AU2013100529A4 - Motor assembly using polar anisotropic ring magnet - Google Patents

Motor assembly using polar anisotropic ring magnet Download PDF

Info

Publication number
AU2013100529A4
AU2013100529A4 AU2013100529A AU2013100529A AU2013100529A4 AU 2013100529 A4 AU2013100529 A4 AU 2013100529A4 AU 2013100529 A AU2013100529 A AU 2013100529A AU 2013100529 A AU2013100529 A AU 2013100529A AU 2013100529 A4 AU2013100529 A4 AU 2013100529A4
Authority
AU
Australia
Prior art keywords
ring
rings
supporting
supporting rings
motor assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU2013100529A
Inventor
Kuo-Shu Hsu
Chih-Yung Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Headline Electric Co Ltd
Original Assignee
Headline Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Headline Electric Co Ltd filed Critical Headline Electric Co Ltd
Priority to AU2013100529A priority Critical patent/AU2013100529A4/en
Application granted granted Critical
Publication of AU2013100529A4 publication Critical patent/AU2013100529A4/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Abstract The rotor assembly contains a number of polar anisotropic ring magnets sequentially stacked, a number of supporting rings within the stacked ring magnets, and an axle threading through the supporting rings. The ring magnets 5 are of a same diameter and length. Each supporting ring contains three co-centric rings: an inner steel ring, a middle rubber ring, and an outer steel ring. The supporting rings are positioned with substantially equal spacing and with a gap away from each aperture of the stacked ring magnets, so that additional weight elements could be positioned and adhered within the gap. 10 The periodic positioning of a number of supporting rings could significantly reduce the weight of the motor assembly with much improved steadiness. Additionally, the middle rubber rings of the supporting rings provide a buffer mechanism for absorbing vibration and noise reduction. ocCo

Description

1 MOTOR ASSEMBLY USING POLAR ANISOTROPIC RING MAGNET TECHNICAL FIELD OF THE INVENTION The present invention is generally related to motors, and more particularly to a rotor assembly for motors capable of achieving reduced noise 5 and vibration. DESCRIPTION OF THE PRIOR ART Conventionally, a number of magnets are tiled along the circumference of a motos rotor assembly as shown in FIG 6 and, in order to provide paths for the magnetic flux, some magnetic conducting device is required. In U.S. 10 Pat. No. 6,408,502 and especially for rotors requiring a large diameter, silicon steel plates are stamped into circular ring plates and the ring plates are stacked into a tubular object. The length of the tubular object is dependent on the required length for the rotor. Inside the two end of the tubular object, two terminal pieces having anti-vibration rubber rings are fixedly installed by 15 welding. Then, magnets are tiled around the circumference of the tubular object with the help of appropriate fixtures. During the foregoing manufacturing process, one of the most difficult issues is to achieve true circular inner and outer surfaces of the magnets. Similarly, the terminal pieces are also required to be truly circular. As such, the rotor is able to spin with high 20 reliability and reduced noises. However; this is not an easy task to achieve. For 2 example, the rubber rings in the terminal pieces are of concern regarding its rotational steadiness and safety, and therefore are not widely applied. In addition, to achieve the required precision and stability additional fixtures are inevitably and thereby production cost is difficult to reduce. This is especially 5 true for the manufacturing of large motors.
3 SUMMARY OF THE INVENTION Therefore, a novel rotor assembly is provided so as to obviate the foregoing shortcomings. The rotor assembly contains a number of polar anisotropic ring magnets sequentially stacked, a number of supporting rings 5 within the stacked ring magnets, and an axle threading through the supporting rings. The ring magnets are of a same diameter and length. Each supporting ring contains three co-centric rings: an inner steel ring, a middle rubber ring, and an outer steel ring. The supporting rings are positioned with substantially equal spacing and with a gap away from each aperture of the stacked ring 10 magnets, so that additional weight elements could be positioned and adhered within the gap. With the present invention, the manufacturing effort in achieving a true circle for the rotor assembly's outer magnet is reduced. An appropriate number of ring magnets could be utilized and assembled for the motor assembly to 15 build. The periodic positioning of a number of supporting rings could significantly reduce the weight of the motor assembly with much improved steadiness. Additionally, the middle rubber rings of the supporting rings provide a buffer mechanism for absorbing vibration and noise reduction. The foregoing objectives and summary provide only a brief introduction 20 to the present invention. To fully appreciate these and other objects of the 4 present invention as well as the invention itself, all of which will become apparent to those skilled in the art, the following detailed description of the invention and the claims should be read in conjunction with the accompanying drawings. Throughout the specification and drawings identical reference 5 numerals refer to identical or similar parts. Many other advantages and features of the present invention will become manifest to those versed in the art upon making reference to the detailed description and the accompanying sheets of drawings in which a preferred structural embodiment incorporating the principles of the present invention is 10 shown by way of illustrative example.
5 BRIEF DESCRIPTION OF THE DRAWINGS FIG 1 is a perspective break-down diagram of a motor assembly according to an embodiment of the present invention. FIG 2 is a perspective diagram showing the motor assembly of FIG 1 5 after its assembly. FIG 3 is a schematic cross-sectional diagram showing the internal of a motor assembly according to an embodiment of the present invention. FIG 4 is a schematic cross-sectional diagram showing the internal of a motor assembly according to another embodiment of the present invention. 10 FIG 5 is a schematic diagram showing the magnetic flux for the ring magnet of the present invention's rotor assembly. FIG 6 is a schematic diagram showing the magnetic flux for a conventional rotor assembly.
6 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following descriptions are exemplary embodiments only, and are not intended to limit the scope, applicability or configuration of the invention in any way. Rather, the following description provides a convenient illustration 5 for implementing exemplary embodiments of the invention. Various changes to the described embodiments may be made in the function and arrangement of the elements described without departing from the scope of the invention as set forth in the appended claims. As shown in FIGS. 1 to 5, a motor assembly according to an 10 embodiment of the present invention contains a main member 10 and an axle 11 extended out of the main member 10, similar to a conventional motor. Within the main member 10, there is a stator 12 and a rotor assembly 14 within the stator 12. The rotor assembly 14 contains a set of polar anisotropic ring magnets 13, a number of supporting rings 18 within the ring magnets 13, 15 and the axle 11 threading through the supporting rings 18. The ring magnets 13 have been magnetically processed as illustrated in FIG 5. The ring magnets 13 are of the same diameter and length. Depending the total length required (i.e., the length of the stator 12), one or more ring magnets 13 are sequentially stacked and adhered together by strong adhesive with the help of some simple 20 fixture. The set of ring magnets 13 as such jointly form a tubular object. For a 7 small motor, there could be only one ring magnet 13. Each supporting ring 18 contains three co-centric rings: an inner steel ring 15, a middle rubber ring 17, and an outer steel ring 16. The supporting rings 18 are positioned with substantially equal spacing and with a gap (B) reserved between each end of 5 the tubular object and an outmost supporting ring 18, so that additional weight elements (not shown) could be positioned and adhered within the gaps (B). As such, the axle 11 could be steadily held and the rotor assembly 14 could spin in a weight-balanced manner. Additionally, the middle rubber ring 17 of each supporting ring 18 helps reducing vibration and noise significantly. Preferably, 10 a supporting ring 18 is positioned immediately adjacent to and across an interface (A) between each pair of neighboring ring magnets 13, so that the two ring magnets 13 are reliably supported by the supporting ring 18. The outer steel ring 16 of each supporting ring is directly adhered to the inner wall of the set of ring magnets 13 by strong adhesive. 15 The advantages of the present invention are as follows. The outer magnet of the rotor assembly 14 is implemented as a set of stacked ring magnets 13. The manufacturing effort in achieving a true circle for the outer magnet is as such reduced. Then, depending on the motor assembly to build and the length of the stator 12, an appropriate number of ring magnets 13 could be utilized 20 and assembled. The periodic positioning of a number of supporting rings 18 8 could significantly reduce the weight of the motor assembly with much improved steadiness. Additionally, the middle rubber rings 17 of the supporting rings 18 provide a buffer mechanism for absorbing vibration and noise reduction. 5 While certain novel features of this invention have been shown and described and are pointed out in the annexed claim, it is not intended to be limited to the details above, since it will be understood that various omissions, modifications, substitutions and changes in the forms and details of the device illustrated and in its operation can be made by those skilled in the art without 10 departing in any way from the spirit of the present invention.

Claims (3)

1. A motor assembly, comprising: a main member having a stator inside; a rotor assembly inside said stator, said rotor assembly comprising a plurality of polar anisotropic ring magnets sequentially stacked and 5 adhered by adhesive into a tubular object, a plurality of supporting rings within said-tubular object, and an axle threading through said supporting rings; wherein said ring magnets are of a same diameter and length; each of said supporting rings comprises three co-centric rings: an inner steel ring, a middle rubber ring, and an outer steel ring; 10 and a said supporting ring is positioned immediately adjacent to and across an interface between each pair of neighboring said ring magnets.
2. The motor assembly according to claim 1, wherein said supporting rings are positioned with substantially equal spacing and with a gap 15 reserved between each end of said tubular object and a outmost said supporting ring.
3. The motor assembly according to claim 2, wherein at least a weight element is positioned and adhered within said gap.
AU2013100529A 2013-04-16 2013-04-16 Motor assembly using polar anisotropic ring magnet Expired AU2013100529A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2013100529A AU2013100529A4 (en) 2013-04-16 2013-04-16 Motor assembly using polar anisotropic ring magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2013100529A AU2013100529A4 (en) 2013-04-16 2013-04-16 Motor assembly using polar anisotropic ring magnet

Publications (1)

Publication Number Publication Date
AU2013100529A4 true AU2013100529A4 (en) 2013-05-23

Family

ID=48431878

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2013100529A Expired AU2013100529A4 (en) 2013-04-16 2013-04-16 Motor assembly using polar anisotropic ring magnet

Country Status (1)

Country Link
AU (1) AU2013100529A4 (en)

Similar Documents

Publication Publication Date Title
WO2015008057A3 (en) A stator and a rotor for an electric motor
US9841029B2 (en) Motor of a ceiling fan
WO2012061270A4 (en) Noise reduction structures for electrical machines
WO2012145445A3 (en) Current diverter ring
WO2013135569A3 (en) Stator and rotor of an electric machine
US10491068B2 (en) Motor using complex magnetic flux
US10374499B2 (en) Power generator
US9601966B2 (en) Inner-rotor motor including preload member
US20180048199A1 (en) Methods for coupling permanent magnets to a rotor body of an electric motor
EP2690754A3 (en) Electric motor
WO2015008058A3 (en) A rotor for an electric motor
EP2763298A3 (en) Power transmission device
WO2007124195A3 (en) Stator coil assembly
US10396619B2 (en) Electric motor
WO2015015089A3 (en) Claw pole rotor comprising a clip for retaining an end-of-winding wire and associated electric machine
WO2019044722A1 (en) Eddy current damper
US8410652B2 (en) Motor assembly using polar anisotropic ring magnet
EP3148056A1 (en) Electric motor
WO2011102921A3 (en) Stator with monolithic mounting bosses and assembly comprising the same
AU2013100529A4 (en) Motor assembly using polar anisotropic ring magnet
WO2015015084A3 (en) Rotor with permanent magnets
KR200475749Y1 (en) Motor Assembly Using Polar Anisotropic Ring Magnet
RU2014143409A (en) OPPOSITE STEEL CORE, METHOD FOR ITS MANUFACTURE AND ELECTROMAGNETIC FAN CLUTCH IN WHICH USE AN OPPOSITE STEEL CORD
WO2012110033A3 (en) Stator of a claw-pole motor
RU2012134399A (en) ROTATING ELECTRIC MACHINE

Legal Events

Date Code Title Description
FGI Letters patent sealed or granted (innovation patent)
MK22 Patent ceased section 143a(d), or expired - non payment of renewal fee or expiry