AU2013202021B2 - Methods and compositions related to mutant Kunitz domain of TFPI-2 - Google Patents
Methods and compositions related to mutant Kunitz domain of TFPI-2 Download PDFInfo
- Publication number
- AU2013202021B2 AU2013202021B2 AU2013202021A AU2013202021A AU2013202021B2 AU 2013202021 B2 AU2013202021 B2 AU 2013202021B2 AU 2013202021 A AU2013202021 A AU 2013202021A AU 2013202021 A AU2013202021 A AU 2013202021A AU 2013202021 B2 AU2013202021 B2 AU 2013202021B2
- Authority
- AU
- Australia
- Prior art keywords
- polypeptide
- plasmin
- subject
- amino acid
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims abstract description 81
- 239000000203 mixture Substances 0.000 title claims abstract description 46
- 102000055046 tissue-factor-pathway inhibitor 2 Human genes 0.000 title claims description 21
- 108010016054 tissue-factor-pathway inhibitor 2 Proteins 0.000 title claims description 21
- 229940012957 plasmin Drugs 0.000 claims abstract description 143
- 230000005764 inhibitory process Effects 0.000 claims abstract description 31
- 108010088842 Fibrinolysin Proteins 0.000 claims description 140
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 96
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 87
- 229920001184 polypeptide Polymers 0.000 claims description 80
- 150000007523 nucleic acids Chemical class 0.000 claims description 55
- 102000039446 nucleic acids Human genes 0.000 claims description 53
- 108020004707 nucleic acids Proteins 0.000 claims description 53
- 230000000694 effects Effects 0.000 claims description 44
- 150000001413 amino acids Chemical group 0.000 claims description 41
- 235000001014 amino acid Nutrition 0.000 claims description 32
- 238000006467 substitution reaction Methods 0.000 claims description 25
- 230000002401 inhibitory effect Effects 0.000 claims description 23
- 230000003993 interaction Effects 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 14
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 13
- 239000003814 drug Substances 0.000 claims description 13
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 12
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 12
- 238000001356 surgical procedure Methods 0.000 claims description 12
- 230000010100 anticoagulation Effects 0.000 claims description 11
- 229940122791 Plasmin inhibitor Drugs 0.000 claims description 10
- 239000002806 plasmin inhibitor Substances 0.000 claims description 10
- 239000004475 Arginine Substances 0.000 claims description 9
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 9
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 9
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims description 8
- 239000004472 Lysine Substances 0.000 claims description 8
- 235000004279 alanine Nutrition 0.000 claims description 8
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 claims description 8
- 239000003446 ligand Substances 0.000 claims description 8
- 230000002829 reductive effect Effects 0.000 claims description 8
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 8
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 7
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 7
- 235000018977 lysine Nutrition 0.000 claims description 7
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 6
- 206010051379 Systemic Inflammatory Response Syndrome Diseases 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 235000013922 glutamic acid Nutrition 0.000 claims description 6
- 239000004220 glutamic acid Substances 0.000 claims description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 5
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 claims description 5
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 claims description 5
- 230000033115 angiogenesis Effects 0.000 claims description 4
- 235000003704 aspartic acid Nutrition 0.000 claims description 4
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims description 4
- 230000010072 bone remodeling Effects 0.000 claims description 4
- 231100000504 carcinogenesis Toxicity 0.000 claims description 4
- 229930182817 methionine Natural products 0.000 claims description 4
- 230000009261 transgenic effect Effects 0.000 claims description 4
- 239000004471 Glycine Substances 0.000 claims description 3
- 208000031220 Hemophilia Diseases 0.000 claims description 3
- 208000009292 Hemophilia A Diseases 0.000 claims description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 3
- 239000004473 Threonine Substances 0.000 claims description 3
- 210000004351 coronary vessel Anatomy 0.000 claims description 3
- 230000000399 orthopedic effect Effects 0.000 claims description 3
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 claims description 2
- 101000984722 Bos taurus Pancreatic trypsin inhibitor Proteins 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 description 75
- 235000018102 proteins Nutrition 0.000 description 65
- 102000004169 proteins and genes Human genes 0.000 description 65
- 108010039627 Aprotinin Proteins 0.000 description 61
- 125000003729 nucleotide group Chemical group 0.000 description 36
- 239000002773 nucleotide Substances 0.000 description 27
- 210000004027 cell Anatomy 0.000 description 26
- 102200005897 rs137852377 Human genes 0.000 description 25
- 239000003112 inhibitor Substances 0.000 description 23
- 239000013598 vector Substances 0.000 description 20
- 230000035772 mutation Effects 0.000 description 17
- 210000004369 blood Anatomy 0.000 description 16
- 239000008280 blood Substances 0.000 description 16
- 102000014914 Carrier Proteins Human genes 0.000 description 13
- 125000003275 alpha amino acid group Chemical group 0.000 description 13
- 229960004405 aprotinin Drugs 0.000 description 13
- 108091008324 binding proteins Proteins 0.000 description 13
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 13
- -1 olive oil Chemical compound 0.000 description 13
- 208000032843 Hemorrhage Diseases 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 11
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 229940088598 enzyme Drugs 0.000 description 11
- 108020004414 DNA Proteins 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 208000034158 bleeding Diseases 0.000 description 10
- 230000000740 bleeding effect Effects 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 102000005962 receptors Human genes 0.000 description 10
- 108020003175 receptors Proteins 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 102220511881 Acyl-coenzyme A thioesterase THEM4_L17R_mutation Human genes 0.000 description 9
- 102220596413 Centrosomal protein of 63 kDa_R15K_mutation Human genes 0.000 description 9
- 238000012217 deletion Methods 0.000 description 9
- 230000037430 deletion Effects 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 238000003780 insertion Methods 0.000 description 9
- 230000037431 insertion Effects 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 206010028980 Neoplasm Diseases 0.000 description 8
- 102000035195 Peptidases Human genes 0.000 description 8
- 108091005804 Peptidases Proteins 0.000 description 8
- 102000013566 Plasminogen Human genes 0.000 description 8
- 108010051456 Plasminogen Proteins 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 230000015271 coagulation Effects 0.000 description 8
- 238000005345 coagulation Methods 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 239000002502 liposome Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 210000000056 organ Anatomy 0.000 description 7
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 6
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 210000002744 extracellular matrix Anatomy 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000012216 imaging agent Substances 0.000 description 6
- 238000007911 parenteral administration Methods 0.000 description 6
- 230000003389 potentiating effect Effects 0.000 description 6
- 102220088977 rs869312698 Human genes 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 241000282412 Homo Species 0.000 description 5
- 239000004365 Protease Substances 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 239000012491 analyte Substances 0.000 description 5
- 239000000504 antifibrinolytic agent Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 210000000988 bone and bone Anatomy 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000001177 retroviral effect Effects 0.000 description 5
- 238000012552 review Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 150000008574 D-amino acids Chemical class 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical group NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 102000003827 Plasma Kallikrein Human genes 0.000 description 4
- 108090000113 Plasma Kallikrein Proteins 0.000 description 4
- 108010001014 Plasminogen Activators Proteins 0.000 description 4
- 102000001938 Plasminogen Activators Human genes 0.000 description 4
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 4
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 4
- 230000001567 anti-fibrinolytic effect Effects 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000020764 fibrinolysis Effects 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 210000002216 heart Anatomy 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 238000002703 mutagenesis Methods 0.000 description 4
- 231100000350 mutagenesis Toxicity 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 229940127126 plasminogen activator Drugs 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 description 3
- 102000009123 Fibrin Human genes 0.000 description 3
- 108010073385 Fibrin Proteins 0.000 description 3
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical group CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 3
- 101000835083 Homo sapiens Tissue factor pathway inhibitor 2 Proteins 0.000 description 3
- 102000001399 Kallikrein Human genes 0.000 description 3
- 108060005987 Kallikrein Proteins 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 108090000631 Trypsin Proteins 0.000 description 3
- 102000004142 Trypsin Human genes 0.000 description 3
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 239000003146 anticoagulant agent Substances 0.000 description 3
- 206010003246 arthritis Diseases 0.000 description 3
- 230000023555 blood coagulation Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 210000000038 chest Anatomy 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 229950003499 fibrin Drugs 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000023597 hemostasis Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000001165 hydrophobic group Chemical group 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 235000019833 protease Nutrition 0.000 description 3
- 235000019419 proteases Nutrition 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000003001 serine protease inhibitor Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- GYDJEQRTZSCIOI-LJGSYFOKSA-N tranexamic acid Chemical compound NC[C@H]1CC[C@H](C(O)=O)CC1 GYDJEQRTZSCIOI-LJGSYFOKSA-N 0.000 description 3
- 229960000401 tranexamic acid Drugs 0.000 description 3
- 239000012588 trypsin Substances 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- RQFCJASXJCIDSX-UHFFFAOYSA-N 14C-Guanosin-5'-monophosphat Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(COP(O)(O)=O)C(O)C1O RQFCJASXJCIDSX-UHFFFAOYSA-N 0.000 description 2
- RYVNIFSIEDRLSJ-UHFFFAOYSA-N 5-(hydroxymethyl)cytosine Chemical compound NC=1NC(=O)N=CC=1CO RYVNIFSIEDRLSJ-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108090000317 Chymotrypsin Proteins 0.000 description 2
- 206010053567 Coagulopathies Diseases 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- 102000010911 Enzyme Precursors Human genes 0.000 description 2
- 108010062466 Enzyme Precursors Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 108010080865 Factor XII Proteins 0.000 description 2
- 102000000429 Factor XII Human genes 0.000 description 2
- 108010080805 Factor XIa Proteins 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 241000581650 Ivesia Species 0.000 description 2
- 241000235058 Komagataella pastoris Species 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 102000008300 Mutant Proteins Human genes 0.000 description 2
- 108010021466 Mutant Proteins Proteins 0.000 description 2
- 230000004988 N-glycosylation Effects 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 2
- 241000270295 Serpentes Species 0.000 description 2
- 108010023197 Streptokinase Proteins 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- LNQVTSROQXJCDD-UHFFFAOYSA-N adenosine monophosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(CO)C(OP(O)(O)=O)C1O LNQVTSROQXJCDD-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- 229940082620 antifibrinolytics Drugs 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 239000013060 biological fluid Substances 0.000 description 2
- 239000010836 blood and blood product Substances 0.000 description 2
- 229940125691 blood product Drugs 0.000 description 2
- 230000024279 bone resorption Effects 0.000 description 2
- 230000002612 cardiopulmonary effect Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical group C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000003593 chromogenic compound Substances 0.000 description 2
- 229960002376 chymotrypsin Drugs 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000035602 clotting Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 239000003636 conditioned culture medium Substances 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000012202 endocytosis Effects 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- RQFCJASXJCIDSX-UUOKFMHZSA-N guanosine 5'-monophosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O RQFCJASXJCIDSX-UUOKFMHZSA-N 0.000 description 2
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000008105 immune reaction Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000006193 liquid solution Substances 0.000 description 2
- 239000006194 liquid suspension Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000014508 negative regulation of coagulation Effects 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 239000012457 nonaqueous media Substances 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 238000012829 orthopaedic surgery Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 210000002826 placenta Anatomy 0.000 description 2
- 230000033885 plasminogen activation Effects 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229960005202 streptokinase Drugs 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 210000002993 trophoblast Anatomy 0.000 description 2
- 229960005356 urokinase Drugs 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 1
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 description 1
- OPCHFPHZPIURNA-MFERNQICSA-N (2s)-2,5-bis(3-aminopropylamino)-n-[2-(dioctadecylamino)acetyl]pentanamide Chemical compound CCCCCCCCCCCCCCCCCCN(CC(=O)NC(=O)[C@H](CCCNCCCN)NCCCN)CCCCCCCCCCCCCCCCCC OPCHFPHZPIURNA-MFERNQICSA-N 0.000 description 1
- CAJXYXPLLJDEOB-SLFFLAALSA-N (2s)-6-amino-2-[[(2s)-2-[[(2r)-2-amino-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-n-(4-nitrophenyl)hexanamide Chemical compound CC(C)[C@@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)NC1=CC=C([N+]([O-])=O)C=C1 CAJXYXPLLJDEOB-SLFFLAALSA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- 125000003287 1H-imidazol-4-ylmethyl group Chemical group [H]N1C([H])=NC(C([H])([H])[*])=C1[H] 0.000 description 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- LNQVTSROQXJCDD-KQYNXXCUSA-N 3'-AMP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](OP(O)(O)=O)[C@H]1O LNQVTSROQXJCDD-KQYNXXCUSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- JHFNSBBHKSZXKB-VKHMYHEASA-N Asp-Gly Chemical compound OC(=O)C[C@H](N)C(=O)NCC(O)=O JHFNSBBHKSZXKB-VKHMYHEASA-N 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000006386 Bone Resorption Diseases 0.000 description 1
