AU2012244179B2 - Methods for treating diabetic foot ulcers - Google Patents
Methods for treating diabetic foot ulcers Download PDFInfo
- Publication number
- AU2012244179B2 AU2012244179B2 AU2012244179A AU2012244179A AU2012244179B2 AU 2012244179 B2 AU2012244179 B2 AU 2012244179B2 AU 2012244179 A AU2012244179 A AU 2012244179A AU 2012244179 A AU2012244179 A AU 2012244179A AU 2012244179 B2 AU2012244179 B2 AU 2012244179B2
- Authority
- AU
- Australia
- Prior art keywords
- weight
- peptide
- ulcer
- diabetic foot
- basis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 208000008960 Diabetic foot Diseases 0.000 title claims abstract description 44
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 61
- 239000000203 mixture Substances 0.000 claims description 36
- 238000009472 formulation Methods 0.000 claims description 32
- 208000025865 Ulcer Diseases 0.000 claims description 23
- RUBMHAHMIJSMHA-LBWFYSSPSA-N aclerastide Chemical compound C([C@H](NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)CCCC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(O)=O)C1=CC=C(O)C=C1 RUBMHAHMIJSMHA-LBWFYSSPSA-N 0.000 claims description 23
- 231100000397 ulcer Toxicity 0.000 claims description 23
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 22
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 22
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 22
- 238000011282 treatment Methods 0.000 claims description 19
- 230000001684 chronic effect Effects 0.000 claims description 17
- 208000003790 Foot Ulcer Diseases 0.000 claims description 15
- 206010040943 Skin Ulcer Diseases 0.000 claims description 14
- 150000001413 amino acids Chemical class 0.000 claims description 9
- 201000001119 neuropathy Diseases 0.000 claims description 9
- 230000007823 neuropathy Effects 0.000 claims description 9
- 208000033808 peripheral neuropathy Diseases 0.000 claims description 9
- 239000012049 topical pharmaceutical composition Substances 0.000 claims description 9
- 239000000017 hydrogel Substances 0.000 claims description 8
- 206010056340 Diabetic ulcer Diseases 0.000 claims description 7
- 206010020649 Hyperkeratosis Diseases 0.000 claims description 7
- 239000000499 gel Substances 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 19
- 150000003839 salts Chemical class 0.000 description 27
- 206010012601 diabetes mellitus Diseases 0.000 description 21
- 206010052428 Wound Diseases 0.000 description 17
- 208000027418 Wounds and injury Diseases 0.000 description 16
- 102000004196 processed proteins & peptides Human genes 0.000 description 16
- 108010038164 norLeu3-A(1-7) Proteins 0.000 description 13
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 12
- 229940068196 placebo Drugs 0.000 description 12
- 239000000902 placebo Substances 0.000 description 12
- 230000035876 healing Effects 0.000 description 10
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 9
- 229940024606 amino acid Drugs 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 6
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 6
- 239000004471 Glycine Substances 0.000 description 6
- 150000008575 L-amino acids Chemical class 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229930006000 Sucrose Natural products 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 6
- 238000001804 debridement Methods 0.000 description 6
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 6
- 239000000600 sorbitol Substances 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- 239000005720 sucrose Substances 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- -1 benzcthonium Chemical compound 0.000 description 5
- 210000002683 foot Anatomy 0.000 description 5
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 5
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 5
- 229960002216 methylparaben Drugs 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- HVBSAKJJOYLTQU-UHFFFAOYSA-N 4-aminobenzenesulfonic acid Chemical compound NC1=CC=C(S(O)(=O)=O)C=C1 HVBSAKJJOYLTQU-UHFFFAOYSA-N 0.000 description 4
- CFKMVGJGLGKFKI-UHFFFAOYSA-N 4-chloro-m-cresol Chemical compound CC1=CC(O)=CC=C1Cl CFKMVGJGLGKFKI-UHFFFAOYSA-N 0.000 description 4
- 239000004475 Arginine Substances 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 4
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 4
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 238000002266 amputation Methods 0.000 description 4
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 4
- 229960003121 arginine Drugs 0.000 description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 4
- 229960003589 arginine hydrochloride Drugs 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 239000004067 bulking agent Substances 0.000 description 4
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 4
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 4
- 229960000367 inositol Drugs 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 229930182817 methionine Natural products 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 230000002335 preservative effect Effects 0.000 description 4
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 4
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 4
- 229960003415 propylparaben Drugs 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 229940109239 creatinine Drugs 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 210000004744 fore-foot Anatomy 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 210000000452 mid-foot Anatomy 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 210000002435 tendon Anatomy 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 230000029663 wound healing Effects 0.000 description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 2
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 2
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 108010081589 Becaplermin Proteins 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 2
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 150000008574 D-amino acids Chemical class 0.000 description 2
- CTKXFMQHOOWWEB-UHFFFAOYSA-N Ethylene oxide/propylene oxide copolymer Chemical compound CCCOC(C)COCCO CTKXFMQHOOWWEB-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102000017011 Glycated Hemoglobin A Human genes 0.000 description 2
- 108010014663 Glycated Hemoglobin A Proteins 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 229920001219 Polysorbate 40 Polymers 0.000 description 2
- 229920001214 Polysorbate 60 Polymers 0.000 description 2
- 229920002642 Polysorbate 65 Polymers 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 2
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- IJCWFDPJFXGQBN-RYNSOKOISA-N [(2R)-2-[(2R,3R,4S)-4-hydroxy-3-octadecanoyloxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCCCCCCCCCCCC IJCWFDPJFXGQBN-RYNSOKOISA-N 0.000 description 2
- 206010000269 abscess Diseases 0.000 description 2
- 239000008351 acetate buffer Substances 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229960003260 chlorhexidine Drugs 0.000 description 2
- 229960004926 chlorobutanol Drugs 0.000 description 2
- 229960002242 chlorocresol Drugs 0.000 description 2
- 235000013985 cinnamic acid Nutrition 0.000 description 2
- 229930016911 cinnamic acid Natural products 0.000 description 2
- 239000007979 citrate buffer Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 239000007933 dermal patch Substances 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 229940043279 diisopropylamine Drugs 0.000 description 2
- 150000002169 ethanolamines Chemical class 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 210000001255 hallux Anatomy 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000003054 hormonal effect Effects 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 2
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 2
- 230000002981 neuropathic effect Effects 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 2
- PDTFCHSETJBPTR-UHFFFAOYSA-N phenylmercuric nitrate Chemical compound [O-][N+](=O)O[Hg]C1=CC=CC=C1 PDTFCHSETJBPTR-UHFFFAOYSA-N 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 229940044519 poloxamer 188 Drugs 0.000 description 2
- 229920001993 poloxamer 188 Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 2
- 235000010483 polyoxyethylene sorbitan monopalmitate Nutrition 0.000 description 2
- 239000000249 polyoxyethylene sorbitan monopalmitate Substances 0.000 description 2
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 2
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 2
- 235000010988 polyoxyethylene sorbitan tristearate Nutrition 0.000 description 2
- 239000001816 polyoxyethylene sorbitan tristearate Substances 0.000 description 2
- 229940068977 polysorbate 20 Drugs 0.000 description 2
- 229940101027 polysorbate 40 Drugs 0.000 description 2
- 229940113124 polysorbate 60 Drugs 0.000 description 2
- 229940099511 polysorbate 65 Drugs 0.000 description 2
- 229940068968 polysorbate 80 Drugs 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- 229940107700 pyruvic acid Drugs 0.000 description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 2
- 229940100515 sorbitan Drugs 0.000 description 2
- 229940035044 sorbitan monolaurate Drugs 0.000 description 2
- 235000011069 sorbitan monooleate Nutrition 0.000 description 2
- 239000001593 sorbitan monooleate Substances 0.000 description 2
- 229940035049 sorbitan monooleate Drugs 0.000 description 2
- 235000011071 sorbitan monopalmitate Nutrition 0.000 description 2
- 239000001570 sorbitan monopalmitate Substances 0.000 description 2
- 229940031953 sorbitan monopalmitate Drugs 0.000 description 2
- 235000011076 sorbitan monostearate Nutrition 0.000 description 2
- 239000001587 sorbitan monostearate Substances 0.000 description 2
- 229940035048 sorbitan monostearate Drugs 0.000 description 2
- 235000011078 sorbitan tristearate Nutrition 0.000 description 2
- 239000001589 sorbitan tristearate Substances 0.000 description 2
- 229960004129 sorbitan tristearate Drugs 0.000 description 2
- 238000011301 standard therapy Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229950000244 sulfanilic acid Drugs 0.000 description 2
- 230000035488 systolic blood pressure Effects 0.000 description 2
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 2
- 229940033663 thimerosal Drugs 0.000 description 2
- 210000003371 toe Anatomy 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 238000009810 tubal ligation Methods 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 101100163949 Caenorhabditis elegans asp-3 gene Proteins 0.000 description 1
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 206010061619 Deformity Diseases 0.000 description 1
- 206010013654 Drug abuse Diseases 0.000 description 1
- 206010016759 Flat affect Diseases 0.000 description 1
- 206010017711 Gangrene Diseases 0.000 description 1
- LNCFUHAPNTYMJB-IUCAKERBSA-N His-Pro Chemical compound C([C@H](N)C(=O)N1[C@@H](CCC1)C(O)=O)C1=CN=CN1 LNCFUHAPNTYMJB-IUCAKERBSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 208000003926 Myelitis Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 208000005764 Peripheral Arterial Disease Diseases 0.000 description 1
- 208000030831 Peripheral arterial occlusive disease Diseases 0.000 description 1
- 208000018262 Peripheral vascular disease Diseases 0.000 description 1
- 102100040990 Platelet-derived growth factor subunit B Human genes 0.000 description 1
- 241001272996 Polyphylla fullo Species 0.000 description 1
- 229920002651 Polysorbate 85 Polymers 0.000 description 1
- 208000003782 Raynaud disease Diseases 0.000 description 1
- 208000012322 Raynaud phenomenon Diseases 0.000 description 1
- 102000003929 Transaminases Human genes 0.000 description 1
- 108090000340 Transaminases Proteins 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 108700008639 aclerastide Proteins 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- HYNPZTKLUNHGPM-KKERQHFVSA-N becaplermin Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](Cc2cnc[nH]2)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(=N)N)C(=O)N3CCC[C@H]3C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)NC(=O)[C@@H]4CCCN4C(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](C(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](C(C)C)NC(=O)[C@@H]5CCCN5C(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H]6CCCN6C(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CS)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CS)NC(=O)[C@H](CS)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CS)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@@H]7CCCN7C(=O)[C@H](Cc8c[nH]c9c8cccc9)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](C)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CO)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CS)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CCSC)NC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CCC(=O)O)NC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)N HYNPZTKLUNHGPM-KKERQHFVSA-N 0.000 description 1
- 229960004787 becaplermin Drugs 0.000 description 1
- 229960003872 benzethonium Drugs 0.000 description 1
- 238000003339 best practice Methods 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 230000002498 deadly effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- SIYLLGKDQZGJHK-UHFFFAOYSA-N dimethyl-(phenylmethyl)-[2-[2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethoxy]ethyl]ammonium Chemical compound C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 SIYLLGKDQZGJHK-UHFFFAOYSA-N 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000001631 haemodialysis Methods 0.000 description 1
- 210000000474 heel Anatomy 0.000 description 1
- 230000000322 hemodialysis Effects 0.000 description 1
- 108010085325 histidylproline Proteins 0.000 description 1
- 239000000416 hydrocolloid Substances 0.000 description 1
- 238000002639 hyperbaric oxygen therapy Methods 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 230000005976 liver dysfunction Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 210000001872 metatarsal bone Anatomy 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 238000009581 negative-pressure wound therapy Methods 0.000 description 1
- 231100000065 noncytotoxic Toxicity 0.000 description 1
- 230000002020 noncytotoxic effect Effects 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 229940113171 polysorbate 85 Drugs 0.000 description 1
- 238000009597 pregnancy test Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 229940116157 regranex Drugs 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229960002668 sodium chloride Drugs 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- GEVPIWPYWJZSPR-UHFFFAOYSA-N tcpo Chemical compound ClC1=CC(Cl)=CC(Cl)=C1OC(=O)C(=O)OC1=C(Cl)C=C(Cl)C=C1Cl GEVPIWPYWJZSPR-UHFFFAOYSA-N 0.000 description 1
- 229940042129 topical gel Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
Abstract The present invention provides methods and pharmaceutical formulations for treating diabetic foot ulcers.
Description
AUSTRALIA Patents Act COMPLETE SPECIFICATION (ORIGINAL) Class Int. Class Application Number: Lodged: Complete Specification Lodged: Accepted: Published: Priority Related Art: Na~ne of Applicant: University of Southern California Actual Inventor(s): Kathleen E. Rodgers, Gere S. Dizerega Address for Service and Correspondence: PHILLIPS ORMONDE FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne 3000 AUSTRALIA Invention Title: METHODS FOR TREATING DIABETIC FOOT ULCERS Our Ref: 955251 POF Code: 304698/348315 The following statement is a full description of this invention, including the best method of performing it known to applicant(s): 8006: Methods for treating diabetic foot ulcers Cross Reference The present application is a divisional application from Australian patent application number 2012212220, the entire disclosure of which is incorporated herein by reference. 5 Background Diabetes is common, disabling and deadly. In the U.S., diabetes has reached epidemic proportions. According to the American Diabetes Association, about 24 million people (8% of the total U.S. population) have diabetes, and nearly two million new cases are diagnosed in 0 people aged 20 years or older each year. If current trends continue, I in 3 Americans will develop diabetes at some point in their lifetime, and those with diabetes will lose, on average, 10-15 years of life expectancy. Importantly, up to 25% of people with diabetes will develop a diabetic foot ulcer, resulting in 3 million diabetic foot ulcers annually in the U.S. alone. More than half of all foot ulcers will become infected, thus requiring hospitalization, and 1 in 5 will 5 require an amputation that carries a high risk of mortality. Without question, diabetes puts tremendous economic pressure on the U.S. healthcare system. Total costs (direct and indirect) of diabetes have reached $174 billion annually, and people with diagnosed diabetes have medical expenditures that are over two times higher than medical expenditures for people without diabetes. Hospitalization costs alone are $16,000 to .0 $20,000 for a patient with a diabetic foot ulcer, and direct and indirect costs of an amputation range from $20,000 to $60,000 per patient. A recent study by researchers at the University of Chicago suggested that treatment costs for diabetes in the United States would reach $336 billion by the year 2034. Advanced, cost-effective treatment modalities for diabetes and its co morbidities, including diabetic foot ulcers, are in great need, yet in short supply, globally. 25 According to the American Diabetes Association, by the year 2025 the prevalence of diabetes is expected to rise by 72% to 324 million people worldwide. Summary of the Invention In a first aspect, the present invention provides methods for treating diabetic foot 30 ulcers, comprising administering to a human patient suffering from a diabetic foot ulcer an amount of a peptide of at least 5 contiguous amino acids of Nle3 A(1-7), or salt thereof, effective to treat the diabetic foot ulcer. In one embodiment, the peptide comprises Asp-Arg Nle-Tyr-Ile-His-Pro (SEQ ID NO: 1), or salt thereof. In another embodiment, the peptide la 2554146.1 consists of Asp-Arg-Nle-Tyr-Ile-His-Pro (SEQ ID NO:1), or salt thereof. In various embodiments, the diabetic foot ulcer is one caused, at least in part, by neuropathy and resulting pressure; the diabetic foot ulcer comprises one or more calluses; and the diabetic foot ulcer is a chronic ulcer. In a further embodiment, the chronic foot ulcer has not responded to 5 any other treatment. In another embodiment, the peptide is administered topically. In a further embodiment, the peptide is administered as a topical formulation forming a continuous film covering the entire area of the diabetic ulcer. In a still further embodiment, the peptide is administered in a hydrogel formulation. In another embodiment, the peptide is administered at 10 a concentration of about 0.03 % to about 1% on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. In a further embodiment, the peptide is administered in a gel formulation that about 0.5% to about 4% hydroxyethyl cellulose (HEC) on a weight (mg)/volume (ml) basis, or on a. weight/weight (mg) basis. All embodiments of the first aspect of the invention can be combined unless the 15 context dictates otherwise. In a second aspect, the present invention provides pharmaceutical formulations, comprising: (a) about 0.5% to about 4% HEC on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis; and 20 (b) a peptide of at least 5 contiguous amino acids of Nle3 A(1-7), or salt thereof; wherein the peptide is present at a concentration of about 0.03 % to about 1% on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. In one embodiment, the peptide comprises Asp-Arg-Nle-Tyr-Ile-His-Pro (SEQ ID NO: 1), or salt thereof. In another embodiment, the peptide consists of Asp-Arg-Nle-Tyr-Ile 25 His-Pro (SEQ ID NO: 1), or salt thereof. In a further embodiment, the pharmaceutical formulation comprises about 1% to about 3% HEC on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. In a still further embodiment, the pharmaceutical formulation comprises about 2% HEC on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. In another embodiment, the formulation comprises a hydrogel formulation. All 30 embodiments of the second aspect of the invention can be combined unless the context dictates otherwise. In a further aspect, the present invention provides a method for treating diabetic foot ulcers, comprising administering to a human patient suffering from a diabetic foot ulcer an amount of a peptide of at least 5 contiguous amino acids of Nle3 A(1-7) effective to treat the 2 2554146.1 diabetic foot ulcer, wherein the peptide is administered topically in a gel formulation that comprises about 0.5% to about 4% hydroxyethyl cellulose (HEC) on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. 5 Brief Description of the Figures 2a 2554146.1 WO 2012/106427 PCT/US2012/023484 Figure 1 is a graph showing the ulcers healed by visit in the Per Protocol (PP) patient population taking NorLeu 3 -A(l-7). Figure 2 is a graph showing the percentage of fully healed ulcers (100% wound closure) in the patient population taking NorLeu 3 -A(1-7) (also referred to as "DSC 127"). 5 Figure 3 is a graph showing the median time to fully healed ulcers (100% wound closure) in the patient population taking NorLeu 3 -A(1-7) (also referred to as "DSC 127"). Detailed Description of the Invention All references cited are herein incorporated by reference in their entirety. Within this 11) application, unless otherwise stated, the techniques utilized may be found in any of several well-known references such as: Molecular Cloning: A Laboratory Manual (Sambrook, et al., 1989, Cold Spring Harbor Laboratory Press), Gene Expression Technology (Methods in Enzymology, Vol. 185, edited by D. Goeddel, 1991. Academic Press, San Diego, CA), "Guide to Protein Purification" in Methods in Enzymology (M.P. Deutshcer, ed., (1990) 15 Academic Press, Inc.); PCR Protocols: A Guide to Methods and Applications (Innis, et al. 1990. Academic Press, San Diego, CA), Culture ofAnimal Cells: A Manual of Basic Technique, 2'" Ed. (R.I. Freshney. 1987. Liss, Inc. New York, NY), Gene Transfer and Expression Protocols, pp. 109-128, ed. E.J. Murray, The Humana Press Inc., Clifton, N.J.), and the Ambion 1998 Catalog (Ambion, Austin, TX). 20 As used herein, the singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise. "And" as used herein is interchangeably used with "or" unless expressly stated otherwise. All embodiments of any aspect of the invention can be used in combination, unless the context clearly dictates otherwise. 25 In a first aspect, the present invention provides methods for treating diabetic foot ulcers, comprising administering to a human patient suffering from a diabetic foot ulcer an amount of a peptide of at least 5 contiguous amino acids of Nle3 A(1-7), or salt thereof, effective to treat the diabetic foot ulcer. As demonstrated in the examples that follow, the inventors have demonstrated that the 20 methods of the invention can be used to treat diabetic foot ulcers, and provide substantial improvement over standard therapies. Nle3A(1-7) (or NorLeu 3 -A(1-7); also referred to as "DSC127") is a peptide consisting of the amino acid sequence Asp-Arg-Nle-Tyr-Ile-His-Pro (SEQ ID NO:1). In various embodiments, the peptide administered to the human patient may comprise or consist of Asp 3 WO 2012/106427 PCTIUS2012/023484 Arg-Nle-Tyr-Ile (SEQ ID NO:2), Asp-Arg-Nle-Tyr-Ile-His (SEQ ID NO:3), or most preferably Asp-Arg-Nle-Tyr-Ile-His-Pro (SEQ ID NO: 1), or salts thereof. NIe3A(1-7) or salts thereof may be chemically synthesized or recombinantly expressed, each of which can be accomplished using standard methods in the art. 5 In one embodiment, the peptide, or salt thereof, is administered at a concentration of about 0.03 % to about 1% on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. In various further embodiments, the peptide, or salt thereof, is administered at a concentration of about 0.03% to about 0.75%; about 0.03% to about 0.5%; about 0.03% to about 0.25%; about 0.03% to about 0.1%; about 0.03% to about 0.075%; about 0.03% to 10 about 0.05%; and about 0.03%; all on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. The human patient may be suffering from Type I diabetes or Type II diabetes, and has a foot ulcer, defined as an open wound anywhere on the foot (heel, mid-foot, and forefoot). As used herein, "treating" a diabetic foot ulcer includes 1.5 (a) limiting the progression in size, area, and/or depth of the foot ulcer; (b) reducing size, area, and/or depth of the foot ulcer; (c) increasing rate of healing and/or reducing time to healing; (d) healing of the foot ulcer (100% epithelialization with no drainage); and (e) decreased incidence of amputation or slowing in time to amputation. 20 The foot ulcer may be caused by any underlying pathology, including but not limited to neuropathy, trauma, deformity, high plantar pressures, callus formation, edema, and peripheral arterial disease. In preferred embodiments, the human diabetic foot ulcer is one caused, at least in part, by neuropathy and resulting pressure (weight bearing on the extremity 25 due to lack of feeling in the foot). As is known to those of skill in the art, human diabetic foot ulcers tend to be due to neuropathy and pressure, which differs significantly from, for example, murine acute wounds. In a further preferred embodiment, the diabetic foot ulcer comprises one or more calluses. In a further embodiment, the diabetic foot ulcer is a chronic ulcer. As used herein, a 30 "chronic" foot ulcer is one that has been present for at least 7 days with no reduction in size; preferably at least 14 days; even more preferably, present at least 21 or 28 days with no reduction in size. In a further preferred embodiment that can be combined with any of these embodiments, the chronic foot ulcer has not responded (ie: no reduction in size, area, and/or depth of the foot ulcer; no healing of the foot ulcer) to any other treatment. 4 WO 2012/106427 PCT/US2012/023484 The peptide or salt thereof may be administered by any suitable route, preferably via topical administration. In one embodiment, the methods of the invention can comprise administering a topical formulation as often as deemed appropriate, ie: once per day, twice per day, etc. The methods may further comprise administration of the peptide, or salt thereof S for as longed as deemed desirable by an attending physician, for example, until healing of the ulcer. For administration, it is preferred that the topical formulation form a continuous film covering the entire area of the ulcer, including the margins. In a preferred embodiment, the topical formulation is applied with a thickness of approximately 0.25 to 2 mm; preferably 0.5 to 1.5 mm; preferably about 1 mm in thickness. 11) In one embodiment, the topical administration comprises administration in a formulation selected from the group consisting of hydrogels, creams, ointments, pastes, and lotions. The formulations may be applied in any suitable manner, which may include any wound dressings to seal in the formulation deemed appropriate by the human patient or caregiver. Exemplary such dressings, include, but are not limited to, semipermeable films, 15 foams, hydrocolloids, and calcium alginate swabs. The methods may further comprise debridement in and around the wound in combination with administration of the peptide and formulations thereof. Debridement of all necrotic, callus, and fibrous tissue is typically carried for treatment of diabetic foot ulcers. Unhealthy tissue is sharply debrided back to bleeding tissue to allow full visualization of the 20 extent of the ulcer and to detect underlying abscesses or sinuses. Any suitable debridement technique can be used, as determined by an attending physician. The wound can then be thoroughly flushed with sterile saline or a non-cytotoxic cleanser following debridement. In another embodiment, the topical formulation comprises about 0.5% to about 4% hydroxyethyl cellulose (HEC) on a weight (mg)/volume (ml) basis, or on a weight/weight 25 (mg) basis. In various further embodiments, the topical formulation may comprise about 1% to about 3% HEC, or about 2% HEC, on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. These formulations comprising low percentage HEC (ie: 2%) matrices provided a 10-fold increase in peptide release over a 24 hour period from formulations such as those comprising 10% carboxymethylcellulose (CMC), a result that 20 would be unexpected to those of skill in the art. Furthermore, the data show that the HEC matrices are more biocompatible than HPMC and CMC formulations tested. The peptides, or salt thereof may be administered together with one or more (a) a lyoprotectant; (b) a surfactant; (c) a bulking agent; (d) a tonicity adjusting agent; (e) a stabilizer; (f) a preservative and/or (g) a buffer. In some embodiments, the buffer in the 5 WO 2012/106427 PCT/US2012/023484 pharmaceutical composition is a Tris buffer, a histidine buffer, a phosphate buffer, a citrate buffer or an acetate buffer. The peptides may be administered with a lyoprotectant, e.g. sucrose, sorbitol or trehalose. In certain embodiments, the peptides may be administered with a preservative e.g. benzalkonium chloride, benzcthonium, chlorohexidine, phenol, m-cresol, 5 benzyl alcohol, methylparaben, propylparaben, chlorobutanol, o-cresol, p-cresol, chlorocresol, phenylmercuric nitrate, thimerosal, benzoic acid, and various mixtures thereof. In other embodiments, the peptides may be administered with a bulking agent, like glycine. In yet other embodiments, the peptides may be administered with a surfactant e.g., polysorbate-20, polysorbate-40, polysorbate- 60, polysorbate-65, polysorbate-80 polysorbate 10 85, poloxamer-188, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trilaurate, sorbitan tristearate, sorbitan trioleaste, or a combination thereof. The peptides may be administered with a tonicity adjusting agent, e.g., a compound that renders the formulation substantially isotonic or isoosmotic with human blood. Exemplary tonicity adjusting agents include sucrose, sorbitol, glycine, methionine, 15 mannitol, dextrose, inositol, sodium chloride, arginine and arginine hydrochloride. In other embodiments, the peptides may be administered with a stabilizer, e.g., a molecule which, when combined with the peptide substantially prevents or reduces chemical and/or physical instability of the protein of interest in lyophilized or liquid form. Exemplary stabilizers include sucrose, sorbitol, glycine, inositol, sodium chloride, methionine, arginine, and 20 arginine hydrochloride, paraben, and combinations of methyl paraben and propyl paraben. In all aspects and embodiments of the invention, suitable acids which are capable of forming salts with the peptides include, but are not limited to, inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, phosphoric acid and the like; and organic acids such as formic acid, acetic acid, 25 propionic acid, glycolic acid, lactic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, anthranilic acid, cinnamic acid, naphthalene sulfonic acid, sulfanilic acid and the like. Suitable bases capable of forming salts with the peptides include, but are not limited to, inorganic bases such as sodium hydroxide, ammonium hydroxide, potassium hydroxide and the like; and organic bases such as mono-, di- and tri-alkyl and aryl 30 amines (e.g., triethylamine, diisopropyl amine, methyl amine, dimethyl amine and the like) and optionally substituted ethanol-amines (e.g., ethanolamine, diethanolamine and the like). The peptides or salts thereof can further be derivatized to provide enhanced half-life, for example, by linking to polyethylene glycol. The peptides or salts thereof may comprise L-amino acids, D-amino acids (which are resistant to L-amino acid-specific proteases in 6 WO 2012/106427 PCT/US2012/023484 vivo), a combination of D- and L-amino acids, and various "designer" amino acids (e.g., p methyl amino acids, Ca-methyl amino acids, and Na-methyl amino acids, etc.) to convey special properties. The polypeptides may be the sole active agent in the pharmaceutical composition, or 5 the composition may further comprise one or more other active agents suitable treating diabetic foot ulcers, such as antibiotics. The methods may be used in conjunction with other foot ulcer therapies, including but not limited to negative pressure wound therapy, total contact casts, removable cast walkers, half-shoes, becaplermin, infection control, and hyperbaric oxygen therapy. 10 The methods may include any other embodiments as disclosed in the example that follows. Such embodiments may be used in any combination in the methods of the invention, unless the context clearly dictates otherwise. In a second aspect, the present invention provides pharmaceutical formulations, 15 comprising: (a) about 0.5% to about 4% HEC on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis; and (b) a peptide of at least 5 contiguous amino acids of Nle3 A(1-7), or salt thereof; wherein the peptide is present at a concentration of about 0.03 % to about 1% on a 2') weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. The pharmaceutical formulations are demonstrated herein to be particularly effective for treating diabetic foot ulcers, such as chronic diabetic foot ulcers that are not effectively treated using standard therapies. In one embodiment, the peptide comprises Asp-Arg-Nle-Tyr-Ile-His-Pro (SEQ ID 25 NO: 1), or salt thereof. In another embodiment, the peptide consists of Asp-Arg-Nle-Tyr-Ile His-Pro (SEQ ID NO: 1), or salt thereof. In one embodiment, the peptide, or salt thereof, is present in the formulation at a concentration of about 0.03 % to about 1% on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. In various further embodiments, the peptide, or salt thereof, is 30 present in the formulation at a concentration of about 0.03% to about 0.75%; about 0.03% to about 0.5%; about 0.03% to about 0.25%; about 0.03% to about 0.1%; about 0.03% to about 0.075%; about 0.03% to about 0.05%; and about 0.03%; all on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. 7 WO 2012/106427 PCT/US2012/023484 In a further embodiment, the pharmaceutical formulation comprises about 1% to about 3% HEC on a weight (mg)/volume (ml) basis, or on a wcight/weight (mg) basis. . These formulations comprising low percentage HEC (ic: 2%) matrices provided a 10-fold increase in peptide release over a 24 hour period from formulations such as those comprising 5 10% carboxymethylcellulose (CMC), a result that would be unexpected to those of skill in the art. Furthermore, the data show that the HEC matrices are more biocompatible than HPMC and CMC formulations tested. In a still further embodiment, the pharmaceutical formulation comprises about 2% HEC on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. In another embodiment, the formulation comprises a hydrogel 1) formulation. In one embodiment, the formulation is topical gel-based formulation selected from the group consisting of hydrogels, creams, ointments, pastes, and lotions. The formulation is administered so as to form a continuous film covering the entire area of the ulcer, including the margins, without running off. In a preferred embodiment, the topical 15 formulation is applied with a thickness of approximately 0.25 to 2 mm; preferably 0.5 to 1.5 mm; preferably about 1 mm in thickness. In another non-limiting embodiment the formulation is applied at approximately 0.075 mL per cm 2 surface area. In all aspects and embodiments of the invention, suitable acids which are capable of forming salts with the peptides include, but are not limited to, inorganic acids such as 20 hydrochloric acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, phosphoric acid and the like; and organic acids such as formic acid, acetic acid, propionic acid, glycolic acid, lactic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, malcic acid, fumaric acid, anthranilic acid, cinnamic acid, naphthalene sulfonic acid, sulfanilic acid and the like. Suitable bases capable of forming salts with the peptides include, 25 but are not limited to, inorganic bases such as sodium hydroxide, ammonium hydroxide, potassium hydroxide and the like; and organic bases such as mono-, di- and tri-alkyl and aryl amines (e.g., triethylamine, diisopropyl amine, methyl amine, dimethyl amine and the like) and optionally substituted ethanol-amines (e.g., ethanolamine, diethanolamine and the like). The pharmaceutical formulations may further comprise (a) a lyoprotectant; (b) a 30 surfactant; (c) a bulking agent; (d) a tonicity adjusting agent; (e) a stabilizer; (f a preservative and/or (g) a buffer. In some embodiments, the buffer in the pharmaceutical formulations is a Tris buffer, a histidine buffer, a phosphate buffer, a citrate buffer or an acetate buffer. The pharmaceutical formulations may also include a lyoprotectant, e.g. sucrose, sorbitol or trehalose. In certain embodiments, the pharmaceutical formulations 8 WO 2012/106427 PCT/US2012/023484 includes a preservative e.g. benzalkonium chloride, benzethonium, chlorohexidine, phenol, m-cresol, benzyl alcohol, methylparaben, propylparaben, chlorobutanol, o-crcsol, p-crcsol, chlorocresol, phenylmercuric nitrate, thimerosal, benzoic acid, and various mixtures thereof. In other embodiments, the pharmaceutical formulations includes a bulking agent, like 5 glycine. In yet other embodiments, the pharmaceutical formulations includes a surfactant e.g., polysorbate-20, polysorbate-40, polysorbate- 60, polysorbate-65, polysorbate-80 polysorbate 85, poloxamer-188, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trilaurate, sorbitan tristearate, sorbitan trioleaste, or a combination thereof. The pharmaceutical formulations may also include a tonicity adjusting 10 agent, e.g., a compound that renders the formulation substantially isotonic or isoosmotic with human blood. Exemplary tonicity adjusting agents include sucrose, sorbitol, glycine, methionine, mannitol, dextrose, inositol, sodium chloride, arginine and arginine hydrochloride. In other embodiments, the pharmaceutical formulations additionally includes a stabilizer, e.g., a molecule which, when combined with a protein of interest substantially 1.5 prevents or reduces chemical and/or physical instability of the protein of interest in lyophilized or liquid form. Exemplary stabilizers include sucrose, sorbitol, glycine, inositol, sodium chloride, methionine, arginine, and arginine hydrochloride. The peptides or salts thereof can further be derivatized to provide enhanced half-life, for example, by linking to polyethylene glycol. The peptides or salts thereof may comprise 2D L-amino acids, D-amino acids (which are resistant to L-amino acid-specific proteases in vivo), a combination of D- and L-amino acids, and various "designer" amino acids (e.g., methyl amino acids, Ca-methyl amino acids, and Na-methyl amino acids, etc.) to convey special properties. The peptide may be the sole active agent in the pharmaceutical composition, or the 25 composition may further comprise one or more other active agents suitable for treating diabetic ulcers. The formulations may include any other embodiments as disclosed in the example that follows. Such embodiments may be used in any combination in the formulations of the invention, unless the context clearly dictates otherwise. 30 Example: Randomized, Parallel-Group, Double-Blind, Placebo-Controlled Phase 2 Clinical Trial to Evaluate the Safety and Effectiveness of NorLeu 3 -A (1-7) in Treating Subjects with Diabetic Ulcers 35 9 WO 2012/106427 PCT/US2012/023484 The study was designed as a randomized, parallel-group, double-blind, placebo controlled, multi-center trial. After 14-days of best-of-care to evaluate ulcer healing and ensure the wounds were chronic, four-weeks of active treatment were then followed by eight weeks of observation and assessment. The study compared the effects of two concentrations 5 of NorLeu 3 -A(l-7) and placebo, measuring both clinical efficacy and safety. Sustained tissue integrity was evaluated for all subjects during a follow-up period lasting 12 weeks after complete wound closure. Subjects were randomized in a 1:1:1 ratio to one of the three treatment groups: Group 1: Placebo Vehicle Control without NorLeu 3 -A(1-7) (also referred to as "DSCl27") 10 (2% Hydroxyethyl Cellulose (HEC) with 0.1% methyl paraben, 0.02% propyl paraben) Group 2: 0.03 % NorLeu 3 -A(l-7) in Vehicle Group 3: 0.01% NorLeu 3 -A(1-7) in Vehicle 15 The four-week treatment period required daily application of the treatment to the wound site. The first application each week was at the clinic and for the remainder of the week the patient self-administered the treatment. If wound healing occurred during the treatment or assessment periods a final assessment visit was conducted and the integrity was assessed 4 and 12 weeks later (usually 20 weeks 16 and 24 of the study). Inclusion Criteria The following patients were considered eligible for participation in the study: 1) Male or female ambulatory subjects who were at least 18 years of age at 25 screening 2) At start of Screening Period and upon enrollment into the study, had at least one chronic non-healing Wagner Grade I or Grade 2 (ulcers of partial or full thickness and not involving bone, tendon or capsule (probing to tendon or capsule), and that have no sign of infection or myelitis) plantar neuropathic 2.0 diabetic ulcer between 1.0-6.0 cm 2 on the midfoot or forefoot, including the toes but excluding the heel. Non-healing is defined as present for a minimum of one month but not longer than ten months with less than 30% reduction in size in response to treatment (non-study treatment, but including off-loading) during the Screening Period. If more than one ulcer is present that meets the inclusion 10 WO 2012/106427 PCT/US2012/023484 criteria, the larger was studied and treated according to the protocol. Non-study ulcers were treated according to institutional best practice, using per protocol offloading. 3) Have an Ankle Brachial Index (ABI) greater than 0.7 for neuroischemic or 5 greater than 0.8 for neuropathic DFU. 4) Have a Tissue Oxygen Pressure (TcPO 2 ) greater than 40 mm Hg or great toe systolic pressure greater than 50 mmHg to ensure healing potential. 5) Have Type I or Type H diabetes under metabolic control as confirmed by a glycosylated hemoglobin (HbAlc) of less than or equal to 12%, and a serum 10 creatinine level of no greater than 3mg/dL obtained within 3 months of study enrollment 6) Assess the baseline level of neuropathy of the foot using Semmes-Weinstein filaments. Patients were considered to have site specific neuropathy sufficient for loss of protective sensation (LOPS) if they were unable to feel a # 5.07 1.5 monofilament applied to at least 5 of the following 7 sites (28) on the study foot: o plantar to toes and metatarsals 1, 3 and 5 (3 sites) o plantar to midfoot medial and lateral (2 sites) o plantar heel (1 site) o dorsal distal first interspace (I site) 20 7) Female subjects of child-bearing potential must have negative pregnancy test at the time of initiation of study therapy. 8) Female subjects of child-bearing potential must have been willing to use a medically acceptable method of birth control, such as Essure@, hormonal contraception (oral pills, implantable device or skin patch), intrauterine device, 25 tubal ligation or double barrier, during the treatment and assessment period of study participation. 9) Ability and willingness to understand and comply with study procedures and to give written informed consent prior to enrollment in the study or initiation of study procedures. 2.0 Exclusion Criteria If a subject met any of the following criteria, he or she was excluded from the study: 1) Has a known hypersensitivity to any of the study medication components. 11 WO 2012/106427 PCT/US2012/023484 2) Exposure to any investigational agent within 30 days of entry into study. 3) Females who are pregnant or nursing. 4) Females unwilling to use a medically acceptable method of birth control, such as Essure@, hormonal contraception (oral pills, implantable device or skin patch), intrauterine device, tubal ligation or double barrier, during the treatment and assessment period of study participation. 5) Active malignant disease of any kind. A subject, who has had a malignant disease in the past, was treated and is currently disease-free, may be considered for study entry. 10 6) Chronic rcnal insufficiency (serum creatinine during screening is greater than 3.0 g/dL obtained within 3 months of study enrollment). 7) Chronic liver dysfunction evidenced by transaminase levels greater than twice normal. 8) Receiving hemodialysis or chronic ambulatory peritoneal dialysis (CAPD) 15 therapy. 9) Resting blood pressure (at the time of the initial visit of the Screening Period) which exceeds 160 systolic and/or 90 diastolic mmHg on 3 consecutive readings at least 15 minutes apart. 10) Prior radiation therapy of the foot with the ulcer under study. 2') 11) Current use of corticosteroids (within past 8 weeks), immunosuppressants (within past 8 weeks). 12) Known to be HIV positive. 13) Subjects whose ulcer was primarily ischemic in etiology as diagnosed by an ABI of < 0.7 or great toe systolic pressure < 40mmHg or TcPO2 < 40mmHg in 25 the supine position and < 40mmHg while sitting, measured on the forefoot with electrode set at 44 C. 14) Sickle-cell anemia, Raynaud's or other peripheral vascular disease. 15) Current history of drug abuse. 16) Subjects receiving a biologic agent to include growth factors and skin 30 equivalents (Regranex
TM
, Apligraft"m, or Dermagraft"m) in the past 30 days. 17) Subjects with uncontrolled diabetes defined as a glycosylated hemoglobin (HbAlc) > 12%, or a serum creatinine level of greater than 3 g/dL obtained within 3 months of study enrollment determined on two separate occasions at least 3 weeks apart. 12 WO 2012/106427 PCT/US2012/023484 18) Subject with an ulcer which is determined to be clinically infected and requires topical antimicrobials or agents known to affect wound healing or has been taking systemic antibiotics for more than 7 days for any reason. 19) Subject with a Wagner Grade 3 or higher DFU, deep abscess or infection of the 5 joint or tendon, or gangrene or osteomyeltitis. 20) An EKG with a marked baseline prolongation of QT/QTc interval (e.g., repeated demonstration of QTc interval > 450 milliseconds (ms)) A total of 80 subjects were enrolled in the study; 27 were randomized to the 0.03% 10 dose of NorLeu 3 -A(1-7), 25 were randomized to placebo and 28 were randomized to the 0.01% dose. All subjects also received best standard of care, which included debridement, wound cleansing, application of an occlusive dressing and standardized proper off-loading. Results 13 Recent results from a Phase 2 clinical trial with NorLeu 3 -A(1-7) in patients with diabetic foot ulcers showed that the proportion of study ulcers healed by 12 weeks as defined by 100% epithelialized with no drainage, as well as all secondary endpoints. The double blind, placebo-controlled, multi-center clinical trial randomized 80 subjects to receive one of two doses of NorLeu 3 -A(l-7) (0.03% and 0.01%) or vehicle placebo (2% hydroxyethyl 2D cellulose in phosphate buffer with 0.1% methyl paraben and 0.02% propyl paraben) control, in addition to best standard of care (which included debridement). The drug was well tolerated and there were no significant adverse events associated with NorLeu 3 -A(l-7) treatment. In the Intent-to-Treat (ITT) population (all subjects receiving any study medication 25 and from whom any post-baseline data are available): Results show that 54% of the diabetic wounds treated with 0.03% (high dose) of NorLeu 3 -A(1-7) achieved 100% closure in 12 weeks or less, compared with 33% of patients receiving placebo control, and 30% of patients receiving the 0.0 1% dose (low dose) of NorLeu 3 -A(1-7). Based on odds ratio analysis, patients treated with NorLeu 3 -A(l-7) 0.03% were 2.3 times more likely to have their wounds 30 heal completely as compared to patients treated with placebo/standard of care. In the Per Protocol (PP) population (all patients that did not have a major protocol violation affecting efficacy): Results show that 65% of the diabetic wounds treated with 0.03% dose of NorLeu 3 -A(l-7) achieved 100% closure in 12 weeks or less, compared with 38% of patients receiving placebo control, and 28% of patients receiving the 0.0 1% dose of 13 WO 2012/106427 PCT/US2012/023484 NorLeu 3 -A(1-7). See Figures 1-3. Based on odds ratio analysis, patients treated with NorLeu 3 -A(1-7) 0.03% were 3.0 times more likely to have their wounds heal completely as compared to patients treated with placebo/standard of care. The high dose of NorLeu 3 -A(l-7) well exceeded the trial's primary endpoint 5 measurement target of an improvement of 15 percentage points in complete healing of wounds within the 12-week duration of the study for both the ITT (21% increase) and PP (27% increase) populations compared with placebo. The trial was not powered for statistical significance, however there was a statistically significant (p=0.049) 50% improvement in the rate of healing in the PP high-dose population 10 through 12 weeks of treatment compared with the control arm, as measured by depth of ulcer using covariate analysis. The wound healing rates for patients on NorLeu 3 -A(1-7) were remarkable with the ITT analysis showing a 21% increase and the PP analysis showing a 27% increase over the placebo arm. 15 REFERENCES 1. American Diabetes Association, Consensus development conference on diabetic foot wound care. Diabetes Care 1999;22:1354-1360. 2. Pecoraro RE, Reiber GE, Burgess EM, Pathways to diabetic limb amputation: basis for 20 prevention. Diabetes Care 1990;13:513-521. 3. Rodgers KE, Roda N, Felix JC, Espinoza T, Maldonado S, diZerega GS. Histological evaluation of the effects of angiotensin peptides on wound repair in diabetic mice. Experimental Dermatology 2003; 12(6):784-790. 4. Rodgers K, Xiong S, Felix J, Roda N, Espinoza T, Maldonado S, diZerega GS. 25 Development of angiotensin (1-7) as an agent to accelerate dermal repair. Wound Repair Regen 2001;9:238-250. 5. Rodgers KE, Espinoza T, Felix J, Roda N, Maldonado S, diZerega GS. Acceleration of healing, reduction of fibrotic scar, and normalization of tissue architecture by an angiotensin analogue, Norleu 3 -A (1-7). Plast Reconstr Surg 2003; 111:1195-1206. 30 6. Wagner, FJ. A classification and treatment program for diabetic, neuropathic, and dysvascular foot problems. Am Acad of Orthopaedic Surgeons. Instructional Course Lecture 1979;28:143-165. 14 WO 2012/106427 PCT/US2012/023484 7. Foster AV, Eaton C, McConville DO, Edmonds ME. Application of OpSite film: a new and effective treatment of painful diabetic neuropathy. Diabetes Med 1994; 11(8):768 772. 8. Sheehan P, Jones P, Caselli A, Giurini JM, Veves A. Percent change in wound area of 5 diabetic foot ulcers over a 4-week period is a robust predictor of complete healing in a 12 week prospective trial. Diabetes Care 2003;26:1879-1882. 9. Rodgers, KE, Abiko M, Girgis W, St. Amand KM, Campeau JD, diZerega GS. Acceleration of dermal tissue repair by Angiotensin II. Wound Repair Regen 1997;5:175 183. 10 10. Rodgers, KE, DeChemey AH, St. Amand KM, Dougherty WR, Felix JC, Girgis W, diZerega GS. Histologic alterations in dermal repair after thermal injury: effects of topical angiotensin II. Burn Care and Rehabilitation 1997; 18:381-388. 11. Okuyama N, Roda N, Guerrero A, Dougherty W, Nguyen T, diZerega GS, Rodgers KE. Effect of angiotensin II on the viability, vascularity of random flaps in a rat model. 15 Annals Plastic Surgery Res 1999;68:913-918. 12. Rodgers KE, Ellefson DD, Espinoza T, Roda N, Maldonado S, diZerega GS. Effect of NorLeu 3 -A (1-7) on scar formation over time after full thickness incision injury in the rat. Wound Repair Regen 2005; 13:309-317. 13. Santos RA, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CL, Greene LJ, and 20 Ferrario CM. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension 1988; 11(suppl 1):1-53-1-57. 14. Santos RAS, Brosnihan KB, Jacobsen DW, DiCorleto P, and Ferrario CM. Production of Ang-(1-7) by human vascular endothelium. Hypertension 1992;19(suppl II):II-56-II-61. 15. Santos et al. Characterization of a new angiotensin antagonist selective for angiotensin 25 (1-7): evidence that the actions of angiotensin-(1-7) are mediated by specific angiotensin receptors. Brain Res Bull 1994;35:293-298. 16. Yamamoto K, Chappell MC, Brosnihan KB, Ferrario CM. In vivo metabolism of angiotensin I by neutral endopeptidase (EC 3.4.24.11) in spontaneously hypertensive rats. Hypertension 1992;19:692-696. 30 17. Chappell MC, Tallant EA, Brosnihan KB, Ferrario CM. Processing of angiotensin peptides by NG108-15 neuroblastoma X glioma hybrid cell line. Peptides 1990;22:375 380. 18. Chappell MC, Jacobsen DW, Tallant EA. Characterization of angiotensin II receptor subtypes in pancreatic acinar AR42J cells. Peptides 1995;16:741-747. 15 WO 2012/106427 PCT/US2012/023484 19. Chappell MC, Tallant EA, Brosnihan KB, Ferrario CM. Conversion of angiotensin I to angiotensin-(1-7) by thimet oligopeptidase (E.C.3.4.24.15) in vascular smooth muscle cells. J Vasc Biol Med 1995;5:129-137. 20. Daemen MJAP, Lombardi DM, Bosman FT, Schwartz SM.. Angiotensin II induces 5 smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res 1991;68:450-56. 21. Dzau VE, Pratt R, Gibbons G, Schunkert H, Lorell B, Ingelfinger J. Molecular mechanism of angiotensin in the regulation of vascular and cardiac growth. J Mol Cell Cardiol 1989;21 [Suppl III]:S7. 10 22. Naftilan AJ, Pratt RE, Dzau VJ. Induction of platelet-derived growth factor A-chain and c-myc gene expression by Angiotensin II in culture rat vascular smooth muscle cells. J Clin Invest 1989;83:1419-24. 23. Stouffer GA, Owens GK. Angiotensin II induced mitogenesis of spontaneously hypertensive rat derived cultured smooth muscle cells is dependent on autocrine 15 production of transforming growth factor-p. Circ Res 1992;70:820-28. 24. Koibuchi Y, Lee WS, Gibbons GH, Pratt RE. Role of transforming growth factor D-1 in the cellular growth response to Angiotensin II. Hypertension 1993;21:1046-50. 25. Kawahara Y, Sunako M, Tsuda T, Fukazaki H, Fukomoto Y, Takai Y. Angiotensin II induces expression of the c-fos gene through protein kinase C activation and calcium ion 21) mobilization in cultured vascular smooth muscle cells. BBRC 1988;150:52-9. 26. Mangiarua EI, Palmer VL, Lloyd LL, McCumbee WD. Platelet-derived growth factor mediates angiotensin II-induced DNA synthesis in vascular smooth muscle cells. Arch Physiol Biochem 1997;105(2):151-7. 27. Su EJ, Lombardi DM, Wiener J, Daemen MJ, Reidy MA, and Schwartz MA. Mitogenic 25 effect of angiotensin II on the rat carotid arteries and type 11 or III mesenteric microvessels but not type I mesenteric microvessels is mediated by endogenous basic fibroblast growth factor. Circ Res 1998;82:321. 28. Rodgers LC. Driver VR, Armstrong DG. Assessment of the diabetic foot. In Krasner DL, Rodcheaver GT, Sibbald RG cds. Chronic Wound Care: A Clinical Source Book for 30 Healthcare Professionals. 4h ed. Malvern PA: HMP Communications, 2007: 549-556. 29. Bolton L, McNees P, van Rijswijk L et al. Wound healing outcomes using standardized care. JWOCN 2004; 31:65-71. 16 Where the terms "comprise", "comprises", "comprised" or "comprising" are used in this specification (including the claims) they are to be interpreted as specifying the presence of the stated features, integers, steps or components, but not precluding the presence of one or more other features, integers, steps or components, or group thereof. 5 A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission that that document or matter was known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims. 16a 2554146.1
Claims (15)
1. A method for treating diabetic foot ulcers, comprising administering to a human patient suffering from a diabetic foot ulcer an amount of a peptide of at least 5 contiguous amino acids 5 of NIe3 A(1 -7) effective to treat the diabetic foot ulcer, wherein the peptide is administered topically in a gel formulation that comprises about 0.5% to about 4% hydroxyethyl cellulose (HEC) on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis.
2. The method of claim 1, wherein the peptide comprises Asp-Arg-Nle-Tyr-Ile-His-Pro 0 (SEQ ID NO: 1).
3. The method of claim 1, wherein the peptide consists of Asp-Arg-Nle-Tyr-Ile-His-Pro (SEQ ID NO: 1). 5
4. The method of claim 1, wherein the diabetic foot ulcer is one caused, at least in part, by neuropathy and resulting pressure.
5. The method of claim 1, wherein the diabetic foot ulcer comprises one or more calluses. !0
6. The method of claim 1, wherein the diabetic foot ulcer is a chronic ulcer.
7. The method of claim 6, wherein the chronic foot ulcer has not responded to any other treatment. 25
8. The method of claim 1, wherein the peptide is administered as a topical formulation forming a continuous film covering the entire area of the diabetic ulcer.
9. The method of claim 1, wherein the peptide is administered in a hydrogel formulation. 30
10. The method of claim 1, wherein the peptide is administered at a concentration of about 0.03% to about 1% on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. 17
2554146.1
11. The method of claim 2, wherein the diabetic foot ulcer is one caused, at least in part, by neuropathy and resulting pressure.
12. The method of claim 2, wherein the diabetic foot ulcer comprises one or more calluses. 5
13. The method of claim 2, wherein the diabetic foot ulcer is a chronic ulcer.
14. The method of claim 13, wherein the chronic foot ulcer has not responded to any other treatment. 0 15. The method of claim 2, wherein the peptide is administered as a topical formulation forming a continuous film covering the entire area of the diabetic ulcer. 16. The method of claim 2, wherein the peptide is administered in a hydrogel formulation.
15 17. The method of claim 2, wherein the peptide is administered at a concentration of about 0.03% to about 1% on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. 18. The method of claim 3, wherein the diabetic foot ulcer is one caused, at least in part, !0 by neuropathy and resulting pressure. 19. The method of claim 3, wherein the diabetic foot ulcer comprises one or more calluses. 25 20. The method of claim 3, wherein the diabetic foot ulcer is a chronic ulcer. 21. The method of claim 20, wherein the chronic foot ulcer has not responded to any other treatment. 30 22. The method of claim 3, wherein the peptide is administered as a topical formulation forming a continuous film covering the entire area of the diabetic ulcer. 23. The method of claim 3, wherein the peptide is administered in a hydrogel formulation. 18 2554146.1 24. The method of claim 3, wherein the peptide is administered at a concentration of about 0.03% to about 1% on a weight (mg)/volume (ml) basis, or on a weight/weight (mg) basis. 5 25. The method of claim 1, substantially as hereinbefore described with reference to any one of the examples and/or figures. 19 2554146.1
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2012244179A AU2012244179B2 (en) | 2011-02-02 | 2012-10-24 | Methods for treating diabetic foot ulcers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61/438,780 | 2011-02-02 | ||
AU2012212220A AU2012212220B2 (en) | 2011-02-02 | 2012-02-01 | Methods for treating diabetic foot ulcers |
AU2012244179A AU2012244179B2 (en) | 2011-02-02 | 2012-10-24 | Methods for treating diabetic foot ulcers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2012212220A Division AU2012212220B2 (en) | 2011-02-02 | 2012-02-01 | Methods for treating diabetic foot ulcers |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2012244179A1 AU2012244179A1 (en) | 2012-11-15 |
AU2012244179B2 true AU2012244179B2 (en) | 2013-04-04 |
Family
ID=47144681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2012244179A Active AU2012244179B2 (en) | 2011-02-02 | 2012-10-24 | Methods for treating diabetic foot ulcers |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2012244179B2 (en) |
-
2012
- 2012-10-24 AU AU2012244179A patent/AU2012244179B2/en active Active
Non-Patent Citations (4)
Title |
---|
Matuszewska et al (1994) Pharmaceutical Research, 11(1):65-71 * |
Rodgers et al (2003) Experimental Dermatology, December, 12(6):784-790 * |
Rodgers et al (2006) Journal of Peptide Research, December, 66(Suppl 1):41-47 * |
US-NIH (2010) URL:http://web.archive.org/web/20100514120507/http:// www.clinicaltrials.gov/ct2/show/NCT00796744? [retrieved from the internet on 17 July 2012] * |
Also Published As
Publication number | Publication date |
---|---|
AU2012244179A1 (en) | 2012-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2012212220B2 (en) | Methods for treating diabetic foot ulcers | |
US20050181028A1 (en) | Topical composition and method for treating occlusive wounds | |
US7176183B2 (en) | Methods for treating and preventing damage to mucosal tissue | |
EP1364645A1 (en) | Pharmaceutical combinations for topical use based on iron chelators, metalloprotease inhibitors and factor XIII for the treatment of lipodermatosclerosis and trophic lesions of the cutaneous tissues and muccous membranes | |
Toonstra | Bullosis diabeticorum: report of a case with a review of the literature | |
AU2012244179B2 (en) | Methods for treating diabetic foot ulcers | |
CN112316108B (en) | Compositions and methods for promoting and treating chronic wound healing | |
DE60017793T2 (en) | METHOD FOR PREVENTING AND TREATING DAMAGE TO THE TISSUE TISSUE | |
KR20060130620A (en) | Use of organo-silicon compounds for constraining connective damaged tissues | |
Noble et al. | Use of a trypsin, Peru balsam, and castor oil spray on the oral mucosa: case report and review of the literature | |
Canter | Conservative management of wounds | |
US20220168391A1 (en) | Use of epidermal growth factor in diabetic foot ulcer treatment | |
JP2023552515A (en) | Compositions and methods for treating wounds | |
WO2019125577A1 (en) | Method of treatment of diabetic foot ulcers | |
RU1811846C (en) | Method of erysipelatous inflammation treatment | |
Stegbauer | Enhanced wound healing using topical recominant human platelet-derived growth factor | |
JP2004262772A (en) | Glycyrrhizin-containing percutaneous pharmaceutical preparation | |
JP2004026808A (en) | Hemorrhoids-treating agent | |
Naveen | Clinicopathological Study, Management of Diabetic Foot and Its Complications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |