Compound I in Form I is shown in Figure 4. Melting for Compound I in Form I occurs at about 204 'C. [002801 Conformational pictures of Compound I in Form I based on single crystal X-ray analysis are shown in Figures 5-8. Figures 6-8 show hydrogen bonding between carboxylic acid groups of a dimer and the resulting stacking that occurs in the crystal. The crystal structure reveals a dense packing of the molecules. Compound 1 in Form I is monoclinic, P2 1 /n, with the following unit cell dimensions: a = 4.9626(7) A, b = 12.299(2) A, c = 33.075 (4) A, P = 93.938(9)c, V = 2014.0 A , Z = 4. Density of Compound 1 in Form I calculated from structural data is 1.492 g/cm3 at 100 K. 1002811 tHNMR spectra of Compound 1 are shown in Figures 9-11 (Figures 9 and 10 depict Compound I in Form I in a 50 mg/mIL, 0.5 methyl cellulose-polysorbate 80 suspension, and Figure II depicts Compound 1 as an HCI salt). [002821 Table 3 below recites additional analytical data for Compound 1. 1002831 Table 3. Cpd. LCMS LCRT N MR No. M1 I mn H NMR (400 MHz, DMSO-d6) 9.14 (s, 1 H), 7.99-7.93 (n, 3H), 7.80-7.78 (n, 1 453.3 1.93 1H), 7 74-7.72 (m, 1H), 7.60-7.55 (n, 2H), 7.41-7.33 (m, 2H), 2.24 (s, 3H), 1.53-1.51 (m, 2H), 1.19-1.17 (m, 2H) -59-.

Claims (102)

  1. 2. The process of claim 1, wherein the first organic solvent is an aprotic solvent.
  2. 3. The process of claim 1, wherein the first organic solvent is toluene.
  3. 4. The process of claim 1, wherein the first organic solvent is a protic solvent.
  4. 5. The process of claim 1, wherein the first organic solvent is selected from methanol, ethanol, or isopropanol.
  5. 6. The process of claim 1, wherein the first base is an inorganic base.
  6. 7. The process of claim 1, wherein the first base is potassium carbonate. -61- WO 2009/076142 PCT/US2008!085458
  7. 8. The process of claim 1, wherein the transition-metal catalyst is a palladium-based catalyst.
  8. 9. The process of claim 1, wherein the palladium-based catalyst is Pd(dppf)Cl 2 .
  9. 10. The process of claim 1, wherein the cross coupling reaction is run at between 60"C and 100C.
  10. 11. The process of claim 1, wherein the oxidation reaction is carried out using a peroxide.
  11. 12. The process of claim 1, wherein the oxidation reaction is carried out using peracetic acid.
  12. 13. The process of claim 1, wherein the oxidation reaction is carried out in the presence of an anhydride.
  13. 14. The process of claim 1, wherein the oxidation reaction is carried out in the presence of phthalic anhydride.
  14. 15. The process of claim 1, wherein the oxidation reaction is run at between 25'C and 65'C.
  15. 16. The process of claim 1, wherein the amination reaction is carried out in the presence of a sulfonyl compound.
  16. 17. The process of claim 1, wherein the amination reaction is carried out in the presence of methanesulfonic anhydride.
  17. 18. The process of claim 1, wherein the amination reagent used in the amination reaction is an alcohol amine.
  18. 19. The process of claim 1, wherein the amination reagent used in the amination reaction is ethanolamine.
  19. 20. The process of claim 1, wherein the second organic solvent is an aprotic solvent.
  20. 21. The process of claim 1, wherein the second organic solvent is toluene.
  21. 22. The process of claim 1, wherein the second base is an organic base.
  22. 23. The process of claim 1, wherein the second base is triethylamine.
  23. 24. The process of claim 1, wherein the reaction between compound 6 and compound 7 is carried out in the presence of a catalytic amine.
  24. 25. The process of claim 1, wherein the reaction between compound 6 and compound 7 is carried out in the presence of a catalytic amount of dimethylaminopyridine.
  25. 26. The process of claim 1, wherein the third organic solvent is an aprotic solvent. -62- WO 2009/076142 PCT/US2008!085458
  26. 27. The process of claim 1, wherein the third organic solvent is acetonitrile.
  27. 28. The process of claim 1, wherein the first acid is an inorganic acid.
  28. 29. The process of claim 1, wherein the first acid is hydrochloric acid.
  29. 30. The process of claim 1, wherein the de-esterification reaction is run at between 20'C and 600 C.
  30. 31. The process of claim 1, wherein the appropriate solvent is selected from water or a 50% methanol/water mixture.
  31. 32. The process of claim 1, wherein the appropriate solvent is water.
  32. 33. The process of claim 1, wherein the effective amount of time is between 2 and 24 hours.
  33. 34. The process of claim 1, further comprising the step of filtering the slurry of Compound 1 or concentrating the solution of Compound I to effect recrystallization and filtering the recrystallized Compound 1.
  34. 35. A process for preparing Compound I comprises the step of: i) reacting compound 6, H 2 N N CO 2 tBu; 6 with compound 7, F O Ci in a second organic solvent in the presence of a second base to produce compound 8, F- ONCO 2 tBu 8 WO 2009/076142 PCT/US2008!085458 ii) de-esterifying compound 8 in a biphasic mixture comprising water, a third organic solvent, and a first acid to produce compound 9, F-> F ON N t CO2H H 0 FIC'I 9 iii) slurrying or dissolving compound 9 in an appropriate solvent for an effective amount of time to produce Compound 1.
  35. 36. A process for preparing a compound of formula 1: (R1)rm A0 N N comprising the step of: ia) reacting a compound of formula 6a: (R 1 ) 0 HN N (R1)P R 6a wherein. R is H, C 1 . 6 aliphatic, aryl, aralkyl, heteroaryl, cycloalkyl, or heterocycloalkyl; R 1 is independently selected from -Ri, -OR, -N(R), -NO2, halogen, -CN, -C1_ 4 haloalkyl, -CI. 4 haloalkoxy, -C(O)N(Ri), -NR'C(O)R/, -SOR', -SO 2 R', -SO2N(R') 2 , -NRISO 2 R , -COR, CO2R, -NR'SO 2 N(R')2, -COCOR ; R" is hydrogen or C 1 . 6 aliphatic; o is an integer from 0 to 3 inclusive; and p is an integer from 0 to 5 inclusive; -64- WO 2009/076142 PCT/US2008!085458 with a compound of formula 7a: (R1)mr Al | x 7a wherein, A is a fused cycloalkyl, heterocycloalkyl, aryl, or heteroaryl ring; R, is independently selected from -R', -OR' ,N(R)2 -NO2, halogen, -CN, -Cj 4 haloalkyl, -C,_haloalkoxy, -C(O)N(R )2, -NRW(O()R', -SOR', -SO2RI, -SO2N(RI)2, -NR'SO2R , -C.ORj, C0 2 R , -NR'SO 2 N(I)2, -COCOR': R! is hydrogen or C- 6 aliphatic; m is an integer from 0 to 3 inclusive; n is an integer from I to 4 inclusive; and X is a halo or OH; in a second organic solvent in the presence of a second base.
  36. 37. The process of claim 36, wherein the second organic solvent is an aprotic solvent.
  37. 38. The process of claim 36, wherein the second organic solvent is toluene.
  38. 39. The process of claim 36, wherein the second base is an organic base.
  39. 40. The process of claim 36, wherein the second base is triethylamine.
  40. 41. The process of claim 36, wherein the reaction between compound 6a and compound 7a is carried out in the presence of a catalytic amine.
  41. 42. The process of claim 36, wherein the reaction between compound 6a and compound 7a is carried out in the presence of a catalytic amount of dimethylaminopyridine.
  42. 43. The process of claim 36, wherein when R, on the phenyl ring in formula 1 is an ester, the process further comprises de-esterifying the compound of formula I in a biphasic mixture comprising water, a third organic solvent, and a first acid to give an acid salt.
  43. 44. The process of claim 43, wherein the third organic solvent is acetonitrile.
  44. 45. The process of claim 43, the first acid is an inorganic acid. -65- WO 2009/076142 PCT/US2008!085458
  45. 46. The process of claim 43, wherein the first acid is hydrochloric acid.
  46. 47. The process of claim 43, wherein the de-esterification reaction is run at between 20'C and 60'C.
  47. 48. The process of claim 43, wherein the acid salt is converted to the free form, Form I, by slurrying or dissolving the acid salt in an appropriate solvent for an effective amount of time.
  48. 49. The process of claim 48, wherein the appropriate solvent is selected from water or a 50% methanol/water mixture.
  49. 50. The process of claim 48, wherein the appropriate solvent is water.
  50. 51. The process of claim 48, wherein the effective amount of time is between 2 and 24 hours.
  51. 52. The process of claim 48, further comprising the step of filtering the slurry of the compound of formula 1 in Form I, or concentrating the solution of the compound of formula I in Form I to effect recrystallization and filtering the recrystallized compound of formula I in Form I.
  52. 53. A process for preparing a compound of formula 6a: (R 1 )o HN N R(R 1 ) 6a wherein, R is H, Cb6 aliphatic, aryl, aralkyl, heteroaryl, cycloalkyl, or heterocycloalkyl; R 1 is independently selected from -R , -OR, -N(R_)2, -NO 2 , halogen, -CN, -CI 4 haloalkyl, -Cl 4 haloalkoxy, -C(O)N(Rr)2, -NIC(O)R!, -SOR, -SO 2 R 3 , -SO 2 N(R 3 ) 2 , -NRSO 2 R!, -COR, CO 2 R, -NR SO 2 N(R')2, -COCOR 2 ; Ri is hydrogen or C-6 aliphatic; o is an integer from 0 to 3 inclusive; and p is an integer from 0 to 5 inclusive; comprising the steps of: ib) providing compound 2a and compound 3a, -66- WO 2009/076142 PCT/US2008!085458 /s (H O)2B C(), (R1), N Hal 2a 3a wherein, R 1 is independently selected from -R', -OR' N(R)2 -NO2, halogen, -CN, -CI 4 haloalkyl, -C ,_haloalkoxy, -C(O)N(RI) 2 , -NR C(O)R!, -SOR, -S0 2 R, -SO2N(R)2, -NR SO2R , -COR , CO 2 R, -N.\R"'SO 2 N(R%) 2 , -COCORJ; R is hydrogen or C- 6 aliphatic; o is an integer from 0 to 4 inclusive; and p is an integer from 0 to 5 inclusive; iib) cross coupling compound 2a and compound 3a in a biphasic mixture comprising water, a first organic solvent, a first base, and a transition metal catalyst to produce compound 4a, (R 1 ) 0 N -(F 4a wherein, R 1 , o, and p are as defined for compounds 2a and 3a above; iiib) oxidizing compound 4a to produce compound 5a, (R1)o N 5a wherein, R1, o, and p are as defined for compounds 2a and 3a above; ivb) adding an amine group to the 6 position of the pyridyl moiety to produce compound 6a, -67- WO 2009/076142 PCT/US2008!085458 (R1), H N N -(R) R 6a wherein, R is H, C 1 6 aliphatic, aryl, aralkyl, heteroaryl, cycloalkyl, or heterocycloalkyl; and R 1 , o, and p are as defined for compounds 2a and 3a above.
  53. 54. The process of claim 53, wherein the first organic solvent is an aprotic solvent.
  54. 55. The process of claim 53, wherein the first organic solvent is toluene.
  55. 56. The process of claim 53, wherein the first organic solvent is a protic solvent.
  56. 57. The process of claim 53, wherein the first base is an inorganic base.
  57. 58. The process of claim 53, wherein the first base is potassium carbonate.
  58. 59. The process of claim 53, wherein the transition-metal catalyst is a palladium-based catalyst.
  59. 60. The process of claim 53, wherein the palladium-based catalyst is Pd(dppf)C1 2 .
  60. 61. The process of claim 53, wherein the cross coupling reaction is run at between 60'C and 100 0 C.
  61. 62. The process of claim 53, wherein the oxidation reaction is carried out using a peroxide.
  62. 63. The process of claim 53, wherein the oxidation reaction is carried out using peracetic acid.
  63. 64. The process of claim 53, wherein the oxidation reaction is carried out in the presence of an anhydride.
  64. 65. The process of claim 53, wherein the oxidation reaction is carried out in the presence of phthalic anhydride.
  65. 66. The process of claim 53, wherein the oxidation reaction is run at between 25'C and 65 0 C.
  66. 67. The process of claim 53, wherein the amination reaction is carried out in the presence of a sulfonyl compound. -68- WO 2009/076142 PCT/US2008!085458
  67. 68. The process of claim 53, wherein the amination reaction is carried out in the presence of methanesulfonic anhydride.
  68. 69. The process of claim 53, wherein the amination reagent used in the amination reaction is an alcohol amine.
  69. 70. The process of claim 53, wherein the amination reagent used in the amination reaction is ethanolamine.
  70. 71. A process for preparing a compound of formula 7a: (R1)mn A l (x 7a wherein, A is a fused cycloalkyl, heterocycloalkyl, aryl, or heteroaryl ring; R 1 is independently selected from -R, -OR', -N(R)2, -NO2, halogen, -CN. -C1 4 haloalkyl, -CI 4 haloalkoxy, -C(O)N(R/)2, -NRIC(O)R , -SOR', -SO 2 R', -SO2N('R') 2 , -NRSO 2 R, -COR, CO2R ,-NR!SO 2 N(R)2, -COCOR ; Rj is hydrogen or C 1 . 6 aliphatic; m is an integer from 0 to 3 inclusive n is an integer from I to 4 inclusive; and X is a halide or OH; comprising the steps of ic) reducing Compound 10a in a fourth organic solvent: (R1)m CO2H 10a wherein, A is a fused cycloalkyl, heterocycloalkyl, aryl, or heteroaryl ring; -69- WO 2009/076142 PCT/US2008!085458 R 1 is independently selected from -Ri, -OR, -N(R), INO 2 , halogen, -CN, -C 1 4 haloalkyl, -C 1 . 4 haloalkoxy, -C(O)N(R/)2, -NR'C(O)R, -SOR , -SO 2 R', -SO2N(R') 2 , -NR'SO2R , -COR, CO2R', -NR'SO 2 N(R')2, -COCOR ; R' is hydrogen or C1 6 aliphatic; and m is an integer from 0 to 3 inclusive, with a reducing agent to produce Compound I I a: (R1.)m Ila wherein, ring A, R 1 ,. and m are as defined in Compound 10a above; iic) reacting Compound I Ia with a first halogenating agent in a fifth organic solvent to produce Compound 12a: (R1)m H al 1 2a wherein, ring A, R 1 , and m are as defined in Compound 10a above, and Hal is a halide; iiic) reacting Compound 1 2 a with a cyanide to produce Compound 13a: (R1)m, 13a wherein, ring A, R 1 ,. and m are as defined in Compound 10a above; ive) reacting Compound 13a with a compound of formula 13aa in the presence of a third base: Hal Hal q 13aa wherein, -70- WO 2009/076142 PCT/US2008!085458 Hal is a halide; and q is an integer from 0 to 3 inclusive; to produce a compound of formula 14a: (RI)m A| CN 14a wherein, r is an integer from I to 4 inclusive; and ring A, R 1 , and in are as defined in Compound 1Oa above; ve) sequentially reacting Compound 14a with a hydroxide base and second acid to form Compound 15a, which is compound 7a when X = OH: (R1 )m A l OH r 15a wherein, r, ring A, R 1 , and m are as defined in Compound 14a above; and vie) reacting Compound 15a with a second halogenating agent in a sixth organic solvent to form Compound 16a, which is compound 7a when X = halide: (R1)m A | Hal 16a wherein, Hal is halide; and r, ring A, R, and m are as defined in Compound 14a above.
  71. 72. The process of claim 71, wherein the fourth organic solvent is an aprotic solvent. -71- WO 2009/076142 PCT/US2008!085458
  72. 73. The process of claim 71, wherein the fourth organic solvent is toluene.
  73. 74. The process of claim 71, wherein the reducing agent is a hydride.
  74. 75. The process of claim 71, wherein the reducing agent is sodium bis(2 methoxyethoxy)aluminum hydride.
  75. 76. The process of claim 7, 1wherein the reducing reaction is run at between 15'C and 40'C.
  76. 77. The process of claim 71, wherein the fifth organic solvent is an aprotic solvent.
  77. 78. The process of claim 71, wherein the fifth organic solvent is methyl t-butyl ether.
  78. 79. The process of claim 71, wherein the first halogenating agent is thionyl chloride.
  79. 80. The process of claim 71, wherein the reaction of Compound 1 Ia with a first halogenating reaction is run at between 15'C and 30'C.
  80. 81. The process of claim 71, wherein the cyanide is sodium cyanide.
  81. 82. The process of claim 71, wherein the reaction of Compound 12a with a cyanide is run at between 30 0 C and 40'C.
  82. 83. The process of claim 71, wherein the third base is an inorganic base.
  83. 84. The process of claim 71, wherein the third base is potassium hydroxide.
  84. 85. The process of claim 71, wherein Compound 13aa is I-bromo-2-chloroethane.
  85. 86. The process of claim 71, wherein the reaction of Compound 13a with a compound of formula i3aa is run at between 50'C and 90'C.
  86. 87. The process of claim 71, wherein the hydroxide base is sodium hydroxide.
  87. 88. The process of claim 71, wherein the second acid is an inorganic acid.
  88. 89. The process of claim 71, wherein the second acid is hydrochloric acid.
  89. 90. The process of claim 71, wherein the sequential reaction of Compound 14a with a hydroxide base and second acid is run at between 70'C and 90'C.
  90. 91. The process of claim 71, wherein the sixth organic solvent is an aprotic solvent.
  91. 92. The process of claim 71, wherein the sixth organic solvent is toluene.
  92. 93. The process of claim 71, wherein the second halogenating agent is thionyl chloride.
  93. 94. The process of claim 71, wherein the reaction of Compound 15a with a second halogenating agent is run at between 40 0 C and 80'C. -72,- WO 2009/076142 PCT/US2008!085458
  94. 95. A process for preparing Compound I from compound 9 below: O N N OH F' 0 0 F FON N CO 2 H H HCi 9 said process comprising the step of slurrying compound 9 in an appropriate solvent and stirring for an effective amount of time to produce Compound 1.
  95. 96. A process for preparing Compound I from compound 8 below H ON N z OH FN FON N 0 2 Bu 8 comprising reacting Compound I with formic acid between 60 0 C and 80 0 C.
  96. 97. A compound of formula 6b: (R )0 -(RI FN F H0: N N " R (R 6b wherein, R is H, C 1 _ 6 aliphatic, aryl, aralkyl, heteroaryl, cycloalkyl, or heterocycloalkyl; -73- WO 2009/076142 PCT/US2008!085458 R1 and R 2 are independently selected from -R, -ORi, -N(R)2, -NO 2 , halogen, -CN, -CI 4 haloalkyl, -CI 4 haloalkoxy, -C(O)N(R 2 , -NR'C(O)R, -SORJ, -S0 2 R', -SO2,N(R ) 2 , -NR'SO2R-, -COR, -COR, -NRSO 2 N(R)2, -COCOR; R' is hydrogen or C1 6 aliphatic; o is an integer from 0 to 3 inclusive; and p is an integer from 0 to 5 inclusive.
  97. 98. The compound of claim 97, wherein R is 1-1.
  98. 99. The compound of claim 97, wherein R 1 is C 1 . 6 aliphatic and o is 1.
  99. 100. The compound of claim 97, wherein R 1 is methyl and o is 1.
  100. 101. The compound of claim 97, wherein R 2 is -C02R) and p is 1.
  101. 102. The compound of claim 97, wherein R 2 is --- CO 2 R, R is CI- aliphatic, and p is 1.
  102. 103. The compound 0 H 2 N NVO -74-.
AU2013205160A 2007-12-07 2013-04-14 Processes for producing cycloalkylcarboxamido-pyridine benzoic acids Active AU2013205160B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2013205160A AU2013205160B2 (en) 2007-12-07 2013-04-14 Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
AU2016204422A AU2016204422B2 (en) 2007-12-07 2016-06-28 Processes for producing cycloalkylcarboxamido-pyridine benzoic acids

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US61/012,181 2007-12-07
US61/109,573 2008-10-30
AU2008335440A AU2008335440B2 (en) 2007-12-07 2008-12-04 Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
AU2013205160A AU2013205160B2 (en) 2007-12-07 2013-04-14 Processes for producing cycloalkylcarboxamido-pyridine benzoic acids

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2008335440A Division AU2008335440B2 (en) 2007-12-07 2008-12-04 Processes for producing cycloalkylcarboxamido-pyridine benzoic acids

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2016204422A Division AU2016204422B2 (en) 2007-12-07 2016-06-28 Processes for producing cycloalkylcarboxamido-pyridine benzoic acids

Publications (2)

Publication Number Publication Date
AU2013205160A1 true AU2013205160A1 (en) 2013-05-30
AU2013205160B2 AU2013205160B2 (en) 2016-05-19

Family

ID=48483478

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2013205160A Active AU2013205160B2 (en) 2007-12-07 2013-04-14 Processes for producing cycloalkylcarboxamido-pyridine benzoic acids

Country Status (1)

Country Link
AU (1) AU2013205160B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040015716A (en) * 2001-05-22 2004-02-19 뉴로젠 코포레이션 5-Substituted-2-arylpyridines as CRF1 modulators
EP2562158A1 (en) * 2003-02-10 2013-02-27 Vertex Pharmaceuticals Incorporated Processes for the preparation of n-heteroaryl-N-aryl-amines by reacting an N-aryl carbamic acid ester with a halo-heteroaryl and analogous processes
SI2395002T1 (en) * 2005-11-08 2014-10-30 Vertex Pharmaceuticals Incorporated Pharmaceutical composition containing a heterocyclic modulator of atp-binding cassette transporters.
US7754739B2 (en) * 2007-05-09 2010-07-13 Vertex Pharmaceuticals Incorporated Modulators of CFTR

Also Published As

Publication number Publication date
AU2013205160B2 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
AU2008335440B2 (en) Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
US8816093B2 (en) Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
AU2013205160B2 (en) Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
AU2016204422B2 (en) Processes for producing cycloalkylcarboxamido-pyridine benzoic acids

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
GM Mortgages registered

Name of requester: MACQUARIE US TRADING LLC

GMD Discharge of a mortgage

Effective date: 20160913