- 241000193764 Brevibacillus brevis Species 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 101100285688 Caenorhabditis elegans hrg-7 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000005853 Clathrin Human genes 0.000 description 1
- 108010019874 Clathrin Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 102220554117 Cyclic GMP-AMP synthase_L17T_mutation Human genes 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- KDXKERNSBIXSRK-RXMQYKEDSA-N D-lysine Chemical compound NCCCC[C@@H](N)C(O)=O KDXKERNSBIXSRK-RXMQYKEDSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000672609 Escherichia coli BL21 Species 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 108010014173 Factor X Proteins 0.000 description 1
- 108010074864 Factor XI Proteins 0.000 description 1
- 108010071241 Factor XIIa Proteins 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- DXJZITDUDUPINW-WHFBIAKZSA-N Gln-Asn Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](CC(N)=O)C(O)=O DXJZITDUDUPINW-WHFBIAKZSA-N 0.000 description 1
- PABVKUJVLNMOJP-WHFBIAKZSA-N Glu-Cys Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CS)C(O)=O PABVKUJVLNMOJP-WHFBIAKZSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- MDCTVRUPVLZSPG-BQBZGAKWSA-N His-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CNC=N1 MDCTVRUPVLZSPG-BQBZGAKWSA-N 0.000 description 1
- 101100438614 Homo sapiens CPB1 gene Proteins 0.000 description 1
- 101000653189 Homo sapiens Tissue factor pathway inhibitor Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- WMDZARSFSMZOQO-DRZSPHRISA-N Ile-Phe Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 WMDZARSFSMZOQO-DRZSPHRISA-N 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 101710132360 Kunitz-type serine protease inhibitor Proteins 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- 235000019766 L-Lysine Nutrition 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 108010023244 Lactoperoxidase Proteins 0.000 description 1
- 102000045576 Lactoperoxidases Human genes 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 108010047357 Luminescent Proteins Proteins 0.000 description 1
- 102000006830 Luminescent Proteins Human genes 0.000 description 1
- UGTZHPSKYRIGRJ-YUMQZZPRSA-N Lys-Glu Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CCC(O)=O UGTZHPSKYRIGRJ-YUMQZZPRSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241000906034 Orthops Species 0.000 description 1
- 102000004067 Osteocalcin Human genes 0.000 description 1
- 108090000573 Osteocalcin Proteins 0.000 description 1
- 102220497119 Oxytocin receptor_A16S_mutation Human genes 0.000 description 1
- IEHDJWSAXBGJIP-RYUDHWBXSA-N Phe-Val Chemical compound CC(C)[C@@H](C([O-])=O)NC(=O)[C@@H]([NH3+])CC1=CC=CC=C1 IEHDJWSAXBGJIP-RYUDHWBXSA-N 0.000 description 1
- 108010053210 Phycocyanin Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 108010022233 Plasminogen Activator Inhibitor 1 Proteins 0.000 description 1
- 102100039418 Plasminogen activator inhibitor 1 Human genes 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BEPSGCXDIVACBU-IUCAKERBSA-N Pro-His Chemical compound C([C@@H](C(=O)O)NC(=O)[C@H]1NCCC1)C1=CN=CN1 BEPSGCXDIVACBU-IUCAKERBSA-N 0.000 description 1
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 241000219061 Rheum Species 0.000 description 1
- 241000293825 Rhinosporidium Species 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 208000034189 Sclerosis Diseases 0.000 description 1
- RZEQTVHJZCIUBT-WDSKDSINSA-N Ser-Arg Chemical compound OC[C@H](N)C(=O)N[C@H](C(O)=O)CCCNC(N)=N RZEQTVHJZCIUBT-WDSKDSINSA-N 0.000 description 1
- UJTZHGHXJKIAOS-WHFBIAKZSA-N Ser-Gln Chemical compound OC[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O UJTZHGHXJKIAOS-WHFBIAKZSA-N 0.000 description 1
- LZLREEUGSYITMX-JQWIXIFHSA-N Ser-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CO)N)C(O)=O)=CNC2=C1 LZLREEUGSYITMX-JQWIXIFHSA-N 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 101710102218 Serine protease inhibitor Proteins 0.000 description 1
- 229940122055 Serine protease inhibitor Drugs 0.000 description 1
- 241000529895 Stercorarius Species 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 208000028911 Temporomandibular Joint disease Diseases 0.000 description 1
- 206010043220 Temporomandibular joint syndrome Diseases 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 102220532321 Testis-expressed protein 10_Y46E_mutation Human genes 0.000 description 1
- DSGIVWSDDRDJIO-ZXXMMSQZSA-N Thr-Thr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(O)=O DSGIVWSDDRDJIO-ZXXMMSQZSA-N 0.000 description 1
- 108010000499 Thromboplastin Proteins 0.000 description 1
- 102000002262 Thromboplastin Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102100026134 Tissue factor pathway inhibitor 2 Human genes 0.000 description 1
- 102100033571 Tissue-type plasminogen activator Human genes 0.000 description 1
- ZSXJENBJGRHKIG-UWVGGRQHSA-N Tyr-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 ZSXJENBJGRHKIG-UWVGGRQHSA-N 0.000 description 1
- JAQGKXUEKGKTKX-HOTGVXAUSA-N Tyr-Tyr Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)C1=CC=C(O)C=C1 JAQGKXUEKGKTKX-HOTGVXAUSA-N 0.000 description 1
- XCTHZFGSVQBHBW-IUCAKERBSA-N Val-Leu Chemical compound CC(C)C[C@@H](C([O-])=O)NC(=O)[C@@H]([NH3+])C(C)C XCTHZFGSVQBHBW-IUCAKERBSA-N 0.000 description 1
- JKHXYJKMNSSFFL-IUCAKERBSA-N Val-Lys Chemical compound CC(C)[C@H](N)C(=O)N[C@H](C(O)=O)CCCCN JKHXYJKMNSSFFL-IUCAKERBSA-N 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 241000235015 Yarrowia lipolytica Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical class C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000000848 adenin-9-yl group Chemical group [H]N([H])C1=C2N=C([H])N(*)C2=NC([H])=N1 0.000 description 1
- 238000012387 aerosolization Methods 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 108010004469 allophycocyanin Proteins 0.000 description 1
- 102000003801 alpha-2-Antiplasmin Human genes 0.000 description 1
- 108090000183 alpha-2-Antiplasmin Proteins 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 230000003024 amidolytic effect Effects 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 206010002022 amyloidosis Diseases 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 108010047857 aspartylglycine Proteins 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000003130 blood coagulation factor inhibitor Substances 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000002805 bone matrix Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 102220367838 c.28G>T Human genes 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 229930193282 clathrin Natural products 0.000 description 1
- 210000002806 clathrin-coated vesicle Anatomy 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000006957 competitive inhibition Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000012059 conventional drug carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000037029 cross reaction Effects 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 125000000847 cytosin-1-yl group Chemical group [*]N1C(=O)N=C(N([H])[H])C([H])=C1[H] 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000004980 dosimetry Methods 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 230000006624 extrinsic pathway Effects 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 239000000282 fibrinogen degradation product Substances 0.000 description 1
- 230000003480 fibrinolytic effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- ZFKJVJIDPQDDFY-UHFFFAOYSA-N fluorescamine Chemical compound C12=CC=CC=C2C(=O)OC1(C1=O)OC=C1C1=CC=CC=C1 ZFKJVJIDPQDDFY-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 1
- 125000003712 glycosamine group Chemical group 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 125000003738 guanin-9-yl group Chemical group O=C1N([H])C(N([H])[H])=NC2=C1N=C([H])N2[*] 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 208000031169 hemorrhagic disease Diseases 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 230000006662 intracellular pathway Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 230000006623 intrinsic pathway Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 125000000741 isoleucyl group Chemical group [H]N([H])C(C(C([H])([H])[H])C([H])([H])C([H])([H])[H])C(=O)O* 0.000 description 1
- 229950003188 isovaleryl diethylamide Drugs 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229940057428 lactoperoxidase Drugs 0.000 description 1
- 108010079923 lambda Spi-1 Proteins 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 108010009298 lysylglutamic acid Proteins 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 102000043253 matrix Gla protein Human genes 0.000 description 1
- 108010057546 matrix Gla protein Proteins 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 208000037891 myocardial injury Diseases 0.000 description 1
- 231100000417 nephrotoxicity Toxicity 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 235000021231 nutrient uptake Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 230000003349 osteoarthritic effect Effects 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- RXNXLAHQOVLMIE-UHFFFAOYSA-N phenyl 10-methylacridin-10-ium-9-carboxylate Chemical compound C12=CC=CC=C2[N+](C)=C2C=CC=CC2=C1C(=O)OC1=CC=CC=C1 RXNXLAHQOVLMIE-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 125000000405 phenylalanyl group Chemical group 0.000 description 1
- 108010084572 phenylalanyl-valine Proteins 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000004983 pleiotropic effect Effects 0.000 description 1
- 229920001485 poly(butyl acrylate) polymer Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000019 pro-fibrinolytic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 238000010377 protein imaging Methods 0.000 description 1
- 239000002213 purine nucleotide Substances 0.000 description 1
- 150000003212 purines Chemical group 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 102200042454 rs2070025 Human genes 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 125000004149 thio group Chemical group *S* 0.000 description 1
- 230000002537 thrombolytic effect Effects 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 125000003294 thymin-1-yl group Chemical group [H]N1C(=O)N(*)C([H])=C(C1=O)C([H])([H])[H] 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 229960001479 tosylchloramide sodium Drugs 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 229940108519 trasylol Drugs 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- 108010087967 type I signal peptidase Proteins 0.000 description 1
- 108010003137 tyrosyltyrosine Proteins 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 125000000845 uracil-1-yl group Chemical group [*]N1C(=O)N([H])C(=O)C([H])=C1[H] 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 108010036320 valylleucine Proteins 0.000 description 1
- 108010073969 valyllysine Proteins 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
Disclosed are methods and compositions relating to plasmin inhibition. 4180265_1 (GHMallers) P78S33AU.1
Description
METHODS AND COMPOSITIONS RELATED TO MUTANT KUNITZ DOMAIN OF TFPI-2 The entire disclosure in the complete specification of our Australian Patent 5 Application No. 2006330424 is by this cross-reference incorporated into the present specification. BACKGROUND OF THE INVENTION The agent mainly responsible for fibrinolysis is plasmin, the activated form of [0 plasminogen. Many substances can activate plasminogen, including activated Hageman factor, streptokinase, urokinase (uPA), tissue-type plasminogen activator (tPA), and plasma kallikrein (pKA). pKA is both an activator of the zymogen form of urokinase and a direct plasminogen activator. Plasmin is undetectable in normal circulating blood, but plasminogen, the zymogen, is 15 present at about 3 kM. An additional, unmeasured amount of plasminogen is bound to fibrin and other components of the extracellular matrix and cell surfaces. Normal blood contains the physiological inhibitor of plasmin, a2-plasmin inhibitor (a2-PI), at about 2 pIM. Plasmin and 02-PT form a 1:1 complex. Matrix or cell bound-plasmin is relatively inaccessible to inhibition by c2-PI. Thus, activation of plasmin can exceed the neutralizing capacity of a2 20 PI causing a profibrinolytic state. Plasmin, once formed, degrades fibrin clots, sometimes prematurely; digests fibrinogen (the building material of clots) impairing hemostasis by causing formation of friable, easily lysed clots from the degradation products, and inhibition of platelet adhesion/aggregation by the fibrinogen degradation products; interacts directly with platelets 25 to cleave glycoproteins Ib and Ilb/Ila preventing adhesion to injured endothelium in areas of high shear blood flow and impairing the aggregation response needed for platelet plug formation (ADEL86); proteolytically inactivates enzymes in the extrinsic coagulation pathway further promoting a prolytic state. Inappropriate fibrinolysis and fibrinogenolysis leading to excessive bleeding is a 30 frequent complication of surgical procedures that require extracorporeal circulation, such as cardiopulmonary bypass, and is also encountered in thrombolytic therapy and organ transplantation, particularly liver. Other clinical conditions characterized by high incidence of bleeding diathesis include liver cirrhosis, amyloidosis, acute promyelocytic leukemia, and la 4180265_1 (GHMatters) P78533.AV.1 solid tumors. Restoration of hemostasis requires infusion of plasma and/or plasma products, which risks immunological reaction and exposure to pathogens, e.g. hepatitis virus and HIV. Very high blood loss can resist resolution even with massive infusion. When judged life-threatening, the hemorrhage is treated with antifibrinolytics such as e-amino caproic acid (See HOOV93) (EACA), tranexamic acid, or aprotinin (NEUH89). Aprotinin is also known as Trasylolu and as Bovine Pancreatic Trypsin Inhibitor (BPTI). Hereinafter, aprotinin will be referred to as "BPT." EACA and tranexamic acid only prevent plasmin from binding fibrin by binding the kringles, thus leaving plasmin as a free protease in plasma. BPTI is a direct inhibitor of plasmin and is the most effective of these agents. Due to the potential for ) thrombotic complications, renal toxicity and, in the case of BPTI, immunogenicity, these agents are used with caution and usually reserved as a "last resort" (PUTT89). All three of the antifibrinolytic agents lack target specificity and affinity and interact with tissues and organs through uncharacterized metabolic pathways. The large doses required due to low affinity, side effects due to lack of specificity and potential for immune reaction and 5 organ/tissue toxicity augment against use of these antifibrinolytics prophylactically to prevent bleeding or as a routine postoperative therapy to avoid or reduce transfusion therapy. Thus, there is a need for a safe antifibrinolytic. Excessive bleeding can result from deficient coagulation activity, elevated fibrinolytic activity, or a combination of the two conditions. In most bleeding diatheses one .0 must control the activity of plasmin. The clinically beneficial effect of bovine pancreatic trypsin inhibitor (BPTI) in reducing blood loss is thought to result from its inhibition of plasmin (Kd approximately 0.3 NM) or of plasma kallikrein (Kd approximately 100 nM) or both enzymes. Interestingly, BPTI-induced hypersensitivity reaction occurs in about 1.2 to 2.7 25 percent of patients reexposed to aprotinin (30). Of these reactions 50 percent are life threatening with 9 percent fatality rate (30). Thus, a human molecule that is selectively modified to make it more potent is highly desirable. Such molecule is also expected to be less immunogenic. Side effects and toxicity issues for the use of BPTI have recently been outlined (Manago et al., N Engl I Med 2006;354:353-65). Textilinin has also been compared 30 with aprotinin, however, textilinin is a snake protein and therefore has immunogenecity issues associated with it. (Pathophysiol Haemost Tbromb. 2005;34(4-5):188-93 and U.S. Patent 7,070,969). -2-- What is needed in the art is a plasmin inhibitor that is as potent (or more potent) than BPTI, but that is almost identical to a human protein domain, thereby offering similar therapeutic potential but posing less potential for antigenicity. It is to be understood that, if any prior art publication is referred to herein, such 5 reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country. SUMMARY OF THE INVENTION In accordance with the purpose(s) of this invention, as embodied and broadly described herein, this invention relates to a polypeptide comprising SEQ ID NO: 1 with one 10 or more mutations. For example, provided herein is SEQ ID NO: 1 with one or more of the following substitutions: leucine is changed to arginine or lysine at position 17 (BPTI numbering); tyrosine is changed to glutamic acid at position 46; tyrosine is changed to threonine at position 11; aspartic acid is changed to tyrosine or glutamic acid at position 10; alanine is changed to methionine at position 16; alanine is changed to glycine at position 16; 15 alanine is changed to seine at position 16. In a first aspect, the invention provides an isolated KD1 polypeptide comprising an amino acid sequence with at least 93% identity to the KD1 amino acid sequence set forth in Figure 1 as amino acids 10-67 of SEQ ID NO: 1, wherein amino acid 26 of SEQ ID NO: 1 is changed from leucine to arginine or lysine, and wherein the polypeptide inhibits plasmin 20 activity and has decreased anti-coagulation activity as compared to a wild type KD1 polypeptide. In a second aspect, the invention provides a composition comprising the KD1 polypeptide of the first aspect. In a third aspect, the invention provides an isolated nucleic acid encoding the KD1 25 polypeptide of the first aspect. In a fourth aspect, the invention provides a transgenic non-human animal comprising the nucleic acid of the third aspect. In a fifth aspect, the invention provides a method of inhibiting at least one activity of plasmin comprising contacting plasmin with an effective amount of the KD1 polypeptide of 30 the first aspect or the composition of the second aspect. In a sixth aspect, the invention provides a method of treating a subject in need of inhibition of a plasmin activity, comprising administering to the subject an effective amount of the KD1 polypeptide of the first aspect or the composition of the second aspect. 3 7383484_1 (GHMatters) P78533.AU.1 5-Feb-16 In a seventh aspect, the invention provides a method of therapeutically and/or prophylactically treating rheumatoid arthritis in a subject in need thereof, comprising administering to the subject an effective amount of the KD1 polypeptide of the first aspect or the composition of the second aspect. 5 In an eighth aspect, the invention provides a method of inhibiting plasmin in a subject in need thereof comprising administering to the subject an effective amount of the nucleic acid of the third aspect. In a ninth aspect, the invention provides use of the polypeptide of the first aspect, in the manufacture of a medicament for inhibiting at least one activity of plasmin. 10 In a tenth aspect, the invention provides use of the polypeptide of the first aspect, in the manufacture of a medicament for treating a subject in need of inhibition of a plasmin activity. In an eleventh aspect, the invention provides use of the polypeptide of the first aspect, in the manufacture of a medicament for therapeutically and/or prophylactically treating 15 rheumatoid arthritis. In a twelfth aspect, the invention provides use of the nucleic acid of the third aspect, in the manufacture of a medicament for inhibiting plasmin in a subject. In a thirteenth aspect, the invention provides a method of identifying a KD1 polypeptide variant that inhibits plasmin activity and has decreased anti-coagulation activity, 20 comprising: (a) modeling a crystal structure of plasmin with a variant of a KD1 polypeptide, said variant comprising a charged or polar amino acid at position 17, using BPTI numbering system; (b) determining interaction between the plasmin and the variant of the KD1 25 polypeptide; and (c) based on results of step (b), determining if the variant of KDi is a plasmin inhibitor; and (d) based on the results of step (c), determining if the KD1 polypeptide variant has decreased anti-coagulation activity as compared to wild-type KD1 polypeptide. 30 Also disclosed herein are the polypeptides that inhibit plasmin. Also disclosed herein are polypeptides that inhibit plasmin and have reduced anticoagulation activity compared to the wild type Kunitz domain of TFPI-2. Also disclosed herein are polypeptides that are specific as antifibrinolytic agents. 3a 7383484_1 (GHMatters) P78533.AU.1 5-Feb-16 Also disclosed are compositions comprising the polypeptides discussed herein. Also disclosed are nucleic acids encoding the polypeptides disclosed herein. Also disclosed are methods of inhibiting at least one activity of plasmin comprising contacting plasmin with an effective amount of a polypeptide disclosed herein. 5 Also disclosed is a method of treating a subject in need of inhibition of a plasmin activity, comprising administering to the subject an effective amount of a polypeptide disclosed herein. Examples of diseases, disorders, and treatments relating to the need of inhibition of plasmin include, but are not limited to, tumorogenesis, angiogenesis, bone remodeling, surgery, hemophilia, orthopedic surgery, coronary artery bypass grafting 10 (CABG), and systemic inflammatory response syndrome (SIRS). Also disclosed is a method of treating rheumatoid arthritis in a subject in need thereof, comprising administering to the subject an effective amount of a polypeptide disclosed herein. Also disclosed is a method of identifying a plasmin inhibitor comprising: modeling a 15 crystal structure of plasmin with a variant of KD 1; determining interaction between the plasmin and the variant of KD1; based on results of the interaction, determining if the variant of KD 1 is a plasmin inhibitor. 3b 7383484_1 (GHMatters) P78533.AU.1 5-Feb-16 Also disclosed is a method of inhibiting plasmin in a subject in need thereof comprising administering to the subject an effective amount of the nucleic acid disclosed herein. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention. Figure 1 shows a model of BPTI and KD1 (Kunitz domain of TFPI-2) with plasmin. Top shows the sequence alignment of BPTI (SEQ IID NO:5) KD1 (amino acids 10-67 of ) SEQ ID NO:1)l. Addition of 9 to the sequence will result in KDI numbering. In the model, plasmin, BPTI and KD1 are shown as ribbons. Plasmin residues are shown with a suffix p. On the left is the BPTIplasmin complex and on the right is the KD1:plasmin complex . Residues 9,11,22,33 and 35 both in the BPTI and KD1 form the hydrophobic core. The hydrophobic patch in BPTI as well as in KD1 comprised of residues 17, 8, 19, and 34 is 5 shown interacting with the hydrophobic patch in plasmin consisting of residues 37{583}, 39{585}, and 41{587}. G1039 of the acidic patch in KD1 interacts directly with Argl75 {719} and possibly through water molecules to Arg100 {644} and Arg221 {767} of the basic patch in plasmin; since in BPTI residue 39 is Arg, such interactions with plasmin are not possible. Tyr46 of KD1 interacts with Lys60A (607) and Arg60D {610} in plasmin; 0 since residue 46 is Lys in BPTI, such interactions are not possible. Arg17 in EPTI interacts with Glu73 (623) in plasmin; since residue 17 is Leu in KD1, such interaction are not possible. Thr1 1 in BPTI makes H-bond with the side chain N of Gln192{738}; since residue 11 is Tyr in KD1, such interactions are not possible. Residue 192 is not shown in the figure. Also not shown is the residue 20, which is Arg in both BPTI and KD1 that interacts with the 25 Glu60 {606} in plasmin. The P1 residue 15 in BPTI is Lys that interacts with the side chain o of Ser190 (736} and Asp189 {735} through a water molecule is shown. The P1 residue 15 in KD1 is Arg that also interacts with Ser190 and Asp 189 in plasmin is shown. The numbering system used for plasinn is that of chymotrypsin. Where insertions occur, the chymotrypsin numbering is followed by a capital letter such as 60A and 60D. The numbers 30 in curly brackets represent plasminogen numbering. Figure 2 shows control experiments showing Inhibition of Plasmin by BPTI at different times (0.5 & lbr) and substrate (S-2251) concentrations (0.5 & 1mM). BPTI binds -4plasmin with an apparent dissociation constant Kd of 1± 0.5). Also there does not seem to be any substrate-induced displacement of the bound inhibitor. Figure 3 shows inhibition of plasmin by WTKD1 at different times (0.5 and 1hr) and substrate concentrations (0.5 and 1mM) WTKD1 binds plasmin with an apparent Kd of 5 22t2 nM. Also there is not any significant substrate induced displacement of inhibitor. Figure 4 shows inhibition of plasmin by WTKD1, R15KIL17R and R15K (note that in the figures, R24K=R15K and L26R=LI7R, where R24K and L26R are KD1 numbering, and R15K and L26R are BPTI numbering). The incubation time was 1hr at 37 0 C and substrate concentration was 1 mM for the remaining activity measurements. The R1 5K/L17R mutant D inhibits plasmin with an apparent Kd of 3±1 nM. The R24K mutant inhibits plasmin with a Kd of 9-11 nM. The WT KD1 inhibits plasmin with a Kd of 22 nM, which is two-fold different from the Kd of 10±2 nM for the R24K mutant. The L26R (L17R in BPTI numbering) gave KD value of 6±2, which is -4-fold better than the WT KD 1. Figure 5 shows an example wherein surface activator plus phospholipid was mixed 5 with normal human plasma in equal amounts (75 microliter). Ten microliter of buffer containing inhibitor (KDI wt, KD1 L26R or BPTI) was added and the sample incubated for five minutes at 371C. Seventy-five microliter of 25 mM CaC1 2 prewarmed to 37"C was then added and the time needed to form the clot through the intrinsic pathway of blood coagulation was noted. The data show that KD1 WT and BPTI each inhibit the intrinsic M0 pathway of coagulation whereas L26R mutant (LI7R in BPTI numbering) ofKD1 is ineffective in this regard. Similarly, the extrinsic pathway of coagulation is expected not to be inhibited by the L26R change. Figure 6 shows both wt KDI and L26R inhibited mouse plasmin effectively. The WtKdl and the L26R mutant are quite effective in inhibiting mouse plasmin with an 25 apparent KD value of-80 nM. Complete inhibition was obtained at 1pM for both wt and L26R KD1. DETAILED DESCRIPTION OF THE INVENTION The present invention may be understood more readily by reference to the following detailed description of preferred embodiments of the invention and the examples included 30 therein and to the figures and their previous as well as the following description. -5- A. DEFINITIONS In the claims which follow and in the description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, 5 i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention. As used in the specification and the appended claims, the singular forms a, "an" and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a small molecule" includes mixtures of one or more small molecules, [0 and the like. Ranges may be expressed herein as from "about" one particular value, and/or to "about" another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be 15 understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. The terms "higher," "increases," "elevates," or "elevation" refer to increases above basal levels, e.g., as compared to a control. The terms "low," "lower," "reduces," or 20 "reduction" refer to decreases below basal levels, e.g., as compared to a control. B. METHODS OF USING Bovine pancreatic trypsin inhibitor (BPTI) is a Kunitz-type serine protease inhibitor. It inhibits plasmin and it is being used in open heart surgery and recommended in orthopaedic surgery to minimize preoperative bleeding and administration of blood products 25 (1-5). Recently, plasminogen/plasmin system has also been implicated in development of the rheumatoid arthritis (6-10) as well as in bone remodeling and resorption (11-15) and tumorogenesis and angiogenesis (8, 16, 17). Human tissue factor pathway inhibitor-2 (TFPI-2), also known as matrix serine protease inhibitor or placental protein 5, contains three Kunitz-type (similar to BPTI) 30 domains in tandem with a short acidic amino terminus and very basic C-terminal tail (18,19). A variety of cells, including keratinocytes, dermal fibroblasts, smooth muscle cells, syncytiotrophoblasts, synovioblasts, and endothelial cells synthesize and secrete TFPI-2 into the extracellular matrix (ECM) (20-23). TFPI-2 is found in three forms due to differences in 6 410265_1 (GHMatuers) P78533.AU,l The crystal structure of BPTI (26) and that of the KD1 (27) with trypsin have been determined. The crystal structure of the protease domain of human plasmin has also been determined (28). Using these structures as templates, the complexes of plasmin with BPTI as well as plasmin and KD1 have been modeled with a high degree of accuracy. The relative 5 positions of the inhibitors and the proteinase domain of plasmin were maintained and minor adjustments were only made in the side chains. Hydrophobic/van der Waals, hydrogen bonds, and ionic interactions were observed between each proteinase-inbibitor complex. All of these interactions were taken into consideration in evaluating each inhibitor-proteinase complex, and it was assumed that all potential hydrogen bond donors and acceptors would 0 participate in these interactions. Bulk solvent was excluded from the proteinase-inhibitor complex and, accordingly, it was anticipated that hydrogen bonds and ionic interactions that may play an important role in specificity could be accurately evaluated. The protocols for modeling these complexes have been described earlier (29). Fig. 1 depicts the residues in BPTI and KD1 that interacts with plasmin. From the 5 models presented in Figure 1, changing Leu17 to Arg, and Tyr1I1 to Thr in KD1I yields a molecule that has significantly higher affinity and specificity towards human plasnin. Changing Tyr46 to Glu and Asp 10 to Tyr (or Glu) also increases affinity and specificity towards inhibiting plasmin. On the other hand, changing Glu39 to Arg and Tyr46 to Lys can result in substantial loss of affinity of KDI for the human plasmin. Systematically, changing 0 those residues that result in gain of function such as modified KD1 with Thr1 1 and Arg17 yields a molecule that is more potent than BPTI and native KD 1. Such a molecule can also be less immunogenic than BPTI. The basic tail to the selective molecule can also be added to the C-terminal containing few extra residues as a linker such that its half-life in the extracellular matrix is increased. Herein disclosed are methods of inhibiting at least one 25 activity of plasmin comprising contacting plasmin with an effective amount of a polypeptide disclosed herein. Some forms of the disclosed molecules and polypeptides can inhibit plasmin but have reduced anticoagulation activity compared to the wild type Kunitz domain of TFPI-2. Some forms of the disclosed molecules and polyp eptides are also specific as antifibrinolytic 30 agents. Thus, some forms of the disclosed molecules and polypeptides are more active as antifibrinoltic agents but no longer have anticoagulant activity or have reduced anticoagulant activity. This property makes such molecules and polyp eptides quite useful for preventing bleeding. -7glycosylation with Mr 27,000, 30,000 and 32,000(24). First Kunitz domain (KD1) of human TFPI-2 is homologous to BPTI and it also inhibits plasmin (25). Although KDI is specific for inhibiting plasmin, the other two Kunitz domains in TFPI-2 have no discernable inhibitory activity. The C-terminal basic tail, however, may anchor TFPI-2 to the 5 glycosamine moieties in the ECM for localized inhibition of plasmin. 6a 4160265_1 (GHMallers) P78533.AU-1 Also disclosed is a method of treating a subject in need of inhibition of a plasmin activity, comprising administering to the subject an effective amount of a polypeptide disclosed herein. Examples of diseases, disorders, and treatments relating to the need of inhibition of plasmin include, but are not limited to, tumorogenesis, angiogenesis, bone remodeling, surgery, hemophilia, orthopedic surgery, coronary artery bypass grafting (CABG), and systemic inflammatory response syndrome (SIRS). Also disclosed is a method of treating rheumatoid arthritis in a subject in need thereof, comprising administering to the subject an effective amount of a polypeptide disclosed herein. Also disclosed is a method of identifying a plasmin inhibitor comprising: modeling a crystal structure of 'plamsin with a variant of KD1; determining interaction between the plasmin and the variant of KD1; based on the interaction, determining if the variant of KD1 is a plasmin inhibitor. Also disclosed is a method of inhibiting plasmin in a subject in need thereof 5 comprising administering to the subject an effective amount of the nucleic acid disclosed herein. Also disclosed is a method of showing efficacy of a compound for human use in a mosue model of reduced blood loss. It has been discovered that wild-type KD1 and the disclosed mutants both inhibit mouse plasmin (see Example 3). Thus, the mutant can be O used to show efficacy in a mouse model of reduced blood loss. Proteins of this invention may be produced by any conventional technique, including nonbiological synthesis by sequential coupling of components, e.g. amino acids, production by recombinant DNA techniques in suitable host cells, and semisynthesis, for example, by removal of undesired sequences and coupling of synthetic replacement sequences. 25 Proteins disclosed herein are preferably produced, recombinantly, in a suitable host, such as bacteria from the genera Bacillus, Escherichia, Salmonella, Erwinia, and yeasts from the genera Hansenula, Kluyveromyces, Pichia, Rhinosporidium, Saccharomyces, and Schizosaccharonmyces, or cultured mammalian cells such as-COS-1. The more preferred hosts are microorganisms of the species Pichia pastoris, Bacillus subtilis, Bacillus brevis, 30 Saccharomyces cerevisiae, Escherichia coli and Yarrowia lipolytica. Any promoter which is functional in the host cell may be used to control gene expression. -8- The proteins can be secreted and can be obtained from conditioned medium. Secretion is the preferred route because proteins are more likely to fold correctly and can be produced in conditioned medium with few contaminants. Secretion is not required. Proteins designed to lack N-linked glycosylation sites to reduce potential for i antigenicity of glycogroups can be used, and so that equivalent proteins can be expressed in a wide variety of organisms including: 1) E. coli, 2) B. subtilis, 3) P. pastoris, 4) S. cerevisiae, and 5) mammalian cells. Several means exist for reducing the problem of host cells producing proteases that degrade the recombinant product. Overexpression of the B. subtilis signal peptidase in E. ) coli. leads to increased expression of a heterologous fusion protein. It has also been reported that addition of PMSF (a shrine proteases inhibitor) to the culture medium improved the yield of a fusion protein. Other factors that can affect production of these and other proteins disclosed herein include: 1) codon usage (optimizing codons for the host is preferred), 2) signal sequence, 3) 5 amino-acid sequence at intended processing sites, presence and localization of processing enzymes, deletion, mutation, or inhibition of various enzymes that might alter or degrade the engineered product and mutations that make the host more permissive in secretion (permissive secretion hosts are preferred). Reference works on the general principles of recombinant DNA technology include 0 Watson et al., Molecular Biology of the Gene, Volumes I and II, The Benjamin/Cummings Publishing Company, Inc., Menlo Park, Calif. (1987); Darnell et aL, Molecular Cell Biology, Scientific American Books, Inc., New York, N.Y. (1986); Lewin, Genes II, John Wiley & Sons, New York, N.Y. (1985); Old, et al., Principles of Gene Manipulation: An Introduction to Genetic Engineering, 2d edition, University of California Press, Berkeley, Calif. (1981); 25 Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989); and Ausubel et al, Current Protocols in Molecular Biology, Wiley Interscience, N.Y., (1987, 1992). These references are herein entirely incorporated by reference as are the references cited therein. Any suitable method can be used to test the compounds of this invention. Scatchard 30 (Ann NY Acad Sci (1949) 51:660-669) described a classical method of measuring and analyzing binding which is applicable to protein binding. This method requires relatively pure protein and the ability to distinguish bound protein from unbound. -9-- A second appropriate method of measuring Kd is to measure the inhibitory activity against the enzyme. If the Kd to be measured is in the 1 nM to 1 pM range, this method requires chromogenic or fluorogenic substrates and tens of micrograms to milligrams of relatively pure inhibitor. For the proteins of this invention, having Kd in the range 5 nM to i 50 pM, nanograms to micrograms of inhibitor suffice. When using this method, the competition between the inhibitor and the enzyme substrate can give a measured Ki that is higher than the true Ki. A third method of determining the affinity of a protein for a second material is to have the protein displayed on a genetic package, such as M13, and measure the ability of the 3 protein to adhere to the immobilized "second material." This method is highly sensitive because the genetic packages can be amplified. Inhibitors of known affinity for the protease are used to establish standard profiles against which other phage-displayed inhibitors are judged. Any other suitable method of measuring protein binding can also be used. The proteins of this invention can have a Kd for plasmin of at most about 5 nM, at 5 most about 300 pM, or 100 pM or less. The binding can be inhibitory so that Ki is the same as Kd. The Ki of QS4 for plasmin is about 2 nM. The Ki of SPI 1 for plasmin is about 88 pM. The compositions disclosed herein can be administered in vivo in a pharmaceutical acceptable carrier. By "pharmaceutically acceptable" is meant a material that is not ,0 biologically or otherwise undesirable, i.e., the material may be administered to a subject, along with the nucleic acid or vector, without causing any undesirable biological effects or interacting in a deleterious manner with any of the other components of the pharmaceutical composition in which it is contained. The carrier would naturally be selected to minimize any degradation of the active ingredient and to minimize any adverse side effects in the 25 subject, as would be well known to one of skill in the art. The compositions may be administered orally, parenterally (e.g., intravenously), by intramuscular injection, by intraperitoneal injection, transdermally, extracorporeally, topically or the like, including topical intranasal administration or administration by inhalant. As used herein, "topical intranasal administration" means delivery of the compositions into 30 the nose and nasal passages through one or both of the nares and can comprise delivery by a spraying mechanism or droplet mechanism, or through aerosolization of the nucleic acid or vector. Administration of the compositions by inhalant can be through the nose or mouth via delivery by a spraying or droplet mechanism. Delivery can also be directly to any area of the -10respiratory system (e.g., lungs) via intubation. The exact amount of the compositions required will vary from subject to subject, depending on the species, age, weight and general condition of the subject, the severity of the allergic disorder being treated, the particular nucleic acid or vector used, its mode of administration and the like. Thus, it is not possible to specify an exact amount for every composition. However, an appropriate amount can be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein. Parenteral administration of the composition, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution of suspension in liquid prior to injection, or as emulsions. A more recently revised approach for parenteral administration involves use of a slow release or sustained release system such that a constant dosage is maintained. See, e.g., U.S. Patent No. 3,610,795, which is incorporated by reference herein. The materials may be in solution, suspension (for example, incorporated into 5 microparticles, liposomes, or cells). These may be targeted to a particular cell type via antibodies, receptors, or receptor ligands. The following references are examples of the use of this technology to target specific proteins to tumor tissue (Senter, et al., Bioconjugate Chem., 2:447-451, (1991); Bagshawe, KD., Br. I. Cancer, 60:275-281, (1989); Bagshawe, et al., Br. J. Cancer, 58:700-703, (1988); Senter, et al., Bioconjugate Chem., 4:3-9, (1993); .O Battelli, et al., Cancer Immunol. Immunother., 35:421-425, (1992); Pietersz and McKenzie, Inmmunolog. Reviews, 129:57-80, (1992); and Roffler, et al., Biochem. Pharmacol, 42:2062 2065, (1991)). Vehicles such as "stealth" and other antibody conjugated liposomes (including lipid mediated drug targeting to colonic carcinoma), receptor mediated targeting of DNA through cell specific ligands, lymphocyte directed tumor targeting, and highly 25 specific therapeutic retroviral targeting of murine glioma cells in vivo. The following references are examples of the use of this technology to target specific proteins to tumor tissue (Hughes et al., Cancer Research, 49:6214-6220, (1989); and Litzinger and Huang, Biochimica et Biophysica Acta, 1104:179-187, (1992)). In general, receptors are involved in pathways of endocytosis, either constitutive or ligand induced. These receptors cluster in 30 clathrin-coated pits, enter the cell via clathrin-coated vesicles, pass through an acidified endosome in which the receptors are sorted, and then either recycle to the cell surface, become stored intracellularly, or are degraded in lysosomes. The internalization pathways serve a variety of functions, such as nutrient uptake, removal of activated proteins, clearance -11of macromolecules, opportunistic entry of viruses and toxins, dissociation and degradation of ligand, and receptor-level regulation. Many receptors follow more than one intracellular pathway, depending on the cell type, receptor concentration, type of ligand, ligand valency, and ligand concentration. Molecular and cellular mechanisms of receptor-mediated endocytosis has been reviewed (Brown and Greene, DNA and Cell Biology 10:6, 399-409 (1991)). The compositions disclosed herein can be used therapeutically in combination with a pharmaceutically acceptable carrier. Suitable carriers and their formulations are described in Remington: The Science and ) Practice ofPharmacy (19th ed.) ed. A.R. Gennaro, Mack Publishing Company, Easton, PA 1995. Typically, an appropriate amount of a pharmaceutically-acceptable salt is used in the formulation to render the formulation isotonic. Examples of the pharmaceutically-acceptable carrier include, but are not limited to, saline, Ringer's solution and dextrose solution. The pH of the solution is preferably from about 5 to about 8, and more preferably from about 7 to 5 about 7.5. Further carriers include sustained release preparations such as semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, liposomes or microparticles. It will be apparent to those persons skilled in the art that certain carriers may be more preferable depending upon, for instance, the route of administration and concentration of composition being administered. .0 . Pharmaceutical carriers are known to those skilled in the art. These most typically would be standard carriers for administration of drugs to humans, including solutions such as sterile water, saline, and buffered solutions at physiological pH. The compositions can be administered intramuscularly or subcutaneously. Other compounds will be administered according to standard procedures used by those skilled in the art. 25 Pharmaceutical compositions may include carriers, thickeners, diluents, buffers, preservatives, surface active agents and the like in addition to the molecule of choice. Pharmaceutical compositions may also include one or more active ingredients such as antimicrobial agents, antiinflammatory agents, anesthetics, and the like. The pharmaceutical composition may be administered in a number of ways depending 30 on whether local or systemic treatment is desired, and on the area to be treated. Administration may be topically (including ophthalmically, vaginally, rectally, intranasally), orally, by inhalation, or parenterally, for example by intravenous drip, subcutaneous, intraperitoneal or -12intramuscular injection. The disclosed antibodies can be administered intravenously, intraperitoneally, intramuscularly, subcutaneously, intracavity, or transdermally. Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like. Formulations for topical administration may include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, 5 aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Compositions for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets, or tablets. Thickeners, flavorings, diluents, emulsifiers, dispersing aids or binders may be desirable. Some of the compositions may potentially be administered as a pharmaceutically 0 acceptable acid- or base- addition salt, formed by reaction with inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, and phosphoric acid, and organic acids such as formic acid, acetic acid, propionic acid, glycolic acid, lactic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, maleic acid, and fumaric acid, or by reaction with an inorganic base such as sodium hydroxide, 25 anmonium hydroxide, potassium hydroxide, and organic bases such as mono-, di-, trialkyl and aryl anines and substituted ethanolamines. Effective dosages and schedules for administering the compositions may be determined empirically, and making such determinations is within the skill in the art. The dosage ranges for the administration of the compositions are those large enough to produce 30 the desired effect in which the symptoms of the disorder are affected. The dosage should not be so large as to cause adverse side effects, such as unwanted cross-reactions, anaphylactic reactions, and the like. Generally, the dosage will vary with the age, condition, sex and extent of the disease in the patient, route of administration, or whether other drugs are -13included in the regimen, and can be determined by one of skill in the art. The dosage can be adjusted by the individual physician in the event of any counterindications. Dosage can vary, and can be administered in one or more dose administrations daily, for one or several days. Guidance can be found in the literature for appropriate dosages for given classes of pharmaceutical products. Proteins of this invention can be applied in vitro to any suitable sample that might contain plasmin to measure the plasmin present. To do so, the assay can include a Signal Producing System (SPS) providing a detectable signal that depends on the amount of plasmin present. The signal may be detected visually or instrumentally. Possible signals include production of colored, fluorescent, or luminescent products, alteration of the characteristics of absorption or emission of radiation by an assay component or product, and precipitation or agglutination of a component or product. The component of the SPS most intimately associated with the diagnostic reagent is called the "label". A label may be, e.g., a radioisotope, a fluorophore, an enzyme, a co 5 enzyme, an enzyme substrate, an electron-dense compound, or an agglutinable particle. A radioactive isotope can be detected by use of, for example, a y counter or a scintillation counter or by autoradiography. Isotopes which are particularly useful are 3H, 1251, 1311, 35S, 14C, and, preferably, 1251. It is also possible to label a compound with a fluorescent compound. When the fluorescently labeled compound is exposed to light of the proper wave 0 length, its presence can be detected. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde, and fluorescamine. Alternatively, fluorescence-emitting metals, such as 125Eu or other lanthanide, may be attached to the binding protein using such metal chelating groups as diethylenetriaminepentaacetic acid or ethylenediamine-tetraacetic 25 acid. The proteins also can be detectably labeled by coupling to a cherniluminescent compound, such as luminol, isolumino, theromatic acridinium ester, imidazole, acridinium salt, and oxalate ester. Likewise, a bioluminescent compound, such as luciferin, luciferase and aequorin, may be used to label the binding protein. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Enzyme labels, such as 30 horseradish peroxidase and alkaline phosphatase, are preferred. There are two basic types of assays: heterogeneous and homogeneous. In heterogeneous assays, binding of the affinity molecule to analyte does not affect the label; thus, to determine the amount of analyte, bound label must be separated from free label. In -14homogeneous assays, the interaction does affect the activity of the label, and analyte can be measured without separation. In general, a plasmin-binding protein (PBP) may be used diagnostically in the same way that an antiplasmin antibody is used. Thus, depending on the assay format, it may be used to assay plasmin, or, by competitive inhibition, other substances which bind plasmin. The sample will normally be a biological fluid, such as blood, urine, lymph, semen, milk, or cerebrospinal fluid, or a derivative thereof, or a biological tissue, e.g., a tissue section or homogenate. The sample could be anything. If the sample is a biological fluid or tissue, it may be taken from a human or other mammal, vertebrate or animal, or from a plant. 0 The preferred sample is blood, or a fraction or derivative thereof. In one embodiment, the plasmin-binding protein (PBP) is immobilized, and plasmin in the sample is allowed to compete with a known quantity of a labeled or specifically labelable plasmin analogue. The "plasmin analogue" is a molecule capable of competing with plasmin for binding to the PBP, which includes plasmin itself It may be labeled already, 5 or it may be labeled subsequently by specifically binding the label to a moiety differentiating the plasmin analogue from plasmin. The phases are separated, and the labeled plasmin analogue in one phase is quantified. In a "sandwich assay," both an insolubilized plasmin-binding agent (PBA), and a labeled PBA are employed. The plasmin analyte is captured by the insolubilized PBA and is ?O tagged by the labeled PBA, forming a tertiary complex. The reagents may be added to the sample in any order. The PBAs may be the same or different, and only one PBA need be a PBP according to this invention (the other may be, e.g., an antibody). The amount of labeled PBA in the tertiary complex is directly proportional to the amount of plasmin in the sample. The two embodiments described above are both heterogeneous assays. A 25 homogeneous assay requires only that the label be affected by the binding of the PBP to plasmin. The plasmin analyte may act as its own label if a plasmin inhibitor is used as a diagnostic reagent. A label may be conjugated, directly or indirectly (e.g., through a labeled anti-PBP antibody), covalently (e.g., with SPDP) or noncovalently, to the plasmin-binding protein, to 30 produce a diagnostic reagent. Similarly, the plasmin binding protein may be conjugated to a solid phase support to form a solid phase ("capture") diagnostic reagent. Suitable supports include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, and magnetite. The carrier can be soluble to some extent or insoluble for the purposes of this -15invention. The support material may have any structure so long as the coupled molecule is capable of binding plasmin. A Kunitz domain that binds very tightly to plasmin can be used for in vivo imaging. Diagnostic imaging of disease foci was considered one of the largest commercial opportunities for monoclonal antibodies, but this opportunity has not been achieved. Despite considerable effort, only two monoclonal antibody-based imaging agents have been approved. The disappointing results obtained with monoclonal antibodies is due in large measure to: i) inadequate affinity and/or specificity; ii) poor penetration to target sites; iii) slow clearance from nontarget sites; iv) immunogenicity; and v) high production cost and ) poor stability. These limitations have led to the development of peptide-based imaging agents. While potentially solving the problems of poor penetration and slow clearance, peptide based imaging agents are unlikely to possess adequate affinity, specificity and in vivo stability to be useful in most applications. 5 Engineered proteins are uniquely suited to the requirements for an imaging agent. In particular the extraordinary affinity and specificity that is obtainable by engineering small, stable, human-origin protein domains having known in vivo clearance rates and mechanisms combine to provide earlier, more reliable results, less toxicity/side effects, lower production and storage cost, and greater convenience of label preparation. Indeed, it is possible to 0 achieve the goal of realtime imaging with engineered protein imaging agents. Plasmin binding proteins, e.g. SPIll, can be useful for localizing sites of internal hemorrhage. Radio-labeled binding protein may be administered to the human or animal subject. Administration is typically by injection, e.g., intravenous or arterial or other means of administration in a quantity sufficient to permit subsequent dynamic and/or static imaging 25 using suitable radio-detecting devices. The dosage is the smallest amount capable of providing a diagnostically effective image, and may be determined by means conventional in the art, using known radio-imaging agents as guides. Typically, the imaging is carried out on the whole body of the subject, or on that portion of the body or organ relevant to the condition or disease under study. The radio 30 labeled binding protein has accumulated. The amount of radio-labeled binding protein accumulated at a given point in time in relevant target organs can then be quantified. A particularly suitable radio-detecting device is a scintillation camera, such as a y camera. The detection device in the camera senses and records (and optional digitizes) the -16radioactive decay. Digitized infonnation can be analyzed in any suitable way, many of which are known in the art. For example, a time-activity analysis can illustrate uptake through clearance of the radio-labeled binding protein by the target organs with time. Various factors are taken into consideration in picking an appropriate radioisotope. The isotope is picked: to allow good quality resolution upon imaging, to be safe for diagnostic use in humans and animals, and, preferably, to have a short half-life so as to decrease the amount of radiation received by the body. The radioisotope iised should preferably be phannacologically inert, and the quantities administered should not have substantial physiological effect. The binding protein may be radio-labeled with different ) isotopes of iodine, for example 1231, 1251, or 1311 (see, for example, U.S. Pat. No. 4,609,725). The amount of labeling must be suitably monitored. In applications to human subjects, it may be desirable to use radioisotopes other than 1251 for labeling to decrease the total dosimetry exposure of the body and to optimize the detectability of the labeled molecule. Considering ready clinical availability for use in 5 humans, preferred radio-labels include: 99mTc, 67Ga, 68Ga, 90Y, 111In, 11 3nIn, 1231, 186Re, 188Re or 21 1At. Radio-labeled protein may be prepared by various methods. These include radio-halogenation by the chloramine-T or lactoperoxidase method and subsequent purification by high pressure liquid chromatography, for example, see Gutkowska et al in "Endocrinology and Metabolism Clinics of America: (1987) 16 (1): 183. Other methods of ,0 radio-labeling can be used, such as IODOBEADSTM. A radio-labeled protein may be administered by any means that enables the active agent to reach the agent's site of action in a mammal. Because proteins are subject to digestion when administered orally, parenteral administration, i.e., intravenous subcutaneous, intramuscular, would ordinarily be used to optimize absorption. 25 The plasmin-binding proteins of this invention may also be used to purify plasmin from a fluid, e.g., blood. For this purpose, the PBP is preferably immobilized on an insoluble support. Such supports include those already mentioned as useful in preparing solid phase diagnostic reagents. Proteins can be used as molecular weight markers for reference in the separation or 30 purification of proteins. Proteins may need to be denatured to serve as molecular weight markers. A second general utility for proteins is the use of hydrolyzed protein as a nutrient source. Proteins may also be used to increase the viscosity of a solution. -17- The protein of this invention may be used for any of the foregoing purposes, as well as for therapeutic and diagnostic purposes as discussed further earlier in this specification. Chemical polypeptide synthesis is known in the art, and methods of solid phase polypeptide synthesis are well-described in the following references, hereby entirely incorporated by reference: (Merrifield, J Amer Chem Soc 85:2149-2154 (1963); Merrifield, Science 232:341-347 (1986); Wade et al., Biopolymers 25:821-S37 (1986); Fields, Int J Polypeptide Prot Res 35:161 (1990); MilliGen Report Nos. 2 and 2a, Millipore Corporation, Bedford, Mass., 1987) Ausubel et al, supra, and Sambrook et al, supra. Tan and Kaiser (Biochemistry, 1977, 16:1531-41) synthesized BPTI and a homologue eighteen years ago. As is known in the art, such methods involve blocking or protecting reactive functional groups, such as free amino, carboxyl and thio groups. After polypeptide bond formation, the protective groups are removed. Thus, the addition of each amino acid residue requires several reaction steps for protecting and deprotecting. Current methods utilize solid phase synthesis, wherein the C-terminal amino acid is covalently linked to insoluble resin - particles that can be filtered. Reactants are removed by washing the resin particles with appropriate solvents using an automated machine. Various methods, including the "tBoc" method and the "Fmoc" method are well known in the art. See, inter alia, Atherton et al., J Chem Soc Perkin Trans 1:538-546 (1981) and Sheppard et al, Int J Polypeptide Prot Res 20:451-454 (1982). 0 C. COMPOSITIONS Disclosed are the components to be used to prepare the disclosed compositions as well as the compositions themselves to be used within the methods disclosed herein. These and other materials are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed that, while specific 25 reference of each various individual and collective combinations and permutation of these compounds may not be explicitly disclosed, each is specifically contemplated and described herein. For example, if a particular amino acid sequence is disclosed and discussed and a number of modifications that can be made to a number of places within the sequence can be made are discussed, specifically contemplated is each and every combination and 30 permutation of the amino acid and the modifications that are possible unless specifically indicated to the contrary. Thus, if a class of molecules A, B, and C are disclosed as well as a class of molecules D, E, and F and an example of a combination molecule, A-D is disclosed, then even if each is not individually recited each is individually and collectively -18contemplated meaning combinations, A-E, A-F, B-D, B-B, B-F, C-D, C-E, and C-F are considered disclosed. Likewise, any subset or combination of these is also disclosed. Thus, for example, the sub-group of A-B, B-F, and C-E would be considered disclosed. This concept applies to all aspects of this application including, but not limited to, steps in methods of making and using the disclosed compositions. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the disclosed methods. Disclosed herein is a polypeptide comprising SEQ ID NO:1 (Kunitz Type Domain 1, D or KDI). SEQ ID NO: 1 is represented by the following: DAAQEPTGNNAEICLLPLD GPCRALLLRYYYDRYTQSCRQFLYGGCEGNANNFYTWEACDDACWRIEKVPKV. Also disclosed are polypeptides comprising SEQ ID NO:2 (wherein the leucine at position 17 as numbered in BPTI has been changed to arginine): DAAQEPTGNNAEICLL PLDYGPCRARLLRYYYDRYTQSCRQFLYGGCEGNANNFYTWEACDDACWRIEKV 5 PKV. Also disclosed is SEQ ID NO:3, which is a shorter polypeptide than SEQ ID NO: 1, and also comprises the change at position 17 (L17R): NAEICLLPLDYGPCRAR LLRYYYDRYTQSCRQFLYGGCEGNANNFYTWEACDDACWRIE. Also disclosed are polypeptides comprising SEQ ID NO:4 (wherein the leucine at ?0 position 17 as numbered in BPTI has been changed to arginine and the alanine at position 16 has been changed to methionine): DAAQEPTGNNAEICLLPLDYGPC RMRLLRYYYDRYTQSCRQFLYGGCEGNANNFYTWEACDDACWRIEKVPKV. It has been discovered that a change from the hydrophobic amino acid at position 17 (leucine) to a charged amino acid such as arginine or lysine affects the anticoagulation 25 activity of KD1 without significantly reducing plasmin inhibition. Particularly useful are such mutant polypeptides where anticoagulation activity is eliminated and plasmin inhibition is increased. Thus, inclusion of a charged or polar amino acid at position 17 is specifically contemplated herein. The polypeptide of SEQ ID NO: 1 can also comprise one or more additional 30 mutations. As disclosed herein, a mutation can be an addition, deletion, or substitution of an amino acid. For example, in addition to the change of leucine to arginine at position 17, the amino acid sequence can also comprise the change of arginine to lysine at position 15, the change of alanine to methionine at position 16, or both. Examples of other changes at -19position 15 can be found, for example, in U.S. Patent 4,595,674, herein incorporated by reference in its entirety. Also disclosed herein is a polypeptide comprising SEQ ID NO:1, wherein tyrosine is changed to glutamic acid at position 46. In another embodiment, tyrosine can be changed to i threonine at position 11. In another embodiment, aspartic acid can be changed to tyrosine or glutamic acid at position 10. These polypeptides can also comprise one or more additional mutations, such as those discussed above. To summarize, examples of amino acid changes to SEQ ID NO: 1 can be found in Table 1. These are only examples, and one of skill in the art would understand that any of these mutations could be used alone or in combination with ) the other mutations listed herein, or with others not listed, in any permutation or combination. possible. TABLE 1 -Mutations of SEQ ED NO:1 R15K L17R L17K D10Y DIE Y11T Y46E A16G A16M A16S Also disclosed are compositions and nucleic acids corresponding to the polypeptides discussed herein. A discussion of nucleic acids, compositions, and methods of administration 15 is below. Also disclosed are nucleic acids encoding the polypeptides disclosed herein. Disclosed herein are polypeptides and their corresponding nucleic acids. It is understood that one way to define any known variants and derivatives or those that might arise of the disclosed nucleic acids and proteins herein is through defining the variants and derivatives in terms of homology to specific known sequences. For example SEQ ID NO:1 sets forth a 20 particular sequence of KD1, and SEQ ID NO:2 sets forth a particular sequence of KDl containing a mutation. One of ordinary skill in the art at the time of the invention would have understood that other mutations can occur in both the nucleic acid and the protein of the wild type. Some mutations thereof that would not affect its functionality, while others can affect the functionality in a positive way, and are therefore selected for. Specifically 25 disclosed are variants of these and other genes and proteins herein disclosed which have at -20least, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 percent homology to the stated sequence. Those of skill in the art readily understand how to determine the homology of two proteins or nucleic acids, such as genes. For example, the homology can be calculated after aligning the two sequences so that the homology is at its highest level. Another way of calculating homology can be performed by published algorithms. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman Adv. Apple. Math. 2: 482 (1981), by the homology alignment algorithm of Needleman and Wunsch, J. MoL Biol. 48: 443 (1970), by the search ) for similarity method of Pearson and Lipman, Proc. Natl. Acad. Sci. U.S.A. 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by inspection. The same types of homology can be obtained for nucleic acids by for example the 5 algorithms disclosed in Zuker, M. Science 244:48-52, 1989, Jaeger et al. Proc. NatL Acad. Sci. USA 86:7706-7710, 1989, Jaeger et al. Methods Enzymol 183:281-306, 1989 which are herein incorporated by reference for at least material related to nucleic acid alignment. There are molecules disclosed herein that are nucleic acid based, including for example the nucleic acids that encode, for example, KDI1 as well as any other proteins disclosed herein, 0 as well as various functional nucleic acids. The disclosed nucleic acids are made up of for example, nucleotides, nucleotide analogs, or nucleotide substitutes. Non-limiting examples of these and other molecules are discussed herein. It is understood that for example, when a vector is expressed in a cell, that the expressed m-RNA will typically be made up of A, C, G, and U. 25 A nucleotide is a molecule that contains a base moiety, a sugar moiety and a phosphate moiety. Nucleotides can be linked together through their phosphate moieties and sugar moieties creating an intemucleoside linkage. The base moiety of a nucleotide can be adenin-9-yl (A), cytosin-1-yl (C), guanin-9-yl (G), uracil-1-yl (U), and thymin-1-yl (T). The sugar moiety of a nucleotide is a ribose or a deoxyribose. The phosphate moiety of a 30 nucleotide is pentavalent phosphate. An non-limiting example of a nucleotide would be 3' AMP (3'-adenosine monophosphate) or 5'-GMP (5'-guanosine monophosphate). A nucleotide analog is a nucleotide which contains some type of modification to either the base, sugar, or phosphate moieties. Modifications to nucleotides are well known -21in the art and would include for example, 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, and 2-aminoadenine as well as modifications at the sugar or phosphate moieties. Nucleotide substitutes are molecules having similar functional properties to nucleotides, but which do not contain a phosphate moiety, such as peptide nucleic acid (PNA). Nucleotide substitutes are molecules that will recognize nucleic acids in a Watson Crick or Hoogsteen manner, but which are linked together through a moiety other than a phosphate moiety. Nucleotide substitutes are able to conform to a double helix type structure when interacting with the appropriate target nucleic acid. It is also possible to link other types of molecules (conjugates) to nucleotides or nucleotide analogs to enhance for example, cellular uptake. Conjugates can be chemically linked to the nucleotide or nucleotide analogs. Such conjugates include but are not limited to lipid moieties such as a cholesterol moiety. (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989,86, 6553-6556). A Watson-Crick interaction is at least one interaction with the Watson-Crick face of 5 a nucleotide, nucleotide analog, or nucleotide substitute. The Watson-Crick face of a nucleotide, nucleotide analog, or nucleotide substitute includes the C2, N1, and C6 positions of a purine based nucleotide, nucleotide analog, or nucleotide substitute and the C2, N3, C4 positions of a pyrimidine based nucleotide, nucleotide analog, or nucleotide substitute. A Hoogsteen interaction is the interaction that takes place on the Hoogsteen face of a ,O nucleotide or nucleotide analog, which is exposed in the major groove of duplex DNA. The Hoogsteen face includes the N7 position and reactive groups (NH2 or 0) at the C6 position of purine nucleotides. There are a variety of sequences related to, for example, KDI and mutations thereof, as well as any other protein disclosed herein that are disclosed on Genbank, and these 25 sequences and others are herein incorporated by reference in their entireties as well as for individual subsequences contained therein. A variety of sequences are provided herein and these and others can be found in Genbank, at www.pubmed.gov. Those of skill in the art understand how to resolve sequence discrepancies and differences and to adjust the compositions and methods relating to a 30 particular sequence to other related sequences. Primers and/or probes can be designed for any sequence given the information disclosed herein and known in the art. Disclosed are compositions including primers and probes, which are capable of interacting with the genes disclosed herein. In certain embodiments the primers are used to -22support DNA amplification reactions. Typically the primers will be capable of being extended in a sequence specific manner. Extension of a primer in a sequence specific manner includes any methods wherein the sequence and/or composition of the nucleic acid molecule to which the primer is hybridized or otherwise associated directs or influences the composition or sequence of the product produced by the extension of the primer. Extension of the primer in a sequence specific manner therefore includes, but is not limited to, PCR, DNA sequencing, DNA extension, DNA polymerization, RNA transcription, or reverse transcription. Techniques and conditions that amplify the primer in a sequence specific manner are preferred. In certain embodiments the primers are used for the DNA amplification reactions, such as PCR or direct sequencing. It is understood that in certain embodiments the primers can also be extended using non-enzymatic techniques, where for example, the nucleotides or oligonucleotides used to extend the primer are modified such that they will chemically react to extend the primer in a sequence specific manner. Typically the disclosed primers hybridize with the nucleic acid or region of the nucleic acid or they 5 hybridize with the complement of the nucleic acid or complement of a region of the nucleic acid. Disclosed herein are methods of treating a subject comprising administering to the subject in need thereof a nucleic acid. For example, disclosed herein are methods of delivering a nucleic acid encoding a mutant of KD1, such as those disclosed herein. These 0 methods include the administration and uptake of exogenous DNA into the cells of a subject (i.e., gene transduction or transfection). The disclosed nucleic acids can be in the form of naked DNA or RNA, or the nucleic acids can be in a vector for delivering the nucleic acids to the cells, whereby the antibody-encoding DNA fragment is under the transcriptional regulation of a promoter, as would be well understood by one of ordinary skill in the art. The 25 vector can be a commercially available preparation, such as an adenovirus vector (Quantum Biotechnologies, Inc. (Laval, Quebec, Canada). Delivery of the nucleic acid or vector to cells can be via a variety of mechanisms. As one example, delivery can be via a liposome, using commercially available liposome preparations such as LIPOFECTIN, LIPOFECTAMINE (GIBCO-BRL, Inc., Gaithersburg, MD), SUPERFECT (Qiagen, Inc. 30 Hilden, Germany) and TRANSFECTAM (Promega Biotec, Inc., Madison, WI), as well as other liposomes developed according to procedures standard in the art. In addition, the disclosed nucleic acid or vector can be delivered in vivo by electroporation, the technology -23 for which is available from Genetronics, Inc. (San Diego, CA) as well as by means of a SONOPORATION machine (ImaRx Pharmaceutical Corp., Tucson, AZ). As one example, vector delivery can be via a viral system, such as a retroviral vector system which can package a recombinant retroviral genome (see e.g., Pastan et al., Proc. Natl. Acad. Sci. U.S.A. 85:4486, 1988; Miller et al., Mol. Cell. Biol. 6:2895, 1986). The recombinant retrovirus can then be used to infect and thereby deliver to the infected cells nucleic acid encoding a broadly neutralizing antibody (or active fragment thereof). The exact method of introducing the altered nucleic acid into mammalian cells is, of course, not limited to the use of retroviral vectors. Other techniques are widely available for this procedure including the use of adenoviral vectors (Mitani et al., Hum. Gene Ther. 5:941 948, 1994), adeno-associated viral (AAV) vectors (Goodman et al., Blood 84:1492-1500, 1994), lentiviral vectors (Naidini et al., Science 272:263-267, 1996), pseudotyped retroviral vectors (Agrawal et al., Exper. Hematol. 24:738-747, 1996). Physical transduction techniques can also be used, such as liposome delivery and receptor-mediated and other 5 endocytosis mechanisms (see, for example, Schwartzenberger et al., Blood 87:472-478, 1996). This disclosed compositions and methods can be used in conjunction with any of these or other commonly used gene transfer methods. As one example, if the antibody-encoding nucleic acid is delivered to the cells of a subject in an adenovirus vector, the dosage for administration of adenovirus to humans can .0 range from about 107 to 109 plaque forming units (pfu) per injection but can be as high as 1012 pfu per injection (Crystal, Hum. Gene Ther. 8:985-1001, 1997; Alvarez and Curiel, Hum. Gene Ther. 8:597-613, 1997). A subject can receive a single injection, or, if additional injections are necessary, they can be repeated at six month intervals (or other appropriate time intervals, as determined by the skilled practitioner) for an indefinite period 25 and/or until the efficacy of the treatment has been established. Parenteral administration of the nucleic acid or vector, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution of suspension in liquid prior to injection, or as emulsions. A more recently revised approach for parenteral administration 30 involves use of a slow release or sustained release system such that a constant dosage is maintained. See, e.g., U.S. Patent No. 3,610,795, which is incorporated by reference herein. For additional discussion of suitable formulations and various routes of administration of -24therapeutic compounds, see, e.g., Remington: The Science and Practice of Phannacy (19th ed.) ed. A.R. Gennaro, Mack Publishing Company, Easton, PA 1995. As discussed herein there are numerous variants of the KDI protein that are known and herein contemplated. Specifically, disclosed are mutations of KD1 that are preferable in view of the wild type, such as SEQ ID NO:2. In addition to the functional KDI variants disclosed herein, there are derivatives of the KD1 protein which also function with those disclosed herein, and are herein contemplated. Protein variants and derivatives are well understood to those of skill in the art and in can involve amino acid sequence modifications. For example, amino acid sequence modifications typically fall into one or more of three ) classes: substitutional, insertional or deletional variants. Insertions include amino and/or carboxyl terminal fusions as well as intrasequence insertions of single or multiple amino acid residues. Insertions ordinarily will be smaller insertions than those of amino or carboxyl terminal fusions, for example, on the order of one to four residues. Immunogenic fusion protein derivatives, such as those described in the examples, are made by fusing a 5 polypeptide sufficiently large to confer immunogenicity to the target sequence by cross linking in vitro or by recombinant cell culture transformed with DNA encoding the fusion. Deletions are characterized by the removal of one or more amino acid residues from the protein sequence. Typically, no more than about from 2 to 6 residues are deleted at any one site within the protein molecule. These variants ordinarily are prepared by site specific .0 mutagenesis of nucleotides in the DNA encoding the protein, thereby producing DNA encoding the- variant, and thereafter expressing the DNA in recombinant cell culture. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, for example Ml 3 primer mutagenesis and PCR mutagenesis. Amino acid substitutions are typically of single residues, but can occur at a 25 number of different locations at once; insertions usually will be on the order of about from 1 to 10 amino acid residues; and deletions will range about from 1 to 30 residues. Deletions or insertions preferably are made in adjacent pairs, i.e. a deletion of 2 residues or insertion of 2 residues. Substitutions, deletions, insertions or any combination thereof may be combined to arrive at a final construct. The mutations must not place the sequence out of reading frame 30 and preferably will not create complementary regions that could produce secondary mRNA structure. Substitutional variants are those in which at least one residue has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the following Table and are referred to as conservative substitutions. -25- TABLE 2:Amino Acid Substitutions Original Residue Exemplary Conservative Substitutions, others are known in the art. Ala; ser Arg; lys, gln Asn; gin; his Asp; glu Cys; ser Gln; asn, lys Glu; asp Gly; pro His; asn; gin Ile; len; val Leu; ile; val Lys; arg; gin Met; leu; ile Phe; met; leu; tyr Ser; thr Thr; ser Trp; tyr Tyr; trp; phe Val; ile; leu Substantial changes in function or immunological identity are made by selecting substitutions that are less conservative than those in Table 2, i.e., selecting residues that differ more significantly in their effect on maintaining (a) the structure of the polypeptide 5 backbone in the area of the substitution, for example as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in the protein properties will be those in which (a) a hydrophilic residue, e.g. seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g. leucyl, isoleucyl, phenylalanyl, valyl or 10 alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine, in this case, (e) by increasing the number of sites for sulfation and/or glycosylation. 15 For example, the replacement of one amino acid residue with another that is biologically and/or chemically similar is known to those skilled in the art as a conservative substitution. For example, a conservative substitution would be replacing one hydrophobic residue for another, or one polar residue for another. The substitutions include combinations such as, -26for example, Gly, Ala; Val, le, Leu; Asp, Gla; Asn, Gin; Ser, Thr; Lys, Arg; and Phe, Tyr. Such conservatively substituted variations of each explicitly disclosed sequence are included within the mosaic polypeptides provided herein. Substitutional or deletional mutagenesis can be employed to insert sites for N glycosylation (Asn-X-Thr/Ser) or O-glycosylation (Ser or Thr). Deletions of cysteine or other labile residues also may be desirable. Deletions or substitutions of potential proteolysis sites, e.g. Arg, is accomplished for example by deleting one of the basic residues or substituting one by glutaninyl or histidyl residues. Certain post-translational derivatizations are the result of the action of recombinant host cells on the expressed polypeptide. Glutaminyl and asparaginyl residues are frequently post-translationally deamidated to the corresponding glutamyl and asparyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Other post translational modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the o-amino groups of lysine, 5 arginine, and histidine side chains (T.E. Creighton, Proteins: Structure and Molecular Properties, W. H. Freeman & Co., San Francisco pp 79-86 [1983]), acetylation of the N terminal amine and, in some instances, amidation of the C-terminal carboxyl. It is understood that one way to define the variants and derivatives of the disclosed proteins herein is through defining the variants and derivatives in terms of homology/identity 0 to specific known sequences. For example, SEQ ID NO:1 sets forth a particular sequence of KD1, and SEQ ID NO:2 sets forth a particular sequence of a mutant thereof. Specifically disclosed are variants of these and other proteins herein disclosed which have at least 70% or 75% or 80% or 85% or 90% or 95% homology to the stated sequence. Those of skill in the art readily understand how to determine the homology of two proteins. For example, the 25 homology can be calculated after aligning the two sequences so that the homology is at its highest level. Another way of calculating homology can be performed by published algorithms. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman Adv. Apple. Math. 2: 482 (1981), by the homology alignment algorithm of Needleman and Wunsch, J. MoL Biol. 48: 443 (1970), by 30 the search for similarity method of Pearson and Lipman, Proc. Natl. Acad. Sci. U.S.A. 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by inspection. -27- The same types of homology can be obtained for nucleic acids by for example the algorithms disclosed in Zuker, M. Science 244:48-52, 1989, Jaeger et al. Proc. Natl. Acad. Sci. USA 86:7706-7710, 1989, Jaeger et al Methods Enzymol. 183:281-306, 1989 which are herein incorporated by reference for at least material related to nucleic acid alignment. It is understood that the description of conservative mutations and homology can be combined together in any combination, such as embodiments that have at least 70% homology to a particular sequence wherein the variants are conservative mutations. As this specification discusses various proteins and protein sequences it is understood that the nucleic acids that can encode those protein sequences are also disclosed. This would include all degenerate sequences related to a specific protein sequence, i.e. all nucleic acids having a sequence that encodes one particular protein sequence as well as all nucleic acids, including degenerate nucleic acids, encoding the disclosed variants and derivatives of the protein sequences. Thus, while each particular nucleic acid sequence may not be written out herein, it is understood that each and every sequence is in fact disclosed 5 and described herein through the disclosed protein sequence. It is also understood that while no amino acid sequence indicates what particular DNA sequence encodes that protein within an organism, where particular variants of a disclosed protein are disclosed herein, the known nucleic acid sequence that encodes that protein in the particular region from which that protein arises is also known and herein disclosed and described. 0 It is understood that there are numerous amino acid and peptide analogs which can be incorporated into the disclosed compositions. For example, there are numerous D amino acids or amino acids which have a different functional substituent than those shown in Table 2. The opposite stereo isomers of naturally occurring peptides are disclosed, as well as the stereo isomers of peptide analogs. These amino acids can readily be incorporated into 25 polypeptide chains by charging tRNA molecules with the amino acid of choice and engineering genetic constructs that utilize, for example, amber codons, to insert the analog amino acid into a peptide chain in a site specific way. See, for example,(Thorson et al., Methods in Molec. Biol. 77:43-73 (1991), Zoller, Current Opinion in Biotechnology, 3:348 354 (1992); Ibba, Biotechnology & Genetic Enginerring Reviews 13:197-216 (1995), Cahill 30 et al., TIBS, 14(10):400-403 (1989); Benner, TIB Tech, 12:158-163 (1994); Ibba and Hennecke, Bio/technology, 12:678-682 (1994) all of which are herein incorporated by reference at least for material related to amino acid analogs). -28- Molecules can be produced that resemble peptides, but which are not connected via a natural peptide linkage. For example, linkages for amino acids or amino acid analogs can include CH2NH--, --CH2S--, --CH2-CH2 -, --CH=CH- (cis and trans), --COCH2 --, - CH(OH)CH2--, and --CHH2SO-(These and others can be found in Spatola, A. F. in i Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins, B. Weinstein, eds., Marcel Dekker, New York, p. 267 (1983); Spatola, A. F., Vega Data (March 1983), Vol. 1, Issue 3, Peptide Backbone Modifications (general review); Morley, Trends Pharm Sci (1980) pp. 463-468; Hudson, D. et al., mIt J Pept Prot Res 14:177-185 (1979) (--CH2NH-, CH2CH2--); Spatola et al. Life Sci 38:1243-1249 (1986) (--CH H2-S); Hann J. Chem. Soc ) Perkin Trans. I 307-314 (1982) (--CH--CH--, cis and trans); Alnquist et al. J. Med. Chem. 23:1392-1398 (1980) (--COCH2--); Jennings-White et al. Tetrahedron Lett 23:2533 (1982) (--COCH2--); Szelke et al. European Appln, EP 45665 CA (1982): 97:39405 (1982) (- CH(OH)CH2--); Holladay et al. Tetrahedron. Lett 24:4401-4404 (1983) (--C(OH)CH2-); and Hruby Life Sci 31:189-199 (1982) (-CH2--S-); each of which is incorporated herein by 5 reference. A particularly preferred non-peptide linkage is --CH2NH-. It is understood that peptide analogs can have more than one atom between the bond atoms, such as b-alanine, g aminobutyric acid, and the like. Amino acid analogs and analogs and peptide analogs often have enhanced or desirable properties, such as, more economical production, greater chemical stability, .0 enhanced pharmacological properties (half-life, absorption, potency, efficacy, etc.), altered specificity (e.g., a broad-spectrum of biological activities), reduced antigenicity, and others. D-amino acids can be used to generate more stable peptides, because D amino acids are not recognized by peptidases and such. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place 25 of L-lysine) can be used to generate more stable peptides. Cysteine residues can be used to cyclize or attach two or more peptides together. This can be beneficial to constrain peptides into particular conformations. (Rizo and Gierasch Ann. Rev. Biochem. 61:387 (1992), incorporated herein by reference). Disclosed are methods of making a transgenic organism comprising administering the 30 disclosed nucleic acids, vectors and/or cells. The present invention is more particularly described in the following examples, which are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. - 29- Although the present process has been described with reference to specific details of certain embodiments thereof, it is not intended that such details should be regarded as limitations upon the scope of the invention except as and to the extent that they are included in the accompanying claims. The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, articles, devices and/or methods claimed herein are made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect D to numbers (e.g., amounts, temperature, etc.), but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in *C or is at ambient temperature, and pressure is at or near atmospheric. D. EXAMPLES 1. Example 1 5 Materials and methods: The chromogenic substrates H-D-Val-Leu-Lys-p-nitroanilide (S-2251) was purchased from DiaPharma Group Inc. (West Chester, OH). Human plasmin was purchased from Enzyme research laborotories. Bovine aprotinin (BPTI) was used from Zymogenetics. Escherichia coli strain BL21(DE3)pLys and pET28a expression vector were products of Novagen Inc. (Madison, WI). The QuikChange@ site-directed mutagenesis kit ?0 was obtained from Stratagene (La Jolla, CA). Expression and Purification of Wild type and Mutant Proteins. The first Kunitz-type proteinase inhibitor domain of human TFPI-2 (KD1) was cloned into pET28a vector containing a His tag. The mutants were obtained by site directed mutagenesis. The proteins were overexpressed as N-terninal His-tagged fusion proteins in E. coli strain BL21(DB3) 25 pLys S. using the T7 promoter system. The overexpressed proteins were recovered as inclusion bodies and proteins were folded and purified free of his Tag (27). The concentrations were determined by UV spectroscopy. Plasmin Inhibition Assays. Plasmin inhibition assays were performed by incubating plasmin with various concentrations of inhibitor preparations (BPTI, KDIWT, KD1 mutants 30 R24K, L26R or R24KIL26R) in 50 mM Tris-HCI, pH 7.5 containing 100 mM NaCl, 0.1 mg/mL BSA, 5 mM CaC12 for 1 hr at 37 *C in a 96-well microtitre plate. The chromogenic substrate S-2251 was then added, and residual amidolytic activity was measured in a Molecular Devices UVmax kinetic microplate reader at different end points (0.5 and 1hr) -30and S2251 (0.5 and 1mM) concentrations. Plasmin inhibitory data were analyzed according to the quadratic binding expression. In control experiments, it was first studied if there was any substrate-induced displacement of bound inhibitor by increasing substrate concentrations. Both BPTI (Fig. 2) and WTKD1 (Fig. 3) were assayed and our results show that there is apparently no displacement of bound inhibitor by increasing substrate concentrations. It was also tested whether or not increased time of incubation of inhibitor with plasmin would result in enhanced inhibition. This was not the case either (Fig. 2 and Fig. 3). These results validate the results presented in figure 4. The results obtained from the plasmin inhibitory studies show that the mutant R15K/L17R is a potent inhibitor of plasmin and inhibits plasmin manifold strongly than either the wild type KD 1 or the R24K mutant (Fig. 4). Ki* (inhibitory constant) values of 22 nM for WT, 10 nM for R15K, 6 nM for L26R and 3 nM for the R15K/LI7R were obtained. Thus L17R change is very important . The L17R change was made based upon molecular modeling. The R1 5K/17R mutant binds much strongly to 5 plasmin than WTKDI ( 7-fold) or the R15K (-2 -fold) mutant. The L17R mutants binds plasmin approximately 4-fold stronger than the WT KD1 Thus, L26R or R15K/L17R can replace BPTI in clinical therapeutics. Throughout this application, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this 0 application in order to more fully describe the state of the art to which this invention pertains. 2. Example 2: Abolishing the Intrinsic Coagulation Inhibitor Activity of Kunitz domain 1 (KD1) of TFPI-2 Nomenclature Infornation 25 R24 (also known as R15) is P1 A25 (also known as A16) is P1' L26 (also known as L17) is P2' TFPI-2 inhibits intrinsic coagulation presumably through the inhibition of factor XIa (Petersen et al. Biochemistry. 1996 Jan 9;35(l):266-272). Like all serine proteases, factor 30 XIa cleaves between P1-P1 residues TRAE or TRVV (P2-Pl-P1'-P2'). Thus KD1 WT having Leu (hydrophobic residue like Val) at P2' position should inhibit factor Xla. Thus changing Leu to Arg at P2' position should reduce/abrogate this inhibition. -31 - A common procedure to test inhibition of clotting is to examine the aPTT (activated partial thromboplastin time) of normal plasma. In this test, surface activator plus phospholipid was mixed with normal plasma in equal amounts (75 microliter). Ten microliter of buffer containing inhibitor (KD1 wt, KD1 L26R or RPTI) was added and the sample incubated for five minutes at 37*C. Seventy-five microliter of 25 mM CaC 2 prewarmed to 37*C was then added and the time needed to form the clot was noted. The data are shown in Figure 5. In the aPTT system, coagulation is initiated by the activation of factor XII to Factor XIa by contact phase involving the kallikrein system. Factor XIIa then activates factor XI to factor X~a in the coagulation cascade. BPTI inhibits kallikrein whereas KD1 WT inhibits both kallikrein and factor Ma (Petersen et al 1996). This can result in the prolongation of the aPTT by BPTI and KD1 WT whereas L26R Mutant of KD1 is expected to inhibit neither as indicated by no inhibition (prolongation) of aPTT (Figure 5). This observation makes the L26R KD1 a 5 specific inhibitor of plasmin. It also increases its inhibitory potency towards plasmin as well. Thus, L26R KD1 has no effect on clotting and is a more potent inhibitor than the Wt KD1. The mutant protein L26R loses activity as an anticoagulant and becomes specific as an antifibrinolytic agent. So the mutant is more active as an antifibrinoltic agent but it also is no longer an anticoagulant. This property makes it useful in preventing bleeding. '0 3. Example 3: Mouse Plasmin Inhibition Data Both WT KD1 and L26R inhibited mouse plasmin effectively. This is shown in Figure 6. Clearly the WT KD1 and the L26R mutant are quite effective in inhibiting mouse plasmin with an apparent Kd value of-80 nM. Complete inhibition was obtained at I pM for both WT and L26R KD1(Masci et al. Blood Coagulation and Fibrinolysis 2000, Vol 11, 25 No 4, pages 385-393, reference herein incorporated in its entirety and for its teachings regarding in vivo plasmin inhibition). Since both the wild-type and the mutant inhibit mouse plasmin, one can use the mutant to show efficacy in vivo in an animal model of bleeding. A mouse tail vein bleeding model has been described to study the efficacy of a snake plasmin inhibitor (Masci et al; Blood Coagulation and Fibrinolysis 2000, Vol 11, pages 385 30 393). Using this mouse tail vein bleeding model, compared to saline control, a 67-70% reduction in blood loss was observed when either Aprotinin, WT KD1 or the mutant L26R was administered intravenously at about 100 microgram/mouse. The doses of the plasmin -32- - inhibitors used in these experiments were similar to that used during human CPB (cardiopulmonary bypass) surgery, adjusted to the mouse weight. The Animal Ethics Committee of UCLA approved all mice experiments and the dose used in human surgery adjusted to mouse weight was a realistic basis for these initial studies. The serum BUN/Creatinine levels were normal after two days and seven days following administration of the drug. The microscopic examination of tissues revealed no injury to major organs such as kidney, heart and brain. KD 1 WT and KD1 L26R reduced blood loss nearly as effectively as Aprotinin. However, this is expected since the dose used may be high enough to not see differences between the different inhibitors (aprotinin, WT KD1 or the L26R mutant). Further the human KD1 L26R could have a better efficacy in humans because it inhibits human plasmin more selectively and does not inhibit coagulation. REFERENCES 1. Gans H, Castaneda AR, Subramanian V, John S, Lillehei CW. Problems in hemostasis during open heart surgery. IX. Changes observed in the plasminogen-plasmin 5 system and their significance for therapy. Ann Surg 166: 980-986, 1967. 2. Shahian DM, and Levine ID. Open-heart surgery in a patient with heterozygous alpha 2-antiplasmin deficiency. Perioperative strategies in the first reported case. Chest 97:1488-1490,1990. 3. Taggart DP, Diapardy V, Naik M, and Davies A. A randomized trial of aprotinin ,0 (Trasylol) on blood loss, blood product requirement, and myocardial injury in total arterial grafting. J Thorac Cardiovasc Surg 126: 1087-94, 2003. 4. Sievert A, McCall M, Blackwell M, and Bradley S. Effects of topical applications of aprotinin and tranexamic acid on blood loss after open heart surgery. Anadolu Kardlyol Derg. 5:3640,2005 25 5. Kokoszka A, Kuflik P, Bitan F, Casden A, Neuwirth M. Evidence-based review of the role of aprotinin in blood conservation during orthopaedic surgery. JBone Joint Surg Am 87:1129-36, 2005 6. Li J, Ny A, Leonardsson, G, Nandakumar KS, Holndahl R, and Ny T. The plasminogen activator/plasmin system is essential for development of the joint inflammatory 30 phase of collagen type 11-induced arthritis. Am JPathol 166: 783-92, 2005. 7. Judex MO, and Mueller BM. Plasminogen activation/plasmin in rheumatoid arthritis: matrix degradation and more. Am JPathol 166: 645-647, 2005 -33- 8. Lijnen HR. Pleiotropic functions of plasminogen activator inhibitor-1. J Thromb Haemost 1:35-45, 2005 9. Hilal G, Martel-Pelletier 1, Pelletier JP, Ranger P, and Lajeunesse D., Osteoblast like cells from human subchondral osteoarthritic bone demonstrate analtered phenotype in 5 vitro. Possible role in subehondral bone sclerosis. Arthritis Rheum 41:891-899, 1998 10. Ronday HK, Smits HH, Quax PH, van der Pluijm G, Lowik CW, Breedveld FC, and Verheijen JH. Bone matrix degradation by the plasminogen activation system. Possible mechanism of bone destruction in arthritis. Br JRheumatol 36:9-15, 1997. 11. Novak JF, Hayes JD, Nishimoto SK. Plasmin-mediated proteolysis of 0 osteocalcin. JBone Miner Res 12:1035-1042, 1997. 12. Daci E, Udagava N, Martin TJ, Bouillon R, and Carmeliet G. The role of the plasminogen system in bone resorption in vitro. JBone Miner Res 14:946-52, 1999 13. Sakamaki H, Ogura N, Kujiraoka H, Akiba, M, Abikao Y, and Nagura H. .5 Activities of plasminogen activator, plasmin and kalilicrein in synovial fluid from patients with temporomandibular joint disorders. Int J Oral Maxillofac Surg 30:323-328, 2001 14. Roy ME, Nishinoto SK. Matrix Gla protein binding to hydroxyapatite is dependent on the ionic environment: calcium enhances binding affinity but phosphate and magnesium decrease affinity. Bone 31:296-302, 2002. 7-0 15. Daci E. Everts V, Torrekens S, Van Herck E, Tigchelaar-Gutterr W, Bouillon R, and Carmeliet G. Increased bone formation in mice lacking plasminogen activators. J MinerRes Bone 18:1167-76, 2003. 16. Choong PF, and Nadesapillai. Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop Relat Res 415:S46 25 S58, 2003 (Suppl) 17. Castellino FJ, and Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost 93:647-54, 2005 18. Sprecher CA, Kisiel W, Mathewes S, and Foster DC. Molecular cloning, expression, and partial characterization of a second human tissue factor pathway inhibitor. 30 Proc Natl Acad Sci USA 91:33 53-7, 1994 19. Miyagi Y, Koshikawa N, Yasumitsu H, Miyagi E, Hirahara F, Aoki I, Misugi K, Umeda M, and Miyazaki K. cDNA cloning and mRNA expression of a seine proteinase -34inhibitor secreted by cancer cells: identification as placental protein 5 and tissue factor pathway inhibitor-2. JBiochem (Tokyo) 116:939-42, 1994 20. Rao CN, Peavey CL, Liu YY, Lapiere JC, and Woodley DT. Partial characterization of matrix-associated serine protease inhibitors from human skin cells J i Invest. Dermatol. 104, 379-383, 1995 21. UdagawaK,Miyagi Y, Hirahara F, Miyagi E, Nagashima, Y, Minaguchi H, Misugi K, Yasumitsu H, and Miyazaki K. Specific expression of PPS/TFPI2 mRNA by syncytiotrophoblasts in human placenta as revealed by in situ hybridization Placenta 19, 217-223, 1998 0 22. Sugiyama T, Ishii S, Yamamoto J, Irie R, Saito K, Otuki T, Wakamatsu A, Suzuki Y, Hio Y, Ota T, Nishikawa T, Sugano S, Masuho Y, Isogai T. cDNA macroarray analysis of gene expression in synoviocytes stimulated with TNFalpha FEBS Lett. 517, 121 128,2002 23. lino M, Foster DC, Kisiel W. Quantification and characterization of human 5 endothelial cell-derived tissue factor pathway inhibitor-2. Arterioscler. Thromb. Vasc. BioL 18, 40-46, 1998 24. Rao CN, Reddy P, Liu YY, O'Toole EAO, Reeder DJ, Foster DC, Kisiel W, and Woodley, DT. Extracellular matrix-associated serine protease inhibitors (Mr 33,000, 31,000, and 27,000) are single-gene products with differential glycosylation: cDNA cloning of the ,0 33-kDa inhibitor reveals its identity to tissue factor pathway inhibitor-2. Arch. Biochem. Biophys. 335, 45-52, 1996 25. Chand, H. S., Schmidt, A. E., Bajaj, S. P., and Kisiel, W. Structure-function analysis of the reactive site in the first Kunitz-type domain of human tissue factor pathway inhibitor-2. JBiol Chem 279:17500-17507, 2004 25 26. Huber R, Kukla D, Bode W, Schwager P, Bartels K, Deisenhofer J, Steigemann W. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 A resolution. JMol Biol. 89:73-101,1974 27. Schmidt AE, Chand HS, Cascio D, Kisiel W, Bajaj SP. Crystal Structure of Kunitz Domain 1 (KDI) of Tissue Factor Pathway Inhibitor-2 in Complex with Trypsin: 30 Implications for KD1 Specificity of Inhibition. JBiol Chem. 280:27832-27838, 2005 -35 - 28. Wang, X., Lin, X., Loy, 1. A., Tang, J., and Zhang, X. C. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase Science 281, 1662-1665, 1998. 29. Bajaj, M. S., Birktoft, L ., Steer, S. A., and Bajaj, S. P. Structure and biology of tissue factor pathway inhibitor. Thromb. Haemost. 86, 959-972, 200 1. 30. Beierlein W, Scheule AM, Dietrich W, Ziemer G. Forty years of clinical aprotinin use: a review of 124 hypersensitivity reactions. Ann Thorac Surg. 79:741-748, 2005. -36-
Claims (24)
1. An isolated KD1 polypeptide comprising an amino acid sequence with at least 93% identity to the KD1 amino acid sequence set forth in Figure 1 as amino acids 10-67 of SEQ ID NO: 1, wherein amino acid 26 of SEQ ID NO: 1 is changed from leucine to arginine or lysine, and wherein the polypeptide inhibits plasmin activity and has decreased anti coagulation activity as compared to a wild type KD1 polypeptide.
2. The KD1 polypeptide of claim 1, wherein the amino acid sequence has at least 94% identity to the KD1 amino acid sequence set forth in Figure 1 as amino acids 10-67 of SEQ ID NO:1.
3. The KD1 polypeptide of claim 1 or claim 2, wherein the amino acid sequence has at least 95% identity to the KD1 amino acid sequence set forth in Figure 1 as amino acids 10-67 of SEQ ID NO: 1.
4. The KD1 polypeptide of any one of claims I to 3, wherein the amino acid sequence has at least 96% identity to the KD1 amino acid sequence set forth in Figure 1 as amino acids
10-67 of SEQ ID NO:1. 5. The KD1 polypeptide of any one of claims I to 4, wherein the amino acid sequence has at least 97% identity to the KD1 amino acid sequence set forth in Figure 1 as amino acids 10-67 of SEQ ID NO:1. 6. The KD1 polypeptide of any one of claims I to 5, wherein the amino acid sequence comprises the amino acid sequence set forth in SEQ ID NO:3. 7. The KD1 polypeptide of any one of claims I to 6, wherein the amino acid sequence that has at least 93% identity to the KD1 amino acid sequence set forth in Figure 1 as amino acids 10-67 of SEQ ID NO: 1 comprises a substitution selected from the group consisting of a tyrosine to glutamic acid substitution at position 55 of SEQ ID NO: 1, a tyrosine to threonine substitution at position 20 of SEQ ID NO: 1, an alanine to methionine substitution at position 25 of SEQ ID NO: 1, an alanine to glycine substitution at position 25 of SEQ ID NO: 1, an alanine to seine substitution at position 25 of SEQ ID NO: 1, an aspartic acid to tyrosine 37 7383484_1 (GHMatters) P78533.AU.1 5-Feb-16 substitution at position 19 of SEQ ID NO: i,and an aspartic acid to glutamic acid substitution at position 19 of SEQ ID NO:1. 8. The KD1 polypeptide of any one of claims I to 7, wherein the KD1 polypeptide has reduced anticoagulation activity compared to the wild type Kunitz domain of TFPI-2. 9. The KD1 polypeptide of any one of claims I to 8, wherein a ligand is attached to the KD1 polypeptide. 10. A composition comprising the KD1 polypeptide of any one of claims I to 9.
11. An isolated nucleic acid encoding the KDI polypeptide of any one of claims 1 to 8.
12. A transgenic non-human animal comprising the nucleic acid of claim 11.
13. A method of inhibiting at least one activity of plasmin comprising contacting plasmin with an effective amount of the KD 1 polypeptide of any one of claims 1 to 9 or the composition of claim 10.
14. A method of treating a subject in need of inhibition of a plasmin activity, comprising administering to the subject an effective amount of the KDi polypeptide of any one of claims I to 9 or the composition of claim 10.
15. The method of claim 14, wherein the subject has angiogenesis.
16. The method of claim 14, wherein the subject has tumorogenesis.
17. The method of claim 14, wherein the subject is undergoing bone remodeling.
18. The method of claim 14, wherein the subject has hemophilia.
19. The method of claim 14, wherein the subject is undergoing orthopedic surgery. 38 7383484_1 (GHMatters) P78533.AU.1 5-Feb-16
20. The method of claim 14, wherein the subject is undergoing coronary artery bypass grafting (CABG).
21. The method of claim 14, wherein the subject has systemic inflammatory response syndrome (SIRS).
22. A method of therapeutically and/or prophylactically treating rheumatoid arthritis in a subject in need thereof, comprising administering to the subject an effective amount of the KD1 polypeptide of any one of claims I to 9 or the composition of claim 10.
23. A method of inhibiting plasmin in a subject in need thereof comprising administering to the subject an effective amount of the nucleic acid of claim 11.
24. Use of the polypeptide of any one of claims 1 to 9, in the manufacture of a medicament for inhibiting at least one activity of plasmin.
25. Use of the polypeptide of any one of claims I to 9, in the manufacture of a medicament for treating a subject in need of inhibition of a plasmin activity.
26. Use of the polypeptide of any one of claims 1 to 9, in the manufacture of a medicament for therapeutically and/or prophylactically treating rheumatoid arthritis.
27. Use of the nucleic acid of claim 11, in the manufacture of a medicament for inhibiting plasmin in a subject.
28. A method of identifying a KD1 polypeptide variant that inhibits plasmin activity and has decreased anti-coagulation activity, comprising: (a) modeling a crystal structure of plasmin with a variant of a KD1 polypeptide, said variant comprising a charged or polar amino acid at position 17, using BPTI numbering system; (b) determining interaction between the plasmin and the variant of the KD1 polypeptide; and 39 7383484_1 (GHMatters) P78533.AU.1 5-Feb-16 (c) based on results of step (b), determining if the variant of KD1 is a plasmin inhibitor; and (d) based on the results of step (c), determining if the KD1 polypeptide variant has decreased anti-coagulation activity as compared to wild-type KD1 polypeptide.
29. The KD1 polypeptide of claim 1, composition of claim 10, nucleic acid of claim 11, transgenic non-human animal of claim 12, method of any one of claims 13, 14, 22 or 23, or use of any one of claims 24 to 27, substantially as hereinbefore described with reference to the accompanying examples and/or figures. 40 7383484_1 (GHMatters) P78533.AU.1 5-Feb-16
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2013202021A AU2013202021B2 (en) | 2005-12-29 | 2013-03-26 | Methods and compositions related to mutant Kunitz domain of TFPI-2 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60/754,731 | 2005-12-29 | ||
AU2006330424A AU2006330424B2 (en) | 2005-12-29 | 2006-12-29 | Methods and compositions related to mutant Kunitz domain I of TFPI-2 |
AU2013202021A AU2013202021B2 (en) | 2005-12-29 | 2013-03-26 | Methods and compositions related to mutant Kunitz domain of TFPI-2 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2006330424A Division AU2006330424B2 (en) | 2005-12-29 | 2006-12-29 | Methods and compositions related to mutant Kunitz domain I of TFPI-2 |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2013202021A1 AU2013202021A1 (en) | 2013-04-18 |
AU2013202021B2 true AU2013202021B2 (en) | 2016-03-10 |
Family
ID=48093182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2013202021A Ceased AU2013202021B2 (en) | 2005-12-29 | 2013-03-26 | Methods and compositions related to mutant Kunitz domain of TFPI-2 |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2013202021B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6103499A (en) * | 1994-01-11 | 2000-08-15 | Dyax Corp. | Inhibitors of human plasmin derived from the Kunitz domains |
-
2013
- 2013-03-26 AU AU2013202021A patent/AU2013202021B2/en not_active Ceased
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6103499A (en) * | 1994-01-11 | 2000-08-15 | Dyax Corp. | Inhibitors of human plasmin derived from the Kunitz domains |
Non-Patent Citations (2)
Title |
---|
CHAND, HS. et al., J. Biol. Chem. 2004, vol. 279, pages 17500-17507 * |
SCHMIDT, AE. et al., J. Biol. Chem. 2005, vol 280, pages 27832-27838 * |
Also Published As
Publication number | Publication date |
---|---|
AU2013202021A1 (en) | 2013-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150191528A1 (en) | Methods and compositions related to mutant kunitz domain i of tfpi-2 | |
Moreau et al. | Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family | |
Preissner et al. | Vitronectin in vascular context: facets of a multitalented matricellular protein | |
ES2375561T3 (en) | INHIBITORS OF HUMAN PLASMINE DERIVED FROM KUNITZ DOMAINS AND �? NUCLEIC CIDES CODING THE SAME. | |
JP2012235793A (en) | Protease inhibition | |
Deng et al. | The PAI-1/vitronectin interaction: two cats in a bag? | |
WO1996004304A1 (en) | Fibrin-binding peptides, dna coding therefor and uses thereof | |
JPH09509838A (en) | Kunitz domain antagonist protein | |
US20130267022A1 (en) | Therapeutic Inhibitors of PAI-1 Function Methods of Their Use | |
JP2009521935A5 (en) | ||
ANDERSEN et al. | Analysis of a two-domain binding site for the urokinase-type plasminogen activator–plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein | |
JP2567536B2 (en) | Variant of PAI-2 | |
JP2000509993A (en) | Anticoagulant peptide fragment derived from apolipoprotein B-100 | |
JP2002524076A (en) | Kunitz domain polypeptide ZKUN6 | |
AU2013202021B2 (en) | Methods and compositions related to mutant Kunitz domain of TFPI-2 | |
US20030180275A1 (en) | Human serpin polypeptides | |
BRPI0708687A2 (en) | chimeric kunitz domains and their use | |
WO2001038560A2 (en) | Active enzyme detection using immobilized enzyme inhibitors | |
JP2002516102A (en) | Kunitz domain polypeptides and materials and methods for their production | |
US20040229312A1 (en) | Engineered human kunitz-type protease inhibitor | |
CA2552894A1 (en) | Methods of using high affinity atiii variants | |
SERPIN | HUMAN MAST CELL TRYPTASE'S SERPIN-RESISTANCE: SIZE EXCLUSION vs. A LACK OF SUBSITE SPECIFICITY | |
JP2002517198A (en) | Disulfide core polypeptide | |
MXPA01002305A (en) | Kunitz domain polypeptide zkun6 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) | ||
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |