AU2012227310A1 - Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions - Google Patents

Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions Download PDF

Info

Publication number
AU2012227310A1
AU2012227310A1 AU2012227310A AU2012227310A AU2012227310A1 AU 2012227310 A1 AU2012227310 A1 AU 2012227310A1 AU 2012227310 A AU2012227310 A AU 2012227310A AU 2012227310 A AU2012227310 A AU 2012227310A AU 2012227310 A1 AU2012227310 A1 AU 2012227310A1
Authority
AU
Australia
Prior art keywords
polysaccharide
protein
ammonium sulfate
ultrafiltration
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2012227310A
Other versions
AU2012227310B2 (en
Inventor
Ronald P. Mcmaster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanofi Pasteur Inc
Original Assignee
Connaught Laboratories Ltd
Connaught Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Connaught Laboratories Ltd, Connaught Laboratories Inc filed Critical Connaught Laboratories Ltd
Priority to AU2012227310A priority Critical patent/AU2012227310B2/en
Publication of AU2012227310A1 publication Critical patent/AU2012227310A1/en
Application granted granted Critical
Publication of AU2012227310B2 publication Critical patent/AU2012227310B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURIFICATION OF POLYSACCHARIDE-PROTEIN CONJUGATE VACCINES BY ULTRAFILTRATION WITH AMMONIUM SULFATE 5 Abstract The present invention relates to the removal of unbound polysaccharides from conjugated polysaccharide-protein vaccines using the method of ultrafiltration whereby the diafiltration solution contains saturating levels of ammonium sulfate.

Description

S&F Ref: 558263D4 AUSTRALIA PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name and Address Connaught Laboratories, of Discovery Drive, Swiftwater, of Applicant: Pennsylvania, 18370, United States of America Actual Inventor(s): Ronald P. McMaster Address for Service: Spruson & Ferguson St Martins Tower Level 35 31 Market Street Sydney NSW 2000 (CCN 3710000177) Invention Title: Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions The following statement is a full description of this invention, including the best method of performing it known to me/us: 5845c(6731898_1) TITLE OF T HE INVENTION Puri fication of Polysaccharide-Protein Conjugate Vaccines by Ultrafiltration with Ammonium Sulfate Solutions. 5 FIELD OF THE INVENTION The present invention relates to the removal of unbound polysaccharides from conjugated polysaccharide-protein vaccines using the method of ultrafiltration whereby the diafiltration solution contains saturating levels of ammonium sulfate. 10 Several publications are referenced in this application. Full citation to these publications is found where cited or at the end of the specification, immediately preceding the claims; and each of these publications is hereby incorporated by reference. These publications relate to the state of the art to which the invention pertains; however, there is no admission that any of these publications is indeed prior art. 15 BACKGROUND OF THE INVENTION In recent years, a number of polysaccharide-protein conjugate vaccines have been developed for use in protection against bacterial infections. One such vaccine, the Haemophi/us influenzac type B conjugate vaccine is now licensed for use in humans 20 throughout the world. This vaccine is administered to infants along with their.other routine pediatric vaccines. The Haemophilus influenzae type B conjugate vacQine has-.proyen to-be quite effective in protecting against Haemophi/us influenzae type B disease (Santosham, M., 1993). The polysaccharide-protein conjugate vaccines are prepared by covalently attaching purified bacterial capsular polysaccharides to protein molecules using a vanety of chemical 25 methods. Upon completion of the conjugation reactions, the unreacted polysaccharide molecules are separated from the polysaccharide-protein conjugates using an assortment of separation techniques. The techniques that have been proven to be most effective in purifying the polysaccharide-protein conjugates include gel filtration chromatography, hydrophobic interaction chromatography, ultracentrifugation, liquid-liquid extraction, and ammonium 5 sulfate precipitation/fractionation. The reason for the interest in developing conjugate vaccines is that these vaccines are capable of eliciting an anti-polysaccharide specific immune response that protects against disease. These polysaccharide-conjugate vaccines protect against pathogens that contain an io outer polysaccharide shell. These vaccines have proven to be effective in protecting infants and young children against disease. The reason why these vaccines are effective in younger populations is due to the conversion of the purified bacterial capsular polysaccharides, which are classified as t-cell independent antigens, into t-cell-like antigens when they are covalently attached to certain protein molecules. T-cell antigens are capable of eliciting an immune is response that can be boosted upon subsequent vaccination thereby allowing one to establish a level of protection in the vaccinated subject. These T-cell antigens normally confer long lasting immunity against disease. The purified bacterial capsular polysaccharides are capable of eliciting an immune response in man, however, the immune response can be of limited duration, especially in younger populations. The immune response in younger populations is 20 nonnally very low, and is considered not to be of a protective level. Subsequent vaccinations with polysaccharide does not normally yield a higher, or boosted, antibody response, because there is no T-cell help, or memory antibody. For this reason, the polysaccharide vaccines have not been recommended for use in infant populations, and children younger than 2 years of age. 2 In preparation of the polysaccharide-protein conjugate vaccines, steps are normally taken to remove the unbound polysaccharide from these preparations because the unbound polysaccharide does not provide any benefit to the vaccinated subject. In addition, there has been an increased effort to develop well-characterized vaccines that are of a higher degree of s purity for licensure. OBJECTS AND SUMMARY OF THE INVENTION Ultrafiltration, like dialysis, is based on the principle of separating molecules according 10 to size using a semipermeable membrane of a defined range of pore sizes. Ultrafiltration is widely used in protein and polysaccharide purification for concentrating protein and polysaccharide molecules and for changing the composition of the buffer solution. Ultrafiltration is also used in polysaccharide and protein purification for removing low molecular-weight solutes from these sample solutions. This process technique is routinely s applied in small laboratory experiments and in manufacturing scale process steps. The object of this invention is to provide a method of separating unreacted or unbound polysaccharide from polysaccharide-protein conjugate preparations based upon the difference in molecular size. The unreacted or unbound polysaccharide, although relatively large.in 20 molecular size, 1,000 to 50,000 daltons, are much smaller than the molecular size of the polysaccharide-protein conjugate molecules, that range from 100,000 to 1,000,000 daltons in molecular size. In developing this method for polysaccharide-protein conjugate purification, 3 the invention provides the opportunity for ease of scale-up to industrial size reaction preparations. Polysaccharide and protein molecules do not behave the same with respect to their s relative ease of passing through semiperneable membranes. One reason for this is that polysaccharides exist as molecular size distributions whereas proteins are normally of a defined molecular size. Proteins exist in solution as bead-like structures, whereas polysaccharides may adopt a variety of conformations (e.g. helical coils) or they can exist as random string-like structures. As a result of the various geometric forms that polysaccharides io can adopt in solution, some polysaccharides may pass through semipermeable membranes more easily than others. The chemical make up of the semipermeable can be either hydrophobic (e.g. polyether sulfone) or hydrophilic (e.g. regenerated cellulose) in nature. The chemical make-up of the semipenneable membrane can influence the ease with which proteins and polysaccharide pass through the pores. Polysaccharides of molecular size 1 to is 50,000 can pass through semipenrmeable membranes whose pore size has a molecular size cutoff of30,OO0 using 0.15M sodium chloride solution as the diafiltration buffer. When a mixture of the same polysaccharide and polysaccharide-protein conjugates are subjected to the same ultrafiltration experimental conditions, very little of the unbound polysaccharide will pass through the scinipenneable membrane. However, when the diafiltration buffer is 20 changed to 40% (of saturation) ammonium s.ul.fate, then the.unbound polysaccharide-freely passes through the membrane pores. The ammonium sulfate does not affect the size of the membrane pores. The level of saturation does play an important role in allowing the unbound polysaccharide to freely pass 4 through the semipermeable membrane. Below 40% (of saturation) very little unbound polysaccharide will pass through the membrane, however, above 40% (of saturation) the polysaccharide freely elutes through the membrane pores. This invention does not require that the polysacchande-protein conjugate precipitate out of solution for it to work. The s method works equally well whether or not the polysacchande-protein conjugate is fully solubilized or precipitated from solution. Proper selection of the appropriate membrane pore size and percent saturation of ammonium sulfate, allows for high yield recovery of the desired polysaccharide-protein conjugate while allowing for the removal of unreacted polysacchande. 1o The present invention provides a gentle means for the purification of polysacchande protein conjugates that is readily scaleable to any size reaction volume. One method of purification that can be performed at large scale volumes is to precipitate the polysaccharide protein conjugate from solution using ammonium sulfate. In this process, the unbound polysaccharide remains in solution, however, there are certain drawbacks with this approach. s In order to achieve the same level of purity that is provided by the present invention, one needs to perform repetitive ammonium sulfate precipitations due to some partitioning of the polysaccharide with the precipitated polysaccharide-protein conjugate. Certain polysaccharide-protein conjugates are difficult to resolubilize once they are precipitated from solutions. In the present invention, the method does not require that the polysaccharide 20 protein conjugate be precipitated out of solution. The ammonium sulfate diafiltrationsolutin disrupts any potential interaction or association between the unbound polysaccharide and the polysaccharide-protein conjugate. 5 The invention provides a method for purifying polysaccharide-protein conjugates to a level that contain less than 1% unbound polysaccharide by weight. The invention provides a method for purifying polysaccharide-protein conjugates that s have been prepared from bacterial capsular polysaccharides from Strepiococcus pneunioniae serotypes 1, 3, 5, 6B, 7F, 9V, 14, 1 8C, 19F, 23F and fTom Neisseria meningitidis serogroups A, C, W-135 and Y. The invention provides a method for purifying a polysaccharide-protein conjugate so as io to preserve an epitope of interest, a biological response modulator, and/or a growth factor, such that the present invention provides an immunological and/or vaccine or therapeutic agent. The invention further provides a purified polysaccharide-protein conjugate vaccine that i5 may be administered to an animal or human in order to obtain an immunological or protective immune response or for treatment or therapy. DETAILED DESCRIPTION OF THE INVENTION The invention has been applied to purify a number of distinctly different polysaccharide 0 protein conjugates that are derived from a variety of bacterial capsular polysaccharides, although the invention need notbe limited to only these polysaccharide-protein conjugates. The bacterial capsular polysaccharide-protein conjugates that have been purified by this process include Strepococcuspneunoniae serotypes 1, 3, 5, 6B, 7F, 9V, 14, 18C, 19F, and 5 23F, and Neisseria Ineningitidis serogroups A, C. W- 135 and Y. 6 According to the method of the present invention, the derivatized polysaccharide, which are prepared by the method described in patent application 454312-2500, is first mixed with the protein carrier of choice in a solution of physiological saline (0.85% sodium chloride), and the pH of the mixture is adjusted to 5.0±0.1. The conjugation reaction is initiated by adding 5 1 -ethyl-3-(3-dirnehtylaminopropyl) carbodiimide (EDAC) which serves to activate the carboxyl groups on the carrier protein allowing for reaction from a nucleophilic site that is present on the polysaccharide chain. The pH of the reaction is maintained at 5.0±0.1 during the course of the reaction, nonnally for two hours at 18 to 25'C. After the reaction time is complete, the pH of the reaction mixture is adjusted to 7.0±0.1, and the reaction is allow to 10 stand for 12 to 18 hours at 2 to 8*C to allow for hydrolysis of the unreacted EDAC. The polysaccharide-protein conjugate is purified by first allowing the mixture to equilibrate to I8 to 25"C. The mixture is connected to a spiral wound ultrafiltration unit that is equipped with a Millipore Prep/Scale 30,OOOMWCO regenerated cellulose membrane. 15 Ammonium sulfate is added to the reaction mixture at a specifieu level of saturation (in general, 50 to 60% of saturation). The conjugate mixture is diafiltered against 20 volume exchanges of 50 to 60% (of saturation) ammonium sulfate solution. The ammonium sulfate is removed from the polysaccharide-protein solution by diafiltration against 10 volume exchanges of physiological saline (0.85% sodium chloride). The purified conjugate is filtered 20 thrQughL2. and 0.45 micron membranes, and then sterilized by filtration.through a 0.22 micron membrane. 7 The invention is dependent upon the presence of ammonium sulfate in the diafiltration wash buffer. This invention was discovered from the following set of experiments that are described below. A conjugation reaction was performed using purified Neisseria meningitidis serogroup C that had been derivatized with adipic acid dihydrazide with diphtheria toxoid protein. A portion of this reaction mixture was purified by three successive ammonium sulfate precipitations using at 50% of saturation. The precipitations were performed by first adjusting the pH of the mixture to 7.0±0.1 using dilute sodium hydroxide. Solid ammonium sulfate was o added slowly over a 10 minute interval to reach a final concentration of 50% of saturation. The solution was allowed to stand at room temperature for 15 minutes. The precipitated polysaccharide-protein conjugate was collected by centrifugation, using a Beckman JA-20 rotor, at 10,000rpm at 4*C. The supernatant containing solubilized unreacted polysaccharide was removed, and the protein pellet was dissolved into physiological saline, 0.85% sodium 15 chloride. The pH was adjusted to 7.0±0.1 and the polysaccharide-protein conjugate was precipitated as above. Following the third ammonium sulfate precipitate, the polysaccharide protein conjugate was dialyzed against physiological saline, 0.85% sodium chloride. The purified conjugate was filtered through I.2 and 0.45 micron membranes, and then sterilized by filtration through a 0.22 micron membrane. This sample was analyzed for protein, sialic acid 20 content, and for..the.content of.unbound polysaccharide. The remaining portion of the reaction mixture was subjected to a number of ultrafiltration methods of purification. The summary of these purification methods is reported in Table 1. 8 In the first approach, the remaining reaction mixture was connected to a screen channel minisette ultrafiltation unit equipped with a Filtron 30,000 MWCO polyether sulfone membrane. The conjugation reaction mixture was diafiltered against 10 volumes of physiological saline, 0.85% sodium chloride. A sample of this material was analyzed for 5 protein and sialic acid content, see Table 1. In a second approach, a portion of the retentate from the physiological saline diafiltered reaction mixture was connected to a screen channel minisette ultrafiltration unit that was equipped with a Filtron 30,000 MWCO polyether sulfone membrane. The mixture was io diafiltered against 10 volumes of IM sodium chloride, followed by 10 volumes of physiological saline, 0.85% sodium chloride. A sample of this material was analyzed for protein and sialic acid content, see Table 1. In a third approach, a second portion of the retentate from the physiological saline 15 diafiltered reaction mixture was connected to a screen channel minisette ultrafiltration unit that was equipped with a Filtron 30,000 MWCO polyether sulfone membrane. To this mixture was added solid ammonium sulfate to a concentration of 20% of saturation. The mixture was diafiltered against 7 volumes of 20% (of saturation) ammonium sulfate, followed by 6 volumes of physiological saline, 0.85% sodium chloride. A sample of this material was 20 analyzed for protein and sialic acid content see Table I. In a fourth approach, the retentate from the 20% (of saturation) ammonium sulfate diafiltration reaction mixture was connected to a open channel minisette ultratilftration unit that was equipped with a Filtion 30,000 MWCO polyether sulfone membrane. To this 9 mixture was added solid ammonium sulfate to a concentration of 50% of saturation. The mixture was diafiltered against 5 volumes of 50% (of saturation) ammoniurn sulfate, followed by 6 volumes of physiological saline, 0.85% sodium chloride. A sample of this material was analyzed for protein and sialic acid content, see Table 1. In a fifth approach, the retentate from the 50% (of saturation) ammonium sulfate diafiltration reaction mixture was connected to a spiral wound ultrafiltration unit that was equipped with a Millipore Prep/Scale 30,000 MWCO regenerated cellulose membrane. The Prep/Scale spiral wound filter cartridge allows one to perfonn this operation at a higher flux io than is obtained with the flat sheet minisette ultrafiltration system. The mixture was diafiltered against 10 volumes of 50% (of saturation) ammonium sulfate, followed by 10 volumes of physiological saline, 0.85% sodium chloride. A sample was analyzed for protein, sialic acid content, and for the content of unbound polysaccharide, see Table 1. The results from the fourth and fifth experiments showed that inclusion of ammonium sulfate in the diafiltration wash solution allowed for the wash out of the unbound polysaccharide. These experiments were confirmed by perfonning a follow-up experiment using a new reaction mixture of Neisse-ia ieningitidis serogroup C with diphtheria toxoid protein. The conjugation reaction mixture was performed as described above. After ovemight incubation ) at 2-8*C, the reaction mixture. was.connected to a spiral wound ultrafiltration unit that was equipped with a Millipore Prep/Scale 30,000 MWCO regenerated cellulose membrane. The mixture was diafiltered against 10 volumes of 50% (of saturation) ammonium sulfate. The penneate was tested for sialic acid content on each volume wash. The kinetic profile for the unbound polysaccharide removed is shown in Figure 1. Following the diafiltration against 10 50% (of saturation) ammoniurn sulfate, the polysaccharide-protein conjugate was diafiltered against 10 volumes of physiological saline, 0.85% sodium chloride. The sample was analyzed for protein, sialic acid content, and for the content of unbound polysaccharide, see Table 2. s This invention has been applied in the purification ofa number of different polysaccharide-protein conjugate vaccines of which a non-inclusive listing is presented in Table 3. A better understanding of the present invention and of its many advantages will be had form the following non-limiting Examples, given by way of illustration. EXA MPLES io Example I - Ultrafiltration purification of Neisseria mineiigitidis serogroup A diphtheria toxoid protein conjugate. -Materi als- used--i n-ahe- c-njuga tien-reaeti on--a nd-the-u I t-ra-fi lration-puri-fication-of-the polyaccharide-protein conjugate include adipic acid dihydrazide derivatized serogroup A s polysaccharide, diphtheria toxoid protein, I -ethyl-3-(3-dimehtylaminopropyl) carbodiimide (EDAC), physiological saline (0.85% sodium chloride), 0.1 N hydrochloric acid, 0. 1 N sodium hydroxide, and ammonium sulfate. The adipic acid dihydrazide derivatized serogroup A polysaccharide (at 6.5mg/ml) was 20 mixed with diphtheria toxoid protein (at 5mg/mii) and the pH of the mixture was adjusted to 5.0±0.1 using 0. 1 N hydrochloric acid. The reaction was initiated by adding I -ethyl-3-(3-dimehtylaiinopropyl) caibodiimide (EDAC) to a concentration of 3mg/ml. The of the reaction mixture was maintained at 5.0±0.1 for two hours. After two hours, the pH] of lI the reaction mixture was adjusted to 7.0±0.1 using 0.1 N sodium hydroxide. The reaction mixture was incubated at 2-8 0 C for 18 hours. Following incubation at 2-8*C, the reaction mixture was allowed to equilibrate to 15 to 5 30 0 C, and the pi was adjusted to 7.0±0.1, if necessary. To the reaction mixture was added solid ammonium sulfate over a 10 minute interval to attain a concentration of 60% of saturation. The mixture was connected to a spiral wound ultrafiltration unit that was equipped with a Millipore Prep/Scale 30,OOOMWCO regenerated cellulose membrane. The conjugate mixture was diafiltered against 20 volumes of 60% (of saturation) ammonium sulfate solution. 10 The ammonium sulfate was removed from the polysaccharide-protein solution by diafiltration against 10 volume exchanges of physiological saline, 0.85% sodium chloride. The purified conjugate was filtered through 1.2 and 0.45 micron membranes, and then sterilized by filtration through a 0.22 micron membrane. is The quantity of polysaccharide was determined by assaying for phosphorus by the method of Bartlett, G.R.J. (1959) Journal of Biological Chemisti-y, 234, 466. The quantity of protein was determined by the method of Lowry, O.H., et. al. (195 1) Journal of Biological Chemistry 193, 265. The quantity of unbound polysaccharide was measured by passage of the polysaccharide-protein conjugate through a phenyl sepharose CL-6B resin using IM 20 a.....n.. ifaesoJ~ulion, and by quantitating.the-amount the unbound.and bound polysaccharide by the phosphorus method. The same method has been used to purify polysaccharide-protein conjugates prepared from Neisseria Ineningilidis serogroups C, W-1 3 5 and Y, and from Slreptococcus pneunoniae 12 serotypes I, 6B, 7F, 14, and 18C. The di fference in the methods used for these other polysaccharide-protein conjugates is the amount of ammonium sulfate that is added to the conjugate reaction mixture, and the concentration of ammonium sulfate in the diafiltration wash buffer. 5 1 3 REFERENCES 1. Santosham, M. (1993) Vaccine 11: 552-557. 2. Bartlett, G.R.J. (1959) Journal of Biological Chemistry 234: 466. 3. Lowry, O.H., et.al. (1951) Journal of Biological Chemistry 193: 265. 5 TABLE I Purification assessment of Neisseria nengiditis scrogroup C polysaccharide-protein conjugates by ultrafiltration versus the method of ammonium sulfate precipitation. Method of Purification Sialic Acid Content Protein Content Ration of of retentate of retentate F Sialic/Protciii 5 3 Amnonnuni sulfate 0.78mg/ml 6.42mg/ml 0.12 ppts. + dialysis 10 vol. 0.85% NaCI 1.85mg/ml 0.88mg/ml 2.10 dialfiltration 10 vol. IM NaCI + 1.89mg/ml 1.05mg/ml 1.80 10 vol. 0.85% NaClI diafiltracon (scm)* _____________ 7 vol. 20% A m. Sul f. + 1.44mg/mi 0.74mg/mi l.95 6 vol. 0.85% NaCi diafiltrauion (scm)* 105 vol. 50% Am. Sulf. + 0.42mg/mi 0.50mng/ml 0.84 10 6 vol. 0.85% NaCI diafiltrauion (ocm)* ____________ 10 vol. 50% A m. Suif. + 0.067mg/mi 0.35mg/mI 0.19 10 vol. 0.85% NaCI diafiltration (sw)* * Note: scm = screen channel minisette, ocm = open channel minisette, and spw = spiral is wound cartridge. vol. .850 NaI TABLE2 Purification of a Nesse-ia ineningitidis Serogroup C Polysaccharide Protein Conjugate using a spiral wound ultrafiltration unit equipped with a Millipore Prep/Scale 30,000 MWCO regenerated cellulose membrane 5 Ultrafiltration Sialic acid Protein content Sialic Acid % Unbound Conditions content of the of the retentate Protein Polysaccharide retentate in the retentate 10 vol. 50% 0.33mg/ml L.89mg/m 0.17 7.4% Am. Sulf. + 10 vol. 0.85% 10 NaCI diafiltration (sw)* 15 TABLE3 Purification results on polysaccharide-protein conjugates using a spiral wound ultrafiltration unit equipped with a Millipore Prep/Scale 30,000 MWCO regenerated cellulose membrane against 20 volumes of saturated ammonium sulfate solutions, followed by 10 volume 5 exchanges against physiological saline, 0.85% sodium chloride. Conjugate Lot Number % of Saturation of % unbound Ammonium Sulfate polysaccharide 10 N. men. A D01886 60% 4.9% N. men C D01887 50% 7.2% N. men W-1 35 D01889 60% 3.2% N. men Y D01880 60% 6.0% S. pncu I D01905 60% 5.3% 15 S. pneu 6B 4291PD 60% 1.4% S. pneu 7F D01906 60% 4.4% S. pneu 14 D01905 70% 11.0% S. pneu 18C 4292PD 60% <1.0% 20

Claims (7)

  1. 2. The method of claim 1, wherein the semi-permeable membrane is hydrophobic.
  2. 3. The method of claim 2, wherein the hydrophobic membrane is comprised of polyether 10 sulfone.
  3. 4. The method of claim 3. wherein the polyether sulfone membrane has a molecular weigh( cutoff of 30.000.
  4. 5. The method of claim I, wherein the semi-permeable membrane is hydrophilic. 15 6. The method of claim 5, wherein the hydrophilic membrane is comprised of regenerated cellulose.
  5. 7. The method of claim 6, wherein the regenerated cellulose has a molecular weight cutoff of 30.000. S. The method of claim 1, wherein the salt solution is comprised of ammonium sulfate. 20'
  6. 9. The method of claim 8. wherein the ammonium sulfate is present at from 20 to 60% of saturation.
  7. 10. The method of claim 1, wherein the protein is diphtheria toxoid. I I. The method of claim 1, wherein the polysaccharide is capsular polysaccharide from 25 bacteria selected from nthieroup-.consisting-ofStreptococcus pneuniOiiae serotypes l,3.5.6B.7F.9V.I4.18C,19F,23F and Neisseria neningitidis serogroups A,C,W-1 3 5 and Y. Dated 25 September 2012 Connaught Laboratories Patent Attorneys for the Applicant/Nominated Person SPRUSON & FERGUSON
AU2012227310A 1998-12-29 2012-09-25 Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions Expired AU2012227310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012227310A AU2012227310B2 (en) 1998-12-29 2012-09-25 Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09221728 1998-12-29
AU2011213835A AU2011213835A1 (en) 1998-12-29 2011-08-23 Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions
AU2012227310A AU2012227310B2 (en) 1998-12-29 2012-09-25 Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2011213835A Division AU2011213835A1 (en) 1998-12-29 2011-08-23 Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions

Publications (2)

Publication Number Publication Date
AU2012227310A1 true AU2012227310A1 (en) 2012-10-18
AU2012227310B2 AU2012227310B2 (en) 2016-09-15

Family

ID=45465250

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2011213835A Ceased AU2011213835A1 (en) 1998-12-29 2011-08-23 Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions
AU2012227310A Expired AU2012227310B2 (en) 1998-12-29 2012-09-25 Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU2011213835A Ceased AU2011213835A1 (en) 1998-12-29 2011-08-23 Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions

Country Status (1)

Country Link
AU (2) AU2011213835A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965714A (en) * 1997-10-02 1999-10-12 Connaught Laboratories, Inc. Method for the covalent attachment of polysaccharides to protein molecules

Also Published As

Publication number Publication date
AU2012227310B2 (en) 2016-09-15
AU2011213835A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
CA2358022C (en) Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions
CN100556459C (en) Multivalent meningococcal polysaccharide-protein conjugate vaccines
DE69433341T2 (en) METHOD FOR ACTIVATING SOLUBLE CARBOHDRATES BY USING NEW CYANYLATION REAGENTS, FOR THE PRODUCTION OF IMMUNOGENIC CONSTRUCTS
CA1210695A (en) Haemophilus influenzae b polysaccharide exotoxoid conjugate vaccine
DK171421B1 (en) Polysaccharide Compound and Process for Preparation thereof
CN104225587B (en) Multivalent meningococcal derivatized proteinpolysaccharide conjugate and vaccine
DE69826851T2 (en) COUPLING UNMODIFIED PROTEINS TO HALOACYL OR DIHALOACYL-DERIVATED POLYSACCHARIDES FOR THE PREPARATION OF PROTEIN POLYSACCHARIDE VACCINES
CN1709505B (en) Polyvalent bacteria capsule polysaccharide-protein conjugate combined vaccine
JPS58162531A (en) Manufacture of polysaccharide-protein composite body derived from germ capsule, products therefrom and immunogenic composition
JP2011074087A (en) Immunization method against neisseria meningitidis serogroups a and c
DE60315827T2 (en) IMPROVED POLYSACCHARIDE AND GLYCOCONJUGATE VACCINE
DE69922990T2 (en) Preparation method of solid phase conjugates
AU2012227310B2 (en) Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions
CN103933559B (en) Shigella multivalence combined vaccine
WO2012061400A2 (en) Method for reduction of free polysaccharide in polysaccharide-protein vaccines reactions using ion-exchange matrices
AU2008201363A1 (en) Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions
AU2004237870A1 (en) Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions
WO2017036141A1 (en) Preparation method and use of group a meningococcal capsular polysaccharide conjugate vaccine
CN103007268A (en) Low-dose multivalent conjugated vaccine composition and application
CN103007277A (en) Group-A neisseria meningitides capsular polysaccharide conjugated vaccine and preparation method
CN102861326A (en) Epidemic encephalitis polysaccharide-protein conjugated vaccine and preparation method thereof
TW201406389A (en) Conjugates of polysaccharide and E. coli heat-labile toxin, their use and preparation method
CN115006522A (en) Preparation method of bivalent dysentery conjugate combined vaccine
AU2014201676A1 (en) Multivalent meningococcal polysaccharide-protein conjugate vaccine

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired