AU2012219413A1 - Antibodies and immunoconjugates and uses therefor - Google Patents
Antibodies and immunoconjugates and uses therefor Download PDFInfo
- Publication number
- AU2012219413A1 AU2012219413A1 AU2012219413A AU2012219413A AU2012219413A1 AU 2012219413 A1 AU2012219413 A1 AU 2012219413A1 AU 2012219413 A AU2012219413 A AU 2012219413A AU 2012219413 A AU2012219413 A AU 2012219413A AU 2012219413 A1 AU2012219413 A1 AU 2012219413A1
- Authority
- AU
- Australia
- Prior art keywords
- antibody
- seq
- immunoconjugate
- amino acid
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229940127121 immunoconjugate Drugs 0.000 title claims abstract description 116
- 238000000034 method Methods 0.000 claims abstract description 137
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 8
- 210000004027 cell Anatomy 0.000 claims description 157
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 156
- 235000018417 cysteine Nutrition 0.000 claims description 127
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 125
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 121
- -1 6-maleimidocaproyl Chemical group 0.000 claims description 120
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 claims description 120
- 102100038080 B-cell receptor CD22 Human genes 0.000 claims description 118
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 98
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 97
- 230000027455 binding Effects 0.000 claims description 92
- 239000003814 drug Substances 0.000 claims description 87
- 125000005647 linker group Chemical group 0.000 claims description 86
- 229940079593 drug Drugs 0.000 claims description 84
- 206010028980 Neoplasm Diseases 0.000 claims description 83
- 229940049595 antibody-drug conjugate Drugs 0.000 claims description 81
- 239000000611 antibody drug conjugate Substances 0.000 claims description 77
- 241000282414 Homo sapiens Species 0.000 claims description 74
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 67
- 235000001014 amino acid Nutrition 0.000 claims description 57
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 49
- 206010025323 Lymphomas Diseases 0.000 claims description 47
- 108090000623 proteins and genes Proteins 0.000 claims description 47
- 201000011510 cancer Diseases 0.000 claims description 43
- 229920001184 polypeptide Polymers 0.000 claims description 43
- 230000002062 proliferating effect Effects 0.000 claims description 43
- 102000004169 proteins and genes Human genes 0.000 claims description 42
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 claims description 40
- 235000018102 proteins Nutrition 0.000 claims description 40
- 229940127089 cytotoxic agent Drugs 0.000 claims description 38
- 150000001413 amino acids Chemical class 0.000 claims description 36
- 150000001875 compounds Chemical class 0.000 claims description 35
- 239000003153 chemical reaction reagent Substances 0.000 claims description 34
- 201000009277 hairy cell leukemia Diseases 0.000 claims description 34
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 claims description 33
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 claims description 32
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 claims description 32
- 239000002254 cytotoxic agent Substances 0.000 claims description 30
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 30
- 231100000599 cytotoxic agent Toxicity 0.000 claims description 28
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 claims description 27
- 239000012634 fragment Substances 0.000 claims description 27
- 239000013598 vector Substances 0.000 claims description 27
- 239000003053 toxin Substances 0.000 claims description 26
- 231100000765 toxin Toxicity 0.000 claims description 26
- 108700012359 toxins Proteins 0.000 claims description 26
- 230000014509 gene expression Effects 0.000 claims description 25
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 claims description 24
- 208000032839 leukemia Diseases 0.000 claims description 24
- 238000003556 assay Methods 0.000 claims description 22
- 102000040430 polynucleotide Human genes 0.000 claims description 22
- 108091033319 polynucleotide Proteins 0.000 claims description 22
- 239000002157 polynucleotide Substances 0.000 claims description 22
- JJAHTWIKCUJRDK-UHFFFAOYSA-N succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate Chemical compound C1CC(CN2C(C=CC2=O)=O)CCC1C(=O)ON1C(=O)CCC1=O JJAHTWIKCUJRDK-UHFFFAOYSA-N 0.000 claims description 22
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 21
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 21
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 claims description 21
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 claims description 19
- 239000002246 antineoplastic agent Substances 0.000 claims description 19
- 238000001514 detection method Methods 0.000 claims description 18
- 239000003446 ligand Substances 0.000 claims description 18
- 230000009257 reactivity Effects 0.000 claims description 18
- 239000000523 sample Substances 0.000 claims description 18
- 230000001684 chronic effect Effects 0.000 claims description 17
- 239000007850 fluorescent dye Substances 0.000 claims description 17
- 238000001727 in vivo Methods 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 16
- 102000009027 Albumins Human genes 0.000 claims description 15
- 108010088751 Albumins Proteins 0.000 claims description 15
- 102000004190 Enzymes Human genes 0.000 claims description 15
- 108090000790 Enzymes Proteins 0.000 claims description 15
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 14
- 108010044540 auristatin Proteins 0.000 claims description 14
- 239000008194 pharmaceutical composition Substances 0.000 claims description 14
- MFRNYXJJRJQHNW-DEMKXPNLSA-N (2s)-2-[[(2r,3r)-3-methoxy-3-[(2s)-1-[(3r,4s,5s)-3-methoxy-5-methyl-4-[methyl-[(2s)-3-methyl-2-[[(2s)-3-methyl-2-(methylamino)butanoyl]amino]butanoyl]amino]heptanoyl]pyrrolidin-2-yl]-2-methylpropanoyl]amino]-3-phenylpropanoic acid Chemical compound CN[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 MFRNYXJJRJQHNW-DEMKXPNLSA-N 0.000 claims description 13
- AGGWFDNPHKLBBV-YUMQZZPRSA-N (2s)-2-[[(2s)-2-amino-3-methylbutanoyl]amino]-5-(carbamoylamino)pentanoic acid Chemical compound CC(C)[C@H](N)C(=O)N[C@H](C(O)=O)CCCNC(N)=O AGGWFDNPHKLBBV-YUMQZZPRSA-N 0.000 claims description 13
- 230000002285 radioactive effect Effects 0.000 claims description 13
- 239000012070 reactive reagent Substances 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 12
- 230000002401 inhibitory effect Effects 0.000 claims description 12
- 108091005804 Peptidases Proteins 0.000 claims description 11
- 125000000539 amino acid group Chemical group 0.000 claims description 11
- 239000012472 biological sample Substances 0.000 claims description 11
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 claims description 11
- 230000000269 nucleophilic effect Effects 0.000 claims description 11
- 238000000338 in vitro Methods 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 9
- 239000003242 anti bacterial agent Substances 0.000 claims description 9
- 230000004663 cell proliferation Effects 0.000 claims description 9
- 229960002173 citrulline Drugs 0.000 claims description 9
- 239000004365 Protease Substances 0.000 claims description 8
- 229960002685 biotin Drugs 0.000 claims description 8
- 239000011616 biotin Substances 0.000 claims description 8
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical compound CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 7
- 235000020958 biotin Nutrition 0.000 claims description 7
- 230000001293 nucleolytic effect Effects 0.000 claims description 7
- BQWBEDSJTMWJAE-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-[(2-iodoacetyl)amino]benzoate Chemical compound C1=CC(NC(=O)CI)=CC=C1C(=O)ON1C(=O)CCC1=O BQWBEDSJTMWJAE-UHFFFAOYSA-N 0.000 claims description 6
- 241000288906 Primates Species 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 238000012258 culturing Methods 0.000 claims description 6
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 claims description 6
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 6
- DJQYYYCQOZMCRC-UHFFFAOYSA-N 2-aminopropane-1,3-dithiol Chemical compound SCC(N)CS DJQYYYCQOZMCRC-UHFFFAOYSA-N 0.000 claims description 5
- 108010016626 Dipeptides Proteins 0.000 claims description 5
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 claims description 5
- 230000003115 biocidal effect Effects 0.000 claims description 5
- 230000022534 cell killing Effects 0.000 claims description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- 210000004978 chinese hamster ovary cell Anatomy 0.000 claims description 5
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 claims description 5
- 210000004408 hybridoma Anatomy 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 claims description 5
- OMNVYXHOSHNURL-WPRPVWTQSA-N Ala-Phe Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 OMNVYXHOSHNURL-WPRPVWTQSA-N 0.000 claims description 4
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 claims description 4
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 4
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 claims description 4
- 241000283984 Rodentia Species 0.000 claims description 4
- 108010011559 alanylphenylalanine Proteins 0.000 claims description 4
- 239000003937 drug carrier Substances 0.000 claims description 4
- 230000000527 lymphocytic effect Effects 0.000 claims description 4
- 210000001672 ovary Anatomy 0.000 claims description 4
- 239000004474 valine Substances 0.000 claims description 4
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 claims description 3
- 108091035707 Consensus sequence Proteins 0.000 claims description 3
- SBJKKFFYIZUCET-JLAZNSOCSA-N Dehydro-L-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(=O)C1=O SBJKKFFYIZUCET-JLAZNSOCSA-N 0.000 claims description 3
- SBJKKFFYIZUCET-UHFFFAOYSA-N Dehydroascorbic acid Natural products OCC(O)C1OC(=O)C(=O)C1=O SBJKKFFYIZUCET-UHFFFAOYSA-N 0.000 claims description 3
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical group NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 claims description 3
- WDLRUFUQRNWCPK-UHFFFAOYSA-N Tetraxetan Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WDLRUFUQRNWCPK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 235000013477 citrulline Nutrition 0.000 claims description 3
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 claims description 3
- 235000020960 dehydroascorbic acid Nutrition 0.000 claims description 3
- 239000011615 dehydroascorbic acid Substances 0.000 claims description 3
- 239000003085 diluting agent Substances 0.000 claims description 3
- BJAJDJDODCWPNS-UHFFFAOYSA-N dotp Chemical compound O=C1N2CCOC2=NC2=C1SC=C2 BJAJDJDODCWPNS-UHFFFAOYSA-N 0.000 claims description 3
- 125000000623 heterocyclic group Chemical group 0.000 claims description 3
- 102000044389 human CD22 Human genes 0.000 claims description 3
- 230000035755 proliferation Effects 0.000 claims description 3
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 claims description 3
- 241000894006 Bacteria Species 0.000 claims description 2
- 241000699802 Cricetulus griseus Species 0.000 claims description 2
- AMKBTTRWLGVRER-OFVILXPXSA-N n-[(2s)-1-[[(2s)-5-(carbamoylamino)-1-[4-(hydroxymethyl)anilino]-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-6-(2,5-dioxopyrrol-1-yl)hexanamide Chemical compound N([C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=O)C(=O)NC=1C=CC(CO)=CC=1)C(=O)CCCCCN1C(=O)C=CC1=O AMKBTTRWLGVRER-OFVILXPXSA-N 0.000 claims description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 2
- IEDXPSOJFSVCKU-HOKPPMCLSA-N [4-[[(2S)-5-(carbamoylamino)-2-[[(2S)-2-[6-(2,5-dioxopyrrolidin-1-yl)hexanoylamino]-3-methylbutanoyl]amino]pentanoyl]amino]phenyl]methyl N-[(2S)-1-[[(2S)-1-[[(3R,4S,5S)-1-[(2S)-2-[(1R,2R)-3-[[(1S,2R)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-methylamino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-N-methylcarbamate Chemical compound CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C)[C@@H](O)c1ccccc1)OC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C(=O)OCc1ccc(NC(=O)[C@H](CCCNC(N)=O)NC(=O)[C@@H](NC(=O)CCCCCN2C(=O)CCC2=O)C(C)C)cc1)C(C)C IEDXPSOJFSVCKU-HOKPPMCLSA-N 0.000 claims 4
- 150000003573 thiols Chemical class 0.000 claims 4
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 claims 2
- 108010004729 Phycoerythrin Proteins 0.000 claims 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims 2
- 125000004452 carbocyclyl group Chemical group 0.000 claims 2
- 239000007800 oxidant agent Substances 0.000 claims 2
- 239000000546 pharmaceutical excipient Substances 0.000 claims 2
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 claims 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 claims 1
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical group OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 claims 1
- 229940064734 aminobenzoate Drugs 0.000 claims 1
- 125000000732 arylene group Chemical group 0.000 claims 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims 1
- 239000006143 cell culture medium Substances 0.000 claims 1
- 229940125773 compound 10 Drugs 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- 229910000365 copper sulfate Inorganic materials 0.000 claims 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical group [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims 1
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 claims 1
- 230000002018 overexpression Effects 0.000 claims 1
- 125000006850 spacer group Chemical group 0.000 claims 1
- 239000000427 antigen Substances 0.000 description 79
- 108091007433 antigens Proteins 0.000 description 77
- 102000036639 antigens Human genes 0.000 description 77
- 229940024606 amino acid Drugs 0.000 description 47
- 208000035475 disorder Diseases 0.000 description 45
- 201000010099 disease Diseases 0.000 description 36
- 229960005558 mertansine Drugs 0.000 description 33
- 239000000562 conjugate Substances 0.000 description 31
- 230000001363 autoimmune Effects 0.000 description 30
- 108060003951 Immunoglobulin Proteins 0.000 description 29
- 239000003795 chemical substances by application Substances 0.000 description 29
- 102000018358 immunoglobulin Human genes 0.000 description 29
- 238000011282 treatment Methods 0.000 description 28
- 238000006243 chemical reaction Methods 0.000 description 19
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 18
- 208000023275 Autoimmune disease Diseases 0.000 description 17
- 230000001472 cytotoxic effect Effects 0.000 description 17
- ANZJBCHSOXCCRQ-FKUXLPTCSA-N mertansine Chemical compound CO[C@@H]([C@@]1(O)C[C@H](OC(=O)N1)[C@@H](C)[C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(=O)CCS)CC(=O)N1C)\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 ANZJBCHSOXCCRQ-FKUXLPTCSA-N 0.000 description 17
- 238000011160 research Methods 0.000 description 17
- 208000011580 syndromic disease Diseases 0.000 description 17
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 16
- 108010087819 Fc receptors Proteins 0.000 description 16
- 102000009109 Fc receptors Human genes 0.000 description 16
- 108010076504 Protein Sorting Signals Proteins 0.000 description 16
- 150000007523 nucleic acids Chemical group 0.000 description 16
- QWPXBEHQFHACTK-KZVYIGENSA-N (10e,12e)-86-chloro-12,14,4-trihydroxy-85,14-dimethoxy-33,2,7,10-tetramethyl-15,16-dihydro-14h-7-aza-1(6,4)-oxazina-3(2,3)-oxirana-8(1,3)-benzenacyclotetradecaphane-10,12-dien-6-one Chemical compound CN1C(=O)CC(O)C2(C)OC2C(C)C(OC(=O)N2)CC2(O)C(OC)\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 QWPXBEHQFHACTK-KZVYIGENSA-N 0.000 description 15
- 231100000433 cytotoxic Toxicity 0.000 description 15
- 102000005962 receptors Human genes 0.000 description 15
- 108020003175 receptors Proteins 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- 210000004369 blood Anatomy 0.000 description 14
- 239000008280 blood Substances 0.000 description 14
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 102000039446 nucleic acids Human genes 0.000 description 14
- 108020004707 nucleic acids Proteins 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 241000124008 Mammalia Species 0.000 description 13
- 230000001154 acute effect Effects 0.000 description 13
- 229930195731 calicheamicin Natural products 0.000 description 13
- 230000021615 conjugation Effects 0.000 description 13
- 230000001404 mediated effect Effects 0.000 description 13
- 125000003729 nucleotide group Chemical group 0.000 description 13
- 230000001225 therapeutic effect Effects 0.000 description 13
- 241001465754 Metazoa Species 0.000 description 12
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 12
- 238000003384 imaging method Methods 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 206010009944 Colon cancer Diseases 0.000 description 11
- 206010018364 Glomerulonephritis Diseases 0.000 description 11
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 11
- 239000012636 effector Substances 0.000 description 11
- 229940088598 enzyme Drugs 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- QWPXBEHQFHACTK-UHFFFAOYSA-N Maytansinol Natural products CN1C(=O)CC(O)C2(C)OC2C(C)C(OC(=O)N2)CC2(O)C(OC)C=CC=C(C)CC2=CC(OC)=C(Cl)C1=C2 QWPXBEHQFHACTK-UHFFFAOYSA-N 0.000 description 10
- 150000001299 aldehydes Chemical class 0.000 description 10
- 206010003246 arthritis Diseases 0.000 description 10
- 208000010668 atopic eczema Diseases 0.000 description 10
- 150000002148 esters Chemical class 0.000 description 10
- 206010025135 lupus erythematosus Diseases 0.000 description 10
- 239000002773 nucleotide Substances 0.000 description 10
- 210000002966 serum Anatomy 0.000 description 10
- 102000035195 Peptidases Human genes 0.000 description 9
- 230000000172 allergic effect Effects 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 230000012010 growth Effects 0.000 description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- 229940072221 immunoglobulins Drugs 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 206010039073 rheumatoid arthritis Diseases 0.000 description 9
- 235000000346 sugar Nutrition 0.000 description 9
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 8
- 125000003277 amino group Chemical group 0.000 description 8
- 230000004071 biological effect Effects 0.000 description 8
- 239000000090 biomarker Substances 0.000 description 8
- 229930188854 dolastatin Natural products 0.000 description 8
- 230000003834 intracellular effect Effects 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 210000004881 tumor cell Anatomy 0.000 description 8
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 7
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 7
- 206010061218 Inflammation Diseases 0.000 description 7
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 7
- 241001529936 Murinae Species 0.000 description 7
- 108010029485 Protein Isoforms Proteins 0.000 description 7
- 102000001708 Protein Isoforms Human genes 0.000 description 7
- 108010039491 Ricin Proteins 0.000 description 7
- 206010047115 Vasculitis Diseases 0.000 description 7
- 230000001588 bifunctional effect Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000003776 cleavage reaction Methods 0.000 description 7
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 7
- 229960004679 doxorubicin Drugs 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 230000001900 immune effect Effects 0.000 description 7
- 239000002596 immunotoxin Substances 0.000 description 7
- 230000004054 inflammatory process Effects 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 239000000543 intermediate Substances 0.000 description 7
- 210000000265 leukocyte Anatomy 0.000 description 7
- 210000004698 lymphocyte Anatomy 0.000 description 7
- 210000004379 membrane Anatomy 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229960000485 methotrexate Drugs 0.000 description 7
- 239000003068 molecular probe Substances 0.000 description 7
- 201000006417 multiple sclerosis Diseases 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 230000007017 scission Effects 0.000 description 7
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 7
- 229960004528 vincristine Drugs 0.000 description 7
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 7
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 6
- 208000015943 Coeliac disease Diseases 0.000 description 6
- 241000282567 Macaca fascicularis Species 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 229930012538 Paclitaxel Natural products 0.000 description 6
- 206010034277 Pemphigoid Diseases 0.000 description 6
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000002738 chelating agent Substances 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000003013 cytotoxicity Effects 0.000 description 6
- 231100000135 cytotoxicity Toxicity 0.000 description 6
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 6
- AMRJKAQTDDKMCE-UHFFFAOYSA-N dolastatin Chemical class CC(C)C(N(C)C)C(=O)NC(C(C)C)C(=O)N(C)C(C(C)C)C(OC)CC(=O)N1CCCC1C(OC)C(C)C(=O)NC(C=1SC=CN=1)CC1=CC=CC=C1 AMRJKAQTDDKMCE-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 230000036541 health Effects 0.000 description 6
- 229960001001 ibritumomab tiuxetan Drugs 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 6
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 6
- 229960001592 paclitaxel Drugs 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000012552 review Methods 0.000 description 6
- 229960004641 rituximab Drugs 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 229960005486 vaccine Drugs 0.000 description 6
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 6
- 208000031212 Autoimmune polyendocrinopathy Diseases 0.000 description 5
- 201000009030 Carcinoma Diseases 0.000 description 5
- 102000000844 Cell Surface Receptors Human genes 0.000 description 5
- 108010001857 Cell Surface Receptors Proteins 0.000 description 5
- 102000004127 Cytokines Human genes 0.000 description 5
- 108090000695 Cytokines Proteins 0.000 description 5
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 5
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 5
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 5
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- 208000017604 Hodgkin disease Diseases 0.000 description 5
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 201000004681 Psoriasis Diseases 0.000 description 5
- 210000001744 T-lymphocyte Anatomy 0.000 description 5
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 5
- 208000024780 Urticaria Diseases 0.000 description 5
- 206010046851 Uveitis Diseases 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 229940041181 antineoplastic drug Drugs 0.000 description 5
- 208000006673 asthma Diseases 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 206010009887 colitis Diseases 0.000 description 5
- 206010012601 diabetes mellitus Diseases 0.000 description 5
- 238000010494 dissociation reaction Methods 0.000 description 5
- 230000005593 dissociations Effects 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 229960002949 fluorouracil Drugs 0.000 description 5
- 230000003325 follicular Effects 0.000 description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 5
- 208000027866 inflammatory disease Diseases 0.000 description 5
- 238000002372 labelling Methods 0.000 description 5
- 235000018977 lysine Nutrition 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 230000003285 pharmacodynamic effect Effects 0.000 description 5
- 235000019419 proteases Nutrition 0.000 description 5
- 230000009145 protein modification Effects 0.000 description 5
- 230000005180 public health Effects 0.000 description 5
- 150000003384 small molecules Chemical class 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 125000004434 sulfur atom Chemical group 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 5
- WOWDZACBATWTAU-FEFUEGSOSA-N (2s)-2-[[(2s)-2-(dimethylamino)-3-methylbutanoyl]amino]-n-[(3r,4s,5s)-1-[(2s)-2-[(1r,2r)-3-[[(1s,2r)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-n,3-dimethylbutanamide Chemical compound CC(C)[C@H](N(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C)[C@@H](O)C1=CC=CC=C1 WOWDZACBATWTAU-FEFUEGSOSA-N 0.000 description 4
- RTQWWZBSTRGEAV-PKHIMPSTSA-N 2-[[(2s)-2-[bis(carboxymethyl)amino]-3-[4-(methylcarbamoylamino)phenyl]propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound CNC(=O)NC1=CC=C(C[C@@H](CN(CC(C)N(CC(O)=O)CC(O)=O)CC(O)=O)N(CC(O)=O)CC(O)=O)C=C1 RTQWWZBSTRGEAV-PKHIMPSTSA-N 0.000 description 4
- VPFUWHKTPYPNGT-UHFFFAOYSA-N 3-(3,4-dihydroxyphenyl)-1-(5-hydroxy-2,2-dimethylchromen-6-yl)propan-1-one Chemical compound OC1=C2C=CC(C)(C)OC2=CC=C1C(=O)CCC1=CC=C(O)C(O)=C1 VPFUWHKTPYPNGT-UHFFFAOYSA-N 0.000 description 4
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 208000006344 Churg-Strauss Syndrome Diseases 0.000 description 4
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 4
- 206010011878 Deafness Diseases 0.000 description 4
- 108010053187 Diphtheria Toxin Proteins 0.000 description 4
- 102000016607 Diphtheria Toxin Human genes 0.000 description 4
- GKQLYSROISKDLL-UHFFFAOYSA-N EEDQ Chemical compound C1=CC=C2N(C(=O)OCC)C(OCC)C=CC2=C1 GKQLYSROISKDLL-UHFFFAOYSA-N 0.000 description 4
- 208000018428 Eosinophilic granulomatosis with polyangiitis Diseases 0.000 description 4
- 208000024869 Goodpasture syndrome Diseases 0.000 description 4
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 4
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- 206010020751 Hypersensitivity Diseases 0.000 description 4
- 208000010159 IgA glomerulonephritis Diseases 0.000 description 4
- 206010021263 IgA nephropathy Diseases 0.000 description 4
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 4
- 208000029523 Interstitial Lung disease Diseases 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 4
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 4
- 206010029164 Nephrotic syndrome Diseases 0.000 description 4
- 206010033661 Pancytopenia Diseases 0.000 description 4
- 201000011152 Pemphigus Diseases 0.000 description 4
- 208000003441 Transfusion reaction Diseases 0.000 description 4
- 108090000704 Tubulin Proteins 0.000 description 4
- 102000004243 Tubulin Human genes 0.000 description 4
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 230000001093 anti-cancer Effects 0.000 description 4
- 229940088710 antibiotic agent Drugs 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 239000002458 cell surface marker Substances 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 4
- 239000007822 coupling agent Substances 0.000 description 4
- 201000003278 cryoglobulinemia Diseases 0.000 description 4
- 230000001086 cytosolic effect Effects 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 4
- 229960003668 docetaxel Drugs 0.000 description 4
- 206010014599 encephalitis Diseases 0.000 description 4
- 201000001155 extrinsic allergic alveolitis Diseases 0.000 description 4
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 230000002496 gastric effect Effects 0.000 description 4
- 208000016354 hearing loss disease Diseases 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 4
- 239000005556 hormone Substances 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 208000022098 hypersensitivity pneumonitis Diseases 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 230000002757 inflammatory effect Effects 0.000 description 4
- 238000002595 magnetic resonance imaging Methods 0.000 description 4
- WKPWGQKGSOKKOO-RSFHAFMBSA-N maytansine Chemical compound CO[C@@H]([C@@]1(O)C[C@](OC(=O)N1)([C@H]([C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(C)=O)CC(=O)N1C)C)[H])\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 WKPWGQKGSOKKOO-RSFHAFMBSA-N 0.000 description 4
- 230000004060 metabolic process Effects 0.000 description 4
- 239000002207 metabolite Substances 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 4
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 201000008383 nephritis Diseases 0.000 description 4
- 238000011275 oncology therapy Methods 0.000 description 4
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 4
- 208000033808 peripheral neuropathy Diseases 0.000 description 4
- 229960005190 phenylalanine Drugs 0.000 description 4
- COLNVLDHVKWLRT-QMMMGPOBSA-N phenylalanine group Chemical group N[C@@H](CC1=CC=CC=C1)C(=O)O COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 150000008163 sugars Chemical class 0.000 description 4
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical compound N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 description 4
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical group NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 4
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 4
- 229960004355 vindesine Drugs 0.000 description 4
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 3
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 3
- VILFTWLXLYIEMV-UHFFFAOYSA-N 1,5-difluoro-2,4-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=C(F)C=C1F VILFTWLXLYIEMV-UHFFFAOYSA-N 0.000 description 3
- YBBNVCVOACOHIG-UHFFFAOYSA-N 2,2-diamino-1,4-bis(4-azidophenyl)-3-butylbutane-1,4-dione Chemical compound C=1C=C(N=[N+]=[N-])C=CC=1C(=O)C(N)(N)C(CCCC)C(=O)C1=CC=C(N=[N+]=[N-])C=C1 YBBNVCVOACOHIG-UHFFFAOYSA-N 0.000 description 3
- JMTMSDXUXJISAY-UHFFFAOYSA-N 2H-benzotriazol-4-ol Chemical class OC1=CC=CC2=C1N=NN2 JMTMSDXUXJISAY-UHFFFAOYSA-N 0.000 description 3
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 3
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 3
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 3
- 208000032671 Allergic granulomatous angiitis Diseases 0.000 description 3
- 206010001889 Alveolitis Diseases 0.000 description 3
- 208000024827 Alzheimer disease Diseases 0.000 description 3
- 208000002267 Anti-neutrophil cytoplasmic antibody-associated vasculitis Diseases 0.000 description 3
- 206010003827 Autoimmune hepatitis Diseases 0.000 description 3
- 208000028564 B-cell non-Hodgkin lymphoma Diseases 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 206010008609 Cholangitis sclerosing Diseases 0.000 description 3
- 208000002691 Choroiditis Diseases 0.000 description 3
- 206010009900 Colitis ulcerative Diseases 0.000 description 3
- 208000011231 Crohn disease Diseases 0.000 description 3
- 206010011715 Cyclitis Diseases 0.000 description 3
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 3
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 3
- 201000004624 Dermatitis Diseases 0.000 description 3
- 206010012442 Dermatitis contact Diseases 0.000 description 3
- 101100278318 Dictyostelium discoideum dohh-2 gene Proteins 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 3
- 208000015023 Graves' disease Diseases 0.000 description 3
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 3
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 3
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 description 3
- 102100026120 IgG receptor FcRn large subunit p51 Human genes 0.000 description 3
- 101710177940 IgG receptor FcRn large subunit p51 Proteins 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 3
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 3
- 206010025280 Lymphocytosis Diseases 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 229930126263 Maytansine Natural products 0.000 description 3
- 201000009906 Meningitis Diseases 0.000 description 3
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 3
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 208000005225 Opsoclonus-Myoclonus Syndrome Diseases 0.000 description 3
- 102000004316 Oxidoreductases Human genes 0.000 description 3
- 108090000854 Oxidoreductases Proteins 0.000 description 3
- 208000031845 Pernicious anaemia Diseases 0.000 description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 206010036105 Polyneuropathy Diseases 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 206010063837 Reperfusion injury Diseases 0.000 description 3
- IIDJRNMFWXDHID-UHFFFAOYSA-N Risedronic acid Chemical compound OP(=O)(O)C(P(O)(O)=O)(O)CC1=CC=CN=C1 IIDJRNMFWXDHID-UHFFFAOYSA-N 0.000 description 3
- 230000018199 S phase Effects 0.000 description 3
- 238000011579 SCID mouse model Methods 0.000 description 3
- 206010039705 Scleritis Diseases 0.000 description 3
- 208000034189 Sclerosis Diseases 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- 241000187747 Streptomyces Species 0.000 description 3
- 201000009594 Systemic Scleroderma Diseases 0.000 description 3
- 206010042953 Systemic sclerosis Diseases 0.000 description 3
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 3
- 208000031981 Thrombocytopenic Idiopathic Purpura Diseases 0.000 description 3
- 101710183280 Topoisomerase Proteins 0.000 description 3
- 201000006704 Ulcerative Colitis Diseases 0.000 description 3
- 206010047124 Vasculitis necrotising Diseases 0.000 description 3
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 208000026935 allergic disease Diseases 0.000 description 3
- 208000007502 anemia Diseases 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 201000008937 atopic dermatitis Diseases 0.000 description 3
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 description 3
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 238000007385 chemical modification Methods 0.000 description 3
- 208000029742 colonic neoplasm Diseases 0.000 description 3
- 238000002648 combination therapy Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 239000013068 control sample Substances 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 208000024389 cytopenia Diseases 0.000 description 3
- 239000000824 cytostatic agent Substances 0.000 description 3
- 230000001085 cytostatic effect Effects 0.000 description 3
- 229960000975 daunorubicin Drugs 0.000 description 3
- 201000001981 dermatomyositis Diseases 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 3
- 125000005442 diisocyanate group Chemical group 0.000 description 3
- BGRWYRAHAFMIBJ-UHFFFAOYSA-N diisopropylcarbodiimide Natural products CC(C)NC(=O)NC(C)C BGRWYRAHAFMIBJ-UHFFFAOYSA-N 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- ZWIBGKZDAWNIFC-UHFFFAOYSA-N disuccinimidyl suberate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)CCC1=O ZWIBGKZDAWNIFC-UHFFFAOYSA-N 0.000 description 3
- 150000002019 disulfides Chemical class 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 201000002491 encephalomyelitis Diseases 0.000 description 3
- 230000002124 endocrine Effects 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 150000002222 fluorine compounds Chemical class 0.000 description 3
- 201000003444 follicular lymphoma Diseases 0.000 description 3
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 description 3
- 230000010370 hearing loss Effects 0.000 description 3
- 231100000888 hearing loss Toxicity 0.000 description 3
- 208000006454 hepatitis Diseases 0.000 description 3
- 238000013537 high throughput screening Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 3
- 150000002463 imidates Chemical class 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 230000002637 immunotoxin Effects 0.000 description 3
- 229940051026 immunotoxin Drugs 0.000 description 3
- 231100000608 immunotoxin Toxicity 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 208000014018 liver neoplasm Diseases 0.000 description 3
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 3
- 230000036210 malignancy Effects 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 3
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 3
- 206010028417 myasthenia gravis Diseases 0.000 description 3
- 108010068617 neonatal Fc receptor Proteins 0.000 description 3
- 208000008795 neuromyelitis optica Diseases 0.000 description 3
- 201000001119 neuropathy Diseases 0.000 description 3
- 230000007823 neuropathy Effects 0.000 description 3
- 210000000440 neutrophil Anatomy 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 102000013415 peroxidase activity proteins Human genes 0.000 description 3
- 108040007629 peroxidase activity proteins Proteins 0.000 description 3
- 238000002823 phage display Methods 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 208000005987 polymyositis Diseases 0.000 description 3
- 230000007824 polyneuropathy Effects 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 201000000742 primary sclerosing cholangitis Diseases 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 235000019833 protease Nutrition 0.000 description 3
- 208000009954 pyoderma gangrenosum Diseases 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 238000000163 radioactive labelling Methods 0.000 description 3
- 238000003127 radioimmunoassay Methods 0.000 description 3
- 208000002574 reactive arthritis Diseases 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 208000010157 sclerosing cholangitis Diseases 0.000 description 3
- 208000017520 skin disease Diseases 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical compound [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 3
- 229960001603 tamoxifen Drugs 0.000 description 3
- ATGUDZODTABURZ-UHFFFAOYSA-N thiolan-2-ylideneazanium;chloride Chemical compound Cl.N=C1CCCS1 ATGUDZODTABURZ-UHFFFAOYSA-N 0.000 description 3
- 206010043554 thrombocytopenia Diseases 0.000 description 3
- 206010043778 thyroiditis Diseases 0.000 description 3
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 3
- JXLYSJRDGCGARV-CFWMRBGOSA-N vinblastine Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-CFWMRBGOSA-N 0.000 description 3
- 229960003048 vinblastine Drugs 0.000 description 3
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XRASPMIURGNCCH-UHFFFAOYSA-N zoledronic acid Chemical compound OP(=O)(O)C(P(O)(O)=O)(O)CN1C=CN=C1 XRASPMIURGNCCH-UHFFFAOYSA-N 0.000 description 3
- OMJKFYKNWZZKTK-POHAHGRESA-N (5z)-5-(dimethylaminohydrazinylidene)imidazole-4-carboxamide Chemical compound CN(C)N\N=C1/N=CN=C1C(N)=O OMJKFYKNWZZKTK-POHAHGRESA-N 0.000 description 2
- 125000006832 (C1-C10) alkylene group Chemical group 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 2
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 2
- MQLACMBJVPINKE-UHFFFAOYSA-N 10-[(3-hydroxy-4-methoxyphenyl)methylidene]anthracen-9-one Chemical compound C1=C(O)C(OC)=CC=C1C=C1C2=CC=CC=C2C(=O)C2=CC=CC=C21 MQLACMBJVPINKE-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- FZDFGHZZPBUTGP-UHFFFAOYSA-N 2-[[2-[bis(carboxymethyl)amino]-3-(4-isothiocyanatophenyl)propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)C(C)CN(CC(O)=O)CC(N(CC(O)=O)CC(O)=O)CC1=CC=C(N=C=S)C=C1 FZDFGHZZPBUTGP-UHFFFAOYSA-N 0.000 description 2
- FBUTXZSKZCQABC-UHFFFAOYSA-N 2-amino-1-methyl-7h-purine-6-thione Chemical compound S=C1N(C)C(N)=NC2=C1NC=N2 FBUTXZSKZCQABC-UHFFFAOYSA-N 0.000 description 2
- 125000004398 2-methyl-2-butyl group Chemical group CC(C)(CC)* 0.000 description 2
- 125000004918 2-methyl-2-pentyl group Chemical group CC(C)(CCC)* 0.000 description 2
- 125000004922 2-methyl-3-pentyl group Chemical group CC(C)C(CC)* 0.000 description 2
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 2
- KIUMMUBSPKGMOY-UHFFFAOYSA-N 3,3'-Dithiobis(6-nitrobenzoic acid) Chemical compound C1=C([N+]([O-])=O)C(C(=O)O)=CC(SSC=2C=C(C(=CC=2)[N+]([O-])=O)C(O)=O)=C1 KIUMMUBSPKGMOY-UHFFFAOYSA-N 0.000 description 2
- 125000004917 3-methyl-2-butyl group Chemical group CC(C(C)*)C 0.000 description 2
- 125000004919 3-methyl-2-pentyl group Chemical group CC(C(C)*)CC 0.000 description 2
- 125000004921 3-methyl-3-pentyl group Chemical group CC(CC)(CC)* 0.000 description 2
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 2
- 125000004920 4-methyl-2-pentyl group Chemical group CC(CC(C)*)C 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 108010066676 Abrin Proteins 0.000 description 2
- 208000026872 Addison Disease Diseases 0.000 description 2
- 208000035939 Alveolitis allergic Diseases 0.000 description 2
- 206010002198 Anaphylactic reaction Diseases 0.000 description 2
- 206010002412 Angiocentric lymphomas Diseases 0.000 description 2
- 208000028185 Angioedema Diseases 0.000 description 2
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 2
- 208000003343 Antiphospholipid Syndrome Diseases 0.000 description 2
- 201000002909 Aspergillosis Diseases 0.000 description 2
- 208000036641 Aspergillus infections Diseases 0.000 description 2
- 101000669426 Aspergillus restrictus Ribonuclease mitogillin Proteins 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000004300 Atrophic Gastritis Diseases 0.000 description 2
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- 208000036170 B-Cell Marginal Zone Lymphoma Diseases 0.000 description 2
- 208000037914 B-cell disorder Diseases 0.000 description 2
- 230000003844 B-cell-activation Effects 0.000 description 2
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 2
- 231100000699 Bacterial toxin Toxicity 0.000 description 2
- 208000023328 Basedow disease Diseases 0.000 description 2
- 208000006373 Bell palsy Diseases 0.000 description 2
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 2
- 208000033222 Biliary cirrhosis primary Diseases 0.000 description 2
- 108010006654 Bleomycin Proteins 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 101710158575 Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase Proteins 0.000 description 2
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 2
- 208000031976 Channelopathies Diseases 0.000 description 2
- 206010008909 Chronic Hepatitis Diseases 0.000 description 2
- 102100032768 Complement receptor type 2 Human genes 0.000 description 2
- 108700032819 Croton tiglium crotin II Proteins 0.000 description 2
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- 208000006313 Delayed Hypersensitivity Diseases 0.000 description 2
- 208000016192 Demyelinating disease Diseases 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- 206010012434 Dermatitis allergic Diseases 0.000 description 2
- 206010012438 Dermatitis atopic Diseases 0.000 description 2
- 206010051392 Diapedesis Diseases 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- OFDNQWIFNXBECV-UHFFFAOYSA-N Dolastatin 10 Natural products CC(C)C(N(C)C)C(=O)NC(C(C)C)C(=O)N(C)C(C(C)CC)C(OC)CC(=O)N1CCCC1C(OC)C(C)C(=O)NC(C=1SC=CN=1)CC1=CC=CC=C1 OFDNQWIFNXBECV-UHFFFAOYSA-N 0.000 description 2
- 208000005373 Dyshidrotic Eczema Diseases 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 101710181478 Envelope glycoprotein GP350 Proteins 0.000 description 2
- 206010014950 Eosinophilia Diseases 0.000 description 2
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 2
- 229930189413 Esperamicin Natural products 0.000 description 2
- 101710082714 Exotoxin A Proteins 0.000 description 2
- 201000003542 Factor VIII deficiency Diseases 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 208000018522 Gastrointestinal disease Diseases 0.000 description 2
- JRZJKWGQFNTSRN-UHFFFAOYSA-N Geldanamycin Natural products C1C(C)CC(OC)C(O)C(C)C=C(C)C(OC(N)=O)C(OC)CCC=C(C)C(=O)NC2=CC(=O)C(OC)=C1C2=O JRZJKWGQFNTSRN-UHFFFAOYSA-N 0.000 description 2
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 description 2
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 201000005569 Gout Diseases 0.000 description 2
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 2
- 239000007821 HATU Substances 0.000 description 2
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 description 2
- 208000009292 Hemophilia A Diseases 0.000 description 2
- 206010019939 Herpes gestationis Diseases 0.000 description 2
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 2
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 2
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 2
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 2
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 206010020649 Hyperkeratosis Diseases 0.000 description 2
- 208000000038 Hypoparathyroidism Diseases 0.000 description 2
- 102000016844 Immunoglobulin-like domains Human genes 0.000 description 2
- 108050006430 Immunoglobulin-like domains Proteins 0.000 description 2
- ZCYVEMRRCGMTRW-AHCXROLUSA-N Iodine-123 Chemical compound [123I] ZCYVEMRRCGMTRW-AHCXROLUSA-N 0.000 description 2
- 206010022941 Iridocyclitis Diseases 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 201000010743 Lambert-Eaton myasthenic syndrome Diseases 0.000 description 2
- 201000001779 Leukocyte adhesion deficiency Diseases 0.000 description 2
- 208000005777 Lupus Nephritis Diseases 0.000 description 2
- 208000030289 Lymphoproliferative disease Diseases 0.000 description 2
- 230000027311 M phase Effects 0.000 description 2
- 201000003791 MALT lymphoma Diseases 0.000 description 2
- 102000029749 Microtubule Human genes 0.000 description 2
- 108091022875 Microtubule Proteins 0.000 description 2
- 208000003250 Mixed connective tissue disease Diseases 0.000 description 2
- 244000302512 Momordica charantia Species 0.000 description 2
- 235000009811 Momordica charantia Nutrition 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- 206010028424 Myasthenic syndrome Diseases 0.000 description 2
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 2
- 201000002481 Myositis Diseases 0.000 description 2
- 206010028665 Myxoedema Diseases 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- WTBIAPVQQBCLFP-UHFFFAOYSA-N N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O Chemical compound N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O WTBIAPVQQBCLFP-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 206010033645 Pancreatitis Diseases 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 208000008223 Pemphigoid Gestationis Diseases 0.000 description 2
- 241000721454 Pemphigus Species 0.000 description 2
- 101100413173 Phytolacca americana PAP2 gene Proteins 0.000 description 2
- 231100000742 Plant toxin Toxicity 0.000 description 2
- 206010065159 Polychondritis Diseases 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 208000003971 Posterior uveitis Diseases 0.000 description 2
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 2
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 2
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 2
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 2
- 208000012322 Raynaud phenomenon Diseases 0.000 description 2
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 2
- 208000033464 Reiter syndrome Diseases 0.000 description 2
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 2
- 208000025747 Rheumatic disease Diseases 0.000 description 2
- 206010039085 Rhinitis allergic Diseases 0.000 description 2
- 206010039710 Scleroderma Diseases 0.000 description 2
- 206010040047 Sepsis Diseases 0.000 description 2
- 108010029157 Sialic Acid Binding Ig-like Lectin 2 Proteins 0.000 description 2
- 208000021386 Sjogren Syndrome Diseases 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 206010042033 Stevens-Johnson syndrome Diseases 0.000 description 2
- 206010072148 Stiff-Person syndrome Diseases 0.000 description 2
- 206010051379 Systemic Inflammatory Response Syndrome Diseases 0.000 description 2
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 2
- 229940123237 Taxane Drugs 0.000 description 2
- 206010043561 Thrombocytopenic purpura Diseases 0.000 description 2
- 201000007023 Thrombotic Thrombocytopenic Purpura Diseases 0.000 description 2
- DKJJVAGXPKPDRL-UHFFFAOYSA-N Tiludronic acid Chemical compound OP(O)(=O)C(P(O)(O)=O)SC1=CC=C(Cl)C=C1 DKJJVAGXPKPDRL-UHFFFAOYSA-N 0.000 description 2
- 102100036922 Tumor necrosis factor ligand superfamily member 13B Human genes 0.000 description 2
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 240000001866 Vernicia fordii Species 0.000 description 2
- LJFFDOBFKICLHN-IXWHRVGISA-N [(1S,2R,3S,5S,6S,16E,18E,20R,21S)-11-chloro-21-hydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8,23-dioxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.110,14.03,5]hexacosa-10,12,14(26),16,18-pentaen-6-yl] (2S)-2-[methyl(4-sulfanylpentanoyl)amino]propanoate Chemical compound CO[C@@H]([C@@]1(O)C[C@H](OC(=O)N1)[C@@H](C)[C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(=O)CCC(C)S)CC(=O)N1C)\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 LJFFDOBFKICLHN-IXWHRVGISA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 201000010105 allergic rhinitis Diseases 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- 108010001818 alpha-sarcin Proteins 0.000 description 2
- 150000001408 amides Chemical group 0.000 description 2
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 2
- 229960003437 aminoglutethimide Drugs 0.000 description 2
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000036783 anaphylactic response Effects 0.000 description 2
- 208000003455 anaphylaxis Diseases 0.000 description 2
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 201000004612 anterior uveitis Diseases 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 229940125644 antibody drug Drugs 0.000 description 2
- 208000002399 aphthous stomatitis Diseases 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 208000027625 autoimmune inner ear disease Diseases 0.000 description 2
- 208000010928 autoimmune thyroid disease Diseases 0.000 description 2
- 239000000688 bacterial toxin Substances 0.000 description 2
- 239000008228 bacteriostatic water for injection Substances 0.000 description 2
- 208000002479 balanitis Diseases 0.000 description 2
- QZPQTZZNNJUOLS-UHFFFAOYSA-N beta-lapachone Chemical compound C12=CC=CC=C2C(=O)C(=O)C2=C1OC(C)(C)CC2 QZPQTZZNNJUOLS-UHFFFAOYSA-N 0.000 description 2
- 238000005415 bioluminescence Methods 0.000 description 2
- 230000029918 bioluminescence Effects 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 238000001815 biotherapy Methods 0.000 description 2
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical class N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229950007296 cantuzumab mertansine Drugs 0.000 description 2
- 125000000837 carbohydrate group Chemical group 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 230000015861 cell surface binding Effects 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 2
- 229960004630 chlorambucil Drugs 0.000 description 2
- 239000003593 chromogenic compound Substances 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 208000016644 chronic atrophic gastritis Diseases 0.000 description 2
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 2
- 208000024376 chronic urticaria Diseases 0.000 description 2
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 2
- 229960004316 cisplatin Drugs 0.000 description 2
- ACSIXWWBWUQEHA-UHFFFAOYSA-N clodronic acid Chemical compound OP(O)(=O)C(Cl)(Cl)P(O)(O)=O ACSIXWWBWUQEHA-UHFFFAOYSA-N 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 230000024203 complement activation Effects 0.000 description 2
- 238000010668 complexation reaction Methods 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 208000010247 contact dermatitis Diseases 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 208000004921 cutaneous lupus erythematosus Diseases 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 229960003901 dacarbazine Drugs 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 2
- 230000017858 demethylation Effects 0.000 description 2
- 238000010520 demethylation reaction Methods 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 229930191339 dianthin Natural products 0.000 description 2
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229960005156 digoxin Drugs 0.000 description 2
- ZLFRJHOBQVVTOJ-UHFFFAOYSA-N dimethyl hexanediimidate Chemical compound COC(=N)CCCCC(=N)OC ZLFRJHOBQVVTOJ-UHFFFAOYSA-N 0.000 description 2
- 229940113088 dimethylacetamide Drugs 0.000 description 2
- 206010013023 diphtheria Diseases 0.000 description 2
- OFDNQWIFNXBECV-VFSYNPLYSA-N dolastatin 10 Chemical compound CC(C)[C@H](N(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C=1SC=CN=1)CC1=CC=CC=C1 OFDNQWIFNXBECV-VFSYNPLYSA-N 0.000 description 2
- 108010045524 dolastatin 10 Proteins 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- VLCYCQAOQCDTCN-UHFFFAOYSA-N eflornithine Chemical compound NCCCC(N)(C(F)F)C(O)=O VLCYCQAOQCDTCN-UHFFFAOYSA-N 0.000 description 2
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 2
- 208000030172 endocrine system disease Diseases 0.000 description 2
- 206010014801 endophthalmitis Diseases 0.000 description 2
- 108010028531 enomycin Proteins 0.000 description 2
- 210000003979 eosinophil Anatomy 0.000 description 2
- 229960001904 epirubicin Drugs 0.000 description 2
- 235000019439 ethyl acetate Nutrition 0.000 description 2
- 229960005420 etoposide Drugs 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000003117 fluorescence-linked immunosorbent assay Methods 0.000 description 2
- 201000005206 focal segmental glomerulosclerosis Diseases 0.000 description 2
- 231100000854 focal segmental glomerulosclerosis Toxicity 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 2
- QTQAWLPCGQOSGP-GBTDJJJQSA-N geldanamycin Chemical compound N1C(=O)\C(C)=C/C=C\[C@@H](OC)[C@H](OC(N)=O)\C(C)=C/[C@@H](C)[C@@H](O)[C@H](OC)C[C@@H](C)CC2=C(OC)C(=O)C=C1C2=O QTQAWLPCGQOSGP-GBTDJJJQSA-N 0.000 description 2
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Chemical compound NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 125000005179 haloacetyl group Chemical group 0.000 description 2
- 208000014951 hematologic disease Diseases 0.000 description 2
- 208000007475 hemolytic anemia Diseases 0.000 description 2
- 231100000283 hepatitis Toxicity 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 208000003532 hypothyroidism Diseases 0.000 description 2
- 229960001101 ifosfamide Drugs 0.000 description 2
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 201000006747 infectious mononucleosis Diseases 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 208000036971 interstitial lung disease 2 Diseases 0.000 description 2
- 230000007154 intracellular accumulation Effects 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 2
- 201000002364 leukopenia Diseases 0.000 description 2
- RGLRXNKKBLIBQS-XNHQSDQCSA-N leuprolide acetate Chemical compound CC(O)=O.CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 RGLRXNKKBLIBQS-XNHQSDQCSA-N 0.000 description 2
- 229960004338 leuprorelin Drugs 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 201000007919 lymphoplasmacytic lymphoma Diseases 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 2
- 229960004961 mechlorethamine Drugs 0.000 description 2
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 2
- 229960001924 melphalan Drugs 0.000 description 2
- 201000008350 membranous glomerulonephritis Diseases 0.000 description 2
- 210000001806 memory b lymphocyte Anatomy 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 206010063344 microscopic polyangiitis Diseases 0.000 description 2
- 210000004688 microtubule Anatomy 0.000 description 2
- 231100000324 minimal toxicity Toxicity 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 229960001156 mitoxantrone Drugs 0.000 description 2
- 230000037230 mobility Effects 0.000 description 2
- 108010010621 modeccin Proteins 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 201000005328 monoclonal gammopathy of uncertain significance Diseases 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 208000037890 multiple organ injury Diseases 0.000 description 2
- 201000005962 mycosis fungoides Diseases 0.000 description 2
- 208000003786 myxedema Diseases 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- QZGIWPZCWHMVQL-UIYAJPBUSA-N neocarzinostatin chromophore Chemical compound O1[C@H](C)[C@H](O)[C@H](O)[C@@H](NC)[C@H]1O[C@@H]1C/2=C/C#C[C@H]3O[C@@]3([C@@H]3OC(=O)OC3)C#CC\2=C[C@H]1OC(=O)C1=C(O)C=CC2=C(C)C=C(OC)C=C12 QZGIWPZCWHMVQL-UIYAJPBUSA-N 0.000 description 2
- 239000012038 nucleophile Substances 0.000 description 2
- 239000002777 nucleoside Substances 0.000 description 2
- 208000005963 oophoritis Diseases 0.000 description 2
- 201000005737 orchitis Diseases 0.000 description 2
- 210000004789 organ system Anatomy 0.000 description 2
- 201000008482 osteoarthritis Diseases 0.000 description 2
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 2
- 229960001756 oxaliplatin Drugs 0.000 description 2
- 210000002741 palatine tonsil Anatomy 0.000 description 2
- WRUUGTRCQOWXEG-UHFFFAOYSA-N pamidronate Chemical compound NCCC(O)(P(O)(O)=O)P(O)(O)=O WRUUGTRCQOWXEG-UHFFFAOYSA-N 0.000 description 2
- 208000012111 paraneoplastic syndrome Diseases 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 201000001976 pemphigus vulgaris Diseases 0.000 description 2
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001151 peptidyl group Chemical group 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 108010076042 phenomycin Proteins 0.000 description 2
- 239000003123 plant toxin Substances 0.000 description 2
- 210000004180 plasmocyte Anatomy 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 2
- 201000006292 polyarteritis nodosa Diseases 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 238000002600 positron emission tomography Methods 0.000 description 2
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 206010063401 primary progressive multiple sclerosis Diseases 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 208000023958 prostate neoplasm Diseases 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000012217 radiopharmaceutical Substances 0.000 description 2
- 229940121896 radiopharmaceutical Drugs 0.000 description 2
- 230000002799 radiopharmaceutical effect Effects 0.000 description 2
- 229960004622 raloxifene Drugs 0.000 description 2
- 230000022983 regulation of cell cycle Effects 0.000 description 2
- 102000037983 regulatory factors Human genes 0.000 description 2
- 108091008025 regulatory factors Proteins 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 201000000306 sarcoidosis Diseases 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 229940095743 selective estrogen receptor modulator Drugs 0.000 description 2
- 239000000333 selective estrogen receptor modulator Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 238000002603 single-photon emission computed tomography Methods 0.000 description 2
- 201000009890 sinusitis Diseases 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 206010041823 squamous cell carcinoma Diseases 0.000 description 2
- PVYJZLYGTZKPJE-UHFFFAOYSA-N streptonigrin Chemical compound C=1C=C2C(=O)C(OC)=C(N)C(=O)C2=NC=1C(C=1N)=NC(C(O)=O)=C(C)C=1C1=CC=C(OC)C(OC)=C1O PVYJZLYGTZKPJE-UHFFFAOYSA-N 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical group O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 229940063683 taxotere Drugs 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- 229960001196 thiotepa Drugs 0.000 description 2
- 229960003087 tioguanine Drugs 0.000 description 2
- 229930013292 trichothecene Natural products 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 229960004276 zoledronic acid Drugs 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- DLNKOYKMWOXYQA-VXNVDRBHSA-N (+)-norephedrine Chemical group C[C@@H](N)[C@@H](O)C1=CC=CC=C1 DLNKOYKMWOXYQA-VXNVDRBHSA-N 0.000 description 1
- NNJPGOLRFBJNIW-HNNXBMFYSA-N (-)-demecolcine Chemical compound C1=C(OC)C(=O)C=C2[C@@H](NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-HNNXBMFYSA-N 0.000 description 1
- FLCQLSRLQIPNLM-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 2-acetylsulfanylacetate Chemical compound CC(=O)SCC(=O)ON1C(=O)CCC1=O FLCQLSRLQIPNLM-UHFFFAOYSA-N 0.000 description 1
- JKHVDAUOODACDU-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(2,5-dioxopyrrol-1-yl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCN1C(=O)C=CC1=O JKHVDAUOODACDU-UHFFFAOYSA-N 0.000 description 1
- PVGATNRYUYNBHO-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-(2,5-dioxopyrrol-1-yl)butanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCN1C(=O)C=CC1=O PVGATNRYUYNBHO-UHFFFAOYSA-N 0.000 description 1
- PMJWDPGOWBRILU-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-[4-(2,5-dioxopyrrol-1-yl)phenyl]butanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCC(C=C1)=CC=C1N1C(=O)C=CC1=O PMJWDPGOWBRILU-UHFFFAOYSA-N 0.000 description 1
- VLARLSIGSPVYHX-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 6-(2,5-dioxopyrrol-1-yl)hexanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCN1C(=O)C=CC1=O VLARLSIGSPVYHX-UHFFFAOYSA-N 0.000 description 1
- WCMOHMXWOOBVMZ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 6-[3-(2,5-dioxopyrrol-1-yl)propanoylamino]hexanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCNC(=O)CCN1C(=O)C=CC1=O WCMOHMXWOOBVMZ-UHFFFAOYSA-N 0.000 description 1
- IHVODYOQUSEYJJ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 6-[[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]amino]hexanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCNC(=O)C(CC1)CCC1CN1C(=O)C=CC1=O IHVODYOQUSEYJJ-UHFFFAOYSA-N 0.000 description 1
- WDQLRUYAYXDIFW-RWKIJVEZSA-N (2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-4-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,5-triol Chemical compound O[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 WDQLRUYAYXDIFW-RWKIJVEZSA-N 0.000 description 1
- ORFNVPGICPYLJV-YTVPMEHESA-N (2s)-2-[[(2r,3r)-3-[(2s)-1-[(3r,4s,5s)-4-[[(2s)-2-[[(2s)-2-[6-(2,5-dioxopyrrol-1-yl)hexanoyl-methylamino]-3-methylbutanoyl]amino]-3-methylbutanoyl]-methylamino]-3-methoxy-5-methylheptanoyl]pyrrolidin-2-yl]-3-methoxy-2-methylpropanoyl]amino]-3-phenylpropan Chemical compound C([C@H](NC(=O)[C@H](C)[C@@H](OC)[C@@H]1CCCN1C(=O)C[C@H]([C@H]([C@@H](C)CC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C(=O)CCCCCN1C(C=CC1=O)=O)C(C)C)OC)C(O)=O)C1=CC=CC=C1 ORFNVPGICPYLJV-YTVPMEHESA-N 0.000 description 1
- YXTKHLHCVFUPPT-YYFJYKOTSA-N (2s)-2-[[4-[(2-amino-5-formyl-4-oxo-1,6,7,8-tetrahydropteridin-6-yl)methylamino]benzoyl]amino]pentanedioic acid;(1r,2r)-1,2-dimethanidylcyclohexane;5-fluoro-1h-pyrimidine-2,4-dione;oxalic acid;platinum(2+) Chemical compound [Pt+2].OC(=O)C(O)=O.[CH2-][C@@H]1CCCC[C@H]1[CH2-].FC1=CNC(=O)NC1=O.C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 YXTKHLHCVFUPPT-YYFJYKOTSA-N 0.000 description 1
- FLWWDYNPWOSLEO-HQVZTVAUSA-N (2s)-2-[[4-[1-(2-amino-4-oxo-1h-pteridin-6-yl)ethyl-methylamino]benzoyl]amino]pentanedioic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1C(C)N(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FLWWDYNPWOSLEO-HQVZTVAUSA-N 0.000 description 1
- CGMTUJFWROPELF-YPAAEMCBSA-N (3E,5S)-5-[(2S)-butan-2-yl]-3-(1-hydroxyethylidene)pyrrolidine-2,4-dione Chemical compound CC[C@H](C)[C@@H]1NC(=O)\C(=C(/C)O)C1=O CGMTUJFWROPELF-YPAAEMCBSA-N 0.000 description 1
- TVIRNGFXQVMMGB-OFWIHYRESA-N (3s,6r,10r,13e,16s)-16-[(2r,3r,4s)-4-chloro-3-hydroxy-4-phenylbutan-2-yl]-10-[(3-chloro-4-methoxyphenyl)methyl]-6-methyl-3-(2-methylpropyl)-1,4-dioxa-8,11-diazacyclohexadec-13-ene-2,5,9,12-tetrone Chemical compound C1=C(Cl)C(OC)=CC=C1C[C@@H]1C(=O)NC[C@@H](C)C(=O)O[C@@H](CC(C)C)C(=O)O[C@H]([C@H](C)[C@@H](O)[C@@H](Cl)C=2C=CC=CC=2)C/C=C/C(=O)N1 TVIRNGFXQVMMGB-OFWIHYRESA-N 0.000 description 1
- XRBSKUSTLXISAB-XVVDYKMHSA-N (5r,6r,7r,8r)-8-hydroxy-7-(hydroxymethyl)-5-(3,4,5-trimethoxyphenyl)-5,6,7,8-tetrahydrobenzo[f][1,3]benzodioxole-6-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H](CO)[C@@H]2C(O)=O)=C1 XRBSKUSTLXISAB-XVVDYKMHSA-N 0.000 description 1
- XRBSKUSTLXISAB-UHFFFAOYSA-N (7R,7'R,8R,8'R)-form-Podophyllic acid Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C(CO)C2C(O)=O)=C1 XRBSKUSTLXISAB-UHFFFAOYSA-N 0.000 description 1
- AESVUZLWRXEGEX-DKCAWCKPSA-N (7S,9R)-7-[(2S,4R,5R,6R)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione iron(3+) Chemical compound [Fe+3].COc1cccc2C(=O)c3c(O)c4C[C@@](O)(C[C@H](O[C@@H]5C[C@@H](N)[C@@H](O)[C@@H](C)O5)c4c(O)c3C(=O)c12)C(=O)CO AESVUZLWRXEGEX-DKCAWCKPSA-N 0.000 description 1
- JXVAMODRWBNUSF-KZQKBALLSA-N (7s,9r,10r)-7-[(2r,4s,5s,6s)-5-[[(2s,4as,5as,7s,9s,9ar,10ar)-2,9-dimethyl-3-oxo-4,4a,5a,6,7,9,9a,10a-octahydrodipyrano[4,2-a:4',3'-e][1,4]dioxin-7-yl]oxy]-4-(dimethylamino)-6-methyloxan-2-yl]oxy-10-[(2s,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2 Chemical compound O([C@@H]1C2=C(O)C=3C(=O)C4=CC=CC(O)=C4C(=O)C=3C(O)=C2[C@@H](O[C@@H]2O[C@@H](C)[C@@H](O[C@@H]3O[C@@H](C)[C@H]4O[C@@H]5O[C@@H](C)C(=O)C[C@@H]5O[C@H]4C3)[C@H](C2)N(C)C)C[C@]1(O)CC)[C@H]1C[C@H](N(C)C)[C@H](O)[C@H](C)O1 JXVAMODRWBNUSF-KZQKBALLSA-N 0.000 description 1
- INAUWOVKEZHHDM-PEDBPRJASA-N (7s,9s)-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-7-[(2r,4s,5s,6s)-5-hydroxy-6-methyl-4-morpholin-4-yloxan-2-yl]oxy-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound Cl.N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCOCC1 INAUWOVKEZHHDM-PEDBPRJASA-N 0.000 description 1
- RCFNNLSZHVHCEK-IMHLAKCZSA-N (7s,9s)-7-(4-amino-6-methyloxan-2-yl)oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound [Cl-].O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)C1CC([NH3+])CC(C)O1 RCFNNLSZHVHCEK-IMHLAKCZSA-N 0.000 description 1
- NOPNWHSMQOXAEI-PUCKCBAPSA-N (7s,9s)-7-[(2r,4s,5s,6s)-4-(2,3-dihydropyrrol-1-yl)-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione Chemical compound N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCC=C1 NOPNWHSMQOXAEI-PUCKCBAPSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- IEXUMDBQLIVNHZ-YOUGDJEHSA-N (8s,11r,13r,14s,17s)-11-[4-(dimethylamino)phenyl]-17-hydroxy-17-(3-hydroxypropyl)-13-methyl-1,2,6,7,8,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-3-one Chemical compound C1=CC(N(C)C)=CC=C1[C@@H]1C2=C3CCC(=O)C=C3CC[C@H]2[C@H](CC[C@]2(O)CCCO)[C@@]2(C)C1 IEXUMDBQLIVNHZ-YOUGDJEHSA-N 0.000 description 1
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 1
- AGNGYMCLFWQVGX-AGFFZDDWSA-N (e)-1-[(2s)-2-amino-2-carboxyethoxy]-2-diazonioethenolate Chemical compound OC(=O)[C@@H](N)CO\C([O-])=C\[N+]#N AGNGYMCLFWQVGX-AGFFZDDWSA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- FJQZXCPWAGYPSD-UHFFFAOYSA-N 1,3,4,6-tetrachloro-3a,6a-diphenylimidazo[4,5-d]imidazole-2,5-dione Chemical compound ClN1C(=O)N(Cl)C2(C=3C=CC=CC=3)N(Cl)C(=O)N(Cl)C12C1=CC=CC=C1 FJQZXCPWAGYPSD-UHFFFAOYSA-N 0.000 description 1
- FONKWHRXTPJODV-DNQXCXABSA-N 1,3-bis[2-[(8s)-8-(chloromethyl)-4-hydroxy-1-methyl-7,8-dihydro-3h-pyrrolo[3,2-e]indole-6-carbonyl]-1h-indol-5-yl]urea Chemical compound C1([C@H](CCl)CN2C(=O)C=3NC4=CC=C(C=C4C=3)NC(=O)NC=3C=C4C=C(NC4=CC=3)C(=O)N3C4=CC(O)=C5NC=C(C5=C4[C@H](CCl)C3)C)=C2C=C(O)C2=C1C(C)=CN2 FONKWHRXTPJODV-DNQXCXABSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- MYBLAOJMRYYKMS-RTRLPJTCSA-N 1-(2-chloroethyl)-1-nitroso-3-[(3r,4r,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]urea Chemical compound OC[C@H]1OC(O)[C@H](NC(=O)N(CCCl)N=O)[C@@H](O)[C@@H]1O MYBLAOJMRYYKMS-RTRLPJTCSA-N 0.000 description 1
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 1
- DIYPCWKHSODVAP-UHFFFAOYSA-N 1-[3-(2,5-dioxopyrrol-1-yl)benzoyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)C1=CC=CC(N2C(C=CC2=O)=O)=C1 DIYPCWKHSODVAP-UHFFFAOYSA-N 0.000 description 1
- CULQNACJHGHAER-UHFFFAOYSA-N 1-[4-[(2-iodoacetyl)amino]benzoyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)C1=CC=C(NC(=O)CI)C=C1 CULQNACJHGHAER-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N 1-nonene Chemical group CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 1
- DGHHQBMTXTWTJV-BQAIUKQQSA-N 119413-54-6 Chemical compound Cl.C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 DGHHQBMTXTWTJV-BQAIUKQQSA-N 0.000 description 1
- 125000003562 2,2-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- HRBGUGQWTMBDTR-UHFFFAOYSA-N 2,3,4-tri(propan-2-yl)benzenesulfonyl chloride Chemical compound CC(C)C1=CC=C(S(Cl)(=O)=O)C(C(C)C)=C1C(C)C HRBGUGQWTMBDTR-UHFFFAOYSA-N 0.000 description 1
- BTOTXLJHDSNXMW-POYBYMJQSA-N 2,3-dideoxyuridine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(=O)NC(=O)C=C1 BTOTXLJHDSNXMW-POYBYMJQSA-N 0.000 description 1
- KGLPWQKSKUVKMJ-UHFFFAOYSA-N 2,3-dihydrophthalazine-1,4-dione Chemical class C1=CC=C2C(=O)NNC(=O)C2=C1 KGLPWQKSKUVKMJ-UHFFFAOYSA-N 0.000 description 1
- 125000003660 2,3-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000003764 2,4-dimethylpentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- BOMZMNZEXMAQQW-UHFFFAOYSA-N 2,5,11-trimethyl-6h-pyrido[4,3-b]carbazol-2-ium-9-ol;acetate Chemical compound CC([O-])=O.C[N+]1=CC=C2C(C)=C(NC=3C4=CC(O)=CC=3)C4=C(C)C2=C1 BOMZMNZEXMAQQW-UHFFFAOYSA-N 0.000 description 1
- YGPWNPKDCKXDHE-UHFFFAOYSA-N 2-(2,5-dioxopyrrolidin-1-yl)-4-pyridin-2-ylsulfanylpentanoic acid Chemical compound C=1C=CC=NC=1SC(C)CC(C(O)=O)N1C(=O)CCC1=O YGPWNPKDCKXDHE-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- BGFTWECWAICPDG-UHFFFAOYSA-N 2-[bis(4-chlorophenyl)methyl]-4-n-[3-[bis(4-chlorophenyl)methyl]-4-(dimethylamino)phenyl]-1-n,1-n-dimethylbenzene-1,4-diamine Chemical compound C1=C(C(C=2C=CC(Cl)=CC=2)C=2C=CC(Cl)=CC=2)C(N(C)C)=CC=C1NC(C=1)=CC=C(N(C)C)C=1C(C=1C=CC(Cl)=CC=1)C1=CC=C(Cl)C=C1 BGFTWECWAICPDG-UHFFFAOYSA-N 0.000 description 1
- QCXJFISCRQIYID-IAEPZHFASA-N 2-amino-1-n-[(3s,6s,7r,10s,16s)-3-[(2s)-butan-2-yl]-7,11,14-trimethyl-2,5,9,12,15-pentaoxo-10-propan-2-yl-8-oxa-1,4,11,14-tetrazabicyclo[14.3.0]nonadecan-6-yl]-4,6-dimethyl-3-oxo-9-n-[(3s,6s,7r,10s,16s)-7,11,14-trimethyl-2,5,9,12,15-pentaoxo-3,10-di(propa Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N=C2C(C(=O)N[C@@H]3C(=O)N[C@H](C(N4CCC[C@H]4C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]3C)=O)[C@@H](C)CC)=C(N)C(=O)C(C)=C2O2)C2=C(C)C=C1 QCXJFISCRQIYID-IAEPZHFASA-N 0.000 description 1
- QDGAVODICPCDMU-UHFFFAOYSA-N 2-amino-3-[3-[bis(2-chloroethyl)amino]phenyl]propanoic acid Chemical group OC(=O)C(N)CC1=CC=CC(N(CCCl)CCCl)=C1 QDGAVODICPCDMU-UHFFFAOYSA-N 0.000 description 1
- BMUXBWLKTHLRQC-UHFFFAOYSA-N 2-azanylethanoic acid Chemical compound NCC(O)=O.NCC(O)=O.NCC(O)=O BMUXBWLKTHLRQC-UHFFFAOYSA-N 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- VNBAOSVONFJBKP-UHFFFAOYSA-N 2-chloro-n,n-bis(2-chloroethyl)propan-1-amine;hydrochloride Chemical compound Cl.CC(Cl)CN(CCCl)CCCl VNBAOSVONFJBKP-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000003229 2-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- YIMDLWDNDGKDTJ-QLKYHASDSA-N 3'-deamino-3'-(3-cyanomorpholin-4-yl)doxorubicin Chemical compound N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCOCC1C#N YIMDLWDNDGKDTJ-QLKYHASDSA-N 0.000 description 1
- 125000004336 3,3-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 1
- PWMYMKOUNYTVQN-UHFFFAOYSA-N 3-(8,8-diethyl-2-aza-8-germaspiro[4.5]decan-2-yl)-n,n-dimethylpropan-1-amine Chemical compound C1C[Ge](CC)(CC)CCC11CN(CCCN(C)C)CC1 PWMYMKOUNYTVQN-UHFFFAOYSA-N 0.000 description 1
- QGJZLNKBHJESQX-UHFFFAOYSA-N 3-Epi-Betulin-Saeure Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C(=C)C)C5C4CCC3C21C QGJZLNKBHJESQX-UHFFFAOYSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- PBVAJRFEEOIAGW-UHFFFAOYSA-N 3-[bis(2-carboxyethyl)phosphanyl]propanoic acid;hydrochloride Chemical compound Cl.OC(=O)CCP(CCC(O)=O)CCC(O)=O PBVAJRFEEOIAGW-UHFFFAOYSA-N 0.000 description 1
- 125000003469 3-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- SFYDWLYPIXHPML-UHFFFAOYSA-N 3-nitro-1-(2,4,6-trimethylphenyl)sulfonyl-1,2,4-triazole Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)N1N=C([N+]([O-])=O)N=C1 SFYDWLYPIXHPML-UHFFFAOYSA-N 0.000 description 1
- CLOUCVRNYSHRCF-UHFFFAOYSA-N 3beta-Hydroxy-20(29)-Lupen-3,27-oic acid Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C(O)=O)CCC5(C)CCC(C(=C)C)C5C4CCC3C21C CLOUCVRNYSHRCF-UHFFFAOYSA-N 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- NCPQROHLJFARLL-UHFFFAOYSA-N 4-(2,5-dioxopyrrol-1-yl)butanoic acid Chemical compound OC(=O)CCCN1C(=O)C=CC1=O NCPQROHLJFARLL-UHFFFAOYSA-N 0.000 description 1
- OBWSOTREAMFOCQ-UHFFFAOYSA-N 4-(4-amino-3,5-dimethylphenyl)-2,6-dimethylaniline;hydrochloride Chemical compound Cl.CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 OBWSOTREAMFOCQ-UHFFFAOYSA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- DODQJNMQWMSYGS-QPLCGJKRSA-N 4-[(z)-1-[4-[2-(dimethylamino)ethoxy]phenyl]-1-phenylbut-1-en-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 DODQJNMQWMSYGS-QPLCGJKRSA-N 0.000 description 1
- ZMRMMAOBSFSXLN-UHFFFAOYSA-N 4-[4-(2,5-dioxopyrrol-1-yl)phenyl]butanehydrazide Chemical compound C1=CC(CCCC(=O)NN)=CC=C1N1C(=O)C=CC1=O ZMRMMAOBSFSXLN-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- 102100033051 40S ribosomal protein S19 Human genes 0.000 description 1
- 102100022464 5'-nucleotidase Human genes 0.000 description 1
- QLPHBNRMJLFRGO-YDHSSHFGSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-n-[6-[3-(pyridin-2-yldisulfanyl)propanoylamino]hexyl]pentanamide Chemical compound C([C@H]1[C@H]2NC(=O)N[C@H]2CS1)CCCC(=O)NCCCCCCNC(=O)CCSSC1=CC=CC=N1 QLPHBNRMJLFRGO-YDHSSHFGSA-N 0.000 description 1
- CIVGYTYIDWRBQU-UFLZEWODSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoic acid;pyrrole-2,5-dione Chemical compound O=C1NC(=O)C=C1.N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 CIVGYTYIDWRBQU-UFLZEWODSA-N 0.000 description 1
- IDPUKCWIGUEADI-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]uracil Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- NJYVEMPWNAYQQN-UHFFFAOYSA-N 5-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21 NJYVEMPWNAYQQN-UHFFFAOYSA-N 0.000 description 1
- 125000006043 5-hexenyl group Chemical group 0.000 description 1
- WYXSYVWAUAUWLD-SHUUEZRQSA-N 6-azauridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=N1 WYXSYVWAUAUWLD-SHUUEZRQSA-N 0.000 description 1
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 1
- YCWQAMGASJSUIP-YFKPBYRVSA-N 6-diazo-5-oxo-L-norleucine Chemical compound OC(=O)[C@@H](N)CCC(=O)C=[N+]=[N-] YCWQAMGASJSUIP-YFKPBYRVSA-N 0.000 description 1
- 229960005538 6-diazo-5-oxo-L-norleucine Drugs 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- BDDLHHRCDSJVKV-UHFFFAOYSA-N 7028-40-2 Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O BDDLHHRCDSJVKV-UHFFFAOYSA-N 0.000 description 1
- IADAQXMUWITWNG-UHFFFAOYSA-N 8,9-dichloro-2,3,4,5-tetrahydro-1h-benzo[c]azepine Chemical compound C1CCNCC2=C(Cl)C(Cl)=CC=C21 IADAQXMUWITWNG-UHFFFAOYSA-N 0.000 description 1
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 description 1
- FUXVKZWTXQUGMW-FQEVSTJZSA-N 9-Aminocamptothecin Chemical compound C1=CC(N)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 FUXVKZWTXQUGMW-FQEVSTJZSA-N 0.000 description 1
- XGWFJBFNAQHLEF-UHFFFAOYSA-N 9-anthroic acid Chemical compound C1=CC=C2C(C(=O)O)=C(C=CC=C3)C3=CC2=C1 XGWFJBFNAQHLEF-UHFFFAOYSA-N 0.000 description 1
- HDZZVAMISRMYHH-UHFFFAOYSA-N 9beta-Ribofuranosyl-7-deazaadenin Natural products C1=CC=2C(N)=NC=NC=2N1C1OC(CO)C(O)C1O HDZZVAMISRMYHH-UHFFFAOYSA-N 0.000 description 1
- 208000002008 AIDS-Related Lymphoma Diseases 0.000 description 1
- 206010056508 Acquired epidermolysis bullosa Diseases 0.000 description 1
- 241000186046 Actinomyces Species 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 206010001076 Acute sinusitis Diseases 0.000 description 1
- 206010001257 Adenoviral conjunctivitis Diseases 0.000 description 1
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- 206010062269 Adrenalitis Diseases 0.000 description 1
- 201000010000 Agranulocytosis Diseases 0.000 description 1
- 108010012934 Albumin-Bound Paclitaxel Proteins 0.000 description 1
- 208000035285 Allergic Seasonal Rhinitis Diseases 0.000 description 1
- 206010027654 Allergic conditions Diseases 0.000 description 1
- 206010049153 Allergic sinusitis Diseases 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- 206010001766 Alopecia totalis Diseases 0.000 description 1
- 208000024985 Alport syndrome Diseases 0.000 description 1
- CEIZFXOZIQNICU-UHFFFAOYSA-N Alternaria alternata Crofton-weed toxin Natural products CCC(C)C1NC(=O)C(C(C)=O)=C1O CEIZFXOZIQNICU-UHFFFAOYSA-N 0.000 description 1
- 206010001881 Alveolar proteinosis Diseases 0.000 description 1
- 206010001935 American trypanosomiasis Diseases 0.000 description 1
- QGZKDVFQNNGYKY-OUBTZVSYSA-N Ammonia-15N Chemical compound [15NH3] QGZKDVFQNNGYKY-OUBTZVSYSA-N 0.000 description 1
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 1
- 108090000672 Annexin A5 Proteins 0.000 description 1
- 102000004121 Annexin A5 Human genes 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 206010002961 Aplasia Diseases 0.000 description 1
- 208000032467 Aplastic anaemia Diseases 0.000 description 1
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 description 1
- 108010078554 Aromatase Proteins 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 206010003251 Arthritis climacteric Diseases 0.000 description 1
- 206010003267 Arthritis reactive Diseases 0.000 description 1
- 206010003487 Aspergilloma Diseases 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- 206010003594 Ataxia telangiectasia Diseases 0.000 description 1
- 208000012657 Atopic disease Diseases 0.000 description 1
- 206010003645 Atopy Diseases 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 206010003805 Autism Diseases 0.000 description 1
- 208000020706 Autistic disease Diseases 0.000 description 1
- 206010071576 Autoimmune aplastic anaemia Diseases 0.000 description 1
- 206010064539 Autoimmune myocarditis Diseases 0.000 description 1
- 206010055128 Autoimmune neutropenia Diseases 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical class C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 108091008875 B cell receptors Proteins 0.000 description 1
- 108010028006 B-Cell Activating Factor Proteins 0.000 description 1
- 208000004736 B-Cell Leukemia Diseases 0.000 description 1
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 description 1
- 102000006942 B-Cell Maturation Antigen Human genes 0.000 description 1
- 102100025218 B-cell differentiation antigen CD72 Human genes 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 208000032568 B-cell prolymphocytic leukaemia Diseases 0.000 description 1
- 108090000363 Bacterial Luciferases Proteins 0.000 description 1
- 206010004078 Balanoposthitis Diseases 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- VGGGPCQERPFHOB-MCIONIFRSA-N Bestatin Chemical compound CC(C)C[C@H](C(O)=O)NC(=O)[C@@H](O)[C@H](N)CC1=CC=CC=C1 VGGGPCQERPFHOB-MCIONIFRSA-N 0.000 description 1
- 102100029945 Beta-galactoside alpha-2,6-sialyltransferase 1 Human genes 0.000 description 1
- DIZWSDNSTNAYHK-XGWVBXMLSA-N Betulinic acid Natural products CC(=C)[C@@H]1C[C@H]([C@H]2CC[C@]3(C)[C@H](CC[C@@H]4[C@@]5(C)CC[C@H](O)C(C)(C)[C@@H]5CC[C@@]34C)[C@@H]12)C(=O)O DIZWSDNSTNAYHK-XGWVBXMLSA-N 0.000 description 1
- 229940122361 Bisphosphonate Drugs 0.000 description 1
- 208000033932 Blackfan-Diamond anemia Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 208000019838 Blood disease Diseases 0.000 description 1
- 206010051728 Bone erosion Diseases 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 201000006474 Brain Ischemia Diseases 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- MBABCNBNDNGODA-LTGLSHGVSA-N Bullatacin Natural products O=C1C(C[C@H](O)CCCCCCCCCC[C@@H](O)[C@@H]2O[C@@H]([C@@H]3O[C@H]([C@@H](O)CCCCCCCCCC)CC3)CC2)=C[C@H](C)O1 MBABCNBNDNGODA-LTGLSHGVSA-N 0.000 description 1
- KGGVWMAPBXIMEM-ZRTAFWODSA-N Bullatacinone Chemical compound O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@@H]1[C@@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@H]2OC(=O)[C@H](CC(C)=O)C2)CC1 KGGVWMAPBXIMEM-ZRTAFWODSA-N 0.000 description 1
- KGGVWMAPBXIMEM-JQFCFGFHSA-N Bullatacinone Natural products O=C(C[C@H]1C(=O)O[C@H](CCCCCCCCCC[C@H](O)[C@@H]2O[C@@H]([C@@H]3O[C@@H]([C@@H](O)CCCCCCCCCC)CC3)CC2)C1)C KGGVWMAPBXIMEM-JQFCFGFHSA-N 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- 108010037003 Buserelin Proteins 0.000 description 1
- PYMDEDHDQYLBRT-DRIHCAFSSA-N Buserelin acetate Chemical compound CC(O)=O.CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](COC(C)(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 PYMDEDHDQYLBRT-DRIHCAFSSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 102100025074 C-C chemokine receptor-like 2 Human genes 0.000 description 1
- 102100031658 C-X-C chemokine receptor type 5 Human genes 0.000 description 1
- 102100024217 CAMPATH-1 antigen Human genes 0.000 description 1
- 229940124292 CD20 monoclonal antibody Drugs 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- 201000007155 CD40 ligand deficiency Diseases 0.000 description 1
- 108010065524 CD52 Antigen Proteins 0.000 description 1
- 102100027221 CD81 antigen Human genes 0.000 description 1
- 102100027217 CD82 antigen Human genes 0.000 description 1
- 102100035793 CD83 antigen Human genes 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- 201000002829 CREST Syndrome Diseases 0.000 description 1
- 101100065878 Caenorhabditis elegans sec-10 gene Proteins 0.000 description 1
- 208000004434 Calcinosis Diseases 0.000 description 1
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- 208000020119 Caplan syndrome Diseases 0.000 description 1
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 1
- SHHKQEUPHAENFK-UHFFFAOYSA-N Carboquone Chemical compound O=C1C(C)=C(N2CC2)C(=O)C(C(COC(N)=O)OC)=C1N1CC1 SHHKQEUPHAENFK-UHFFFAOYSA-N 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- AOCCBINRVIKJHY-UHFFFAOYSA-N Carmofur Chemical compound CCCCCCNC(=O)N1C=C(F)C(=O)NC1=O AOCCBINRVIKJHY-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102000003952 Caspase 3 Human genes 0.000 description 1
- 108090000397 Caspase 3 Proteins 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108090000712 Cathepsin B Proteins 0.000 description 1
- 102000004225 Cathepsin B Human genes 0.000 description 1
- 102000003902 Cathepsin C Human genes 0.000 description 1
- 108090000267 Cathepsin C Proteins 0.000 description 1
- 108090000258 Cathepsin D Proteins 0.000 description 1
- 102000003908 Cathepsin D Human genes 0.000 description 1
- 208000025985 Central nervous system inflammatory disease Diseases 0.000 description 1
- 208000018152 Cerebral disease Diseases 0.000 description 1
- 206010008120 Cerebral ischaemia Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 208000024699 Chagas disease Diseases 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 101100004180 Chironomus tentans BR3 gene Proteins 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- XCDXSSFOJZZGQC-UHFFFAOYSA-N Chlornaphazine Chemical compound C1=CC=CC2=CC(N(CCCl)CCCl)=CC=C21 XCDXSSFOJZZGQC-UHFFFAOYSA-N 0.000 description 1
- 206010008748 Chorea Diseases 0.000 description 1
- 206010008874 Chronic Fatigue Syndrome Diseases 0.000 description 1
- 208000008818 Chronic Mucocutaneous Candidiasis Diseases 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- 208000030939 Chronic inflammatory demyelinating polyneuropathy Diseases 0.000 description 1
- 206010009137 Chronic sinusitis Diseases 0.000 description 1
- 102100026735 Coagulation factor VIII Human genes 0.000 description 1
- 208000010007 Cogan syndrome Diseases 0.000 description 1
- 208000027932 Collagen disease Diseases 0.000 description 1
- 206010053138 Congenital aplastic anaemia Diseases 0.000 description 1
- 206010010619 Congenital rubella infection Diseases 0.000 description 1
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- 101150073133 Cpt1a gene Proteins 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 208000019707 Cryoglobulinemic vasculitis Diseases 0.000 description 1
- 229930188224 Cryptophycin Natural products 0.000 description 1
- 208000014311 Cushing syndrome Diseases 0.000 description 1
- 206010011686 Cutaneous vasculitis Diseases 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 102100037579 D-3-phosphoglycerate dehydrogenase Human genes 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 239000012624 DNA alkylating agent Substances 0.000 description 1
- 229940124087 DNA topoisomerase II inhibitor Drugs 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- XXGMIHXASFDFSM-UHFFFAOYSA-N Delta9-tetrahydrocannabinol Natural products CCCCCc1cc2OC(C)(C)C3CCC(=CC3c2c(O)c1O)C XXGMIHXASFDFSM-UHFFFAOYSA-N 0.000 description 1
- NNJPGOLRFBJNIW-UHFFFAOYSA-N Demecolcine Natural products C1=C(OC)C(=O)C=C2C(NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-UHFFFAOYSA-N 0.000 description 1
- 208000001490 Dengue Diseases 0.000 description 1
- 206010012310 Dengue fever Diseases 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 108010002156 Depsipeptides Proteins 0.000 description 1
- 206010012455 Dermatitis exfoliative Diseases 0.000 description 1
- 206010012468 Dermatitis herpetiformis Diseases 0.000 description 1
- 208000007342 Diabetic Nephropathies Diseases 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- AUGQEEXBDZWUJY-ZLJUKNTDSA-N Diacetoxyscirpenol Chemical compound C([C@]12[C@]3(C)[C@H](OC(C)=O)[C@@H](O)[C@H]1O[C@@H]1C=C(C)CC[C@@]13COC(=O)C)O2 AUGQEEXBDZWUJY-ZLJUKNTDSA-N 0.000 description 1
- AUGQEEXBDZWUJY-UHFFFAOYSA-N Diacetoxyscirpenol Natural products CC(=O)OCC12CCC(C)=CC1OC1C(O)C(OC(C)=O)C2(C)C11CO1 AUGQEEXBDZWUJY-UHFFFAOYSA-N 0.000 description 1
- 201000004449 Diamond-Blackfan anemia Diseases 0.000 description 1
- 201000003066 Diffuse Scleroderma Diseases 0.000 description 1
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 1
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 1
- 208000006926 Discoid Lupus Erythematosus Diseases 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 241000237378 Dolabella auricularia Species 0.000 description 1
- 208000021866 Dressler syndrome Diseases 0.000 description 1
- ZQZFYGIXNQKOAV-OCEACIFDSA-N Droloxifene Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=C(O)C=CC=1)\C1=CC=C(OCCN(C)C)C=C1 ZQZFYGIXNQKOAV-OCEACIFDSA-N 0.000 description 1
- CYQFCXCEBYINGO-DLBZAZTESA-N Dronabinol Natural products C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@H]21 CYQFCXCEBYINGO-DLBZAZTESA-N 0.000 description 1
- 206010013700 Drug hypersensitivity Diseases 0.000 description 1
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 1
- 206010013774 Dry eye Diseases 0.000 description 1
- 208000001708 Dupuytren contracture Diseases 0.000 description 1
- 229930193152 Dynemicin Natural products 0.000 description 1
- 108010024212 E-Selectin Proteins 0.000 description 1
- 102100023471 E-selectin Human genes 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 208000005235 Echovirus Infections Diseases 0.000 description 1
- 206010014190 Eczema asteatotic Diseases 0.000 description 1
- 206010014201 Eczema nummular Diseases 0.000 description 1
- 208000032274 Encephalopathy Diseases 0.000 description 1
- 208000017701 Endocrine disease Diseases 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 201000009273 Endometriosis Diseases 0.000 description 1
- 208000037487 Endotoxemia Diseases 0.000 description 1
- AFMYMMXSQGUCBK-UHFFFAOYSA-N Endynamicin A Natural products C1#CC=CC#CC2NC(C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C3)=C3C34OC32C(C)C(C(O)=O)=C(OC)C41 AFMYMMXSQGUCBK-UHFFFAOYSA-N 0.000 description 1
- SAMRUMKYXPVKPA-VFKOLLTISA-N Enocitabine Chemical compound O=C1N=C(NC(=O)CCCCCCCCCCCCCCCCCCCCC)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 SAMRUMKYXPVKPA-VFKOLLTISA-N 0.000 description 1
- 208000004232 Enteritis Diseases 0.000 description 1
- 206010014952 Eosinophilia myalgia syndrome Diseases 0.000 description 1
- 206010014954 Eosinophilic fasciitis Diseases 0.000 description 1
- 108010055334 EphB2 Receptor Proteins 0.000 description 1
- 102100031968 Ephrin type-B receptor 2 Human genes 0.000 description 1
- 206010014982 Epidermal and dermal conditions Diseases 0.000 description 1
- 206010015084 Episcleritis Diseases 0.000 description 1
- OBMLHUPNRURLOK-XGRAFVIBSA-N Epitiostanol Chemical compound C1[C@@H]2S[C@@H]2C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 OBMLHUPNRURLOK-XGRAFVIBSA-N 0.000 description 1
- 206010015108 Epstein-Barr virus infection Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 206010015150 Erythema Diseases 0.000 description 1
- 206010015153 Erythema annulare Diseases 0.000 description 1
- 206010055035 Erythema dyschromicum perstans Diseases 0.000 description 1
- 206010015218 Erythema multiforme Diseases 0.000 description 1
- 206010015226 Erythema nodosum Diseases 0.000 description 1
- 206010015251 Erythroblastosis foetalis Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 102220472268 Eukaryotic translation initiation factor 4E transporter_N28V_mutation Human genes 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 208000004332 Evans syndrome Diseases 0.000 description 1
- 208000009386 Experimental Arthritis Diseases 0.000 description 1
- 206010061850 Extranodal marginal zone B-cell lymphoma (MALT type) Diseases 0.000 description 1
- 101150064015 FAS gene Proteins 0.000 description 1
- 208000027445 Farmer Lung Diseases 0.000 description 1
- 102100031517 Fc receptor-like protein 1 Human genes 0.000 description 1
- 101710120224 Fc receptor-like protein 1 Proteins 0.000 description 1
- 102100031511 Fc receptor-like protein 2 Human genes 0.000 description 1
- 102100031512 Fc receptor-like protein 3 Human genes 0.000 description 1
- 102100031513 Fc receptor-like protein 4 Human genes 0.000 description 1
- 102100031507 Fc receptor-like protein 5 Human genes 0.000 description 1
- 102100031508 Fc receptor-like protein 6 Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 208000028387 Felty syndrome Diseases 0.000 description 1
- 208000001640 Fibromyalgia Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 108090000331 Firefly luciferases Proteins 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 208000004262 Food Hypersensitivity Diseases 0.000 description 1
- 206010016952 Food poisoning Diseases 0.000 description 1
- 208000019331 Foodborne disease Diseases 0.000 description 1
- 230000037057 G1 phase arrest Effects 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 108010015133 Galactose oxidase Proteins 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 208000036495 Gastritis atrophic Diseases 0.000 description 1
- 206010064147 Gastrointestinal inflammation Diseases 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 208000007465 Giant cell arteritis Diseases 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 206010018366 Glomerulonephritis acute Diseases 0.000 description 1
- 206010018367 Glomerulonephritis chronic Diseases 0.000 description 1
- 206010018372 Glomerulonephritis membranous Diseases 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 108010069236 Goserelin Proteins 0.000 description 1
- 206010018634 Gouty Arthritis Diseases 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 206010018691 Granuloma Diseases 0.000 description 1
- 201000005708 Granuloma Annulare Diseases 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000003084 Graves Ophthalmopathy Diseases 0.000 description 1
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 1
- 102100030595 HLA class II histocompatibility antigen gamma chain Human genes 0.000 description 1
- 102100031546 HLA class II histocompatibility antigen, DO beta chain Human genes 0.000 description 1
- 208000008899 Habitual abortion Diseases 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 208000031071 Hamman-Rich Syndrome Diseases 0.000 description 1
- 208000001204 Hashimoto Disease Diseases 0.000 description 1
- 208000016621 Hearing disease Diseases 0.000 description 1
- 208000018565 Hemochromatosis Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 201000004331 Henoch-Schoenlein purpura Diseases 0.000 description 1
- 206010019617 Henoch-Schonlein purpura Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 206010019755 Hepatitis chronic active Diseases 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000678236 Homo sapiens 5'-nucleotidase Proteins 0.000 description 1
- 101000934359 Homo sapiens B-cell differentiation antigen CD72 Proteins 0.000 description 1
- 101000863864 Homo sapiens Beta-galactoside alpha-2,6-sialyltransferase 1 Proteins 0.000 description 1
- 101000716068 Homo sapiens C-C chemokine receptor type 6 Proteins 0.000 description 1
- 101000922405 Homo sapiens C-X-C chemokine receptor type 5 Proteins 0.000 description 1
- 101000914479 Homo sapiens CD81 antigen Proteins 0.000 description 1
- 101000914469 Homo sapiens CD82 antigen Proteins 0.000 description 1
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 description 1
- 101100275686 Homo sapiens CR2 gene Proteins 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 101000941929 Homo sapiens Complement receptor type 2 Proteins 0.000 description 1
- 101000846911 Homo sapiens Fc receptor-like protein 2 Proteins 0.000 description 1
- 101000846910 Homo sapiens Fc receptor-like protein 3 Proteins 0.000 description 1
- 101000846909 Homo sapiens Fc receptor-like protein 4 Proteins 0.000 description 1
- 101000846908 Homo sapiens Fc receptor-like protein 5 Proteins 0.000 description 1
- 101000846906 Homo sapiens Fc receptor-like protein 6 Proteins 0.000 description 1
- 101001082627 Homo sapiens HLA class II histocompatibility antigen gamma chain Proteins 0.000 description 1
- 101000866281 Homo sapiens HLA class II histocompatibility antigen, DO beta chain Proteins 0.000 description 1
- 101001017833 Homo sapiens Leucine-rich repeat-containing protein 4 Proteins 0.000 description 1
- 101000777628 Homo sapiens Leukocyte antigen CD37 Proteins 0.000 description 1
- 101000984196 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily A member 5 Proteins 0.000 description 1
- 101000984190 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily B member 1 Proteins 0.000 description 1
- 101000980823 Homo sapiens Leukocyte surface antigen CD53 Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 1
- 101100425948 Homo sapiens TNFRSF13C gene Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- 208000004454 Hyperalgesia Diseases 0.000 description 1
- 208000035154 Hyperesthesia Diseases 0.000 description 1
- 206010020631 Hypergammaglobulinaemia benign monoclonal Diseases 0.000 description 1
- 208000019758 Hypergammaglobulinemia Diseases 0.000 description 1
- 206010020850 Hyperthyroidism Diseases 0.000 description 1
- 206010058359 Hypogonadism Diseases 0.000 description 1
- 206010021067 Hypopituitarism Diseases 0.000 description 1
- MPBVHIBUJCELCL-UHFFFAOYSA-N Ibandronate Chemical compound CCCCCN(C)CCC(O)(P(O)(O)=O)P(O)(O)=O MPBVHIBUJCELCL-UHFFFAOYSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 description 1
- 208000016300 Idiopathic chronic eosinophilic pneumonia Diseases 0.000 description 1
- 208000031814 IgA Vasculitis Diseases 0.000 description 1
- 208000024934 IgG4-related mediastinitis Diseases 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 208000027601 Inner ear disease Diseases 0.000 description 1
- 206010022557 Intermediate uveitis Diseases 0.000 description 1
- 208000000209 Isaacs syndrome Diseases 0.000 description 1
- 208000009388 Job Syndrome Diseases 0.000 description 1
- 208000012528 Juvenile dermatomyositis Diseases 0.000 description 1
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 1
- 208000011200 Kawasaki disease Diseases 0.000 description 1
- 206010023335 Keratitis interstitial Diseases 0.000 description 1
- 208000009319 Keratoconjunctivitis Sicca Diseases 0.000 description 1
- 208000001126 Keratosis Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical class [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 208000017119 Labyrinth disease Diseases 0.000 description 1
- 102100038609 Lactoperoxidase Human genes 0.000 description 1
- 108010023244 Lactoperoxidase Proteins 0.000 description 1
- 208000001913 Lamellar ichthyosis Diseases 0.000 description 1
- 208000006404 Large Granular Lymphocytic Leukemia Diseases 0.000 description 1
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 description 1
- 208000004554 Leishmaniasis Diseases 0.000 description 1
- 229920001491 Lentinan Polymers 0.000 description 1
- 206010024229 Leprosy Diseases 0.000 description 1
- 102100033304 Leucine-rich repeat-containing protein 4 Human genes 0.000 description 1
- 102100031586 Leukocyte antigen CD37 Human genes 0.000 description 1
- 102100025574 Leukocyte immunoglobulin-like receptor subfamily A member 5 Human genes 0.000 description 1
- 102100024221 Leukocyte surface antigen CD53 Human genes 0.000 description 1
- 208000034624 Leukocytoclastic Cutaneous Vasculitis Diseases 0.000 description 1
- 208000032514 Leukocytoclastic vasculitis Diseases 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- 208000007820 Lichen Sclerosus et Atrophicus Diseases 0.000 description 1
- 206010024434 Lichen sclerosus Diseases 0.000 description 1
- 206010024436 Lichen spinulosus Diseases 0.000 description 1
- 208000001244 Linear IgA Bullous Dermatosis Diseases 0.000 description 1
- 208000012309 Linear IgA disease Diseases 0.000 description 1
- 208000004883 Lipoid Nephrosis Diseases 0.000 description 1
- 201000009324 Loeffler syndrome Diseases 0.000 description 1
- MEPSBMMZQBMKHM-UHFFFAOYSA-N Lomatiol Natural products CC(=C/CC1=C(O)C(=O)c2ccccc2C1=O)CO MEPSBMMZQBMKHM-UHFFFAOYSA-N 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 206010025102 Lung infiltration Diseases 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 206010025312 Lymphoma AIDS related Diseases 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- VJRAUFKOOPNFIQ-UHFFFAOYSA-N Marcellomycin Natural products C12=C(O)C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C=C2C(C(=O)OC)C(CC)(O)CC1OC(OC1C)CC(N(C)C)C1OC(OC1C)CC(O)C1OC1CC(O)C(O)C(C)O1 VJRAUFKOOPNFIQ-UHFFFAOYSA-N 0.000 description 1
- 241001441512 Maytenus serrata Species 0.000 description 1
- IVDYZAAPOLNZKG-KWHRADDSSA-N Mepitiostane Chemical compound O([C@@H]1[C@]2(CC[C@@H]3[C@@]4(C)C[C@H]5S[C@H]5C[C@@H]4CC[C@H]3[C@@H]2CC1)C)C1(OC)CCCC1 IVDYZAAPOLNZKG-KWHRADDSSA-N 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 1
- VFKZTMPDYBFSTM-KVTDHHQDSA-N Mitobronitol Chemical compound BrC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-KVTDHHQDSA-N 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- HRHKSTOGXBBQCB-UHFFFAOYSA-N Mitomycin E Natural products O=C1C(N)=C(C)C(=O)C2=C1C(COC(N)=O)C1(OC)C3N(C)C3CN12 HRHKSTOGXBBQCB-UHFFFAOYSA-N 0.000 description 1
- 241000237852 Mollusca Species 0.000 description 1
- 208000010190 Monoclonal Gammopathy of Undetermined Significance Diseases 0.000 description 1
- 206010060880 Monoclonal gammopathy Diseases 0.000 description 1
- 206010028080 Mucocutaneous candidiasis Diseases 0.000 description 1
- 208000034486 Multi-organ failure Diseases 0.000 description 1
- 208000010718 Multiple Organ Failure Diseases 0.000 description 1
- 208000005647 Mumps Diseases 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100275687 Mus musculus Cr2 gene Proteins 0.000 description 1
- 101000846907 Mus musculus Fc receptor-like protein 5 Proteins 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 208000003926 Myelitis Diseases 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 208000009525 Myocarditis Diseases 0.000 description 1
- APGLTERDKORUHK-LURJTMIESA-N N,N-dimethyl-L-Valine Chemical group CC(C)[C@H](N(C)C)C(O)=O APGLTERDKORUHK-LURJTMIESA-N 0.000 description 1
- QTUVCTXXMOZFHS-UHFFFAOYSA-N N-(8-aminooctyl)-2-[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxyacetamide Chemical compound NCCCCCCCCNC(=O)COC1=CC=CC2=C1C(=O)N(C1CCC(=O)NC1=O)C2=O QTUVCTXXMOZFHS-UHFFFAOYSA-N 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- BKAYIFDRRZZKNF-VIFPVBQESA-N N-acetylcarnosine Chemical compound CC(=O)NCCC(=O)N[C@H](C(O)=O)CC1=CN=CN1 BKAYIFDRRZZKNF-VIFPVBQESA-N 0.000 description 1
- BAQMYDQNMFBZNA-UHFFFAOYSA-N N-biotinyl-L-lysine Natural products N1C(=O)NC2C(CCCCC(=O)NCCCCC(N)C(O)=O)SCC21 BAQMYDQNMFBZNA-UHFFFAOYSA-N 0.000 description 1
- 206010051606 Necrotising colitis Diseases 0.000 description 1
- 206010065673 Nephritic syndrome Diseases 0.000 description 1
- 108090000028 Neprilysin Proteins 0.000 description 1
- 102000003729 Neprilysin Human genes 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 206010029240 Neuritis Diseases 0.000 description 1
- 201000009053 Neurodermatitis Diseases 0.000 description 1
- 208000036110 Neuroinflammatory disease Diseases 0.000 description 1
- 206010072359 Neuromyotonia Diseases 0.000 description 1
- 206010058105 Neutrophilic dermatosis Diseases 0.000 description 1
- SYNHCENRCUAUNM-UHFFFAOYSA-N Nitrogen mustard N-oxide hydrochloride Chemical compound Cl.ClCC[N+]([O-])(C)CCCl SYNHCENRCUAUNM-UHFFFAOYSA-N 0.000 description 1
- 241000187654 Nocardia Species 0.000 description 1
- 206010029461 Nodal marginal zone B-cell lymphomas Diseases 0.000 description 1
- KGTDRFCXGRULNK-UHFFFAOYSA-N Nogalamycin Natural products COC1C(OC)(C)C(OC)C(C)OC1OC1C2=C(O)C(C(=O)C3=C(O)C=C4C5(C)OC(C(C(C5O)N(C)C)O)OC4=C3C3=O)=C3C=C2C(C(=O)OC)C(C)(O)C1 KGTDRFCXGRULNK-UHFFFAOYSA-N 0.000 description 1
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 1
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 206010029888 Obliterative bronchiolitis Diseases 0.000 description 1
- 229930187135 Olivomycin Natural products 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 241001420836 Ophthalmitis Species 0.000 description 1
- 208000003435 Optic Neuritis Diseases 0.000 description 1
- 101100081884 Oryza sativa subsp. japonica OSA15 gene Proteins 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 102100037603 P2X purinoceptor 5 Human genes 0.000 description 1
- 101710189969 P2X purinoceptor 5 Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 101150082245 PSAG gene Proteins 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 241000609499 Palicourea Species 0.000 description 1
- VREZDOWOLGNDPW-ALTGWBOUSA-N Pancratistatin Chemical compound C1=C2[C@H]3[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)[C@@H]3NC(=O)C2=C(O)C2=C1OCO2 VREZDOWOLGNDPW-ALTGWBOUSA-N 0.000 description 1
- VREZDOWOLGNDPW-MYVCAWNPSA-N Pancratistatin Natural products O=C1N[C@H]2[C@H](O)[C@H](O)[C@H](O)[C@H](O)[C@@H]2c2c1c(O)c1OCOc1c2 VREZDOWOLGNDPW-MYVCAWNPSA-N 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 208000002774 Paraproteinemias Diseases 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 208000008071 Parvoviridae Infections Diseases 0.000 description 1
- 206010057343 Parvovirus infection Diseases 0.000 description 1
- 208000026433 Pemphigus erythematosus Diseases 0.000 description 1
- 208000027086 Pemphigus foliaceus Diseases 0.000 description 1
- 108010057150 Peplomycin Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 208000008469 Peptic Ulcer Diseases 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 description 1
- 108010081690 Pertussis Toxin Proteins 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- KMSKQZKKOZQFFG-HSUXVGOQSA-N Pirarubicin Chemical compound O([C@H]1[C@@H](N)C[C@@H](O[C@H]1C)O[C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1CCCCO1 KMSKQZKKOZQFFG-HSUXVGOQSA-N 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 206010035742 Pneumonitis Diseases 0.000 description 1
- 206010036030 Polyarthritis Diseases 0.000 description 1
- 208000007048 Polymyalgia Rheumatica Diseases 0.000 description 1
- 206010036242 Post vaccination syndrome Diseases 0.000 description 1
- 206010036297 Postpartum hypopituitarism Diseases 0.000 description 1
- 206010036524 Precursor B-lymphoblastic lymphomas Diseases 0.000 description 1
- HFVNWDWLWUCIHC-GUPDPFMOSA-N Prednimustine Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 HFVNWDWLWUCIHC-GUPDPFMOSA-N 0.000 description 1
- 206010036631 Presenile dementia Diseases 0.000 description 1
- 206010065857 Primary Effusion Lymphoma Diseases 0.000 description 1
- 208000002500 Primary Ovarian Insufficiency Diseases 0.000 description 1
- 206010036697 Primary hypothyroidism Diseases 0.000 description 1
- 206010036711 Primary mediastinal large B-cell lymphomas Diseases 0.000 description 1
- 208000035416 Prolymphocytic B-Cell Leukemia Diseases 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102100024924 Protein kinase C alpha type Human genes 0.000 description 1
- 101710109947 Protein kinase C alpha type Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 108700033844 Pseudomonas aeruginosa toxA Proteins 0.000 description 1
- 206010037575 Pustular psoriasis Diseases 0.000 description 1
- 206010037596 Pyelonephritis Diseases 0.000 description 1
- 206010071141 Rasmussen encephalitis Diseases 0.000 description 1
- 208000004160 Rasmussen subacute encephalitis Diseases 0.000 description 1
- 208000003782 Raynaud disease Diseases 0.000 description 1
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 1
- 208000021329 Refractory celiac disease Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 206010038422 Renal cortical necrosis Diseases 0.000 description 1
- 206010063897 Renal ischaemia Diseases 0.000 description 1
- 206010038748 Restrictive cardiomyopathy Diseases 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- OWPCHSCAPHNHAV-UHFFFAOYSA-N Rhizoxin Natural products C1C(O)C2(C)OC2C=CC(C)C(OC(=O)C2)CC2CC2OC2C(=O)OC1C(C)C(OC)C(C)=CC=CC(C)=CC1=COC(C)=N1 OWPCHSCAPHNHAV-UHFFFAOYSA-N 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- NSFWWJIQIKBZMJ-YKNYLIOZSA-N Roridin A Chemical compound C([C@]12[C@]3(C)[C@H]4C[C@H]1O[C@@H]1C=C(C)CC[C@@]13COC(=O)[C@@H](O)[C@H](C)CCO[C@H](\C=C\C=C/C(=O)O4)[C@H](O)C)O2 NSFWWJIQIKBZMJ-YKNYLIOZSA-N 0.000 description 1
- 241001303601 Rosacea Species 0.000 description 1
- 241000710799 Rubella virus Species 0.000 description 1
- CIEYTVIYYGTCCI-UHFFFAOYSA-N SJ000286565 Natural products C1=CC=C2C(=O)C(CC=C(C)C)=C(O)C(=O)C2=C1 CIEYTVIYYGTCCI-UHFFFAOYSA-N 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 150000004753 Schiff bases Chemical group 0.000 description 1
- 206010039793 Seborrhoeic dermatitis Diseases 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 208000032384 Severe immune-mediated enteropathy Diseases 0.000 description 1
- 208000009359 Sezary Syndrome Diseases 0.000 description 1
- 208000021388 Sezary disease Diseases 0.000 description 1
- 201000009895 Sheehan syndrome Diseases 0.000 description 1
- 102000001613 Sialic Acid Binding Ig-like Lectin 2 Human genes 0.000 description 1
- 108010032838 Sialoglycoproteins Proteins 0.000 description 1
- 102000007365 Sialoglycoproteins Human genes 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- 201000010001 Silicosis Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920000519 Sizofiran Polymers 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 208000006045 Spondylarthropathies Diseases 0.000 description 1
- 231100000168 Stevens-Johnson syndrome Toxicity 0.000 description 1
- 206010042342 Subcorneal pustular dermatosis Diseases 0.000 description 1
- 206010061373 Sudden Hearing Loss Diseases 0.000 description 1
- 208000027522 Sydenham chorea Diseases 0.000 description 1
- 206010042742 Sympathetic ophthalmia Diseases 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- BXFOFFBJRFZBQZ-QYWOHJEZSA-N T-2 toxin Chemical compound C([C@@]12[C@]3(C)[C@H](OC(C)=O)[C@@H](O)[C@H]1O[C@H]1[C@]3(COC(C)=O)C[C@@H](C(=C1)C)OC(=O)CC(C)C)O2 BXFOFFBJRFZBQZ-QYWOHJEZSA-N 0.000 description 1
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 description 1
- 201000008717 T-cell large granular lymphocyte leukemia Diseases 0.000 description 1
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 1
- 239000012317 TBTU Substances 0.000 description 1
- 241001116500 Taxus Species 0.000 description 1
- 241001116498 Taxus baccata Species 0.000 description 1
- 206010043189 Telangiectasia Diseases 0.000 description 1
- CGMTUJFWROPELF-UHFFFAOYSA-N Tenuazonic acid Natural products CCC(C)C1NC(=O)C(=C(C)/O)C1=O CGMTUJFWROPELF-UHFFFAOYSA-N 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 201000009365 Thymic carcinoma Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 206010043781 Thyroiditis chronic Diseases 0.000 description 1
- 206010043784 Thyroiditis subacute Diseases 0.000 description 1
- 240000007591 Tilia tomentosa Species 0.000 description 1
- 239000000317 Topoisomerase II Inhibitor Substances 0.000 description 1
- 206010044223 Toxic epidermal necrolysis Diseases 0.000 description 1
- 231100000087 Toxic epidermal necrolysis Toxicity 0.000 description 1
- 206010044248 Toxic shock syndrome Diseases 0.000 description 1
- 231100000650 Toxic shock syndrome Toxicity 0.000 description 1
- 206010044314 Tracheobronchitis Diseases 0.000 description 1
- 102000003929 Transaminases Human genes 0.000 description 1
- 108090000340 Transaminases Proteins 0.000 description 1
- 206010051446 Transient acantholytic dermatosis Diseases 0.000 description 1
- SHGAZHPCJJPHSC-NWVFGJFESA-N Tretinoin Chemical compound OC(=O)/C=C(\C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NWVFGJFESA-N 0.000 description 1
- WYHIICXRPHEJKI-UHFFFAOYSA-N Trientine hydrochloride Chemical compound Cl.Cl.NCCNCCNCCN WYHIICXRPHEJKI-UHFFFAOYSA-N 0.000 description 1
- UMILHIMHKXVDGH-UHFFFAOYSA-N Triethylene glycol diglycidyl ether Chemical compound C1OC1COCCOCCOCCOCC1CO1 UMILHIMHKXVDGH-UHFFFAOYSA-N 0.000 description 1
- FYAMXEPQQLNQDM-UHFFFAOYSA-N Tris(1-aziridinyl)phosphine oxide Chemical compound C1CN1P(N1CC1)(=O)N1CC1 FYAMXEPQQLNQDM-UHFFFAOYSA-N 0.000 description 1
- 101710181056 Tumor necrosis factor ligand superfamily member 13B Proteins 0.000 description 1
- 102100029690 Tumor necrosis factor receptor superfamily member 13C Human genes 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 208000006391 Type 1 Hyper-IgM Immunodeficiency Syndrome Diseases 0.000 description 1
- 206010070517 Type 2 lepra reaction Diseases 0.000 description 1
- 206010053614 Type III immune complex mediated reaction Diseases 0.000 description 1
- 108010092464 Urate Oxidase Proteins 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000036826 VIIth nerve paralysis Diseases 0.000 description 1
- 206010054880 Vascular insufficiency Diseases 0.000 description 1
- 206010047112 Vasculitides Diseases 0.000 description 1
- 102100026383 Vasopressin-neurophysin 2-copeptin Human genes 0.000 description 1
- 208000014926 Vesiculobullous Skin disease Diseases 0.000 description 1
- 241000863480 Vinca Species 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 206010047642 Vitiligo Diseases 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- 208000006110 Wiskott-Aldrich syndrome Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 201000001696 X-linked hyper IgM syndrome Diseases 0.000 description 1
- 102100033220 Xanthine oxidase Human genes 0.000 description 1
- 108010093894 Xanthine oxidase Proteins 0.000 description 1
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 description 1
- ZYVSOIYQKUDENJ-ASUJBHBQSA-N [(2R,3R,4R,6R)-6-[[(6S,7S)-6-[(2S,4R,5R,6R)-4-[(2R,4R,5R,6R)-4-[(2S,4S,5S,6S)-5-acetyloxy-4-hydroxy-4,6-dimethyloxan-2-yl]oxy-5-hydroxy-6-methyloxan-2-yl]oxy-5-hydroxy-6-methyloxan-2-yl]oxy-7-[(3S,4R)-3,4-dihydroxy-1-methoxy-2-oxopentyl]-4,10-dihydroxy-3-methyl-5-oxo-7,8-dihydro-6H-anthracen-2-yl]oxy]-4-[(2R,4R,5R,6R)-4-hydroxy-5-methoxy-6-methyloxan-2-yl]oxy-2-methyloxan-3-yl] acetate Chemical class COC([C@@H]1Cc2cc3cc(O[C@@H]4C[C@@H](O[C@@H]5C[C@@H](O)[C@@H](OC)[C@@H](C)O5)[C@H](OC(C)=O)[C@@H](C)O4)c(C)c(O)c3c(O)c2C(=O)[C@H]1O[C@H]1C[C@@H](O[C@@H]2C[C@@H](O[C@H]3C[C@](C)(O)[C@@H](OC(C)=O)[C@H](C)O3)[C@H](O)[C@@H](C)O2)[C@H](O)[C@@H](C)O1)C(=O)[C@@H](O)[C@@H](C)O ZYVSOIYQKUDENJ-ASUJBHBQSA-N 0.000 description 1
- SPJCRMJCFSJKDE-ZWBUGVOYSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] 2-[4-[bis(2-chloroethyl)amino]phenyl]acetate Chemical compound O([C@@H]1CC2=CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)C(=O)CC1=CC=C(N(CCCl)CCCl)C=C1 SPJCRMJCFSJKDE-ZWBUGVOYSA-N 0.000 description 1
- IFJUINDAXYAPTO-UUBSBJJBSA-N [(8r,9s,13s,14s,17s)-17-[2-[4-[4-[bis(2-chloroethyl)amino]phenyl]butanoyloxy]acetyl]oxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-3-yl] benzoate Chemical compound C([C@@H]1[C@@H](C2=CC=3)CC[C@]4([C@H]1CC[C@@H]4OC(=O)COC(=O)CCCC=1C=CC(=CC=1)N(CCCl)CCCl)C)CC2=CC=3OC(=O)C1=CC=CC=C1 IFJUINDAXYAPTO-UUBSBJJBSA-N 0.000 description 1
- IHGLINDYFMDHJG-UHFFFAOYSA-N [2-(4-methoxyphenyl)-3,4-dihydronaphthalen-1-yl]-[4-(2-pyrrolidin-1-ylethoxy)phenyl]methanone Chemical compound C1=CC(OC)=CC=C1C(CCC1=CC=CC=C11)=C1C(=O)C(C=C1)=CC=C1OCCN1CCCC1 IHGLINDYFMDHJG-UHFFFAOYSA-N 0.000 description 1
- XZSRRNFBEIOBDA-CFNBKWCHSA-N [2-[(2s,4s)-4-[(2r,4s,5s,6s)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-2,5,12-trihydroxy-7-methoxy-6,11-dioxo-3,4-dihydro-1h-tetracen-2-yl]-2-oxoethyl] 2,2-diethoxyacetate Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)C(OCC)OCC)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 XZSRRNFBEIOBDA-CFNBKWCHSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- CLZISMQKJZCZDN-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium Chemical compound C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 CLZISMQKJZCZDN-UHFFFAOYSA-N 0.000 description 1
- WXIONIWNXBAHRU-UHFFFAOYSA-N [dimethylamino(triazolo[4,5-b]pyridin-3-yloxy)methylidene]-dimethylazanium Chemical compound C1=CN=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 WXIONIWNXBAHRU-UHFFFAOYSA-N 0.000 description 1
- 108010023617 abarelix Proteins 0.000 description 1
- AIWRTTMUVOZGPW-HSPKUQOVSA-N abarelix Chemical compound C([C@@H](C(=O)N[C@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCNC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@H](C)C(N)=O)N(C)C(=O)[C@H](CO)NC(=O)[C@@H](CC=1C=NC=CC=1)NC(=O)[C@@H](CC=1C=CC(Cl)=CC=1)NC(=O)[C@@H](CC=1C=C2C=CC=CC2=CC=1)NC(C)=O)C1=CC=C(O)C=C1 AIWRTTMUVOZGPW-HSPKUQOVSA-N 0.000 description 1
- 229960002184 abarelix Drugs 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229940028652 abraxane Drugs 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- ZOZKYEHVNDEUCO-XUTVFYLZSA-N aceglatone Chemical compound O1C(=O)[C@H](OC(C)=O)[C@@H]2OC(=O)[C@@H](OC(=O)C)[C@@H]21 ZOZKYEHVNDEUCO-XUTVFYLZSA-N 0.000 description 1
- 229950002684 aceglatone Drugs 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229940037127 actonel Drugs 0.000 description 1
- 208000037855 acute anterior uveitis Diseases 0.000 description 1
- 231100000851 acute glomerulonephritis Toxicity 0.000 description 1
- 201000004073 acute interstitial pneumonia Diseases 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 150000001263 acyl chlorides Chemical class 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 125000005042 acyloxymethyl group Chemical group 0.000 description 1
- 229950004955 adozelesin Drugs 0.000 description 1
- BYRVKDUQDLJUBX-JJCDCTGGSA-N adozelesin Chemical compound C1=CC=C2OC(C(=O)NC=3C=C4C=C(NC4=CC=3)C(=O)N3C[C@H]4C[C@]44C5=C(C(C=C43)=O)NC=C5C)=CC2=C1 BYRVKDUQDLJUBX-JJCDCTGGSA-N 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- 230000009824 affinity maturation Effects 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 1
- 229940062527 alendronate Drugs 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 125000004849 alkoxymethyl group Chemical group 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 125000004419 alkynylene group Chemical group 0.000 description 1
- 208000002029 allergic contact dermatitis Diseases 0.000 description 1
- 208000030961 allergic reaction Diseases 0.000 description 1
- 201000010435 allergic urticaria Diseases 0.000 description 1
- 231100000360 alopecia Toxicity 0.000 description 1
- 208000004631 alopecia areata Diseases 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 229940059260 amidate Drugs 0.000 description 1
- 229960002749 aminolevulinic acid Drugs 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 206010002022 amyloidosis Diseases 0.000 description 1
- 229960002932 anastrozole Drugs 0.000 description 1
- BBDAGFIXKZCXAH-CCXZUQQUSA-N ancitabine Chemical compound N=C1C=CN2[C@@H]3O[C@H](CO)[C@@H](O)[C@@H]3OC2=N1 BBDAGFIXKZCXAH-CCXZUQQUSA-N 0.000 description 1
- 229950000242 ancitabine Drugs 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000002280 anti-androgenic effect Effects 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 230000003432 anti-folate effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 239000000051 antiandrogen Substances 0.000 description 1
- 229940030495 antiandrogen sex hormone and modulator of the genital system Drugs 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 229940127074 antifolate Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000013059 antihormonal agent Substances 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940045687 antimetabolites folic acid analogs Drugs 0.000 description 1
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 150000008209 arabinosides Chemical class 0.000 description 1
- 229940078010 arimidex Drugs 0.000 description 1
- 229940087620 aromasin Drugs 0.000 description 1
- 239000003886 aromatase inhibitor Substances 0.000 description 1
- 229940046844 aromatase inhibitors Drugs 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 206010003230 arteritis Diseases 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 201000009361 ascariasis Diseases 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 230000001977 ataxic effect Effects 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 208000001974 autoimmune enteropathy Diseases 0.000 description 1
- 201000005000 autoimmune gastritis Diseases 0.000 description 1
- 201000004982 autoimmune uveitis Diseases 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 201000000751 autosomal recessive congenital ichthyosis Diseases 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- 229950011321 azaserine Drugs 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-M benzoate Chemical compound [O-]C(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-M 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- QGJZLNKBHJESQX-FZFNOLFKSA-N betulinic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C(=C)C)[C@@H]5[C@H]4CC[C@@H]3[C@]21C QGJZLNKBHJESQX-FZFNOLFKSA-N 0.000 description 1
- 229960000997 bicalutamide Drugs 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- BAQMYDQNMFBZNA-MNXVOIDGSA-N biocytin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)NCCCC[C@H](N)C(O)=O)SC[C@@H]21 BAQMYDQNMFBZNA-MNXVOIDGSA-N 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 208000015440 bird fancier lung Diseases 0.000 description 1
- 229950008548 bisantrene Drugs 0.000 description 1
- 150000004663 bisphosphonates Chemical class 0.000 description 1
- 229950006844 bizelesin Drugs 0.000 description 1
- 201000000053 blastoma Diseases 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 230000008993 bowel inflammation Effects 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- SBGUYEPUJPATFD-UHFFFAOYSA-N bromo(tripyrrolidin-1-yl)phosphanium Chemical compound C1CCCN1[P+](N1CCCC1)(Br)N1CCCC1 SBGUYEPUJPATFD-UHFFFAOYSA-N 0.000 description 1
- 201000003848 bronchiolitis obliterans Diseases 0.000 description 1
- 208000023367 bronchiolitis obliterans with obstructive pulmonary disease Diseases 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 229960005520 bryostatin Drugs 0.000 description 1
- MJQUEDHRCUIRLF-TVIXENOKSA-N bryostatin 1 Chemical compound C([C@@H]1CC(/[C@@H]([C@@](C(C)(C)/C=C/2)(O)O1)OC(=O)/C=C/C=C/CCC)=C\C(=O)OC)[C@H]([C@@H](C)O)OC(=O)C[C@H](O)C[C@@H](O1)C[C@H](OC(C)=O)C(C)(C)[C@]1(O)C[C@@H]1C\C(=C\C(=O)OC)C[C@H]\2O1 MJQUEDHRCUIRLF-TVIXENOKSA-N 0.000 description 1
- MUIWQCKLQMOUAT-AKUNNTHJSA-N bryostatin 20 Natural products COC(=O)C=C1C[C@@]2(C)C[C@]3(O)O[C@](C)(C[C@@H](O)CC(=O)O[C@](C)(C[C@@]4(C)O[C@](O)(CC5=CC(=O)O[C@]45C)C(C)(C)C=C[C@@](C)(C1)O2)[C@@H](C)O)C[C@H](OC(=O)C(C)(C)C)C3(C)C MUIWQCKLQMOUAT-AKUNNTHJSA-N 0.000 description 1
- MBABCNBNDNGODA-LUVUIASKSA-N bullatacin Chemical compound O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@@H]1[C@@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@@H](O)CC=2C(O[C@@H](C)C=2)=O)CC1 MBABCNBNDNGODA-LUVUIASKSA-N 0.000 description 1
- 208000000594 bullous pemphigoid Diseases 0.000 description 1
- 229960005064 buserelin acetate Drugs 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 108700002839 cactinomycin Proteins 0.000 description 1
- 229950009908 cactinomycin Drugs 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 229950009823 calusterone Drugs 0.000 description 1
- IVFYLRMMHVYGJH-PVPPCFLZSA-N calusterone Chemical compound C1C[C@]2(C)[C@](O)(C)CC[C@H]2[C@@H]2[C@@H](C)CC3=CC(=O)CC[C@]3(C)[C@H]21 IVFYLRMMHVYGJH-PVPPCFLZSA-N 0.000 description 1
- 229940088954 camptosar Drugs 0.000 description 1
- 229940127093 camptothecin Drugs 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- YAYRGNWWLMLWJE-UHFFFAOYSA-L carboplatin Chemical compound O=C1O[Pt](N)(N)OC(=O)C11CCC1 YAYRGNWWLMLWJE-UHFFFAOYSA-L 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 229960002115 carboquone Drugs 0.000 description 1
- 230000002612 cardiopulmonary effect Effects 0.000 description 1
- XREUEWVEMYWFFA-CSKJXFQVSA-N carminomycin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=C(O)C=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XREUEWVEMYWFFA-CSKJXFQVSA-N 0.000 description 1
- 229930188550 carminomycin Natural products 0.000 description 1
- XREUEWVEMYWFFA-UHFFFAOYSA-N carminomycin I Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=C(O)C=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XREUEWVEMYWFFA-UHFFFAOYSA-N 0.000 description 1
- 229960003261 carmofur Drugs 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 229950001725 carubicin Drugs 0.000 description 1
- BBZDXMBRAFTCAA-AREMUKBSSA-N carzelesin Chemical compound C1=2NC=C(C)C=2C([C@H](CCl)CN2C(=O)C=3NC4=CC=C(C=C4C=3)NC(=O)C3=CC4=CC=C(C=C4O3)N(CC)CC)=C2C=C1OC(=O)NC1=CC=CC=C1 BBZDXMBRAFTCAA-AREMUKBSSA-N 0.000 description 1
- 229950007509 carzelesin Drugs 0.000 description 1
- 108010047060 carzinophilin Proteins 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 208000010353 central nervous system vasculitis Diseases 0.000 description 1
- 208000025434 cerebellar degeneration Diseases 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 206010008118 cerebral infarction Diseases 0.000 description 1
- 201000008191 cerebritis Diseases 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 201000010415 childhood type dermatomyositis Diseases 0.000 description 1
- 229950008249 chlornaphazine Drugs 0.000 description 1
- 229960001480 chlorozotocin Drugs 0.000 description 1
- 208000003167 cholangitis Diseases 0.000 description 1
- 201000004709 chorioretinitis Diseases 0.000 description 1
- 201000009323 chronic eosinophilic pneumonia Diseases 0.000 description 1
- 208000030949 chronic idiopathic urticaria Diseases 0.000 description 1
- 201000005795 chronic inflammatory demyelinating polyneuritis Diseases 0.000 description 1
- 230000012085 chronic inflammatory response Effects 0.000 description 1
- 208000027157 chronic rhinosinusitis Diseases 0.000 description 1
- 206010072757 chronic spontaneous urticaria Diseases 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 229960002286 clodronic acid Drugs 0.000 description 1
- 208000008609 collagenous colitis Diseases 0.000 description 1
- 238000009096 combination chemotherapy Methods 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- COFJBSXICYYSKG-OAUVCNBTSA-N cph2u7dndy Chemical compound OS(O)(=O)=O.C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 COFJBSXICYYSKG-OAUVCNBTSA-N 0.000 description 1
- 210000003792 cranial nerve Anatomy 0.000 description 1
- 230000005574 cross-species transmission Effects 0.000 description 1
- 108010089438 cryptophycin 1 Proteins 0.000 description 1
- PSNOPSMXOBPNNV-VVCTWANISA-N cryptophycin 1 Chemical compound C1=C(Cl)C(OC)=CC=C1C[C@@H]1C(=O)NC[C@@H](C)C(=O)O[C@@H](CC(C)C)C(=O)O[C@H]([C@H](C)[C@@H]2[C@H](O2)C=2C=CC=CC=2)C/C=C/C(=O)N1 PSNOPSMXOBPNNV-VVCTWANISA-N 0.000 description 1
- 108010090203 cryptophycin 8 Proteins 0.000 description 1
- PSNOPSMXOBPNNV-UHFFFAOYSA-N cryptophycin-327 Natural products C1=C(Cl)C(OC)=CC=C1CC1C(=O)NCC(C)C(=O)OC(CC(C)C)C(=O)OC(C(C)C2C(O2)C=2C=CC=CC=2)CC=CC(=O)N1 PSNOPSMXOBPNNV-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 239000002619 cytotoxin Substances 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 231100000895 deafness Toxicity 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000006298 dechlorination reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 229960005052 demecolcine Drugs 0.000 description 1
- 230000008716 dendritic activation Effects 0.000 description 1
- 208000025729 dengue disease Diseases 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229950003913 detorubicin Drugs 0.000 description 1
- 201000010064 diabetes insipidus Diseases 0.000 description 1
- 208000033679 diabetic kidney disease Diseases 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- WVYXNIXAMZOZFK-UHFFFAOYSA-N diaziquone Chemical compound O=C1C(NC(=O)OCC)=C(N2CC2)C(=O)C(NC(=O)OCC)=C1N1CC1 WVYXNIXAMZOZFK-UHFFFAOYSA-N 0.000 description 1
- 229950002389 diaziquone Drugs 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical class [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 1
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 1
- PZXJOHSZQAEJFE-UHFFFAOYSA-N dihydrobetulinic acid Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C(C)C)C5C4CCC3C21C PZXJOHSZQAEJFE-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 208000032625 disorder of ear Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 1
- DLNKOYKMWOXYQA-UHFFFAOYSA-N dl-pseudophenylpropanolamine Natural products CC(N)C(O)C1=CC=CC=C1 DLNKOYKMWOXYQA-UHFFFAOYSA-N 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- ZWAOHEXOSAUJHY-ZIYNGMLESA-N doxifluridine Chemical compound O[C@@H]1[C@H](O)[C@@H](C)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ZWAOHEXOSAUJHY-ZIYNGMLESA-N 0.000 description 1
- 229950005454 doxifluridine Drugs 0.000 description 1
- 229950004203 droloxifene Drugs 0.000 description 1
- NOTIQUSPUUHHEH-UXOVVSIBSA-N dromostanolone propionate Chemical compound C([C@@H]1CC2)C(=O)[C@H](C)C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](OC(=O)CC)[C@@]2(C)CC1 NOTIQUSPUUHHEH-UXOVVSIBSA-N 0.000 description 1
- 229960004242 dronabinol Drugs 0.000 description 1
- 229950004683 drostanolone propionate Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229960005501 duocarmycin Drugs 0.000 description 1
- VQNATVDKACXKTF-XELLLNAOSA-N duocarmycin Chemical compound COC1=C(OC)C(OC)=C2NC(C(=O)N3C4=CC(=O)C5=C([C@@]64C[C@@H]6C3)C=C(N5)C(=O)OC)=CC2=C1 VQNATVDKACXKTF-XELLLNAOSA-N 0.000 description 1
- 229930184221 duocarmycin Natural products 0.000 description 1
- AFMYMMXSQGUCBK-AKMKHHNQSA-N dynemicin a Chemical compound C1#C\C=C/C#C[C@@H]2NC(C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C3)=C3[C@@]34O[C@]32[C@@H](C)C(C(O)=O)=C(OC)[C@H]41 AFMYMMXSQGUCBK-AKMKHHNQSA-N 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- FSIRXIHZBIXHKT-MHTVFEQDSA-N edatrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CC(CC)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FSIRXIHZBIXHKT-MHTVFEQDSA-N 0.000 description 1
- 229950006700 edatrexate Drugs 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 229960002759 eflornithine Drugs 0.000 description 1
- XOPYFXBZMVTEJF-PDACKIITSA-N eleutherobin Chemical compound C(/[C@H]1[C@H](C(=CC[C@@H]1C(C)C)C)C[C@@H]([C@@]1(C)O[C@@]2(C=C1)OC)OC(=O)\C=C\C=1N=CN(C)C=1)=C2\CO[C@@H]1OC[C@@H](O)[C@@H](O)[C@@H]1OC(C)=O XOPYFXBZMVTEJF-PDACKIITSA-N 0.000 description 1
- XOPYFXBZMVTEJF-UHFFFAOYSA-N eleutherobin Natural products C1=CC2(OC)OC1(C)C(OC(=O)C=CC=1N=CN(C)C=1)CC(C(=CCC1C(C)C)C)C1C=C2COC1OCC(O)C(O)C1OC(C)=O XOPYFXBZMVTEJF-UHFFFAOYSA-N 0.000 description 1
- 229950000549 elliptinium acetate Drugs 0.000 description 1
- 229940120655 eloxatin Drugs 0.000 description 1
- 201000008184 embryoma Diseases 0.000 description 1
- 206010014665 endocarditis Diseases 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 201000010048 endomyocardial fibrosis Diseases 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- JOZGNYDSEBIJDH-UHFFFAOYSA-N eniluracil Chemical compound O=C1NC=C(C#C)C(=O)N1 JOZGNYDSEBIJDH-UHFFFAOYSA-N 0.000 description 1
- 229950010213 eniluracil Drugs 0.000 description 1
- 229950011487 enocitabine Drugs 0.000 description 1
- 230000002327 eosinophilic effect Effects 0.000 description 1
- 208000021373 epidemic keratoconjunctivitis Diseases 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 201000011114 epidermolysis bullosa acquisita Diseases 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 1
- 229950002973 epitiostanol Drugs 0.000 description 1
- 229930013356 epothilone Natural products 0.000 description 1
- 150000003883 epothilone derivatives Chemical class 0.000 description 1
- 229950009760 epratuzumab Drugs 0.000 description 1
- 231100000321 erythema Toxicity 0.000 description 1
- ITSGNOIFAJAQHJ-BMFNZSJVSA-N esorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)C[C@H](C)O1 ITSGNOIFAJAQHJ-BMFNZSJVSA-N 0.000 description 1
- 229950002017 esorubicin Drugs 0.000 description 1
- LJQQFQHBKUKHIS-WJHRIEJJSA-N esperamicin Chemical compound O1CC(NC(C)C)C(OC)CC1OC1C(O)C(NOC2OC(C)C(SC)C(O)C2)C(C)OC1OC1C(\C2=C/CSSSC)=C(NC(=O)OC)C(=O)C(OC3OC(C)C(O)C(OC(=O)C=4C(=CC(OC)=C(OC)C=4)NC(=O)C(=C)OC)C3)C2(O)C#C\C=C/C#C1 LJQQFQHBKUKHIS-WJHRIEJJSA-N 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 102000015694 estrogen receptors Human genes 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 1
- QSRLNKCNOLVZIR-KRWDZBQOSA-N ethyl (2s)-2-[[2-[4-[bis(2-chloroethyl)amino]phenyl]acetyl]amino]-4-methylsulfanylbutanoate Chemical compound CCOC(=O)[C@H](CCSC)NC(=O)CC1=CC=C(N(CCCl)CCCl)C=C1 QSRLNKCNOLVZIR-KRWDZBQOSA-N 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- 229940009626 etidronate Drugs 0.000 description 1
- 229960005237 etoglucid Drugs 0.000 description 1
- NPUKDXXFDDZOKR-LLVKDONJSA-N etomidate Chemical compound CCOC(=O)C1=CN=CN1[C@H](C)C1=CC=CC=C1 NPUKDXXFDDZOKR-LLVKDONJSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229940085363 evista Drugs 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229960000255 exemestane Drugs 0.000 description 1
- 208000004526 exfoliative dermatitis Diseases 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 229950011548 fadrozole Drugs 0.000 description 1
- 229940043168 fareston Drugs 0.000 description 1
- 208000022195 farmer lung disease Diseases 0.000 description 1
- 229940087476 femara Drugs 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 208000001031 fetal erythroblastosis Diseases 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- 229960000961 floxuridine Drugs 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 229960002074 flutamide Drugs 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 239000004052 folic acid antagonist Substances 0.000 description 1
- 150000002224 folic acids Chemical class 0.000 description 1
- 235000020932 food allergy Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 229960004279 formaldehyde Drugs 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229940001490 fosamax Drugs 0.000 description 1
- 229960004783 fotemustine Drugs 0.000 description 1
- YAKWPXVTIGTRJH-UHFFFAOYSA-N fotemustine Chemical compound CCOP(=O)(OCC)C(C)NC(=O)N(CCCl)N=O YAKWPXVTIGTRJH-UHFFFAOYSA-N 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229940044658 gallium nitrate Drugs 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229940020967 gemzar Drugs 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 210000001280 germinal center Anatomy 0.000 description 1
- 210000001102 germinal center b cell Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 108010067216 glycyl-glycyl-glycine Proteins 0.000 description 1
- 230000002710 gonadal effect Effects 0.000 description 1
- 229960003690 goserelin acetate Drugs 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000009422 growth inhibiting effect Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 210000000777 hematopoietic system Anatomy 0.000 description 1
- 201000001505 hemoglobinuria Diseases 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 230000011132 hemopoiesis Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- 208000003215 hereditary nephritis Diseases 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 229940088013 hycamtin Drugs 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- KNOSIOWNDGUGFJ-UHFFFAOYSA-N hydroxysesamone Natural products C1=CC(O)=C2C(=O)C(CC=C(C)C)=C(O)C(=O)C2=C1O KNOSIOWNDGUGFJ-UHFFFAOYSA-N 0.000 description 1
- 208000014796 hyper-IgE recurrent infection syndrome 1 Diseases 0.000 description 1
- 206010051040 hyper-IgE syndrome Diseases 0.000 description 1
- 208000026095 hyper-IgM syndrome type 1 Diseases 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 230000003463 hyperproliferative effect Effects 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 201000006362 hypersensitivity vasculitis Diseases 0.000 description 1
- 230000002989 hypothyroidism Effects 0.000 description 1
- 229940015872 ibandronate Drugs 0.000 description 1
- 206010021198 ichthyosis Diseases 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 208000013397 idiopathic acute eosinophilic pneumonia Diseases 0.000 description 1
- 230000016178 immune complex formation Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000003312 immunocapture Methods 0.000 description 1
- 230000002871 immunocytoma Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 208000015446 immunoglobulin a vasculitis Diseases 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- DBIGHPPNXATHOF-UHFFFAOYSA-N improsulfan Chemical compound CS(=O)(=O)OCCCNCCCOS(C)(=O)=O DBIGHPPNXATHOF-UHFFFAOYSA-N 0.000 description 1
- 229950008097 improsulfan Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 229940055742 indium-111 Drugs 0.000 description 1
- APFVFJFRJDLVQX-AHCXROLUSA-N indium-111 Chemical compound [111In] APFVFJFRJDLVQX-AHCXROLUSA-N 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 208000000509 infertility Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 231100000535 infertility Toxicity 0.000 description 1
- 208000030603 inherited susceptibility to asthma Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229950004101 inotuzumab ozogamicin Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 201000006904 interstitial keratitis Diseases 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- GURKHSYORGJETM-WAQYZQTGSA-N irinotecan hydrochloride (anhydrous) Chemical compound Cl.C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 GURKHSYORGJETM-WAQYZQTGSA-N 0.000 description 1
- 201000004614 iritis Diseases 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 208000001875 irritant dermatitis Diseases 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 208000012947 ischemia reperfusion injury Diseases 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 125000000741 isoleucyl group Chemical group [H]N([H])C(C(C([H])([H])[H])C([H])([H])C([H])([H])[H])C(=O)O* 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 208000018937 joint inflammation Diseases 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 1
- 206010023332 keratitis Diseases 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 208000005430 kidney cortex necrosis Diseases 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 229940057428 lactoperoxidase Drugs 0.000 description 1
- CWPGNVFCJOPXFB-UHFFFAOYSA-N lapachol Chemical compound C1=CC=C2C(=O)C(=O)C(CC=C(C)C)=C(O)C2=C1 CWPGNVFCJOPXFB-UHFFFAOYSA-N 0.000 description 1
- SIUGQQMOYSVTAT-UHFFFAOYSA-N lapachol Natural products CC(=CCC1C(O)C(=O)c2ccccc2C1=O)C SIUGQQMOYSVTAT-UHFFFAOYSA-N 0.000 description 1
- BCFGMOOMADDAQU-UHFFFAOYSA-N lapatinib Chemical compound O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 BCFGMOOMADDAQU-UHFFFAOYSA-N 0.000 description 1
- 229960001320 lapatinib ditosylate Drugs 0.000 description 1
- 201000010901 lateral sclerosis Diseases 0.000 description 1
- 229940115286 lentinan Drugs 0.000 description 1
- 229960003881 letrozole Drugs 0.000 description 1
- 231100001022 leukopenia Toxicity 0.000 description 1
- 206010024428 lichen nitidus Diseases 0.000 description 1
- 201000011486 lichen planus Diseases 0.000 description 1
- 230000002197 limbic effect Effects 0.000 description 1
- 208000029631 linear IgA Dermatosis Diseases 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- YROQEQPFUCPDCP-UHFFFAOYSA-N losoxantrone Chemical compound OCCNCCN1N=C2C3=CC=CC(O)=C3C(=O)C3=C2C1=CC=C3NCCNCCO YROQEQPFUCPDCP-UHFFFAOYSA-N 0.000 description 1
- 229950008745 losoxantrone Drugs 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 108010078259 luprolide acetate gel depot Proteins 0.000 description 1
- 229940087857 lupron Drugs 0.000 description 1
- RVFGKBWWUQOIOU-NDEPHWFRSA-N lurtotecan Chemical compound O=C([C@]1(O)CC)OCC(C(N2CC3=4)=O)=C1C=C2C3=NC1=CC=2OCCOC=2C=C1C=4CN1CCN(C)CC1 RVFGKBWWUQOIOU-NDEPHWFRSA-N 0.000 description 1
- 229950002654 lurtotecan Drugs 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 201000003265 lymphadenitis Diseases 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 208000006116 lymphomatoid granulomatosis Diseases 0.000 description 1
- 230000006674 lysosomal degradation Effects 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 150000002671 lyxoses Chemical class 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- MQXVYODZCMMZEM-ZYUZMQFOSA-N mannomustine Chemical compound ClCCNC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CNCCCl MQXVYODZCMMZEM-ZYUZMQFOSA-N 0.000 description 1
- 229950008612 mannomustine Drugs 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 201000007924 marginal zone B-cell lymphoma Diseases 0.000 description 1
- 208000021937 marginal zone lymphoma Diseases 0.000 description 1
- 229940099262 marinol Drugs 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 208000008585 mastocytosis Diseases 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 208000020968 mature T-cell and NK-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 210000003519 mature b lymphocyte Anatomy 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 229960004296 megestrol acetate Drugs 0.000 description 1
- 231100000855 membranous nephropathy Toxicity 0.000 description 1
- 229950009246 mepitiostane Drugs 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- VJRAUFKOOPNFIQ-TVEKBUMESA-N methyl (1r,2r,4s)-4-[(2r,4s,5s,6s)-5-[(2s,4s,5s,6s)-5-[(2s,4s,5s,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-4-(dimethylamino)-6-methyloxan-2-yl]oxy-2-ethyl-2,5,7,10-tetrahydroxy-6,11-dioxo-3,4-dihydro-1h-tetracene-1-carboxylat Chemical compound O([C@H]1[C@@H](O)C[C@@H](O[C@H]1C)O[C@H]1[C@H](C[C@@H](O[C@H]1C)O[C@H]1C[C@]([C@@H](C2=CC=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C21)C(=O)OC)(O)CC)N(C)C)[C@H]1C[C@H](O)[C@H](O)[C@H](C)O1 VJRAUFKOOPNFIQ-TVEKBUMESA-N 0.000 description 1
- HRHKSTOGXBBQCB-VFWICMBZSA-N methylmitomycin Chemical compound O=C1C(N)=C(C)C(=O)C2=C1[C@@H](COC(N)=O)[C@@]1(OC)[C@H]3N(C)[C@H]3CN12 HRHKSTOGXBBQCB-VFWICMBZSA-N 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 108010029942 microperoxidase Proteins 0.000 description 1
- 208000008275 microscopic colitis Diseases 0.000 description 1
- 230000008880 microtubule cytoskeleton organization Effects 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 229960005485 mitobronitol Drugs 0.000 description 1
- MXWHMTNPTTVWDM-NXOFHUPFSA-N mitoguazone Chemical compound NC(N)=N\N=C(/C)\C=N\N=C(N)N MXWHMTNPTTVWDM-NXOFHUPFSA-N 0.000 description 1
- 229960003539 mitoguazone Drugs 0.000 description 1
- VFKZTMPDYBFSTM-GUCUJZIJSA-N mitolactol Chemical compound BrC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-GUCUJZIJSA-N 0.000 description 1
- 229950010913 mitolactol Drugs 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 208000001725 mucocutaneous lymph node syndrome Diseases 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 206010065579 multifocal motor neuropathy Diseases 0.000 description 1
- 208000029744 multiple organ dysfunction syndrome Diseases 0.000 description 1
- 238000011512 multiplexed immunoassay Methods 0.000 description 1
- 208000010805 mumps infectious disease Diseases 0.000 description 1
- 208000029766 myalgic encephalomeyelitis/chronic fatigue syndrome Diseases 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- BXGTVNLGPMZLAZ-UHFFFAOYSA-N n'-ethylmethanediimine;hydrochloride Chemical compound Cl.CCN=C=N BXGTVNLGPMZLAZ-UHFFFAOYSA-N 0.000 description 1
- AZBFJBJXUQUQLF-UHFFFAOYSA-N n-(1,5-dimethylpyrrolidin-3-yl)pyrrolidine-1-carboxamide Chemical compound C1N(C)C(C)CC1NC(=O)N1CCCC1 AZBFJBJXUQUQLF-UHFFFAOYSA-N 0.000 description 1
- QAPPRYMOAGJPPE-UHFFFAOYSA-N n-(2,5-dioxopyrrolidin-1-yl)-2-iodoacetamide Chemical compound ICC(=O)NN1C(=O)CCC1=O QAPPRYMOAGJPPE-UHFFFAOYSA-N 0.000 description 1
- UPSFMJHZUCSEHU-JYGUBCOQSA-N n-[(2s,3r,4r,5s,6r)-2-[(2r,3s,4r,5r,6s)-5-acetamido-4-hydroxy-2-(hydroxymethyl)-6-(4-methyl-2-oxochromen-7-yl)oxyoxan-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](NC(C)=O)[C@H](OC=2C=C3OC(=O)C=C(C)C3=CC=2)O[C@@H]1CO UPSFMJHZUCSEHU-JYGUBCOQSA-N 0.000 description 1
- NJSMWLQOCQIOPE-OCHFTUDZSA-N n-[(e)-[10-[(e)-(4,5-dihydro-1h-imidazol-2-ylhydrazinylidene)methyl]anthracen-9-yl]methylideneamino]-4,5-dihydro-1h-imidazol-2-amine Chemical compound N1CCN=C1N\N=C\C(C1=CC=CC=C11)=C(C=CC=C2)C2=C1\C=N\NC1=NCCN1 NJSMWLQOCQIOPE-OCHFTUDZSA-N 0.000 description 1
- BLCLNMBMMGCOAS-UHFFFAOYSA-N n-[1-[[1-[[1-[[1-[[1-[[1-[[1-[2-[(carbamoylamino)carbamoyl]pyrrolidin-1-yl]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-[(2-methylpropan-2-yl)oxy]-1-oxopropan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amin Chemical compound C1CCC(C(=O)NNC(N)=O)N1C(=O)C(CCCN=C(N)N)NC(=O)C(CC(C)C)NC(=O)C(COC(C)(C)C)NC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 BLCLNMBMMGCOAS-UHFFFAOYSA-N 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- OWIUPIRUAQMTTK-UHFFFAOYSA-M n-aminocarbamate Chemical compound NNC([O-])=O OWIUPIRUAQMTTK-UHFFFAOYSA-M 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 201000003631 narcolepsy Diseases 0.000 description 1
- 201000009240 nasopharyngitis Diseases 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 229940086322 navelbine Drugs 0.000 description 1
- 208000004995 necrotizing enterocolitis Diseases 0.000 description 1
- 230000027498 negative regulation of mitosis Effects 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- MQYXUWHLBZFQQO-UHFFFAOYSA-N nepehinol Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C)CCC(C(=C)C)C5C4CCC3C21C MQYXUWHLBZFQQO-UHFFFAOYSA-N 0.000 description 1
- 208000009928 nephrosis Diseases 0.000 description 1
- 231100001027 nephrosis Toxicity 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 208000002040 neurosyphilis Diseases 0.000 description 1
- 229960002653 nilutamide Drugs 0.000 description 1
- XWXYUMMDTVBTOU-UHFFFAOYSA-N nilutamide Chemical compound O=C1C(C)(C)NC(=O)N1C1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 XWXYUMMDTVBTOU-UHFFFAOYSA-N 0.000 description 1
- 229960001420 nimustine Drugs 0.000 description 1
- VFEDRRNHLBGPNN-UHFFFAOYSA-N nimustine Chemical compound CC1=NC=C(CNC(=O)N(CCCl)N=O)C(N)=N1 VFEDRRNHLBGPNN-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 201000006039 nodal marginal zone lymphoma Diseases 0.000 description 1
- KGTDRFCXGRULNK-JYOBTZKQSA-N nogalamycin Chemical compound CO[C@@H]1[C@@](OC)(C)[C@@H](OC)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=C(O)C=C4[C@@]5(C)O[C@H]([C@H]([C@@H]([C@H]5O)N(C)C)O)OC4=C3C3=O)=C3C=C2[C@@H](C(=O)OC)[C@@](C)(O)C1 KGTDRFCXGRULNK-JYOBTZKQSA-N 0.000 description 1
- 229950009266 nogalamycin Drugs 0.000 description 1
- 229940085033 nolvadex Drugs 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 201000004071 non-specific interstitial pneumonia Diseases 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 208000028780 ocular motility disease Diseases 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- CZDBNBLGZNWKMC-MWQNXGTOSA-N olivomycin Chemical class O([C@@H]1C[C@@H](O[C@H](C)[C@@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1)O[C@H]1O[C@@H](C)[C@H](O)[C@@H](OC2O[C@@H](C)[C@H](O)[C@@H](O)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@H](O)[C@H](OC)[C@H](C)O1 CZDBNBLGZNWKMC-MWQNXGTOSA-N 0.000 description 1
- 229950011093 onapristone Drugs 0.000 description 1
- 229940043515 other immunoglobulins in atc Drugs 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N p-menthan-3-ol Chemical compound CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 229940046231 pamidronate Drugs 0.000 description 1
- VREZDOWOLGNDPW-UHFFFAOYSA-N pancratistatine Natural products C1=C2C3C(O)C(O)C(O)C(O)C3NC(=O)C2=C(O)C2=C1OCO2 VREZDOWOLGNDPW-UHFFFAOYSA-N 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 208000010403 panophthalmitis Diseases 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 206010057056 paraneoplastic pemphigus Diseases 0.000 description 1
- 231100000255 pathogenic effect Toxicity 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- QIMGFXOHTOXMQP-GFAGFCTOSA-N peplomycin Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCCN[C@@H](C)C=1C=CC=CC=1)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1NC=NC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C QIMGFXOHTOXMQP-GFAGFCTOSA-N 0.000 description 1
- 229950003180 peplomycin Drugs 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 208000011906 peptic ulcer disease Diseases 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 229940124633 peptidic drug Drugs 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 201000006195 perinatal necrotizing enterocolitis Diseases 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 208000029308 periodic paralysis Diseases 0.000 description 1
- 210000001322 periplasm Anatomy 0.000 description 1
- 201000002628 peritoneum cancer Diseases 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229960000952 pipobroman Drugs 0.000 description 1
- NJBFOOCLYDNZJN-UHFFFAOYSA-N pipobroman Chemical compound BrCCC(=O)N1CCN(C(=O)CCBr)CC1 NJBFOOCLYDNZJN-UHFFFAOYSA-N 0.000 description 1
- NUKCGLDCWQXYOQ-UHFFFAOYSA-N piposulfan Chemical compound CS(=O)(=O)OCCC(=O)N1CCN(C(=O)CCOS(C)(=O)=O)CC1 NUKCGLDCWQXYOQ-UHFFFAOYSA-N 0.000 description 1
- 229950001100 piposulfan Drugs 0.000 description 1
- 229960001221 pirarubicin Drugs 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 229960001237 podophyllotoxin Drugs 0.000 description 1
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 1
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 1
- 208000030428 polyarticular arthritis Diseases 0.000 description 1
- 208000006473 polyradiculopathy Diseases 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229950004406 porfiromycin Drugs 0.000 description 1
- 201000011461 pre-eclampsia Diseases 0.000 description 1
- 208000017426 precursor B-cell acute lymphoblastic leukemia Diseases 0.000 description 1
- 229960004694 prednimustine Drugs 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 206010036601 premature menopause Diseases 0.000 description 1
- 208000017942 premature ovarian failure 1 Diseases 0.000 description 1
- 201000009395 primary hyperaldosteronism Diseases 0.000 description 1
- 230000000861 pro-apoptotic effect Effects 0.000 description 1
- 210000001948 pro-b lymphocyte Anatomy 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003623 progesteronic effect Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- VVWRJUBEIPHGQF-MDZDMXLPSA-N propan-2-yl (ne)-n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)\N=N\C(=O)OC(C)C VVWRJUBEIPHGQF-MDZDMXLPSA-N 0.000 description 1
- IVRIRQXJSNCSPQ-UHFFFAOYSA-N propan-2-yl carbonochloridate Chemical compound CC(C)OC(Cl)=O IVRIRQXJSNCSPQ-UHFFFAOYSA-N 0.000 description 1
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- WOLQREOUPKZMEX-UHFFFAOYSA-N pteroyltriglutamic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(=O)NC(CCC(=O)NC(CCC(O)=O)C(O)=O)C(O)=O)C(O)=O)C=C1 WOLQREOUPKZMEX-UHFFFAOYSA-N 0.000 description 1
- 201000003489 pulmonary alveolar proteinosis Diseases 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 201000009732 pulmonary eosinophilia Diseases 0.000 description 1
- 208000005069 pulmonary fibrosis Diseases 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 201000004537 pyelitis Diseases 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- UOWVMDUEMSNCAV-WYENRQIDSA-N rachelmycin Chemical compound C1([C@]23C[C@@H]2CN1C(=O)C=1NC=2C(OC)=C(O)C4=C(C=2C=1)CCN4C(=O)C1=CC=2C=4CCN(C=4C(O)=C(C=2N1)OC)C(N)=O)=CC(=O)C1=C3C(C)=CN1 UOWVMDUEMSNCAV-WYENRQIDSA-N 0.000 description 1
- 206010061928 radiculitis Diseases 0.000 description 1
- 238000007420 radioactive assay Methods 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 229940051022 radioimmunoconjugate Drugs 0.000 description 1
- 230000003439 radiotherapeutic effect Effects 0.000 description 1
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- BMKDZUISNHGIBY-UHFFFAOYSA-N razoxane Chemical compound C1C(=O)NC(=O)CN1C(C)CN1CC(=O)NC(=O)C1 BMKDZUISNHGIBY-UHFFFAOYSA-N 0.000 description 1
- 229960000460 razoxane Drugs 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001525 receptor binding assay Methods 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 210000001350 reed-sternberg cell Anatomy 0.000 description 1
- 208000009169 relapsing polychondritis Diseases 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 210000005227 renal system Anatomy 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 125000006853 reporter group Chemical group 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 201000003068 rheumatic fever Diseases 0.000 description 1
- OWPCHSCAPHNHAV-LMONGJCWSA-N rhizoxin Chemical compound C/C([C@H](OC)[C@@H](C)[C@@H]1C[C@H](O)[C@]2(C)O[C@@H]2/C=C/[C@@H](C)[C@]2([H])OC(=O)C[C@@](C2)(C[C@@H]2O[C@H]2C(=O)O1)[H])=C\C=C\C(\C)=C\C1=COC(C)=N1 OWPCHSCAPHNHAV-LMONGJCWSA-N 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 229940089617 risedronate Drugs 0.000 description 1
- 229950004892 rodorubicin Drugs 0.000 description 1
- MBABCNBNDNGODA-WPZDJQSSSA-N rolliniastatin 1 Natural products O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@H]1[C@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@@H](O)CC=2C(O[C@@H](C)C=2)=O)CC1 MBABCNBNDNGODA-WPZDJQSSSA-N 0.000 description 1
- IMUQLZLGWJSVMV-UOBFQKKOSA-N roridin A Natural products CC(O)C1OCCC(C)C(O)C(=O)OCC2CC(=CC3OC4CC(OC(=O)C=C/C=C/1)C(C)(C23)C45CO5)C IMUQLZLGWJSVMV-UOBFQKKOSA-N 0.000 description 1
- 201000004700 rosacea Diseases 0.000 description 1
- 102220206292 rs1057521851 Human genes 0.000 description 1
- 102220217823 rs138107415 Human genes 0.000 description 1
- 102220021854 rs80357031 Human genes 0.000 description 1
- VHXNKPBCCMUMSW-FQEVSTJZSA-N rubitecan Chemical compound C1=CC([N+]([O-])=O)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VHXNKPBCCMUMSW-FQEVSTJZSA-N 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 229930182947 sarcodictyin Natural products 0.000 description 1
- 201000004409 schistosomiasis Diseases 0.000 description 1
- 210000003786 sclera Anatomy 0.000 description 1
- 208000008742 seborrheic dermatitis Diseases 0.000 description 1
- 150000003341 sedoheptuloses Chemical class 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 208000013223 septicemia Diseases 0.000 description 1
- 238000012772 sequence design Methods 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 201000006476 shipyard eye Diseases 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000003007 single stranded DNA break Effects 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 229950001403 sizofiran Drugs 0.000 description 1
- 229940112726 skelid Drugs 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 108010047846 soblidotin Proteins 0.000 description 1
- DZMVCVHATYROOS-ZBFGKEHZSA-N soblidotin Chemical compound CC(C)[C@H](N(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)NCCC1=CC=CC=C1 DZMVCVHATYROOS-ZBFGKEHZSA-N 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- MKNJJMHQBYVHRS-UHFFFAOYSA-M sodium;1-[11-(2,5-dioxopyrrol-1-yl)undecanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCCCCCCN1C(=O)C=CC1=O MKNJJMHQBYVHRS-UHFFFAOYSA-M 0.000 description 1
- ULARYIUTHAWJMU-UHFFFAOYSA-M sodium;1-[4-(2,5-dioxopyrrol-1-yl)butanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCN1C(=O)C=CC1=O ULARYIUTHAWJMU-UHFFFAOYSA-M 0.000 description 1
- VUFNRPJNRFOTGK-UHFFFAOYSA-M sodium;1-[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]oxy-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)C1CCC(CN2C(C=CC2=O)=O)CC1 VUFNRPJNRFOTGK-UHFFFAOYSA-M 0.000 description 1
- MIDXXTLMKGZDPV-UHFFFAOYSA-M sodium;1-[6-(2,5-dioxopyrrol-1-yl)hexanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCN1C(=O)C=CC1=O MIDXXTLMKGZDPV-UHFFFAOYSA-M 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 229950006315 spirogermanium Drugs 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 201000005671 spondyloarthropathy Diseases 0.000 description 1
- ICXJVZHDZFXYQC-UHFFFAOYSA-N spongistatin 1 Natural products OC1C(O2)(O)CC(O)C(C)C2CCCC=CC(O2)CC(O)CC2(O2)CC(OC)CC2CC(=O)C(C)C(OC(C)=O)C(C)C(=C)CC(O2)CC(C)(O)CC2(O2)CC(OC(C)=O)CC2CC(=O)OC2C(O)C(CC(=C)CC(O)C=CC(Cl)=C)OC1C2C ICXJVZHDZFXYQC-UHFFFAOYSA-N 0.000 description 1
- 208000017572 squamous cell neoplasm Diseases 0.000 description 1
- 238000011476 stem cell transplantation Methods 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 201000007497 subacute thyroiditis Diseases 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 201000004595 synovitis Diseases 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 208000002025 tabes dorsalis Diseases 0.000 description 1
- 208000009056 telangiectasis Diseases 0.000 description 1
- 206010043207 temporal arteritis Diseases 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- BPEWUONYVDABNZ-DZBHQSCQSA-N testolactone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(OC(=O)CC4)[C@@H]4[C@@H]3CCC2=C1 BPEWUONYVDABNZ-DZBHQSCQSA-N 0.000 description 1
- 229960005353 testolactone Drugs 0.000 description 1
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- SRVJKTDHMYAMHA-WUXMJOGZSA-N thioacetazone Chemical compound CC(=O)NC1=CC=C(\C=N\NC(N)=S)C=C1 SRVJKTDHMYAMHA-WUXMJOGZSA-N 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 208000008732 thymoma Diseases 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 208000005057 thyrotoxicosis Diseases 0.000 description 1
- YFTWHEBLORWGNI-UHFFFAOYSA-N tiamiprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC(N)=NC2=C1NC=N2 YFTWHEBLORWGNI-UHFFFAOYSA-N 0.000 description 1
- 229950011457 tiamiprine Drugs 0.000 description 1
- 229940019375 tiludronate Drugs 0.000 description 1
- 230000025366 tissue development Effects 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- 229960005026 toremifene Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000007888 toxin activity Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 208000016367 transient hypogammaglobulinemia of infancy Diseases 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229960000575 trastuzumab Drugs 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- IUCJMVBFZDHPDX-UHFFFAOYSA-N tretamine Chemical compound C1CN1C1=NC(N2CC2)=NC(N2CC2)=N1 IUCJMVBFZDHPDX-UHFFFAOYSA-N 0.000 description 1
- 229950001353 tretamine Drugs 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- PXSOHRWMIRDKMP-UHFFFAOYSA-N triaziquone Chemical compound O=C1C(N2CC2)=C(N2CC2)C(=O)C=C1N1CC1 PXSOHRWMIRDKMP-UHFFFAOYSA-N 0.000 description 1
- 229960004560 triaziquone Drugs 0.000 description 1
- LZAJKCZTKKKZNT-PMNGPLLRSA-N trichothecene Chemical compound C12([C@@]3(CC[C@H]2OC2C=C(CCC23C)C)C)CO1 LZAJKCZTKKKZNT-PMNGPLLRSA-N 0.000 description 1
- 150000003327 trichothecene derivatives Chemical class 0.000 description 1
- KVJXBPDAXMEYOA-CXANFOAXSA-N trilostane Chemical compound OC1=C(C#N)C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@@]32O[C@@H]31 KVJXBPDAXMEYOA-CXANFOAXSA-N 0.000 description 1
- 229960001670 trilostane Drugs 0.000 description 1
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 1
- 229960001099 trimetrexate Drugs 0.000 description 1
- 229950000212 trioxifene Drugs 0.000 description 1
- 229960000875 trofosfamide Drugs 0.000 description 1
- UMKFEPPTGMDVMI-UHFFFAOYSA-N trofosfamide Chemical compound ClCCN(CCCl)P1(=O)OCCCN1CCCl UMKFEPPTGMDVMI-UHFFFAOYSA-N 0.000 description 1
- 229950010147 troxacitabine Drugs 0.000 description 1
- RXRGZNYSEHTMHC-BQBZGAKWSA-N troxacitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)OC1 RXRGZNYSEHTMHC-BQBZGAKWSA-N 0.000 description 1
- HDZZVAMISRMYHH-LITAXDCLSA-N tubercidin Chemical compound C1=CC=2C(N)=NC=NC=2N1[C@@H]1O[C@@H](CO)[C@H](O)[C@H]1O HDZZVAMISRMYHH-LITAXDCLSA-N 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 230000002476 tumorcidal effect Effects 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 229950009811 ubenimex Drugs 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 229960001055 uracil mustard Drugs 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 125000005500 uronium group Chemical group 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 208000012991 uterine carcinoma Diseases 0.000 description 1
- 210000001745 uvea Anatomy 0.000 description 1
- 230000006492 vascular dysfunction Effects 0.000 description 1
- 208000023577 vascular insufficiency disease Diseases 0.000 description 1
- 230000004862 vasculogenesis Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- GBABOYUKABKIAF-IELIFDKJSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-IELIFDKJSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 229960001771 vorozole Drugs 0.000 description 1
- XLMPPFTZALNBFS-INIZCTEOSA-N vorozole Chemical compound C1([C@@H](C2=CC=C3N=NN(C3=C2)C)N2N=CN=C2)=CC=C(Cl)C=C1 XLMPPFTZALNBFS-INIZCTEOSA-N 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 229940053867 xeloda Drugs 0.000 description 1
- 150000003742 xyloses Chemical class 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 229950009268 zinostatin Drugs 0.000 description 1
- 229940002005 zometa Drugs 0.000 description 1
- FBTUMDXHSRTGRV-ALTNURHMSA-N zorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(\C)=N\NC(=O)C=1C=CC=CC=1)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 FBTUMDXHSRTGRV-ALTNURHMSA-N 0.000 description 1
- 229960000641 zorubicin Drugs 0.000 description 1
Landscapes
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Anti-CD22 antibodies and immunoconjugates thereof are provided. Methods of using anti-CD22 antibodies and immunoconjugates thereof are provided. 360770_1 (GHMatters) P79401 AU 3 14-Sep.12
Description
AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION Standard Patent Applicant: GENENTECH, INC. Invention Title: Antibodies and immunoconjugates and uses therefor The following statement is a full description of this invention, including the best method for performing it known to us: ANTIBODIES AND IMMUNOCONJUGATES AND USES THEREFOR The entire disclosure in the complete specification of our Australian Patent Application No. 2011202920 is by this cross-reference incorporated into the present 5 specification. FIELD OF THE INVENTION The present invention relates to anti-CD22 antibodies and immunconjugates thereof. The invention further relates to methods of using anti-CD22 antibodies and immunconjugates thereof. 10 BACKGROUND Lymphocytes are one of many types of white blood cells produced in the bone marrow during the process of hematopoiesis. There are two major populations of lymphocytes: B lymphocytes (B cells) and T lymphocytes (T cells). The lymphocytes of particular interest herein are B cells. 15 B cells mature within the bone marrow and leave the marrow expressing an antigen binding antibody on their cell surface. When a naive B cell first encounters the antigen for which its membrane-bound antibody is specific, the cell begins to divide rapidly and its progeny differentiate into memory B cells and effector cells called "plasma cells." Memory B cells have a longer life span and continue to express membrane-bound antibody with the 20 same specificity as the original parent cell. Plasma cells do not produce membrane-bound antibody but instead produce the antibody in a form that can be secreted. Secreted antibodies are the major effector molecule of humoral immunity. B cell-related disorders include, but are not limited to, malignant lymphoma (Non Hodgkin's Lymphoma, NHL), multiple myeloma, and chronic lymphocytic leukemia (CLL, B 25 cell leukemia (CD5+ B lymphocytes). Non-Hodgkin's lymphomas (NHLs), a heterogeneous group of cancers principally arising from B lymphocytes, represent approximately 4% of all newly diagnosed cancers (Jemal, A. et al., CA-Cancer J Clin, 52: 23-47, (2002)). Aggressive NHL comprises approximately 30-40% of adult NHL (Harris, N.L. et al., Hematol. J. 1:53-66 (2001)) and includes diffuse large B-cell lymphoma (DLBCL), mantle 30 cell lymphoma (MCL), peripheral T-cell lymphoma, and anaplastic large cell lymphoma. 2 3860770_1 (GHMatters) P79401.AU.3 14-SOD-12 Frontline combination chemotherapy cures less than half of the patients with aggressive NHL, and most patients eventually succumb to their disease (Fisher, R.I. Semin. Oncol. 27(suppl 12): 2-8 (2000)). B cell-related disorders also include autoimmune diseases. Autoimmune diseases 5 remain clinically important diseases in humans. As the name implies, autoimmune diseases act through the body's own immune system. While the pathological mechanisms differ among individual types of autoimmune diseases, one general mechanism involves the binding of certain antibodies (referred to herein as self-reactive antibodies or autoantibodies) to the body's endogenous proteins. Physicians and scientists have 10 identified more than 70 clinically distinct autoimmune diseases, including rheumatoid arthritis, multiple sclerosis, vasculitis, immune-mediated diabetes, and lupus such as systemic lupus erythematosus. While many autoimmune diseases are rare - affecting fewer than 200,000 individuals - collectively, these diseases afflict millions of Americans, an estimated five percent of the population, with women disproportionately affected by most 15 diseases. The chronic nature of these diseases leads to an immense social and financial burden. Cytotoxic agents which target B cell surface antigens are an important focus of B cell-related cancer therapies. One such B cell surface antigen is CD20. Rituximab (Rituxan; Genentech, Inc. (South San Francisco, CA) and IDEC Pharmaceutical Corp. (San 20 Diego, CA)), a chimeric (mouse/human) anti-CD20 monoclonal antibody, was the first therapeutic antibody approved by the United States Food and Drug Administration for treatment of relapsed or refractory low-grade or follicular NHL (Leonard, J.P. et al., Clin. Canc. Res. 10:5327-5334 (2004)). Other B-cell antigens, such as CD19, CD22, and CD52, represent targets of 25 therapeutic potential for treatment of lymphoma (Grillo-Lopez A.J. et al., Curr Pharm Biotechnol, 2:301-11, (2001)) . CD22 is a 135-kDa B-cell-restricted sialoglycoprotein expressed on the B-cell surface only at the mature stages of differentiation (Dorken, B. et al., J. Immunol. 136:4470-4479 (1986)). The predominant form of CD22 in humans is CD22beta which contains seven immunoglobulin superfamily domains in the extracellular 30 domain (Figure 1) (Wilson, G.L. et al., J. Exp. Med. 173:137-146 (1991)). A variant form, CD22 alpha, lacks immunoglobulin superfamily domains 3 and 4 (Stamenkovic, I. and Seed, B., Nature 345:74-77 (1990)). Ligand-binding to human CD22 has been shown to be 3 3660770_1 (GHMatters) P79401.AU.3 14-Sep-12 associated with immunoglobulin superfamily domains 1 and 2 (also referred to as epitopes 1 and 2) (Engel, P. et al., J. Exp. Med. 181:1581-1586, 1995). In B-cell NHL, CD22 expression ranges from 91% to 99% in the aggressive and indolent populations, respectively (Cesano, A. et al., Blood 100:350a (2002)). CD22 may 5 function both as a component of the B-cell activation complex (Sato, S. et al., Semin. Immunol. 10:287-296 (1998)) and as an adhesion molecule (Engel, PI t al., J. Immunol. 150:4719-4732 (1993)). The B cells of CD22-deficient mice have a shorter life span and enhanced apoptosis, which suggests a key role of this antigen in B-cell survival (Otipoby, K.L. et al., Nature (Lond) 384:634-637 (1996)). After binding with its natural ligand(s) or 10 antibodies, CD22 is rapidly internalized, providing a potent costimulatory signal in primary B cells and proapoptotic signals in neoplastic B cells (Sato, S. et al., Immunity 5:551-562 (1996)). Anti-CD22 antibodies have been studied as potential therapies for B cell cancers and other B cell proliferative diseases. Such anti-CD22 antibodies include RFB4 Mansfield, E. et 15 al., Blood 90:2020-2026 (1997)), CMC-544 (DiJoseph, J.F., Blood 103:1807-1814 (2004)) and LL2 (Pawlak-Byczkowska, E.J. et al., Cancer Res. 49:4568-4577 (1989)). The LL2 antibody (formerly called HPB-2) is an IgG2a mouse monoclonal antibody directed against the CD22 antigen (Pawlak-Byczkowska, E.J. et al. (1989), supra). In vitro immunohistological evaluations demonstrated reactivity of the LL2 antibody with 50 of 51 B 20 cell NHL specimens tested, but not with other malignancies or normal nonlymphoid tissues (Pawlak-Byczkowska (1989), supra; Stein, R. et al., Cancer Immunol. Immunother. 37:293 298 (1993)). The use of antibody-drug conjugates for the local delivery of cytotoxic or cytostatic agents, i.e. drugs to kill or inhibit tumor cells in the treatment of cancer (Syrigos and 25 Epenetos (1999) Anticancer Research 19:605-614; Niculescu-Duvaz and Springer (1997) Adv. Drg Del. Rev. 26:151-172; U.S. patent 4975278) allows targeted delivery of the drug moiety to tumors, and intracellular accumulation therein, where systemic administration of these unconjugated drug agents may result in unacceptable levels of toxicity to normal cells as well as the tumor cells sought to be eliminated (Baldwin et al., (1986) Lancet pp. (Mar. 30 15, 1986):603-05; Thorpe, (1985) "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review," in Monoclonal Antibodies '84: Biological And Clinical Applications, A. Pinchera et al. (ed.s), pp. 475-506). Maximal efficacy with minimal toxicity is sought thereby. Both polyclonal antibodies and monoclonal antibodies have been reported as 4 3680770_1 (GHMatters) P79401 AU.3 14-Sep-12 useful in these strategies (Rowland et al., (1986) Cancer Immunol. Immunother., 21:183 87). Drugs used in these methods include daunomycin, doxorubicin, methotrexate, and vindesine (Rowland et al., Cancer Immunol. Immunother. 21:183-87 (1986)). Toxins used in antibody-toxin conjugates include bacterial toxins such as diphtheria toxin, plant toxins such 5 as ricin, small molecule toxins such as geldanamycin (Kerr et al (1997) Bioconjugate Chem. 8(6):781-784; Mandler et al (2000) Journal of the Nat. Cancer Inst. 92(19):1573-1581; Mandler et al (2000) Bioorganic & Med. Chem. Letters 10:1025-1028; Mandler et al (2002) Bioconjugate Chem. 13:786-791), maytansinoids (EP 1391213; Liu et al., (1996) Proc. NatI. Acad. Sci. USA 93:8618-8623), and calicheamicin (Lode et al (1998) Cancer Res. 58:2928; 10 Hinman et al (1993) Cancer Res. 53:3336-3342). The toxins may effect their cytotoxic and cytostatic effects by mechanisms including tubulin binding, DNA binding, or topoisomerase inhibition (Meyer, D.L. and Senter, P.D. "Recent Advances in Antibody Drug Conjugates for Cancer Therapy" in Annual Reports in Medicinal Chemistry, Vol 38 (2003) Chapter 23, 229 237). Some cytotoxic drugs tend to be inactive or less active when conjugated to large 15 antibodies or protein receptor ligands. ZEVALIN@ (ibritumomab tiuxetan, Biogen/ldec) is an antibody-radioisotope conjugate composed of a murine IgG1 kappa monoclonal antibody directed against the CD20 antigen found on the surface of normal and malignant B lymphocytes and '"In or "Y radioisotope bound by a thiourea linker-chelator (Wiseman et al (2000) Eur. Jour. Nucl. 20 Med. 27(7):766-77; Wiseman et al (2002) Blood 99(12):4336-42; Witzig et al (2002) J. Clin. Oncol. 20(10):2453-63; Witzig et al (2002) J. Clin. Oncol. 20(15):3262-69). Although ZEVALIN has activity against B-cell non-Hodgkin's Lymphoma (NHL), administration results in severe and prolonged cytopenias in most patients. MYLOTARGTM (gemtuzumab ozogamicin, Wyeth Pharmaceuticals), an antibody drug conjugate composed of a hu CD33 25 antibody linked to calicheamicin, was approved in 2000 for the treatment of acute myeloid leukemia by injection (Drugs of the Future (2000) 25(7):686; US Patent Nos. 4970198; 5079233; 5585089; 5606040; 5693762; 5739116; 5767285; 5773001). Cantuzumab mertansine (Immunogen, Inc.), an antibody drug conjugate composed of the huC242 antibody linked via the disulfide linker SPP to the maytansinoid drug moiety, DM1, is being 30 developed for the treatment of cancers that express CanAg antigen, such as colon, pancreatic, gastric, and others. MLN-2704 (Millennium Pharm., BZL Biologics, Immunogen Inc.), an antibody drug conjugate composed of the anti-prostate specific membrane antigen (PSMA) monoclonal antibody linked to the maytansinoid drug moiety, DM1, is under development for the potential treatment of prostate tumors. The same maytansinoid drug 5 3880770_1 (GHMatters) P79401.AU.3 14-Sep.12 moiety, DM1, was linked through a non-disulfide linker, SMCC, to a mouse murine monoclonal antibody, TA.1 (Chari et al. (1992) Cancer Research 52:127-131). This conjugate was reported to be 200-fold less potent than the corresponding disulfide linker conjugate. The SMCC linker was considered therein to be "noncleavable." 5 Several short peptidic compounds have been isolated from the marine mollusk, Dolabella auricularia, and found to have biological activity (Pettit et al (1993) Tetrahedron 49:9151; Nakamura et al (1995) Tetrahedron Letters 36:5059-5062; Sone et al (1995) Journal Org Chem. 60:4474). Analogs of these compounds have also been prepared, and some were found to have biological activity (for a review, see Pettit et al (1998) Anti-Cancer 10 Drug Design 13:243-277). For example, auristatin E (US 5635483) is a synthetic analogue of the marine natural product Dolastatin 10, an agent that inhibits tubulin polymerization by binding to the same site on tubulin as the anticancer drug vincristine (G. R. Pettit, (1997) Prog. Chem. Org. Nat. Prod. 70:1-79). Dolastatin 10, auristatin PE, and auristatin E are linear peptides having four amino acids, three of which are unique to the dolastatin class of 15 compounds, and a C-terminal amide. The auristatin peptides, auristain E (AE) and monomethylauristatin (MMAE), synthetic analogs of dolastatin, were conjugated to: (i) chimeric monoclonal antibodies cBR96 (specific to Lewis Y on carcinomas); (ii) cAC10 which is specific to CD30 on hematological malignancies (Klussman, et al (2004), Bioconjugate Chemistry 15(4):765 20 773; Doronina et al (2003) Nature Biotechnology 21(7):778-784; "Monomethylvaline Compounds Capable of Conjugation to Ligands"; Francisco et al (2003) Blood 102(4):1458 1465; US 2004/0018194; (iii) anti-CD20 antibodies such as Rituxan@ (rituximab) (WO 04/032828) for the treatment of CD20-expressing cancers and immune disorders; (iv) anti EphB2 antibodies 2H9 and anti-IL-8 for treatment of colorectal cancer (Mao, et al (2004) 25 Cancer Research 64(3):781-788); (v) E-selectin antibody (Bhaskar et al (2003) Cancer Res. 63:6387-6394); and (vi) other anti-CD30 antibodies (WO 03/043583). Monomethylauristatin (MMAE) has also been conjugated to 2H9, an antibody against EphB2R which is a type 1 TM tyrosine kinase receptor with close homology between mouse and human, and is over expressed in colorectal cancer cells (Mao et al (2004) Cancer Res. 64:781-788). 30 Monomethylauristatin MMAF, a variant of auristatin E (MMAE) with a phenylalanine at the C-terminus (US 5767237; US 6124431), has been reported to be less potent than MMAE, but more potent when conjugated to monoclonal antibodies (Senter et al, Proceedings fo the American Association for Cancer Research, Volume 45, Abstract 6 3080770.1 (GHMatters) P79401.AU.3 14-Sep.12 Number 623, presented March 28, 2004). Auristatin F phenylene diamine (AFP); a phenylalanine variant of MMAE was linked to an anti-CD70 mAb, 1 F6, through the C terminus of 1 F6 via a phenylene diamine spacer (Law et al, Proceedings of the American Association for Cancer Research, Volume 45, Abstract Number 625, presented March 28, 5 2004). Anti-CD22 antibody-toxin conjugates have also been studied as potential therapeutic compounds. For example, early reports described ricin A chain-containing immunotoxins directed against anti-CD22 as potential anti-cancer agents (May, R.D. et al., Chemical Abstracts 106(21):168656x pages 35-36 (1987); Ghetie, M.A. et al., Cancer Research 10 48:2610-2617 (1988); and Amlot, P.L. et al., Blood 82(9):2624-2633 (1993)). Where the toxin was a radioisotope, Epratuzumab, the humanized (CDR-grafted) IgG1 version of LL2, has shown evidence of therapeutic activity for the radioimmunoconjugate (Juweid, M.E. et al., Clin. Cancer Res. 5 (Suppl 10):3292s-3303s (1999); Griffiths, G.L. et al., J. Nucl. Med. 44:77-84 (2003); Linden, 0. et al., Clin. Cancer Res. 5(suppl 10):3287s-3291s (1999)). 15 There exists a need in the art for additional drugs to treat various B cell-related cancers such as lymphomas such as non-Hodgkin's lymphoma and other B cell proliferative disorders. Particularly useful drugs for this purpose include B cell targeted anti-CD22 antibody-drug conjugates having a significantly lower toxicity, yet useful therapeutic efficiency. These and other limitations and problems of the past are addressed by the 20 present invention. It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country. SUMMARY 25 The invention provides anti-CD22 antibodies and methods of using the same. In one aspect, an antibody that binds to CD22 is provided, wherein the antibody comprises at least one, two, three, four, five, or six HVRs selected from: (1) an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; (2) an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; 30 (3) an HVR-H3 comprising the amino acid sequence of SEQ ID NO:6; 7 3660770_1 (GHMatters) P79401.AU.3 14-Sep.12 (4) an HVR-L1 comprising the amino acid sequence of SEQ ID NO:10; (5) an HVR-L2 comprising the amino acid sequence of SEQ ID NO:12; and (6) an HVR-L3 comprising the amino acid sequence of SEQ ID NO:14. In another aspect, an antibody that binds to CD22 comprises (a) an HVR-L1 5 comprising the amino acid sequence of SEQ ID NO:10, and (b) at least one, two, three, four or five HVRs selected from: (1) an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; (2) an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; (3) an HVR-H3 comprising the amino acid sequence of SEQ ID NO:6; 10 (4) an HVR-L2 comprising the amino acid sequence of SEQ ID NO:12; and (6) an HVR-L3 comprising the amino acid sequence of SEQ ID NO:14. In another aspect, an antibody that binds to CD22 comprises (a) an HVR-L1 comprising the amino acid sequence of SEQ ID NO:9, and (b) at least one, two, three, four or five HVRs selected from: 15 (1) an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; (2) an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; (3) an HVR-H3 comprising the amino acid sequence of SEQ ID NO:6; (4) an HVR-L2 comprising the amino acid sequence of SEQ ID NO:12; and (6) an HVR-L3 comprising the amino acid sequence of SEQ ID NO:14. 20 In another aspect, an antibody that binds to CD22 comprises (a) an HVR-H3 comprising the amino acid sequence of SEQ ID NO:6, and (b) at least one, two, three, four, or five HVRs selected from: (1) an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; (2) an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; 25 (3) an HVR-L1 comprising the amino acid sequence of SEQ ID NO:9; 8 3800770_1 (GHMatlers) P79401 AU.3 14-Sep.12 (4) an HVR-L2 comprising the amino acid sequence of SEQ ID NO:12; and (5) an HVR-L3 comprising the amino acid sequence of SEQ ID NO:14. In another aspect, an antibody that binds to CD22 comprises (a) an HVR-H3 comprising the amino acid sequence of SEQ ID NO:6, and (b) at least one, two, three, four, 5 or five HVRs selected from: (1) an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; (2) an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; (3) an HVR-L1 comprising the amino acid sequence of SEQ ID NO:10; (4) an HVR-L2 comprising the amino acid sequence of SEQ ID NO:12; and 10 (5) an HVR-L3 comprising the amino acid sequence of SEQ ID NO:14. In one embodiment, the antibody comprises an HVR-L1 comprising the amino acid sequence of SEQ ID NO:10. In one embodiment, the antibody further comprises an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2 and an HVR H2 comprising the amino acid sequence of SEQ ID NO:4. In one embodiment, the antibody 15 further comprises an HVR-L2 comprising the amino acid sequence of SEQ NO:12 and an HVR-L3 comprising the amino acid sequence of SEQ ID NO:14. In certain embodiments, any of the above antibodies further comprises at least one framework selected from a VH subgroup III consensus framework and a VL subgroup I consensus framework. 20 In one aspect, an antibody that binds to CD22 is provided, wherein the antibody comprises a heavy chain variable domain having at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to an amino acid sequence of SEQ ID NO:16. In one embodiment, the antibody comprises a heavy chain variable domain of SEQ ID NO:16. 25 In one aspect, the antibody further comprises a light chain variable domain having at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to an amino acid 9 38807701 (GHMatterS) P79401.AU.3 14-Sepl12 sequence of SEQ ID NO:17. In one embodiment, the antibody comprises a light chain variable domain of SEQ ID NO:17. In one aspect, the antibody further comprises a light chain variable domain having at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 5 96%, at least 97%, at least 98%, or at least 99% sequence identity to an amino acid sequence of SEQ ID NO:18. In one embodiment, the antibody comprises a light chain variable domain of SEQ ID NO:18. In one embodiment, the antibody comprises a heavy chain variable domain having at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 10 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to an amino acid sequence of SEQ ID NO:16 and a light chain variable domain having at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to an amino acid sequence of SEQ ID NO:17. In one embodiment, the antibody comprises a heavy chain variable domain having 15 at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to an amino acid sequence of SEQ ID NO:16 and a light chain variable domain having at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to an amino acid sequence of SEQ ID 20 NO:18. In one embodiment, the heavy chain variable domain comprises the amino acid sequence of SEQ ID NO:16, and the light chain variable domain comprises the amino acid sequence of SEQ ID NO:17. In one embodiment, the heavy chain variable domain comprises the amino acid sequence of SEQ ID NO:16, and the light chain variable domain comprises the amino acid sequence of SEQ ID NO:18. 25 In certain embodiments, a polynucleotide encoding any of the above antibodies is provided. In one embodiment, a vector comprising the polynucleotide is provided. In one embodiment, a host cell comprising the vector is provided. In one embodiment, the host cell is eukaryotic. In one embodiment, the host cell is a Chinese hamster ovary (CHO) cell. In one embodiment, a method of making an anti-CD22 antibody is provided, wherein the 30 method comprises culturing the host cell under conditions suitable for expression of the polynucleotide encoding the antibody, and isolating the antibody. In one aspect, an antibody that binds to CD22 expressed on the surface of a cell is provided. In one embodiment, the antibody binds to an epitope within a region of human or 10 3860770_1 (GHMatterS) P79401.AU.3 14-Sep-12 mouse CD22 comprising domain 1 or domain 2 or domains 1 and 2. In one embodiment, the cell is mammalian cell. In one embodiment, the cell is a human cell. In one embodiment, the cell is a cancer cell. In one embodiment the cell is a B cell. In one embodiment the cancer cell is a B cell. 5 In certain embodiments, any of the above antibodies is a monoclonal antibody. In one embodiment, the antibody is an antibody fragment selected from a Fab, Fab'-SH, Fv, scFv, or (Fab') 2 fragment. In one embodiment, the antibody is humanized. In one embodiment, the antibody is human. In one aspect, a method of detecting the presence of CD22 in a biological sample is 10 provided, the method comprising contacting the biological sample with any of the above antibodies under conditions permissive for binding of the antibody to CD22, and detecting whether a complex is formed between the antibody and CD22. In one embodiment, the biological sample comprises B cells. In one embodiment, the biological sample is from a mammal experiencing or suspected of experiencing a B cell disorder and/or a B cell 15 proliferative disorder including, but not limited to, lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma. 20 In one aspect, a method of diagnosing a cell proliferative disorder associated with increased expression of CD22 is provided, the method comprising contacting a test cell with any of the above antibodies; determining the level of expression of CD22 by detecting binding of the antibody to CD22; and comparing the level of expression of CD22 by the test cell with the level of expression of CD22 by a control cell, wherein a higher level of 25 expression of CD22 by the test cell as compared to the control cell indicates the presence of a cell proliferative disorder associated with increased expression of CD22. In one embodiment, the test cell is a cell from a patient suspected of having a cell proliferative disorder, such as a B-cell proliferative disorder. In one embodiment, the cell proliferative disorder is selected from B cell disorders including but not limited to lymphoma, non 30 Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma. In one embodiment, the method comprises determining M 1 3080770_1 (CHMattes) P79401AU.3 14-Sep- 2 the level of expression of CD22 on the surface of the test cell and comparing the level of expression of CD22 on the surface of the test cell with the level of expression of CD22 on the surface of the control cell. In one aspect, a method of diagnosing a cell proliferative disorder associated with an 5 increase in cells, such as B cells, expressing CD22 is provided, the method comprising contacting a test cells in a biological sample with any of the above antibodies; determining the level of antibody bound to test cells in the sample by detecting binding of the antibody to CD22; and comparing the level of antibody bound to cells in a control sample, wherein the level of antibody bound is normalized to the number of CD22-expressing cells in the test 10 and control samples, and wherein a higher level of antibody bound in the test sample as compared to the control sample indicates the presence of a cell proliferative disorder associated with cells expressing CD22. In one aspect, a method of detecting soluble CD22 in blood or serum, the method comprising contacting a test sample of blood or serum from a mammal suspected of 15 experiencing a B cell proliferative disorder with an anti-CD22 antibody of the invention and detecting a increase in soluble CD22 in the test sample relative to a control sample of blood or serum from a normal mammal. In an embodiment, the method of detecting is useful as a method of diagnosing a B cell proliferative disorder associated with an increase in soluble CD22 in blood or serum of a mammal. 20 In one aspect, the antibodies of the invention include cysteine engineered antibodies where one or more amino acids of a parent antibody are replaced with a free cysteine amino acid as disclosed in W02006/034488 (herein incorporated by reference in its entirety). Any form of anti-CD22 antibody may be so engineered, i.e. mutated. For example, a parent Fab antibody fragment may be engineered to form a cysteine engineered Fab, referred to herein 25 as "ThioFab." Similarly, a parent monoclonal antibody may be engineered to form a "ThioMab." It should be noted that a single site mutation yields a single engineered cysteine residue in a ThioFab, while a single site mutation yields two engineered cysteine residues in a ThioMab, due to the dimeric nature of the IgG antibody. The cysteine engineered anti CD22 antibodies of the invention include monoclonal antibodies, humanized or chimeric 30 monoclonal antibodies, and antigen-binding fragments of antibodies, fusion polypeptides and analogs that preferentially bind cell-associated CD22 polypeptides. A cysteine engineered antibody may alternatively comprise an antibody comprising a cysteine at a position disclosed herein in the antibody or Fab, resulting from the sequence design and/or 12 3880770.1 (GHMatters) P79401 AU3 14-Sep-12 selection of the antibody, without necessarily altering a parent antibody, such as by phage display antibody design and selection or through de novo design of light chain and/or heavy chain framework sequences and constant regions. A cysteine engineered antibody comprises one or more free cysteine amino acids having a thiol reactivity value in the 5 ranges of 0.6 to 1.0; 0.7 to 1.0 or 0.8 to 1.0. A free cysteine amino acid is a cysteine residue which has been engineered into the parent antibody and is not part of a disulfide bridge. Cysteine engineered antibodies are useful for attachment of cytotoxic and/or imaging compounds at the site of the engineered cysteine through, for example, a maleimide or haloacetyl. The nucleophilic reactivity of the thiol functionality of a Cys residue 10 to a maleimide group is about 1000 times higher compared to any other amino acid functionality in a protein, such as amino group of lysine residues or the N-terminal amino group. Thiol specific functionality in iodoacetyl and maleimide reagents may react with amine groups, but higher pH (>9.0) and longer reaction times are required (Garman, 1997, Non-Radioactive Labelling: A Practical Approach, Academic Press, London). 15 In an embodiment, a cysteine engineered anti-CD22 antibody of the invention comprises an engineered cysteine at any one of the following positions, where the position is number according to Kabat et al. in the light chain (see Kabat et al (1991) Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD) and according to EU numbering in the heavy chain (including the Fc 20 region) (see see Kabat et al. (1991), supra) , wherein the light chain constant region depicted by underlining in Figure 17A begins at position 108 (Kabat numbering) and the heavy chain constant region depicted by underling in Figures 17B and 17C begins at position 118 (EU numbering). The position may also be referred to by its position in sequential numbering of the amino acids of the full length light chain or heavy chain shown 25 in Figures 17A-17C. According to one embodiment of the invention, an anti-CD22 antibody comprises an engineered cysteine at LC-V205C (Kabat number: Val 205; sequential number 210 in Figure 17A engineered to be Cys at that position). The engineered cysteine in the light chain is shown in bold, double underlined text in Figure 17A. According to one embodiment, an anti-CD22 antibody comprises an engineered cysteine at HC-Al 18C (EU 30 number: Ala 118; sequential number 121 in Figure 17B engineered to be Cys at that position). The engineered cysteine in the heavy chain is shown in bold, double underlined text in Figure 17B. According to one embodiment, an anti-CD22 antibody comprises an engineered cysteine at Fc-S400C (EU number: Ser 400; sequential number 403 in Figure 17C engineered to be Cys at that position). The engineered cysteine in the Fc region of the 35 heavy chain is shown in bold, double underlined text in Figure 17C. In other embodiments, 13 3807701 (GHMatters) P7940t.AU 3 14-Sep-12 the engineered cysteine of the heavy chain (including the Fc region) is at any one of the following positions (according to EU numbering): 41, 88, 116, 118, 120, 171, 282, 375, or 400. Thus, changes in the amino acid at these positions for a parent anti-CD22 antibody of the invention are: A41C, A88C, S1 16C, Al 18C, T120C, A171C, V282C, S375C, or S400C. 5 In other embodiments, the engineered cysteine of the light chain is at any one of the following positions (according to Kabat numbering): 15, 43, 110, 144, 168, 205. Thus, changes in the amino acid at these postitions for a parent anti-CD22 antibody of the invention are: V15C, A43C, V110C, A144C, S168C, orV205C. A cysteine engineered anti-CD22 antibody comprises one or more free cysteine 10 amino acids wherein the cysteine engineered anti-CD22 antibody binds to a CD22 polypeptide and is prepared by a process comprising replacing one or more amino acid residues of a parent anti-CD22 antibody by cysteine wherein the parent antibody comprises at least one HVR sequence selected from: (a) an HVR-L1 sequence RSSQSIVHSNGNTFLE (SEQ ID NO:9) or sequence 15 RSSQSIVHSVGNTFLE (SEQ ID NO:10) (Figure 2B); (b) an HVR-L2 sequence KVSNRFS SEQ ID NO:12 (Figure 2B); (c) an HVR-L3 sequence FQGSQFPYT (SEQ ID NO:14) (Figure 28); (d) an HVR-H1 sequence GYEFSRSWMN (SEQ ID NO:2) (Figure 2A); (e) an HVR-H2 sequence GRIYPGDGDTNYSGKFKG (SEQ ID NO:4 (Figure 20 2A); and (f) an HVR-H3 sequence DGSSWDWYFDV (SEQ ID NO:6) (Figure 2A). In a certain aspect, the invention concerns a cysteine engineered anti-CD22 antibody, comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 25 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity, to a cysteine engineered antibody having a full-length amino acid sequence as disclosed herein, or a cysteine engineered antibody amino acid sequence lacking the signal peptide as disclosed herein. 14 360770_1 (GHMattes) P79401 AU.3 14-Sep-1 2 In a yet further aspect, the invention concerns an isolated cysteine engineered anti CD22 antibody comprising an amino acid sequence that is encoded by a nucleotide sequence that hybridizes to the complement of a DNA molecule encoding (a) a cysteine engineered antibody having a full-length amino acid sequence as disclosed herein, (b) a 5 cysteine engineered antibody amino acid sequence lacking the signal peptide as disclosed herein, (c) an extracellular domain of a transmembrane cysteine engineered antibody protein, with or without the signal peptide, as disclosed herein, (d) an amino acid sequence encoded by any of the nucleic acid sequences disclosed herein or (e) any other specifically defined fragment of a full-length cysteine engineered antibody amino acid sequence as 10 disclosed herein. In a specific aspect, the invention provides an isolated cysteine engineered anti CD22 antibody without the N-terminal signal sequence and/or without the initiating methionine and is encoded by a nucleotide sequence that encodes such an amino acid sequence as described in. Processes for producing the same are also herein described, 15 wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the cysteine engineered antibody and recovering the cysteine engineered antibody from the cell culture. Another aspect of the invention provides an isolated cysteine engineered anti-CD22 20 antibody which is either transmembrane domain-deleted or transmembrane domain inactivated. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the cysteine engineered antibody and recovering the cysteine engineered antibody from the cell 25 culture. In other embodiments, the invention provides isolated anti-CD22 chimeric cysteine engineered antibodies comprising any of the herein described cysteine engineered antibody fused to a heterologous (non-CD22) polypeptide. Example of such chimeric molecules comprise any of the herein described cysteine engineered antibodies fused to a 30 heterologous polypeptide such as, for example, an epitope tag sequence or a Fc region of an immunoglobulin. The cysteine engineered anti-CD22 antibody may be a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, single-chain antibody or 15 3680770 _ (GHMatters) P79401 AU 3 14-Sep-12 antibody that competitively inhibits the binding of an anti-CD22 polypeptide antibody to its respective antigenic epitope. Antibodies of the present invention may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, an auristatin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. 5 The antibodies of the present invention may optionally be produced in CHO cells or bacterial cells and preferably inhibit the growth or proliferation of or induce the death of a cell to which they bind. For diagnostic purposes, the antibodies of the present invention may be detectably labeled, attached to a solid support, or the like. In other embodiments of the present invention, the invention provides vectors 10 comprising DNA encoding any of the herein described anti-CD22 antibodies and anti-CD22 cysteine engineered antibodies. Host cells comprising any such vector are also provided. By way of example, the host cells may be CHO cells, E. coli cells, or yeast cells. A process for producing any of the herein described polypeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired polypeptide and 15 recovering the desired polypeptide from the cell culture. Cysteine engineered antibodies may be useful in the treatment of cancer and include antibodies specific for cell surface and transmembrane receptors, and tumor-associated antigens (TAA). Such antibodies may be used as naked antibodies (unconjugated to a drug or label moiety) or as antibody-drug conjugates (ADC). Cysteine engineered antibodies of 20 the invention may be site-specifically and efficiently coupled with a thiol-reactive reagent. The thiol-reactive reagent may be a multifunctional linker reagent, a capture label reagent, a fluorophore reagent, or a drug-linker intermediate. The cysteine engineered antibody may be labeled with a detectable label, immobilized on a solid phase support and/or conjugated with a drug moiety. Thiol reactivity may be generalized to any antibody where substitution of 25 amino acids with reactive cysteine amino acids may be made within the ranges in the light chain selected from amino acid ranges: L-10 to L-20; L-38 to L-48; L-105 to L-1 15; L-139 to L-149; L-163 to L-173; and within the ranges in the heavy chain selected from amino acid ranges: H-35 to H-45; H-83 to H-93; H-114 to H-127; and H-170 to H-184, and in the Fc region within the ranges selected from H-268 to H-291; H-319 to H-344; H-370 to H-380; 30 and H-395 to H-405, where the numbering of amino acid positions begins at position 1 of the Kabat numbering system (Kabat et al. (1991) Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD) and continues sequentially thereafter as disclosed in W02006034488. Thiol reactivity may also be generalized to certain domains of an antibody, such as the light chain constant domain 16 3060770_1 (GHMatters) P79401.AU.3 14-Sep-12 (CL) and heavy chain constant domains, CH1, CH2 and CH3. Cysteine replacements resulting in thiol reactivity values of 0.6 and higher may be made in the heavy chain constant domains a, 6, E, y, and p of intact antibodies: IgA, IgD, IgE, IgG, and IgM, respectively, including the IgG subclasses: IgG1, IgG2, igG3, IgG4, IgA, and IgA2. Such antibodies and 5 their uses are disclosed in W02006/034488. Cysteine engineered antibodies of the invention preferably retain the antigen binding capability of their wild type, parent antibody counterparts. Thus, cysteine engineered antibodies are capable of binding, preferably specifically, to antigens. Such antigens include, for example, tumor-associated antigens (TAA), cell surface receptor proteins and 10 other cell surface molecules, transmembrane proteins, signalling proteins, cell survival regulatory factors, cell proliferation regulatory factors, molecules associated with (for e.g., known or suspected to contribute functionally to) tissue development or differentiation, lymphokines, cytokines, molecules involved in cell cycle regulation, molecules involved in vasculogenesis and molecules associated with (for e.g., known or suspected to contribute 15 functionally to) angiogenesis. The tumor-associated antigen may be a cluster differentiation factor (i.e., a CD protein, including but not limited to CD22). Cysteine engineered anti-CD22 antibodies of the invention retain the antigen binding apability of their parent anti-CD22 antibody compounterparts. Thus, cysteine engineered anti-CD22 antibodies of the invention are capable of binding, preferably specifically, to CD22 antigens including human anti-CD22 20 isoforms beta and/or alpha, including when such antigens are expressed on the surface of cells, including, without limitation, B cells. An antibody of the invention may be conjugated to other thiol-reactive agents in which the reactive group is, for example, a maleimide, an iodoacetamide, a pyridyl disulfide, or other thiol-reactive conjugation partner (Haugland, 2003, Molecular Probes Handbook of 25 Fluorescent Probes and Research Chemicals, Molecular Probes, Inc.; Brinkley, 1992, Bioconjugate Chem. 3:2; Garman, 1997, Non-Radioactive Labelling: A Practical Approach, Academic Press, London; Means (1990) Bioconjugate Chem. 1:2; Hermanson, G. in Bioconjugate Techniques (1996) Academic Press, San Diego, pp. 40-55, 643-671). The partner may be a cytotoxic agent (e.g. a toxin such as doxorubicin or pertussis toxin), a 30 fluorophore such as a fluorescent dye like fluorescein or rhodamine, a chelating agent for an imaging or radiotherapeutic metal, a peptidyl or non-peptidyl label or detection tag, or a clearance-modifying agent such as various isomers of polyethylene glycol, a peptide that binds to a third component, or another carbohydrate or lipophilic agent. 17 380770_1 (GHManers) P79401 AU.3 14-Sep.12 In one aspect, antibodies of the invention may be conjugated with any label moiety which can be covalently attached to the antibody through a reactive moiety, an activated moiety, or a reactive cysteine thiol group (Singh et al (2002) Anal. Biochem. 304:147-15; Harlow E. and Lane, D. (1999) Using Antibodies: A Laboratory Manual, Cold Springs Harbor 5 Laboratory Press, Cold Spring Harbor, NY; Lundblad R.L. (1991) Chemical Reagents for Protein Modification, 2nd ed. CRC Press, Boca Raton, FL). The attached label may function to: (i) provide a detectable signal; (ii) interact with a second label to modify the detectable signal provided by the first or second label, e.g. to give FRET (fluorescence resonance energy transfer); (iii) stabilize interactions or increase affinity of binding, with antigen or 10 ligand; (iv) affect mobility, e.g. electrophoretic mobility or cell-permeability, by charge, hydrophobicity, shape, or other physical parameters, or (v) provide a capture moiety, to modulate ligand affinity, antibody/antigen binding, or ionic complexation. Labelled cysteine engineered antibodies may be useful in diagnostic assays, e.g., for detecting expression of an antigen of interest in specific cells, tissues, or serum. For 15 diagnostic applications, the antibody will typically be labeled with a detectable moiety. Numerous labels are available which can be generally grouped into the following categories: Radioisotopes (radionuclides), such as 'H, 1 C, ' 4 C, 18 F, 32 p, 35S, 4Cu, 68 Ga, 8 6 Y, 99Tc, 1 In, 131, 41, 12, 131 1 ,33 177 Lu, 211 At, or 21Bi. Radioisotope labelled antibodies are useful in receptor targeted imaging experiments. The antibody can be labeled with ligand 20 reagents that bind, chelate or otherwise complex a radioisotope metal where the reagent is reactive with the engineered cysteine thiol of the antibody, using the techniques described in Current Protocols in Immunology, Volumes 1 and 2, Coligen et al, Ed. Wiley-Interscience, New York, NY, Pubs. (1991). Chelating ligands which may complex a metal ion include DOTA, DOTP, DOTMA, DTPA and TETA (Macrocyclics, Dallas, TX). Radionuclides can be 25 targetted via complexation with the antibody-drug conjugates of the invention (Wu et al (2005) Nature Biotechnology 23(9):1137-1146). Linker reagents such as DOTA-maleimide (4-maleimidobutyramidobenzyl-DOTA) can be prepared by the reaction of aminobenzyl-DOTA with 4-maleimidobutyric acid (Fluka) activated with isopropylchloroformate (Aldrich), following the procedure of Axworthy et al 30 (2000) Proc. NatI. Acad. Sci. USA 97(4):1802-1807). DOTA-maleimide reagents react with the free cysteine amino acids of the cysteine engineered antibodies and provide a metal complexing ligand on the antibody (Lewis et al (1998) Bioconj. Chem. 9:72-86). Chelating linker labelling reagents such as DOTA-NHS (1,4,7,10-tetraazacyclododecane-1,4,7,10 18 3860770_1 (GHMatters) P79401.AU.3 14-Sep-12 tetraacetic acid mono (N-hydroxysuccinimide ester) are commercially available (Macrocyclics, Dallas, TX). Receptor target imaging with radionuclide labelled antibodies can provide a marker of pathway activation by detection and quantitation of progressive accumulation of antibodies in tumor tissue (Albert et al (1998) Bioorg. Med. Chem. Lett. 5 8:1207-1210). The conjugated radio-metals may remain intracellular following lysosomal degradation. Metal-chelate complexes suitable as antibody labels for imaging experiments are disclosed: US 5342606; US 5428155; US 5316757; US 5480990; US 5462725; US 5428139; US 5385893; US 5739294; US 5750660; US 5834456; Hnatowich et al (1983) J. 10 Immunol. Methods 65:147-157; Meares et al (1984) Anal. Biochem. 142:68-78; Mirzadeh et al (1990) Bioconjugate Chem. 1:59-65; Meares et al (1990) J. Cancer1990, Suppl. 10:21-26; Izard et al (1992) Bioconjugate Chem. 3:346-350; Nikula et al (1995) Nucl. Med. Biol. 22:387-90; Camera et al (1993) Nucl. Med. Biol. 20:955-62; Kukis et al (1998) J. Nucl. Med. 39:2105-2110; Verel et al (2003) J. Nucl. Med. 44:1663-1670; Camera et al (1994) J. Nucl. 15 Med. 21:640-646; Ruegg et al (1990) Cancer Res. 50:4221-4226; Verel et al (2003) J. Nucl. Med. 44:1663-1670; Lee et al (2001) Cancer Res. 61:4474-4482; Mitchell, et al (2003) J. Nucl. Med. 44:1105-1112; Kobayashi et al (1999) Bioconjugate Chem. 10:103-111; Miederer et al (2004) J. Nucl. Med. 45:129-137; DeNardo et al (1998) Clinical Cancer Research 4:2483-90; Blend et al (2003) Cancer Biotherapy & Radiopharmaceuticals 18:355 20 363; Nikula et al (1999) J. Nucl. Med. 40:166-76; Kobayashi et al (1998) J. Nucl. Med. 39:829-36; Mardirossian et al (1993) Nucl. Med. Biol. 20:65-74; Roselli et al (1999) Cancer Biotherapy & Radiopharmaceuticals, 14:209-20. (b) Fluorescent labels such as rare earth chelates (europium chelates), fluorescein types including FITC, 5-carboxyfluorescein, 6-carboxy fluorescein; rhodamine 25 types including TAMRA; dansyl; Lissamine; cyanines; phycoerythrins; Texas Red; and analogs thereof. The fluorescent labels can be conjugated to antibodies using the techniques disclosed in Current Protocols in Immunology, supra, for example. Fluorescent dyes and fluorescent label reagents include those which are commercially available from Invitrogen/Molecular Probes (Eugene, OR) and Pierce Biotechnology, Inc. (Rockford, IL). 30 (c) Various enzyme-substrate labels are available or disclosed (US 4275149). The enzyme generally catalyzes a chemical alteration of a chromogenic substrate that can be measured using various techniques. For example, the enzyme may catalyze a color change in a substrate, which can be measured spectrophotometrically. Alternatively, the 19 3660770_1 (GHMaters) P79401 AU.3 14-Sep-12 enzyme may alter the fluorescence or chemiluminescence of the substrate. Techniques for quantifying a change in fluorescence are described above. The chemiluminescent substrate becomes electronically excited by a chemical reaction and may then emit light which can be measured (using a chemiluminometer, for example) or donates energy to a fluorescent 5 acceptor. Examples of enzymatic labels include luciferases (e.g., firefly luciferase and bacterial luciferase; US 4737456), luciferin, 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRP), alkaline phosphatase (AP), p-galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), 10 heterocyclic oxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like. Techniques for conjugating enzymes to antibodies are described in O'Sullivan et al (1981) "Methods for the Preparation of Enzyme-Antibody Conjugates for use in Enzyme Immunoassay", in Methods in Enzym. (ed J. Langone & H. Van Vunakis), Academic Press, New York, 73:147-166. 15 Examples of enzyme-substrate combinations include, for example: (i) Horseradish peroxidase (HRP) with hydrogen peroxidase as a substrate, wherein the hydrogen peroxidase oxidizes a dye precursor (e.g., orthophenylene diamine (OPD) or 3,3',5,5'-tetramethylbenzidine hydrochloride (TMB)); (ii) alkaline phosphatase (AP) with para-nitrophenyl phosphate as chromogenic 20 substrate; and (iii) p-D-galactosidase (P-D-Gal) with a chromogenic substrate (e.g., p nitrophenyl-p-D-galactosidase) or fluorogenic substrate 4-methylumbelliferyl-p-D galactosidase. Numerous other enzyme-substrate combinations are available to those skilled in the 25 art. For a general review, see US 4275149 and US 4318980. A label may be indirectly conjugated with an amino acid side chain, an acitivated amino acid side chain, a cysteine engineered antibody, and the like. For example, the antibody can be conjugated with biotin and any of the three broad categories of labels mentioned above can be conjugated with avidin or streptavidin, or vice versa. Biotin binds 30 selectively to streptavidin and thus, the label can be conjugated with the antibody in this indirect manner. Alternatively, to achieve indirect conjugation of the label with the 20 3660770_1 (GHMatters) P79401.AU.3 14-Sep-12 polypeptide variant, the polypeptide variant is conjugated with a small hapten (e.g., digoxin) and one of the different types of labels mentioned above is conjugated with an anti-hapten polypeptide variant (e.g., anti-digoxin antibody). Thus, indirect conjugation of the label with the polypeptide variant can be achieved (Hermanson, G. (1996) in Bioconjugate Techniques 5 Academic Press, San Diego). The antibody of the present invention may be employed in any known assay method, such as ELISA, competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays (Zola, (1987) Monoclonal Antibodies: A Manual of Techniques, pp.147-158, CRC Press, Inc.). 10 A detection label may be useful for localizing, visualizing, and quantitating a binding or recognition event. The labelled antibodies of the invention can detect cell-surface receptors. Another use for detectably labelled antibodies is a method of bead-based immunocapture comprising conjugating a bead with a fluorescent labelled antibody and detecting a fluorescence signal upon binding of a ligand. Similar binding detection 15 methodologies utilize the surface plasmon resonance (SPR) effect to measure and detect antibody-antigen interactions. Detection labels such as fluorescent dyes and chemiluminescent dyes (Briggs et al (1997) "Synthesis of Functionalised Fluorescent Dyes and Their Coupling to Amines and Amino Acids," J. Chem. Soc., Perkin-Trans. 1:1051-1058) provide a detectable signal and 20 are generally applicable for labelling antibodies, preferably with the following properties: (i) the labelled antibody should produce a very high signal with low background so that small quantities of antibodies can be sensitively detected in both cell-free and cell-based assays; and (ii) the labelled antibody should be photostable so that the fluorescent signal may be observed, monitored and recorded without significant photo bleaching. For applications 25 involving cell surface binding of labelled antibody to membranes or cell surfaces, especially live cells, the labels preferably (iii) have good water-solubility to achieve effective conjugate concentration and detection sensitivity and (iv) are non-toxic to living cells so as not to disrupt the normal metabolic processes of the cells or cause premature cell death. Direct quantification of cellular fluorescence intensity and enumeration of 30 fluorescently labelled events, e.g. cell surface binding of peptide-dye conjugates may be conducted on an system (FMAT@ 8100 HTS System, Applied Biosystems, Foster City, Calif.) that automates mix-and-read, non-radioactive assays with live cells or beads (Miraglia, "Homogeneous cell- and bead-based assays for high throughput screening using 21 3860770_1 (GHMatters) P79401.AU3 14-Sep-12 fluorometric microvolume assay technology", (1999) J. of Biomolecular Screening 4:193 204). Uses of labelled antibodies also include cell surface receptor binding assays, inmmunocapture assays, fluorescence linked immunosorbent assays (FLISA), caspase cleavage (Zheng, "Caspase-3 controls both cytoplasmic and nuclear events associated with 5 Fas-mediated apoptosis in vivo", (1998) Proc. NatI. Acad. Sci. USA 95:618-23; US 6372907), apoptosis (Vermes, "A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V" (1995) J. Immunol. Methods 184:39-51) and cytotoxicity assays. Fluorometric microvolume assay technology can be used to identify the up or down regulation by a molecule that is 10 targeted to the cell surface (Swartzman, "A homogeneous and multiplexed immunoassay for high-throughput screening using fluorometric microvolume assay technology", (1999) Anal. Biochem. 271:143-51). Labelled antibodies of the invention are useful as imaging biomarkers and probes by the various methods and techniques of biomedical and molecular imaging such as: (i) MRI 15 (magnetic resonance imaging); (ii) MicroCT (computerized tomography); (iii) SPECT (single photon emission computed tomography); (iv) PET (positron emission tomography) Chen et al (2004) Bioconjugate Chem. 15:41-49; (v) bioluminescence; (vi) fluorescence; and (vii) ultrasound. Immunoscintigraphy is an imaging procedure in which antibodies labeled with radioactive substances are administered to an animal or human patient and a picture is 20 taken of sites in the body where the antibody localizes (US 6528624). Imaging biomarkers may be objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers may be of several types: Type 0 are natural history markers of a disease and correlate longitudinally with known clinical indices, e.g. MRI assessment of synovial 25 inflammation in rheumatoid arthritis; Type I markers capture the effect of an intervention in accordance with a mechanism-of-action, even though the mechanism may not be associated with clinical outcome; Type 11 markers function as surrogate endpoints where the change in, or signal from, the biomarker predicts a clinical benefit to "validate" the targeted response, such as measured bone erosion in rheumatoid arthritis by CT. Imaging 30 biomarkers thus can provide pharmacodynamic (PD) therapeutic information about: (i) expression of a target protein, (ii) binding of a therapeutic to the target protein, i.e. selectivity, and (iii) clearance and half-life pharmacokinetic data. Advantages of in vivo imaging biomarkers relative to lab-based biomarkers include: non-invasive treatment, quantifiable, whole body assessment, repetitive dosing and assessment, i.e. multiple time 35 points, and potentially transferable effects from preclinical (small animal) to clinical (human) 22 30770_1 (GHMatiers) P79401.AU.3 14-Sep.12 results. For some applications, bioimaging supplants or minimizes the number of animal experiments in preclinical studies. Peptide labelling methods are well known. See Haugland, 2003, Molecular Probes Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Inc.; 5 Brinkley, 1992, Bioconjugate Chem. 3:2; Garman, (1997) Non-Radioactive Labelling: A Practical Approach, Academic Press, London; Means (1990) Bioconjugate Chem. 1:2; Glazer et al (1975) Chemical Modification of Proteins. Laboratory Techniques in Biochemistry and Molecular Biology (T. S. Work and E. Work, Eds.) American Elsevier Publishing Co., New York; Lundblad, R. L. and Noyes, C. M. (1984) Chemical Reagents for 10 Protein Modification, Vols. I and II, CRC Press, New York; Pfleiderer, G. (1985) "Chemical Modification of Proteins", Modern Methods in Protein Chemistry, H. Tschesche, Ed., Walter DeGryter, Berlin and New York; and Wong (1991) Chemistry of Protein Conjugation and Cross-linking, CRC Press, Boca Raton, Fla.); De Leon-Rodriguez et al (2004) Chem.Eur. J. 10:1149-1155; Lewis et al (2001) Bioconjugate Chem. 12:320-324; Li et al (2002) 15 Bioconjugate Chem. 13:110-115; Mier et al (2005) Bioconjugate Chem. 16:240-237. Peptides and proteins labelled with two moieties, a fluorescent reporter and quencher in sufficient proximity undergo fluorescence resonance energy transfer (FRET). Reporter groups are typically fluorescent dyes that are excited by light at a certain wavelength and transfer energy to an acceptor, or quencher, group, with the appropriate 20 Stokes shift for emission at maximal brightness. Fluorescent dyes include molecules with extended aromaticity, such as fluorescein and rhodamine, and their derivatives. The fluorescent reporter may be partially or significantly quenched by the quencher moiety in an intact peptide. Upon cleavage of the peptide by a peptidase or protease, a detectable increase in fluorescence may be measured (Knight, C. (1995) "Fluorimetric Assays of 25 Proteolytic Enzymes", Methods in Enzymology, Academic Press, 248:18-34). The labelled antibodies of the invention may also be used as an affinity purification agent. In this process, the labelled antibody is immobilized on a solid phase such a Sephadex resin or filter paper, using methods well known in the art. The immobilized antibody is contacted with a sample containing the antigen to be purified, and thereafter the 30 support is washed with a suitable solvent that will remove substantially all the material in the sample except the antigen to be purified, which is bound to the immobilized polypeptide variant. Finally, the support is washed with another suitable solvent, such as glycine buffer, pH 5.0, that will release the antigen from the polypeptide variant. 23 3060770_1 (GHMaters) P79401 AU.3 14-Sep-12 Labelling reagents typically bear reactive functionality which may react (i) directly with a cysteine thiol of a cysteine engineered antibody to form the labelled antibody, (ii) with a linker reagent to form a linker-label intermediate, or (iii) with a linker antibody to form the labelled antibody. Reactive functionality of labelling reagents include: maleimide, 5 haloacetyl, iodoacetamide succinimidyl ester (e.g. NHS, N-hydroxysuccinimide), isothiocyanate, sulfonyl chloride, 2,6-dichlorotriazinyl, pentafluorophenyl ester, and phosphoramidite, although other functional groups can also be used. An exemplary reactive functional group is N-hydroxysuccinimidyl ester (NHS) of a carboxyl group substituent of a detectable label, e.g. biotin or a fluorescent dye. The NHS 10 ester of the label may be preformed, isolated, purified, and/or characterized, or it may be formed in situ and reacted with a nucleophilic group of an antibody. Typically, the carboxyl form of the label is activated by reacting with some combination of a carbodiimide reagent, e.g. dicyclohexylcarbodiimide, diisopropylcarbodiimide, or a uronium reagent, e.g. TSTU (0 (N-Succinimidyl)-N,N,N',N'-tetramethyluronium tetrafluoroborate, HBTU (0-benzotriazol-1 15 yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate), or HATU (O-(7-azabenzotriazol-1 yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate), an activator, such as 1 hydroxybenzotriazole (HOBt), and N-hydroxysuccinimide to give the NHS ester of the label. In some cases, the label and the antibody may be coupled by in situ activation of the label and reaction with the antibody to form the label-antibody conjugate in one step. Other 20 activating and coupling reagents include TBTU (2-(1H-benzotriazo-1-yl)-1-1,3,3 tetramethyluronium hexafluorophosphate), TFFH (N,N',N",N"-tetramethyluronium 2-fluoro hexafluorophosphate), PyBOP (benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate, EEDQ (2-ethoxy-1-ethoxycarbonyl-1,2-dihydro-quinoline), DCC (dicyclohexylcarbodiimide); DIPCDI (diisopropylcarbodiimide), MSNT (1-(mesitylene-2 25 sulfonyl)-3-nitro-1 H-1,2,4-triazole, and aryl sulfonyl halides, e.g. triisopropylbenzenesulfonyl chloride. 24 3860770_1 (GHMatters) P79401.AU.3 14-Sep-12 Albumin binding peptide-Fab compounds of the invention: In one aspect, the antibody of the invention is fused to an albumin binding protein. Plasma-protein binding can be an effective means of improving the pharmacokinetic properties of short lived molecules. Albumin is the most abundant protein in plasma. Serum 5 albumin binding peptides (ABP) can alter the pharmacodynamics of fused active domain proteins, including alteration of tissue uptake, penetration, and diffusion. These pharmacodynamic parameters can be modulated by specific selection of the appropriate serum albumin binding peptide sequence (US 20040001827). A series of albumin binding peptides were identified by phage display screening (Dennis et al. (2002) "Albumin Binding 10 As A General Strategy For Improving The Pharmacokinetics Of Proteins" J Biol Chem. 277:35035-35043; WO 01/45746). Compounds of the invention include ABP sequences taught by: (i) Dennis et al (2002) J Biol Chem. 277:35035-35043 at Tables III and IV, page 35038; (ii) US 20040001827 at [0076] SEQ ID NOS: 9-22; and (iii) WO 01/45746 at pages 12-13, all of which are incorporated herein by reference. Albumin Binding (ABP)-Fabs are 15 engineered by fusing an albumin binding peptide to the C-terminus of Fab heavy chain in 1:1 stoichiometric ratio (1 ABP / 1 Fab). It was shown that association of these ABP-Fabs with albumin increased antibody half life by more than 25 fold in rabbits and mice. The above described reactive Cys residues can therefore be introduced in these ABP-Fabs and used for site-specific conjugation with cytotoxic drugs followed by in vivo animal studies. 20 Exemplary albumin binding peptide sequences include, but are not limited to the amino acid sequences listed in SEQ ID NOS:42-46: CDKTHTGGGSQRLMEDICLPRWGCLWEDDF SEQ ID NO:42 QRLMEDICLPRWGCLWEDDF SEQ ID NO:43 QRLIEDICLPRWGCLWEDDF SEQ ID NO:44 25 RLIEDICLPRWGCLWEDD SEQ ID NO:45 DICLPRWGCLW SEQ ID NO:46 Antibody-Druq Conjugates In another aspect, the invention provides immunoconjugates, or antibody-drug 30 conjugates (ADC), comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, a drug, a growth inhibitory agent, a toxin (e.g., an enzymatically 25 3680770.1 (GHMatters) P79401.AU.3 14-Sep-12 active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate). In another aspect, the invention further provides methods of using the immunoconjugates. In one aspect, an immunoconjugate comprises any of the above anti-CD22 antibodies covalently attached to a cytotoxic agent or a 5 detectable agent. The use of antibody-drug conjugates for the local delivery of cytotoxic or cytostatic agents, i.e. drugs to kill or inhibit tumor cells in the treatment of cancer (Syrigos and Epenetos (1999) Anticancer Research 19:605-614; Niculescu-Duvaz and Springer (1997) Adv. Drg Del. Rev. 26:151-172; U.S. patent 4,975,278) allows targeted delivery of the drug 10 moiety to tumors, and intracellular accumulation therein, where systemic administration of these unconjugated drug agents may result in unacceptable levels of toxicity to normal cells as well as the tumor cells sought to be eliminated (Baldwin et al., (1986) Lancet pp. (Mar. 15, 1986):603-05; Thorpe, (1985) "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review," in Monoclonal Antibodies '84: Biological And Clinical Applications, A. 15 Pinchera et al. (ed.s), pp. 475-506). Maximal efficacy with minimal toxicity is sought thereby. Both polyclonal antibodies and monoclonal antibodies have been reported as useful in these strategies (Rowland et al., (1986) Cancer Immunol. Immunother., 21:183 87). Drugs used in these methods include daunomycin, doxorubicin, methotrexate, and vindesine (Rowland et al., (1986) supra). Toxins used in antibody-toxin conjugates include 20 bacterial toxins such as diphtheria toxin, plant toxins such as ricin, small molecule toxins such as geldanamycin (Mandler et al (2000) Jour. of the Nat. Cancer Inst. 92(19):1573 1581; Mandler et al (2000) Bioorganic & Med. Chem. Letters 10:1025-1028; Mandler et al (2002) Bioconjugate Chem. 13:786-791), maytansinoids (EP 1391213; Liu et al., (1996) Proc. NatI. Acad. Sci. USA 93:8618-8623), and calicheamicin (Lode et al (1998) Cancer 25 Res. 58:2928; Hinman et al (1993) Cancer Res. 53:3336-3342). The toxins may effect their cytotoxic and cytostatic effects by mechanisms including tubulin binding, DNA binding, or topoisomerase inhibition. Some cytotoxic drugs tend to be inactive or less active when conjugated to large antibodies or protein receptor ligands. ZEVALIN@ (ibritumomab tiuxetan, Biogen/ldec) is an antibody-radioisotope 30 conjugate composed of a murine IgG1 kappa monoclonal antibody directed against the CD20 antigen found on the surface of normal and malignant B lymphocytes and "in or 9*Y radioisotope bound by a thiourea linker-chelator (Wiseman et al (2000) Eur. Jour. Nucl. Med. 27(7):766-77; Wiseman et al (2002) Blood 99(12):4336-42; Witzig et al (2002) J. Clin. Oncol. 20(10):2453-63; Witzig et al (2002) J. Clin. Oncol. 20(15):3262-69). Although 26 3860770.1 (GHMatters) P79401 AU.3 14-Sep-12 ZEVALIN has activity against B-cell non-Hodgkin's Lymphoma (NHL), administration results in severe and prolonged cytopenias in most patients. MYLOTARG T M (gemtuzumab ozogamicin, Wyeth Pharmaceuticals), an antibody drug conjugate composed of a hu CD33 antibody linked to calicheamicin, was approved in 2000 for the treatment of acute myeloid 5 leukemia by injection (Drugs of the Future (2000) 25(7):686; US Patent Nos. 4970198; 5079233; 5585089; 5606040; 5693762; 5739116; 5767285; 5773001). Cantuzumab mertansine (Immunogen, Inc.), an antibody drug conjugate composed of the huC242 antibody linked via the disulfide linker SPP to the maytansinoid drug moiety, DM1, is advancing into Phase 11 trials for the treatment of cancers that express CanAg, such as 10 colon, pancreatic, gastric, and others. MLN-2704 (Millennium Pharm., BZL Biologics, Immunogen Inc.), an antibody drug conjugate composed of the anti-prostate specific membrane antigen (PSMA) monoclonal antibody linked to the maytansinoid drug moiety, DM1, is under development for the potential treatment of prostate tumors. The auristatin peptides, auristatin E (AE) and monomethylauristatin (MMAE), synthetic analogs of 15 dolastatin, were conjugated to chimeric monoclonal antibodies cBR96 (specific to Lewis Y on carcinomas) and cAC10 (specific to CD30 on hematological malignancies) (Doronina et al (2003) Nature Biotechnology 21(7):778-784) and are under therapeutic development. Chemotherapeutic agents useful in the generation of immunoconjugates are described herein. Enzymatically active toxins and fragments thereof that can be used 20 include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. 25 See, e.g., WO 93/21232 published October 28, 1993. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 2 12 Bi, 1311, 31 In, 9 Y, and 1 86 Re. Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl 30 adipimidate HCI), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro 2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in 27 38O770.1 (GHMatters) P79401AU.3 14-Sep-12 Vitetta et al (1987) Science, 238:1098. Carbon-14-labeled 1-isothiocyanatobenzyl-3 methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody (W094/11026). Conjugates of an antibody and one or more small molecule toxins, such as a 5 calicheamicin, maytansinoids, dolastatins, auristatins, a trichothecene, and CC1065, and the derivatives of these toxins that have toxin activity, are also contemplated herein. Maytansine and maytansinoids In some embodiments, the immunoconjugate comprises an antibody (full length or fragments) of the invention conjugated to one or more maytansinoid molecules. 10 Maytansinoids are mitototic inhibitors which act by inhibiting tubulin polymerization. Maytansine was first isolated from the east African shrub Maytenus serrata (U.S. Patent No. 3896111). Subsequently, it was discovered that certain microbes also produce maytansinoids, such as maytansinol and C-3 maytansinol esters (U.S. Patent No. 4,151,042). Synthetic maytansinol and derivatives and analogues thereof are disclosed, for 15 example, in U.S. Patent Nos. 4,137,230; 4,248,870; 4,256,746; 4,260,608; 4,265,814; 4,294,757; 4,307,016; 4,308,268; 4,308,269; 4,309,428; 4,313,946; 4,315,929; 4,317,821; 4,322,348; 4,331,598; 4,361,650; 4,364,866; 4,424,219; 4,450,254; 4,362,663; and 4,371,533. Maytansinoid drug moieties are attractive drug moieties in antibody drug conjugates 20 because they are: (i) relatively accessible to prepare by fermentation or chemical modification, derivatization of fermentation products, (ii) amenable to derivatization with functional groups suitable for conjugation through the non-disulfide linkers to antibodies, (iii) stable in plasma, and (iv) effective against a variety of tumor cell lines. Maytansine compounds suitable for use as maytansinoid drug moieties are well 25 known in the art, and can be isolated from natural sources according to known methods, produced using genetic engineering techniques (see Yu et al (2002) PNAS 99:7968-7973), or maytansinol and maytansinol analogues prepared synthetically according to known methods. Exemplary maytansinoid drug moieties include those having a modified aromatic 30 ring, such as: C-19-dechloro (US 4256746) (prepared by lithium aluminum hydride reduction of ansamytocin P2); C-20-hydroxy (or C-20-demethyl) +/-C-19-dechloro (US Pat. Nos. 28 3860770_1 (GHMatter) P79401 AU.3 14.Sep.12 4361650 and 4307016) (prepared by demethylation using Streptomyces or Actinomyces or dechlorination using LAH); and C-20-demethoxy, C-20-acyloxy (-OCOR), +/-dechloro (U.S. Pat. No. 4,294,757) (prepared by acylation using acyl chlorides). and those having modifications at other positions 5 Exemplary maytansinoid drug moieties also include those having modifications such as: C-9-SH (US 4424219) (prepared by the reaction of maytansinol with H2S or P 2
S
5 ); C-14 alkoxymethyl(demethoxy/CH 2 OR)(US 4331598); C-1 4-hydroxymethyl or acyloxymethyl
(CH
2 OH or CH 2 0Ac) (US 4450254) (prepared from Nocardia); C-1 5-hydroxy/acyloxy (US 4364866) (prepared by the conversion of maytansinol by Streptomyces); C-1 5-methoxy (US 10 Pat. Nos. 4313946 and 4315929) (isolated from Trewia nudlflora); C-18-N-demethyl (US Pat. Nos. 4362663 and 4322348) (prepared by the demethylation of maytansinol by Streptomyces); and 4,5-deoxy (US 4371533) (prepared by the titanium trichloride/LAH reduction of maytansinol). Exemplary embodiments of maytansinoid drug moieities include: DM1; DM3; and 15 DM4, having the structures:
H
3 C CH 2
CH
2
S
0 N
H
3 C 0 O Cl IN - 0 ,10 DM1 CH30 0 N -- O EHO|
CH
3 0 H 29 36607701 (GHMatters) P79401.AU.3 14-Sep-12
CH
3
H
3 C
CH
2
CH
2 C-S 0 N H H3C O CI N O CH30 DM3 O N O =HO I CH300 H CH3 H3C\ CH-2CH2C;-S: H11-3C O O CH30DM NO =H5 I CH30 H wherein the wavy line indicates the covalent attachment of the sulfur atom of the 5 drug to a linker (L) of an antibody drug conjugate. HERCEPTIN@ (trastuzumab, anti-HER2 antibody) linked by SMCC to DM1 has been reported (WO 2005/037992, which is expressly incorporated herein by reference in its entirety). An antibody drug conjugate of the present invention may be prepared according to the procedures disclosed therein. 30 3860770_1 (GHManers) P79401.AU.3 14-Sep.1 2 Other exemplary maytansinoid antibody drug conjugates have the following structures and abbreviations, (wherein Ab is antibody and p is 1 to about 8): 0 N- -Ab [I 3 C, S-- H P 0 N
H
3 C, O O CH30 \0 O - - O HO I CH30 H Ab -SPP-DM1 0 SN- Ab [o H N S
H
3 CN O CI 3 , O- O CH3 \ 5 Ab-SMCC-DM 1 31 360770_1 (GHMotters) P79401.AU3 14-Sep.12 Exemplary antibody drug conjugates where DM1 is linked through a BMPEO linker to a thiol group of the antibody have the structure and abbreviation: 0 0 N -S-- Ab H3C, CH2CH2O O p Hl3C, ON CH30 \ N -'O zHoi CH30 H where Ab is antibody; n is 0, 1, or 2; and p is 1, 2, 3, or 4. 5 Immunoconjugates containing maytansinoids, methods of making same, and their therapeutic use are disclosed, for example, in U.S. Patent Nos. 5,208,020; 5,416,064; 6,441163 and European Patent EP 0 425 235 B1, the disclosures of which are hereby expressly incorporated by reference. Liu et al., Proc. NatI. Acad. Sci. USA 93:8618-8623 (1996) described immunoconjugates comprising a maytansinoid designated DM1 linked to 10 the monoclonal antibody C242 directed against human colorectal cancer. The conjugate was found to be highly cytotoxic towards cultured colon cancer cells, and showed antitumor activity in an in vivo tumor growth assay. Chari et al., Cancer Research 52:127-131 (1992) describe immunoconjugates in which a maytansinoid was conjugated via a disulfide linker to the murine antibody A7 binding to an antigen on human colon cancer cell lines, or to 15 another murine monoclonal antibody TA.1 that binds the HER-2/neu oncogene. The cytotoxicity of the TA. 1 -maytansonoid conjugate was tested in vitro on the human breast cancer cell line SK-BR-3, which expresses 3 x 10 5 HER-2 surface antigens per cell. The drug conjugate achieved a degree of cytotoxicity similar to the free maytansinoid drug, which could be increased by increasing the number of maytansinoid molecules per antibody 20 molecule. The A7-maytansinoid conjugate showed low systemic cytotoxicity in mice. Anti-CD22 antibody-maytansinoid conjugates are prepared by chemically linking an antibody to a maytansinoid molecule without significantly diminishing the biological activity of either the antibody or the maytansinoid molecule. See, e.g., U.S. Patent No. 5,208,020 (the disclosure of which is hereby expressly incorporated by reference). An average of 3-4 32 3680770_1 (GHMatIerS) P79401.AU.3 14-Sep.12 maytansinoid molecules conjugated per antibody molecule has shown efficacy in enhancing cytotoxicity of target cells without negatively affecting the function or solubility of the antibody, although even one molecule of toxin/antibody would be expected to enhance cytotoxicity over the use of naked antibody. Maytansinoids are well known in the art and 5 can be synthesized by known techniques or isolated from natural sources. Suitable maytansinoids are disclosed, for example, in U.S. Patent No. 5,208,020 and in the other patents and nonpatent publications referred to hereinabove. Preferred maytansinoids are maytansinol and maytansinol analogues modified in the aromatic ring or at other positions of the maytansinol molecule, such as various maytansinol esters. 10 There are many linking groups known in the art for making antibody-maytansinoid conjugates, including, for example, those disclosed in U.S. Patent Nos. 5208020, 6441163, or EP Patent 0 425 235 B1, Chari et al., Cancer Research 52:127-131 (1992), and US 2005/0169933 Al, the disclosures of which are hereby expressly incorporated by reference. Antibody-maytansinoid conjugates comprising the linker component SMCC may be 15 prepared as disclosed in U.S. Patent Application No. 11/141344, filed 31 May 2005, "Antibody Drug Conjugates and Methods". The linking groups include disulfide groups, thioether groups, acid labile groups, photolabile groups, peptidase labile groups, or esterase labile groups, as disclosed in the above-identified patents. Additional linking groups are described and exemplified herein. 20 Conjugates of the antibody and maytansinoid may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCI), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), 25 bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4 dinitrobenzene). Particularly preferred coupling agents include N-succinimidyl-3-(2 pyridyldithio) propionate (SPDP) (Carlsson et al., Biochem. J. 173:723-737 (1978)) and N 30 succinimidyl-4-(2-pyridylthio)pentanoate (SPP) to provide for a disulfide linkage. The linker may be attached to the maytansinoid molecule at various positions, depending on the type of the link. For example, an ester linkage may be formed by reaction with a hydroxyl group using conventional coupling techniques. The reaction may occur at 33 3680770_1 (GHMaters) P79401 AU.3 14-Sep-12 the C-3 position having a hydroxyl group, the C-14 position modified with hydroxymethyl, the C-15 position modified with a hydroxyl group, and the C-20 position having a hydroxyl group. In a preferred embodiment, the linkage is formed at the C-3 position of maytansinol or a maytansinol analogue. 5 In one embodiment, any of the antibodies of the invention (full length or fragment) is conjugated to one or more maytansinoid molecules. In one embodiment of the immunoconjugate, the cytotoxic agent D, is a maytansinoid DM1. In one embodiment of the immunoconjugate, the linker is SMCC. In one embodiment, the antibody-linker-drug conjugate is an anti-CD22 antibody as disclosed herein to which is covalently DM1 cytotoxic 10 agent via the SMCC linker. Auristatins and dolostatins In some embodiments, the immunoconjugate comprises an antibody of the invention conjugated to dolastatins or dolostatin peptidic analogs and derivatives, the auristatins (US Patent Nos. 5635483; 5780588). Dolastatins and auristatins have been shown to interfere 15 with microtubule dynamics, GTP hydrolysis, and nuclear and cellular division (Woyke et al (2001) Antimicrob. Agents and Chemother. 45(12):3580-3584) and have anticancer (US 5663149) and antifungal activity (Pettit et al (1998) Antimicrob. Agents Chemother. 42:2961 2965). The dolastatin or auristatin drug moiety may be attached to the antibody through the N (amino) terminus or the C (carboxyl) terminus of the peptidic drug moiety (WO 20 02/088172). Exemplary auristatin embodiments include the N-terminus linked monomethylauristatin drug moieties DE and DF, disclosed in "Senter et al, Proceedings of the American Association for Cancer Research, Volume 45, Abstract Number 623, presented March 28, 2004, the disclosure of which is expressly incorporated by reference in 25 its entirety. 34 3680770.1 (GHMattis) P79401.AU.3 14-Sep-12 An exemplary auristatin embodiment is MMAE (wherein the wavy line indicates the covalent attachment to a linker (L) of an antibody drug conjugate): / 0 H OH N N N N N M 0 0 1-Q 00 MMAE 5 Another exemplary auristatin embodiment is MMAF, wherein the wavy line indicates the covalent attachment to a linker (L) of an antibody drug conjugate (US 2005/0238649): H 0 H HN-- N N N
N
11 1- 0 OHO MMAF 10 Additional exemplary embodiments comprising MMAE or MMAF and various linker components (described further herein) have the following structures and abbreviations (wherein Ab means antibody and p is 1 to about 8): Ab-S 0 CH 0 H A O rON ON N Val-Cit-N 0 s O OsO 0 H 0 OH 15 Ab-MC-vc-PAB-MMAF Ab-S O H 0 HOH 0 N ' N NJ N N -'VaI-Cit-N 0, 0 x 0 ~ H Ab-MC-vc-PAB-MMAE 35 3660770.1 (GHMalters) P79401 AU.3 14-Sep-12 p Ab-MC-MMAE Ab-S 0 0 H 0 H 0 NON ~ N N N 0 0 00 0,0 ~ ) p 5 Ab-MC-MMAF Typically, peptide-based drug moieties can be prepared by forming a peptide bond between two or more amino acids and/or peptide fragments. Such peptide bonds can be prepared, for example, according to the liquid phase synthesis method (see E. Schroder and K. Lobke, "The Peptides", volume 1, pp 76-1 36, 1965, Academic Press) that is well 10 known in the field of peptide chemistry. The auristatin/dolastatin drug moieties may be prepared according to the methods of: US 5635483; US 5780588; Pettit et al (1989) J. Am. Chem. Soc. 111:5463-5465; Pettit et al (1998) Anti-Cancer Drug Design 13:243-277; Pettit, G.R., et al. Synthesis, 1996, 719-725; Pettit et al (1996) J. Chem. Soc. Perkin Trans. 1 5:859-863; and Doronina (2003) Nat Biotechnol 21(7):778-784. 15 Calicheamicin In other embodiments, the immunoconjugate comprises an antibody of the invention conjugated to one or more calicheamicin molecules. The calicheamicin family of antibiotics are capable of producing double-stranded DNA breaks at sub-picomolar concentrations. For the preparation of conjugates of the calicheamicin family, see U.S. patents 5,712,374, 20 5,714,586, 5,739,116, 5,767,285, 5,770,701, 5,770,710, 5,773,001, 5,877,296 (all to American Cyanamid Company). Structural analogues of calicheamicin which may be used include, but are not limited to, y1', a 2 ', a 3 ', N-acetyl-y 1 ', PSAG and 8'1 (Hinman et al., Cancer Research 53:3336-3342 (1993), Lode et al., Cancer Research 58:2925-2928 (1998) and the aforementioned U.S. patents to American Cyanamid). Another anti-tumor drug that the 25 antibody can be conjugated is QFA which is an antifolate. Both calicheamicin and QFA have intracellular sites of action and do not readily cross the plasma membrane. Therefore, 36 3680770.1 (GHMatters) P79401.AU.3 14-Sep.12 cellular uptake of these agents through antibody mediated internalization greatly enhances their cytotoxic effects. Other cytotoxic agents Other antitumor agents that can be conjugated to the antibodies of the invention 5 include BCNU, streptozoicin, vincristine and 5-fluorouracil, the family of agents known collectively LL-E33288 complex described in U.S. patents 5,053,394, 5,770,710, as well as esperamicins (U.S. patent 5,877,296). Enzymatically active toxins and fragments thereof which can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from 10 Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. See, for example, WO 93/21232 published October 28, 1993. 15 The present invention further contemplates an immunoconjugate formed between an antibody and a compound with nucleolytic activity (e.g., a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase). For selective destruction of the tumor, the antibody may comprise a highly radioactive atom. A variety of radioactive isotopes are available for the production of 20 radioconjugated antibodies. Examples include At 211 , 1131,1125, Y 9 0 , Re' 8 6, Re' 88 , Sm' 53 , Bi 212 , P3 2 , Pb 2 12 and radioactive isotopes of Lu. When the conjugate is used for detection, it may comprise a radioactive atom for scintigraphic studies, for example tc 9
'
m or 1123, or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, mri), such as iodine-123 again, iodine-131, indium-111, fluorine-19, carbon-13, 25 nitrogen-15, oxygen-1 7, gadolinium, manganese or iron. The radio- or other labels may be incorporated in the conjugate in known ways. For example, the peptide may be biosynthesized or may be synthesized by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen. Labels such as tc9'" or 1123, Re8, Rem and In"' can be attached via a cysteine 30 residue in the peptide. Yttrium-90 can be attached via a lysine residue. The IODOGEN method (Fraker et al (1978) Biochem. Biophys. Res. Commun. 80: 49-57 can be used to 37 3680770.1i (GHMatters) P79401.AU.3 14-Sep-12 incorporate iodine-123. "Monoclonal Antibodies in Immunoscintigraphy" (Chatal,CRC Press 1989) describes other methods in detail. Conjugates of the antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate 5 (SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCI), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as 10 toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4 dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238:1098 (1987). Carbon-1 4-labeled 1 -isothiocyanatobenzyl-3 methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See W094/11026. The linker may be a 15 "cleavable linker" facilitating release of the cytotoxic drug in the cell. For example, an acid labile linker, peptidase-sensitive linker, photolabile linker, dimethyl linker or disulfide containing linker (Chari et al., Cancer Research 52:127-131 (1992); U.S. Patent No. 5,208,020) may be used. The compounds of the invention expressly contemplate, but are not limited to, ADC 20 prepared with cross-linker reagents: BMPS, EMCS, GMBS, HBVS, LC-SMCC, MBS, MPBH, SBAP, SIA, SIAB, SMCC, SMPB, SMPH, sulfo-EMCS, sulfo-GMBS, sulfo-KMUS, sulfo MBS, sulfo-SIAB, sulfo-SMCC, and sulfo-SMPB, and SVSB (succinimidyl-(4 vinylsulfone)benzoate) which are commercially available (e.g., from Pierce Biotechnology, Inc., Rockford, IL., U.S.A). See pages 467-498, 2003-2004 Applications Handbook and 25 Catalog. Preparation of antibody druq coniuqates: In the antibody drug conjugates (ADC) of the invention, an antibody (Ab) is conjugated to one or more drug moieties (D), e.g. about 1 to about 20 drug moieties per antibody, through a linker (L). The ADC of Formula I may be prepared by several routes, 30 employing organic chemistry reactions, conditions, and reagents known to those skilled in the art, including: (1) reaction of a nucleophilic group of an antibody with a bivalent linker reagent, to form Ab-L, via a covalent bond, followed by reaction with a drug moiety D; and (2) reaction of a nucleophilic group of a drug moiety with a bivalent linker reagent, to form D 38 3807701 (GHMatters) P79401 AU3 14-Sep-12 L, via a covalent bond, followed by reaction with the nucleophilic group of an antibody. Additional methods for preparing ADC are described herein. Ab-(L-D)p Formula I The linker may be composed of one or more linker components. Exemplary linker 5 components include 6-maleimidocaproyl ("MC"), maleimidopropanoyl ("MP"), valine-citrulline ("val-cit"), alanine-phenylalanine ("ala-phe"), p-aminobenzyloxycarbonyl ("PAB"), N Succinimidyl 4-(2-pyridylthio) pentanoate ("SPP"), N-Succinimidyl 4-(N-maleimidomethyl) cyclohexane-1 carboxylate ("SMCC'), and N-Succinimidyl (4-iodo-acetyl) aminobenzoate ("SIAB"). Additional linker components are known in the art and some are described herein. 10 In some embodiments, the linker may comprise amino acid residues. Exemplary amino acid linker components include a dipeptide, a tripeptide, a tetrapeptide or a pentapeptide. Exemplary dipeptides include: valine-citrulline (vc or val-cit), alanine phenylalanine (af or ala-phe). Exemplary tripeptides include: glycine-valine-citrulline (gly val-cit) and glycine-glycine-glycine (gly-gly-gly). Amino acid residues which comprise an 15 amino acid linker component include those occurring naturally, as well as minor amino acids and non-naturally occurring amino acid analogs, such as citrulline. Amino acid linker components can be designed and optimized in their selectivity for enzymatic cleavage by a particular enzymes, for example, a tumor-associated protease, cathepsin B, C and D, or a plasmin protease. 20 Exemplary linker component structures are shown below (wherein the wavy line indicates sites of covalent attachment to other components of the ADC): 0 N 0 o MC 0 0 N 25 0 MP 39 360770_1 (GHMatters) P79401AU.3 14-Sep.12 O N O0 H 0 0 MPEG Additional exemplary linker components and abbreviations include (wherein the 5 antibody (Ab) and linker are depicted, and p is 1 to about 8): H 0 N Nl"'YY-D) Ab Aa-N H 0 P HN
NH
2 Val-cit 0 0 H 0 N N I YF-D> Ab NY o H O p HN O< NH 2 MC-val-cit 0 O/ O Ab N N N o HN O HNH 10 0 NH 2 MC-val-cit-PAB 40 3860770_1 (GHM8IICS) P70401 .AU 3 14-Sep-12 Nucleophilic groups on antibodies include, but are not limited to: (i) N-terminal amine groups, (ii) side chain amine groups, e.g. lysine, (iii) side chain thiol groups, e.g. cysteine, and (iv) sugar hydroxyl or amino groups where the antibody is glycosylated. Amine, thiol, 5 and hydroxyl groups are nucleophilic and capable of reacting to form covalent bonds with electrophilic groups on linker moieties and linker reagents including: (i) active esters such as NHS esters, HOBt esters, haloformates, and acid halides; (ii) alkyl and benzyl halides such as haloacetamides; (iii) aldehydes, ketones, carboxyl, and maleimide groups. Certain antibodies have reducible interchain disulfides, i.e. cysteine bridges. Antibodies may be 10 made reactive for conjugation with linker reagents by treatment with a reducing agent such as DTT (dithiothreitol). Each cysteine bridge will thus form, theoretically, two reactive thiol nucleophiles. Additional nucleophilic groups can be introduced into antibodies through the reaction of lysines with 2-iminothiolane (Traut's reagent) resulting in conversion of an amine into a thiol. Reactive thiol groups may be introduced into the antibody (or fragment thereof) 15 by introducing one, two, three, four, or more cysteine residues (e.g., preparing mutant antibodies comprising one or more non-native cysteine amino acid residues). Antibody drug conjugates of the invention may also be produced by modification of the antibody to introduce electrophilic moieties, which can react with nucleophilic subsituents on the linker reagent or drug. The sugars of glycosylated antibodies may be 20 oxidized, e.g. with periodate oxidizing reagents, to form aldehyde or ketone groups which may react with the amine group of linker reagents or drug moieties. The resulting mine Schiff base groups may form a stable linkage, or may be reduced, e.g. by borohydride reagents to form stable amine linkages. In one embodiment, reaction of the carbohydrate portion of a glycosylated antibody with either glactose oxidase or sodium meta-periodate 25 may yield carbonyl (aldehyde and ketone) groups in the protein that can react with appropriate groups on the drug (Hermanson, Bioconjugate Techniques). In another embodiment, proteins containing N-terminal serine or threonine residues can react with sodium meta-periodate, resulting in production of an aldehyde in place of the first amino acid (Geoghegan & Stroh, (1992) Bioconjugate Chem. 3:138-146; US 5362852). Such 30 aldehyde can be reacted with a drug moiety or linker nucleophile. Likewise, nucleophilic groups on a drug moiety include, but are not limited to: amine, thiol, hydroxyl, hydrazide, oxime, hydrazine, thiosemicarbazone, hydrazine carboxylate, and arylhydrazide groups capable of reacting to form covalent bonds with electrophilic groups on linker moieties and linker reagents including: (i) active esters such as NHS esters, HOBt 41 3600770_1 (GHMatters) P79401.AU.3 14-Sep-12 esters, haloformates, and acid halides; (ii) alkyl and benzyl halides such as haloacetamides; (iii) aldehydes, ketones, carboxyl, and maleimide groups. In yet another aspect, the antibody has one or more lysine residues that can be chemically modified to introduce one or more sulfhydryl groups. The antibody unit bonds to 5 the Linker unit via the sulfhydryl group's sulfur atom. The reagents that can be used to modify lysines include, but are not limited to, N-succinimidyl S-acetylthioacetate (SATA) and 2-Iminothiolane hydrochloride (Traut's Reagent). In another embodiment, the antibody can have one or more carbohydrate groups that can be chemically modified to have one or more sulfhydryl groups. The antibody unit 10 bonds to the Linker Unit, such as the Stretcher Unit, via the sulfhydryl group's sulfur atom, as disclosed herein. In yet another embodiment, the antibody can have one or more carbohydrate groups that can be oxidized to provide an aldehyde (-CHO) group (see, for e.g., Laguzza, et al., J. Med. Chem. 1989, 32(3), 548-55). The corresponding aldehyde can form a bond with a 15 Reactive Site on a Stretcher. Reactive sites on a Stretcher that can react with a carbonyl group on an antibody include, but are not limited to, hydrazine and hydroxylamine. Other protocols for the modification of proteins for the attachment or association of Drug Units are described in Coligan et al., Current Protocols in Protein Science, vol. 2, John Wiley & Sons (2002), incorporated herein by reference. 20 Methods for the conjugation of linker-drug moieties to cell-targeted proteins such as antibodies, immunoglobulins or fragments thereof are found, for example, in US5,208,020; US6,441,163; W02005037992; W0200508171 1; and W02006/034488, all of which are hereby expressly incorporated by reference in their entirety. Alternatively, a fusion protein comprising the antibody and cytotoxic agent may be 25 made, e.g., by recombinant techniques or peptide synthesis. The length of DNA may comprise respective regions encoding the two portions of the conjugate either adjacent one another or separated by a region encoding a linker peptide which does not destroy the desired properties of the conjugate. In yet another embodiment, the antibody may be conjugated to a "receptor" (such 30 streptavidin) for utilization in tumor pre-targeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation 42 3560770_1 (GHMatters) P79401 AU3 14-Sep-12 using a clearing agent and then administration of a "ligand" (e.g., avidin) which is conjugated to a cytotoxic agent (e.g., a radionucleotide). In one embodiment of the immunoconjugate, the cytotoxic agent, D, is an auristatin of formula DE or DF R3 0 R7 CH 3
R
9 N N 5 R 2 O R 4
R
5 R6 R 8 0 R 8 DE R3 O R7 CH 3
R
9 0 SNZR11
R
2 0 R 4
R
5 R6 R 8 0 R 8 0 DF and wherein R 2 and R 6 are each methyl, R 3 and R 4 are each isopropyl, R 7 is sec 10 butyl, each R is independently selected from CH 3 , 0-CH 3 , OH, and H; R 9 is H; R1 is aryl; Z is -0- or -NH-; R" is H, Cr1C8 alkyl, or -(CH 2
)
2 -0-(CH 2
)
2 -0-(CH 2
)
2 -0-CH 3 ; and R' 8 is C(R 8
)
2
-C(R
8
)
2 -aryl; and (d) p ranges from about 1 to 8. The following embodiments are further provided for any of the above 15 immunoconjugates. In one embodiment, an immunoconjugate has in vitro or in vivo cell killing activity. In one embodiment, the linker is attached to the antibody through a thiol group on the antibody. In one embodiment, the linker is cleavable by a protease. In one embodiment, the linker comprises a val-cit dipeptide. In one embodiment, the linker comprises a p-aminobenzyl unit. In one embodiment, the p-aminobenzyl unit is disposed 20 between the drug and a protease cleavage site in the linker. In one embodiment, the p aminobenzyl unit is p-aminobenzyloxycarbonyl (PAB). In one embodiment, the linker comprises 6-maleimidocaproyl. In one embodiment, the 6-maleimidocaproyl is disposed between the antibody and a protease cleavage site in the linker. The above embodiments may occur singly or in any combination with one another. 43 3880770_1 (GHMatters) P79401 AU.3 14-Sep-12 In one embodiment, the drug is selected from MMAE and MMAF. In one embodiment, the immunoconjugate has the formula Ab-S HO V OH A -N
.
N N N N O N Val-Cit-N O O O OO H P 5 wherein Ab is any of the above anti-CD22 antibodies, S is a sulfur atom, and p ranges from 2 to 5. In one embodiment, the immunoconjugate has the formula Ab-S
H
0 0 O N N N N -S N -- VaI-Cit-ND 1 0 0,0 o 0 A ) H 0OH wherein Ab is any of the above anti-C022 antibodies, S is a sulfur atom, and p 10 ranges from about 1 to about 6, from about 2 to about 5, from about 2 to about 6, from about 2 to about 4, from about 2 to about 3, from about 3 to about 4, from about 3 to about 5, from about 3 to about 6, or from about 4 to about 6. Labelled antibody imagine methods: In another embodiment of the invention, cysteine engineered antibodies may be 15 labelled through the cysteine thiol with radionuclides, fluorescent dyes, bioluminescence triggering substrate moieties, chemiluminescence-triggering substrate moieties, enzymes, and other detection labels for imaging experiments with diagnostic, pharmacodynamic, and therapeutic applications. Generally, the labelled cysteine engineered antibody, i.e. "biomarker" or "probe", is administered by injection, perfusion, or oral ingestion to a living 20 organism, e.g. human, rodent, or other small animal, a perfused organ, or tissue sample. The distribution of the probe is detected over a time course and represented by an image. Articles of Manufacture: In another embodiment of the invention, an article of manufacture, or "kit", containing materials useful for the treatment of the disorders described above is provided. The article 25 of manufacture comprises a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, blister pack, etc. The containers may be formed from a variety of materials such as glass or plastic. The 44 3880770_1 (GHMatters) P79401.AU3 14-Sep-12 container holds an antibody-drug conjugate (ADC) composition which is effective for treating the condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is an ADC. The label or package 5 insert indicates that the composition is used for treating the condition of choice, such as cancer. Alternatively, or additionally, the article of manufacture may further comprise a second (or third) container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and 10 user standpoint, including other buffers, diluents, filters, needles, and syringes. Pharmaceutical compositions: In one aspect, a pharmaceutical composition is provided comprising any of the above immunoconjugates and a pharmaceutically acceptable carrier. In one aspect, a method of treating a B cell proliferative disorder is provided, wherein the method comprises 15 administering to an individual the pharmaceutical composition. In one embodiment, the B cell proliferative disorder is selected from lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell 20 lymphoma. In one embodiment, the cell proliferative disorder is associated with increased expression of CD22 on the surface of a cell. In one aspect, a method of inhibiting cell proliferation is provided, wherein the method comprises exposing a cell to any of the above immunoconjugates under conditions permissive for binding of the immunoconjugate to CD22. In one embodiment, the B cell is a 25 tumor cell. In one embodiment, the tumor cell is a B cell of a mammal experiencing or suspected of experiencing aa B cell proliferative disorder selected from lymphoma, non Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia 30 (ALL), and mantle cell lymphoma., the cell is a xenograft. In one embodiment, the exposing takes place in vitro. In one embodiment, the exposing takes place in vivo. In one aspect, a method of using the anti-CD22 antibody of the invention is provided to assay serum soluble CD22 in a mammal experiencing leukemia or lymphoma to diagnose 45 3880770_1 (GHMatter) P79401 AU.3 14-Sep-12 B-cell leukemia or B-cell lymphoma, measuring clinical progression or regression of the diseases, or assess tumor burden or relapse. Such methods are disclosed in US 20050244828 (Kreitman, R.J. et al., the entire contents of which is hereby incorporated by reference) using an anti-CD22 RFB4 antibody PE38 (Pseudomonas exotoxin A fragment 5 38) toxin conjugate (see Kreitman, R.J. et al., NEJM 345:241-247 (2001)). BRIEF DESCRIPTION OF THE FIGURES Figures 1A-ID: Figure 1A is a diagram of CD22 indicating the seven immunoglobulin-like domains of the extracellular domain of the beta isoform. The alpha isoform lacks domains 3 and 4. "TM" refers to transmembrane domain. Figure 1B depicts 10 the amino acid sequence of the beta form of CD22 (SEQ ID NO:27). The alpha form of CD22 lacks the amino acids shown in italics (encoding domains 3 and 4 of the extracellular domain). The extracellular domain of the mature form of the protein is underlined (SEQ ID NO:28). Amino acids 1-21 depict the signal sequence cleaved from the mature form. Figure 1C is the amino acid sequence of CD22alpha (SEQ ID NO:29). The ECD of 15 CD22alpha is underlined (SEQ ID NO:30). Figure 1D is the amino acid sequence of CD22 from cynomolgus monkey (cyno) (SEQ ID NO:31). The first 19 amino acids of cyno CD22 is the signal sequence. Figures 2A-2B: Figure 2A depicts the amino acid sequence of the heavy chain variable region of murine 10F4 anti-CD22 antibody of the invention (m10F4) aligned with the 20 humanized 10F4 version 1 antibody (h1OF4v1) and aligned with the human subgroup I1 sequence. The HVRs are boxed (HVR-H1, HVR-H2, HVR-H3). The sequences bracketing the HVRs are the framework sequences (FR-H1 to FR-H4). The sequences are numbered according to Kabat numbering. The Kabat, Chothia, and contact CDRs are indicated about the boxed HVRs. Figure 2B depicts the amino acid sequence of the light chain variable 25 region of murine 10F4 anti-CD22 antibody of the invention (m10F4) aligned with the humanized 10F4 version 1 antibody (h1OF4v1) and aligned with the human kappa I sequence. Versions 2 and 3 of the humanized 10F4 antibody (h10F4v2 and h1OF4v3) have the same amino acid sequences for the secreted mature form. The antibodies h10F4v2 and h10F4v3 differ from h10F4v1 at amino acid 28 of the HVR-L1 (N28V). The HVRs are 30 boxed. The FR-L1, FR-L2, FR-L3, and FR-L4 sequences bracket the HVRs (HVR-L1, HVR L2, HVR-L3). The sequences are numbered according to Kabat numbering. The Kabat, Chothia, and contact CDRs are indicated about the boxed HVRs. 46 3660770_1 (GHMatters) P79401 AU.3 14-Sep-1 2 Figures 3A and 3B show exemplary acceptor human variable heavy (VH) consensus framework sequences for use in practicing the instant invention with sequence identifiers as follows, where the FR SEQ ID NOs are listed in the order FR-H1, FR-H2, FR H3, FR-H4: 5 - human VH subgroup I consensus framework "A" minus Kabat CDRs (SEQ ID NOs:26, 47, 48, 7). - human VH subgroup I consensus frameworks "B," "C," and "D" minus extended hypervariable regions (SEQ ID NOs:50, 51, 52, 7; SEQ ID NOs:50, 51, 52, 7; and SEQ ID NOs:50, 51, 53, 7). 10 - human VH subgroup 11 consensus framework "A" minus Kabat CDRs (SEQ ID NOs:54, 55, 56, 7). - human VH subgroup 11 consensus frameworks "B," "C," and "D" minus extended hypervariable regions (SEQ ID NOs:57, 58, 56, 7; SEQ ID NOs:57, 58, 59, 7; and SEQ ID NOs:57, 58, 60, 7). 15 - human VH subgroup Ill consensus framework "A" minus Kabat CDRs (SEQ ID NOs:61, 62, 63, 7). - human VH subgroup Ill consensus frameworks "B," "C," and "D" minus extended hypervariable regions (SEQ ID NOs:64, 65, 63, 7; SEQ ID NOs:64, 65, 66, 7; and SEQ ID NOs:64, 65, 67, 7). 20 - human VH acceptor 1 framework "A" minus Kabat CDRs (SEQ ID NOs:68, 62, 69, 7). - human VH acceptor frameworks "B" and "C" minus extended hypervariable regions (SEQ ID NOs:64, 65, 69, 7; and SEQ ID NOs:64, 65, 70, 7). - human VH acceptor 2 framework "A" minus Kabat CDRs (SEQ ID NOs:68, 62, 71, 25 7). - human VH acceptor 2 framework "B," "C," and "D" minus extended hypervariable regions (SEQ ID NOs:64, 65, 71, 7; SEQ ID NOs:64, 65, 72, 7; and SEQ ID NOs:64, 65, 73, 7). 47 38607701 (GHMatters) P79401 AU.3 14-Sep-12 Figures 4A and 4B show exemplary acceptor human variable light (VL) consensus framework sequences for use in practicing the instant invention with sequence identifiers as follows: - human VL kappa subgroup 1-1 consensus framework (Kv1-1): SEQ ID NOs:74, 75, 5 76,77 - human VL kappa subgroup I consensus framework (Kv1): SEQ ID NOs:74, 78, 76, 77 - human VL kappa subgroup 11 consensus framework (Kv2): SEQ ID NOs:49, 79, 80, 77 10 - human VL kappa subgroup Ill consensus framework (Kv3): SEQ ID NOs:81, 82, 83, 77 - human VL kappa subgroup IV consensus framework (Kv4): SEQ ID NOs:84, 85, 86, 77 Figures 5A and 5B: Figure 5A depicts alignments of native sequence human IgG 15 Fc region sequences, humigG1 (non-A allotype, SEQ ID NO:38; and A allotype, where the amino acid sequence SREEM within SEQ ID NO:38 is changed to SRDEL), humIgG2 (SEQ ID NO:39), humigG3 (SEQ ID NO:40) and humIgG4 (SEQ ID NO:41) with differences between the sequences marked with asterisks. Numbers above the sequences represent the EU numbering system. An exemplary kappa constant region is also shown. Figure 5B 20 depicts the full length amino acid sequences (variable and constant regions) of the light and heavy chains of humanized anti-CD22 antibody 10F4v2, isotype IgG1. The underlined portions depict the constant domains. Figures 6A-6D show results of assays measuring various determinants of CD22 ADC efficacy in lymphoma cell lines. Figure 6A indicates that higher cell surface CD22 25 levels are correlated to a lower anti-CD22-MCC-DM1 IC50 (higher efficacy). Figure 6B indicates that increased internalization of anti-CD22-MCC-DM1 correlates with lower anti CD22-MCC-DM1 IC50. Figure 6C indicates that increased intrinsic sensitivity of cells to free drug correlates with lower anti-CD22-MCC-DM1 IC50. Figure 6D is a photomicrograph showing the internalization of fluorescently labeled anti-CD22 antibody following binding to 30 CD22 on the cell surface. 48 38O770_1 (GHMatters) P70401.AU.3 14-Sep-12 Figures 7A - 7B: Figure 7A is a graph of in vivo tumor volume reduction in a xenograft model which shows that administration of anti-CD22 antibody mulOF4-smcc-DM1 and hulOF4v1-smcc-DM1 to SCID mice having human B cell tumors significantly reduced tumor volume. Drug load was approximately 4 and 4.6, see Table 4. Figure 7B is a graph 5 of a similar study, but drug load was slightly lower at approximately 2.9 and 3.0 (see Table 5), and mulOF4-smcc-DM1 and hulOF4v2-smcc-DM1 efficacy were compared with control antibody and unconjugated mu1OF4. Figure 7C is a graph of in vivo tumor reduction in a xenograft model in which anti-CD22-spp-DM1 was administered as indicated in Table 6. Figures 8A and 8B: Figure 8A is a graph of anti-CD22 antibodies 5E8.1.8-smcc 10 DM1 and RFB4-smcc-DM1 administered to Ramos cell xenografts. Figure 8B is a graph of anti-CD22 antibodies 5E8.1.8-smcc-DM1 and RFB4-smcc-DM1 administered to BJAB-luc xenografts. Figure 9 is a graph showing the relative affect on tumor volume over time after administration of anti-CD22(RFB4)-smcc-DM1 at low, medium, and high drug loads. 15 Figure 10 is a graph showing the relative affect on tumor volume over time after administration of anti-CD22(RFB4)-MC-vcPAB-MMAF or anti-CD22(RFB4)-MC-MMAF in Ramos xenografts. Figure 11 is a graph showing the relative affect on tumor volume over time after administration of anti-CD22(RFB4)-smcc-DM1 or -MCvcPAB-MMAE. 20 Figure 12 is a graph showing the relative affect on tumor volume over time after administration of humanized anti-CD22 10F4 variants as MMAF or DM1 immunoconjugates as disclosed in Table 12. Figures 13A-13C are graphs showing the relative affect on tumor volume over time after administration anti-CD22-smcc-DM1 or anti-CD22-MC-MMAF in different B cell 25 lymphoma xenograft models: SuDHL-4 (Figure 13A), DoHH2 (Figure 13B), and Granta-519 (Figure 13C). Figure 14 shows diagrams of CD22 domains deleted for epitope mapping as described in the Examples. The domains are numbered 1-7. "TM" refers to transmembrane domain. 49 3880770_1 (GHMatters) P79401.AU.3 14-Sep-12 Figure 15 shows depictions of cysteine engineered anti-CD22 antibody drug conjugates (ADC) where a drug moiety is attached to an engineered cysteine group in: the light chain (LC-ADC); the heavy chain (HC-ADC); and the Fc region (Fc-ADC). Figure 16 shows the steps of: (i) reducing cysteine disulfide adducts and interchain 5 and intrachain disulfides in a cysteine engineered anti-CD22 antibody (ThioMab) with reducing agent TCEP (tris(2-carboxyethyl)phosphine hydrochloride); (ii) partially oxidizing, i.e. reoxidation to reform interchain and intrachain disulfides, with dhAA (dehydroascorbic acid); and (iii) conjugation of the reoxidized antibody with a drug-linker intermediate to form a cysteine engineered anti-CD22 antibody drug conjugate (ADC). 10 Figures 17A-17C depict the amino acid sequences of the anti-CD22 cysteine engineered antibodies of the invention in which the light chain or heavy chain or Fc region is altered to engineer a cysteine at selected amino acid positions. Figure 17A depicts the amino acid sequence of the anti-CD22 10F4 variant light chain in which a valine at Kabat position 205 (sequential position Valine 210) is altered to a Cysteine. Figure 17B depicts 15 the amino acid sequence of the anti-CD22 1 0F4 variant heavy chain in which an Alanine at EU position 118 (sequential position Alanine 121) is altered to a Cysteine. Figure 17C depicts the amino acid sequence of the anti-CD22 10F4 variant Fc region in which a Serine at EU position 400 (sequential position Serine 403) is altered to a Cysteine. In each figure, the altered amino acid is shown in bold text with double underlining. Single underlining 20 indicates constant regions. Variable regions are not underlined. Figures 18A-18E are FACS plots indicating that binding of anti-CD22 thiomab drug conjugates (TDCs) of the invention bind to CD22 expressed on the surface of BJAB-lucs cells is similar for LC, HC and Fc thiomab variants as well as for the different drug conjugates shown. 25 Figure 19 is a graph plotting changes in mean tumor volume over time in a xenograft model treated with different anti-CD22 TDCs, which varied by position of the engineered cysteine (LC, HC or Fc) and/or by drug conjugate (MMAF or MMAE). Xenograft models treated with anti-CD22 TDCs 10F4-LC-V21OC-MCvcPAB-MMAE and anti-CD22 10F4-HC-A121C-MCvcPAB-MMAE showed a decrease in tumor volume during the study. 30 Figure 20A is a graph plotting changes in mean tumor volume over time in a human mantle cell lymphoma Granta-519 xenograft in CB17 SCID mice treated with heavy chain Al 18C anti-CD22 TDCs conjugated to different linker drug moieties and/or administered at 50 3860770.1 (GHMatters) P7940I.AU.3 14-Sep-12 different doses as shown. The anti-CD22 10F4-HC(A 18C)-MCvcPAB-MMAE TDC appeared to be the most efficacious of the test agents in this experiment. Figure 20B is a graph plotting changes in mean tumor volume over time in a follicular lymphoma DOHH2 xenograft in CB1 7 SCID mice treated with the same heavy chain Al 18C anti-CD22 TDCs, 5 but at higher doses. The anti-CD22 10F4-HC(A1 18C)-MCvcPAB-MMAE TDC appeared to be the most efficacious of the test agents in this experiment. Figure 20C is a plot of percent weight change is the mice from the DOHH2 xenograft study showing that there was no significant change in weight during the first 14 days of the study. Figures 21A and 21B are bar graphs showing changes in serum AST (aspartate 10 aminotransferase) (Figure 21A) and serum neutrophils (Figure 21B) at Days 0 and 5 where ADC comprising a cleavable and uncleavable linker was administered. Figures 22A and 22B are graphs showing depletion of peripheral B cells (CD20* cells) in cynomolgus monkeys dosed with 10, 20, and 30 mg/kg anti-CD22 MMAF (Figure 22A) and anti-CD22 DM1 (Figure 22B). 15 Figures 23A and 23B are graphs showing no significant change in CD4' lymphocytes at 10, 20, and 30 mg/kg anti- CD22 MMAF (Figure 23A) and anti-CD22 DM1 (Figure 23B). Figures 24A and 24B show histological samples of cynomolgus monkey tonsil tissue in which depletion of germinal center B cells, apparent in the vehicle control (Figure 20 24A), are depleted in a tonsil sample from an animal dosed at 10 mg/kg hu10F4v3-SMCC DM1. Figure 25A is a diagram indicating the regions of spleen follicle from which tissue samples were taken for a study in which it was shown that anti-CD22 ADCs spare B cells in resting tissue in cynomolgus monkeys. Dividing cells in cyno spleen follicle germinal center 25 were depleted in dividing germinal cells of cyno spleens from animals dosed with hu10F4v3 MC-MMAF at 10 mg/kg (Figures 25B and 25C). Non-dividing naive B cells were not depleted under the same conditions (Figures 25D and 25E). DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION Isolated antibodies that bind to CD22 are provided. Immunoconjugates comprising 30 anti-CD22 antibodies are further provided. Cysteine engineered anti-CD22 antibodies and 51 300770_1 (GHMatter) P79401 AU.3 14-Sep-12 immunoconjugates thereof are further provided. Antibodies and immunoconjugates of the invention are useful, e.g., for the diagnosis or treatment of disorders associated with altered expression, e.g., increased expression, of CD22. In certain embodiments, antibodies or immunoconjugates of the invention are useful for the diagnosis or treatment of a cell 5 proliferative disorder, such as a tumor or cancer. In certain embodiments, antibodies or immunoconjugates of the invention are useful for the detection of CD22, e.g., CD22 expressed on the cell surface. Polynucleotides encoding anti-CD22 antibodies are provided. Vectors comprising polynucleotides encoding anti-CD22 antibodies are provided, and host cells comprising such 10 vectors are provided. Compositions, including pharmaceutical formulations, comprising any one or more of the polynucleotides, anti-CD22 antibodies, or immunoconjugates of the invention are also provided. General Techniques The techniques and procedures described or referenced herein are generally well 15 understood and commonly employed using conventional methodology by those skilled in the art, such as, for example, the widely utilized methodologies described in Sambrook et al., Molecular Cloning: A Laboratory Manual 3rd. edition (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Current Protocols in Molecular Biology (F. M. Ausubel, et al. eds., (2003)); the series Methods in Enzymology (Academic Press, Inc.): Pcr 2: A 20 Practical Approach (M. J. MacPherson, B. D. Hames and G. R. Taylor eds. (1995)), Harlow and Lane, eds. (1988) Antibodies, A Laboratory Manual, and Animal Cell Culture (R. 1. Freshney, ed. (1987)); Oligonucleotide Synthesis (M. J. Gait, ed., 1984); Methods in Molecular Biology, Humana Press; Cell Biology: A Laboratory Notebook (J. E. Cellis, ed., 1998) Academic Press; Animal Cell Culture (R. 1. Freshney), ed., 1987); Introduction to Cell 25 and Tissue Culture (J. P. Mather and P. E. Roberts, 1998) Plenum Press; Cell and Tissue Culture: Laboratory Procedures (A. Doyle, J. B. Griffiths, and D. G. Newell, eds., 1993-8) J. Wiley and Sons; Handbook of Experimental Immunology (D. M. Weir and C. C. Blackwell, eds.); Gene Transfer Vectors for Mammalian Cells (J. M. Miller and M. P. Calos, eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Current Protocols 30 in Immunology (J. E. Coligan et al., eds., 1991); Short Protocols in Molecular Biology (Wiley and Sons, 1999); Immunobiology (C. A. Janeway and P. Travers, 1997); Antibodies (P. Finch, 1997); Antibodies: A Practical Approach (D. Catty., ed., IRL Press, 1988-1989); Monoclonal Antibodies: A Practical Approach (P. Shepherd and C. Dean, eds., Oxford 52 3680770_1 (GHMatters) P79401.AU.3 14-Sep- 12 University Press, 2000); Using Antibodies: A Laboratory Manual (E. Harlow and D. Lane (Cold Spring Harbor Laboratory Press, 1999); The Antibodies (M. Zanetti and J. D. Capra, eds., Harwood Academic Publishers, 1995); and Cancer: Principles and Practice of Oncology (V. T. DeVita et al., eds., J.B. Lippincott Company, 1993). 5 DEFINITIONS AND ABBREVIATIONS Definitions In the claims which follow and in the description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, 10 i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention. An "isolated" antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with research, diagnostic or 15 therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In some embodiments, an antibody is purified (1) to greater than 95% by weight of antibody as determined by, for example, the Lowry method, and in some embodiments, to greater than 99% by weight; (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use 20 of, for example, a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using, for example, Coomassie blue or silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step. 25 An "isolated" nucleic acid molecule is a nucleic acid molecule that is separated from at least one other nucleic acid molecule with which it is ordinarily associated, for example, in its natural environment. An isolated nucleic acid molecule further includes a nucleic acid molecule contained in cells that ordinarily express the nucleic acid molecule, but the nucleic acid molecule is present extrachromosomally or at a chromosomal location that is different 30 from its natural chromosomal location. 53 380770.1 (GHMatlrs) P79401 AU.3 14-Sep-12 "Purified" means that a molecule is present in a sample at a concentration of at least 95% by weight, or at least 98% by weight of the sample in which it is contained. The term "substantially similar" or "substantially the same," as used herein, denotes a sufficiently high degree of similarity between two numeric values (for example, one 5 associated with an antibody of the invention and the other associated with a reference/comparator antibody), such that one of skill in the art would consider the difference between the two values to be of little or no biological and/or statistical significance within the context of the biological characteristic measured by said values (e.g., Kd values). The difference between said two values is, for example, less than about 50%, less than 10 about 40%, less than about 30%, less than about 20%, and/or less than about 10% as a function of the reference/comparator value. The phrase "substantially reduced," or "substantially different," as used herein, denotes a sufficiently high degree of difference between two numeric values (generally one associated with a molecule and the other associated with a reference/comparator molecule) 15 such that one of skill in the art would consider the difference between the two values to be of statistical significance within the context of the biological characteristic measured by said values (e.g., Kd values). The difference between said two values is, for example, greater than about 10%, greater than about 20%, greater than about 30%, greater than about 40%, and/or greater than about 50% as a function of the value for the reference/comparator 20 molecule. The term "vector," as used herein, is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid," which refers to a circular double stranded DNA into which additional DNA segments may be ligated. Another type of vector is a phage vector. Another type of vector 25 is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) can be integrated into the genome of a host cell upon introduction into the host cell, and thereby 30 are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors," or simply, "expression vectors." In general, expression vectors of utility in recombinant DNA techniques are often in the form of 54 38e0770_1 (GHMatter) P79401 AU3 14-Seo-12 plasmids. In the present specification, "plasmid" and "vector" may be used interchangeably as the plasmid is the most commonly used form of vector. "Polynucleotide," or "nucleic acid," as used interchangeably herein, refer to polymers of nucleotides of any length, and include DNA and RNA. The nucleotides can be 5 deoxyribonucleotides, ribonucleotides, modified nucleotides or bases, and/or their analogs, or any substrate that can be incorporated into a polymer by DNA or RNA polymerase or by a synthetic reaction. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and their analogs. If present, modification to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of 10 nucleotides may be interrupted by non-nucleotide components. A polynucleotide may comprise modification(s) made after synthesis, such as conjugation to a label. Other types of modifications include, for example, "caps," substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, 15 phosphoamidates, carbamates, etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), those containing pendant moieties, such as, for example, proteins (e.g., nucleases, toxins, antibodies, signal peptides, ply-L-lysine, etc.), those with intercalators (e.g., acridine, psoralen, etc.), those containing chelators (e.g., metals, radioactive metals, boron, oxidative metals, etc.), those containing alkylators, those with 20 modified linkages (e.g., alpha anomeric nucleic acids, etc.), as well as unmodified forms of the polynucleotides(s). Further, any of the hydroxyl groups ordinarily present in the sugars may be replaced, for example, by phosphonate groups, phosphate groups, protected by standard protecting groups, or activated to prepare additional linkages to additional nucleotides, or may be conjugated to solid or semi-solid supports. The 5' and 3' terminal 25 OH can be phosphorylated or substituted with amines or organic capping group moieties of from 1 to 20 carbon atoms. Other hydroxyls may also be derivatized to standard protecting groups. Polynucleotides can also contain analogous forms of ribose or deoxyribose sugars that are generally known in the art, including, for example, 2'-0-methyl-, 2'-O-allyl-, 2'-fluoro or 2'-azido-ribose, carbocyclic sugar analogs, a-anomeric sugars, epimeric sugars such as 30 arabinose, xyloses or lyxoses, pyranose sugars, furanose sugars, sedoheptuloses, acyclic analogs, and basic nucleoside analogs such as methyl riboside. One or more phosphodiester linkages may be replaced by alternative linking groups. These alternative linking groups include, but are not limited to, embodiments wherein phosphate is replaced by P(O)S ("thioate"), P(S)S ("dithioate"), (O)NR 2 ("amidate"), P(O)R, P(O)OR', CO, or CH2 35 ("formacetal"), in which each R or R' is independently H or substituted or unsubstituted alkyl 55 38N0770_1 (GHMatter) P79401 .AU.3 14-Sep.12 (1-20 C) optionally containing an ether (-0-) linkage, aryl, alkenyl, cycloalkyl, cycloalkenyl or araldyl. Not all linkages in a polynucleotide need be identical. The preceding description applies to all polynucleotides referred to herein, including RNA and DNA. "Oligonucleotide," as used herein, generally refers to short, generally single 5 stranded, generally synthetic polynucleotides that are generally, but not necessarily, less than about 200 nucleotides in length. The terms "oligonucleotide" and "polynucleotide" are not mutually exclusive. The description above for polynucleotides is equally and fully applicable to oligonucleotides. "Percent (%) amino acid sequence identity" with respect to a reference polypeptide 10 sequence is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the reference polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence 15 identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid 20 sequence identity values are generated using the sequence comparison computer program ALIGN-2. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc., and the source code has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available from Genentech, 25 Inc., South San Francisco, California, or may be compiled from the source code. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary. In situations where ALIGN-2 is employed for amino acid sequence comparisons, the 30 % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows: 56 3M80770_1 (GHMatters) P79401.AU.3 14-Sep-12 100 times the fraction XY where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length 5 of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program. 10 A "B-cell surface marker" or "B-cell surface antigen" herein is an antigen expressed on the surface of a B cell that can be targeted with an antagonist that binds thereto, including but not limited to, antibodies to a B-cell surface antigen or a soluble form a B-cell surface antigen capable of antagonizing binding of a ligand to the naturally occurring B-cell antigen. Exemplary B-cell surface markers include the CD10, CD19, CD20, CD21, CD22, 15 CD23, CD24, CD37, CD40, CD53, CD72, CD73, CD74, CDw75, CDw76, CD77, CDw78, CD79a, CD79b, CD80, CD81, CD82, CD83, CDw84, CD85 and CD86 leukocyte surface markers (for descriptions, see The Leukocyte Antigen Facts Book, 2 nd Edition. 1997, ed. Barclay et al. Academic Press, Harcourt Brace & Co., New York). Other B-cell surface markers include RP105, FcRH2, B-cell CR2, CCR6, P2X5, HLA-DOB, CXCR5, FCER2, 20 BR3, BAFF, BLyS, Btig, NAG14, SLGC16270, FcRH1, IRTA2, ATWD578, FcRH3, IRTA1, FcRH6, BCMA, and 239287. The B-cell surface marker of particular interest is preferentially expressed on B cells compared to other non-B-cell tissues of a mammal and may be expressed on both precursor B cells and mature B cells. 25 The term "CD22," as used herein, refers to any native CD22 from any vertebrate source, including mammals such as primates (e.g. humans, cynomolgus monkey (cyno)) and rodents (e.g., mice and rats), unless otherwise indicated. The term encompasses "full length," unprocessed CD22 as well as any form of CD22 that results from processing in the cell. The term also encompasses naturally occurring variants of CD22, e.g., splice variants, 30 allelic variants, and isoforms. The major isoform of CD22 (CD22beta) comprises 847 amino acids and seven immunoglobulin-like regions in the extracellular domain (see Wilson, G.L. et al., J. Exp. Med. 173:137-146 (1991)). A minor isoform, CD22alpha, comprises 647 amino acids and lacks immunoglobulin-like domains 3 and 4 in the extracellular domain (see Stamenkovic, I. and Seed, B., Nature 345:74-77 (1990)) and Wilson et al. (1991), supra). 57 3860770_1 (GHMatters) P79401.AU.3 14-Sep-12 The amino acid sequence of CD22 beta is depicted in Figure 1 B in which the underlined portion is the extracellular domain (ECD) and the italicized portion indicates the amino acids missing from the CD22 alpha extracellular domain sequence. Figure 1C depicts the amino acid sequence of CD22alpha in which the ECD is underlined. The amino acid sequence 5 from amino acid 1 to amino acid 21 represents the signal sequence cleaved from the mature form of the protein. In one embodiment, CD22 is expressed on the cell surface, such as on the surface of a normal B cell or a tumor B cell. Figure 1D depicts the amino acid sequence of CD22 from cynomolgus monkey. "Antibodies" (Abs) and "immunoglobulins" (Igs) are glycoproteins having similar 10 structural characteristics. While antibodies exhibit binding specificity to a specific antigen, immunoglobulins include both antibodies and other antibody-like molecules which generally lack antigen specificity. Polypeptides of the latter kind are, for example, produced at low levels by the lymph system and at increased levels by myelomas. The terms "antibody" and "immunoglobulin" are used interchangeably in the broadest 15 sense and include monoclonal antibodies (e.g., full length or intact monoclonal antibodies), polyclonal antibodies, monovalent antibodies, multivalent antibodies, multispecific antibodies (e.g., bispecific antibodies so long as they exhibit the desired biological activity) and may also include certain antibody fragments (as described in greater detail herein). An antibody can be chimeric, human, humanized and/or affinity matured. 20 The term "anti-CD22 antibody" or "an antibody that binds to CD22" refers to an antibody that is capable of binding CD22 with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic agent in targeting CD22. Preferably, the extent of binding of an anti-CD22 antibody to an unrelated, non-CD22 protein is less than about 10% of the binding of the antibody to CD22 as measured, e.g., by a radioimmunoassay (RIA). In 25 certain embodiments, an antibody that binds to CD22 has a dissociation constant (Kd) of s 1pM, s 100 nM, s 10 nM, s 1 nM, or s 0.1 nM. In certain embodiments, an anti-CD22 antibody binds to an epitope of CD22 that is conserved among CD22 from different species. The "variable region" or "variable domain" of an antibody refers to the amino-terminal domains of the heavy or light chain of the antibody. The variable domain of the heavy chain 30 may be referred to as "VH." The variable domain of the light chain may be referred to as "VL." These domains are generally the most variable parts of an antibody and contain the antigen-binding sites. 58 380770_1 (GHMetters) P79401 AU.3 14-Sep-12 The term "variable" refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three 5 segments called complementarity-determining regions (CDRs) or hypervariable regions (HVRs) both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely adopting a beta-sheet configuration, connected by three CDRs, which form loops connecting, and in 10 some cases forming part of, the beta-sheet structure. The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, MD (1991)). The constant domains are not involved directly in the binding of an 15 antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity. The "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (K) and lambda (A), based on the amino acid sequences of their constant domains. 20 Depending on the amino acid sequences of the constant domains of their heavy chains, antibodies (immunoglobulins) can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG 1 , IgG 2 , IgG 3 , IgG 4 , IgA 1 , and IgA 2 . The heavy chain constant domains that correspond to the different classes of immunoglobulins 25 are called a, 8, c, y, and p, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known and described generally in, for example, Abbas et al. Cellular and Mol. Immunology, 4th ed. (2000). An antibody may be part of a larger fusion molecule, formed by covalent or non-covalent association of the antibody with one or more other proteins or peptides. 30 The terms "full length antibody," "intact antibody" and "whole antibody" are used herein interchangeably to refer to an antibody in its substantially intact form, not antibody fragments as defined below. The terms particularly refer to an antibody with heavy chains that contain the Fc region. 59 3860770_1 (GHMatters) P79401AU.3 14-Sep-12 "Antibody fragments" comprise only a portion of an intact antibody, wherein the portion retains at least one, and as many as most or all, of the functions normally associated with that portion when present in an intact antibody. In one embodiment, an antibody fragment comprises an antigen binding site of the intact antibody and thus retains the ability 5 to bind antigen. In another embodiment, an antibody fragment, for example one that comprises the Fc region, retains at least one of the biological functions normally associated with the Fc region when present in an intact antibody, such as FcRn binding, antibody half life modulation, ADCC function and complement binding. In one embodiment, an antibody fragment is a monovalent antibody that has an in vivo half life substantially similar to an 10 intact antibody. For example, such an antibody fragment may comprise on antigen binding arm linked to an Fc sequence capable of conferring in vivo stability to the fragment. Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, each with a single antigen-binding site, and a residual "Fc" fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an 15 F(ab') 2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen. "Fv" is the minimum antibody fragment which contains a complete antigen-binding site. In one embodiment, a two-chain Fv species consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. In a single-chain Fv (scFv) 20 species, one heavy- and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a "dimeric" structure analogous to that in a two-chain Fv species. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the 25 antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site. The Fab fragment contains the heavy- and light-chain variable domains and also contains the constant domain of the light chain and the first constant domain (CH1) of the 30 heavy chain. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab') 2 antibody fragments 60 30M0770_1 (GHManers) P79401 AU.3 14-Sep-12 originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known. "Single-chain Fv" or "scFv" antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Generally, the 5 scFv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding. For a review of scFv see Pluckthun, in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994). The term "diabodies" refers to small antibody fragments with two antigen-binding 10 sites, which fragments comprise a heavy-chain variable domain (VH) connected to a light chain variable domain (VL) in the same polypeptide chain (VH-VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen binding sites. Diabodies may be bivalent or bispecific. Diabodies are described more fully 15 in, for example, EP 404,097; W093/1161; Hudson et al. (2003) Nat. Med. 9:129-134; and Hollinger et al., Proc. Nati. Acad. Sci. USA 90: 6444-6448 (1993). Triabodies and tetrabodies are also described in Hudson et al. (2003) Nat. Med. 9:129-134. The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies 20 comprising the population are identical except for possible mutations, e.g., naturally occurring mutations, that may be present in minor amounts. Thus, the modifier "monoclonal" indicates the character of the antibody as not being a mixture of discrete antibodies. In certain embodiments, such a monoclonal antibody typically includes an antibody comprising a polypeptide sequence that binds a target, wherein the target-binding 25 polypeptide sequence was obtained by a process that includes the selection of a single target binding polypeptide sequence from a plurality of polypeptide sequences. For example, the selection process can be the selection of a unique clone from a plurality of clones, such as a pool of hybridoma clones, phage clones, or recombinant DNA clones. It should be understood that a selected target binding sequence can be further altered, for 30 example, to improve affinity for the target, to humanize the target binding sequence, to improve its production in cell culture, to reduce its immunogenicity in vivo, to create a multispecific antibody, etc., and that an antibody comprising the altered target binding sequence is also a monoclonal antibody of this invention. In contrast to polyclonal antibody 61 3860770_1 (GHMaters) P79401.AU.3 14-Sep-12 preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen. In addition to their specificity, monoclonal antibody preparations are advantageous in that they are typically 5 uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by a variety of 10 techniques, including, for example, the hybridoma method (e.g., Kohler et al., Nature, 256: 495 (1975); Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2 nd ed. 1988); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981)), recombinant DNA methods (see, e.g., U.S. Patent No. 4,816,567), phage display technologies (see, e.g., Clackson et al., Nature, 352: 624-628 15 (1991); Marks et al., J. Mol. Biol. 222: 581-597 (1992); Sidhu et al., J. Mol. Biol. 338(2): 299 310 (2004); Lee et al., J. Mol. Biol. 340(5): 1073-1093 (2004); Fellouse, Proc. Nati. Acad. Sci. USA 101(34): 12467-12472 (2004); and Lee et al., J. Immunol. Methods 284(1-2): 119 132(2004), and technologies for producing human or human-like antibodies in animals that have parts or all of the human immunoglobulin loci or genes encoding human 20 immunoglobulin sequences (see, e.g., W098/24893; W096/34096; W096/33735; W091/10741; Jakobovits et al., Proc. NatI. Acad. Sci. USA 90: 2551 (1993); Jakobovits et al., Nature 362: 255-258 (1993); Bruggemann et al., Year in Immunol. 7:33 (1993); U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016; Marks et al., Bio.Technology 10: 779-783 (1992); Lonberg et al., Nature 368: 856-859 (1994); 25 Morrison, Nature 368: 812-813 (1994); Fishwild et al., Nature Biotechnol. 14: 845-851 (1996); Neuberger, Nature Biotechnol. 14: 826 (1996) and Lonberg and Huszar, Intern. Rev. Immunol. 13: 65-93 (1995). The monoclonal antibodies herein specifically include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding 30 sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so 62 3800770_) (GHMatters) P79401 AU.3 14 -Sep.
12 long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA 81:6851-6855 (1984)). "Humanized" forms of non-human (e.g., murine) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin. In one 5 embodiment, a humanized antibody is a human immunoglobulin (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit, or nonhuman primate having the desired specificity, affinity, and/or capacity. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by 10 corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications may be made to further refine antibody performance. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human 15 immunoglobulin, and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally will also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992). See also the following review 20 articles and references cited therein: Vaswani and Hamilton, Ann. Allergy, Asthma & Immunol. 1:105-115 (1998); Harris, Biochem. Soc. Transactions 23:1035-1038 (1995); Hurle and Gross, Curr. Op. Biotech. 5:428-433 (1994). A "human antibody" is one which possesses an amino acid sequence which corresponds to that of an antibody produced by a human and/or has been made using any 25 of the techniques for making human antibodies as disclosed herein. This definition of a human antibody specifically excludes a humanized antibody comprising non-human antigen binding residues. The term "hypervariable region," "HVR," or "HV," when used herein refers to the regions of an antibody variable domain which are hypervariable in sequence and/or form 30 structurally defined loops. Generally, antibodies comprise six hypervariable regions; three in the VH (H1, H2, H3), and three in the VL (L1, L2, L3). In native antibodies, H3 and L3 display the most diversity of the six hypervariable regions, and H3 in particular is believed to play a unique role in conferring fine specificity to antibodies. Xu et al. (2000) Immunity 63 380770_1 (GHMalters) P79401AU.3 14-Sep.12 13:37-45; Johnson and Wu (2003) in Methods in Molecular Biology 248:1-25 (Lo, ed., Human Press, Totowa, NJ). Indeed, naturally occurring camelid antibodies consisting of a heavy chain only are functional and stable in the absence of light chain. Hamers Casterman et al. (1993) Nature 363:446-448; Sheriff et al. (1996) Nature Struct. Biol. 3:733 5 736. A number of hypervariable region delineations are in use and are encompassed herein. The Kabat Complementarity Determining Regions (CDRs) are based on sequence variability and are the most commonly used (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, 10 Bethesda, MD. (1991)). Chothia refers instead to the location of the structural loops (Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)). The AbM hypervariable regions represent a compromise between the Kabat CDRs and Chothia structural loops, and are used by Oxford Molecular's AbM antibody modeling software. The "contact" hypervariable regions are based on an analysis of the available complex crystal structures. The residues 15 from each of these hypervariable regions are noted below. Loop Kabat AbM Chothia Contact Li L24-L34 L24-L34 L26-L32 L30-L36 L2 L50-L56 L50-L56 L50-L52 L46-L55 20 L3 L89-L97 L89-L97 L91-L96 L89-L96 H1 H31-H35B H26-H35B H26-H32 H30-H35B (Kabat Numbering) H1 H31-H35 H26-H35 H26-H32 H30-H35 (Chothia Numbering) 25 H2 H50-H65 H50-H58 H53-H55 H47-H58 H3 H95-H102 H95-H102 H96-H10l H93-H1O Hypervariable regions may comprise "extended hypervariable regions" as follows: 24-36 or 24-34 (L1), 46-56 or 50-56 (L2) and 89-97 or 89-96 (L3) in the VL and 26-35 (HI), 50-65 or 49-65 (H2) and 93-102, 94-102, or 95-102 (H3) in the VH. The variable domain 30 residues are numbered according to Kabat et al., supra, for each of these definitions. The 64 3680770_1 (GHMatters) P79401 AU 3 14-Sep-12 HVR-H1 and HVR-H2 hypervariable regions of the anti-CD22 10F4 antibodies of the invention are H26-H35 and H49-H65 using Kabat numbering. "Framework" or "FR" residues are those variable domain residues other than the hypervariable region residues as herein defined. 5 The term "variable domain residue numbering as in Kabat" or "amino acid position numbering as in Kabat," and variations thereof, refers to the numbering system used for heavy chain variable domains or light chain variable domains of the compilation of antibodies in Kabat et al., Sequences of Proteins of Immunological Interest, 5t Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991). Using this numbering 10 system, the actual linear amino acid sequence may contain fewer or additional amino acids corresponding to a shortening of, or insertion into, a FR or HVR of the variable domain. For example, a heavy chain variable domain may include a single amino acid insert (residue 52a according to Kabat) after residue 52 of H2 and inserted residues (e.g. residues 82a, 82b, and 82c, etc. according to Kabat) after heavy chain FR residue 82. The Kabat numbering of 15 residues may be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a "standard" Kabat numbered sequence. A "free cysteine amino acid" refers to a cysteine amino acid residue which has been engineered into a parent antibody, has a thiol functional group (-SH), and is not paired as, or otherwise part of, an intramolecular or intermolecular disulfide bridge. 20 The term "thiol reactivity value" is a quantitative characterization of the reactivity of free cysteine amino acids. The thiol reactivity value is the percentage of a free cysteine amino acid in a cysteine engineered antibody which reacts with a thiol-reactive reagent, and converted to a maximum value of 1. For example, a free cysteine amino acid on a cysteine engineered antibody which reacts in 100% yield with a thiol-reactive reagent, such as a 25 biotin-maleimide reagent, to form a biotin-labelled antibody has a thiol reactivity value of 1.0. Another cysteine amino acid engineered into the same or different parent antibody which reacts in 80% yield with a thiol-reactive reagent has a thiol reactivity value of 0.8. Another cysteine amino acid engineered into the same or different parent antibody which fails totally to react with a thiol-reactive reagent has a thiol reactivity value of 0. Determination of the 30 thiol reactivity value of a particular cysteine may be conducted by ELISA assay, mass spectroscopy, liquid chromatography, autoradiography, or other quantitative analytical tests. Thiol-reactive reagents which allow capture of the cysteine engineered antibody and comparison and quantitation of the cysteine reactivity include biotin-PEO-maleimide ((+) 65 380770.1 (GHM1ters) P79401.AU3 14-Sep-12 biotinyl-3-maleimidopropionamidyl-3,6-dioxaoctainediamine, Oda et al (2001) Nature Biotechnology 19:379-382, Pierce Biotechnology, Inc.) Biotin-BMCC, PEO-lodoacetyl Biotin, lodoacetyl-LC-Biotin, and Biotin-HPDP (Pierce Biotechnology, Inc.), and NaX-(3 maleimidylpropionyl)biocytin (MPB, Molecular Probes, Eugene, OR). Other commercial 5 sources for biotinylation, bifunctional and multifunctional linker reagents include Molecular Probes, Eugene, OR, and Sigma, St. Louis, MO A "parent antibody" is an antibody comprising an amino acid sequence from which one or more amino acid residues are replaced by one or more cysteine residues. The parent antibody may comprise a native or wild type sequence. The parent antibody may 10 have pre-existing amino acid sequence modifications (such as additions, deletions and/or substitutions) relative to other native, wild type, or modified forms of an antibody. A parent antibody may be directed against a target antigen of interest, e.g. a biologically important polypeptide. Antibodies directed against nonpolypeptide antigens (such as tumor associated glycolipid antigens; see US 5091178) are also contemplated. 15 The following abbreviations are used herein and have the indicated definitions: BME is beta-mercaptoethanol, Boc is N-(t-butoxycarbonyl), cit is citrulline (2-amino-5-ureido pentanoic acid), dap is dolaproine, DCC is 1,3-dicyclohexylcarbodiimide, DCM is dichloromethane, DEA is diethylamine, DEAD is diethylazodicarboxylate, DEPC is diethylphosphorylcyanidate, DIAD is diisopropylazodicarboxylate, DIEA is N,N 20 diisopropylethylamine, dil is dolaisoleucine, DMA is dimethylacetamide, DMAP is 4 dimethylaminopyridine, DME is ethyleneglycol dimethyl ether (or 1,2-dimethoxyethane), DMF is N,N-dimethylformamide, DMSO is dimethylsulfoxide, doe is dolaphenine, dov is N,N dimethylvaline, DTNB is 5,5'-dithiobis(2-nitrobenzoic acid), DTPA is diethylenetriaminepentaacetic acid, DTT is dithiothreitol, EDCI is 1-(3-dimethylaminopropyl) 25 3-ethylcarbodiimide hydrochloride, EEDQ is 2-ethoxy-1-ethoxycarbonyl-1,2 dihydroquinoline, ES-MS is electrospray mass spectrometry, EtOAc is ethyl acetate, Fmoc is N-(9-fluorenylmethoxycarbonyl), gly is glycine, HATU is O-(7-azabenzotriazol-1-yl) N,N,N',N'-tetramethyluronium hexafluorophosphate, HOBt is 1-hydroxybenzotriazole, HPLC is high pressure liquid chromatography, ile is isoleucine, lys is lysine, MeCN (CH 3 CN) is 30 acetonitrile, MeOH is methanol, Mtr is 4-anisyldiphenylmethyl (or 4-methoxytrityl),nor is (1S, 2R)-(+)-norephedrine, PAB is p-aminobenzylcarbamoyl, PBS is phosphate-buffered saline (pH 7), PEG is polyethylene glycol, Ph is phenyl, Pnp is p-nitrophenyl, MC is 6 maleimidocaproyl, phe is L-phenylalanine, PyBrop is bromo tris-pyrrolidino phosphonium 66 300770.1 (GHManers) P79401.AU.3 14-Sep-12 hexafluorophosphate, SEC is size-exclusion chromatography, Su is succinimide, TFA is trifluoroacetic acid, TLC is thin layer chromatography, UV is ultraviolet, and val is valine. An "affinity matured" antibody is one with one or more alterations in one or more HVRs thereof which result in an improvement in the affinity of the antibody for antigen, 5 compared to a parent antibody which does not possess those alteration(s). In one embodiment, an affinity matured antibody has nanomolar or even picomolar affinities for the target antigen. Affinity matured antibodies are produced by procedures known in the art. Marks et al. Bio/Technology 10:779-783 (1992) describes affinity maturation by VH and VL domain shuffling. Random mutagenesis of HVR and/or framework residues is described by: 10 Barbas et al. Proc Nat. Acad. Sci. USA 91:3809-3813 (1994); Schier et al. Gene 169:147 155 (1995); Yelton et al. J. Immunol. 155:1994-2004 (1995); Jackson et al., J. Immunol. 154(7):3310-9 (1995); and Hawkins et al, J. Mol. Biol. 226:889-896 (1992). A "blocking" antibody or an "antagonist" antibody is one which inhibits or reduces biological activity of the antigen it binds. Certain blocking antibodies or antagonist 15 antibodies substantially or completely inhibit the biological activity of the antigen. An "agonist antibody," as used herein, is an antibody which mimics at least one of the functional activities of a polypeptide of interest. Antibody "effector functions" refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an 20 antibody, and vary with the antibody isotype. Examples of antibody effector functions include: Clq binding and complement dependent cytotoxicity; Fc receptor binding; antibody dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor); and B cell activation. "Fc receptor" or "FcR" describes a receptor that binds to the Fc region of an 25 antibody. In some embodiments, an FcR is a native human FcR. In some embodiments, an FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcyRI, FcyRlI, and FcyRlIl subclasses, including allelic variants and alternatively spliced forms of those receptors. FcyRIl receptors include FcyRIIA (an "activating receptor") and FcyRIIB (an "inhibiting receptor"), which have similar amino acid sequences that differ 30 primarily in the cytoplasmic domains thereof. Activating receptor FcyRIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. Inhibiting receptor FcyRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its 67 380770_1 (GHMt1ers) P79401.AU.3 14-Sep-12 cytoplasmic domain. (see Daeron, Annu. Rev. Immunol. 15:203-234 (1997)). FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term 5 "FcR" herein. The term "Fc receptor" or "FcR" also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., J. Immunol. 117:587 (1976) and Kim et al., J. Immunol. 24:249 (1994)) and regulation of homeostasis of immunoglobulins. Methods of measuring binding to FcRn are known (see, e.g., Ghetie 10 1997, Hinton 2004). Binding to human FcRn in vivo and serum half life of human FcRn high affinity binding polypeptides can be assayed, e.g., in transgenic mice or transfected human cell lines expressing human FcRn, or in primates administered with the Fc variant polypeptides. WO00/42072 (Presta) describes antibody variants with improved or diminished 15 binding to FcRs. The content of that patent publication is specifically incorporated herein by reference. See, also, Shields et al. J. Biol. Chem. 9(2): 6591-6604 (2001). "Human effector cells" are leukocytes which express one or more FcRs and perform effector functions. In certain embodiments, the cells express at least FcyRlIl and perform ADCC effector function(s). Examples of human leukocytes which mediate ADCC include 20 peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils. The effector cells may be isolated from a native source, e.g., from blood. "Antibody-dependent cell-mediated cytotoxicity" or "ADCC" refers to a form of cytotoxicity in which secreted Ig bound onto Fc receptors (FcRs) present on certain cytotoxic 25 cells (e.g. Natural Killer (NK) cells, neutrophils, and macrophages) enable these cytotoxic effector cells to bind specifically to an antigen-bearing target cell and subsequently kill the target cell with cytotoxins. The primary cells for mediating ADCC, NK cells, express FcyRlIl only, whereas monocytes express FcyRI, FcyRll and FcyRlIl. FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. 30 Immunol 9:457-92 (1991). To assess ADCC activity of a molecule of interest, an in vitro ADCC assay, such as that described in US Patent No. 5,500,362 or 5,821,337 or Presta U.S. Patent No. 6,737,056 may be performed. Useful effector cells for such assays include 68 36607701 (GHMaMters) P79401.AU.3 14-Sep-1 2 peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. PNAS (USA) 95:652-656 (1998). "Complement dependent cytotoxicity" or "CDC" refers to the lysis of a target cell in 5 the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (Cl q) to antibodies (of the appropriate subclass) which are bound to their cognate antigen. To assess complement activation, a CDC assay, e.g. as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996), may be performed. 10 Polypeptide variants with altered Fc region amino acid sequences and increased or decreased C1q binding capability are described in US Patent No. 6,194,551B1 and W099/51642. The contents of those patent publications are specifically incorporated herein by reference. See, also, Idusogie et al. J. Immunol. 164: 4178-4184 (2000). The term "Fc region-comprising polypeptide" refers to a polypeptide, such as an 15 antibody or immunoadhesin, which comprises an Fc region. The C-terminal lysine (residue 447 according to the EU numbering system) of the Fc region may be removed, for example, during purification of the polypeptide or by recombinant engineering the nucleic acid encoding the polypeptide. Accordingly, a composition comprising a polypeptide having an Fc region according to this invention can comprise polypeptides with K447, with all K447 20 removed, or a mixture of polypeptides with and without the K447 residue. An "acceptor human framework" for the purposes herein is a framework comprising the amino acid sequence of a VL or VH framework derived from a human immunoglobulin framework or a human consensus framework. An acceptor human framework "derived from" a human immunoglobulin framework or a human consensus framework may comprise 25 the same amino acid sequence thereof, or it may contain pre-existing amino acid sequence changes. In some embodiments, the number of pre-existing amino acid changes are 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, or 2 or less. Where pre-existing amino acid changes are present in a VH, preferably those changes occur at only three, two, or one of positions 71 H, 73H and 78H; for instance, the amino acid 30 residues at those positions may be 71A, 73T and/or 78A. In one embodiment, the VL acceptor human framework is identical in sequence to the VL human immunoglobulin framework sequence or human consensus framework sequence. 69 36607701 (GHMatters) P79401 AU.3 14-Sep-12 A "human consensus framework" is a framework which represents the most commonly occurring amino acid residues in a selection of human immunoglobulin VL or VH framework sequences. Generally, the selection of human immunoglobulin VL or VH sequences is from a subgroup of variable domain sequences. Generally, the subgroup of 5 sequences is a subgroup as in Kabat et al., Sequences of Proteins of Immunological Interest, 5' Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991). In one embodiment, for the VL, the subgroup is subgroup kappa I as in Kabat et al., supra. In one embodiment, for the VH, the subgroup is subgroup Ill as in Kabat et al., supra. A "VH subgroup III consensus framework" comprises the consensus sequence 10 obtained from the amino acid sequences in variable heavy subgroup III of Kabat et al., supra. In one embodiment, the VH subgroup III consensus framework amino acid sequence comprises at least a portion or all of each of the following sequences: EVQLVESGGGLVQPGGSLRLSCAAS (FR-H1, SEQ ID NO:1)-HVR-H1 WVRQAPGKGLEWV (FR-H2, SEQ ID NO:3)-HVR-H2 15 RFTISADTSKNTAYLQMNSLRAEDTAVYYC (FR-H3, SEQ ID NO:5)-HVR-H3 WGQGTLVTVSS (FR-H4, SEQ ID NO:7). A "VL subgroup I consensus framework" comprises the consensus sequence obtained from the amino acid sequences in variable light kappa subgroup I of Kabat et al., supra. In one embodiment, the VH subgroup I consensus framework amino acid sequence 20 comprises at least a portion or all of each of the following sequences: DIQMTQSPSSLSASVGDRVTITC (FR-L1, SEQ ID NO:8)-HVR-L1-WYQQKPGKAPKLLIY (FR-L2, SEQ ID NO: 11)-HVR-L2-GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC (FR-L3, SEQ ID NO:13)-HVR-L3-FGQGTKVEIK (FR-L4, SEQ ID NO:15). "Secretion signal sequence" or "signal sequence" refers to a nucleic acid sequence 25 encoding a short signal peptide that can be used to direct a newly synthesized protein of interest through a cellular membrane, usually the inner membrane or both inner and outer membranes of prokaryotes. As such, the protein of interest such as the immunoglobulin light or heavy chain polypeptide is secreted into the periplasm of the prokaryotic host cells or into the culture medium. The signal peptide encoded by the secretion signal sequence 30 may be endogenous to the host cells, or they may be exogenous, including signal peptides native to the polypeptide to be expressed. Secretion signal sequences are typically present at the amino terminus of a polypeptide to be expressed, and are typically removed 70 360770_1 (GHMattes) P79401 .AU.3 14-Sep-12 enzymatically between biosynthesis and secretion of the polypeptide from the cytoplasm. Thus, the signal peptide is usually not present in a mature protein product. "Binding affinity" generally refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding 5 partner (e.g., an antigen). Unless indicated otherwise, as used herein, "binding affinity" refers to intrinsic binding affinity which reflects a 1:1 interaction between members of a binding pair (e.g., antibody and antigen). The affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (Kd). Affinity can be measured by common methods known in the art, including those described herein. Low-affinity 10 antibodies generally bind antigen slowly and tend to dissociate readily, whereas high-affinity antibodies generally bind antigen faster and tend to remain bound longer. A variety of methods of measuring binding affinity are known in the art, any of which can be used for purposes of the present invention. Specific illustrative embodiments are described in the following. 15 In one embodiment, the "Kd" or "Kd value" according to this invention is measured by a radiolabeled antigen binding assay (RIA) performed with the Fab version of an antibody of interest and its antigen as described by the following assay. Solution binding affinity of Fabs for antigen is measured by equilibrating Fab with a minimal concentration of (1251) labeled antigen in the presence of a titration series of unlabeled antigen, then capturing 20 bound antigen with an anti-Fab antibody-coated plate (Chen, et al., (1999) J. Mol. Biol. 293:865-881). To establish conditions for the assay, microtiter plates (Dynex) are coated overnight with 5 pg/ml of a capturing anti-Fab antibody (Cappel Labs) in 50 mM sodium carbonate (pH 9.6), and subsequently blocked with 2% (w/v) bovine serum albumin in PBS for two to five hours at room temperature (approximately 230C). In a non-adsorbent plate 25 (Nunc #269620), 100 pM or 26 pM [ 125 1]-antigen are mixed with serial dilutions of a Fab of interest (e.g., consistent with assessment of the anti-VEGF antibody, Fab-12, in Presta et al., (1997) Cancer Res. 57:4593-4599). The Fab of interest is then incubated overnight; however, the incubation may continue for a longer period (e.g., about 65 hours) to ensure that equilibrium is reached. Thereafter, the mixtures are transferred to the capture plate for 30 incubation at room temperature (e.g., for one hour). The solution is then removed and the plate washed eight times with 0.1% Tween-20 in PBS. When the plates have dried, 150 pl/well of scintillant (MicroScint-20; Packard) is added, and the plates are counted on a Topcount gamma counter (Packard) for ten minutes. Concentrations of each Fab that give 71 3880770_1 (GHMatters) P79401.AU.3 14-Sep-12 less than or equal to 20% of maximal binding are chosen for use in competitive binding assays. According to another embodiment, the Kd or Kd value is measured by using surface plasmon resonance assays using a BlAcoreTM-2000 or a BlAcoreTM-3000 (BlAcore, Inc., 5 Piscataway, NJ) at 25 0 C with immobilized antigen CM5 chips at -10 response units (RU). Briefly, carboxymethylated dextran biosensor chips (CM5, BlAcore Inc.) are activated with N-ethyl-N'- (3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N hydroxysuccinimide (NHS) according to the supplier's instructions. Antigen is diluted with 10 mM sodium acetate, pH 4.8, to 5 pg/ml (-0.2 pM) before injection at a flow rate of 5 10 pl/minute to achieve approximately 10 response units (RU) of coupled protein. Following the injection of antigen, 1 M ethanolamine is injected to block unreacted groups. For kinetics measurements, two-fold serial dilutions of Fab (0.78 nM to 500 nM) are injected in PBS with 0.05% Tween 20 (PBST) at 250C at a flow rate of approximately 25 pl/min. Association rates (kon) and dissociation rates (koff) are calculated using a simple one-to 15 one Langmuir binding model (BlAcore Evaluation Software version 3.2) by simultaneously fitting the association and dissociation sensorgrams. The equilibrium dissociation constant (Kd) is calculated as the ratio koff/kon. See, e.g., Chen, Y., et al., (1999) J. Mol. Biol. 293:865-881. If the on-rate exceeds 106 M-1 s-1 by the surface plasmon resonance assay above, then the on-rate can be determined by using a fluorescent quenching technique that 20 measures the increase or decrease in fluorescence emission intensity (excitation = 295 nm; emission = 340 nm, 16 nm band-pass) at 25oC of a 20 nM anti-antigen antibody (Fab form) in PBS, pH 7.2, in the presence of increasing concentrations of antigen as measured in a spectrometer, such as a stop-flow equipped spectrophometer (Aviv Instruments) or a 8000 series SLM-Aminco spectrophotometer (ThermoSpectronic) with a stirred cuvette. 25 An "on-rate," "rate of association," "association rate," or "ko," according to this invention can also be determined as described above using a BlAcoreTM-2000 or a BlAcoreTM-3000 system (BlAcore, Inc., Piscataway, NJ). A "disorder" is any condition or disease that would benefit from treatment with an substance/molecule or method of the invention. This includes chronic and acute disorders 30 including those pathological conditions which predispose the mammal to the disorder in question. Non-limiting examples of disorders to be treated herein include cancerous conditions such as B cell proliferative disorders and/or B cell tumors, e.g., lymphoma, non Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent 72 380770_1 (GHMatters) P79401.AU.3 14-Sep-12 NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma. The terms "cell proliferative disorder" and "proliferative disorder" refer to disorders 5 that are associated with some degree of abnormal cell proliferation. In one embodiment, the cell proliferative disorder is cancer. "Tumor," as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. The terms "cancer," "cancerous," "cell proliferative disorder," "proliferative disorder" and "tumor" 10 are not mutually exclusive as referred to herein. The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth/proliferation. Examples of cancer include, but are not limited to, cancerous B cell proliferative disorders B cell proliferative disorder is selected from lymphoma, non-Hogkins lymphoma (NHL), 15 aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma. Other cancers conditions included, for example, carcinoma, lymphoma (e.g., Hodgkin's and non-Hodgkin's lymphoma), blastoma, sarcoma, and leukemia. More 20 particular examples of such cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland 25 carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, leukemia and other lymphoproliferative disorders, and various types of head and neck cancer. A "B-cell malignancy" herein includes non-Hodgkin's lymphoma (NHL), including low grade/follicular NHL, small lymphocytic (SL) NHL, intermediate grade/follicular NHL, 30 intermediate grade diffuse NHL, high grade immunoblastic NHL, high grade lymphoblastic NHL, high grade small non-cleaved cell NHL, bulky disease NHL, mantle cell lymphoma, AIDS-related lymphoma, and Waldenstrom's Macroglobulinemia, non-Hodgkin's lymphoma (NHL), lymphocyte predominant Hodgkin's disease (LPHD), small lymphocytic lymphoma 73 3680770_1 (GHMatters) P79401 AU.3 1 4 -Sep-12 (SLL), chronic lymphocytic leukemia (CLL), indolent NHL including relapsed indolent NHL and rituximab-refractory indolent NHL; leukemia, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), Hairy cell leukemia, chronic myeloblastic leukemia; mantle cell lymphoma; and other hematologic malignancies. Such malignancies 5 may be treated with antibodies directed against B-cell surface markers, such as CD22. Such diseases are contemplated herein to be treated by the administration of an antibody directed against a B cell surface marker, such as CD22, and includes the administration of an unconjugated ("naked") antibody or an antibody conjugated to a cytotoxic agent as disclosed herein. Such diseases are also contemplated herein to be treated by combination 10 therapy including an anti-CD22 antibody or anti-CD22 antibody drug conjugate of the invention in combination with another antibody or antibody drug conjugate, another cytoxic agent, radiation or other treatment administered simultaneously or in series. In exemplary treatment method of the invention, an anti-CD22 antibody of the invention is administered in combination with an anti-CD20 antibody, immunoglobulin, or CD20 binding fragment 15 thereof, either together or sequentially. The anti-CD20 antibody may be a naked antibody or an antibody drug conjugate. In an embodiment of the combination therapy, the anti CD22 antibody is an antibody of the present invention and the anti-CD20 antibody is Rituxan@ (rituximab). The term "non-Hodgkin's lymphoma" or "NHL", as used herein, refers to a cancer of 20 the lymphatic system other than Hodgkin's lymphomas. Hodgkin's lymphomas can generally be distinguished from non-Hodgkin's lymphomas by the presence of Reed Sternberg cells in Hodgkin's lymphomas and the absence of said cells in non-Hodgkin's lymphomas. Examples of non-Hodgkin's lymphomas encompassed by the term as used herein include any that would be identified as such by one skilled in the art (e.g., an 25 oncologist or pathologist) in accordance with classification schemes known in the art, such as the Revised European-American Lymphoma (REAL) scheme as described in Color Atlas of Clinical Hematology (3rd edition), A. Victor Hoffbrand and John E. Pettit (eds.) (Harcourt Publishers Ltd., 2000). See, in particular, the lists in Fig. 11.57, 11.58 and 11.59. More specific examples include, but are not limited to, relapsed or refractory NHL, front line low 30 grade NHL, Stage Ill/IV NHL, chemotherapy resistant NHL, precursor B lymphoblastic leukemia and/or lymphoma, small lymphocytic lymphoma, B cell chronic lymphocytic leukemia and/or prolymphocytic leukemia and/or small lymphocytic lymphoma, B-cell prolymphocytic lymphoma, immunocytoma and/or lymphoplasmacytic lymphoma, lymphoplasmacytic lymphoma, marginal zone B cell lymphoma, splenic marginal zone 35 lymphoma, extranodal marginal zone - MALT lymphoma, nodal marginal zone lymphoma, 74 380770_1 (GHMatters) P79401.AU.3 14-Sep-12 hairy cell leukemia, plasmacytoma and/or plasma cell myeloma, low grade/follicular lymphoma, intermediate grade/follicular NHL, mantle cell lymphoma, follicle center lymphoma (follicular), intermediate grade diffuse NHL, diffuse large B-cell lymphoma, aggressive NHL (including aggressive front-line NHL and aggressive relapsed NHL), NHL 5 relapsing after or refractory to autologous stem cell transplantation, primary mediastinal large B-cell lymphoma, primary effusion lymphoma, high grade immunoblastic NHL, high grade lymphoblastic NHL, high grade small non-cleaved cell NHL, bulky disease NHL, Burkitt's lymphoma, precursor (peripheral) large granular lymphocytic leukemia, mycosis fungoides and/or Sezary syndrome, skin (cutaneous) lymphomas, anaplastic large cell 10 lymphoma, angiocentric lymphoma. An "autoimmune disease" herein is a disease or disorder arising from and directed against an individual's own tissues or organs or a co-segregate or manifestation thereof or resulting condition therefrom. In many of these autoimmune and inflammatory disorders, a number of clinical and laboratory markers may exist, including, but not limited to, 15 hypergammaglobulinemia, high levels of autoantibodies, antigen-antibody complex deposits in tissues, benefit from corticosteroid or immunosuppressive treatments, and lymphoid cell aggregates in affected tissues. Without being limited to any one theory regarding B-cell mediated autoimmune disease, it is believed that B cells demonstrate a pathogenic effect in human autoimmune diseases through a multitude of mechanistic pathways, including 20 autoantibody production, immune complex formation, dendritic and T-cell activation, cytokine synthesis, direct chemokine release, and providing a nidus for ectopic neo lymphogenesis. Each of these pathways may participate to different degrees in the pathology of autoimmune diseases. "Autoimmune disease" can be an organ-specific disease (i.e., the immune response 25 is specifically directed against an organ system such as the endocrine system, the hematopoietic system, the skin, the cardiopulmonary system, the gastrointestinal and liver systems, the renal system, the thyroid, the ears, the neuromuscular system, the central nervous system, etc.) or a systemic disease which can affect multiple organ systems (for example, systemic lupus erythematosus (SLE), rheumatoid arthritis, polymyositis, etc.). 30 Preferred such diseases include autoimmune rheumatologic disorders (such as, for example, rheumatoid arthritis, Sjogren's syndrome, scleroderma, lupus such as SLE and lupus nephritis, polymyositis/dermatomyositis, cryoglobulinemia, anti-phospholipid antibody syndrome, and psoriatic arthritis), autoimmune gastrointestinal and liver disorders (such as, for example, inflammatory bowel diseases (e.g., ulcerative colitis and Crohn's disease), 75 3060770_1 (GHMatters) P79401.AU.3 14-Sep.12 autoimmune gastritis and pernicious anemia, autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis, and celiac disease), vasculitis (such as, for example, ANCA negative vasculitis and ANCA-associated vasculitis, including Churg-Strauss vasculitis, Wegener's granulomatosis, and microscopic polyangiitis), autoimmune neurological 5 disorders (such as, for example, multiple sclerosis, opsoclonus myoclonus syndrome, myasthenia gravis, neuromyelitis optica, Parkinson's disease, Alzheimer's disease, and autoimmune polyneuropathies), renal disorders (such as, for example, glomerulonephritis, Goodpasture's syndrome, and Berger's disease), autoimmune dermatologic disorders (such as, for example, psoriasis, urticaria, hives, pemphigus vulgaris, bullous pemphigoid, and 10 cutaneous lupus erythematosus), hematologic disorders (such as, for example, thrombocytopenic purpura, thrombotic thrombocytopenic purpura, post-transfusion purpura, and autoimmune hemolytic anemia), atherosclerosis, uveitis, autoimmune hearing diseases (such as, for example, inner ear disease and hearing loss), Behcet's disease, Raynaud's syndrome, organ transplant, and autoimmune endocrine disorders (such as, for example, 15 diabetic-related autoimmune diseases such as insulin-dependent diabetes mellitus (IDDM), Addison's disease, and autoimmune thyroid disease (e.g., Graves' disease and thyroiditis)). More preferred such diseases include, for example, rheumatoid arthritis, ulcerative colitis, ANCA-associated vasculitis, lupus, multiple sclerosis, Sj6gren's syndrome, Graves' disease, IDDM, pernicious anemia, thyroiditis, and glomerulonephritis. 20 Specific examples of other autoimmune diseases as defined herein, which in some cases encompass those listed above, include, but are not limited to, arthritis (acute and chronic, rheumatoid arthritis including juvenile-onset rheumatoid arthritis and stages such as rheumatoid synovitis, gout or gouty arthritis, acute immunological arthritis, chronic inflammatory arthritis, degenerative arthritis, type 11 collagen-induced arthritis, infectious 25 arthritis, Lyme arthritis, proliferative arthritis, psoriatic arthritis, Still's disease, vertebral arthritis, osteoarthritis, arthritis chronica progrediente, arthritis deformans, polyarthritis chronica primaria, reactive arthritis, menopausal arthritis, estrogen-depletion arthritis, and ankylosing spondylitis/rheumatoid spondylitis), autoimmune lymphoproliferative disease, inflammatory hyperproliferative skin diseases, psoriasis such as plaque psoriasis, gutatte 30 psoriasis, pustular psoriasis, and psoriasis of the nails, atopy including atopic diseases such as hay fever and Job's syndrome, dermatitis including contact dermatitis, chronic contact dermatitis, exfoliative dermatitis, allergic dermatitis, allergic contact dermatitis, hives, dermatitis herpetiformis, nummular dermatitis, seborrheic dermatitis, non-specific dermatitis, primary irritant contact dermatitis, and atopic dermatitis, x-linked hyper IgM syndrome, 35 allergic intraocular inflammatory diseases, urticaria such as chronic allergic urticaria and 76 30007701 (GHMatters) P79401.AU.3 14-Sep-12 chronic idiopathic urticaria, including chronic autoimmune urticaria, myositis, polymyositis/dermatomyositis, juvenile dermatomyositis, toxic epidermal necrolysis', scleroderma (including systemic scleroderma), sclerosis such as systemic sclerosis, multiple sclerosis (MS) such as spino-optical MS, primary progressive MS (PPMS), and relapsing 5 remitting MS (RRMS), progressive systemic sclerosis, atherosclerosis, arteriosclerosis, sclerosis disseminata, ataxic sclerosis, neuromyelitis optica (NMO), inflammatory bowel disease (IBD) (for example, Crohn's disease, autoimmune-mediated gastrointestinal diseases, gastrointestinal inflammation, colitis such as ulcerative colitis, colitis ulcerosa, microscopic colitis, collagenous colitis, colitis polyposa, necrotizing enterocolitis, and 10 transmural colitis, and autoimmune inflammatory bowel disease), bowel inflammation, pyoderma gangrenosum, erythema nodosum, primary sclerosing cholangitis, respiratory distress syndrome, including adult or acute respiratory distress syndrome (ARDS), meningitis, inflammation of all or part of the uvea, iritis, choroiditis, an autoimmune hematological disorder, graft-versus-host disease, angioedema such as hereditary 15 angioedema, cranial nerve damage as in meningitis, herpes gestationis, pemphigoid gestationis, pruritis scroti, autoimmune premature ovarian failure, sudden hearing loss due to an autoimmune condition, IgE-mediated diseases such as anaphylaxis and allergic and atopic rhinitis, encephalitis such as Rasmussen's encephalitis and limbic and/or brainstem encephalitis, uveitis, such as anterior uveitis, acute anterior uveitis, granulomatous uveitis, 20 nongranulomatous uveitis, phacoantigenic uveitis, posterior uveitis, or autoimmune uveitis, glomerulonephritis (GN) with and without nephrotic syndrome such as chronic or acute glomerulonephritis such as primary GN, immune-mediated GN, membranous GN (membranous nephropathy), idiopathic membranous GN or idiopathic membranous nephropathy, membrano- or membranous proliferative GN (MPGN), including Type I and 25 Type 11, and rapidly progressive GN (RPGN), proliferative nephritis, autoimmune polyglandular endocrine failure, balanitis including balanitis circumscripta plasmacellularis, balanoposthitis, erythema annulare centrifugum, erythema dyschromicum perstans, eythema multiform, granuloma annulare, lichen nitidus, lichen sclerosus et atrophicus, lichen simplex chronicus, lichen spinulosus, lichen planus, lamellar ichthyosis, epidermolytic 30 hyperkeratosis, premalignant keratosis, pyoderma gangrenosum, allergic conditions and responses, food allergies, drug allergies, insect allergies, rare allergic disorders such as mastocytosis, allergic reaction, eczema including allergic or atopic eczema, asteatotic eczema, dyshidrotic eczema, and vesicular palmoplantar eczema, asthma such as asthma bronchiale, bronchial asthma, and auto-immune asthma, conditions involving infiltration of T 35 cells and chronic inflammatory responses, immune reactions against foreign antigens such 77 3680770_1 (GHMatters) P79401.AU.3 14-Sep-12 as fetal A-B-O blood groups during pregnancy, chronic pulmonary inflammatory disease, autoimmune myocarditis, leukocyte adhesion deficiency, lupus, including lupus nephritis, lupus cerebritis, pediatric lupus, non-renal lupus, extra-renal lupus, discoid lupus and discoid lupus erythematosus, alopecia lupus, SLE, such as cutaneous SLE or subacute cutaneous 5 SLE, neonatal lupus syndrome (NLE), and lupus erythematosus disseminatus, juvenile onset (Type 1) diabetes mellitus, including pediatric IDDM, adult onset diabetes mellitus (Type 11 diabetes), autoimmune diabetes, idiopathic diabetes insipidus, diabetic retinopathy, diabetic nephropathy, diabetic colitis, diabetic large-artery disorder, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T 10 lymphocytes, tuberculosis, sarcoidosis, granulomatosis including lymphomatoid granulomatosis, agranulocytosis, vasculitides (including large-vessel vasculitis such as polymyalgia rheumatica and giant-cell (Takayasu's) arteritis, medium-vessel vasculitis such as Kawasaki's disease and polyarteritis nodosa/periarteritis nodosa, immunovasculitis, CNS vasculitis, cutaneous vasculitis, hypersensitivity vasculitis, necrotizing vasculitis such as 15 fibrinoid necrotizing vasculitis and systemic necrotizing vasculitis, ANCA-negative vasculitis, and ANCA-associated vasculitis such as Churg-Strauss syndrome (CSS), Wegener's granulomatosis, and microscopic polyangiitis), temporal arteritis, aplastic anemia, autoimmune aplastic anemia, Coombs positive anemia, Diamond Blackfan anemia, hemolytic anemia or immune hemolytic anemia including autoimmune hemolytic anemia 20 (AIHA), pernicious anemia (anemia perniciosa), Addison's disease, pure red cell anemia or aplasia (PRCA), Factor VIII deficiency, hemophilia A, autoimmune neutropenia(s), cytopenias such as pancytopenia, leukopenia, diseases involving leukocyte diapedesis, CNS inflammatory disorders, Alzheimer's disease, Parkinson's disease, multiple organ injury syndrome such as those secondary to septicemia, trauma or hemorrhage, antigen-antibody 25 complex- mediated diseases, anti-glomerular basement membrane disease, anti phospholipid antibody syndrome, motoneuritis, allergic neuritis, Behget's disease/syndrome, Castleman's syndrome, Goodpasture's syndrome, Reynaud's syndrome, Sjogren's syndrome, Stevens-Johnson syndrome, pemphigoid or pemphigus such as pemphigoid bullous, cicatricial (mucous membrane) pemphigoid, skin pemphigoid, pemphigus vulgaris, 30 paraneoplastic pemphigus, pemphigus foliaceus, pemphigus mucus-membrane pemphigoid, and pemphigus erythematosus, epidermolysis bullosa acquisita, ocular inflammation, preferably allergic ocular inflammation such as allergic conjunctivis, linear IgA bullous disease, autoimmune-induced conjunctival inflammation, autoimmune polyendocrinopathies, Reiter's disease or syndrome, thermal injury due to an autoimmune 35 condition, preeclampsia, an immune complex disorder such as immune complex nephritis, 78 3880770_1 (GHMatters) P79401 AU.3 14-Sep-12 antibody-mediated nephritis, neuroinflammatory disorders, polyneuropathies, chronic neuropathy such as IgM polyneuropathies or IgM-mediated neuropathy, thrombocytopenia (as developed by myocardial infarction patients, for example), including thrombotic thrombocytopenic purpura (TTP), post-transfusion purpura (PTP), heparin-induced 5 thrombocytopenia, and autoimmune or immune-mediated thrombocytopenia including, for example, idiopathic thrombocytopenic purpura (ITP) including chronic or acute ITP, scleritis such as idiopathic cerato-scleritis, episcleritis, autoimmune disease of the testis and ovary including autoimmune orchitis and oophoritis, primary hypothyroidism, hypoparathyroidism, autoimmune endocrine diseases including thyroiditis such as autoimmune thyroiditis, 10 Hashimoto's disease, chronic thyroiditis (Hashimoto's thyroiditis), or subacute thyroiditis, autoimmune thyroid disease, idiopathic hypothyroidism, Grave's disease, Grave's eye disease (ophthalmopathy or thyroid-associated ophthalmopathy), polyglandular syndromes such as autoimmune polyglandular syndromes, for example, type I (or polyglandular endocrinopathy syndromes), paraneoplastic syndromes, including neurologic paraneoplastic 15 syndromes such as Lambert-Eaton myasthenic syndrome or Eaton-Lambert syndrome, stiff man or stiff-person syndrome, encephalomyelitis such as allergic encephalomyelitis or encephalomyelitis allergica and experimental allergic encephalomyelitis (EAE), myasthenia gravis such as thymoma-associated myasthenia gravis, cerebellar degeneration, neuromyotonia, opsoclonus or opsoclonus myoclonus syndrome (OMS), and sensory 20 neuropathy, multifocal motor neuropathy, Sheehan's syndrome, autoimmune hepatitis, chronic hepatitis, lupoid hepatitis, giant-cell hepatitis, chronic active hepatitis or autoimmune chronic active hepatitis, pneumonitis such as lymphoid interstitial pneumonitis (LIP), bronchiolitis obliterans (non-transplant) vs NSIP, Guillain-Barre syndrome, Berger's disease (IgA nephropathy), idiopathic IgA nephropathy, linear IgA dermatosis, acute febrile 25 neutrophilic dermatosis, subcorneal pustular dermatosis, transient acantholytic dermatosis, cirrhosis such as primary biliary cirrhosis and pneumonocirrhosis, autoimmune enteropathy syndrome, Celiac or Coeliac disease, celiac sprue (gluten enteropathy), refractory sprue, idiopathic sprue, cryoglobulinemia such as mixed cryoglobulinemia, amylotrophic lateral sclerosis (ALS; Lou Gehrig's disease), coronary artery disease, autoimmune ear disease 30 such as autoimmune inner ear disease (AIED), autoimmune hearing loss, polychondritis such as refractory or relapsed or relapsing polychondritis, pulmonary alveolar proteinosis, keratitis such as Cogan's syndrome/nonsyphilitic interstitial keratitis, Bell's palsy, Sweet's disease/syndrome, rosacea autoimmune, zoster-associated pain, amyloidosis, a non cancerous lymphocytosis, a primary lymphocytosis, which includes monoclonal B cell 35 lymphocytosis (e.g., benign monoclonal gammopathy and monoclonal gammopathy of 79 3880770_1 (GHMatters) P79401.AU.3 14-Sep.12 undetermined significance, MGUS), peripheral neuropathy, paraneoplastic syndrome, channelopathies such as epilepsy, migraine, arrhythmia, muscular disorders, deafness, blindness, periodic paralysis, and channelopathies of the CNS, autism, inflammatory myopathy, focal or segmental or focal segmental glomerulosclerosis (FSGS), endocrine 5 ophthalmopathy, uveoretinitis, chorioretinitis, autoimmune hepatological disorder, fibromyalgia, multiple endocrine failure, Schmidt's syndrome, adrenalitis, gastric atrophy, presenile dementia, demyelinating diseases such as autoimmune demyelinating diseases and chronic inflammatory demyelinating polyneuropathy, Dressler's syndrome, alopecia areata, alopecia totalis, CREST syndrome (calcinosis, Raynaud's phenomenon, esophageal 10 dysmotility, sclerodactyly, and telangiectasia), male and female autoimmune infertility, e.g., due to anti-spermatozoan antibodies, mixed connective tissue disease, Chagas' disease, rheumatic fever, recurrent abortion, farmer's lung, erythema multiforme, post-cardiotomy syndrome, Cushing's syndrome, bird-fancier's lung, allergic granulomatous angiitis, benign lymphocytic angiitis, Alport's syndrome, alveolitis such as allergic alveolitis and fibrosing 15 alveolitis, interstitial lung disease, transfusion reaction, leprosy, malaria, parasitic diseases such as leishmaniasis, kypanosomiasis, schistosomiasis, ascariasis, aspergillosis, Sampter's syndrome, Caplan's syndrome, dengue, endocarditis, endomyocardial fibrosis, diffuse interstitial pulmonary fibrosis, interstitial lung fibrosis, fibrosing mediastinitis, pulmonary fibrosis, idiopathic pulmonary fibrosis, cystic fibrosis, endophthalmitis, erythema 20 elevatum et diutinum, erythroblastosis fetalis, eosinophilic faciitis, Shulman's syndrome, Felty's syndrome, flariasis, cyclitis such as chronic cyclitis, heterochronic cyclitis, iridocyclitis (acute or chronic), or Fuch's cyclitis, Henoch-Schonlein purpura, human immunodeficiency virus (HIV) infection, SCID, acquired immune deficiency syndrome (AIDS), echovirus infection, sepsis (systemic inflammatory response syndrome (SIRS)), endotoxemia, 25 pancreatitis, thyroxicosis, parvovirus infection, rubella virus infection, post-vaccination syndromes, congenital rubella infection, Epstein-Barr virus infection, mumps, Evan's syndrome, autoimmune gonadal failure, Sydenham's chorea, post-streptococcal nephritis, thromboangitis ubiterans, thyrotoxicosis, tabes dorsalis, chorioiditis, giant-cell polymyalgia, chronic hypersensitivity pneumonitis, conjunctivitis, such as vernal catarrh, 30 keratoconjunctivitis sicca, and epidemic keratoconjunctivitis, idiopathic nephritic syndrome, minimal change nephropathy, benign familial and ischemia-reperfusion injury, transplant organ reperfusion, retinal autoimmunity, joint inflammation, bronchitis, chronic obstructive airway/pulmonary disease, silicosis, aphthae, aphthous stomatitis, arteriosclerotic disorders (cerebral vascular insufficiency) such as arteriosclerotic encephalopathy and arteriosclerotic 35 retinopathy, aspermiogenese, autoimmune hemolysis, Boeck's disease, cryoglobulinemia, 80 3880770_1 (GHMatters) P79401.AU.3 14-Sep-12 Dupuytren's contracture, endophthalmia phacoanaphylactica, enteritis allergica, erythema nodosum leprosum, idiopathic facial paralysis, chronic fatigue syndrome, febris rheumatica, Hamman-Rich's disease, sensoneural hearing loss, haemoglobinuria paroxysmatica, hypogonadism, ileitis regionalis, leucopenia, mononucleosis infectiosa, traverse myelitis, 5 primary idiopathic myxedema, nephrosis, ophthalmia symphatica (sympathetic ophthalmitis), neonatal ophthalmitis, optic neuritis, orchitis granulomatosa, pancreatitis, polyradiculitis acuta, pyoderma gangrenosum, Quervain's thyreoiditis, acquired spenic atrophy, non malignant thymoma, lymphofollicular thymitis, vitiligo, toxic-shock syndrome, food poisoning, conditions involving infiltration of T cells, leukocyte-adhesion deficiency, immune responses 10 associated with acute and delayed hypersensitivity mediated by cytokines and T lymphocytes, diseases involving leukocyte diapedesis, multiple organ injury syndrome, antigen-antibody complex-mediated diseases, antiglomerular basement membrane disease, autoimmune polyendocrinopathies, oophoritis, primary myxedema, autoimmune atrophic gastritis, rheumatic diseases, mixed connective tissue disease, nephrotic syndrome, 15 insulitis, polyendocrine failure, autoimmune polyglandular syndromes, including polyglandular syndrome type 1, adult-onset idiopathic hypoparathyroidism (AOlH), cardiomyopathy such as dilated cardiomyopathy, epidermolisis bullosa acquisita (EBA), hemochromatosis, myocarditis, nephrotic syndrome, primary sclerosing cholangitis, purulent or nonpurulent sinusitis, acute or chronic sinusitis, ethmoid, frontal, maxillary, or sphenoid 20 sinusitis, allergic sinusitis, an eosinophil-related disorder such as eosinophilia, pulmonary infiltration eosinophilia, eosinophilia-myalgia syndrome, Loffler's syndrome, chronic eosinophilic pneumonia, tropical pulmonary eosinophilia, bronchopneumonic aspergillosis, aspergilloma, or granulomas containing eosinophils, anaphylaxis, spondyloarthropathies, seronegative spondyloarthritides, polyendocrine autoimmune disease, sclerosing 25 cholangitis, sclera, episclera, chronic mucocutaneous candidiasis, Bruton's syndrome, transient hypogammaglobulinemia of infancy, Wiskott-Aldrich syndrome, ataxia telangiectasia syndrome, angiectasis, autoimmune disorders associated with collagen disease, rheumatism such as chronic arthrorheumatism, lymphadenitis, reduction in blood pressure response, vascular dysfunction, tissue injury, cardiovascular ischemia, 30 hyperalgesia, renal ischemia, cerebral ischemia, and disease accompanying vascularization, allergic hypersensitivity disorders, glomerulonephritides, reperfusion injury, ischemic re-perfusion disorder, reperfusion injury of myocardial or other tissues, lymphomatous tracheobronchitis, inflammatory dermatoses, dermatoses with acute inflammatory components, multiple organ failure, bullous diseases, renal cortical necrosis, 35 acute purulent meningitis or other central nervous system inflammatory disorders, ocular 81 380770_1 (GHMatters) P79401.AU.3 14-Sep-12 and orbital inflammatory disorders, granulocyte transfusion-associated syndromes, cytokine induced toxicity, narcolepsy, acute serious inflammation, chronic intractable inflammation, pyelitis, endarterial hyperplasia, peptic ulcer, valvulitis, and endometriosis. Such diseases are contemplated herein to be treated by the administration of an antibody which binds to a 5 B cell surface marker, such as CD22, and includes the administration of an unconjugated ("naked") antibody or an antibody conjugated to a cytotoxic agent as disclosed herein. Such diseases are also contemplated herein to be treated by combination therapy including an anti-CD22 antibody or anti-CD22 antibody drug conjugate of the invention in combination with another antibody or antibody drug conjugate, another cytoxic agent, radiation or other 10 treatment administered simultaneously or in series. As used herein, "treatment" (and variations such as "treat" or "treating") refers to clinical intervention in an attempt to alter the natural course of the individual or cell being treated, and can be performed either for prophylaxis or during the course of clinical pathology. Desirable effects of treatment include preventing occurrence or recurrence of 15 disease, alleviation of symptoms, diminishment of any direct or indirect pathological consequences of the disease, preventing metastasis, decreasing the rate of disease progression, amelioration or palliation of the disease state, and remission or improved prognosis. In some embodiments, antibodies of the invention are used to delay development of a disease or disorder or to slow the progression of a disease or disorder. 20 An "individual" is a vertebrate. In certain embodiments, the vertebrate is a mammal. Mammals include, but are not limited to, farm animals (such as cows), sport animals, pets (such as cats, dogs, and horses), primates, mice and rats. In certain embodiments, a mammal is a human. An "effective amount" refers to an amount effective, at dosages and for periods of 25 time necessary, to achieve the desired therapeutic or prophylactic result. A "therapeutically effective amount" of a substance/molecule of the invention may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the substance/molecule, to elicit a desired response in the individual. A therapeutically effective amount encompasses an amount in which any toxic or detrimental 30 effects of the substance/molecule are outweighed by the therapeutically beneficial effects. A "prophylactically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of 82 3680770_1 (GHMatters) P79401.AU.3 14-Sep-12 disease, the prophylactically effective amount would be less than the therapeutically effective amount. The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents a cellular function and/or causes cell death or destruction. The term is intended to 5 include radioactive isotopes (e.g., At21 12s, Y0, Re , Re8, Sm 153 , Bi P32, Pb 2 12 and radioactive isotopes of Lu), chemotherapeutic agents (e.g., methotrexate, adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents, enzymes and fragments thereof such as nucleolytic enzymes, antibiotics, and toxins such as small molecule toxins or 10 enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof, toxins, growth inhibitory agents, drug moieties, and the various antitumor or anticancer agents disclosed below. Other cytotoxic agents are described below. A tumoricidal agent causes destruction of tumor cells. A "toxin" is any substance capable of having a detrimental effect on the growth or 15 proliferation of a cell. A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN@ cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; 20 ethylenimines and methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); delta-9-tetrahydrocannabinol (dronabinol, MARINOL@); beta-lapachone; lapachol; colchicines; betulinic acid; a camptothecin (including the synthetic analogue topotecan (HYCAMTIN@), CPT-1 1 25 (irinotecan, CAMPTOSAR@), acetylcamptothecin, scopolectin, and 9-aminocamptothecin); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); podophyllotoxin; podophyllinic acid; teniposide; cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CB1-TM1); eleutherobin; pancratistatin; a sarcodictyin; 30 spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosoureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and 83 30770_1 (GHMatters) P79401 AU.3 1 4 -Sep.12 ranimnustine; antibiotics such as the enediyne antibiotics (e. g., calicheamicin, especially calicheamicin gammal1 and calicheamicin omegal1 (see, e.g., Agnew, Chem Intl. Ed. Engl., 33: 183-186 (1994)); dynemicin, including dynemicin A; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic 5 chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such 10 as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, porfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such 15 as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; bestrabucil; bisantrene; edatraxate; 20 defofamine; demecolcine; diaziquone; elfornithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; 2-ethylhydrazide; procarbazine; PSK@ polysaccharide complex (JHS Natural Products, Eugene, OR); razoxane; rhizoxin; sizofiran; 25 spirogermanium; tenuazonic acid; triaziquone; 2,2',2"-trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine (ELDISINE@, FILDESIN®); dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); thiotepa; taxoids, e.g., TAXOL@ paclitaxel (Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANE Cremophor-free, albumin 30 engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, Illinois), and TAXOTERE@ docetaxel (Rh6ne-Poulenc Rorer, Antony, France); chloranbucil; gemcitabine (GEMZAR@); 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine (VELBAN@); platinum; etoposide (VP-16); ifosfamide; mitoxantrone; vincristine (ONCOVIN@); oxaliplatin; 35 leucovovin; vinorelbine (NAVELBINE@); novantrone; edatrexate; daunomycin; aminopterin; 84 3680770.1 (GHMalters) P79401AU.3 14-Sep-12 ibandronate; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoids such as retinoic acid; capecitabine (XELODA@); pharmaceutically acceptable salts, acids or derivatives of any of the above; as well as combinations of two or more of the above such as CHOP, an abbreviation for a combined therapy of cyclophosphamide, doxorubicin, 5 vincristine, and prednisolone, and FOLFOX, an abbreviation for a treatment regimen with oxaliplatin (ELOXATIN
TM
) combined with 5-FU and leucovovin. Also included in this definition are anti-hormonal agents that act to regulate, reduce, block, or inhibit the effects of hormones that can promote the growth of cancer, and are often in the form of systemic, or whole-body treatment. They may be hormones 10 themselves. Examples include anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (including NOLVADEX@ tamoxifen), EVISTA@ raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY1 17018, onapristone, and FARESTON@ toremifene; anti-progesterones; estrogen receptor down-regulators (ERDs); agents that function to suppress or shut down the ovaries, for example, leutinizing 15 hormone-releasing hormone (LHRH) agonists such as LUPRON@ and ELIGARD® leuprolide acetate, goserelin acetate, buserelin acetate and tripterelin; other anti-androgens such as flutamide, nilutamide and bicalutamide; and aromatase inhibitors that inhibit the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5)-imidazoles, aminoglutethimide, MEGASE® megestrol acetate, AROMASIN@ 20 exemestane, formestanie, fadrozole, RIVISOR® vorozole, FEMARA® letrozole, and ARIMIDEX® anastrozole. In addition, such definition of chemotherapeutic agents includes bisphosphonates such as clodronate (for example, BONEFOS® or OSTAC@), DIDROCAL@ etidronate, NE-58095, ZOMETA® zoledronic acid/zoledronate, FOSAMAX@ alendronate, AREDIA® pamidronate, SKELID® tiludronate, or ACTONEL® risedronate; as well as 25 troxacitabine (a 1,3-dioxolane nucleoside cytosine analog); antisense oligonucleotides, particularly those that inhibit expression of genes in signaling pathways implicated in abherant cell proliferation, such as, for example, PKC-alpha, Raf, H-Ras, and epidermal growth factor receptor (EGF-R); vaccines such as THERATOPE® vaccine and gene therapy vaccines, for example, ALLOVECTIN@ vaccine, LEUVECTIN@ vaccine, and VAXID@ 30 vaccine; LURTOTECAN® topoisomerase 1 inhibitor; ABARELIX® rmRH; lapatinib ditosylate (an ErbB-2 and EGFR dual tyrosine kinase small-molecule inhibitor also known as GW572016); and pharmaceutically acceptable salts, acids or derivatives of any of the above. 85 38607701 (GHMatters) P79401.AU.3 1 4 -Sep-12 A "growth inhibitory agent" when used herein refers to a compound or composition which inhibits growth of a cell (such as a cell expressing CD22) either in vitro or in vivo. Thus, the growth inhibitory agent may be one which significantly reduces the percentage of cells (such as a cell expressing CD22) in S phase. Examples of growth inhibitory agents 5 include agents that block cell cycle progression (at a place other than S phase), such as agents that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the vincas (vincristine and vinblastine), taxanes, and topoisomerase II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest G1 also spill over into S-phase arrest, for example, DNA alkylating agents such as 10 tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5 fluorouracil, and ara-C. Further information can be found in The Molecular Basis of Cancer, Mendelsohn and Israel, eds., Chapter 1, entitled "Cell cycle regulation, oncogenes, and antineoplastic drugs" by Murakami et al. (WB Saunders: Philadelphia, 1995), especially p. 13. The taxanes (paclitaxel and docetaxel) are anticancer drugs both derived from the yew 15 tree. Docetaxel (TAXOTERE@, Rhone-Poulenc Rorer), derived from the European yew, is a semisynthetic analogue of paclitaxel (TAXOL@, Bristol-Myers Squibb). Paclitaxel and docetaxel promote the assembly of microtubules from tubulin dimers and stabilize microtubules by preventing depolymerization, which results in the inhibition of mitosis in cells. 20 The term "intracellular metabolite" refers to a compound resulting from a metabolic process or reaction inside a cell on an antibody-drug conjugate (ADC). The metabolic process or reaction may be an enzymatic process, such as proteolytic cleavage of a peptide linker of the ADC, or hydrolysis of a functional group such as a hydrazone, ester, or amide. Intracellular metabolites include, but are not limited to, antibodies and free drug which have 25 undergone intracellular cleavage after entry, diffusion, uptake or transport into a cell. The terms "intracellularly cleaved" and "intracellular cleavage" refer to a metabolic process or reaction inside a cell on an antibody-drug conjugate (ADC) whereby the covalent attachment, i.e. linker, between the drug moiety (D) and the antibody (Ab) is broken, resulting in the free drug dissociated from the antibody inside the cell. The cleaved moieties 30 of the ADC are thus intracellular metabolites. The term "bioavailability" refers to the systemic availability (i.e., blood/plasma levels) of a given amount of drug administered to a patient. Bioavailability is an absolute term that 86 366077_1 (GHMatters) P79401 AU3 14-Sep-12 indicates measurement of both the time (rate) and total amount (extent) of drug that reaches the general circulation from an administered dosage form. The term "cytotoxic activity" refers to a cell-killing, cytostatic or growth inhibitory effect of an antibody-drug conjugate or an intracellular metabolite of an antibody-drug 5 conjugate. Cytotoxic activity may be expressed as the IC 50 value, which is the concentration (molar or mass) per unit volume at which half the cells survive. "Alkyl" is C1-C18 hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms. Examples are methyl (Me, -CH3), ethyl (Et, -CH2CH3), 1-propyl (n-Pr, n-propyl, CH2CH2CH3), 2-propyl (i-Pr, i-propyl, -CH(CH3)2), 1-butyl (n-Bu, n-butyl, 10 CH2CH2CH2CH3), 2-methyl-l-propyl (i-Bu, i-butyl, -CH2CH(CH3)2), 2-butyl (s-Bu, s-butyl, CH(CH3)CH2CH3), 2-methyl-2-propyl (t-Bu, t-butyl, -C(CH3)3), 1-pentyl (n-pentyl, CH2CH2CH2CH2CH3), 2-pentyl (-CH(CH3)CH2CH2CH3), 3-pentyl (-CH(CH2CH3)2), 2 methyl-2-butyl (-C(CH3)2CH2CH3), 3-methyl-2-butyl (-CH(CH3)CH(CH3)2), 3-methyl-1 butyl (-CH2CH2CH(CH3)2), 2-methyl-1 -butyl (-CH2CH(CH3)CH2CH3), 1 -hexyl ( 15 CH2CH2CH2CH2CH2CH3), 2-hexyl (-CH(CH3)CH2CH2CH2CH3), 3-hexyl ( CH(CH2CH3)(CH2CH2CH3)), 2-methyl-2-pentyl (-C(CH3)2CH2CH2CH3), 3-methyl-2-pentyl (-CH(CH3)CH(CH3)CH2CH3), 4-methyl-2-pentyl (-CH(CH3)CH2CH(CH3)2), 3-methyl-3 pentyl (-C(CH3)(CH2CH3)2), 2-methyl-3-pentyl (-CH(CH2CH3)CH(CH3)2), 2,3-dimethyl-2 butyl (-C(CH3)2CH(CH3)2), 3,3-dimethyl-2-butyl (-CH(CH3)C(CH3)3. 20 The term "C 1 -Cs alkyl," as used herein refers to a straight chain or branched, saturated or unsaturated hydrocarbon having from 1 to 8 carbon atoms. Representative
"C
1
-C
8 alkyl" groups include, but are not limited to, -methyl, -ethyl, -n-propyl, -n-butyl, n-pentyl, -n-hexyl, -n-heptyl, -n-octyl, -n-nonyl and -n-decyl; while branched C 1
-C
8 alkyls include, but are not limited to, -isopropyl, -sec-butyl, -isobutyl, -tert-butyl, -isopentyl, 2 25 methylbutyl, unsaturated C 1
-C
8 alkyls include, but are not limited to, -vinyl, -allyl, -1-butenyl, -2-butenyl, -isobutylenyl, -1-pentenyl, -2-pentenyl, -3-methyl-1-butenyl, -2-methyl-2-butenyl, -2,3-dimethyl-2-butenyl, 1-hexyl, 2-hexyl, 3-hexyl,-acetylenyl, -propynyl, -1-butynyl, 2-butynyl, -1-pentynyl, -2-pentynyl, -3-methyl-1 butynyl. methyl, ethyl, propyl, isopropyl, n butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl, 2 30 methylpentyl, 3-methylpentyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 2,2-dimethylpentyl, 2,3 dimethylpentyl, 3,3-dimethylpentyl, 2,3,4-trimethylpentyl, 3-methylhexyl, 2,2-dimethylhexyl, 2,4-dimethylhexyl, 2,5-dimethylhexyl, 3,5-dimethylhexyl, 2,4-dimethylpentyl, 2-methylheptyl, 3-methylheptyl, n-heptyl, isoheptyl, n-octyl, and isooctyl. A C 1
-C
8 alkyl group can be 87 3860770_1 (GHMatters) P79401 AU.3 14-Sep-12 unsubstituted or substituted with one or more groups including, but not limited to, -C1-C8 alkyl, -O-(C 1 -CB alkyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH 2 , -C(O)NHR', C(O)N(R') 2 -NHC(O)R', -SO 3 R', -S(O) 2 R', -S(O)R', -OH, -halogen, -N 3 , -NH 2 , -NH(R'), N(R') 2 and -CN; where each R' is independently selected from H, -C1-C8 alkyl and aryl. 5 "Alkenyl" is C2-C18 hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, sp 2 double bond. Examples include, but are not limited to: ethylene or vinyl (-CH=CH 2 ), allyl (-CH 2
CH=CH
2 ), cyclopentenyl (-C 5 H), and 5-hexenyl (-CH 2
CH
2
CH
2
CH
2
CH=CH
2 ) "Alkynyl" is C2-C18 hydrocarbon containing normal, secondary, tertiary or cyclic 10 carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, sp triple bond. Examples include, but are not limited to: acetylenic (-C=CH) and propargyl (-CH 2 C=CH), "Alkylene" refers to a saturated, branched or straight chain or cyclic hydrocarbon radical of 1-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent 15 alkane. Typical alkylene radicals include, but are not limited to: methylene (-CH 2 -) 1,2-ethyl
(-CH
2
CH
2 -), 1,3-propyl (-CH 2
CH
2
CH
2 -), 1,4-butyl (-CH 2
CH
2
CH
2
CH
2 -), and the like. A "C1-C10 alkylene" is a straight chain, saturated hydrocarbon group of the formula (CH 2
)
1
-
1 0 -. Examples of a C1-C10 alkylene include methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, ocytylene, nonylene and decalene. 20 "Alkenylene" refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical of 2-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkene. Typical alkenylene radicals include, but are not limited to: 1,2-ethylene (-CH=CH-). 25 "Alkynylene" refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical of 2-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkyne. Typical alkynylene radicals include, but are not limited to: acetylene (-C=C-), propargyl (-CH 2 C=C-), and 4-pentynyl (-CH 2
C
2
OH
2 C=C-). 88 3000770_1 (GHMatter) P79401 AV3 14-Sep.12 "Aryl" refers to a carbocyclic aromatic group. Examples of aryl groups include, but are not limited to, phenyl, naphthyl and anthracenyl. A carbocyclic aromatic group or a heterocyclic aromatic group can be unsubstituted or substituted with one or more groups including, but not limited to, -C-C 8 alkyl, -O-(C-C 8 alkyl), -aryl, -C(O)R', -OC(O)R', 5 C(O)OR', -C(O)NH 2 , -C(O)NHR', -C(O)N(R') 2 -NHC(O)R', -S(O) 2 R', -S(O)R', -OH, -halogen,
-N
3 , -NH 2 , -NH(R'), -N(R') 2 and -CN; wherein each R' is independently selected from H, Cl-C 8 alkyl and aryl. An "arylene" is an aryl group which has two covalent bonds and can be in the ortho, meta, or para configurations as shown in the following structures: 10 in which the phenyl group can be unsubstituted or substituted with up to four groups including, but not limited to, -C-C 6 alkyl, -O-(C-C alkyl), -aryl, -C(O)R', -OC(O)R', C(O)OR', -C(O)NH 2 , -C(O)NHR', -C(O)N(R') 2 -NHC(O)R', -S(O) 2 R', -S(O)R', -OH, -halogen,
-N
3 , -NH 2 , -NH(R'), -N(R') 2 and -CN; wherein each R' is independently selected from H, 15 Cl-C 8 alkyl and aryl. "Arylalkyl" refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with an aryl radical. Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2 phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, 20 naphthobenzyl, 2-naphthophenylethan-1-yl and the like. The arylalkyl group comprises 6 to 20 carbon atoms, e.g. the alkyl moiety, including alkanyl, alkenyl or alkynyl groups, of the arylalkyl group is 1 to 6 carbon atoms and the aryl moiety is 5 to 14 carbon atoms. "Heteroarylalkyl" refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with a 25 heteroaryl radical. Typical heteroarylalkyl groups include, but are not limited to, 2 benzimidazolylmethyl, 2-furylethyl, and the like. The heteroarylalkyl group comprises 6 to 20 carbon atoms, e.g. the alkyl moiety, including alkanyl, alkenyl or alkynyl groups, of the heteroarylalkyl group is 1 to 6 carbon atoms and the heteroaryl moiety is 5 to 14 carbon atoms and 1 to 3 heteroatoms selected from N, 0, P, and S. The heteroaryl moiety of the 89 38e07701 (GMMatters) P79401AU.3 14-Sep-12 heteroarylalkyl group may be a monocycle having 3 to 7 ring members (2 to 6 carbon atoms or a bicycle having 7 to 10 ring members (4 to 9 carbon atoms and 1 to 3 heteroatoms selected from N, 0, P, and S), for example: a bicyclo [4,5], [5,5], [5,6], or [6,6] system. "Substituted alkyl," "substituted aryl," and "substituted arylalkyl" mean alkyl, aryl, and 5 arylalkyl respectively, in which one or more hydrogen atoms are each independently replaced with a substituent. Typical substituents include, but are not limited to, -X, -R, -0, -OR, -SR, -S-, -NR 2 , -NR 3 , =NR, -CX 3 , -CN, -OCN, -SCN, -N=C=O, -NCS, -NO, -NO 2 , =N 2 ,
-N
3 , NC(=O)R, -C(=O)R, -C(=O)NR 2 , -S03~, -SO 3 H, -S(=0) 2 R, -OS(=0) 2 0R, -S(=0) 2 NR, S(=O)R, -OP(=O)(OR) 2 , -P(=O)(OR) 2 , -PO- 3 , -P0 3
H
2 , -C(=O)R, -C(=O)X, -C(=S)R, -C0 2 R, 10 -CO2~, -C(=S)OR, -C(=O)SR, -C(=S)SR, -C(=O)NR 2 , -C(=S)NR 2 , -C(=NR)NR 2 , where each X is independently a halogen: F, C, Br, or 1; and each R is independently -H, C2-C18 alkyl, C6-C20 aryl, C3-C14 heterocycle, protecting group or prodrug moiety. Alkylene, alkenylene, and alkynylene groups as described above may also be similarly substituted. "Heteroaryl" and "heterocycle" refer to a ring system in which one or more ring atoms 15 is a heteroatom, e.g. nitrogen, oxygen, and sulfur. The heterocycle radical comprises 1 to 20 carbon atoms and 1 to 3 heteroatoms selected from N, 0, P, and S. A heterocycle may be a monocycle having 3 to 7 ring members (2 to 6 carbon atoms and 1 to 3 heteroatoms selected from N, 0, P, and S) or a bicycle having 7 to 10 ring members (4 to 9 carbon atoms and 1 to 3 heteroatoms selected from N, 0, P, and S), for example: a bicyclo [4,5], 20 [5,5], [5,6], or [6,6] system. Heterocycles are described in Paquette, Leo A.; "Principles of Modern Heterocyclic Chemistry" (W.A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; "The Chemistry of Heterocyclic Compounds, A series of Monographs" (John Wiley & Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28; and J. Am. Chem. 25 Soc. (1960) 82:5566. Examples of heterocycles include by way of example and not limitation pyridyl, dihydroypyridyl, tetrahydropyridyl (piperidyl), thiazolyl, tetrahydrothiophenyl, sulfur oxidized tetrahydrothiophenyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, 30 piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, bis tetrahydrofuranyl, tetrahydropyranyl, bis-tetrahydropyranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, azocinyl, triazinyl, 6H 1,2,5-thiadiazinyl, 2H,6H-1,5,2-dithiazinyl, thienyl, thianthrenyl, pyranyl, isobenzofuranyl, 90 3080770_1 (GHMatter) P79401.AU.3 14-Sep.12 chromenyl, xanthenyl, phenoxathinyl, 2H-pyrrolyl, isothiazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, 1H-indazolyl, purinyl, 4H-quinolizinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4aH-carbazolyl, carbazolyl, p-carbolinyl, phenanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazinyl, 5 phenothiazinyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, and isatinoyl. By way of example and not limitation, carbon bonded heterocycles are bonded at 10 position 2, 3, 4, 5, or 6 of a pyridine, position 3, 4, 5, or 6 of a pyridazine, position 2, 4, 5, or 6 of a pyrimidine, position 2, 3, 5, or 6 of a pyrazine, position 2, 3, 4, or 5 of a furan, tetrahydrofuran, thiofuran, thiophene, pyrrole or tetrahydropyrrole, position 2, 4, or 5 of an oxazole, imidazole or thiazole, position 3, 4, or 5 of an isoxazole, pyrazole, or isothiazole, position 2 or 3 of an aziridine, position 2, 3, or 4 of an azetidine, position 2, 3, 4, 5, 6, 7, or 8 15 of a quinoline or position 1, 3, 4, 5, 6, 7, or 8 of an isoquinoline. Still more typically, carbon bonded heterocycles include 2-pyridyl, 3-pyridyl, 4-pyridyl, 5-pyridyl, 6-pyridyl, 3-pyridazinyl, 4-pyridazinyl, 5-pyridazinyl, 6-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 6 pyrimidinyl, 2-pyrazinyl, 3-pyrazinyl, 5-pyrazinyl, 6-pyrazinyl, 2-thiazolyl, 4-thiazolyl, or 5 thiazolyl. 20 By way of example and not limitation, nitrogen bonded heterocycles are bonded at position 1 of an aziridine, azetidine, pyrrole, pyrrolidine, 2-pyrroline, 3-pyrroline, imidazole, imidazolidine, 2-imidazoline, 3-imidazoline, pyrazole, pyrazoline, 2-pyrazoline, 3-pyrazoline, piperidine, piperazine, indole, indoline, 1 H-indazole, position 2 of a isoindole, or isoindoline, position 4 of a morpholine, and position 9 of a carbazole, or S-carboline. Still more typically, 25 nitrogen bonded heterocycles include 1-aziridyl, 1-azetedyl, 1-pyrrolyl, 1-imidazolyl, 1 pyrazolyl, and 1-piperidinyl. A "C 3
-C
8 heterocycle" refers to an aromatic or non-aromatic C 3
-C
8 carbocycle in which one to four of the ring carbon atoms are independently replaced with a heteroatom from the group consisting of 0, S and N. Representative examples of a C 3
-C
8 heterocycle 30 include, but are not limited to, benzofuranyl, benzothiophene, indolyl, benzopyrazolyl, coumarinyl, isoquinolinyl, pyrrolyl, thiophenyl, furanyl, thiazolyl, imidazolyl, pyrazolyl, triazolyl, quinolinyl, pyrimidinyl, pyridinyl, pyridonyl, pyrazinyl, pyridazinyl, isothiazolyl, isoxazolyl and tetrazolyl. A C 3 -Ce heterocycle can be unsubstituted or substituted with up to 91 380770_1 (GHMatters) P79401.AU.3 14-Sep.12 seven groups including, but not limited to, -C-C 8 alkyl, -O-(C-Ca alkyl), -aryl, -C(O)R', OC(O)R', -C(O)OR', -C(O)NH 2 , -C(O)NHR', -C(O)N(R') 2 -NHC(O)R', -S(0) 2 R', -S(O)R', OH, -halogen, -N 3 , -NH 2 , -NH(R'), -N(R') 2 and -CN; wherein each R' is independently selected from H, -C-CB alkyl and aryl. 5 "C 3
-C
8 heterocyclo" refers to a C3-Ce heterocycle group defined above wherein one of the heterocycle group's hydrogen atoms is replaced with a bond. A C3-C8 heterocyclo can be unsubstituted or substituted with up to six groups including, but not limited to, -Cr1C8 alkyl, -O-(C-C8 alkyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH 2 , -C(O)NHR', C(O)N(R') 2 -NHC(O)R', -S(0) 2 R', -S(O)R', -OH, -halogen, -N 3 , -NH 2 , -NH(R'), -N(R') 2 and 10 CN; wherein each R' is independently selected from H, -C-Ca alkyl and aryl. "Carbocycle" means a saturated or unsaturated ring having 3 to 7 carbon atoms as a monocycle or 7 to 12 carbon atoms as a bicycle. Monocyclic carbocycles have 3 to 6 ring atoms, still more typically 5 or 6 ring atoms. Bicyclic carbocycles have 7 to 12 ring atoms, e.g. arranged as a bicyclo [4,5], [5,5], [5,6] or [6,6] system, or 9 or 10 ring atoms arranged 15 as a bicyclo [5,6] or [6,6] system. Examples of monocyclic carbocycles include cyclopropyl, cyclobutyl, cyclopentyl, 1-cyclopent-1-enyl, 1-cyclopent-2-enyl, 1-cyclopent-3-enyl, cyclohexyl, 1-cyclohex-1-enyl, 1-cyclohex-2-enyl, 1-cyclohex-3-enyl, cycloheptyl, and cyclooctyl. A "C3-C8 carbocycle" is a 3-, 4-, 5-, 6-, 7- or 8-membered saturated or unsaturated 20 non-aromatic carbocyclic ring. Representative C3-C8 carbocycles include, but are not limited to, -cyclopropyl, -cyclobutyl, -cyclopentyl, -cyclopentadienyl, -cyclohexyl, -cyclohexenyl, -1,3 cyclohexadienyl, -1,4-cyclohexadienyl, -cycloheptyl, -1,3-cycloheptadienyl, -1,3,5 cycloheptatrienyl, -cyclooctyl, and -cyclooctadienyl. A C3-C8 carbocycle group can be unsubstituted or substituted with one or more groups including, but not limited to, -Cr1C8 25 alkyl, -O-(C-C8 alkyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH 2 , -C(O)NHR', C(O)N(R') 2 -NHC(O)R', -S(0) 2 R', -S(O)R', -OH, -halogen, -N 3 , -NH 2 , -NH(R'), -N(R') 2 and CN; where each R' is independently selected from H, -Cr-C8 alkyl and aryl. A "C3-C8 carbocyclo" refers to a C3-C8 carbocycle group defined above wherein one of the carbocycle groups' hydrogen atoms is replaced with a bond. 30 "Linker" refers to a chemical moiety comprising a covalent bond or a chain of atoms that covalently attaches an antibody to a drug moiety. In various embodiments, linkers include a divalent radical such as an alkyldiyl, an aryldiyl, a heteroaryldiyl, moieties such as: 92 3e80770.1 (GHMatters) P79401.AU 3 14-Sep-12
-(CR
2 )nO(CR 2 )n-, repeating units of alkyloxy (e.g. polyethylenoxy, PEG, polymethyleneoxy) and alkylamino (e.g. polyethyleneamino, Jeffamine
TM
); and diacid ester and amides including succinate, succinamide, diglycolate, malonate, and caproamide. The term "chiral" refers to molecules which have the property of non 5 superimposability of the mirror image partner, while the term "achiral" refers to molecules which are superimposable on their mirror image partner. The term "stereoisomers" refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space. "Diastereomer" refers to a stereoisomer with two or more centers of chirality and 10 whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g. melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography. "Enantiomers" refer to two stereoisomers of a compound which are non 15 superimposable mirror images of one another. Stereochemical definitions and conventions used herein generally follow S. P. Parker, Ed., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, New York; and Eliel, E. and Wilen, S., Stereochemistry of Organic Compounds (1994) John Wiley & Sons, Inc., New York. Many organic compounds exist in optically active forms, i.e., 20 they have the ability to rotate the plane of plane-polarized light. In describing an optically active compound, the prefixes D and L, or R and S, are used to denote the absolute configuration of the molecule about its chiral center(s). The prefixes d and I or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or 1 meaning that the compound is levorotatory. A compound prefixed with (+) or d is 25 dextrorotatory. For a given chemical structure, these stereoisomers are identical except that they are mirror images of one another. A specific stereoisomer may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture. A 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or 30 process. The terms "racemic mixture" and "racemate" refer to an equimolar mixture of two enantiomeric species, devoid of optical activity. 93 3880770_1 (GHMatters) P79401.AU.3 14-Sep-12 "Leaving group" refers to a functional group that can be substituted by another functional group. Certain leaving groups are well known in the art, and examples include, but are not limited to, a halide (e.g., chloride, bromide, iodide), methanesulfonyl (mesyl), p toluenesulfonyl (tosyl), trifluoromethylsulfonyl (triflate), and trifluoromethylsulfonate. 5 Abbreviations LINKER COMPONENTS: MC = 6-maleimidocaproyl Val-Cit or "vc" = valine-citrulline (an exemplary dipeptide in a protease cleavable linker) 10 Citrulline = 2-amino-5-ureido pentanoic acid PAB = p-aminobenzyloxycarbonyl (an example of a "self immolative" linker component) Me-Val-Cit = N-methyl-valine-citrulline (wherein the linker peptide bond has been modified to prevent its cleavage by cathepsin B) 15 MC(PEG)6-OH = maleimidocaproyl- polyethylene glycol (can be attached to antibody cysteines). SPP = N-succinimidyl-4-(2-pyridylthio)pentanoate SPDP = N-succinimidyl-3-(2-pyridyldithio) propionate SMCC = succinimidyl-4-(N-maleimidomethyl) cyclohexane-11-carboxylate 20 IT = iminothiolane CYTOTOXIC DRUGS: MMAE = mono-methyl auristatin E (MW 718) MMAF = variant of auristatin E (MMAE) with a phenylalanine at the C-terminus of the drug (MW 731.5) 25 MMAF-DMAEA = MMAF with DMAEA (dimethylaminoethylamine) in an amide linkage to the C-terminal phenylalanine (MW 801.5) MMAF-TEG = MMAF with tetraethylene glycol esterified to the phenylalanine MMAF-NtBu = N-t-butyl, attached as an amide to C-terminus of MMAF DM1 = N(2')-deacetyl-N(2')-(3-mercapto-1-oxopropyl)-maytansine 30 DM3 = N(2')-deacetyl-N2-(4-mercapto-1-oxopentyl)-maytansine 94 3800770_1 (GHMatters) P79401 AU.3 14-Sep.12 DM4 = N(2')-deacetyl-N2-(4-mercapto-4-methyl-1 -oxopentyl)-maytansine Further abbreviations are as follows: AE is auristatin E, Boc is N-(t-butoxycarbonyl), cit is citrulline, dap is dolaproine, DCC is 1,3-dicyclohexylcarbodiimide, DCM is dichloromethane, DEA is diethylamine, DEAD is diethylazodicarboxylate, DEPC is 5 diethylphosphorylcyanidate, DIAD is diisopropylazodicarboxylate, DIEA is N,N diisopropylethylamine, dil is dolaisoleucine, DMA is dimethylacetamide, DMAP is 4 dimethylaminopyridine, DME is ethyleneglycol dimethyl ether (or 1,2-dimethoxyethane), DMF is N,N-dimethylformamide, DMSO is dimethylsulfoxide, doe is dolaphenine, dov is N,N dimethylvaline, DTNB is 5,5'-dithiobis(2-nitrobenzoic acid), DTPA is 10 diethylenetriaminepentaacetic acid, DTT is dithiothreitol, EDCI is 1-(3-dimethylaminopropyl) 3-ethylcarbodiimide hydrochloride, EEDQ is 2-ethoxy-1-ethoxycarbonyl-1,2 dihydroquinoline, ES-MS is electrospray mass spectrometry, EtOAc is ethyl acetate, Fmoc is N-(9-fluorenylmethoxycarbonyl), gly is glycine, HATU is O-(7-azabenzotriazol-1-yl) N,N,N',N'-tetramethyluronium hexafluorophosphate, HOBt is 1-hydroxybenzotriazole, HPLC 15 is high pressure liquid chromatography, ile is isoleucine, lys is lysine, MeCN (CH 3 CN) is acetonitrile, MeOH is methanol, Mtr is 4-anisyldiphenylmethyl (or 4-methoxytrityl),nor is (1S, 2R)-(+)-norephedrine, PBS is phosphate-buffered saline (pH 7.4), PEG is polyethylene glycol, Ph is phenyl, Pnp is p-nitrophenyl, MC is 6-maleimidocaproyl, phe is L-phenylalanine, PyBrop is bromo tris-pyrrolidino phosphonium hexafluorophosphate, SEC is size-exclusion 20 chromatography, Su is succinimide, TFA is trifluoroacetic acid, TLC is thin layer chromatography, UV is ultraviolet, and val is valine. COMPOSITIONS AND METHODS OF MAKING THE SAME Antibodies that bind to CD22 are provided. Immunoconjugates comprising anti CD22 antibodies are provided. Antibodies and immunoconjugates of the invention are 25 useful, e.g., for the diagnosis or treatment of disorders associated with altered expression, e.g., increased expression, of CD22. In certain embodiments, antibodies or immunoconjugates of the invention are useful for the diagnosis or treatment of a cell proliferative disorder, such as cancer. Anti-CD22 Antibodies 30 In one aspect, the invention provides antibodies that bind to CD22. In some embodiments, antibodies are provided that bind to a mature form of human and cynomolgus monkey (cyno) CD22. In one such embodiment, a mature form of human CD22 has an 95 3680770_1 (GHMaters) P79401 AU.3 14-Sep-12 amino acid sequence of SEQ ID NO:27. The mature, major human isoform has an extracellular domain comprising seven Ig-like domains and an amino acid sequence of SEQ ID NO:28. In another embodiment, a minor isoform of human CD22 lacking extracellular domains 3 and 4 has an amino acid sequence of SEQ ID NO: 29. The amino acid 5 sequence of the extracellular domain of the minor isoform is SEQ ID NO:30. The cyno CD22 has an amino acid sequence of SEQ ID NO:31. In some embodiments, an antibody to CD22 binds to a mature form of CD22 expressed on the cell surface. In some embodiments, an antibody that binds to a mature form of CD22 expressed on the cell surface inhibits the growth of the cell. In some embodiments, an anti-CD22 antibody binds 10 to a mature form of CD22 expressed on the cell surface and inhibits cell proliferation. In certain embodiments, an anti-CD22 antibody binds to a mature form of CD22 expressed on the cell surface and induces cell death. In some embodiments, an anti-CD22 antibody binds to a mature form of CD22 expressed on the surface of cancer cells. In some embodiments, an anti-CD22 antibody binds to a mature form of CD22 that is overexpressed on the surface 15 of cancer cells relative to normal cells of the same tissue origin. In some embodiments, an anti-CD22 antibody is conjugated to a cytotoxin or a detectable label and binds to CD22 on a cell surface. In some embodiments, the antibody-toxin conjugate inhibits growth of the cell. In some embodiments, the antibody-detectable label conjugate causes a cell expressing CD22 on its surface to be detectable in vitro or in vivo. 20 In one aspect, an anti-CD22 antibody is a monoclonal antibody. In one aspect, an anti-CD22 antibody is an antibody fragment, e.g., a Fab, Fab'-SH, Fv, scFv, or (Fab') 2 fragment. In one aspect, an anti-CD22 antibody is a chimeric, humanized, or human antibody. In one aspect, any of the anti-CD22 antibodies described herein are purified. Exemplary monoclonal antibodies derived from a phage library are provided herein. 25 The antigen used for screening the library was a polypeptide having the sequence of amino acid sequences of SEQ ID NO:28 or SEQ ID NO:30, corresponding to the extracellular domains (ECDs) of CD22 beta and alpha. The antibodies resulting from the library screen are affinity matured. In one aspect, monoclonal antibodies that compete with murine 10F4.4.1, 30 humanized 10F4v1 and v3, and murine 5E8.1.8 for binding to CD22 are provided. Monoclonal antibodies that bind to the same epitope as murine 1 0F4.4. 1, humanized 10F4v1 and v3, and murine 5E8.1.8 are also provided. 96 3600770_1 (GHMatiers) P79401.AU.3 14-Sep-1 2 In one aspect of the invention, polynucleotides encoding anti-CD22 antibodies are provided. In certain embodiments, vectors comprising polynucleotides encoding anti-CD22 antibodies are provided. In certain embodiments, host cells comprising such vectors are provided. In another aspect of the invention, compositions comprising anti-CD22 antibodies 5 or polynucleotides encoding anti-CD22 antibodies are provided. In certain embodiments, a composition of the invention is a pharmaceutical formulation for the treatment of a cell proliferative disorder, such as those enumerated herein. Antibody Administration and Formulation In one embodiment, the anti-CD22 antibody or anti-CD22 antibody drug conjugate 10 (including, but not limited to, an anti-CD22 thiomab drug conjugate of the invention) of the invention is administered in combination with an antagonist of a B-cell surface antigen. Administration "in combination with" one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order. In one embodiment, the administration is consecutive or sequential. In another embodiment, the administration 15 is simultaneous, concurrent, or together in the same formulation. In one embodiment, the B-cell surface antigen antagonist is an antibody or antigen binding fragment thereof. In one embodiment, the B-cell surface antagonist is an antibody drug conjugate. The formulations herein may contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that 20 do not adversely affect each other. For example, in addition to an anti-CD22 antibody, anti CD22 antibody drug conjugate or CD22 binding oligopeptide, it may be desirable to include in the one formulation, an additional antibody, e.g., a second anti-CD22 antibody which binds a different epitope on the CD22 polypeptide, or a second antibody that binds a different B-cell surface antigen, or an antibody to some other target such as a growth factor 25 that affects the growth of the particular cancer. Alternatively, or additionally, the composition may further comprise a chemotherapeutic agent, cytotoxic agent, cytokine, growth inhibitory agent, anti-hormonal agent, and/or cardioprotectant. Such molecules are suitably present in combination in amounts that are effective for the purpose intended. Currently, depending on the stage of the cancer, cancer treatment involves one or a 30 combination of the following therapies: surgery to remove the cancerous tissue, radiation therapy, and chemotherapy. Anti-CD22 antibody, anti-CD22 antibody drug conjugate or oligopeptide therapy may be especially desirable in elderly patients who do not tolerate the toxicity and side effects of chemotherapy well and in metastatic disease where radiation 97 3880770_1 (GHMatters) P79401.AU.3 14-Sep-12 therapy has limited usefulness. The tumor targeting anti-CD22 antibodies, anti-CD22 antibody drug conjugate or oligopeptide of the invention are useful to alleviate CD22 expressing cancers upon initial diagnosis of the disease or during relapse. For therapeutic applications, the anti-CD22 antibody, anti-CD22 antibody drug conjugate or oligopeptide can 5 be used alone, or in combination therapy with, e.g., hormones, antiangiogens, or radiolabelled compounds, or with surgery, cryotherapy, and/or radiotherapy. Anti-CD22 antibody, anti-CD22 antibody drug conjugate or oligopeptide treatment can be administered in conjunction with other forms of conventional therapy, either consecutively with, pre- or post-conventional therapy. In the present method of the invention for treating or alleviating 10 cancer, the cancer patient can be administered anti-CD22 antibody, anti-CD22 antibody drug conjugate or oligopeptide in conjuction with treatment with the one or more of the preceding chemotherapeutic agents. The anti-CD22 antibody, anti-CD22 antibody drug conjugate or oligopeptide will be administered with a therapeutically effective dose of the chemotherapeutic agent. In another embodiment, the anti-CD22 antibody, anti-CD22 15 antibody drug conjugate or oligopeptide is administered in conjunction with chemotherapy to enhance the activity and efficacy of the chemotherapeutic agent. The Physicians' Desk Reference (PDR) discloses dosages of these agents that have been used in treatment of various cancers. The dosing regimen and dosages of these aforementioned chemotherapeutic drugs that are therapeutically effective will depend on the particular 20 cancer being treated, the extent of the disease and other factors familiar to the physician of skill in the art and can be determined by the physician. In one particular embodiment, a conjugate comprising an anti-CD22 antibody, anti CD22 antibody drug conjugate or oligopeptide conjugated with a cytotoxic agent is administered to the patient. Preferably, the immunoconjugate bound to the CD22 protein is 25 internalized by the cell, resulting in increased therapeutic efficacy of the immunoconjugate in killing the cancer cell to which it binds. In one embodiment, the cytotoxic agent targets or interferes with the nucleic acid in the cancer cell. Examples of cytotoxic agents are described above and include auristatins, maytansinoids, calicheamicins, ribonucleases and DNA endonucleases, or biologically active derivatives thereof. 30 The anti-CD22 antibodies, anti-CD22 antibody drug conjugates or oligopeptides or toxin conjugates thereof are administered to a human patient, in accord with known methods, such as intravenous administration, e.g.,, as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. Intravenous or 98 35W770_1 (GHMattes ) P79401 AU.3 1 4-Sep.
12 subcutaneous administration of the antibody, anti-CD22 antibody drug conjugate or oligopeptide is preferred. Other therapeutic regimens may be combined with the administration of the anti CD22 antibody, anti-CD22 antibody drug conjugate or oligopeptide. The combined 5 administration includes co-administration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities. Preferably such combined therapy results in a synergistic therapeutic effect. 10 It may also be desirable to combine administration of the anti-CD22 antibody or antibodies, anti-CD22 antibody drug conjugates or oligopeptides, with administration of an antibody directed against another tumor antigen or B-cell surface antigen associated with the particular cancer. In another embodiment, the therapeutic treatment methods of the present invention 15 involves the combined administration of an anti-CD22 antibody (or antibodies) , anti-CD22 antibody drug conjugate(s) or oligopeptide(s) and one or more chemotherapeutic agents or growth inhibitory agents, including co-administration of cocktails of different chemotherapeutic agents. Chemotherapeutic agents include estramustine phosphate, prednimustine, cisplatin, 5-fluorouracil, melphalan, cyclophosphamide, hydroxyurea and 20 hydroxyureataxanes (such as paclitaxel and doxetaxel) and/or anthracycline antibiotics, as well as combinations of agents such as, but not limited to, CHOP or FOLFOX. Preparation and dosing schedules for such chemotherapeutic agents may be used according to manufacturers' instructions or as determined empirically by the skilled practitioner. Preparation and dosing schedules for such chemotherapy are also described in 25 Chemotherapy Service Ed., M.C. Perry, Williams & Wilkins, Baltimore, MD (1992). The antibody is administered by any suitable means, including parenteral, topical, subcutaneous, intraperitoneal, intrapulmonary, intranasal, and/or intralesional administration. Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. Intrathecal administration is also 30 contemplated (see, e.g., US Patent Appin No. 2002/0009444, Grillo-Lopez, A, concerning intrathecal delivery of a CD20 antibody). Preferably, the dosing is given intravenously or subcutaneously. 99 3860770_1 (GHMstters) P79401.AU.3 14-Sep-12 A second medicament may be administered with the initial exposure and/or later exposures of the therapeutic antibody or immunoadhesin, such combined administration includes co-administration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a 5 time period while both (or all) active agents simultaneously exert their biological activities. While the therapeutic anti-CD22 antibody, anti-CD22 antibody drug conjugate, immunoadhesin or other biologic may be administered as a single-agent to treat the autoimmune disease, generally, the therapeutic antibody or immunoadhesin will be combined with one or more second medicament(s). For example, for RA, and other 10 autoimmune diseases, the antibody, immunoadhesin, or other biologic drug is preferably combined with any one or more of the immunosuppressive agents, chemotherapeutic agents, BAFF antagonists, integrin antagonists or antibodies, and/or cytokines listed in the definitions section above; any one or more disease-modifying antirheumatic drugs (DMARDs), such as hydroxycloroquine, sulfasalazine, methotrexate, leflunomide, 15 azathioprine, D-penicillamine, Gold (oral), Gold (intramuscular), minocycline, cyclosporine; Staphylococcal protein A immunoadsorption; intravenous immunoglobulin (IVIG); nonsteroidal antiinflammatory drugs (NSAIDs); glucocorticoid (e.g. via joint injection); corticosteroid (e.g. methylprednisolone and/or prednisone); folate; an anti-tumor necrosis factor (TNF) antagonist, e.g. etanercept/ENBREL T M , infliximab/REMICADE T M , D2E7 (Knoll) 20 or CDP-870 (Celltech); IL-1R antagonist (e.g. Kineret); 1L-10 antagonist (e.g. Ilodecakin); a blood clotting modulator (e.g. WinRho); an IL-6 antagonist/anti-TNF (CBP 1011); CD40 antagonist (e.g. IDEC 131); Ig-Fc receptor antagonist (MDX33); immunomodulator (e.g. thalidomide or ImmuDyn); anti-CD5 antibody (e.g. H5g1.1); macrophage inhibitor (e.g. MDX 33); costimulatory blocker (e.g. BMS 188667 or Tolerimab); complement inhibitor (e.g. 25 h5G1.1, 3E10 or an anti-decay accelerating factor (DAF) antibody); IL-2 antagonist (zxSMART); EGFR inhibitor (see definition above); tyrosine kinase inhibitor (see definition above); anti-angiogenic agent (e.g. VEGF antibody such as bevacizumab); CD22 antibodies such as LL2 or epratuzumab (LYMPHOCIDE@; Immunomedics), including epratuzumab Y 90 (Juweid et al. Cancer Res 55(23 Suppl):5899s-5907s (1995)), Abiogen's CD22 antibody 30 (Abiogen, Italy), CMC 544 (Wyeth/Celltech), combotox (UT Soutwestern), BL22 (NIH), and LympoScan Tc99 (Immunomedics); EpCAM antibody such as 17-1A (PANOREX@); Vv33 antibody (e.g. VITAXIN@; Medimmune); CD37 antibody such as TRU 016 (Trubion); IL-21 antibody (Zymogenetics/Novo Nordisk); anti-B cell antibody (Impheron); B cell targeting MAb (Immunogen/Aventis); 1D09C3 (Morphosys/GPC); LymphoRad 131 (HGS); Lym-1 100 3860770_1 (GHMtters) P79401 AU.3 14-Sep-12 antibody Y-90 (USC); LIF 226 (Enhanced Lifesci.); BAFF antibody (e.g., WO 03/33658); BAFF receptor antibody (e.g., WO 02/24909); BR3 antibody; Blys antibody such as belimumab; LYMPHOSCD22 -BTM; anti-Lym-1 Oncolym (USC/Peregrine); ISF 154 (UCSD/Roche/Tragen); gomilixima (Idec 152; Biogen Idec); IL-6 receptor antibody such as 5 atlizumab (ACTEMRA T M ; Chugai/Roche); IL-15 antibody such as HuMax-II-15 (Genmab/Amgen); chemokine receptor antibody, such as a CCR2 antibody (e.g. MLN1202; Millieneum); anti-complement antibody, such as C5 antibody (e.g. eculizumab, 5G1.1; Alexion); oral formulation of human immunoglobulin (e.g. IgPO; Protein Therapeutics); IL-12 antibody such as ABT-874 (CAT/Abbott); Teneliximab (BMS-22481 8); B cell vaccine; DN 10 BAFF (Xencor); CRx-119 (CombinatoRx); Amgen's BAFF antagonist; Pentostatin (Pfizer); IC-485 (ICOS); chemokine antagonist such as T-487 (Tularik) or Reticulose (AVR-1 18); SCO-323 (SCIOS); integrin antagonist 683699, Tanabe, NGD-2001-1 (Neurogen); SCIO 469 (SCIOS); BIRB-796 (Boehringer Ingelheim); VX702, VX850 (Vertex); Leukotriene B-4 antagonist (such as amelubunt, BIIL-284; BI); microtubule modulator (Paxceed; Angiotech); 15 protease inhibitor (MBS561392; BMS); AGIX-4207 (Atherogenics); ISIS-104838 (ISIS/Elan); MFG-IRAP (Univ. Pitt.); IL-1 Trap (RGN-303; Regeneron/Novartis); oprelvekin (Wyeth); everolimus (Certican; Novartis); Amevive (Biogen Idec); ORG-39141 (Organon); FK-506 (Fujisawa); and IL-2 antagonist (tacrolimus; Fujisawa). A detailed description of exemplary anti-CD22 antibodies is as follows: 20 1. Specific embodiments of anti-CD22 antibodies In one aspect, the invention provides an antibody comprising at least one, two, three, four, five, or six HVRs selected from (a) an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; (b) an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; (c) an HVR-H3 comprising an amino acid sequence selected from SEQ ID NO:6; (d) an HVR-L1 25 comprising the amino acid sequence of any one of SEQ ID NO:9, 10, 19, 20, 21, 22, 23; (e) an HVR-L2 comprising the amino acid sequence of SEQ ID NO:12; and (f) an HVR-L3 comprising an amino acid sequence selected from SEQ ID NO:14. In one aspect, the invention provides an anti-CD22 antibody comprising at least one, at least two, or all three VH HVR sequences selected from (a) an HVR-H1 comprising the 30 amino acid sequence of SEQ ID NO:2; (b) an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; (c) an HVR-H3 comprising an amino acid sequence selected from SEQ ID NO:6. In one aspect, the invention provides an anti-CD22 antibody comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2. In one aspect, the invention provides 101 38607701 (GHMatters) P79401.AU.3 14-Sep.12 an anti-CD22 antibody comprising an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4. In one aspect, the invention provides an anti-CD22 antibody comprising an HVR H3 comprising an amino acid sequence selected from SEQ ID NO:6. In one aspect, the invention provides an anti-CD22 antibody comprising an HVR-H3 5 comprising an amino acid sequence selected from SEQ ID NO:6 and an HVR-H1 comprising an amino acid sequence selected from SEQ ID NO:2. In one aspect, the invention provides an anti-CD22 antibody comprising an HVR-H3 comprising an amino acid sequence selected from SEQ ID NO:6 and an HVR-H2 comprising an amino acid sequence selected from SEQ ID NO:4. 10 In one aspect, the invention provides an anti-CD22 antibody comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2 and an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4. In one aspect, the invention provides an anti-CD22 antibody comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; an HVR-H2 comprising the amino 15 acid sequence of SEQ ID NO:4; and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:6. In one aspect, the invention provides an anti-CD22 antibody comprising at least one, at least two, or all three VL HVR sequences selected from (a) an HVR-L1 comprising the amino acid sequence of SEQ ID NO:9 or SEQ ID NO:10; (b) an HVR-L2 comprising the 20 amino acid sequence of SEQ ID NO:12; and (c) an HVR-L3 comprising an amino acid sequence selected from SEQ ID NO:14. In one aspect, the invention provides an anti-CD22 antibody comprising an HVR-L1 comprising an amino acid sequence selected from SEQ ID NO:9. In one aspect, the invention provides an anti-CD22 antibody comprising an HVR-L1 comprising an amino acid sequence selected from SEQ ID NO:10. In one aspect, the 25 invention provides an anti-CD22 antibody comprising an HVR-L1 comprising an amino acid sequence selected from SEQ ID NO:19-23. In one aspect, the HVR-L1 comprises the amino acid sequence of SEQ ID NO:9 wherein N28 is replaced by V (an N28V amino acid change, which generates SEQ ID NO:10). In one aspect, the HVR-L1 comprises the amino acid sequence of SEQ ID NO:9 wherein N28 is replaced by A (an N28A amino acid change, 30 which generates SEQ ID NO:19). In one aspect, the HVR-L1 comprises the amino acid sequence of SEQ ID NO:9 wherein N28 is replaced by Q (an N28Q amino acid change, which generates SEQ ID NO:20). In one aspect, the HVR-L1 comprises the amino acid 102 38607701 (GHMatters) P79401.AU.3 14-Sep-12 sequence of SEQ ID NO:9 wherein N28 is replaced by S (an N28S amino acid change, which generates SEQ ID NO:21). In one aspect, the HVR-L1 comprises the amino acid sequence of SEQ ID NO:9 wherein N28 is replaced by D (an N28D amino acid change, which generates SEQ ID NO:22). In one aspect, the HVR-L1 comprises the amino acid 5 sequence of SEQ ID NO:9 wherein N28 is replaced by I (an N281 amino acid change, which generates SEQ ID NO:23). In one aspect, the invention provides an anti-CD22 antibody comprising an HVR-L1 comprising the amino acid sequence of any one of SEQ ID NO:9, 10, 19, 20, 21, 22, 23. In one aspect, the HVR-L1 is any one of SEQ ID NO:9, 10, 19, 20, 21, 22, or 23 and the amino acid at position N30 (asparagine at position 30) is replaced by A 10 (an N30A amino acid change). In one aspect, the HVR-L1 is any one of SEQ ID NO:9, 10, 19, 20, 21, 22, or 23 and the amino acid at position N30 (asparagine at position 30) is replaced by Q (an N30Q amino acid change). In one aspect, the invention provides an anti-CD22 antibody comprising (a) an HVR H3 comprising an amino acid sequence of SEQ ID NO:6 and (b) an HVR-L3 comprising an 15 amino acid sequence of SEQ ID NO:14. In some embodiments, the CD22 antibody further comprises (a) an HVR-H1 comprising SEQ ID NO:2 and an HVR-H2 comprising SEQ ID NO:4. In one aspect, the invention provides an anti-CD22 antibody comprising (a) an HVR H3 comprising an amino acid sequence of SEQ ID NO:6 and (b) an HVR-L2 comprising an 20 amino acid sequence of SEQ ID NO:12. In some embodiments, the CD22 antibody further comprises (a) an HVR-H1 comprising SEQ ID NO:2 and an HVR-H2 comprising SEQ ID NO:4. In one aspect, the invention provides an anti-CD22 antibody comprising (a) an HVR H3 comprising an amino acid sequence of SEQ ID NO:6 and (b) an HVR-L1 comprising an 25 amino acid sequence selected from SEQ ID NO:9, 10, 19, 20, 21, 22, and 23. In some embodiments, the CD22 antibody further comprises (a) an HVR-H1 comprising SEQ ID NO:2 and an HVR-H2 comprising SEQ ID NO:4. In some embodiments, the amino acid sequence of SEQ ID NO:9, 10, 19, 20, 21, 22, or 23 comprises an N30A or N30Q amino acid change. In some embodiments, the CD22 antibody further comprises HVR-L2 30 comprising the amino acid sequence of SEQ ID NO:12. In some embodiments, the CD22 antibody further comprises HVR-L3 comprising the amion acid sequence of SEQ ID NO:14. In one aspect, the invention provides an anti-CD22 antibody comprising (a) an HVR H1 comprising the amino acid sequence of SEQ ID NO:2; (b) an HVR-H2 comprising the 103 3680770_1 (GHMaters) P79401.AU.3 14-Sep-12 amino acid sequence of SEQ ID NO:4; (c) an HVR-H3 comprising the amino acid sequence of SEQ ID NO:6; (d) an HVR-L1 comprising the amino acid sequence selected from SEQ ID NO:9, 10, 19, 20, 21, 22, 23; (e) an HVR-L2 comprising the amino acid sequence of SEQ ID NO:12; and an HVR-L3 comprising the amion acid sequence of SEQ ID NO:14. In some 5 embodiments, the invention further provides that the amino acid sequence SEQ ID NO:9, 10, 19, 20, 21, 22, or 23 selected as HVR-L1 is modified by an N30A or an N30Q amino acid change. In one aspect, the invention provides an anti-CD22 antibody comprising a heavy chain variable domain comprising SEQ ID NO:16 (see Figure 2A, h1OF4v1). In one aspect, 10 the invention provides an anti-CD22 antibody comprising a light chain variable domain comprising SEQ ID NO:17 (see Figure 2B, h1OF4v1). In one aspect, the invention provides an anti-CD22 antibody comprising a light chain variable domain comprising SEQ ID NO:18 (see Figure 2B, h1OF4v3). In one aspect, the invention provides an anti-CD22 antibody comprising a heavy 15 chain comprising SEQ ID NO:34 (see Figure 2A, m1OF4). In one aspect, the invention provides an anti-CD22 antibody comprising a light chain comprising SEQ ID NO:35 (see Figure 2B, m1OF4). In one aspect, the invention provides an anti-CD22 antibody comprising 1, 2, 3, 4, 5, or 6 of the HVR sequences of the antibody 10F4.4.1 produced by the hybridoma deposited 20 with the ATCC and having accession number PTA-7621. In one aspect, the invention provides an anti-CD22 antibody comprising 1, 2, 3, 4, 5, or 6 of the HVR sequences of the antibody 5E8.1.8 produced by the hybridoma deposited with the ATCC and having accession number PTA-7620. An anti-CD22 antibody may comprise any suitable framework variable domain 25 sequence, provided that the antibody retains the ability to bind CD22. For example, in some embodiments, anti-CD22 antibodies of the invention comprise a human subgroup III heavy chain framework consensus sequence. In one embodiment of these antibodies, the heavy chain framework consensus sequence comprises substitution(s) at position 71, 73 and/or 78. In one embodiments of these antibodies, position 71 is A, position 73 is T, and/or 30 position 78 is A. In one embodiment, these antibodies comprise a heavy chain variable domain framework sequence of huMAb4D5-8, e.g., SEQ ID NO:1, 3, 5, 7 (FR-H1, FR-H2, FR-H3, FR-H4, respectively). huMAb4D5-8 is commercially known as HERCEPTIN* anti 104 3080770_1 (GHMatters) P79401.AU.3 14-Sep-12 HER2 antibody, Genentech, Inc., South San Francisco, CA, USA; also referred to in U.S. Pat. Nos. 6,407,213 & 5,821,337, and Lee et al., J. Mol. Biol. (2004), 340(5):1073-93. In one such embodiment, these antibodies further comprise a human 0I light chain framework consensus sequence. In one such embodiment, these antibodies comprise a light chain 5 variable domain framework sequence of huMAb4D5-8, e.g. SEQ ID NO:8, 1, 13, 15 (FR-1, FR-L2, FR-L3, FR-L4, respectively). In one embodiment, an anti-CD22 antibody comprises a heavy chain variable domain comprising a framework sequence and hypervariable regions, wherein the framework sequence comprises the FR-H1-FR-H4 sequences SEQ ID NO:1, 3, 5, and 7, 10 respectively; the HVR H1 comprises the amino acid sequence of SEQ ID NO:2; the HVR-H2 comprises the amino acid sequence of SEQ ID NO:4; and the HVR-H3 comprises an amino acid sequence selected from SEQ ID NO:6. In one embodiment, an anti-CD22 antibody comprises a light chain variable domain comprising a framework sequence and hypervariable regions, wherein the framework sequence comprises the FR-L1 -FR-L4 15 sequences of SEQ ID NO:8, 11, 13, and 15, respectively; the HVR-L1 comprises the amino acid sequence selected from SEQ ID NO:9, 10, 19, 20, 21, 22, and 23, wherein any one of SEQ ID NOS:9-10 or 19-23 may comprise a N30A or N30Q amino acid change; the HVR-L2 comprises the amino acid sequence of SEQ ID NO:12; and the HVR-L3 comprises an amino acid sequence selected from SEQ ID NO:14. In one embodiment of these 20 antibodies, the heavey chain variable domain comprises SEQ ID NO:16 and the light chain variable domain comprises SEQ ID NO:17 or 18. In some embodiments, the invention provides an anti-CD22 antibody comprising a heavy chain variable domain comprising an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to an amino acid 25 sequence SEQ ID NO:16. In some embodiments, an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity contains substitutions, insertions, or deletions relative to the reference sequence, but an antibody comprising that amino acid sequence retains the ability to bind to CD22. In some embodiments, a total of 1 to 10 amino acids have been substituted, inserted, or deleted in a 30 sequence SEQ ID NO:16. In some embodiments, the substitutions, insertions, or deletions occur in regions outside the HVRs (i.e., in the FRs). In some embodiments, an anti-CD22 antibody comprises a heavy chain variable domain comprising an amino acid sequence selected from SEQ ID NO:16. 105 3M60770_1 (GHMaters) P79401.AU.3 14-Sep-12 In some embodiments, the invention provides an anti-CD22 antibody comprising a heavy chain variable domain as depicted in below. 1 Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Tyr Glu Phe Ser Arq Ser Trp Met Asn Trp 5 Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Gly Arq lie Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Ser Gly Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Gly Ser Ser Trp Asp Trp Tyr Phe Asp Tyr Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser 113 (SEQ ID NO: 16) (HVR 10 residues are underlined). In some embodiments, the heavy chain HVR and FR sequences comprise the following: HVR-H1 (Gly Tyr Glu Phe Ser Arg Ser Trp Met Asn, SEQ ID NO:2) HVR-H2 (Gly Arg lie Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Ser Gly Lys Phe Lys Gly, SEQ ID 15 NO:4) HVR-H3 (Asp Gly Ser Ser Trp Asp Try Tyr Phe Asp Tyr, SEQ ID NO:6) FR-H1 (Glu Val Gin Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser, SEQ ID NO:1) FR-H2 (Trp Val Arg GIn Ala Pro Gly Lys Gly Leu Glu Trp Val, SEQ ID NO:3) 20 FR-H3 (Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Leu GIn Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg, SEQ ID NO:5) FR-H4 (Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser, SEQ ID NO:7) In some embodiments, the invention provides an anti-CD22 antibody comprising a light chain variable domain as depicted in below. 25 1 Asp Ile Gln Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr lie Thr Cys Arq Ser Ser Gin Ser lie Val His Ser Asn Gly Asn Thr Phe Leu Glu Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Leu Leu lie Tyr Lys Val Ser Asn Arq Phe Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr lie Ser Ser 30 Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Phe Gin Gly Ser Gln Phe Pro Tyr Thr Phe Gly Gin Gly Thr Lys Val Glu lie Lys Arg 108 (SEQ ID NO:17) (HVR residues are underlined and position N28 is in bold type) Or 106 3860770_1 (GHMatter) P79401.AU.3 14-Sep-12 1 Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr lie Thr Cys Arq Ser Ser Gin Ser lie Val His Ser Val Gly Asn Thr Phe Leu Glu Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Leu Leu lie Tyr Lys Val Ser Asn Arq Phe Ser Gly Val Pro Ser Arg 5 Phe Ser Gly Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr lie Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Phe Gin Gly Ser Gin Phe Pro Tyr Thr Phe Gly Gin Gly Thr Lys Val Glu Ile Lys Arg 108 (SEQ ID NO:18) (HVR residues are underlined and position N28V is in bold type). 10 In some embodiments, the light chain HVR sequences comprise the following: HVR-L1 (Arg Ser Ser Gin Ser lie Val His Ser Asn Gly Asn Thr Phe Leu Glu, SEQ ID NO:9) HVR-L1 (Arg Ser Ser Gin Ser lie Val His Ser Val Gly Asn Thr Phe Leu Glu, SEQ ID 15 NO:10) HVR-L1 (Arg Ser Ser Gin Ser lie Val His Ser Ala Gly Asn Thr Phe Leu Glu, SEQ ID NO: 19) HVR-L1 (Arg Ser Ser Gin Ser lie Val His Ser Gin Gly Asn Thr Phe Leu Glu, SEQ ID NO:20) 20 HVR-L1 (Arg Ser Ser Gin Ser lie Val His Ser Ser Gly Asn Thr Phe Leu Glu, SEQ ID NO:21) HVR-L1 (Arg Ser Ser Gin Ser lie Val His Ser Asp Gly Asn Thr Phe Leu Glu, SEQ ID NO:22) HVR-L1 (Arg Ser Ser Gin Ser lie Val His Ser lie Gly Asn Thr Phe Leu Glu, SEQ ID 25 NO:23) HVR-L1 (Arg Ser Ser Gin Ser lie Val His Ser lie Gly Ala Thr Phe Leu Glu, SEQ ID NO:32) HVR-L1 (Arg Ser Ser Gin Ser lie Val His Ser lie Gly Gin Thr Phe Leu Glu, SEQ ID NO:33) 30 HVR-L2 (Lys Val Ser Asn Arg Phe Ser, SEQ ID NO:12) HVR-L3 (Phe Gin Gly Ser Gin Phe Pro Tyr Thr, SEQ ID NO:14). In some embodiments, the light chain FR sequences comprise the following: FR-L1 (Asp lie Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr lie Thr Cys, SEQ ID NO:8); 107 3080770_1 (CHMatter) P79401.AU.3 14-Sep.12 FR-L2 (Trp Tyr Gln Gin Lys Pro Gly Lys Ala Pro Lys Leu Leu lie Tyr, SEQ ID NO:11); FR-L3 (Gly Val Pro Ser Arg Phe Ser Gly Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr iie Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys, SEQ ID NO:13) 5 FR-L4 (Phe Gly Gin Gly Thr Lys Val Glu lie Lys Arg, SEQ ID NO:15). In one aspect, the invention provides an anti-CD22 antibody comprising a light chain variable domain comprising an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to an amino acid sequence selected from SEQ ID NO:17 or 18. In some embodiments, an amino acid sequence having at least 10 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity contains substitutions, additions, or deletions relative to the reference sequence, but an antibody comprising that amino acid sequence retains the ability to bind to CD22. In some embodiments, a total of 1 to 10 amino acids have been substituted, inserted, or deleted in a sequence selected from SEQ ID NO:17 or 18. In some embodiments, the substitutions, 15 insertions, or deletions occur in regions outside the HVRs (i.e., in the FRs). In some embodiments, an anti-CD22 antibody comprises a light chain variable domain comprising an amino acid sequence selected from SEQ ID NO:17 or 18. In one aspect, the invention provides an anti-CD22 antibody comprising (a) a heavy chain variable domain comprising an amino acid sequence having at least 90%, 91%, 92%, 20 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to an amino acid sequence selected from SEQ ID NO:16; and (b) a light chain variable domain comprising an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to an amino acid sequence selected from SEQ ID NO:17 or 18. In some embodiments, an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 25 96%, 97%, 98%, or 99% sequence identity contains substitutions, additions, or deletions relative to the reference sequence, but an antibody comprising that amino acid sequence retains the ability to bind to CD22. In some embodiments, a total of 1 to 10 amino acids have been substituted, inserted, or deleted in the reference sequence. In some embodiments, the substitutions, insertions, or deletions occur in regions outside the HVRs 30 (i.e., in the FRs). In some embodiments, an anti-CD22 antibody comprises a heavy chain variable domain comprising an amino acid sequence of SEQ ID NO:16 and a light chain variable domain comprising an amino acid sequence selected from SEQ ID NO:18. In one aspect, the invention provides an anti-CD22 antibody comprising (a) one, two, or three VH HVRs selected from those shown in Figure 2A and/or (b) one, two, or three VL 108 380770_1 (GHMatters) P79401.AU.3 14-Sep-12 HVRs selected from those shown in Figure 2B. In one aspect, the invention provides an anti-CD22 antibody comprising a heavy chain variable domain selected from those shown in Figure 2A and a light chain variable domain selected from those shown in Figure 2B. In one aspect, the anti-CD22 antibody of the invention comprises 1, 2, 3, 4, 5, or 6 of 5 the hypervariable regions of the 5E8.1.8 antibody produced by the hybridoma deposited with the ATCC and having accession no. PTA-7620. 2. Antibody Fragments The present invention encompasses antibody fragments. Antibody fragments may be generated by traditional means, such as enzymatic digestion, or by recombinant 10 techniques. In certain circumstances there are advantages of using antibody fragments, rather than whole antibodies. The smaller size of the fragments allows for rapid clearance, and may lead to improved access to solid tumors. For a review of certain antibody fragments, see Hudson et al. (2003) Nat. Med. 9:129-134. Various techniques have been developed for the production of antibody fragments. 15 Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992); and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. Fab, Fv and ScFv antibody fragments can all be expressed in and secreted from E. coli, thus allowing the facile production of large 20 amounts of these fragments. Antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, Fab'-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab') 2 fragments (Carter et al., Bio/Technology 10:163-167 (1992)). According to another approach, F(ab') 2 fragments can be isolated directly from recombinant host cell culture. Fab and F(ab') 2 fragment with increased in vivo 25 half-life comprising salvage receptor binding epitope residues are described in U.S. Pat. No. 5,869,046. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In certain embodiments, an antibody is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Pat. Nos. 5,571,894; and 5,587,458. Fv and scFv are the only species with intact combining sites that are devoid of constant regions; thus, they may 30 be suitable for reduced nonspecific binding during in vivo use. scFv fusion proteins may be constructed to yield fusion of an effector protein at either the amino or the carboxy terminus of an scFv. See Antibody Engineering, ed. Borrebaeck, supra. The antibody fragment may 109 3080770_1 (GHMatters) P79401.AU.3 14-Sep-12 also be a "linear antibody", e.g., as described in U.S. Pat. No. 5,641,870, for example. Such linear antibodies may be monospecific or bispecific. 3. Humanized Antibodies The invention encompasses humanized antibodies. Various methods for 5 humanizing non-human antibodies are known in the art. For example, a humanized antibody can have one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al. (1986) 10 Nature 321:522-525; Riechmann et al. (1988) Nature 332:323-327; Verhoeyen et al. (1988) Science 239:1534-1536), by substituting hypervariable region sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non 15 human species. In practice, humanized antibodies are typically human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies. The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies can be important to reduce antigenicity. According to the so 20 called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework for the humanized antibody (Sims et al. (1993) J. Immunol. 151:2296; Chothia et al. (1987) J. Mol. Biol. 196:901. Another method uses a particular framework derived from 25 the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al. (1992) Proc. Natl. Acad. Sci. USA, 89:4285; Presta et al. (1993) J. Immunol., 151:2623. It is further generally desirable that antibodies be humanized with retention of high 30 affinity for the antigen and other favorable biological properties. To achieve this goal, according to one method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. 110 3660770_1 (GHMatters) P79401.AU.3 14-Sep-12 Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability 5 of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the hypervariable region residues are directly and most substantially involved in influencing antigen binding. 10 4. Human Antibodies Human anti-CD22 antibodies of the invention can be constructed by combining Fv clone variable domain sequence(s) selected from human-derived phage display libraries with known human constant domain sequences(s) as described above. Alternatively, human monoclonal anti-CD22 antibodies of the invention can be made by the hybridoma 15 method. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described, for example, by Kozbor J. Immunol., 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987); and Boerner et al., J. Immunol., 147: 86 (1991). 20 It is now possible to produce transgenic animals (e.g. mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. 25 Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. NatI. Acad. Sci USA, 90: 2551 (1993); Jakobovits et al., Nature, 362: 255 (1993); Bruggermann et al., Year in Immunol., 7: 33 (1993). Gene shuffling can also be used to derive human antibodies from non-human, e.g. 30 rodent, antibodies, where the human antibody has similar affinities and specificities to the starting non-human antibody. According to this method, which is also called "epitope imprinting", either the heavy or light chain variable region of a non-human antibody fragment obtained by phage display techniques as described herein is replaced with a repertoire of 360770_1 (GHMatters) P79401AU.3 14-Sep-12 human V domain genes, creating a population of non-human chain/human chain scFv or Fab chimeras. Selection with antigen results in isolation of a non-human chain/human chain chimeric scFv or Fab wherein the human chain restores the antigen binding site destroyed upon removal of the corresponding non-human chain in the primary phage display clone, i.e. 5 the epitope governs (imprints) the choice of the human chain partner. When the process is repeated in order to replace the remaining non-human chain, a human antibody is obtained (see PCT WO 93/06213 published April 1, 1993). Unlike traditional humanization of non human antibodies by CDR grafting, this technique provides completely human antibodies, which have no FR or CDR residues of non-human origin. 10 5. Bispecific Antibodies Bispecific antibodies are monoclonal antibodies that have binding specificities for at least two different antigens. In certain embodiments, bispecific antibodies are human or humanized antibodies. In certain embodiments, one of the binding specificities is for CD22 and the other is for any other antigen. In certain embodiments, bispecific antibodies may 15 bind to two different epitopes of CD22. Bispecific antibodies may also be used to localize cytotoxic agents to cells which express CD22. These antibodies possess a CD22-binding arm and an arm which binds a cytotoxic agent, such as, e.g., saporin, anti-interferon-a, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten. Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab') 2 20 bispecific antibodies). Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305: 537 (1983)). Because of the random 25 assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829 published May 13, 1993, and in 30 Traunecker et al., EMBO J., 10: 3655 (1991). According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion, for example, is with an immunoglobulin heavy 112 3880770_1 (GHMaltes) P79401 AU.3 14-Sep.12 chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. In certain embodiments, the first heavy-chain constant region (CH1), containing the site necessary for light chain binding, is present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are 5 inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the 10 expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance. In one embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the 15 other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in 20 Enzymology, 121:210 (1986). According to another approach, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The interface comprises at least a part of the CH 3 domain of an antibody constant domain. In this method, one or more small amino acid side chains from 25 the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as 30 homodimers. Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to 113 3800770_1 (GHMatters) P79401.AU.3 14-Sep.12 unwanted cells (US Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/00373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking method. Suitable cross-linking agents are well known in the art, and are disclosed in US Patent No. 4,676,980, along with a number of cross-linking 5 techniques. Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab') 2 fragments. These fragments 10 are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific 15 antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes. Recent progress has facilitated the direct recovery of Fab'-SH fragments from E. coli, which can be chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med., 175: 217-225 (1992) describe the production of a fully humanized bispecific antibody 20 F(ab') 2 molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the HER2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets. 25 Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol., 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced 30 at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444 6448 (1993) has provided an alternative mechanism for making bispecific antibody 114 380770.1 (GHMaters) P79401 AU.3 14-Sep-12 fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby 5 forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al., J. Immunol., 152:5368 (1994). Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al. J. Immunol. 147: 60 (1991). 10 6. Multivalent Antibodies A multivalent antibody may be internalized (and/or catabolized) faster than a bivalent antibody by a cell expressing an antigen to which the antibodies bind. The antibodies of the present invention can be multivalent antibodies (which are other than of the IgM class) with three or more antigen binding sites (e.g. tetravalent antibodies), which can be readily 15 produced by recombinant expression of nucleic acid encoding the polypeptide chains of the antibody. The multivalent antibody can comprise a dimerization domain and three or more antigen binding sites. In certain embodiments, the dimerization domain comprises (or consists of) an Fc region or a hinge region. In this scenario, the antibody will comprise an Fc region and three or more antigen binding sites amino-terminal to the Fc region. In certain 20 embodiments, a multivalent antibody comprises (or consists of) three to about eight antigen binding sites. In one such embodiment, a multivalent antibody comprises (or consists of) four antigen binding sites. The multivalent antibody comprises at least one polypeptide chain (for example, two polypeptide chains), wherein the polypeptide chain(s) comprise two or more variable domains. For instance, the polypeptide chain(s) may comprise VD1-(X1)n 25 VD2-(X2)n -Fc, wherein VD1 is a first variable domain, VD2 is a second variable domain, Fc is one polypeptide chain of an Fc region, X1 and X2 represent an amino acid or polypeptide, and n is 0 or 1. For instance, the polypeptide chain(s) may comprise: VH-CH1-flexible linker VH-CH1-Fc region chain; or VH-CH1-VH-CH1-Fc region chain. The multivalent antibody herein may further comprise at least two (for example, four) light chain variable domain 30 polypeptides. The multivalent antibody herein may, for instance, comprise from about two to about eight light chain variable domain polypeptides. The light chain variable domain polypeptides contemplated here comprise a light chain variable domain and, optionally, further comprise a CL domain. 115 3660770_1 (GHMaters) P79401.AU.3 14-Sep-12 7. Single-Domain Antibodies In some embodiments, an antibody of the invention is a single-domain antibody. A single-domain antibody is a single polyeptide chain comprising all or a portion of the heavy chain variable domain or all or a portion of the light chain variable domain of an antibody. In 5 certain embodiments, a single-domain antibody is a human single-domain antibody (Domantis, Inc., Waltham, MA; see, e.g., U.S. Patent No. 6,248,516 81). In one embodiment, a single-domain antibody consists of all or a portion of the heavy chain variable domain of an antibody. 8. Antibody Variants 10 In some embodiments, amino acid sequence modification(s) of the antibodies described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of the antibody may be prepared by introducing appropriate changes into the nucleotide sequence encoding the antibody, or by peptide synthesis. Such modifications 15 include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid alterations may be introduced in the subject antibody amino acid sequence at the time that sequence is made. 20 A useful method for identification of certain residues or regions of the antibody that are preferred locations for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells (1989) Science, 244:1081-1085. Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (e.g., alanine or 25 polyalanine) to affect the interaction of the amino acids with antigen. Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to analyze the performance of a 30 mutation at a given site, ala scanning or random mutagenesis is conducted at the target codon or region and the expressed immunoglobulins are screened for the desired activity. 116 3660770_1 (GHMatters) P79401AU.3 14-Sep.12 Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an antibody with an N-terminal methionyl residue. Other 5 insertional variants of the antibody molecule include the fusion to the N- or C-terminus of the antibody to an enzyme (e.g. for ADEPT) or a polypeptide which increases the serum half-life of the antibody. In certain embodiments, an antibody of the invention is altered to increase or decrease the extent to which the antibody is glycosylated. Glycosylation of polypeptides is 10 typically either N-linked or O-linked. N-linked refers to the attachment of a carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a 15 polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5 hydroxylysine may also be used. Addition or deletion of glycosylation sites to the antibody is conveniently 20 accomplished by altering the amino acid sequence such that one or more of the above described tripeptide sequences (for N-linked glycosylation sites) is created or removed. The alteration may also be made by the addition, deletion, or substitution of one or more serine or threonine residues to the sequence of the original antibody (for 0-linked glycosylation sites). 25 Where the antibody comprises an Fc region, the carbohydrate attached thereto may be altered. For example, antibodies with a mature carbohydrate structure that lacks fucose attached to an Fc region of the antibody are described in US Pat Appl No US 2003/0157108 (Presta, L.). See also US 2004/0093621 (Kyowa Hakko Kogyo Co., Ltd). Antibodies with a bisecting N-acetylglucosamine (GIcNAc) in the carbohydrate attached to an Fc region of the 30 antibody are referenced in WO 2003/011878, Jean-Mairet et al. and US Patent No. 6,602,684, Umana et al. Antibodies with at least one galactose residue in the oligosaccharide attached to an Fc region of the antibody are reported in WO 1997/30087, Patel et al. See, also, WO 1998/58964 (Raju, S.) and WO 1999/22764 (Raju, S.) 117 3880770_1 (GHMaters) P79401 AU.3 14-Sep-12 concerning antibodies with altered carbohydrate attached to the Fc region thereof. See also US 2005/0123546 (Umana et al.) on antigen-binding molecules with modified glycosylation. In certain embodiments, a glycosylation variant comprises an Fc region, wherein a carbohydrate structure attached to the Fc region lacks fucose. Such variants have 5 improved ADCC function. Optionally, the Fc region further comprises one or more amino acid substitutions therein which further improve ADCC, for example, substitutions at positions 298, 333, and/or 334 of the Fc region (Eu numbering of residues). Examples of publications related to "defucosylated" or "fucose-deficient" antibodies include: US 2003/0157108; WO 2000/61739; WO 2001/29246; US 2003/0115614; US 2002/0164328; 10 US 2004/0093621; US 2004/0132140; US 2004/0110704; US 2004/0110282; US 2004/0109865; WO 2003/085119; WO 2003/084570; WO 2005/035586; WO 2005/035778; W02005/053742; Okazaki et al. J. Mol. Biol. 336:1239-1249 (2004); Yamane-Ohnuki et al. Biotech. Bioeng. 87: 614 (2004). Examples of cell lines producing defucosylated antibodies include Lecl3 CHO cells deficient in protein fucosylation (Ripka et al. Arch. Biochem. 15 Biophys. 249:533-545 (1986); US Pat Appl No US 2003/0157108 Al, Presta, L; and WO 2004/056312 Al, Adams et al., especially at Example 11), and knockout cell lines, such as alpha- 1,6-fucosyltransferase gene, FUT8, knockout CHO cells (Yamane-Ohnuki et al. Biotech. Bioeng. 87: 614 (2004)). In one embodiment, the antibody is altered to improve its serum half-life. To 20 increase the serum half life of the antibody, one may incorporate a salvage receptor binding epitope into the antibody (especially an antibody fragment) as described in US 5739277, for example. As used herein, the term "salvage receptor binding epitope" refers to an epitope of the Fc region of an IgG molecule (e.g., IgG1, IgG2, IgG3, or IgG4) that is responsible for increasing the in vivo serum half-life of the IgG molecule (US 2003/0190311, US6821505; 25 US 6165745; US 5624821; US 5648260; US 6165745;US 5834 597). Another type of variant is an amino acid substitution variant. These variants have at least one amino acid residue in the antibody molecule replaced by a different residue. Sites of interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated. Conservative substitutions are shown in Table 1 under 30 the heading of "preferred substitutions." If such substitutions result in a desirable change in biological activity, then more substantial changes, denominated "exemplary substitutions" in Table 1, or as further described below in reference to amino acid classes, may be introduced and the products screened. 118 3680770_1 (GHMatter) P79401.AU.3 14-Sep. 2 TABLE I Original Exemplary Preferred Residue Substitutions Substitutions Ala (A) Val; Leu; lie Val Arg (R) Lys; Gin; Asn Lys Asn (N) GIn; His; Asp, Lys; Arg Gin Asp (D) Glu; Asn Glu Cys (C) Ser; Ala Ser Gin (Q) Asn; Glu Asn Glu (E) Asp; Gin Asp Gly (G) Ala Ala His (H) Asn; Gin; Lys; Arg Arg Ile (1) Leu; Val; Met; Ala; Leu Phe; Norleucine Leu (L) Norleucine; lie; Val; Ile Met; Ala; Phe Lys (K) Arg; Gin; Asn Arg Met (M) Leu; Phe; lie Leu Phe (F) Trp; Leu; Val; lie; Ala; Tyr Tyr Pro (P) Ala Ala Ser (S) Thr Thr Thr (T) Val; Ser Ser Trp (W) Tyr; Phe Tyr Tyr (Y) Trp; Phe; Thr; Ser Phe Val (V) lie; Leu; Met; Phe; Leu Ala; Norleucine Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining 5 (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Amino acids may be grouped according to similarities in the properties of their side chains (in A. L. Lehninger, in Biochemistry, second ed., pp. 73-75, Worth Publishers, New York (1975)): 119 3860770_1 (GHMatlers) P79401.AU.3 14-Sep-12 (1) non-polar: Ala (A), Val (V), Leu (L), Ile (1), Pro (P), Phe (F), Trp (W), Met (M) (2) uncharged polar: Gly (G), Ser (S), Thr (T), Cys (C), Tyr (Y), Asn (N), Gln (Q) (3) acidic: Asp (D), Glu (E) (4) basic: Lys (K), Arg (R), His(H) 5 Alternatively, naturally occurring residues may be divided into groups based on common side-chain properties: (1) hydrophobic: Norleucine, Met, Ala, Val, Leu, lie; (2) neutral hydrophilic: Cys, Ser, Thr, Asn, GIn; (3) acidic: Asp, Glu; 10 (4) basic: His, Lys, Arg; (5) residues that influence chain orientation: Gly, Pro; (6) aromatic: Trp, Tyr, Phe. Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the 15 conservative substitution sites or, into the remaining (non-conserved) sites. One type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g. a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have modified (e.g., improved) biological properties relative to the parent antibody from which they are generated. A 20 convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e.g. 6-7 sites) are mutated to generate all possible amino acid substitutions at each site. The antibodies thus generated are displayed from filamentous phage particles as fusions to at least part of a phage coat protein (e.g., the gene Ill product of M13) packaged within each particle. The phage 25 displayed variants are then screened for their biological activity (e.g. binding affinity). In order to identify candidate hypervariable region sites for modification, scanning mutagenesis (e.g., alanine scanning) can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact 30 points between the antibody and antigen. Such contact residues and neighboring residues are candidates for substitution according to techniques known in the art, including those elaborated herein. Once such variants are generated, the panel of variants is subjected to 120 3880770_1 (GHMatters) P79401.AU.3 14-Sep-12 screening using techniques known in the art, including those described herein, and antibodies with superior properties in one or more relevant assays may be selected for further development. Nucleic acid molecules encoding amino acid sequence variants of the antibody are 5 prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the antibody. 10 It may be desirable to introduce one or more amino acid modifications in an Fc region of antibodies of the invention, thereby generating an Fc region variant. The Fc region variant may comprise a human Fc region sequence (e.g., a human IgG1, IgG2, IgG3 or IgG4 Fc region) comprising an amino acid modification (e.g. a substitution) at one or more amino acid positions including that of a hinge cysteine. 15 In accordance with this description and the teachings of the art, it is contemplated that in some embodiments, an antibody of the invention may comprise one or more alterations as compared to the wild type counterpart antibody, e.g. in the Fc region. These antibodies would nonetheless retain substantially the same characteristics required for therapeutic utility as compared to their wild type counterpart. For example, it is thought that 20 certain alterations can be made in the Fc region that would result in altered (i.e., either improved or diminished) C1q binding and/or Complement Dependent Cytotoxicity (CDC), e.g., as described in W099/51642. See also Duncan & Winter Nature 322:738-40 (1988); U.S. Patent No. 5,648,260; U.S. Patent No. 5,624,821; and W094/29351 concerning other examples of Fc region variants. W00/42072 (Presta) and WO 2004/056312 (Lowman) 25 describe antibody variants with improved or diminished binding to FcRs. The content of these patent publications are specifically incorporated herein by reference. See, also, Shields et al. J. Biol. Chem. 9(2): 6591-6604 (2001). Antibodies with increased half lives and improved binding to the neonatal Fc receptor (FcRn), which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., J. Immunol. 117:587 (1976) and Kim et 30 al., J. Immunol. 24:249 (1994)), are described in US2005/0014934A1 (Hinton et al.). These antibodies comprise an Fc region with one or more substitutions therein which improve binding of the Fc region to FcRn. Polypeptide variants with altered Fc region amino acid sequences and increased or decreased Clq binding capability are described in US patent 121 3660770_1 (GHManers) P79401 AU.3 14-Sep-12 No. 6,194,551B1, W099/51642. The contents of those patent publications are specifically incorporated herein by reference. See, also, Idusogie et al. J. Immunol. 164: 4178-4184 (2000). In one aspect, the invention provides antibodies comprising modifications in the 5 interface of Fc polypeptides comprising the Fc region, wherein the modifications facilitate and/or promote heterodimerization. These modifications comprise introduction of a protuberance into a first Fc polypeptide and a cavity into a second Fc polypeptide, wherein the protuberance is positionable in the cavity so as to promote complexing of the first and second Fc polypeptides. Methods of generating antibodies with these modifications are 10 known in the art, e.g., as described in U.S. Pat. No. 5,731,168. 9. Antibody Derivatives The antibodies of the present invention can be further modified to contain additional nonproteinaceous moieties that are known in the art and readily available. Preferably, the moieties suitable for derivatization of the antibody are water soluble polymers. Non-limiting 15 examples of water soluble polymers include, but are not limited to, polyethylene glycol (PEG), copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-1, 3-dioxolane, poly-1,3,6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers), and dextran or poly(n-vinyl pyrrolidone)polyethylene glycol, propropylene 20 glycol homopolymers, prolypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols (e.g., glycerol), polyvinyl alcohol, and mixtures thereof. Polyethylene glycol propionaldehyde may have advantages in manufacturing due to its stability in water. The polymer may be of any molecular weight, and may be branched or unbranched. The number of polymers attached to the antibody may vary, and if more than one polymer are 25 attached, they can be the same or different molecules. In general, the number and/or type of polymers used for derivatization can be determined based on considerations including, but not limited to, the particular properties or functions of the antibody to be improved, whether the antibody derivative will be used in a therapy under defined conditions, etc. In another embodiment, conjugates of an antibody and nonproteinaceous moiety 30 that may be selectively heated by exposure to radiation are provided. In one embodiment, the nonproteinaceous moiety is a carbon nanotube (Kam et al., Proc. NatI. Acad. Sci. 102: 11600-11605 (2005)). The radiation may be of any wavelength, and includes, but is not limited to, wavelengths that do not harm ordinary cells, but which heat the nonproteinaceous 122 3e80770.1 (GHMatters) P79401.AU 3 14-Sel12 moiety to a temperature at which cells proximal to the antibody-nonproteinaceous moiety are killed. Certain Methods of Making Antibodies 1. Certain Hybridoma-Based Methods 5 The anti-CD22 monoclonal antibodies of the invention can be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Patent No. 4,816,567). In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized to elicit lymphocytes that produce or are capable of producing 10 antibodies that will specifically bind to the protein used for immunization. Antibodies to CD22 generally are raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of CD22 and an adjuvant. CD22 may be prepared using methods well-known in the art, some of which are further described herein. For example, CD22 may be produced recombinantly. In one embodiment, animals are immunized with a derivative of CD22 that 15 contains an extracellular portion of CD22 fused to the Fc portion of an immunoglobulin heavy chain. In one embodiment, animals are immunized with an CD22-IgG1 fusion protein. In one embodiment, animals are immunized with immunogenic derivatives of CD22 in a solution with monophosphoryl lipid A (MPL)/trehalose dicrynomycolate (TDM) (Ribi Immunochem. Research, Inc., Hamilton, MT), and the solution is injected intradermally at 20 multiple sites. Two weeks later the animals are boosted. Seven to fourteen days later the animals are bled, and the serum is assayed for anti- CD22 titer. Animals are boosted until titer plateaus. Alternatively, lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a 25 hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). The hybridoma cells thus prepared are seeded and grown in a suitable culture medium, e.g., a medium that contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells 30 lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the 123 3860770_1 (GHMatters) P79401AU.3 14-Sep-12 culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells. In certain embodiments, myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive 5 to a medium such as HAT medium. Exemplary myeloma cells include, but are not limited to, murine myeloma lines, such as those derived from MOPC-21 and MPC-1 1 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Maryland USA. Human myeloma and mouse-human heteromyeloma cell lines 10 also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)). Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies that bind to CD22. Preferably, the binding specificity of monoclonal 15 antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoadsorbent assay (ELISA). The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al., Anal. Biochem., 107:220 (1980). After hybridoma cells are identified that produce antibodies of the desired specificity, 20 affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal. Monoclonal antibodies secreted by the subclones are 25 suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography. 2. Certain Library Screening Methods Anti-CD22 antibodies of the invention can be made by using combinatorial libraries 30 to screen for antibodies with the desired activity or activities. For example, a variety of methods are known in the art for generating phage display libraries and screening such libraries for antibodies possessing the desired binding characteristics. Such methods are 124 3880770_1 (GHMatters) P79401.AU.3 14-Sep-12 described generally in Hoogenboom et al. (2001) in Methods in Molecular Biology 178:1-37 (O'Brien et al., ed., Human Press, Totowa, NJ), and in certain embodiments, in Lee et al. (2004) J. Mol. Biol. 340:1073-1093. In principle, synthetic antibody clones are selected by screening phage libraries 5 containing phage that display various fragments of antibody variable region (Fv) fused to phage coat protein. Such phage libraries are panned by affinity chromatography against the desired antigen. Clones expressing Fv fragments capable of binding to the desired antigen are adsorbed to the antigen and thus separated from the non-binding clones in the library. The binding clones are then eluted from the antigen, and can be further enriched by 10 additional cycles of antigen adsorption/elution. Any of the anti-CD22 antibodies of the invention can be obtained by designing a suitable antigen screening procedure to select for the phage clone of interest followed by construction of a full length anti-CD22 antibody clone using the Fv sequences from the phage clone of interest and suitable constant region (Fc) sequences described in Kabat et al., Sequences of Proteins of Immunological Interest, Fifth 15 Edition, NIH Publication 91-3242, Bethesda MD (1991), vols. 1-3. In certain embodiments, the antigen-binding domain of an antibody is formed from two variable (V) regions of about 110 amino acids, one each from the light (VL) and heavy (VH) chains, that both present three hypervariable loops (HVRs) or complementarity determining regions (CDRs). Variable domains can be displayed functionally on phage, 20 either as single-chain Fv (scFv) fragments, in which VH and VL are covalently linked through a short, flexible peptide, or as Fab fragments, in which they are each fused to a constant domain and interact non-covalently, as described in Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994). As used herein, scFv encoding phage clones and Fab encoding phage clones are collectively referred to as "Fv phage clones" or "Fv clones." 25 Repertoires of VH and VL genes can be separately cloned by polymerase chain reaction (PCR) and recombined randomly in phage libraries, which can then be searched for antigen-binding clones as described in Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994). Libraries from immunized sources provide high-affinity antibodies to the immunogen without the requirement of constructing hybridomas. Alternatively, the naive repertoire can 30 be cloned to provide a single source of human antibodies to a wide range of non-self and also self antigens without any immunization as described by Griffiths et al., EMBO J, 12: 725-734 (1993). Finally, naive libraries can also be made synthetically by cloning the unrearranged V-gene segments from stem cells, and using PCR primers containing random 125 3880770_1 (GHMatters) P79401AU.3 14-Sep-12 sequence to encode the highly variable CDR3 regions and to accomplish rearrangement in vitro as described by Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992). In certain embodiments, filamentous phage is used to display antibody fragments by fusion to the minor coat protein pill. The antibody fragments can be displayed as single 5 chain Fv fragments, in which VH and VL domains are connected on the same polypeptide chain by a flexible polypeptide spacer, e.g. as described by Marks et al., J. Mol. Biol., 222: 581-597 (1991), or as Fab fragments, in which one chain is fused to pill and the other is secreted into the bacterial host cell periplasm where assembly of a Fab-coat protein structure which becomes displayed on the phage surface by displacing some of the wild 10 type coat proteins, e.g. as described in Hoogenboom et al., Nucl. Acids Res., 19: 4133-4137 (1991). In general, nucleic acids encoding antibody gene fragments are obtained from immune cells harvested from humans or animals. If a library biased in favor of anti-CD22 clones is desired, the subject is immunized with CD22 to generate an antibody response, 15 and spleen cells and/or circulating B cells other peripheral blood lymphocytes (PBLs) are recovered for library construction. In a preferred embodiment, a human antibody gene fragment library biased in favor of anti-CD22 clones is obtained by generating an anti-CD22 antibody response in transgenic mice carrying a functional human immunoglobulin gene array (and lacking a functional endogenous antibody production system) such that CD22 20 immunization gives rise to B cells producing human antibodies against CD22. The generation of human antibody-producing transgenic mice is described below. Additional enrichment for anti-CD22 reactive cell populations can be obtained by using a suitable screening procedure to isolate B cells expressing CD22-specific membrane bound antibody, e.g., by cell separation using CD22 affinity chromatography or adsorption of 25 cells to fluorochrome-labeled CD22 followed by flow-activated cell sorting (FACS). Alternatively, the use of spleen cells and/or B cells or other PBLs from an unimmunized donor provides a better representation of the possible antibody repertoire, and also permits the construction of an antibody library using any animal (human or non-human) species in which CD22 is not antigenic. For libraries incorporating in vitro antibody gene 30 construction, stem cells are harvested from the subject to provide nucleic acids encoding unrearranged antibody gene segments. The immune cells of interest can be obtained from 126 3880770_1 (GHMalters) P79401.AU.3 14-Sep.12 a variety of animal species, such as human, mouse, rat, lagomorpha, luprine, canine, feline, porcine, bovine, equine, and avian species, etc. Nucleic acid encoding antibody variable gene segments (including VH and VL segments) are recovered from the cells of interest and amplified. In the case of rearranged 5 VH and VL gene libraries, the desired DNA can be obtained by isolating genomic DNA or mRNA from lymphocytes followed by polymerase chain reaction (PCR) with primers matching the 5' and 3' ends of rearranged VH and VL genes as described in Orlandi et al., Proc. NatI. Acad. Sci. (USA), 86: 3833-3837 (1989), thereby making diverse V gene repertoires for expression. The V genes can be amplified from cDNA and genomic DNA, 10 with back primers at the 5' end of the exon encoding the mature V-domain and forward primers based within the J-segment as described in Orlandi et al. (1989) and in Ward et al., Nature, 341: 544-546 (1989). However, for amplifying from cDNA, back primers can also be based in the leader exon as described in Jones et al., Biotechnol., 9: 88-89 (1991), and forward primers within the constant region as described in Sastry et al., Proc. NatI. Acad. 15 Sci. (USA), 86: 5728-5732 (1989). To maximize complementarity, degeneracy can be incorporated in the primers as described in Orlandi et al. (1989) or Sastry et al. (1989). In certain embodiments, library diversity is maximized by using PCR primers targeted to each V-gene family in order to amplify all available VH and VL arrangements present in the immune cell nucleic acid sample, e.g. as described in the method of Marks et al., J. Mol. 20 Biol., 222: 581-597 (1991) or as described in the method of Orum et al., Nucleic Acids Res., 21: 4491-4498 (1993). For cloning of the amplified DNA into expression vectors, rare restriction sites can be introduced within the PCR primer as a tag at one end as described in Orlandi et al. (1989), or by further PCR amplification with a tagged primer as described in Clackson et al., Nature, 352: 624-628 (1991). 25 Repertoires of synthetically rearranged V genes can be derived in vitro from V gene segments. Most of the human VH-gene segments have been cloned and sequenced (reported in Tomlinson et al., J. Mol. Biol., 227: 776-798 (1992)), and mapped (reported in Matsuda et al., Nature Genet., 3: 88-94 (1993); these cloned segments (including all the major conformations of the H1 and H2 loop) can be used to generate diverse VH gene 30 repertoires with PCR primers encoding H3 loops of diverse sequence and length as described in Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992). VH repertoires can also be made with all the sequence diversity focused in a long H3 loop of a single length as described in Barbas et al., Proc. Natl. Acad. Sci. USA, 89: 4457-4461 (1992). Human VK and VA segments have been cloned and sequenced (reported in Williams and 127 3860770_1 (GHMatters) P79401.AU.3 14-Sep-12 Winter, Eur. J. Immunol., 23: 1456-1461 (1993)) and can be used to make synthetic light chain repertoires. Synthetic V gene repertoires, based on a range of VH and VL folds, and L3 and H3 lengths, will encode antibodies of considerable structural diversity. Following amplification of V-gene encoding DNAs, germline V-gene segments can be rearranged in 5 vitro according to the methods of Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992). Repertoires of antibody fragments can be constructed by combining VH and VL gene repertoires together in several ways. Each repertoire can be created in different vectors, and the vectors recombined in vitro, e.g., as described in Hogrefe et al., Gene, 128: 10 119-126 (1993), or in vivo by combinatorial infection, e.g., the loxP system described in Waterhouse et al., Nucl. Acids Res., 21: 2265-2266 (1993). The in vivo recombination approach exploits the two-chain nature of Fab fragments to overcome the limit on library size imposed by E. coli transformation efficiency. Naive VH and VL repertoires are cloned separately, one into a phagemid and the other into a phage vector. The two libraries are 15 then combined by phage infection of phagemid-containing bacteria so that each cell contains a different combination and the library size is limited only by the number of cells present (about 101 clones). Both vectors contain in vivo recombination signals so that the VH and VL genes are recombined onto a single replicon and are co-packaged into phage virions. These huge libraries provide large numbers of diverse antibodies of good affinity 20 (Kd 1 of about 10~8 M). Alternatively, the repertoires may be cloned sequentially into the same vector, e.g. as described in Barbas et al., Proc. Nati. Acad. Sci. USA, 88: 7978-7982 (1991), or assembled together by PCR and then cloned, e.g. as described in Clackson et al., Nature, 352: 624-628 (1991). PCR assembly can also be used to join VH and VL DNAs with DNA 25 encoding a flexible peptide spacer to form single chain Fv (scFv) repertoires. In yet another technique, "in cell PCR assembly" is used to combine VH and VL genes within lymphocytes by PCR and then clone repertoires of linked genes as described in Embleton et al., Nucl. Acids Res., 20: 3831-3837 (1992). The antibodies produced by naive libraries (either natural or synthetic) can be of 30 moderate affinity (Kj' of about 106 to 10 7 M~'), but affinity maturation can also be mimicked in vitro by constructing and reselecting from secondary libraries as described in Winter et al. (1994), supra. For example, mutation can be introduced at random in vitro by using error prone polymerase (reported in Leung et al., Technique, 1: 11-15 (1989)) in the method of 128 3860770_1 (GHMatters) P79401AU.3 1 4 -Sep 12 Hawkins et al., J. Mol. Biol., 226: 889-896 (1992) or in the method of Gram et al., Proc. Nati. Acad. Sci USA, 89: 3576-3580 (1992). Additionally, affinity maturation can be performed by randomly mutating one or more CDRs, e.g. using PCR with primers carrying random sequence spanning the CDR of interest, in selected individual Fv clones and screening for 5 higher affinity clones. WO 9607754 (published 14 March 1996) described a method for inducing mutagenesis in a complementarity determining region of an immunoglobulin light chain to create a library of light chain genes. Another effective approach is to recombine the VH or VL domains selected by phage display with repertoires of naturally occurring V domain variants obtained from unimmunized donors and screen for higher affinity in several 10 rounds of chain reshuffling as described in Marks et al., Biotechnol., 10: 779-783 (1992). This technique allows the production of antibodies and antibody fragments with affinities of about 109 M or less. Screening of the libraries can be accomplished by various techniques known in the art. For example, CD22 can be used to coat the wells of adsorption plates, expressed on 15 host cells affixed to adsorption plates or used in cell sorting, or conjugated to biotin for capture with streptavidin-coated beads, or used in any other method for panning phage display libraries. The phage library samples are contacted with immobilized CD22 under conditions suitable for binding at least a portion of the phage particles with the adsorbent. Normally, 20 the conditions, including pH, ionic strength, temperature and the like are selected to mimic physiological conditions. The phages bound to the solid phase are washed and then eluted by acid, e.g. as described in Barbas et al., Proc. Nati. Acad. Sci USA, 88: 7978-7982 (1991), or by alkali, e.g. as described in Marks et al., J. Mol. Biol., 222: 581-597 (1991), or by CD22 antigen competition, e.g. in a procedure similar to the antigen competition method of 25 Clackson et al., Nature, 352: 624-628 (1991). Phages can be enriched 20-1,000-fold in a single round of selection. Moreover, the enriched phages can be grown in bacterial culture and subjected to further rounds of selection. The efficiency of selection depends on many factors, including the kinetics of dissociation during washing, and whether multiple antibody fragments on a single phage 30 can simultaneously engage with antigen. Antibodies with fast dissociation kinetics (and weak binding affinities) can be retained by use of short washes, multivalent phage display and high coating density of antigen in solid phase. The high density not only stabilizes the phage through multivalent interactions, but favors rebinding of phage that has dissociated. 129 3660770_1 (GHMalters) P79401.AU.3 14-Sep- 12 The selection of antibodies with slow dissociation kinetics (and good binding affinities) can be promoted by use of long washes and monovalent phage display as described in Bass et al., Proteins, 8: 309-314 (1990) and in WO 92/09690, and a low coating density of antigen as described in Marks et al., Biotechnol., 10: 779-783 (1992). 5 It is possible to select between phage antibodies of different affinities, even with affinities that differ slightly, for CD22. However, random mutation of a selected antibody (e.g. as performed in some affinity maturation techniques) is likely to give rise to many mutants, most binding to antigen, and a few with higher affinity. With limiting CD22, rare high affinity phage could be competed out. To retain all higher affinity mutants, phages can 10 be incubated with excess biotinylated CD22, but with the biotinylated CD22 at a concentration of lower molarity than the target molar affinity constant for CD22. The high affinity-binding phages can then be captured by streptavidin-coated paramagnetic beads. Such "equilibrium capture" allows the antibodies to be selected according to their affinities of binding, with sensitivity that permits isolation of mutant clones with as little as two-fold 15 higher affinity from a great excess of phages with lower affinity. Conditions used in washing phages bound to a solid phase can also be manipulated to discriminate on the basis of dissociation kinetics. Anti-CD22 clones may be selected based on activity. In certain embodiments, the invention provides anti-CD22 antibodies that bind to living cells that naturally express CD22. 20 In one embodiment, the invention provides anti-CD22 antibodies that block the binding between a CD22 ligand and CD22, but do not block the binding between a CD22 ligand and a second protein. Fv clones corresponding to such anti-CD22 antibodies can be selected by (1) isolating anti-CD22 clones from a phage library as described above, and optionally amplifying the isolated population of phage clones by growing up the population in a suitable 25 bacterial host; (2) selecting CD22 and a second protein against which blocking and non blocking activity, respectively, is desired; (3) adsorbing the anti-CD22 phage clones to immobilized CD22; (4) using an excess of the second protein to elute any undesired clones that recognize CD22-binding determinants which overlap or are shared with the binding determinants of the second protein; and (5) eluting the clones which remain adsorbed 30 following step (4). Optionally, clones with the desired blocking/non-blocking properties can be further enriched by repeating the selection procedures described herein one or more times. 130 3680770_1 (GHMatters) P79401 AU 3 14-Sep-1 2 DNA encoding hybridoma-derived monoclonal antibodies or phage display Fv clones of the invention is readily isolated and sequenced using conventional procedures (e.g. by using oligonucleotide primers designed to specifically amplify the heavy and light chain coding regions of interest from hybridoma or phage DNA template). Once isolated, the DNA 5 can be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of the desired monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of antibody-encoding DNA include Skerra et al., Curr. Opinion in 10 Immunol., 5: 256 (1993) and Pluckthun, Immunol. Revs, 130: 151 (1992). DNA encoding the Fv clones of the invention can be combined with known DNA sequences encoding heavy chain and/or light chain constant regions (e.g. the appropriate DNA sequences can be obtained from Kabat et al., supra) to form clones encoding full or partial length heavy and/or light chains. It will be appreciated that constant regions of any 15 isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. An Fv clone derived from the variable domain DNA of one animal (such as human) species and then fused to constant region DNA of another animal species to form coding sequence(s) for "hybrid," full length heavy chain and/or light chain is included in the 20 definition of "chimeric" and "hybrid" antibody as used herein. In certain embodiments, an Fv clone derived from human variable DNA is fused to human constant region DNA to form coding sequence(s) for full- or partial-length human heavy and/or light chains. DNA encoding anti-CD22 antibody derived from a hybridoma of the invention can also be modified, for example, by substituting the coding sequence for human heavy- and 25 light-chain constant domains in place of homologous murine sequences derived from the hybridoma clone (e.g. as in the method of Morrison et al., Proc. NatI. Acad. Sci. USA, 81: 6851-6855 (1984)). DNA encoding a hybridoma- or Fv clone-derived antibody or fragment can be further modified by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. In this manner, 30 "chimeric" or "hybrid" antibodies are prepared that have the binding specificity of the Fv clone or hybridoma clone-derived antibodies of the invention. 131 3080770_1 (GHMatters) P79401.AU.3 14-Sep.12 3. Vectors, Host Cells, and Recombinant Methods For recombinant production of an antibody of the invention, the nucleic acid encoding it is isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. DNA encoding the antibody is readily isolated and 5 sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody). Many vectors are available. The choice of vector depends in part on the host cell to be used. Generally, host cells are of either prokaryotic or eukaryotic (generally mammalian) origin. It will be appreciated that constant regions of any isotype can be used 10 for this purpose, including IgG, IgM, IgA, igD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Generating antibodies using prokaryotic host cells: Vector Construction Polynucleotide sequences encoding polypeptide components of the antibody of the 15 invention can be obtained using standard recombinant techniques. Desired polynucleotide sequences may be isolated and sequenced from antibody producing cells such as hybridoma cells. Alternatively, polynucleotides can be synthesized using nucleotide synthesizer or PCR techniques. Once obtained, sequences encoding the polypeptides are inserted into a recombinant vector capable of replicating and expressing heterologous 20 polynucleotides in prokaryotic hosts. Many vectors that are available and known in the art can be used for the purpose of the present invention. Selection of an appropriate vector will depend mainly on the size of the nucleic acids to be inserted into the vector and the particular host cell to be transformed with the vector. Each vector contains various components, depending on its function (amplification or expression of heterologous 25 polynucleotide, or both) and its compatibility with the particular host cell in which it resides. The vector components generally include, but are not limited to: an origin of replication, a selection marker gene, a promoter, a ribosome binding site (RBS), a signal sequence, the heterologous nucleic acid insert and a transcription termination sequence. In general, plasmid vectors containing replicon and control sequences which are 30 derived from species compatible with the host cell are used in connection with these hosts. The vector ordinarily carries a replication site, as well as marking sequences which are capable of providing phenotypic selection in transformed cells. For example, E. coli is 132 3880770_1 (GHMatters) P79401.AU.3 14-Sep.12 typically transformed using pBR322, a plasmid derived from an E. coli species. pBR322 contains genes encoding ampicillin (Amp) and tetracycline (Tet) resistance and thus provides easy means for identifying transformed cells. pBR322, its derivatives, or other microbial plasmids or bacteriophage may also contain, or be modified to contain, promoters 5 which can be used by the microbial organism for expression of endogenous proteins. Examples of pBR322 derivatives used for expression of particular antibodies are described in detail in Carter et al., U.S. Patent No. 5,648,237. In addition, phage vectors containing replicon and control sequences that are compatible with the host microorganism can be used as transforming vectors in connection 10 with these hosts. For example, bacteriophage such as XGEM.TM.-1 1 may be utilized in making a recombinant vector which can be used to transform susceptible host cells such as E. coli LE392. The expression vector of the invention may comprise two or more promoter-cistron pairs, encoding each of the polypeptide components. A promoter is an untranslated 15 regulatory sequence located upstream (5') to a cistron that modulates its expression. Prokaryotic promoters typically fall into two classes, inducible and constitutive. Inducible promoter is a promoter that initiates increased levels of transcription of the cistron under its control in response to changes in the culture condition, e.g. the presence or absence of a nutrient or a change in temperature. 20 A large number of promoters recognized by a variety of potential host cells are well known. The selected promoter can be operably linked to cistron DNA encoding the light or heavy chain by removing the promoter from the source DNA via restriction enzyme digestion and inserting the isolated promoter sequence into the vector of the invention. Both the native promoter sequence and many heterologous promoters may be used to direct 25 amplification and/or expression of the target genes. In some embodiments, heterologous promoters are utilized, as they generally permit greater transcription and higher yields of expressed target gene as compared to the native target polypeptide promoter. Promoters suitable for use with prokaryotic hosts include the PhoA promoter, the p galactamase and lactose promoter systems, a tryptophan (trp) promoter system and hybrid 30 promoters such as the tac or the trc promoter. However, other promoters that are functional in bacteria (such as other known bacterial or phage promoters) are suitable as well. Their nucleotide sequences have been published, thereby enabling a skilled worker operably to 133 3860770_1 (GHMatters) P79401.AU.3 14-Sep-12 ligate them to cistrons encoding the target light and heavy chains (Siebenlist et al. (1980) Cell 20: 269) using linkers or adaptors to supply any required restriction sites. In one aspect of the invention, each cistron within the recombinant vector comprises a secretion signal sequence component that directs translocation of the expressed 5 polypeptides across a membrane. In general, the signal sequence may be a component of the vector, or it may be a part of the target polypeptide DNA that is inserted into the vector. The signal sequence selected for the purpose of this invention should be one that is recognized and processed (i.e. cleaved by a signal peptidase) by the host cell. For prokaryotic host cells that do not recognize and process the signal sequences native to the 10 heterologous polypeptides, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group consisting of the alkaline phosphatase, penicillinase, Ipp, or heat-stable enterotoxin II (STII) leaders, LamB, PhoE, PeIB, OmpA and MBP. In one embodiment of the invention, the signal sequences used in both cistrons of the expression system are STII signal sequences or variants thereof. 15 In another aspect, the production of the immunoglobulins according to the invention can occur in the cytoplasm of the host cell, and therefore does not require the presence of secretion signal sequences within each cistron. In that regard, immunoglobulin light and heavy chains are expressed, folded and assembled to form functional immunoglobulins within the cytoplasm. Certain host strains (e.g., the E. coli trxB- strains) provide cytoplasm 20 conditions that are favorable for disulfide bond formation, thereby permitting proper folding and assembly of expressed protein subunits. Proba and Pluckthun Gene, 159:203 (1995). Antibodies of the invention can also be produced by using an expression system in which the quantitative ratio of expressed polypeptide components can be modulated in order to maximize the yield of secreted and properly assembled antibodies of the invention. Such 25 modulation is accomplished at least in part by simultaneously modulating translational strengths for the polypeptide components. One technique for modulating translational strength is disclosed in Simmons et al., U.S. Pat. No. 5,840,523. It utilizes variants of the translational initiation region (TIR) within a cistron. For a given TIR, a series of amino acid or nucleic acid sequence variants can be 30 created with a range of translational strengths, thereby providing a convenient means by which to adjust this factor for the desired expression level of the specific chain. TIR variants can be generated by conventional mutagenesis techniques that result in codon changes which can alter the amino acid sequence. In certain embodiments, changes in the 134 3860770.1 (GHMatters) P79401.AU.3 14-Sep-12 nucleotide sequence are silent. Alterations in the TIR can include, for example, alterations in the number or spacing of Shine-Dalgarno sequences, along with alterations in the signal sequence. One method for generating mutant signal sequences is the generation of a "codon bank" at the beginning of a coding sequence that does not change the amino acid 5 sequence of the signal sequence (i.e., the changes are silent). This can be accomplished by changing the third nucleotide position of each codon; additionally, some amino acids, such as leucine, serine, and arginine, have multiple first and second positions that can add complexity in making the bank. This method of mutagenesis is described in detail in Yansura et al. (1992) METHODS: A Companion to Methods in Enzymol. 4:151-158. 10 In one embodiment, a set of vectors is generated with a range of TIR strengths for each cistron therein. This limited set provides a comparison of expression levels of each chain as well as the yield of the desired antibody products under various TIR strength combinations. TIR strengths can be determined by quantifying the expression level of a reporter gene as described in detail in Simmons et al. U.S. Pat. No. 5, 840,523. Based on 15 the translational strength comparison, the desired individual TIRs are selected to be combined in the expression vector constructs of the invention. Prokaryotic host cells suitable for expressing antibodies of the invention include Archaebacteria and Eubacteria, such as Gram-negative or Gram-positive organisms. Examples of useful bacteria include Escherichia (e.g., E. coli), Bacilli (e.g., B. subtilis), 20 Enterobacteria, Pseudomonas species (e.g., P. aeruginosa), Salmonella typhimurium, Serratia marcescans, Klebsiella, Proteus, Shigella, Rhizobia, Vitreoscilla, or Paracoccus. In one embodiment, gram-negative cells are used. In one embodiment, E. coli cells are used as hosts for the invention. Examples of E. coli strains include strain W31 10 (Bachmann, Cellular and Molecular Biology, vol. 2 (Washington, D.C.: American Society for Microbiology, 25 1987), pp. 1190-1219; ATCC Deposit No. 27,325) and derivatives thereof, including strain 33D3 having genotype W31 10 AfhuA (AtonA) ptr3 lac Iq lacL8 AompTA(nmpc-fepE) degP41 kanR (U.S. Pat. No. 5,639,635). Other strains and derivatives thereof, such as E. coli 294 (ATCC 31,446), E. coli B, E. coliX 1776 (ATCC 31,537) and E. coli RV308(ATCC 31,608) are also suitable. These examples are illustrative rather than limiting. Methods for 30 constructing derivatives of any of the above-mentioned bacteria having defined genotypes are known in the art and described in, for example, Bass et al., Proteins, 8:309-314 (1990). It is generally necessary to select the appropriate bacteria taking into consideration replicability of the replicon in the cells of a bacterium. For example, E. coli, Serratia, or Salmonella species can be suitably used as the host when well known plasmids such as 135 360770_1 (GHMatter) P79401.AU.3 14-Sep-12 pBR322, pBR325, pACYC177, or pKN410 are used to supply the replicon. Typically the host cell should secrete minimal amounts of proteolytic enzymes, and additional protease inhibitors may desirably be incorporated in the cell culture. Antibody Production 5 Host cells are transformed with the above-described expression vectors and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. Transformation means introducing DNA into the prokaryotic host so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending 10 on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride is generally used for bacterial cells that contain substantial cell-wall barriers. Another method for transformation employs polyethylene glycol/DMSO. Yet another technique used is electroporation. Prokaryotic cells used to produce the polypeptides of the invention are grown in 15 media known in the art and suitable for culture of the selected host cells. Examples of suitable media include luria broth (LB) plus necessary nutrient supplements. In some embodiments, the media also contains a selection agent, chosen based on the construction of the expression vector, to selectively permit growth of prokaryotic cells containing the expression vector. For example, ampicillin is added to media for growth of cells expressing 20 ampicillin resistant gene. Any necessary supplements besides carbon, nitrogen, and inorganic phosphate sources may also be included at appropriate concentrations introduced alone or as a mixture with another supplement or medium such as a complex nitrogen source. Optionally the culture medium may contain one or more reducing agents selected from the group 25 consisting of glutathione, cysteine, cystamine, thioglycollate, dithioerythritol and dithiothreitol. The prokaryotic host cells are cultured at suitable temperatures. In certain embodiments, for E. coli growth, growth temperatures range from about 20 0 C to about 39*C; from about 250C to about 37*C; or about 300C. The pH of the medium may be any 30 pH ranging from about 5 to about 9, depending mainly on the host organism. In certain embodiments, for E. coli, the pH is from about 6.8 to about 7.4, or about 7.0. 136 38607701 (GHMaTers) P79401AU.3 14-Sep-12 If an inducible promoter is used in the expression vector of the invention, protein expression is induced under conditions suitable for the activation of the promoter. In one aspect of the invention, PhoA promoters are used for controlling transcription of the polypeptides. Accordingly, the transformed host cells are cultured in a phosphate-limiting 5 medium for induction. In certain embodiments, the phosphate-limiting medium is the C.R.A.P. medium (see, e.g., Simmons et al., J. Immunol. Methods (2002), 263:133-147). A variety of other inducers may be used, according to the vector construct employed, as is known in the art. In one embodiment, the expressed polypeptides of the present invention are 10 secreted into and recovered from the periplasm of the host cells. Protein recovery typically involves disrupting the microorganism, generally by such means as osmotic shock, sonication or lysis. Once cells are disrupted, cell debris or whole cells may be removed by centrifugation or filtration. The proteins may be further purified, for example, by affinity resin chromatography. Alternatively, proteins can be transported into the culture media and 15 isolated therein. Cells may be removed from the culture and the culture supernatant being filtered and concentrated for further purification of the proteins produced. The expressed polypeptides can be further isolated and identified using commonly known methods such as polyacrylamide gel electrophoresis (PAGE) and Western blot assay. In one aspect of the invention, antibody production is conducted in large quantity by 20 a fermentation process. Various large-scale fed-batch fermentation procedures are available for production of recombinant proteins. Large-scale fermentations have at least 1000 liters of capacity, and in certain embodiments, about 1,000 to 100,000 liters of capacity. These fermentors use agitator impellers to distribute oxygen and nutrients, especially glucose (the preferred carbon/energy source). Small scale fermentation refers 25 generally to fermentation in a fermentor that is no more than approximately 100 liters in volumetric capacity, and can range from about 1 liter to about 100 liters. In a fermentation process, induction of protein expression is typically initiated after the cells have been grown under suitable conditions to a desired density, e.g., an OD550 of about 180-220, at which stage the cells are in the early stationary phase. A variety of 30 inducers may be used, according to the vector construct employed, as is known in the art and described above. Cells may be grown for shorter periods prior to induction. Cells are usually induced for about 12-50 hours, although longer or shorter induction time may be used. 137 38600770)1 (GHMatters) P79401.AU.3 14.Sep-12 To improve the production yield and quality of the polypeptides of the invention, various fermentation conditions can be modified. For example, to improve the proper assembly and folding of the secreted antibody polypeptides, additional vectors overexpressing chaperone proteins, such as Dsb proteins (DsbA, DsbB, DsbC, DsbD and or 5 DsbG) or FkpA (a peptidylprolyl cistrans-isomerase with chaperone activity) can be used to co-transform the host prokaryotic cells. The chaperone proteins have been demonstrated to facilitate the proper folding and solubility of heterologous proteins produced in bacterial host cells. Chen et al. (1999) J. Biol. Chem. 274:19601-19605; Georgiou et al., U.S. Patent No. 6,083,715; Georgiou et al., U.S. Patent No. 6,027,888; Bothmann and Pluckthun (2000) J. 10 Biol. Chem. 275:17100-17105; Ramm and Pluckthun (2000) J. Biol. Chem. 275:17106 17113; Arie et al. (2001) Mol. Microbiol. 39:199-210. To minimize proteolysis of expressed heterologous proteins (especially those that are proteolytically sensitive), certain host strains deficient for proteolytic enzymes can be used for the present invention. For example, host cell strains may be modified to effect 15 genetic mutation(s) in the genes encoding known bacterial proteases such as Protease 111, OmpT, DegP, Tsp, Protease 1, Protease Mi, Protease V, Protease VI and combinations thereof. Some E. coli protease-deficient strains are available and described in, for example, Joly et al. (1998), supra; Georgiou et al., U.S. Patent No. 5,264,365; Georgiou et al., U.S. Patent No. 5,508,192; Hara et al., Microbial Drug Resistance, 2:63-72 (1996). 20 In one embodiment, E. coli strains deficient for proteolytic enzymes and transformed with plasmids overexpressing one or more chaperone proteins are used as host cells in the expression system of the invention. Antibody Purification In one embodiment, the antibody protein produced herein is further purified to obtain 25 preparations that are substantially homogeneous for further assays and uses. Standard protein purification methods known in the art can be employed. The following procedures are exemplary of suitable purification procedures: fractionation on immunoaffinity or ion exchange columns, ethanol precipitation, reverse phase HPLC, chromatography on silica or on a cation-exchange resin such as DEAE, chromatofocusing, SDS-PAGE, ammonium 30 sulfate precipitation, and gel filtration using, for example, Sephadex G-75. In one aspect, Protein A immobilized on a solid phase is used for immunoaffinity purification of the antibody products of the invention. Protein A is a 41 kD cell wall protein 138 3860770_1 (GHMatters) P79401 AU.3 14-Sep.12 from Staphylococcus aureas which binds with a high affinity to the Fc region of antibodies. Lindmark et al (1983) J. Immunol. Meth. 62:1-13. The solid phase to which Protein A is immobilized can be a column comprising a glass or silica surface, or a controlled pore glass column or a silicic acid column. In some applications, the column is coated with a reagent, 5 such as glycerol, to possibly prevent nonspecific adherence of contaminants. As the first step of purification, a preparation derived from the cell culture as described above can be applied onto a Protein A immobilized solid phase to allow specific binding of the antibody of interest to Protein A. The solid phase would then be washed to remove contaminants non-specifically bound to the solid phase. Finally the antibody of 10 interest is recovered from the solid phase by elution. Generating antibodies using eukaryotic host cells: A vector for use in a eukaryotic host cell generally includes one or more of the following non-limiting components: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. 15 Signal sequence component A vector for use in a eukaryotic host cell may also contain a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide of interest. The heterologous signal sequence selected may be one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. In 20 mammalian cell expression, mammalian signal sequences as well as viral secretory leaders, for example, the herpes simplex gD signal, are available. The DNA for such a precursor region is ligated in reading frame to DNA encoding the antibody. Origin of replication Generally, an origin of replication component is not needed for mammalian 25 expression vectors. For example, the SV40 origin may typically be used only because it contains the early promoter. Selection gene component Expression and cloning vectors may contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to 139 3e80770.1 (GHMatlers) P79401.AU.3 14-Sep-12 antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, where relevant, or (c) supply critical nutrients not available from complex media. One example of a selection scheme utilizes a drug to arrest growth of a host cell. 5 Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin, mycophenolic acid and hygromycin. Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the antibody nucleic acid, such as 10 DHFR, thymidine kinase, metallothionein-1 and -11, preferably primate metallothionein genes, adenosine deaminase, ornithine decarboxylase, etc. For example, in some embodiments, cells transformed with the DHFR selection gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. In some embodiments, an 15 appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity (e.g., ATCC CRL-9096). Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding an antibody, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3'-phosphotransferase 20 (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Patent No. 4,965,199. Promoter component Expression and cloning vectors usually contain a promoter that is recognized by the 25 host organism and is operably linked to nucleic acid encoding a polypeptide of interest (e.g., an antibody). Promoter sequences are known for eukaryotes. For example, virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CNCAAT region where N may 30 be any nucleotide. At the 3' end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3' end of the coding sequence. In 140 380770_1 (GHMatters) P79401 AU.3 14-Sop-12 certain embodiments, any or all of these sequences may be suitably inserted into eukaryotic expression vectors. Transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus, 5 adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, from heat-shock promoters, provided such promoters are compatible with the host cell systems. 10 The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication. The immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIll E restriction fragment. A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Patent No. 4,419,446. A modification 15 of this system is described in U.S. Patent No. 4,601,978. See also Reyes et al., Nature 297:598-601 (1982), describing expression of human p-interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus. Alternatively, the Rous Sarcoma Virus long terminal repeat can be used as the promoter. Enhancer element component 20 Transcription of DNA encoding an antibody of this invention by higher eukaryotes is often increased by inserting an enhancer sequence into the vector. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, X-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), 25 the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, Nature 297:17-18 (1982) describing enhancer elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5' or 3' to the antibody polypeptide-encoding sequence, but is generally located at a site 5' from the promoter. 30 141 36807701 (GHMaOter) P79401.AU.3 14-Sep.12 Transcription termination component Expression vectors used in eukaryotic host cells may also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of 5 eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding an antibody. One useful transcription termination component is the bovine growth hormone polyadenylation region. See W094/11026 and the expression vector disclosed therein. Selection and transformation of host cells 10 Suitable host cells for cloning or expressing the DNA in the vectors herein include higher eukaryote cells described herein, including vertebrate host cells. Propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in 15 suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)) ; baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. NatI. Acad. Sci. USA 77:4216 (1980)) ; mouse sertoli cells (TM4, Mather, Biol. Reprod. 23:243 251 (1980) ); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); 20 canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2). 25 Host cells are transformed with the above-described expression or cloning vectors for antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. 142 3860770_1 (GHMatters) P79401.AU.3 14-Sep-12 Culturing the host cells The host cells used to produce an antibody of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's 5 Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et al., Meth. Enz. 58:44 (1979), Barnes et al., Anal. Biochem. 102:255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO 90/03430; WO 87/00195; or U.S. Patent Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones 10 and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCIN T M drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other supplements 15 may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan. Purification of antibody 20 When using recombinant techniques, the antibody can be produced intracellularly, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, may be removed, for example, by centrifugation or ultrafiltration. Where the antibody is secreted into the medium, supernatants from such expression systems may be first concentrated using a commercially 25 available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis, and antibiotics may be included to prevent the growth of adventitious contaminants. The antibody composition prepared from the cells can be purified using, for example, 30 hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being a convenient technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody. Protein A can be used to purify antibodies that are based on 143 3e80770_1 (GHManers) P79401AU.3 14-Sep.12 human yl, y 2 , or y4 heavy chains (Lindmark et al., J. Immunol. Methods 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human y3 (Guss et al., EMBO J. 5:15671575 (1986)). The matrix to which the affinity ligand is attached may be agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or 5 poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a CH3 domain, the Bakerbond ABX
TM
resin (J. T. Baker, Phillipsburg, NJ) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin 10 SEPHAROSE TM chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered. Following any preliminary purification step(s), the mixture comprising the antibody of interest and contaminants may be subjected to further purification, for example, by low pH 15 hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5 4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt). In general, various methodologies for preparing antibodies for use in research, testing, and clinical use are well-established in the art, consistent with the above-described methodologies and/or as deemed appropriate by one skilled in the art for a particular 20 antibody of interest. Immunoconjuqates The invention also provides immunoconjugates (interchangeably referred to as "antibody-drug conjugates," or "ADCs") comprising any of the anti-CD22 antibodies of the invention conjugated to one or more cytotoxic agents, such as a chemotherapeutic agent, a 25 drug, a growth inhibitory agent, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate). In certain embodiments, an immunoconjugate comprises an anti-CD22 antibody and a chemotherapeutic agent or other toxin. Chemotherapeutic agents useful in the generation 30 of immunoconjugates are described herein (e.g., above). Enzymatically active toxins and fragments thereof can also be used and are described herein. 144 3860770_ (GHMatters) P79401.AU.3 14-Sep-12 In certain embodiments, an immunoconjugate comprises an anti-CD22 antibody and one or more small molecule toxins, including, but not limited to, small molecule drugs such as a calicheamicin, maytansinoid, dolastatin, auristatin, trichothecene, and CC1065, and the derivatives of these drugs that have cytotoxic activity. Examples of such immunoconjugates 5 are discussed in further detail below. 1. Exemplary lmmunoconjugates - Antibody Drug Conjugates An immunoconjugate (or "antibody-drug conjugate" ("ADC")) of the invention may be of Formula 1, below, wherein an anti-CD22 antibody is conjugated (i.e., covalently attached) to one or more drug moieties (D) through an optional linker (L). 10 Ab-(L-D)p Formula I Accordingly, the anti-CD22 antibody may be conjugated to the drug either directly or via a linker. In Formula 1, p is the average number of drug moieties per antibody, which can range, e.g., from about 1 to about 20 drug moieties per antibody, and in certain embodiments, from 1 to about 8 drug moieties per antibody. 15 Exemplary Linkers Exemplary linkers and drug moieties are disclosed herein. A linker may comprise one or more linker components. Exemplary linker components include 6-maleimidocaproyl ("MC"), maleimidopropanoyl ("MP"), valine-citrulline ("val-cit" or "vc"), alanine-phenylalanine ("ala-phe"), p-aminobenzyloxycarbonyl (a "PAB"), N-Succinimidyl 4-(2-pyridylthio) 20 pentanoate ("SPP"), N-succinimidyl 4-(N-maleimidomethyl) cyclohexane-1 carboxylate ("SMCC"), and N-Succinimidyl (4-iodo-acetyl) aminobenzoate ("SIAB"). Various linker components are known in the art, some of which are described below. A linker may be a "cleavable linker," facilitating release of a drug in the cell. For example, an acid-labile linker (e.g., hydrazone), protease-sensitive (e.g., peptidase 25 sensitive) linker, photolabile linker, dimethyl linker or disulfide-containing linker (Chari et al., Cancer Research 52:127-131 (1992); U.S. Patent No. 5,208,020) may be used. 145 360770_1 (GHMatters) P79401 AU 3 14-Sep-12 In some embodiments, a linker component may comprise a "stretcher unit" that links an antibody to another linker component or to a drug moiety. Exemplary stretcher units are shown below (wherein the wavy line indicates sites of covalent attachment to an antibody): 0 INN 0 5 0 MC o O N o MP N 0 O H 0 0 MPEG 10 0 j'A N 0 In some embodiments, a linker component may comprise an amino acid unit. In one such embodiment, the amino acid unit allows for cleavage of the linker by a protease, 15 thereby facilitating release of the drug from the immunoconjugate upon exposure to intracellular proteases, such as lysosomal enzymes. See, e.g., Doronina et al. (2003) Nat. Biotechnol. 21:778-784. Exemplary amino acid units include, but are not limited to, a dipeptide, a tripeptide, a tetrapeptide, and a pentapeptide. Exemplary dipeptides include: valine-citrulline (vc or val-cit), alanine-phenylalanine (af or ala-phe); phenylalanine-lysine (fk 20 or phe-lys); or N-methyl-valine-citrulline (Me-val-cit). Exemplary tripeptides include: glycine valine-citrulline (gly-val-cit) and glycine-glycine-glycine (gly-gly-gly). An amino acid unit may 146 3660770_1 (GHMatters) P79401AU.3 14-Sep-12 comprise amino acid residues that occur naturally, as well as minor amino acids and non naturally occurring amino acid analogs, such as citrulline. Amino acid units can be designed and optimized in their selectivity for enzymatic cleavage by a particular enzyme, for example, a tumor-associated protease, cathepsin B, C and D, or a plasmin protease. 5 In some embodiments, a linker component may comprise a "spacer" unit that links the antibody to a drug moiety, either directly or by way of a stretcher unit and/or an amino acid unit. A spacer unit may be "self-immolative" or a "non-self-immolative." A "non-self immolative" spacer unit is one in which part or all of the spacer unit remains bound to the drug moiety upon enzymatic (e.g., proteolytic) cleavage of the ADC. Examples of non-self 10 immolative spacer units include, but are not limited to, a glycine spacer unit and a glycine glycine spacer unit. Other combinations of peptidic spacers susceptible to sequence specific enzymatic cleavage are also contemplated. For example, enzymatic cleavage of an ADC containing a glycine-glycine spacer unit by a tumor-cell associated protease would result in release of a glycine-glycine-drug moiety from the remainder of the ADC. In one 15 such embodiment, the glycine-glycine-drug moiety is then subjected to a separate hydrolysis step in the tumor cell, thus cleaving the glycine-glycine spacer unit from the drug moiety. A "self-immolative" spacer unit allows for release of the drug moiety without a separate hydrolysis step. In certain embodiments, a spacer unit of a linker comprises a p 20 aminobenzyl unit. In one such embodiment, a p-aminobenzyl alcohol is attached to an amino acid unit via an amide bond, and a carbamate, methylcarbamate, or carbonate is made between the benzyl alcohol and a cytotoxic agent. See, e.g., Hamann et al. (2005) Expert Opin. Ther. Patents (2005) 15:1087-1103. In one embodiment, the spacer unit is p aminobenzyloxycarbonyl (PAB). In certain embodiments, the phenylene portion of a p 25 amino benzyl unit is substituted with Qm, wherein Q is -C1-C8 alkyl, -O-(C1-C8 alkyl), halogen,- nitro or -cyano; and m is an integer ranging from 0-4. Examples of self immolative spacer units further include, but are not limited to, aromatic compounds that are electronically similar to p-aminobenzyl alcohol (see, e.g., US 2005/0256030 Al), such as 2 aminoimidazol-5-methanol derivatives (Hay et al. (1999) Bioorg. Med. Chem. Lett. 9:2237) 30 and ortho- or para-aminobenzylacetals. Spacers can be used that undergo cyclization upon amide bond hydrolysis, such as substituted and unsubstituted 4-aminobutyric acid amides (Rodrigues et al., Chemistry Biology, 1995, 2, 223); appropriately substituted bicyclo[2.2.1] and bicyclo[2.2.2] ring systems (Storm, et al., J. Amer. Chem. Soc., 1972, 94, 5815); and 2 aminophenylpropionic acid amides (Amsberry, et al., J. Org. Chem., 1990, 55, 5867). 147 3860770.i (GHMatters) P79401 AU.3 14-Sep-12 Elimination of amine-containing drugs that are substituted at the a-position of glycine (Kingsbury, et al., J. Med. Chem., 1984, 27, 1447) are also examples of self-immolative spacers useful in ADCs. In one embodiment, a spacer unit is a branched bis(hydroxymethyl)styrene (BHMS) 5 unit as depicted below, which can be used to incorporate and release multiple drugs. 0 Qm
CH
2 (OC)n-D A b A a W - N H H\ 2( O )
CH
2 (0C,)n-D p enzymatic cleavage 2 drugs wherein Q is -C 1
-C
8 alkyl, -O-(C 1 -Cs alkyl), -halogen, -nitro or -cyano; m is an integer ranging from 0-4; n is 0 or 1; and p ranges raging from 1 to about 20. A linker may comprise any one or more of the above linker components. In certain 10 embodiments, a linker is as shown in brackets in the following ADC Formula II Ab-([Aa-Ww-Yy]-D)p Formula 11 wherein A is a stretcher unit, and a is an integer from 0 to 1; W is an amino acid unit, and w is an integer from 0 to 12; Y is a spacer unit, and y is 0, 1, or 2; and Ab, D, and p are defined as above for Formula 1. Exemplary embodiments of such linkers are described in 15 US 20050238649 Al, which is expressly incorporated herein by reference. 148 38607701 (GHMatters) P79401.AU.3 14-Sep-12 Exemplary linker components and combinations thereof are shown below in the context of ADCs of Formula 11: H 0 N Y Nl" YY-D) Ab Aa-N H 0 p HN O NH2 Val-Cit or VC 0 0 H 0 AbN N Yy-D) Ab N Ni-J L Y 0 H 0 p HN 5 NH 2 MC-val-cit 0 OO OHO / 0 D Ab N N N O H O/ H p HN 0 NH 2 MC-val-cit-PAB Linkers components, including stretcher, spacer, and amino acid units, may be synthesized by methods known in the art, such as those described in US 2005-0238649 Al. 149 3807701 (GHMatters) P79401.AU3 14-Sep-12 Exemplary Druq Moieties Maytansine and maytansinoids In some embodiments, an immunoconjugate comprises an antibody of the invention conjugated to one or more maytansinoid molecules. Maytansinoids are mitototic inhibitors 5 which act by inhibiting tubulin polymerization. Maytansine was first isolated from the east African shrub Maytenus serrata (U.S. Patent No. 3896111). Subsequently, it was discovered that certain microbes also produce maytansinoids, such as maytansinol and C-3 maytansinol esters (U.S. Patent No. 4,151,042). Synthetic maytansinol and derivatives and analogues thereof are disclosed, for example, in U.S. Patent Nos. 4,137,230; 4,248,870; 10 4,256,746; 4,260,608; 4,265,814; 4,294,757; 4,307,016; 4,308,268; 4,308,269; 4,309,428; 4,313,946; 4,315,929; 4,317,821; 4,322,348; 4,331,598; 4,361,650; 4,364,866; 4,424,219; 4,450,254; 4,362,663; and 4,371,533. Maytansinoid drug moieties are attractive drug moieties in antibody-drug conjugates because they are: (i) relatively accessible to prepare by fermentation or chemical 15 modification or derivatization of fermentation products, (ii) amenable to derivatization with functional groups suitable for conjugation through non-disulfide linkers to antibodies, (iii) stable in plasma, and (iv) effective against a variety of tumor cell lines. Maytansine compounds suitable for use as maytansinoid drug moieties are well known in the art and can be isolated from natural sources according to known methods or 20 produced using genetic engineering techniques (see Yu et al (2002) PNAS 99:7968-7973). Maytansinol and maytansinol analogues may also be prepared synthetically according to known methods. Exemplary embodiments of maytansinoid drug moieities include: DM1; DM3; and DM4, as disclosed herein. 25 Auristatins and dolastatins In some embodiments, an immunoconjugate comprises an antibody of the invention conjugated to dolastatin or a dolastatin peptidic analog or derivative, e.g., an auristatin (US Pat. Nos. 5635483; 5780588). Dolastatins and auristatins have been shown to interfere with microtubule dynamics, GTP hydrolysis, and nuclear and cellular division (Woyke et al 30 (2001) Antimicrob. Agents and Chemother. 45(12):3580-3584) and have anticancer (US Pat. No.5663149) and antifungal activity (Pettit et al (1998) Antimicrob. Agents Chemother. 150 3880770_1 (GHMatters) P79401.AU.3 14-Sep.12 42:2961-2965). The dolastatin or auristatin drug moiety may be attached to the antibody through the N (amino) terminus or the C (carboxyl) terminus of the peptidic drug moiety (WO 02/088172). Exemplary auristatin embodiments include the N-terminus linked 5 monomethylauristatin drug moieties DE and DF, disclosed in Senter et al, Proceedings of the American Association for Cancer Research, Volume 45, Abstract Number 623, presented March 28, 2004, the disclosure of which is expressly incorporated by reference in its entirety. A peptidic drug moiety may be selected from Formulas DE and DF below:
R
3 0 R7 CH 3
R
9 IN Ny 10 R 2 O R R R6 R 8 0 R 8 0 DE R3 O R7 CH 3
R
9 0 IIN IN111 1 N N R
R
2 O R4 R 5 R6 Ra 0 R 8 0 wherein the wavy line of DE and DF indicates the covalent attachment site to an antibody or antibody-linker component, and independently at each location: 15 R2 is selected from H and C-C 8 alkyl;
R
3 is selected from H, CI-C 8 alkyl, C 3
-C
8 carbocycle, aryl, C-C 8 alkyl-aryl, C 1
-C
8 alkyl-(C 3
-C
8 carbocycle), C 3
-C
8 heterocycle and C-C 8 alkyl-(C 3
-C
8 heterocycle);
R
4 is selected from H, C-C 8 alkyl, C 3
-C
8 carbocycle, aryl, C-C 8 alkyl-aryl, C-C 8 alkyl-(C 3
-C
8 carbocycle), C 3
-C
8 heterocycle and C 1
-C
8 alkyl-(C 3
-C
8 heterocycle); 20 R 5 is selected from H and methyl; or R 4 and R 5 jointly form a carbocyclic ring and have the formula -(CRaRb),- wherein Ra and Rb are independently selected from H, C-C 8 alkyl and C 3
-C
8 carbocycle and n is selected from 2, 3, 4, 5 and 6;
R
6 is selected from H and C 1
-C
8 alkyl; 151 3660770_1 (GHMatters) P79401.AU.3 14-Sep- 2 R7 is selected from H, C-C 8 alkyl, C 3
-C
8 carbocycle, aryl, C-C 8 alkyl-aryl, C-C 8 alkyl-(C 3
-C
8 carbocycle), C 3
-C
8 heterocycle and C-C 8 alkyl-(C 3
-C
8 heterocycle); each R8 is independently selected from H, OH, C-C 8 alkyl, C 3
-C
8 carbocycle and 0
(C-C
8 alkyl); 5 R 9 is selected from H and C-C 8 alkyl;
R
1 0 is selected from aryl or C 3
-C
8 heterocycle; Z is 0, S, NH, or NR 12 , wherein R 1 2 is C-C 8 alkyl; R" is selected from H, C-C 20 alkyl, aryl, C 3
-C
8 heterocycle, -(R 13 0)m-R 14 , or (R O)m-CH(R )2; 10 m is an integer ranging from 1-1000;
R
13 is C 2
-C
8 alkyl;
R
14 is H or C 1
-C
8 alkyl; each occurrence of R is independently H, COOH, -(CH 2 )n-N(R )2, -(CH 2 )o-SO 3 H, or -(CH 2 )n-SO 3
-C
1
-C
8 alkyl; 15 each occurrence of R 16 is independently H, C-C8 alkyl, or -(CH 2 )n-COOH;
R
18 is selected from -C(R 8
)
2
-C(R)
2 -aryl, -C(R 8
)
2
-C(R
8
)
2
-(C
3 -C heterocycle), and
-C(R")
2 -C(R8) 2
-(C
3
-C
8 carbocycle); and n is an integer ranging from 0 to 6. 20 In one embodiment, R 3 , R 4 and R 7 are independently isopropyl or sec-butyl and R 5 is -H or methyl. In an exemplary embodiment, R 3 and R 4 are each isopropyl, R 5 is -H, and R 7 is sec-butyl. In yet another embodiment, R 2 and R 6 are each methyl, and R 9 is -H. In still another embodiment, each occurrence of R 8 is -OCH 3 . 25 In an exemplary embodiment, R 3 and R 4 are each isopropyl, R 2 and R 6 are each methyl, R 5 is -H, R 7 is sec-butyl, each occurrence of R 8 is -OCH 3 , and R 9 is -H. In one embodiment, Z is -0- or -NH-. In one embodiment, R 10 is aryl. In an exemplary embodiment, R 10 is -phenyl. 30 In an exemplary embodiment, when Z is -0-, R" is -H, methyl or t-butyl. In one embodiment, when Z is -NH, R" is -CH(R 5
)
2 , wherein R 15 is -(CH 2 )n-N(R 16
)
2 , and R 16 is -C-C 8 alkyl or -(CH 2 )n-COOH. In another embodiment, when Z is -NH, R" is -CH(R 15
)
2 , wherein R 15 is -(CH 2 )n
SO
3 H. 35 152 30807701 (GHMatters) P79401.AU 3 14-Sep.12 An exemplary auristatin embodiment of formula DE is MMAE, wherein the wavy line indicates the covalent attachment to a linker (L) of an antibody-drug conjugate: 0 H H OH rN 'NN N N NOMMAE 5 An exemplary auristatin embodiment of formula DF is MMAF, wherein the wavy line indicates the covalent attachment to a linker (L) of an antibody-drug conjugate (see US 2005/0238649 and Doronina et al. (2006) Bioconjugate Chem. 17:114-124): 0 N N M 0 0 0 0 0 'N. 0 OH MMAF 10 Other drug moieties include the following MMAF derivatives, wherein the wavy line indicates the covalent attachment to a linker (L) of an antibody-drug conjugate: N HY N N N N 0 H 0 OCH30
OCH
3 0 0 0 AH N N N .. N N 0 0 0 0 15 153 38600770). (GHMatters) P79401.AU.3 14-Sep-12 H 0N N N, N N0 0 0C 3 H 0O0H- O 0 00N N N, N N0 10 10 0 OC3 /N H 0 4' N NNH 00N /NN N ' 00 0N H0C -N ,I.C0H 154 3080770_1 (GHMattos) P7040I.AU.3 14.Sep-12 0I N N N S0 3 H o0 N N, Nr N " N NH HOOC COOH , and 0 Ar H N, N N 0 o 0 0 0 0)NH 5
NH
2 In one aspect, hydrophilic groups including but not limited to, triethylene glycol esters (TEG), as shown above, can be attached to the drug moiety at R". Without being bound by any particular theory, the hydrophilic groups assist in the internalization and non 10 agglomeration of the drug moiety. Exemplary embodiments of ADCs of Formula I comprising an auristatin/dolastatin or derivative thereof are described in US 2005-0238649 Al and Doronina et al. (2006) Bioconjugate Chem. 17:114-124, which is expressly incorporated herein by reference. Exemplary embodiments of ADCs of Formula I comprising MMAE or MMAF and various 155 38807701 (GHMotters) P79401.AU.3 14-Sep.12 linker components have the following structures and abbreviations (wherein "Ab" is an antibody; p is 1 to about 8, "Val-Cit" is a valine-citrulline dipeptide; and "S" is a sulfur atom: Ab-,S V 0 H - O O N N .. N N N Val-CitN 0 0 0 O OA 0H 0 OH 5 Ab-MC-vc-PAB-MMAF Ab-S 0 VHa 0 l H OH O N SO ONNN N N N --- '' Val-Cit-N1( 0 1 ON0 0,0 0 H Ab-MC-vc-PAB-MMAE Ab-S 0 0 H 0 H OH NN N N N N 0 0 O O 00 10 p Ab-MC-MMAE Ab-S 0 0 H 0 H N N N.. NNN 0 0 0 00 'O HO / Ab-MC-MMAF 15 Exemplary embodiments of ADCs of Formula I comprising MMAF and various linker components further include Ab-MC-PAB-MMAF and Ab-PAB-MMAF. Interestingly, immunoconjugates comprising MMAF attached to an antibody by a linker that is not proteolytically cleavable have been shown to possess activity comparable to immunoconjugates comprising MMAF attached to an antibody by a proteolytically cleavable 20 linker. See, Doronina et al. (2006) Bioconjugate Chem. 17:114-124. In such instances, drug release is believed to be effected by antibody degradation in the cell. Id. 156 3680770_1 (GHMatters) P79401 AU.3 14-Sep-12 Typically, peptide-based drug moieties can be prepared by forming a peptide bond between two or more amino acids and/or peptide fragments. Such peptide bonds can be prepared, for example, according to the liquid phase synthesis method (see E. Schroder and K. Lobke, "The Peptides", volume 1, pp 76-136, 1965, Academic Press) that is well 5 known in the field of peptide chemistry. Auristatin/dolastatin drug moieties may be prepared according to the methods of: US 2005-0238649 Al; US Pat. No.5635483; US Pat. No.5780588; Pettit et al (1989) J. Am. Chem. Soc. 111:5463-5465; Pettit et al (1998) Anti Cancer Drug Design 13:243-277; Pettit, G.R., et al. Synthesis, 1996, 719-725; Pettit et al (1996) J. Chem. Soc. Perkin Trans. 1 5:859-863; and Doronina (2003) Nat. Biotechnol. 10 21(7):778-784. In particular, auristatin/dolastatin drug moieties of formula DF, such as MMAF and derivatives thereof, may be prepared using methods described in US 2005-0238649 Al and Doronina et al. (2006) Bioconjugate Chem. 17:114-124. Auristatin/dolastatin drug moieties of formula DE, such as MMAE and derivatives thereof, may be prepared using methods 15 described in Doronina et al. (2003) Nat. Biotech. 21:778-784. Drug-linker moieties MC MMAF, MC-MMAE, MC-vc-PAB-MMAF, and MC-vc-PAB-MMAE may be conveniently synthesized by routine methods, e.g., as described in Doronina et al. (2003) Nat. Biotech. 21:778-784, and Patent Application Publication No. US 2005/0238649 Al, and then conjugated to an antibody of interest. 20 Drug Loading Drug loading is represented by p and is the average number of drug moieties per antibody in a molecule of Formula 1. Drug loading may range from 1 to 20 drug moieties (D) per antibody. ADCs of Formula I include collections of antibodies conjugated with a range of drug moieties, from 1 to 20. The average number of drug moieties per antibody in 25 preparations of ADC from conjugation reactions may be characterized by conventional means such as mass spectroscopy, ELISA assay, and HPLC. The quantitative distribution of ADC in terms of p may also be determined. In some instances, separation, purification, and characterization of homogeneous ADC where p is a certain value from ADC with other drug loadings may be achieved by means such as reverse phase HPLC or electrophoresis. 30 For some antibody-drug conjugates, p may be limited by the number of attachment sites on the antibody. For example, where the attachment is a cysteine thiol, as in the exemplary embodiments above, an antibody may have only one or several cysteine thiol groups, or may have only one or several sufficiently reactive thiol groups through which a 157 3680770_1 (GHMatters) P79401.AU.3 14-Sep.12 linker may be attached. In certain embodiments, higher drug loading, e.g. p >5, may cause aggregation, insolubility, toxicity, or loss of cellular permeability of certain antibody-drug conjugates. In certain embodiments, the drug loading for an ADC of the invention ranges from 1 to about 8; from about 2 to about 6; from about 3 to about 5; from about 3 to about 4; 5 from about 3.1 to about 3.9; from about 3.2 to about 3.8; from about 3.2 to about 3.7; from about 3.2 to about 3.6; from about 3.3 to about 3.8; or from about 3.3 to about 3.7. Indeed, it has been shown that for certain ADCs, the optimal ratio of drug moieties per antibody may be less than 8, and may be about 2 to about 5. See US 2005-0238649 Al (herein incorporated by reference in its entirety). 10 In certain embodiments, fewer than the theoretical maximum of drug moieties are conjugated to an antibody during a conjugation reaction. An antibody may contain, for example, lysine residues that do not react with the drug-linker intermediate or linker reagent, as discussed below. Only the most reactive lysine groups may react with an amine-reactive linker reagent. Generally, antibodies do not contain many free and reactive cysteine thiol 15 groups which may be linked to a drug moiety; indeed most cysteine thiol residues in antibodies exist as disulfide bridges. In certain embodiments, an antibody may be reduced with a reducing agent such as dithiothreitol (DTT) or tricarbonylethylphosphine (TCEP), under partial or total reducing conditions, to generate reactive cysteine thiol groups. In certain embodiments, an antibody is subjected to denaturing conditions to reveal reactive 20 nucleophilic groups such as lysine or cysteine. The loading (drug/antibody ratio) of an ADC may be controlled in different ways, e.g., by: (i) limiting the molar excess of drug-linker intermediate or linker reagent relative to antibody, (ii) limiting the conjugation reaction time or temperature, (iii) partial or limiting reductive conditions for cysteine thiol modification, (iv) engineering by recombinant 25 techniques the amino acid sequence of the antibody such that the number and position of cysteine residues is modified for control of the number and/or position of linker-drug attachements (such as thioMab or thioFab prepared as disclosed herein and in W02006/034488 (herein incorporated by reference in its entirety)). It is to be understood that where more than one nucleophilic group reacts with a 30 drug-linker intermediate or linker reagent followed by drug moiety reagent, then the resulting product is a mixture of ADC compounds with a distribution of one or more drug moieties attached to an antibody. The average number of drugs per antibody may be calculated from the mixture by a dual ELISA antibody assay, which is specific for antibody and specific 158 3680770_1 (GHMatters) P79401 AU.3 14-Sep-12 for the drug. Individual ADC molecules may be identified in the mixture by mass spectroscopy and separated by HPLC, e.g. hydrophobic interaction chromatography (see, e.g., Hamblett, K.J., et al. "Effect of drug loading on the pharmacology, pharmacokinetics, and toxicity of an anti-CD30 antibody-drug conjugate," Abstract No. 624, American 5 Association for Cancer Research, 2004 Annual Meeting, March 27-31, 2004, Proceedings of the AACR, Volume 45, March 2004; Alley, S.C., et al. "Controlling the location of drug attachment in antibody-drug conjugates," Abstract No. 627, American Association for Cancer Research, 2004 Annual Meeting, March 27-31, 2004, Proceedings of the AACR, Volume 45, March 2004). In certain embodiments, a homogeneous ADC with a single 10 loading value may be isolated from the conjugation mixture by electrophoresis or chromatography. Certain Methods of Preparinq lmmunconjuqates An ADC of Formula I may be prepared by several routes employing organic chemistry reactions, conditions, and reagents known to those skilled in the art, including: 15 (1) reaction of a nucleophilic group of an antibody with a bivalent linker reagent to form Ab-L via a covalent bond, followed by reaction with a drug moiety D; and (2) reaction of a nucleophilic group of a drug moiety with a bivalent linker reagent, to form D-L, via a covalent bond, followed by reaction with a nucleophilic group of an antibody. Exemplary methods for preparing an ADC of Formula I via the latter route are described in US 20050238649 Al, 20 which is expressly incorporated herein by reference. Nucleophilic groups on antibodies include, but are not limited to: (i) N-terminal amine groups, (ii) side chain amine groups, e.g. lysine, (iii) side chain thiol groups, e.g. cysteine, and (iv) sugar hydroxyl or amino groups where the antibody is glycosylated. Amine, thiol, and hydroxyl groups are nucleophilic and capable of reacting to form covalent bonds with 25 electrophilic groups on linker moieties and linker reagents including: (i) active esters such as NHS esters, HOBt esters, haloformates, and acid halides; (ii) alkyl and benzyl halides such as haloacetamides; (iii) aldehydes, ketones, carboxyl, and maleimide groups. Certain antibodies have reducible interchain disulfides, i.e. cysteine bridges. Antibodies may be made reactive for conjugation with linker reagents by treatment with a reducing agent such 30 as DTT (dithiothreitol) or tricarbonylethylphosphine (TCEP), such that the antibody is fully or partially reduced. Each cysteine bridge will thus form, theoretically, two reactive thiol nucleophiles. Alternatively, sulfhydryl groups can be introduced into antibodies through modification of lysine residues, e.g., by reacting lysine residues with 2-iminothiolane (Traut's 159 3800770_1 (GHMatters) P79401.AU.3 14-Sep-12 reagent), resulting in conversion of an amine into a thiol. Reactive thiol groups may be introduced into an antibody by introducing one, two, three, four, or more cysteine residues (e.g., by preparing variant antibodies comprising one or more non-native cysteine amino acid residues). 5 Antibody-drug conjugates of the invention may also be produced by reaction between an electrophilic group on an antibody, such as an aldehyde or ketone carbonyl group, with a nucleophilic group on a linker reagent or drug. Useful nucleophilic groups on a linker reagent include, but are not limited to, hydrazide, oxime, amino, hydrazine, thiosemicarbazone, hydrazine carboxylate, and arylhydrazide. In one embodiment, an 10 antibody is modified to introduce electrophilic moieties that are capable of reacting with nucleophilic subsituents on the linker reagent or drug. In another embodiment, the sugars of glycosylated antibodies may be oxidized, e.g. with periodate oxidizing reagents, to form aldehyde or ketone groups which may react with the amine group of linker reagents or drug moieties. The resulting imine Schiff base groups may form a stable linkage, or may be 15 reduced, e.g. by borohydride reagents to form stable amine linkages. In one embodiment, reaction of the carbohydrate portion of a glycosylated antibody with either galactose oxidase or sodium meta-periodate may yield carbonyl (aldehyde and ketone) groups in the antibody that can react with appropriate groups on the drug (Hermanson, Bioconjugate Techniques). In another embodiment, antibodies containing N-terminal serine or threonine residues can 20 react with sodium meta-periodate, resulting in production of an aldehyde in place of the first amino acid (Geoghegan & Stroh, (1992) Bioconjugate Chem. 3:138-146; US 5362852). Such an aldehyde can be reacted with a drug moiety or linker nucleophile. Nucleophilic groups on a drug moiety include, but are not limited to: amine, thiol, hydroxyl, hydrazide, oxime, hydrazine, thiosemicarbazone, hydrazine carboxylate, and 25 arylhydrazide groups capable of reacting to form covalent bonds with electrophilic groups on linker moieties and linker reagents including: (i) active esters such as NHS esters, HOBt esters, haloformates, and acid halides; (ii) alkyl and benzyl halides such as haloacetamides; (iii) aldehydes, ketones, carboxyl, and maleimide groups. The compounds of the invention expressly contemplate, but are not limited to, ADC 30 prepared with the following cross-linker reagents: BMPS, EMCS, GMBS, HBVS, LC-SMCC, MBS, MPBH, SBAP, SIA, SlAB, SMCC, SMPB, SMPH, sulfo-EMCS, sulfo-GMBS, sulfo KMUS, sulfo-MBS, sulfo-SIAB, sulfo-SMCC, and sulfo-SMPB, and SVSB (succinimidyl-(4 vinylsulfone)benzoate) which are commercially available (e.g., from Pierce Biotechnology, 160 300770l (GHMatters) P79401 AU.3 14-Sep-12 Inc., Rockford, IL., U.S.A; see pages 467-498, 2003-2004 Applications Handbook and Catalog. Immunoconjugates comprising an antibody and a cytotoxic agent may also be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2 5 pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1 carboxylate (SMCC), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCI), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), 10 diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238:1098 (1987). Carbon-14-labeled 1 isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See 15 W094/11026. Alternatively, a fusion protein comprising an antibody and a cytotoxic agent may be made, e.g., by recombinant techniques or peptide synthesis. A recombinant DNA molecule may comprise regions encoding the antibody and cytotoxic portions of the conjugate either adjacent to one another or separated by a region encoding a linker peptide which does not 20 destroy the desired properties of the conjugate. In yet another embodiment, an antibody may be conjugated to a "receptor" (such as streptavidin) for utilization in tumor pre-targeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) which is 25 conjugated to a cytotoxic agent (e.g., a radionucleotide). 2. Exemplary Immunoconjugates - Thio-Antibody Drug Conjugates Preparation of cysteine engineered anti-CD22 antibodies DNA encoding an amino acid sequence variant of the cysteine engineered anti CD22 antibodies and parent anti-CD22 antibodies of the invention is prepared by a variety 30 of methods which include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants), preparation by site-directed (or oligonucleotide-mediated) mutagenesis (Carter (1985) et al Nucleic Acids Res. 13:4431 161 3680770_1 (GHMalters) P79401.AU.3 14-Sep12 4443; Ho et al (1989) Gene (Amst.) 77:51-59; Kunkel et al (1987) Proc. Natl. Acad. Sci. USA 82:488; Liu et al (1998) J. Biol. Chem. 273:20252-20260), PCR mutagenesis (Higuchi, (1990) in PCR Protocols, pp.177-183, Academic Press; Ito et al (1991) Gene 102:67-70; Bernhard et al (1994) Bioconjugate Chem. 5:126-132; and Vallette et al (1989) Nuc. Acids 5 Res. 17:723-733), and cassette mutagenesis (Wells et al (1985) Gene 34:315-323) of an earlier prepared DNA encoding the polypeptide. Mutagenesis protocols, kits, and reagents are commercially available, e.g. QuikChange@ Multi Site-Direct Mutagenesis Kit (Stratagene, La Jolla, CA). Single mutations are also generated by oligonucleotide directed mutagenesis using double stranded plasmid DNA as template by PCR based mutagenesis 10 (Sambrook and Russel, (2001) Molecular Cloning: A Laboratory Manual, 3rd edition; Zoller et al (1983) Methods Enzymol. 100:468-500; Zoller, M.J. and Smith, M. (1982) Nucl. Acids Res. 10:6487-6500). Variants of recombinant antibodies may be constructed also by restriction fragment manipulation or by overlap extension PCR with synthetic oligonucleotides. Mutagenic primers encode the cysteine codon replacement(s). Standard 15 mutagenesis techniques can be employed to generate DNA encoding such mutant cysteine engineered antibodies (Sambrook et al Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; and Ausubel et al Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience, New York, N.Y., 1993). 20 Phage display technology (McCafferty et al (1990) Nature 348:552-553) can be used to produce anti-CD22 human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. According to this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as 25 functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell (Johnson et al (1993) Current Opinion in Structural Biology 3:564 30 571; Clackson et al (1991) Nature, 352:624-628; Marks et al (1991) J. Mol. Biol. 222:581 597; Griffith et al (1993) EMBO J. 12:725-734; US 5565332; US 5573905; US 5567610; US 5229275). Anti-CD22 antibodies may be chemically synthesized using known oligopeptide synthesis methodology or may be prepared and purified using recombinant technology. The 35 appropriate amino acid sequence, or portions thereof, may be produced by direct peptide 162 3660770_1 (GHMatters) P79401.AU.3 14-Sep.12 synthesis using solid-phase techniques (Stewart et al., Solid-Phase Peptide Synthesis, (1969)W.H. Freeman Co., San Francisco, CA; Merrifield, (1963) J. Am. Chem. Soc., 85:2149-2154). In vitro protein synthesis may be performed using manual techniques or by automation. Automated solid phase synthesis may be accomplished, for instance, 5 employing t-BOC or Fmoc protected amino acids and using an Applied Biosystems Peptide Synthesizer (Foster City, CA) using manufacturer's instructions. Various portions of the anti-CD22 antibody or CD22 polypeptide may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the desired anti-CD22 antibody or CD22 polypeptide. 10 Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (Morimoto et al (1992) Journal of Biochemical and Biophysical Methods 24:107-117; and Brennan et al (1985) Science, 229:81), or produced directly by recombinant host cells. Fab, Fv and ScFv anti-CD22 antibody fragments can all be expressed in and secreted from E. 15 coli, thus allowing the facile production of large amounts of these fragments. Antibody fragments can be isolated from the antibody phage libraries discussed herein. Alternatively, Fab'-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab') 2 fragments (Carter et al (1992) Bio/Technology 10:163-167), or isolated directly from recombinant host cell culture. The anti-CD22 antibody may be a (scFv) single chain Fv 20 fragment (WO 93/16185; US 5571894; US. 5587458). The anti-CD22 antibody fragment may also be a "linear antibody" (US 5641870). Such linear antibody fragments may be monospecific or bispecific. The description below relates primarily to production of anti-CD22 antibodies by culturing cells transformed or transfected with a vector containing anti-CD22 antibody 25 encoding nucleic acid. DNA encoding anti-CD22 antibodies may be obtained from a cDNA library prepared from tissue believed to possess the anti-CD22 antibody mRNA and to express it at a detectable level. Accordingly, human anti-CD22 antibody or CD22 polypeptide DNA can be conveniently obtained from a cDNA library prepared from human tissue. The anti-CD22 antibody-encoding gene may also be obtained from a genomic 30 library or by known synthetic procedures (e.g., automated nucleic acid synthesis). The design, selection, and preparation methods of the invention enable cysteine engineered anti-CD22 antibodies which are reactive with electrophilic functionality. These methods further enable antibody conjugate compounds such as antibody-drug conjugate (ADC) compounds with drug molecules at designated, designed, selective sites. Reactive 35 cysteine residues on an antibody surface allow specifically conjugating a drug moiety 163 3060770_1 (GHMaters) P79401.AU.3 14-Sep-12 through a thiol reactive group such as maleimide or haloacetyl. The nucleophilic reactivity of the thiol functionality of a Cys residue to a maleimide group is about 1000 times higher compared to any other amino acid functionality in a protein, such as amino group of lysine residues or the N-terminal amino group. Thiol specific functionality in iodoacetyl and 5 maleimide reagents may react with amine groups, but higher pH (>9.0) and longer reaction times are required (Garman, 1997, Non-Radioactive Labelling: A Practical Approach, Academic Press, London). The amount of free thiol in a protein may be estimated by the standard Ellman's assay. Immunoglobulin M is an example of a disulfide-linked pentamer, while immunoglobulin G is an example of a protein with internal disulfide bridges bonding 10 the subunits together. In proteins such as this, reduction of the disulfide bonds with a reagent such as dithiothreitol (DTT) or selenol (Singh et al (2002) Anal. Biochem. 304:147 156) is required to generate the reactive free thiol. This approach may result in loss of antibody tertiary structure and antigen binding specificity. The Pheselector (Phage ELISA for Selection of Reactive Thiols) Assay allows for 15 detection of reactive cysteine groups in antibodies in an ELISA phage format thereby assisting in the design of cysteine engineered antibodies (WO 2006/034488). The cysteine engineered antibody is coated on well surfaces, followed by incubation with phage particles, addition of HRP labeled secondary antibody, and absorbance detection. Mutant proteins displayed on phage may be screened in a rapid, robust, and high-throughput manner. 20 Libraries of cysteine engineered antibodies can be produced and subjected to binding selection using the same approach to identify appropriately reactive sites of free Cys incorporation from random protein-phage libraries of antibodies or other proteins. This technique includes reacting cysteine mutant proteins displayed on phage with an affinity reagent or reporter group which is also thiol-reactive. 25 The PHESELECTOR assay allows screening of reactive thiol groups in antibodies. Identification of the A121C variant by this method is exemplary. The entire Fab molecule may be effectively searched to identify more ThioFab variants with reactive thiol groups. A parameter, fractional surface accessibility, was employed to identify and quantitate the accessibility of solvent to the amino acid residues in a polypeptide. The surface accessibility 30 can be expressed as the surface area (A 2 ) that can be contacted by a solvent molecule, e.g. water. The occupied space of water is approximated as a 1.4 A radius sphere. Software is freely available or licensable (Secretary to CCP4, Daresbury Laboratory, Warrington, WA4 4AD, United Kingdom, Fax: (+44) 1925 603825, or by internet: www.ccp4.ac.uk/dist/html/INDEX.html) as the CCP4 Suite of crystallography programs 164 3860770_1 (GHMatters) P79401.AU.3 14-Sep-12 which employ algorithms to calculate the surface accessibility of each amino acid of a protein with known x-ray crystallography derived coordinates ("The CCP4 Suite: Programs for Protein Crystallography" (1994) Acta. Cryst. D50:760-763). Two exemplary software modules that perform surface accessibility calculations are "AREAIMOL" and "SURFACE", 5 based on the algorithms of B.Lee and F.M.Richards (1971) J.Mol.Biol. 55:379-400. AREAIMOL defines the solvent accessible surface of a protein as the locus of the centre of a probe sphere (representing a solvent molecule) as it rolls over the Van der Waals surface of the protein. AREAIMOL calculates the solvent accessible surface area by generating surface points on an extended sphere about each atom (at a distance from the atom centre 10 equal to the sum of the atom and probe radii), and eliminating those that lie within equivalent spheres associated with neighboring atoms. AREAIMOL finds the solvent accessible area of atoms in a PDB coordinate file, and summarizes the accessible area by residue, by chain and for the whole molecule. Accessible areas (or area differences) for individual atoms can be written to a pseudo-PDB output file. AREAIMOL assumes a single 15 radius for each element, and only recognizes a limited number of different elements. AREAIMOL and SURFACE report absolute accessibilities, i.e. the number of square Angstroms (A). Fractional surface accessibility is calculated by reference to a standard state relevant for an amino acid within a polypeptide. The reference state is tripeptide Gly X-Gly, where X is the amino acid of interest, and the reference state should be an 20 'extended' conformation, i.e. like those in beta-strands. The extended conformation maximizes the accessibility of X. A calculated accessible area is divided by the accessible area in a Gly-X-Gly tripeptide reference state and reports the quotient, which is the fractional accessibility. Percent accessibility is fractional accessibility multiplied by 100. Another exemplary algorithm for calculating surface accessibility is based on the SOLV 25 module of the program xsae (Broger, C., F. Hoffman-LaRoche, Basel) which calculates fractional accessibility of an amino acid residue to a water sphere based on the X-ray coordinates of the polypeptide. The fractional surface accessibility for every amino acid in an antibody may be calculated using available crystal structure information (Eigenbrot et al. (1993) J Mol Biol. 229:969-995). 30 DNA encoding the cysteine engineered antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells serve as a source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, 165 3600770_1 (GHMatter) P7940 AU.3 14-Sep-12 simian COS cells, Chinese Hamster Ovary (CHO) cells, or other mammalian host cells, such as myeloma cells (US 5807715; US 2005/0048572; US 2004/0229310) that do not otherwise produce the antibody protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. 5 After design and selection, cysteine engineered antibodies, e.g. ThioFabs, with the engineered, highly reactive unpaired Cys residues, may be produced by: (i) expression in a bacterial, e.g. E. coli, system (Skerra et al (1993) Curr. Opinion in Immunol. 5:256-262; Pluckthun (1992) Immunol. Revs. 130:151-188) or a mammalian cell culture system (WO 01/00245), e.g. Chinese Hamster Ovary cells (CHO); and (ii) purification using common 10 protein purification techniques (Lowman et al (1991) J. Biol. Chem. 266(17):10982-10988). The engineered Cys thiol groups react with electrophilic linker reagents and drug linker intermediates to form cysteine engineered antibody drug conjugates and other labelled cysteine engineered antibodies. Cys residues of cysteine engineered antibodies, and present in the parent antibodies, which are paired and form interchain and intrachain 15 disulfide bonds do not have any reactive thiol groups (unless treated with a reducing agent) and do not react with electrophilic linker reagents or drug-linker intermediates. The newly engineered Cys residue, can remain unpaired, and able to react with, i.e. conjugate to, an electrophilic linker reagent or drug-linker intermediate, such as a drug-maleimide. Exemplary drug-linker intermediates include: MC-MMAE, MC-MMAF, MC-vc-PAB-MMAE, 20 and MC-vc-PAB-MMAF. The structure positions of the engineered Cys residues of the heavy and light chains are numbered according to a sequential numbering system. This sequential numbering system is correlated to the Kabat numbering system (Kabat et al., (1991) Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD) starting at the N-terminus, differs from the 25 Kabat numbering scheme (bottom row) by insertions noted by a,b,c. Using the Kabat numbering system, the actual linear amino acid sequence may contain fewer or additional amino acids corresponding to a shortening of, or insertion into, a FR or CDR of the variable domain. The cysteine engineered heavy chain variant sites are identified by the sequential numbering and Kabat numbering schemes. 166 3860770_1 (GHMatters) P79401 AU 3 14-Sep.I 2 In one embodiment, the cysteine engineered anti-CD22 antibody is prepared by a process comprising: (a) replacing one or more amino acid residues of a parent anti-CD22 antibody by cysteine; and 5 (b) determining the thiol reactivity of the cysteine engineered anti-CD22 antibody by reacting the cysteine engineered antibody with a thiol-reactive reagent. The cysteine engineered antibody may be more reactive than the parent antibody with the thiol-reactive reagent. The free cysteine amino acid residues may be located in the heavy or light chains, or 10 in the constant or variable domains. Antibody fragments, e.g. Fab, may also be engineered with one or more cysteine amino acids replacing amino acids of the antibody fragment, to form cysteine engineered antibody fragments. Another embodiment of the invention provides a method of preparing (making) a cysteine engineered anti-CD22 antibody, comprising: 15 (a) introducing one or more cysteine amino acids into a parent anti-CD22 antibody in order to generate the cysteine engineered anti-CD22 antibody; and (b) determining the thiol reactivity of the cysteine engineered antibody with a thiol-reactive reagent; wherein the cysteine engineered antibody is more reactive than the parent antibody 20 with the thiol-reactive reagent. Step (a) of the method of preparing a cysteine engineered antibody may comprise: (i) mutagenizing a nucleic acid sequence encoding the cysteine engineered antibody; (ii) expressing the cysteine engineered antibody; and 25 (iii) isolating and purifying the cysteine engineered antibody. 167 3000770_1 (GHMatter) P79401 AU.3 14-Sep-12 Step (b) of the method of preparing a cysteine engineered antibody may comprise expressing the cysteine engineered antibody on a viral particle selected from a phage or a phagemid particle. Step (b) of the method of preparing a cysteine engineered antibody may also 5 comprise: (i) reacting the cysteine engineered antibody with a thiol-reactive affinity reagent to generate an affinity labelled, cysteine engineered antibody; and (ii) measuring the binding of the affinity labelled, cysteine engineered antibody to a capture media. 10 Another embodiment of the invention is a method of screening cysteine engineered antibodies with highly reactive, unpaired cysteine amino acids for thiol reactivity comprising: (a) introducing one or more cysteine amino acids into a parent antibody in order to generate a cysteine engineered antibody; (b) reacting the cysteine engineered antibody with a thiol-reactive affinity reagent 15 to generate an affinity labelled, cysteine engineered antibody; and (c) measuring the binding of the affinity labelled, cysteine engineered antibody to a capture media; and (d) determining the thiol reactivity of the cysteine engineered antibody with the thiol-reactive reagent. 20 Step (a) of the method of screening cysteine engineered antibodies may comprise: (i) mutagenizing a nucleic acid sequence encoding the cysteine engineered antibody; (ii) expressing the cysteine engineered antibody; and (iii) isolating and purifying the cysteine engineered antibody. 25 Step (b) of the method of screening cysteine engineered antibodies may comprise expressing the cysteine engineered antibody on a viral particle selected from a phage or a phagemid particle. 168 3e80770_1 (GHMatters) P79401 AU.3 14-Sep-12 Step (b) of the method of screening cysteine engineered antibodies may also comprise: (i) reacting the cysteine engineered antibody with a thiol-reactive affinity reagent to generate an affinity labelled, cysteine engineered antibody; and 5 (ii) measuring the binding of the affinity labelled, cysteine engineered antibody to a capture media. Cysteine engineering of anti-CD22 10F4 lqG variants Cysteine was introduced at the heavy chain 118 (EU numbering) (equivalent to heavy chain position 121, sequential numbering) site into the full-length, chimeric parent 10 monoclonal anti-CD22 antibodies by the cysteine engineering methods described herein. The parent antibody, "std Anti-CD22 Hu 1OF4v3 Fc" (Heavy Chain sequence: SEQ ID NO:88, Light Chain sequence: SEQ ID NO:87, Figure 5B) was cysteine engineered to give "A118C thio hu anti-CD22 1OF4v3" (Heavy Chain sequence: SEQ ID NO:92, Light Chain sequence: SEQ ID NO:87, Figures 17 and 5B), "S400C thio hu anti-CD22 1OF4v3" 15 (Heavy Chain sequence: SEQ ID NO:93, Light Chain sequence: SEQ ID NO:87, Figures 17 and 5B), or "V205C thio anti-CD22 1OF4v3" (Heavy Chain sequence: SEQ ID NO:88, Light Chain sequence: SEQ ID NO:91, Figures 5B and 17). These cysteine engineered monoclonal antibodies were expressed in CHO (Chinese Hamster Ovary) cells by transient fermentation in media containing 1 mM cysteine. 20 Labelled cysteine engineered anti-CD22 antibodies Cysteine engineered anti-CD22 antibodies may be site-specifically and efficiently coupled with a thiol-reactive reagent. The thiol-reactive reagent may be a multifunctional linker reagent, a capture, i.e. affinity, label reagent (e.g. a biotin-linker reagent), a detection label (e.g. a fluorophore reagent), a solid phase immobilization reagent (e.g. 25 SEPHAROSE TM, polystyrene, or glass), or a drug-linker intermediate. One example of a thiol-reactive reagent is N-ethyl maleimide (NEM). In an exemplary embodiment, reaction of a ThioFab with a biotin-linker reagent provides a biotinylated ThioFab by which the presence and reactivity of the engineered cysteine residue may be detected and measured. Reaction of a ThioFab with a multifunctional linker reagent provides a ThioFab with a functionalized 169 3880770.1 (GHMatters) P79401 AU.3 14-Sep-12 linker which may be further reacted with a drug moiety reagent or other label. Reaction of a ThioFab with a drug-linker intermediate provides a ThioFab drug conjugate. The exemplary methods described here may be applied generally to the identification and production of antibodies, and more generally, to other proteins through 5 application of the design and screening steps described herein. Such an approach may be applied to the conjugation of other thiol-reactive reagents in which the reactive group is, for example, a maleimide, an iodoacetamide, a pyridyl disulfide, or other thiol-reactive conjugation partner (Haugland, 2003, Molecular Probes Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Inc.; 10 Brinkley, 1992, Bioconjugate Chem. 3:2; Garman, 1997, Non-Radioactive Labelling: A Practical Approach, Academic Press, London; Means (1990) Bioconjugate Chem. 1:2; Hermanson, G. in Bioconjugate Techniques (1996) Academic Press, San Diego, pp. 40-55, 643-671). The thiol-reactive reagent may be a drug moiety, a fluorophore such as a fluorescent dye like fluorescein or rhodamine, a chelating agent for an imaging or 15 radiotherapeutic metal, a peptidyl or non-peptidyl label or detection tag, or a clearance modifying agent such as various isomers of polyethylene glycol, a peptide that binds to a third component, or another carbohydrate or lipophilic agent. Uses of cysteine engineered anti-CD22 antibodies Cysteine engineered anti-CD22 antibodies, and conjugates thereof may find use as 20 therapeutic and/or diagnostic agents. The present invention further provides methods of preventing, managing, treating or ameliorating one or more symptoms associated with a B cell related disorder. In particular, the present invention provides methods of preventing, managing, treating, or ameliorating one or more symptoms associated with a cell proliferative disorder, such as cancer, e.g., lymphoma, non-Hogkins lymphoma (NHL), 25 aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma. The present invention still further provides methods for diagnosing a CD22 related disorder or predisposition to developing such a disorder, as well as methods for 30 identifying antibodies, and antigen-binding fragments of antibodies, that preferentially bind B cell-associated CD22 polypeptides. 170 38607701 (GHMatters) P79401.AU.3 14-Sep-1 2 Another embodiment of the present invention is directed to the use of a cysteine engineered anti-CD22 antibody for the preparation of a medicament useful in the treatment of a condition which is responsive to a B cell related disorder. Cysteine Engineered Antibody Drug Coniuqates (Thio-antibody Druq Coniuqates) 5 Another aspect of the invention is an antibody-drug conjugate compound comprising a cysteine engineered anti-CD22 antibody (Ab), and an auristatin drug moiety (D) wherein the cysteine engineered antibody is attached through one or more free cysteine amino acids by a linker moiety (L) to D; the compound having Formula 1: Ab-(L-D), 10 where p is 1, 2, 3, or 4; and wherein the cysteine engineered antibody is prepared by a process comprising replacing one or more amino acid residues of a parent anti-CD22 antibody by one or more free cysteine amino acids. Figure 10 shows embodiments of cysteine engineered anti-CD22 antibody drug conjugates (ADC) where an auristatin drug moiety is attached to an engineered cysteine 15 group in: the light chain (LC-ADC); the heavy chain (HC-ADC); and the Fc region (Fc-ADC). Potential advantages of cysteine engineered anti-CD22 antibody drug conjugates include improved safety (larger therapeutic index), improved PK parameters, the antibody inter-chain disulfide bonds are retained which may stabilize the conjugate and retain its active binding conformation, the sites of drug conjugation are defined, and the preparation 20 of of cysteine engineered antibody drug conjugates from conjugation of cysteine engineered antibodies to drug-linker reagents results in a more homogeneous product. Linkers "Linker", "Linker Unit", or "link" means a chemical moiety comprising a covalent bond or a chain of atoms that covalently attaches an antibody to a drug moiety. In various 25 embodiments, a linker is specified as L. A "Linker" (L) is a bifunctional or multifunctional moiety which can be used to link one or more Drug moieties (D) and an antibody unit (Ab) to form antibody-drug conjugates (ADC) of Formula 1. Antibody-drug conjugates (ADC) can be conveniently prepared using a Linker having reactive functionality for binding to the Drug and to the Antibody. A cysteine thiol of a cysteine engineered antibody (Ab) can form a 171 3860770_1 (GHMatters) P79401.AU.3 14-Sep-12 bond with an electrophilic functional group of a linker reagent, a drug moiety or drug-linker intermediate. In one aspect, a Linker has a reactive site which has an electrophilic group that is reactive to a nucleophilic cysteine present on an antibody. The cysteine thiol of the antibody 5 is reactive with an electrophilic group on a Linker and forms a covalent bond to a Linker. Useful electrophilic groups include, but are not limited to, maleimide and haloacetamide groups. Linkers include a divalent radical such as an alkyldiyl, an arylene, a heteroarylene, moieties such as: -(CR 2 )nO(CR 2 )n-, repeating units of alkyloxy (e.g. polyethylenoxy, PEG, 10 polymethyleneoxy) and alkylamino (e.g. polyethyleneamino, Jeffamine
TM
); and diacid ester and amides including succinate, succinamide, diglycolate, malonate, and caproamide. Cysteine engineered antibodies react with linker reagents or drug-linker intermediates, with electrophilic functional groups such as maleimide or a-halo carbonyl, according to the conjugation method at page 766 of Klussman, et al (2004), Bioconjugate 15 Chemistry 15(4):765-773, and according to the protocol of Example x. The linker may be composed of one or more linker components. Exemplary linker components include 6-maleimidocaproyl ("MC"), maleimidopropanoyl ("MP"), valine-citrulline ("val-cit" or "vc"), alanine-phenylalanine ("ala-phe" or "af"), p-aminobenzyloxycarbonyl ("PAB"), N-succinimidyl 4-(2-pyridylthio) pentanoate ("SPP"), N-succinimidyl 4-(N 20 maleimidomethyl) cyclohexane-1 carboxylate ("SMCC'), N-Succinimidyl (4-iodo-acetyl) aminobenzoate ("SIAB"), ethyleneoxy -CH 2
CH
2 0- as one or more repeating units ("EO" or "PEO"). Additional linker components are known in the art and some are described herein. In one embodiment, linker L of an ADC has the formula: 25 -Aa-Ww-Yy wherein: -A- is a Stretcher unit covalently attached to a cysteine thiol of the antibody (Ab); a is 0 or 1; 172 3880770_1 (GHMatters) P79401 AU 3 14-Sep-12 each -W- is independently an Amino Acid unit; w is independently an integer ranging from 0 to 12; -Y- is a Spacer unit covalently attached to the drug moiety; and y is 0, 1 or 2. 5 Stretcher unit The Stretcher unit (-A-), when present, is capable of linking an antibody unit to an amino acid unit (-W-). In this regard an antibody (Ab) has a functional group that can form a bond with a functional group of a Stretcher. Useful functional groups that can be present on an antibody, either naturally or via chemical manipulation include, but are not limited to, 10 sulfhydryl (-SH), amino, hydroxyl, carboxy, the anomeric hydroxyl group of a carbohydrate, and carboxyl. In one aspect, the antibody functional groups are sulfhydryl or amino. Sulfhydryl groups can be generated by reduction of an intramolecular disulfide bond of an antibody. Alternatively, sulfhydryl groups can be generated by reaction of an amino group of a lysine moiety of an antibody using 2-iminothiolane (Traut's reagent) or another 15 sulfhydryl generating reagent. In one embodiment, an antibody (Ab) has a free cysteine thiol group that can form a bond with an electrophilic functional group of a Stretcher Unit. Exemplary stretcher units in Formula I conjugates are depicted by Formulas 11 and 111, wherein Ab-, -W-, -Y-, -D, w and y are as defined above, and R 17 is a divalent radical selected from (CH 2 )r, C 3
-C
8 carbocyclyl, O-(CH 2 )r, arylene, (CH 2 )r-arylene, 20 -arylene-(CH 2 )r-, (CH 2 )r-(C 3 -Ca carbocyclyl), (C 3
-C
8 carbocyclyl)-(CH 2 )r, C 3
-C
8 heterocyclyl,
(CH
2 )r-(C 3
-C
8 heterocyclyl), -(C 3
-C
8 heterocyclyl)-(CH 2 )r-, -(CH 2 )rC(O)NRb(CH 2 )r-,
-(CH
2
CH
2 0)r-, -(CH 2
CH
2 0)r-CH 2 -, -(CH 2 )rC(O)NRb(CH 2
CH
2 0)r-,
-(CH
2 )rC(O)NRb(CH 2
CH
2 0)r-CH 2 -, -(CH 2
CH
2 0)rC(O)NR'(CH 2
CH
2 0)r-,
-(CH
2
CH
2 0)rC(O)NRb(CH 2
CH
2 0)r-CH 2 -, and -(CH 2
CH
2 0)rC(O)NR'(CH 2 )r- ; where Rb is H, 25 C-C 8 alkyl, phenyl, or benzyl; and r is independently an integer ranging from 1-10. Arylene includes divalent aromatic hydrocarbon radicals of 6-20 carbon atoms derived by the removal of two hydrogen atoms from the aromatic ring system. Typical arylene groups include, but are not limited to, radicals derived from benzene, substituted benzene, naphthalene, anthracene, biphenyl, and the like. 1 73 3680770.1 (GHMatters) P79401.AU 3 14.Sep.12 Heterocyclyl groups include a ring system in which one or more ring atoms is a heteroatom, e.g. nitrogen, oxygen, and sulfur. The heterocycle radical comprises 1 to 20 carbon atoms and 1 to 3 heteroatoms selected from N, 0, P, and S. A heterocycle may be a monocycle having 3 to 7 ring members (2 to 6 carbon atoms and 1 to 3 heteroatoms 5 selected from N, 0, P, and S) or a bicycle having 7 to 10 ring members (4 to 9 carbon atoms and 1 to 3 heteroatoms selected from N, 0, P, and S), for example: a bicyclo (4,5], (5,5], [5,6], or [6,6] system. Heterocycles are described in Paquette, Leo A.; "Principles of Modern Heterocyclic Chemistry" (W.A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; "The Chemistry of Heterocyclic Compounds, A series of Monographs" 10 (John Wiley & Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28; and J. Am. Chem. Soc. (1960) 82:5566. Examples of heterocycles include by way of example and not limitation pyridyl, dihydroypyridyl, tetrahydropyridyl (piperidyl), thiazolyl, tetrahydrothiophenyl, sulfur oxidized tetrahydrothiophenyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, 15 benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, bis tetrahydrofuranyl, tetrahydropyranyl, bis-tetrahydropyranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, azocinyl, triazinyl, 6H 1 2,5-thiadiazinyl, 2H,6H-1,5,2-dithiazinyl, thienyl, thianthrenyl, pyranyl, isobenzofuranyl, 20 chromenyl, xanthenyl, phenoxathinyl, 2H-pyrrolyl, isothiazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, 1H-indazolyl, purinyl, 4H-quinolizinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4Ah-carbazolyl, carbazolyl, @-carbolinyl, phenanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, imidazolidinyl, 25 imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, and isatinoyl. Carbocyclyl groups include a saturated or unsaturated ring having 3 to 7 carbon atoms as a monocycle or 7 to 12 carbon atoms as a bicycle. Monocyclic carbocycles have 30 3 to 6 ring atoms, still more typically 5 or 6 ring atoms. Bicyclic carbocycles have 7 to 12 ring atoms, e.g. arranged as a bicyclo [4,5], [5,5], [5,6] or [6,6] system, or 9 or 10 ring atoms arranged as a bicyclo [5,6] or [6,6] system. Examples of monocyclic carbocycles include cyclopropyl, cyclobutyl, cyclopentyl, 1-cyclopent-1-enyl, 1-cyclopent-2-enyl, 1-cyclopent-3 174 3O8770_1 (GHMaters) P79401.AU.3 14-Sep-12 enyl, cyclohexyl, 1 -cyclohex-1 -enyl, 1 -cyclohex-2-enyl, 1 -cyclohex-3-enyl, cycloheptyl, and cyclooctyl. It is to be understood from all the exemplary embodiments of Formula I ADC such as ll-VI, that even where not denoted expressly, from 1 to 4 drug moieties are linked to an 5 antibody ( p = 1-4), depending on the number of engineered cysteine residues. 0 Ab-S
N-R
1 7 -C(0)-W--Yy-D 0) II Ab-S
CH
2
-CONH-R
1 7-C(o)-W-Yy-D) P An illustrative Formula 11 Stretcher unit is derived from maleimido-caproyl (MC) wherein R' 7 is -(CH 2
)
5 -: 0 INN 0 10 0 MC An illustrative Stretcher unit of Formula 11, and is derived from maleimido-propanoyl (MP) wherein R' 7 is -(CH 2
)
2 -: 0 0 N 0 MP 175 3860770_1 (GHMatters) P79401 AU 3 14-Sep-12 Another illustrative Stretcher unit of Formula II wherein R1 is -(CH 2
CH
2 0),-CH 2 - and r is 2: 0 N O O 0 0 Another illustrative Stretcher unit of Formula II wherein R is 5 -(CH 2 )rC(0)NR'(CH 2
CH
2 0)r-CH 2 - where Rb is H and each r is 2: N O- O H O o MPEG An illustrative Stretcher unit of Formula Ill wherein R 17 is -(CH 2
)
5 -: 0 / N H 0 In another embodiment, the Stretcher unit is linked to the cysteine engineered anti 10 CD22 antibody via a disulfide bond between the engineered cystein sulfur atom of the antibody and a sulfur atom of the Stretcher unit. A representative Stretcher unit of this embodiment is depicted by Formula IV, wherein R 1, Ab-, -W-, -Y-, -D, w and y are as defined above. Ab-S
S-R
7 -C(O)-W--Yy-D ) I 15 In yet another embodiment, the reactive group of the Stretcher contains a thiol reactive functional group that can form a bond with a free cysteine thiol of an antibody. Examples of thiol-reaction functional groups include, but are not limited to, maleimide, a haloacetyl, activated esters such as succinimide esters, 4-nitrophenyl esters, 176 360770.1 (GHMatter) P79401 AU.3 14-Sep-12 pentafluorophenyl esters, tetrafluorophenyl esters, anhydrides, acid chlorides, sulfonyl chlorides, isocyanates and isothiocyanates. Representative Stretcher units of this embodiment are depicted by Formulas Va and Vb, wherein -R"-, Ab-, -W-, -Y-, -D, w and y are as defined above; Ab-S C(O)NH-R17-C(O)-WW-Yy D ) Ab-S C(S)NH-R17-C(O)-W-Yy- D ' E Vb In another embodiment, the linker may be a dendritic type linker for covalent attachment of more than one drug moiety through a branching, multifunctional linker moiety to an antibody (Sun et al (2002) Bioorganic & Medicinal Chemistry Letters 12:2213-2215; 10 Sun et al (2003) Bioorganic & Medicinal Chemistry 11:1761-1768; King (2002) Tetrahedron Letters 43:1987-1990). Dendritic linkers can increase the molar ratio of drug to antibody, i.e. loading, which is related to the potency of the ADC. Thus, where a cysteine engineered antibody bears only one reactive cysteine thiol group, a multitude of drug moieties may be attached through a dendritic linker. 15 Amino acid unit The linker may comprise amino acid residues. The Amino Acid unit (-W,-), when present, links the antibody (Ab) to the drug moiety (D) of the cysteine engineered antibody drug conjugate (ADC) of the invention. 177 3M80770.1 (GHMatters) P79401 AU.3 14-Sep-12 -W,- is a dipeptide, tripeptide, tetrapeptide, pentapeptide, hexapeptide, heptapeptide, octapeptide, nonapeptide, decapeptide, undecapeptide or dodecapeptide unit. Amino acid residues which comprise the Amino Acid unit include those occurring naturally, as well as minor amino acids and non-naturally occurring amino acid analogs, such as 5 citrulline. Each -W- unit independently has the formula denoted below in the square brackets, and w is an integer ranging from 0 to 12: 0 H N R 9 -w wherein R 19 is hydrogen, methyl, isopropyl, isobutyl, sec-butyl, benzyl, p hydroxybenzyl, -CH 2 OH, -CH(OH)CH 3 , -CH 2
CH
2
SCH
3 , -CH 2
CONH
2 , -CH 2 COOH, 10 CH 2
CH
2
CONH
2 , -CH 2
CH
2 COOH, -(CH 2
)
3
NHC(=NH)NH
2 , -(CH 2
)
3
NH
2 , -(CH 2
)
3
NHCOCH
3 , (CH 2
)
3 NHCHO, -(CH 2
)
4
NHC(=NH)NH
2 , -(CH 2
)
4
NH
2 , -(CH 2
)
4
NHCOCH
3 , -(CH 2
)
4 NHCHO, (CH 2
)
3
NHCONH
2 , -(CH 2
)
4
NHCONH
2 , -CH 2
CH
2
CH(OH)CH
2
NH
2 , 2-pyridylmethyl-, 3 pyridylmethyl-, 4-pyridylmethyl-, phenyl, cyclohexyl, ~OH CH2 or CH 2 N H 15 When R 1 9 is other than hydrogen, the carbon atom to which R 19 is attached is chiral. Each carbon atom to which R 19 is attached is independently in the (S) or (R) configuration, 178 300770_1 (GHMatters) P794D1.AU.3 14-Sep-12 or a racemic mixture. Amino acid units may thus be enantiomerically pure, racemic, or diastereomeric. Exemplary -W-- Amino Acid units include a dipeptide, a tripeptide, a tetrapeptide or a pentapeptide. Exemplary dipeptides include: valine-citrulline (vc or val-cit), alanine 5 phenylalanine (af or ala-phe). Exemplary tripeptides include: glycine-valine-citrulline (gly val-cit) and glycine-glycine-glycine (gly-gly-gly). Amino acid residues which comprise an amino acid linker component include those occurring naturally, as well as minor amino acids and non-naturally occurring amino acid analogs, such as citrulline. The Amino Acid unit can be enzymatically cleaved by one or more enzymes, 10 including a tumor-associated protease, to liberate the Drug moiety (-D), which in one embodiment is protonated in vivo upon release to provide a Drug (D). Amino acid linker components can be designed and optimized in their selectivity for enzymatic cleavage by a particular enzymes, for example, a tumor-associated protease, cathepsin B, C and D, or a plasmin protease. 15 Spacer unit The Spacer unit (-Yy-), when present (y = 1 or 2), links an Amino Acid unit (-W,-) to the drug moiety (D) when an Amino Acid unit is present (w = 1-12). Alternately, the Spacer unit links the Stretcher unit to the Drug moiety when the Amino Acid unit is absent. The Spacer unit also links the drug moiety to the antibody unit when both the Amino Acid 20 unit and Stretcher unit are absent (w, y = 0). Spacer units are of two general types: self immolative and non self-immolative. A non self-immolative Spacer unit is one in which part or all of the Spacer unit remains bound to the Drug moiety after cleavage, particularly enzymatic, of an Amino Acid unit from the antibody-drug conjugate or the Drug moiety linker. When an ADC containing a glycine-glycine Spacer unit or a glycine Spacer unit 25 undergoes enzymatic cleavage via a tumor-cell associated-protease, a cancer-cell associated protease or a lymphocyte-associated protease, a glycine-glycine-Drug moiety or a glycine-Drug moiety is cleaved from Ab-Aa-Ww-. In one embodiment, an independent hydrolysis reaction takes place within the target cell, cleaving the glycine-Drug moiety bond and liberating the Drug. 30 In another embodiment, -Yy- is a p-aminobenzylcarbamoyl (PAB) unit whose phenylene portion is substituted with Qm wherein Q is -C-C 8 alkyl, -O-(C-C 8 alkyl), halogen,- nitro or -cyano; and m is an integer ranging from 0-4. 179 3850770_1 (GHMatters) P79401.AU.3 14-Sep-12 Exemplary embodiments of a non self-immolative Spacer unit (-Y-) are: -Gly-Gly- ; Gly- ; -Ala-Phe- ; -Val-Cit-. In one embodiment, a Drug moiety-linker or an ADC is provided in which the Spacer unit is absent (y=0), or a pharmaceutically acceptable salt or solvate thereof. 5 Alternatively, an ADC containing a self-immolative Spacer unit can release -D. In one embodiment, -Y- is a PAB group that is linked to -Ww- via the amino nitrogen atom of the PAB group, and connected directly to -D via a carbonate, carbamate or ether group, where the ADC has the exemplary structure: Qm O-C-D 0 p 10 wherein Q is -C 1
-C
8 alkyl, -O-(C 1
-C
8 alkyl), -halogen, -nitro or -cyano; m is an integer ranging from 0-4; and p ranges from 1 to 4. Other examples of self-immolative spacers include, but are not limited to, aromatic compounds that are electronically similar to the PAB group such as 2-aminoimidazol-5 methanol derivatives (Hay et al. (1999) Bioorg. Med. Chem. Lett. 9:2237), heterocyclic PAB 15 analogs (US 2005/0256030), beta-glucuronide (WO 2007/011968), and ortho or para aminobenzylacetals. Spacers can be used that undergo cyclization upon amide bond hydrolysis, such as substituted and unsubstituted 4-aminobutyric acid amides (Rodrigues et al (1995) Chemistry Biology 2:223), appropriately substituted bicyclo[2.2.1] and bicyclo[2.2.2] ring systems (Storm et al (1972) J. Amer. Chem. Soc. 94:5815) and 2 20 aminophenylpropionic acid amides (Amsberry, et al (1990) J. Org. Chem. 55:5867). Elimination of amine-containing drugs that are substituted at glycine (Kingsbury et al (1984) J. Med. Chem. 27:1447) are also examples of self-immolative spacer useful in ADCs. Exemplary Spacer units (-Yy-) are represented by Formulas X-XII: H -N 0 X 180 3880770_1 (GHMatters) P79401.AU.3 14.Sop-l2
-HN-CH
2 -CO- XI
[-NHCH
2
C(O)-NHCH
2 C(O)- X Dendritic linkers In another embodiment, linker L may be a dendritic type linker for covalent 5 attachment of more than one drug moiety through a branching, multifunctional linker moiety to an antibody (Sun et al (2002) Bioorganic & Medicinal Chemistry Letters 12:2213-2215; Sun et al (2003) Bioorganic & Medicinal Chemistry 11:1761-1768). Dendritic linkers can increase the molar ratio of drug to antibody, i.e. loading, which is related to the potency of the ADC. Thus, where a cysteine engineered antibody bears only one reactive cysteine 10 thiol group, a multitude of drug moieties may be attached through a dendritic linker. Exemplary embodiments of branched, dendritic linkers include 2,6-bis(hydroxymethyl)-p cresol and 2,4,6-tris(hydroxymethyl)-pheno dendrimer units (WO 2004/01993; Szalai et al (2003) J. Amer. Chem. Soc. 125:15688-15689; Shamis et al (2004) J. Amer. Chem. Soc. 126:1726-1731; Amir et al (2003) Angew. Chem. Int. Ed. 42:4494-4499). 15 In one embodiment, the Spacer unit is a branched bis(hydroxymethyl)styrene (BHMS), which can be used to incorporate and release multiple drugs, having the structure: 0 Qm CH 2 (OC)n-D Ab Aa-W,-NH /H2H) 4, Cr1 2 kO)M-D p comprising a 2-(4-aminobenzylidene)propane-1,3-diol dendrimer unit (WO 2004/043493; de Groot et al (2003) Angew. Chem. Int. Ed. 42:4490-4494), wherein Q is 20 C-C 8 alkyl, -0-(C-C 8 alkyl), -halogen, -nitro or -cyano; m is an integer ranging from 0-4; n is 0 or 1; and p ranges ranging from 1 to 4. 181 3860770_1 (GHMatlers) P79401 AU.3 14-Sep-12 Exemplary embodiments of the Formula I antibody-drug conjugate compounds include XIlla (MC), XIllb (val-cit), XIllc (MC-val-cit), and XIlld (MC-val-cit-PAB): Ab-S Aa~N N,)IYy-D) HO 0 Ab-S N D ) Op 0 NH 2 XIIIa XIIIb 0 O H O Ab-S N N O HQ / p HN 5 0 NH 2 XIIIC 0 OO 0 O H O/ O-D Ab-S N N N O H O HN O NH 2 XIIId Other exemplary embodiments of the Formula la antibody-drug conjugate compounds include XIVa-e: 0 N-X-C-D Ab-S 0 p XIVa 182 3680770_1 (GHMatters) P79401.AU.3 14-Sep-12 Ab-S CH 2 C-Y-C-D; )p XIVb 0 00
N-CH
2 & C-D Ab-S 4 pX~ I I~ 0 0 Ai H - I Ab-S 4CH 2 C -c~ p D C D 5 where X is: Y is: R -R -N \/or N(H), 183 366077Q.1 (GHMattesm) P79401.AU 3 14.Sep.12 and R is independently H or C 1
-C
6 alkyl; and n is 1 to 12. In another embodiment, a Linker has a reactive functional group which has a nucleophilic group that is reactive to an electrophilic group present on an antibody. Useful electrophilic groups on an antibody include, but are not limited to, aldehyde and ketone 5 carbonyl groups. The heteroatom of a nucleophilic group of a Linker can react with an electrophilic group on an antibody and form a covalent bond to an antibody unit. Useful nucleophilic groups on a Linker include, but are not limited to, hydrazide, oxime, amino, hydrazine, thiosemicarbazone, hydrazine carboxylate, and arylhydrazide. The electrophilic group on an antibody provides a convenient site for attachment to a Linker. 10 Typically, peptide-type Linkers can be prepared by forming a peptide bond between two or more amino acids and/or peptide fragments. Such peptide bonds can be prepared, for example, according to the liquid phase synthesis method (E. Schr6der and K. Lubke (1965) "The Peptides", volume 1, pp 76-136, Academic Press) which is well known in the field of peptide chemistry. Linker intermediates may be assembled with any combination or 15 sequence of reactions including Spacer, Stretcher, and Amino Acid units. The Spacer, Stretcher, and Amino Acid units may employ reactive functional groups which are electrophilic, nucleophilic, or free radical in nature. Reactive functional groups include, but are not limited to carboxyls, hydroxyls, para-nitrophenylcarbonate, isothiocyanate, and leaving groups, such as O-mesyl, O-tosyl, -CI, -Br, -1; or maleimide. 20 In another embodiment, the Linker may be substituted with groups which modulated solubility or reactivity. For example, a charged substituent such as sulfonate (-S03) or ammonium, may increase water solubility of the reagent and facilitate the coupling reaction of the linker reagent with the antibody or the drug moiety, or facilitate the coupling reaction of Ab-L (antibody-linker intermediate) with D, or D-L (drug-linker intermediate) with Ab, 25 depending on the synthetic route employed to prepare the ADC. Linker reagents Conjugates of the antibody and auristatin may be made using a variety of bifunctional linker reagents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC), iminothiolane (IT), 30 bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCI), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such 184 3660770_1 (GHMatlers) P79401 AU3 14-Sep-12 as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6 diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). The antibody drug conjugates may also be prepared with linker reagents: BMPEO, BMPS, EMCS, GMBS, HBVS, LC-SMCC, MBS, MPBH, SBAP, SIA, SIAB, SMPB, SMPH, 5 sulfo-EMCS, sulfo-GMBS, sulfo-KMUS, sulfo-MBS, sulfo-SIAB, sulfo-SMCC, and sulfo SMPB, and SVSB (succinimidyl-(4-vinylsulfone)benzoate), and including bis-maleimide reagents: DTME, BMB, BMDB, BMH, BMOE, BM(PEO) 3 , and BM(PEO) 4 , which are commercially available from Pierce Biotechnology, Inc., Customer Service Department, P.O. Box 117, Rockford, IL. 61105 U.S.A, U.S.A 1-800-874-3723, International +815-968-0747. 10 Bis-maleimide reagents allow the attachment of the thiol group of a cysteine engineered antibody to a thiol-containing drug moiety, label, or linker intermediate, in a sequential or concurrent fashion. Other functional groups besides maleimide, which are reactive with a thiol group of a cysteine engineered antibody, drug moiety, label, or linker intermediate include iodoacetamide, bromoacetamide, vinyl pyridine, disulfide, pyridyl disulfide, 15 isocyanate, and isothiocyanate. O0 0 , - - N O 0 *' O * O '
BM(PEO)
3
BM(PEO)
4 Useful linker reagents can also be obtained via other commercial sources, such as Molecular Biosciences Inc.(Boulder, CO), or synthesized in accordance with procedures 20 described in Toki et al (2002) J. Org. Chem. 67:1866-1872; Walker, M.A. (1995) J. Org. Chem. 60:5352-5355; Frisch et al (1996) Bioconjugate Chem. 7:180-186; US 6214345; WO 02/088172; US 2003130189; US2003096743; WO 03/026577; WO 03/043583; and WO 04/032828. 185 3N60770_1 (GHMatters) P79401.AU 3 14-Sep-12 Stretchers of formula (lila) can be introduced into a Linker by reacting the following linker reagents with the N-terminus of an Amino Acid unit: 0 0 N-(CH2)n-C(O)-O--N 0 0 where n is an integer ranging from 1-10 and T is -H or -SO 3 Na; O 0 N -- (CH2)n-C(0)-0-N 5 0 0 where n is an integer ranging from 0-3; 0 0 O N---O-N ; N0 0 00 00 OZ:N N O 0 _/ 00 0 0 0 ON-- and O O H 10 0 186 3660770_1 (GHMaflorS) P791401 AU 3 14-Sep-12 Stretcher units of can be introduced into a Linker by reacting the following bifunctional reagents with the N-terminus of an Amino Acid unit: 0 000 0 0 0 0 0 N 0 0 0 0 0 0 BrN-A.N H 0N- -N NH ON 0 0 0 where X is Br or 1. 5 Stretcher units of formula can also be introduced into a Linker by reacting the following bifunctional reagents with the N-terminus of an Amino Acid unit: N S-S O 0 0 0 ~"~S-S NHO 0 0 Boc-NH-NH 2 -O-N Boc-NH-NH 2 0-N 10 0 0 187 3860770_1 (GHMatters) P79401.AU.3 14-Sep.12 An exemplary valine-citrulline (val-cit or vc) dipeptide linker reagent having a maleimide Stretcher and a para-aminobenzylcarbamoyl (PAB) self-immolative Spacer has the structure: 0
CH
3 0 /
H
3 C H N
NO
2 N N H Fmoc--N H 0 NH H2N O 5 An exemplary phe-lys(Mtr, mono-4-methoxytrityl) dipeptide linker reagent having a maleimide Stretcher unit and a PAB self-immolative Spacer unit can be prepared according to Dubowchik, et al. (1997) Tetrahedron Letters, 38:5257-60, and has the structure: OH Ph 0 N N H Fmoc-N H O HN-Mtr Exemplary antibody-drug conjugate compounds of the invention include: 10 Ab-S 0 HN H 00 " O N. N N Nr0k N Vai-Cit-N OsO Os 0 0 0H 0OH Ab-MC-vc-PAB-MMAF 188 3680770.1 (GHMatters) P79401.AU.3 14-Sep-12 Ab-S YH 0OH 0 ~NYN N Nr~ S N Val-Cit-N 00 0 ~ H Ab-MC-vc-PAB-MMAE Ab-S 0 H OH N N N NN 00 0'0 00 5 Ab-MC-MMAE Ab-S 00
H
0 N N N N N 0I 0 0 0 OH O Ab-MC-MMAF 10 where Val is valine; Cit is citrulline; p is 1, 2, 3, or 4; and Ab is a cysteine engineered anti-CD22 antibody. Preparation of cysteine engineered anti-CD22 antibody-drug conjugates The ADC of Formula I may be prepared by several routes, employing organic chemistry reactions, conditions, and reagents known to those skilled in the art, including: (1) 15 reaction of a cysteine group of a cysteine engineered antibody with a linker reagent, to form antibody-linker intermediate Ab-L, via a covalent bond, followed by reaction with an activated drug moiety D; and (2) reaction of a nucleophilic group of a drug moiety with a linker reagent, to form drug-linker intermediate D-L, via a covalent bond, followed by reaction with a cysteine group of a cysteine engineered antibody. Conjugation methods (1) 189 380770_1 (GHMalters) P79401.AU.3 14-Sep.12 and (2) may be employed with a variety of cysteine engineered antibodies, drug moieties, and linkers to prepare the antibody-drug conjugates of Formula 1. Antibody cysteine thiol groups are nucleophilic and capable of reacting to form covalent bonds with electrophilic groups on linker reagents and drug-linker intermediates 5 including: (i) active esters such as NHS esters, HOBt esters, haloformates, and acid halides; (ii) alkyl and benzyl halides, such as haloacetamides; (iii) aldehydes, ketones, carboxyl, and maleimide groups; and (iv) disulfides, including pyridyl disulfides, via sulfide exchange. Nucleophilic groups on a drug moiety include, but are not limited to: amine, thiol, hydroxyl, hydrazide, oxime, hydrazine, thiosemicarbazone, hydrazine carboxylate, and arylhydrazide 10 groups capable of reacting to form covalent bonds with electrophilic groups on linker moieties and linker reagents. Cysteine engineered antibodies may be made reactive for conjugation with linker reagents by treatment with a reducing agent such as DTT (Cleland's reagent, dithiothreitol) or TCEP (tris(2-carboxyethyl)phosphine hydrochloride; Getz et al (1999) Anal. Biochem. Vol 15 273:73-80; Soltec Ventures, Beverly, MA), followed by reoxidation to reform interchain and intrachain disulfide bonds (Example x). For example, full length, cysteine engineered monoclonal antibodies (ThioMabs) expressed in CHO cells are reduced with about a 50 fold excess of TCEP for 3 hrs at 37 *C to reduce disulfide bonds in cysteine adducts which may form between the newly introduced cysteine residues and the cysteine present in the culture 20 media. The reduced ThioMab is diluted and loaded onto HiTrap S column in 10 mM sodium acetate, pH 5, and eluted with PBS containing 0.3M sodium chloride. Disulfide bonds were reestablished between cysteine residues present in the parent Mab with dilute (200 nM) aqueous copper sulfate (CuSO 4 ) at room temperature, overnight. Alternatively, dehydroascorbic acid (DHAA) is an effective oxidant to reestablish the intrachain disulfide 25 groups of the cysteine engineered antibody after reductive cleavage of the cysteine adducts. Other oxidants, i.e. oxidizing agents, and oxidizing conditions, which are known in the art may be used. Ambient air oxidation is also effective. This mild, partial reoxidation step forms intrachain disulfides efficiently with high fidelity and preserves the thiol groups of the newly introduced cysteine residues. An approximate 10 fold excess of drug-linker 30 intermediate, e.g. MC-vc-PAB-MMAE, was added, mixed, and let stand for about an hour at room temperature to effect conjugation and form the 10F4v3 anti-CD22 antibody-drug conjugate. The conjugation mixture was gel filtered and loaded and eluted through a HiTrap S column to remove excess drug-linker intermediate and other impurities. 190 3M80770_1 (GHMallers) P79401.AU.3 14-Sep-12 Figure 12 shows the general process to prepare a cysteine engineered antibody expressed from cell culture for conjugation. When the cell culture media contains cysteine, disulfide adducts can form between the newly introduced cysteine amino acid and cysteine from media. These cysteine adducts, depicted as a circle in the exemplary ThioMab (left) in 5 Figure 12, must be reduced to generate cysteine engineered antibodies reactive for conjugation. Cysteine adducts, presumably along with various interchain disulfide bonds, are reductively cleaved to give a reduced form of the antibody with reducing agents such as TCEP. The interchain disulfide bonds between paired cysteine residues are reformed under partial oxidation conditions with copper sulfate, DHAA, or exposure to ambient oxygen. The 10 newly introduced, engineered, and unpaired cysteine residues remain available for reaction with linker reagents or drug-linker intermediates to form the antibody conjugates of the invention. The ThioMabs expressed in mammalian cell lines result in externally conjugated Cys adduct to an engineered Cys through -S-S- bond formation. Hence the purified ThioMabs are treated with the reduction and reoxidation procedures as described in 15 Example x to produce reactive ThioMabs. These ThioMabs are used to conjugate with maleimide containing cytotoxic drugs, fluorophores, and other labels. Methods of screening Yet another embodiment of the present invention is directed to a method of determining the presence of a CD22 polypeptide in a sample suspected of containing the 20 CD22 polypeptide, wherein the method comprises exposing the sample to a cysteine engineered anti-CD22 antibody, or antibody drug conjugate thereof, that binds to the CD22 polypeptide and determining binding of the cysteine engineered anti-CD22 antibody, or antibody drug conjugate thereof, to the CD22 polypeptide in the sample, wherein the presence of such binding is indicative of the presence of the CD22 polypeptide in the 25 sample. Optionally, the sample may contain cells (which may be cancer cells) suspected of expressing the CD22 polypeptide. The cysteine engineered anti-CD22 antibody, or antibody drug conjugate thereof, employed in the method may optionally be detectably labeled, attached to a solid support, or the like. Another embodiment of the present invention is directed to a method of diagnosing 30 the presence of a tumor in a mammal, wherein the method comprises (a) contacting a test sample comprising tissue cells obtained from the mammal with a cysteine engineered anti CD22 antibody, or antibody drug conjugate thereof, that binds to a CD22 polypeptide and (b) detecting the formation of a complex between the cysteine engineered anti-CD22 191 3680770_1 (GHMatIes) P7Q401.AU.3 14-Sep-12 antibody, or antibody drug conjugate thereof, and the CD22 polypeptide in the test sample, wherein the formation of a complex is indicative of the presence of a tumor in the mammal. Optionally, the cysteine engineered anti-CD22 antibody, or antibody drug conjugate thereof, is detectably labeled, attached to a solid support, or the like, and/or the test sample of tissue 5 cells is obtained from an individual suspected of having a cancerous tumor. Metabolites of the antibody-druq conjuqates Also falling within the scope of this invention are the in vivo metabolic products of the ADC compounds described herein, to the extent such products are novel and unobvious over the prior art. Such products may result for example from the oxidation, reduction, 10 hydrolysis, amidation, esterification, enzymatic cleavage, and the like, of the administered compound. Accordingly, the invention includes novel and unobvious compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof. Metabolite products typically are identified by preparing a radiolabelled (e.g. 14C or 15 3 H) ADC, administering it parenterally in a detectable dose (e.g. greater than about 0.5 mg/kg) to an animal such as rat, mouse, guinea pig, monkey, or to man, allowing sufficient time for metabolism to occur (typically about 30 seconds to 30 hours) and isolating its conversion products from the urine, blood or other biological samples. These products are easily isolated since they are labeled (others are isolated by the use of antibodies capable of 20 binding epitopes surviving in the metabolite). The metabolite structures are determined in conventional fashion, e.g. by MS, LC/MS or NMR analysis. In general, analysis of metabolites is done in the same way as conventional drug metabolism studies well-known to those skilled in the art. The conversion products, so long as they are not otherwise found in vivo, are useful in diagnostic assays for therapeutic dosing of the ADC compounds of the 25 invention. Pharmaceutical Formulations Administration of Antibody-Drug Coniuqates, including Thio-antibody Druq Coniugates 30 The antibody-drug conjugates (ADC), including thio-antibody drug conjugates (TDC), of the invention may be administered by any route appropriate to the condition to be treated. The ADC will typically be administered parenterally, i.e. infusion, subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural. 192 3660770_1 (GHMaters) P79401.AU.3 1 4 -Sep-12 For treating these cancers, in one embodiment, the antibody-drug conjugate is administered via intravenous infusion. The dosage administered via infusion is in the range of about 1 pg/m 2 to about 10,000 pg/m 2 per dose, generally one dose per week for a total of one, two, three or four doses. Alternatively, the dosage range is of about 1 pg/m 2 to about 5 1000 pg/m 2 , about 1 pg/m 2 to about 800 pg/m 2 , about 1 pg/m 2 to about 600 pg/m 2 , about 1 pg/m2 to about 400 pg/m2 , about 10 pg/m 2 to about 500 pg/m 2 , about 10 pg/m 2 to about 300 pg/m2 , about 10 pg/m 2 to about 200 pg/m 2 , and about 1 pg/m 2 to about 200 pg/m 2 . The dose may be administered once per day, once per week, multiple times per week, but less than once per day, multiple times per month but less than once per day, multiple times per 10 month but less than once per week, once per month or intermittently to relieve or alleviate symptoms of the disease. Administration may continue at any of the disclosed intervals until remission of the tumor or symptoms of the lymphoma, leukemia being treated. Administration may continue after remission or relief of symptoms is achieved where such remission or relief is prolonged by such continued administration. 15 The invention also provides a method of alleviating an autoimmune disease, comprising administering to a patient suffering from the autoimmune disease, a therapeutically effective amount of a humanized 10F4 antibody-drug conjugate of any one of the preceding embodiments. In preferred embodiments the antibody is administered intravenously or subcutaneously. The antibody-drug conjugate is administered 20 intravenously at a dosage in the range of about 1 pg/m 2 to about 100 mg/ m 2 per dose and in a specific embodiment, the dosage is 1 pg/m 2 to about 500 pg/m 2 . The dose may be administered once per day, once per week, multiple times per week, but less than once per day, multiple times per month but less than once per day, multiple times per month but less than once per week, once per month or intermittently to relieve or alleviate symptoms of the 25 disease. Administration may continue at any of the disclosed intervals until relief from or alleviation of symptoms of the autoimmune disease being treated. Administration may continue after relief from or alleviation of symptoms is achieved where such alleviation or relief is prolong by such continued administration. The invention also provides a method of treating a B cell disorder comprising 30 administering to a patient suffering from a B cell disorder, such as a B cell proliferative disorder (including without limitation lymphoma and leukemia) or an autoimmune disease, a therapeutically effective amount of a humanized 1 0F4 antibody of any one of the preceding embodiments, which antibody is not conjugated to a cytotoxic molecule or a detectable 193 3880770_1 (GHMatters) P79401 AU.3 14-Sep-12 molecule. The anatibody will typically be administered in a dosage range of about 1 pg/m 2 to about 1000 mg/m 2 . In one aspect, the invention further provides pharmaceutical formulations comprising at least one anti-CD22 antibody of the invention and/or at least one immunoconjugate 5 thereof and/or at least one anti-CD22 antibody-drug conjugate of the invention. In some embodiments, a pharmaceutical formulation comprises 1) an anti-CD22 antibody and/or an anti-CD22 antibody-drug conjugate and/or an immunoconjugate thereof, and 2) a pharmaceutically acceptable carrier. In some embodiments, a pharmaceutical formulation comprises 1) an anti-CD22 antibody and/or an immunoconjugate thereof, and optionally, 2) 10 at least one additional therapeutic agent. Pharmaceutical formulations comprising an antibody or immunoconjugate of the invention or the antibody-drug conjugate of the invention are prepared for storage by mixing the antibody or antibody-drug conjugate having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical 15 Sciences 16th edition, Osol, A. Ed. (1980)) in the form of aqueous solutions or lyophilized or other dried formulations. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, histidine and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; 20 hexamethonium chloride; benzalkonium chloride, benzethonium chloride); phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, 25 histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEENTM,
PLURONICS
TM or polyethylene glycol (PEG). Pharmaceutical formulations to be used for in 30 vivo administration are generally sterile. This is readily accomplished by filtration through sterile filtration membranes. Active ingredients may also be entrapped in microcapsule prepared, for example, by coacervation techniques or by interfacial polymerization, for example, 194 3860770_1 (GHMatters) P79401.AU.3 14-Sep-12 hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, 5 A. Ed. (1980). Sustained-release preparations may be prepared. Suitable examples of sustained release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody or immunoconjugate of the invention, which matrices are in the form of shaped articles, e.g., films, or microcapsule. Examples of sustained-release matrices 10 include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and y ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid glycolic acid copolymers such as the LUPRON DEPOT TM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3 15 hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies or immunoconjugates remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 370C, resulting in a loss of biological activity and possible changes in immunogenicity. 20 Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions. 25 Antibody-Drug Coniuqate Treatments It is contemplated that the antibody-drug conjugates (ADC) of the present invention may be used to treat various diseases or disorders, e.g. characterized by the overexpression of a tumor antigen. Exemplary conditions or hyperproliferative disorders include benign or malignant tumors; leukemia and lymphoid malignancies. Others include 30 neuronal, glial, astrocytal, hypothalamic, glandular, macrophagal, epithelial, stromal, blastocoelic, inflammatory, angiogenic and immunologic, including autoimmune, disorders. 195 3860770_1 (GHMalter) P79401 AU 3 14-Sep-12 The ADC compounds which are identified in the animal models and cell-based assays can be further tested in tumor-bearing higher primates and human clinical trials. Human clinical trials can be designed to test the efficacy of the anti-CD22 monoclonal antibody or immunoconjugate of the invetion in patients experiencing a B cell proliferative 5 disorder including without limitation lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma. The clinical trial may be designed to evaluate the efficacy of an ADC in combinations with known 10 therapeutic regimens, such as radiation and/or chemotherapy involving known chemotherapeutic and/or cytotoxic agents. Generally, the disease or disorder to be treated is a hyperproliferative disease such as a B cell proliferative disorder and/or a B cell cancer. Examples of cancer to be treated herein include, but are not limited to, B cell proliferative disorder is selected from lymphoma, 15 non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma. The cancer may comprise CD22-expressing cells, such that the ADC of the present 20 invention are able to bind to the cancer cells. To determine CD22 expression in the cancer, various diagnostic/prognostic assays are available. In one embodiment, CD22 overexpression may be analyzed by IHC. Parrafin-embedded tissue sections from a tumor biopsy may be subjected to the IHC assay and accorded a CD22 protein staining intensity criteria with respect to the degree of staining and in what prpoportion of tumor cells 25 examined. For the prevention or treatment of disease, the appropriate dosage of an ADC will depend on the type of disease to be treated, as defined above, the severity and course of the disease, whether the molecule is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the 30 discretion of the attending physician. The molecule is suitably administered to the patient at one time or over a series of treatments. Depending on the type and severity of the disease, about 1 ptg/kg to 15 mg/kg (e.g. 0.1-20 mg/kg) of molecule is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate 196 3880770_1 (GHMattes) P79401AU 3 14-Sep-12 administrations, or by continuous infusion. A typical daily dosage might range from about 1 [tg/kg to 100 mg/kg or more, depending on the factors mentioned above. An exemplary dosage of ADC to be administered to a patient is in the range of about 0.1 to about 10 mg/kg of patient weight. 5 For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. An exemplary dosing regimen comprises administering an initial loading dose of about 4 mg/kg, followed by a weekly maintenance dose of about 2 mg/kg of an anti-ErbB2 antibody. Other dosage regimens may be useful. The progress of this therapy is easily 10 monitored by conventional techniques and assays. Combination Therapy An antibody-drug conjugate (ADC) of the invention may be combined in a pharmaceutical combination formulation, or dosing regimen as combination therapy, with a second compound having anti-cancer properties. The second compound of the 15 pharmaceutical combination formulation or dosing regimen preferably has complementary activities to the ADC of the combination such that they do not adversely affect each other. The second compound may be a chemotherapeutic agent, cytotoxic agent, cytokine, growth inhibitory agent, anti-hormonal agent, and/or cardioprotectant. Such molecules are suitably present in combination in amounts that are effective for the purpose intended. A 20 pharmaceutical composition containing an ADC of the invention may also have a therapeutically effective amount of a chemotherapeutic agent such as a tubulin-forming inhibitor, a topoisomerase inhibitor, or a DNA binder. In one aspect, the first compound is an anti-CD22 ADC of the invention and the second compound is an anti-CD20 antibody (either a naked antibody or an ADC). In one 25 embodiment the second compound is an anti-CD20 antibody rituximab (Rituxan@) or 2H7 (Genentech, Inc., South San Francisco, CA). Another antibodies useful for combined immunotherapy with anti-CD22 ADCs of the invention includes without limitation, anti-VEGF (e.g, Avastin@). Other therapeutic regimens may be combined with the administration of an 30 anticancer agent identified in accordance with this invention, including without limitation radiation therapy and/or bone marrow and peripheral blood transplants, and/or a cytotoxic 197 3O60770_1 (GHMattes) P79401.AU3 14-Sep.12 agent, a chemotherapeutic agent, or a growth inhibitory agent. In one of such embodiments, a chemotherapeutic agent is an agent or a combination of agents such as, for example, cyclophosphamide, hydroxydaunorubicin, adriamycin, doxorubincin, vincristine (OncovinTM), prednisolone, CHOP, CVP, or COP, or immunotherapeutics such as anti-CD20 5 (e.g., Rituxan@) or anti-VEGF (e.g., Avastin@). The combination therapy may be administered as a simultaneous or sequential regimen. When administered sequentially, the combination may be administered in two or more administrations. The combined administration includes coadministration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein 10 preferably there is a time period while both (or all) active agents simultaneously exert their biological activities. In one embodiment, treatment with an ADC involves the combined administration of an anticancer agent identified herein, and one or more chemotherapeutic agents or growth inhibitory agents, including coadministration of cocktails of different chemotherapeutic 15 agents. Chemotherapeutic agents include taxanes (such as paclitaxel and docetaxel) and/or anthracycline antibiotics. Preparation and dosing schedules for such chemotherapeutic agents may be used according to manufacturer's instructions or as determined empirically by the skilled practitioner. Preparation and dosing schedules for such chemotherapy are also described in "Chemotherapy Service", (1992) Ed., M.C. Perry, 20 Williams & Wilkins, Baltimore, Md. Suitable dosages for any of the above coadministered agents are those presently used and may be lowered due to the combined action (synergy) of the newly identified agent and other chemotherapeutic agents or treatments. The combination therapy may provide "synergy" and prove "synergistic", i.e. the 25 effect achieved when the active ingredients used together is greater than the sum of the effects that results from using the compounds separately. A synergistic effect may be attained when the active ingredients are: (1) co-formulated and administered or delivered simultaneously in a combined, unit dosage formulation; (2) delivered by alternation or in parallel as separate formulations; or (3) by some other regimen. When delivered in 30 alternation therapy, a synergistic effect may be attained when the compounds are administered or delivered sequentially, e.g. by different injections in separate syringes. In general, during alternation therapy, an effective dosage of each active ingredient is 198 3080770_1 (GHMatlers) P79401.AU.3 14-Sep.12 administered sequentially, i.e. serially, whereas in combination therapy, effective dosages of two or more active ingredients are administered together. Metabolites of the Antibody-Drug Conjuqates Also falling within the scope of this invention are the in vivo metabolic products of the 5 ADC compounds described herein, to the extent such products are novel and unobvious over the prior art. Such products may result for example from the oxidation, reduction, hydrolysis, amidation, esterification, enzymatic cleavage, and the like, of the administered compound. Accordingly, the invention includes novel and unobvious compounds produced by a process comprising contacting a compound of this invention with a mammal for a 10 period of time sufficient to yield a metabolic product thereof. Metabolite products typically are identified by preparing a radiolabelled (e.g. 14C or 3H) ADC, administering it parenterally in a detectable dose (e.g. greater than about 0.5 mg/kg) to an animal such as rat, mouse, guinea pig, monkey, or to man, allowing sufficient time for metabolism to occur (typically about 30 seconds to 30 hours) and isolating its 15 conversion products from the urine, blood or other biological samples. These products are easily isolated since they are labeled (others are isolated by the use of antibodies capable of binding epitopes surviving in the metabolite). The metabolite structures are determined in conventional fashion, e.g. by MS, LC/MS or NMR analysis. In general, analysis of metabolites is done in the same way as conventional drug metabolism studies well-known to 20 those skilled in the art. The conversion products, so long as they are not otherwise found in vivo, are useful in diagnostic assays for therapeutic dosing of the ADC compounds of the invention. Further Methods of Using Anti-CD22 Antibodies and Immunoconjugates Diagnostic methods and methods of detection 25 In one aspect, anti-CD22 antibodies and immunoconjugates of the invention are useful for detecting the presence of CD22 in a biological sample. The term "detecting" as used herein encompasses quantitative or qualitative detection. In certain embodiments, a biological sample comprises a cell or tissue. In certain embodiments, such tissues include normal and/or cancerous tissues that express CD22 at higher levels relative to other 30 tissues, for example, B cells and/or B cell associated tissues. 199 3680770. (GHMaters) P79401AU.3 14-Sep-12 In one aspect, the invention provides a method of detecting the presence of CD22 in a biological sample. In certain embodiments, the method comprises contacting the biological sample with an anti-CD22 antibody under conditions permissive for binding of the anti-CD22 antibody to CD22, and detecting whether a complex is formed between the anti 5 CD22 antibody and CD22. In one aspect, the invention provides a method of diagnosing a disorder associated with increased expression of CD22. In certain embodiments, the method comprises contacting a test cell with an anti-CD22 antibody; determining the level of expression (either quantitatively or qualitatively) of CD22 by the test cell by detecting binding of the anti-CD22 10 antibody to CD22; and comparing the level of expression of CD22 by the test cell with the level of expression of CD22 by a control cell (e.g., a normal cell of the same tissue origin as the test cell or a cell that expresses CD22 at levels comparable to such a normal cell), wherein a higher level of expression of CD22 by the test cell as compared to the control cell indicates the presence of a disorder associated with increased expression of CD22. In 15 certain embodiments, the test cell is obtained from an individual suspected of having a disorder associated with increased expression of CD22. In certain embodiments, the disorder is a cell proliferative disorder, such as a cancer or a tumor. Exemplary cell proliferative disorders that may be diagnosed using an antibody of the invention include a B cell disorder and/or a B cell proliferative disorder including, but not 20 limited to, lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma. In certain embodiments, a method of diagnosis or detection, such as those 25 described above, comprises detecting binding of an anti-CD22 antibody to CD22 expressed on the surface of a cell or in a membrane preparation obtained from a cell expressing CD22 on its surface. In certain embodiments, the method comprises contacting a cell with an anti CD22 antibody under conditions permissive for binding of the anti-CD22 antibody to CD22, and detecting whether a complex is formed between the anti-CD22 antibody and CD22 on 30 the cell surface. An exemplary assay for detecting binding of an anti-CD22 antibody to CD22 expressed CD22 on the surface of a cell is a "FACS" assay. Certain other methods can be used to detect binding of anti-CD22 antibodies to CD22. Such methods include, but are not limited to, antigen-binding assays that are well 200 3860770_1 (GHMatters) P79401 AU.3 14-Sep-12 known in the art, such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoprecipitation assays, fluorescent immunoassays, protein A immunoassays, and immunohistochemistry (IHC). In certain embodiments, anti-CD22 antibodies are labeled. Labels include, but are 5 not limited to, labels or moieties that are detected directly (such as fluorescent, chromophoric, electron-dense, chemiluminescent, and radioactive labels), as well as moieties, such as enzymes or ligands, that are detected indirectly, e.g., through an enzymatic reaction or molecular interaction. Exemplary labels include, but are not limited to, the radioisotopes 3P, 1C, I, 3H, and 3I, fluorophores such as rare earth chelates or 10 fluorescein and its derivatives, rhodamine and its derivatives, dansyl, umbelliferone, luceriferases, e.g., firefly luciferase and bacterial luciferase (U.S. Pat. No. 4,737,456), luciferin, 2,3-dihydrophthalazinediones, horseradish peroxidase (HRP), alkaline phosphatase, p-galactosidase, glucoamylase, lysozyme, saccharine oxidases, e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase, heterocyclic 15 oxidases such as uricase and xanthine oxidase, coupled with an enzyme that employs hydrogen peroxide to oxidize a dye precursor such as HRP, lactoperoxidase, or microperoxidase, biotin/avidin, spin labels, bacteriophage labels, stable free radicals, and the like. In certain embodiments, anti-CD22 antibodies are immobilized on an insoluble 20 matrix. Immobilization entails separating the anti-CD22 antibody from any CD22 that remains free in solution. This conventionally is accomplished by either insolubilizing the anti-CD22 antibody before the assay procedure, as by adsorption to a water-insoluble matrix or surface (Bennich et al.., U.S. 3,720,760), or by covalent coupling (for example, using glutaraldehyde cross-linking), or by insolubilizing the anti-CD22 antibody after formation of a 25 complex between the anti-CD22 antibody and CD22, e.g., by immunoprecipitation. Any of the above embodiments of diagnosis or detection may be carried out using an immunoconjugate of the invention in place of or in addition to an anti-CD22 antibody. Therapeutic methods An antibody or immunoconjugate of the invention may be used in, for example, in 30 vitro, ex vivo, and in vivo therapeutic methods. In one aspect, the invention provides methods for inhibiting cell growth or proliferation, either in vivo or in vitro, the method comprising exposing a cell to an anti-CD22 antibody or immunoconjugate thereof under 201 360770_1 (GHMatters) P79401.AU.3 14-Sep-12 conditions permissive for binding of the immunoconjugate to CD22. "Inhibiting cell growth or proliferation" means decreasing a cell's growth or proliferation by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100%, and includes inducing cell death. In certain embodiments, the cell is a tumor cell. In certain embodiments, the cell is a B cell. In 5 certain embodiments, the cell is a xenograft, e.g., as exemplified herein. In one aspect, an antibody or immunoconjugate of the invention is used to treat or prevent a B cell proliferative disorder. In certain embodiments, the cell proliferative disorder is associated with increased expression and/or activity of CD22. For example, in certain embodiments, the B cell proliferative disorder is associated with increased expression of 10 CD22 on the surface of a B cell. In certain embodiments, the B cell proliferative disorder is a tumor or a cancer. Examples of B cell proliferative disorders to be treated by the antibodies or immunoconjugates of the invention include, but are not limited to, lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), 15 small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma. In one aspect, the invention provides methods for treating a B cell proliferative disorder comprising administering to an individual an effective amount of an anti-CD22 antibody or immunoconjugate thereof. In certain embodiments, a method for treating a B 20 cell proliferative disorder comprises administering to an individual an effective amount of a pharmaceutical formulation comprising an anti-CD22 antibody or anti-CD22 immunoconjugate and, optionally, at least one additional therapeutic agent, such as those provided below. In certain embodiments, a method for treating a cell proliferative disorder comprises administering to an individual an effective amount of a pharmaceutical 25 formulation comprising 1) an immunoconjugate comprising an anti-CD22 antibody and a cytotoxic agent; and optionally, 2) at least one additional therapeutic agent, such as those provided below. In one aspect, at least some of the antibodies or immunoconjugates of the invention can bind CD22 from species other than human. Accordingly, antibodies or 30 immunoconjugates of the invention can be used to bind CD22, e.g., in a cell culture containing CD22, in humans, or in other mammals having a CD22 with which an antibody or immunoconjugate of the invention cross-reacts (e.g. chimpanzee, baboon, marmoset, cynomolgus and rhesus monkeys, pig or mouse). In one embodiment, an anti-CD22 202 3660770_1 (GHMattes) P79401.AU.3 14-Sep-12 antibody or immunoconjugate can be used for targeting CD22 on B cells by contacting the antibody or immunoconjugate with CD22 to form an antibody or immunoconjugate-antigen complex such that a conjugated cytotoxin of the immunoconjugate accesses the interior of the cell. In one embodiment, the CD22 is human CD22. 5 In one embodiment, an anti-CD22 antibody or immunoconjugate can be used in a method for binding CD22 in an individual suffering from a disorder associated with increased CD22 expression and/or activity, the method comprising administering to the individual the antibody or immunoconjugate such that CD22 in the individual is bound. In one embodiment, the bound antibody or immunoconjugate is internalized into the B cell 10 expressing CD22. In one embodiment, the CD22 is human CD22, and the individual is a human individual. Alternatively, the individual can be a mammal expressing CD22 to which an anti-CD22 antibody binds. Still further the individual can be a mammal into which CD22 has been introduced (e.g., by administration of CD22 or by expression of a transgene encoding CD22). 15 An anti-CD22 antibody or immunoconjugate can be administered to a human for therapeutic purposes. Moreover, an anti-CD22 antibody or immunoconjugate can be administered to a non-human mammal expressing CD22 with which the antibody cross reacts (e.g., a primate, pig, rat, or mouse) for veterinary purposes or as an animal model of human disease. Regarding the latter, such animal models may be useful for evaluating the 20 therapeutic efficacy of antibodies or immunoconjugates of the invention (e.g., testing of dosages and time courses of administration). Antibodies or immunoconjugates of the invention can be used either alone or in combination with other compositions in a therapy. For instance, an antibody or immunoconjugate of the invention may be co-administered with at least one additional 25 therapeutic agent and/or adjuvant. In certain embodiments, an additional therapeutic agent is a cytotoxic agent, a chemotherapeutic agent, or a growth inhibitory agent. In one of such embodiments, a chemotherapeutic agent is an agent or a combination of agents such as, for example, cyclophosphamide, hydroxydaunorubicin, adriamycin, doxorubincin, vincristine (Oncovin TM), prednisolone, CHOP, CVP, or COP, or immunotherapeutics such as anti-CD20 30 (e.g., Rituxan@) or anti-VEGF (e.g., Avastin@), wherein the combination therapy is useful in the treatment of cancers and/or B cell disorders such as B cell proliferative disorders including lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic 203 3660770_1 (GHMattes) P79401.AU.3 14-Sep-12 leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma. Such combination therapies noted above encompass combined administration (where two or more therapeutic agents are included in the same or separate formulations), 5 and separate administration, in which case, administration of the antibody or immunoconjugate of the invention can occur prior to, simultaneously, and/or following, administration of the additional therapeutic agent and/or adjuvant. Antibodies or immunoconjugates of the invention can also be used in combination with radiation therapy. An antibody or immunoconjugate of the invention (and any additional therapeutic 10 agent or adjuvant) can be administered by any suitable means, including parenteral, subcutaneous, intraperitoneal, intrapulmonary, and intranasal, and, if desired for local treatment, intralesional administration. Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. In addition, the antibody or immunoconjugate is suitably administered by pulse infusion, particularly with 15 declining doses of the antibody or immunoconjugate. Dosing can be by any suitable route, e.g. by injections, such as intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic. Antibodies or immunoconjugates of the invention would be formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration 20 in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners. The antibody or immunoconjugate need not be, but is optionally formulated with one or more agents currently used to prevent or treat 25 the disorder in question. The effective amount of such other agents depends on the amount of antibody or immunoconjugate present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as described herein, or about from 1 to 99% of the dosages described herein, or in any dosage and by any route that is empirically/clinically 30 determined to be appropriate. For the prevention or treatment of disease, the appropriate dosage of an antibody or immunoconjugate of the invention (when used alone or in combination with one or more other additional therapeutic agents, such as chemotherapeutic agents) will depend on the 204 3680770_1 (GHMattes) P79401.AU.3 14-Sep.12 type of disease to be treated, the type of antibody or immunoconjugate, the severity and course of the disease, whether the antibody or immunoconjugate is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody or immunoconjugate, and the discretion of the attending physician. 5 The antibody or immunoconjugate is suitably administered to the patient at one time or over a series of treatments. Depending on the type and severity of the disease, about 1 pg/kg to 100 mg/kg (e.g. 0.lmg/kg-20mg/kg) of antibody or immunoconjugate can be an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. One typical daily dosage might range 10 from about 1 pg/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment would generally be sustained until a desired suppression of disease symptoms occurs. One exemplary dosage of the antibody or immunoconjugate would be in the range from about 0.05 mg/kg to about 10 mg/kg. Thus, one or more doses of about 0.5 mg/kg, 15 2.0 mg/kg, 4.0 mg/kg or 10 mg/kg (or any combination thereof) of antibody or immunoconjugate may be administered to the patient. Such doses may be administered intermittently, e.g. every week or every three weeks (e.g. such that the patient receives from about two to about twenty, or e.g. about six doses of the antibody or immunoconjugate). An initial higher loading dose, followed by one or more lower doses may be administered. An 20 exemplary dosing regimen comprises administering an initial loading dose of about 4 mg/kg, followed by a weekly maintenance dose of about 2 mg/kg of the antibody. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays. Assays 25 Anti-CD22 antibodies and immunoconjugates of the invention may be characterized for their physical/chemical properties and/or biological activities by various assays known in the art. Activity assays In one aspect, assays are provided for identifying anti-CD22 antibodies or 30 immunoconjugates thereof having biological activity. Biological activity may include, e.g., the ability to inhibit cell growth or proliferation (e.g., "cell killing" activity), or the ability to 205 380770_l (GHMatters) P79401.AU.3 14-Sep-12 induce cell death, including programmed cell death (apoptosis). Antibodies or immunoconjugates having such biological activity in vivo and/or in vitro are also provided. In certain embodiments, an anti-CD22 antibody or immunoconjugate thereof is tested for its ability to inhibit cell growth or proliferation in vitro. Assays for inhibition of cell 5 growth or proliferation are well known in the art. Certain assays for cell proliferation, exemplified by the "cell killing" assays described herein, measure cell viability. One such assay is the CellTiter-GloTM Luminescent Cell Viability Assay, which is commercially available from Promega (Madison, WI). That assay determines the number of viable cells in culture based on quantitation of ATP present, which is an indication of metabolically active 10 cells. See Crouch et al (1993) J. Immunol. Meth. 160:81-88, US Pat. No. 6602677. The assay may be conducted in 96- or 384-well format, making it amenable to automated high throughput screening (HTS). See Cree et al (1995) AntiCancer Drugs 6:398-404. The assay procedure involves adding a single reagent (CellTiter-Glo* Reagent) directly to cultured cells. This results in cell lysis and generation of a luminescent signal produced by 15 a luciferase reaction. The luminescent signal is proportional to the amount of ATP present, which is directly proportional to the number of viable cells present in culture. Data can be recorded by luminometer or CCD camera imaging device. The luminescence output is expressed as relative light units (RLU). Another assay for cell proliferation is the "MTT" assay, a colorimetric assay that 20 measures the oxidation of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to formazan by mitochondrial reductase. Like the CellTiter-Glo T M assay, this assay indicates the number of metabolically active cells present in a cell culture. See, e.g., Mosmann (1983) J. Immunol. Meth. 65:55-63, and Zhang et al. (2005) Cancer Res. 65:3877-3882. In one aspect, an anti-CD22 antibody is tested for its ability to induce cell death in 25 vitro. Assays for induction of cell death are well known in the art. In some embodiments, such assays measure, e.g., loss of membrane integrity as indicated by uptake of propidium iodide (PI), trypan blue (see Moore et al. (1995) Cytotechnology, 17:1-11), or 7AAD. In an exemplary PI uptake assay, cells are cultured in Dulbecco's Modified Eagle Medium (D MEM):Ham's F-12 (50:50) supplemented with 10% heat-inactivated FBS (Hyclone) and 2 30 mM L-glutamine. Thus, the assay is performed in the absence of complement and immune effector cells. Cells are seeded at a density of 3 x 10 per dish in 100 x 20 mm dishes and allowed to attach overnight. The medium is removed and replaced with fresh medium alone or medium containing various concentrations of the antibody or immunoconjugate. The 206 3660770_1 (GHMaters) P79401 AU.3 14-Sep-12 cells are incubated for a 3-day time period. Following treatment, monolayers are washed with PBS and detached by trypsinization. Cells are then centrifuged at 1200 rpm for 5 minutes at 4 0 C, the pellet resuspended in 3 ml cold Ca 2 . binding buffer (10 mM Hepes, pH 7.4,140 mM NaCl, 2.5 mM CaCl 2 ) and aliquoted into 35 mm strainer-capped 12 x 75 mm 5 tubes (1 ml per tube, 3 tubes per treatment group) for removal of cell clumps. Tubes then receive PI (10 pg/ml). Samples are analyzed using a FACSCAN T M flow cytometer and
FACSCONVERT
T M CellQuest software (Becton Dickinson). Antibodies or immunoconjugates which induce statistically significant levels of cell death as determined by Pl uptake are thus identified. 10 In one aspect, an anti-CD22 antibody or immunoconjugate is tested for its ability to induce apoptosis (programmed cell death) in vitro. An exemplary assay for antibodies or immunconjugates that induce apoptosis is an annexin binding assay. In an exemplary annexin binding assay, cells are cultured and seeded in dishes as discussed in the preceding paragraph. The medium is removed and replaced with fresh medium alone or 15 medium containing 0.001 to 10 Ig/ml of the antibody or immunoconjugate. Following a three-day incubation period, monolayers are washed with PBS and detached by trypsinization. Cells are then centrifuged, resuspended in Ca 2 . binding buffer, and aliquoted into tubes as discussed in the preceding paragraph. Tubes then receive labeled annexin (e.g. annexin V-FITC) (1 pg/ml). Samples are analyzed using a FACSCAN TM flow cytometer 20 and FACSCONVERT TM CellQuest software (BD Biosciences). Antibodies or immunoconjugates that induce statistically significant levels of annexin binding relative to control are thus identified. Another exemplary assay for antibodies or immunconjugates that induce apoptosis is a histone DNA ELISA colorimetric assay for detecting internucleosomal degradation of genomic DNA. Such an assay can be performed using, e.g., the Cell Death 25 Detection ELISA kit (Roche, Palo Alto, CA). Cells for use in any of the above in vitro assays include cells or cell lines that naturally express CD22 or that have been engineered to express CD22. Such cells include tumor cells that overexpress CD22 relative to normal cells of the same tissue origin. Such cells also include cell lines (including tumor cell lines) that express CD22 and cell lines that 30 do not normally express CD22 but have been transfected with nucleic acid encoding CD22. In one aspect, an anti-CD22 antibody or immunoconjugate thereof is tested for its ability to inhibit cell growth or proliferation in vivo. In certain embodiments, an anti-CD22 antibody or immunoconjugate thereof is tested for its ability to inhibit tumor growth in vivo. 207 3800770.1 (GHMatters) P79401.AU.3 14-Sep.12 In vivo model systems, such as xenograft models, can be used for such testing. In an exemplary xenograft system, human tumor cells are introduced into a suitably immunocompromised non-human animal, e.g., a SCID mouse. An antibody or immunoconjugate of the invention is administered to the animal. The ability of the antibody 5 or immunoconjugate to inhibit or decrease tumor growth is measured. In certain embodiments of the above xenograft system, the human tumor cells are tumor cells from a human patient. Such cells useful for preparing xenograft models include human leukemia and lymphoma cell lines, which include without limitation the BJAB-luc cells (an EBV negative Burkitt's lymphoma cell line transfected with the luciferase reporter gene), Ramos 10 cells (ATCC, Manassas, VA, CRL-1923), Raji cells (ATCC, Manassas, VA, CCL-86), SuDHL-4 cells (DSMZ, Braunschweig, Germany, AAC 495), DoHH2 cells (see Kluin Neilemans, H.C. et al., Leukemia 5:221-224 (1991), and Kluin-Neilemans, H.C. et al., Leukemia 8:1385-1391 (1994)), Granta-519 cells (see Jadayel, D.M. et al, Leukemia 11(1):64-72 (1997)). In certain embodiments, the human tumor cells are introduced into a 15 suitably immunocompromised non-human animal by subcutaneous injection or by transplantation into a suitable site, such as a mammary fat pad. Binding assays and other assays In one aspect, an anti-CD22 antibody is tested for its antigen binding activity. For example, in certain embodiments, an anti-CD22 antibody is tested for its ability to bind to 20 CD22 expressed on the surface of a cell. A FACS assay may be used for such testing. In one aspect, competition assays may be used to identify a monoclonal antibody that competes with murine 10F4.4.1 antibody, humanized 10F4v1 antibody, humanized 1OF4v3 antibody and/or murine 5E8.1.8 antibody for binding to CD22. In certain embodiments, such a competing antibody binds to the same epitope (e.g., a linear or a 25 conformational epitope) that is bound by murine 10F4.4.1 antibody, humanized 1OF4v1 antibody, humanized 1OF4v3 antibody and/or murine 5E8.1.8 antibody. Exemplary competition assays include, but are not limited to, routine assays such as those provided in Harlow and Lane (1988) Antibodies: A Laboratory Manual ch.14 (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY). Detailed exemplary methods for mapping an epitope 30 to which an antibody binds are provided in Morris (1996) "Epitope Mapping Protocols," in Methods in Molecular Biology vol. 66 (Humana Press, Totowa, NJ). Two antibodies are said to bind to the same epitope if each blocks binding of the other by 50% or more. 208 360770_1 (GHMatters) P79401.AU.3 1 4 -Sep-12 In an exemplary competition assay, immobilized CD22 is incubated in a solution comprising a first labeled antibody that binds to CD22 (e.g., murine 10F4.4.1 antibody, humanized 1 OF4v1 antibody, humanized 1 OF4v3 antibody and/or murine 5E8.1.8 antibody) and a second unlabeled antibody that is being tested for its ability to compete with the first 5 antibody for binding to CD22. The second antibody may be present in a hybridoma supernatant. As a control, immobilized CD22 is incubated in a solution comprising the first labeled antibody but not the second unlabeled antibody. After incubation under conditions permissive for binding of the first antibody to CD22, excess unbound antibody is removed, and the amount of label associated with immobilized CD22 is measured. If the amount of 10 label associated with immobilized CD22 is substantially reduced in the test sample relative to the control sample, then that indicates that the second antibody is competing with the first antibody for binding to CD22. In certain embodiments, immobilized CD22 is present on the surface of a cell or in a membrane preparation obtained from a cell expressing CD22 on its surface. 15 In one aspect, purified anti-CD22 antibodies can be further characterized by a series of assays including, but not limited to, N-terminal sequencing, amino acid analysis, non denaturing size exclusion high pressure liquid chromatography (HPLC), mass spectrometry, ion exchange chromatography and papain digestion. In one embodiment, the invention contemplates an altered antibody that possesses 20 some but not all effector functions, which make it a desirable candidate for many applications in which the half life of the antibody in vivo is important yet certain effector functions (such as complement and ADCC) are unnecessary or deleterious. In certain embodiments, the Fc activities of the antibody are measured to ensure that only the desired properties are maintained. In vitro and/or in vivo cytotoxicity assays can be conducted to 25 confirm the reduction/depletion of CDC and/or ADCC activities. For example, Fc receptor (FcR) binding assays can be conducted to ensure that the antibody lacks FcyR binding (hence likely lacking ADCC activity), but retains FcRn binding ability. The primary cells for mediating ADCC, NK cells, express Fc(RIII only, whereas monocytes express Fc(RI, Fc(RII and Fc(RIII. FcR expression on hematopoietic cells is summarized in Table 3 on page 464 30 of Ravetch and Kinet, Annu. Rev. Immunol. 9:457-92 (1991). An example of an in vitro assay to assess ADCC activity of a molecule of interest is described in U.S. Patent No. 5,500,362 or 5,821,337. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as 209 3880770_1 (GHMatters) P79401.AU.3 14-Sep-12 that disclosed in Clynes et al. PNAS (USA) 95:652-656 (1998). Clq binding assays may also be carried out to confirm that the antibody is unable to bind Clq and hence lacks CDC activity. To assess complement activation, a CDC assay, e.g. as described in Gazzano Santoro et al., J. Immunol. Methods 202:163 (1996), may be performed. FcRn binding and 5 in vivo clearance/half life determinations can also be performed using methods known in the art. EXAMPLES The following are examples of methods and compositions of the invention. It is understood that various other embodiments may be practiced, given the general description 10 provided above. Example 1: Preparation of murine anti-human CD22 monoclonal antibody Murine monoclonal antibodies capable of specifically binding human CD22 was prepared. BALB/c female mice, age six weeks, were immunized in their foot pads with purified human CD22 his-8 tagged extracellular domain lacking domains 3 and 4 (SEQ ID 15 NO:30 (ECD) plus the sequence GRAHHHHHHHH at the C-terminus) or CD22 his-8 tagged extracellular domain comprising domains 1-7 (SEQ ID NO:28 (ECD) plus the above His sequence tag) in Ribi's adjuvant. Subsequent injections were performed in the same manner at one and three weeks after the initial immunizations. Three days after the final injection, the inguinal and popliteal lymph nodes were removed and pooled, and a single cell 20 suspension was made by passing the tissue through steel gauze. The cells were fused at a 4:1 ratio with mouse myeloma such as P3X63-Ag8.653 (ATCC CRL 1580) in high glucose (DMEM) containing 50% w/v polyethylene glycol 4000. The fused cells were then plated at a density of 2x1 05 per well in 96 well tissue culture plates. After 24 hours HAT selective medium (hypoxanthine/aminopterin/thymidine, Sigma, #H0262) was added. Fifteen days 25 after the fusion, supernatants of growing cells were tested for the presence of antibodies specific for human CD22 using an enzyme-linked immunosorbent assay (ELISA). The murine anti-human CD22 10F4.4.1 (mu 10F4) and 5E8.1.8 (mu 5E8) monoclonal antibodies were selected for further study based on cell-based assays and plate assays which showed the antibodies to bind specifically to human CD22. The assays are 30 described in the following paragraphs. 210 36807701 (GHMetters) P79401.AU.3 14-Sep-12 ELISA-based assays: Anti-CD22 antibody screening by ELISA is performed as follows, with all incubations done at room temperature. Test plates (Nunc Immunoplate) were coated for 2 hours with purified CD22 in 50 mM sodium carbonate buffer, pH 9.6, then blocked with 0.5% bovine serum albumin in phosphate buffered saline (PBS) for 30 minutes, 5 then washed four times with PBS containing 0.05% Tween 20 (PBST). Test antibody supernatants are added and incubated two hours with shaking, then washed four times with PBST. The plates are developed by adding 100 pl/well of a solution containing 10 mg of o phenylenediamine dihydrochloride (Sigma, #P8287) and 10 Fil of a 30% hydrogen peroxide solution in 25 ml phosphate citrate buffer, pH 5.0, and incubating for 15 minutes. The 10 reaction is stopped by adding 100 pl/well of 2.5 M sulfuric acid. Data is obtained by reading the plates in an automated ELISA plate reader at an absorbance of 490 nm. Example 2: FACS based assays for analysis of ant-human CD22 monoclonal antibodies (MAbs). CHO cells expressing human CD22 on their surface were incubated with anti-CD22 15 hybridoma supernatant in 100 pl FACS buffer (0.1 % BSA, 10 mM sodium azide in PBS, pH 7.4) for 30 minutes at 4*C followed by one wash with FACS buffer. The amount of anti CD22 binding was determined by incubating an aliquot of the antibody/cell mixture with a polyclonal FITC conjugated goat or rabbit anti-mouse IgG (Accurate Chem. Co., Westbury, NY) (for murine test antibodies) or goat or rabbit anti-human IgG (for humanized antibodies) 20 for 30 minutes at 40C followed by three washes with FACS buffer. Example 3: Preparation of Humanized anti-CD22 antibodies Humanized 10F4 antibodies were generated wherein hypervariable region (HVR) amino acid residues (interchangeably referred to as complementarity determining regions or CDRs) were modified via site-directed mutagenesis (Kunkel et al., Methods Enzymol. 25 (1987), 154:367-382) to arrive at two variants, humanized 10F4v1 and humanized 10F4v2 (also referred to herein as "1OF4v1," "hu10F4v1," "10F4v2," or "hu10F4v2," respectively). A third version, humanized 10F4v3 ("10F4v3" or "hu10Fv3"), used in some studies disclosed herein has the same light and heavy chain amino acid sequences for the mature protein as hu10F4v2, but comprises a different signal sequence in the vector used for protein 30 expression. Humanization of the murine 1 0F4 antibody was preformed as disclosed herein. Briefly, the hypervariable regions of the light and heavy chains of murine 10F4 were cloned 211 36607701 (GHMatters) P79401.AU.3 14-Sep-12 into modified consensus framework sequences to generate the light and heavy chain variable regions amino acid sequences shown in Figures 2A and 2B. Alternative light and heavy chain framework sequences that may be used as framework sequences of antibodies of the invention are shown in Figures 3 and 4. 5 A monovalent Fab-g3 display vector (pV0350-2B) phagemid having two open reading frames under control of the phoA promoter, essentially as described in Lee et al., J. Mol. Biol. 340:1073-93 (2004), was used in the humanization of the 10F4 antibody. The first open reading frame comprised the E. coli heat stable STII signal sequence for protein secretion fused to the VL and CH1 domains of the acceptor light chain sequence. The 10 second open reading frame comprised the STII signal sequence fused to the VH and CH1 domains of the acceptor heavy chain sequence followed by a truncated minor phage coat protein P3. The VH and VL domains from murine 10F4 (SEQ ID NOs:89 and 90, respectively) were aligned with the human subgroup Ill consensus VH (hulll) domain (SEQ ID NO:24) 15 and human consensus kappal (huK1) domain (SEQ ID NO:25), respectively. The amino acid sequences of the hypervariable regions (HVRs, interchangeably referred to herein as complimentary determining regions (CDRs)) of the murine anti-human CD22 MAb 10F4 were inserted into consensus framework sequences as follows. The light chain HVRs (HVR-L1 (Kabat positions 24-34), HVR-L2 (Kabat positions 50-56), and HVR-L3 (Kabat 20 positions 89-97) of the mu 10F4 antibody were engineered into a human kappa I (huKI) consensus sequence antibody framework to produce the humanized 10F4v1 light chain (SEQ ID NO:17, Fig. 2B). The heavy chain HVRs (HVR-H1 (Kabat positions 26-35), HVR H2 (Kabat positions 49-65), and HVR-H3 (Kabat positions 95-102) of the mu 10F4 antibody were engineered into a modified human subgroup III (humlll) consensus VH domain which 25 differs from the humIll sequence at three positions: R71A, N73T, and L78A were used (see Carter et all, Proc. Natl. Acad. Sci. USA 89:4285 (1992)) to produce the humanized 10F4v1 heavy chain variable region (SEQ ID NO:16, Fig. 2A). Genetic engineering of HVRs into the acceptor frameworks was performed by Kunkel mutagenesis using a separate oligonucleotide for each hypervariable region. The sequence of each clone was determined 30 by standard DNA sequencing techniques. Hypervariable regions and framework regions shown in Figures 2A and 2B are numbered according to Kabat numbering (Kabat et al. (1991), supra). The light and heavy chains were sequenced and the amino acid sequences of the variable regions (including HVRs and framework regions (FRs)) of the huKI, the 212 3800770_1 (GHMatters) P79401.AU.3 14-Sep-12 humIll, murine 10F4, humanized 1OF4v1 and humanized 10F4v2 are shown in Figures 2A and 2B. Humanized 10F4v3 antibody has the identical amino acid sequence as 10F4v2. Nucleic acid molecules encoding amino acid sequence variants of the antibody, antibody fragment, VL domain or VH domain are prepared by a variety of methods known in 5 the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the antibody, antibody fragment, VL domain or VH domain. For example, libraries can be created by targeting VL accessible 10 amino acid positions in VH, and optionally in one or more CDRs, for amino acid substitution with variant amino acids using the Kunkel method. See, for e.g., Kunkel et al., Methods Enzymol. (1987), 154:367-382 and the examples herein. Generation of randomized sequences is also described below in the Examples. The sequence of oligonucleotides includes one or more of the designed codon sets 15 for a particular position in a CDR (HVR) or FR region of a polypeptide of the invention. A codon set is a set of different nucleotide triplet sequences used to encode desired variant amino acids. Codon sets can be represented using symbols to designate particular nucleotides or equimolar mixtures of nucleotides as shown in below according to the IUB code. 20 IUB CODES G Guanine A Adenine T Thymine C Cytosine 25 R(AorG) Y (C or T) M (A or C) K (G or T) S (C or G) 30 W (A or T) H (A or C or T) B (C or G or T) V (A or C or G) D (A or G or T) 213 3860770_1 (GHMatters) P79401.AU.3 14-Sep-12 N (AorCorGorT) For example, in the codon set DVK, D can be nucleotides A or G or T; V can be A or G or C; and K can be G or T. This codon set can present 18 different codons and can 5 encode amino acids Ala, Trp, Tyr, Lys, Thr, Asn, Lys, Ser, Arg, Asp, Glu, Gly, and Cys. Oligonucleotide or primer sets can be synthesized using standard methods. A set of oligonucleotides can be synthesized, for example, by solid phase synthesis, containing sequences that represent all possible combinations of nucleotide triplets provided by the codon set and that will encode the desired group of amino acids. Synthesis of 10 oligonucleotides with selected nucleotide "degeneracy" at certain positions is well known in that art. Such sets of nucleotides having certain codon sets can be synthesized using commercial nucleic acid synthesizers (available from, for example, Applied Biosystems, Foster City, CA), or can be obtained commercially (for example, from Life Technologies, Rockville, MD). Therefore, a set of oligonucleotides synthesized having a particular codon 15 set will typically include a plurality of oligonucleotides with different sequences, the differences established by the codon set within the overall sequence. Oligonucleotides, as used according to the invention, have sequences that allow for hybridization to a variable domain nucleic acid template and also can include restriction enzyme sites for cloning purposes. 20 In one method, nucleic acid sequences encoding variant amino acids can be created by oligonucleotide-mediated mutagenesis. This technique is well known in the art as described by Zoller et al, 1987, Nucleic Acids Res. 10:6487-6504. Briefly, nucleic acid sequences encoding variant amino acids are created by hybridizing an oligonucleotide set encoding the desired codon sets to a DNA template, where the template is the single 25 stranded form of the plasmid containing a variable region nucleic acid template sequence. After hybridization, DNA polymerase is used to synthesize an entire second complementary strand of the template that will thus incorporate the oligonucleotide primer, and will contain the codon sets as provided by the oligonucleotide set. Generally, oligonucleotides of at least 25 nucleotides in length are used. An optimal 30 oligonucleotide will have 12 to 15 nucleotides that are completely complementary to the template on either side of the nucleotide(s) coding for the mutation(s). This ensures that the oligonucleotide will hybridize properly to the single-stranded DNA template molecule. The 214 3660770_1 (GHMatters) P79401.AU.3 14-Sep-12 oligonucleotides are readily synthesized using techniques known in the art such as that described by Crea et al., Proc. Nat'l. Acad. Sci. USA, 75:5765 (1978). The DNA template is generated by those vectors that are either derived from bacteriophage M13 vectors (the commercially available M13mpl8 and M13mpl9 vectors 5 are suitable), or those vectors that contain a single-stranded phage origin of replication as described by Viera et al., Meth. Enzymol., 153:3 (1987). Thus, the DNA that is to be mutated can be inserted into one of these vectors in order to generate single-stranded template. Production of the single-stranded template is described in sections 4.21-4.41 of Sambrook et al., above. 10 To alter the native DNA sequence, the oligonucleotide is hybridized to the single stranded template under suitable hybridization conditions. A DNA polymerizing enzyme, usually T7 DNA polymerase or the Klenow fragment of DNA polymerase 1, is then added to synthesize the complementary strand of the template using the oligonucleotide as a primer for synthesis. A heteroduplex molecule is thus formed such that one strand of DNA 15 encodes the mutated form of gene 1, and the other strand (the original template) encodes the native, unaltered sequence of gene 1. This heteroduplex molecule is then transformed into a suitable host cell, usually a prokaryote such as E. coli JM101. After growing the cells, they are plated onto agarose plates and screened using the oligonucleotide primer radiolabelled with a 32-Phosphate to identify the bacterial colonies that contain the mutated 20 DNA. The method described immediately above may be modified such that a homoduplex molecule is created wherein both strands of the plasmid contain the mutation(s). The modifications are as follows: The single stranded oligonucleotide is annealed to the single stranded template as described above. A mixture of three deoxyribonucleotides, 25 deoxyriboadenosine (dATP), deoxyriboguanosine (dGTP), and deoxyribothymidine (dTT), is combined with a modified thiodeoxyribocytosine called dCTP-(aS) (which can be obtained from Amersham). This mixture is added to the template-oligonucleotide complex. Upon addition of DNA polymerase to this mixture, a strand of DNA identical to the template except for the mutated bases is generated. In addition, this new strand of DNA will contain dCTP 30 (aS) instead of dCTP, which serves to protect it from restriction endonuclease digestion. After the template strand of the double-stranded heteroduplex is nicked with an appropriate restriction enzyme, the template strand can be digested with Exoll nuclease or another appropriate nuclease past the region that contains the site(s) to be mutagenized. The 215 38807701 (GHMatters) P79401.AU.3 14-Sep-12 reaction is then stopped to leave a molecule that is only partially single-stranded. A complete double-stranded DNA homoduplex is then formed using DNA polymerase in the presence of all four deoxyribonucleotide triphosphates, ATP, and DNA ligase. This homoduplex molecule can then be transformed into a suitable host cell. 5 As indicated previously the sequence of the oligonucleotide set is of sufficient length to hybridize to the template nucleic acid and may also, but does not necessarily, contain restriction sites. The DNA template can be generated by those vectors that are either derived from bacteriophage M13 vectors or vectors that contain a single-stranded phage origin of replication as described by Viera et al. ((1987) Meth. Enzymol., 153:3). Thus, the 10 DNA that is to be mutated must be inserted into one of these vectors in order to generate single-stranded template. Production of the single-stranded template is described in sections 4.21-4.41 of Sambrook et al., supra. According to another method, a library can be generated by providing upstream and downstream oligonucleotide sets, each set having a plurality of oligonucleotides with 15 different sequences, the different sequences established by the codon sets provided within the sequence of the oligonucleotides. The upstream and downstream oligonucleotide sets, along with a variable domain template nucleic acid sequence, can be used in a polymerase chain reaction to generate a "library" of PCR products. The PCR products can be referred to as "nucleic acid cassettes", as they can be fused with other related or unrelated nucleic 20 acid sequences, for example, viral coat proteins and dimerization domains, using established molecular biology techniques. Oligonucleotide sets can be used in a polymerase chain reaction using a variable domain nucleic acid template sequence as the template to create nucleic acid cassettes. The variable domain nucleic acid template sequence can be any portion of the heavy 25 immunoglobulin chains containing the target nucleic acid sequences (ie., nucleic acid sequences encoding amino acids targeted for substitution). The variable region nucleic acid template sequence is a portion of a double stranded DNA molecule having a first nucleic acid strand and complementary second nucleic acid strand. The variable domain nucleic acid template sequence contains at least a portion of a variable domain and has at least one 30 CDR. In some cases, the variable domain nucleic acid template sequence contains more than one CDR. An upstream portion and a downstream portion of the variable domain nucleic acid template sequence can be targeted for hybridization with members of an upstream oligonucleotide set and a downstream oligonucleotide set. 216 3680770.1 (GHMaters) P79401.AU.3 14-Sep-12 A first oligonucleotide of the upstream primer set can hybridize to the first nucleic acid strand and a second oligonucleotide of the downstream primer set can hybridize to the second nucleic acid strand. The oligonucleotide primers can include one or more codon sets and be designed to hybridize to a portion of the variable region nucleic acid template 5 sequence. Use of these oligonucleotides can introduce two or more codon sets into the PCR product (ie., the nucleic acid cassette) following PCR. The oligonucleotide primer that hybridizes to regions of the nucleic acid sequence encoding the antibody variable domain includes portions that encode CDR residues that are targeted for amino acid substitution. The upstream and downstream oligonucleotide sets can also be synthesized to 10 include restriction sites within the oligonucleotide sequence. These restriction sites can facilitate the insertion of the nucleic acid cassettes (i.e., PCR reaction products) into an expression vector having additional antibody sequence. In one embodiment, the restriction sites are designed to facilitate the cloning of the nucleic acid cassettes without introducing extraneous nucleic acid sequences or removing original CDR or framework nucleic acid 15 sequences. Nucleic acid cassettes can be cloned into any suitable vector for expression of a portion or the entire light or heavy chain sequence containing the targeted amino acid substitutions generated via the PCR reaction. According to methods detailed in the invention, the nucleic acid cassette is cloned into a vector allowing production of a portion or 20 the entire light or heavy chain sequence fused to all or a portion of a viral coat protein (i.e., creating a fusion protein) and displayed on the surface of a particle or cell. While several types of vectors are available and may be used to practice this invention, phagemid vectors are the preferred vectors for use herein, as they may be constructed with relative ease, and can be readily amplified. Phagemid vectors generally contain a variety of components 25 including promoters, signal sequences, phenotypic selection genes, origin of replication sites, and other necessary components as are known to those of ordinary skill in the art. When a particular variant amino acid combination is to be expressed, the nucleic acid cassette contains a sequence that is able to encode all or a portion of the heavy or light chain variable domain, and is able to encode the variant amino acid combinations. For 30 production of antibodies containing these variant amino acids or combinations of variant amino acids, as in a library, the nucleic acid cassettes can be inserted into an expression vector containing additional antibody sequence, for example all or portions of the variable or constant domains of the light and heavy chain variable regions. These additional antibody 217 38607701 (GHMatters) P79401.AU.3 14-Sep-12 sequences can also be fused to other nucleic acids sequences, such as sequences that encode viral coat proteins and therefore allow production of a fusion protein. Example 4: Variable Region Sequence Determination The nucleic acid and amino acid sequences of the murine and humanized 1 0F4 5 monoclonal antibodies were determined by standard procedures. Total RNA was extracted from hybridoma cells producing the mouse anti-human CD22 10F4.4.1 monoclonal antibodies using the RNeasy @ Mini Kit (Qiagen, Germany). The variable light (VL) and variable heavy (VH) domains were amplified using RT-PCR with degenerate primers. The forward primers were specific for the N-terminal amino acid sequences of the VL and VH 10 regions of the antibody. Respectively, the light chain and heavy chain reverse primers were designed to anneal to a region in the constant light (CL) and constant heavy domain 1 (CH1), which is highly conserved across species. Amplified VH andVL were cloned into a pRK mammalian cell expression vector (Shields et al., J. Biol. Chem. 276:659-04 (2000)). The polynucleotide sequence of the inserts was determined using routine sequencing 15 methods. The amino acid sequences of the murine chimeric 10F4 and humanized 1OF4v1 and humanized 10F4v2 light and heavy chain variable regions are shown in Figures 2A and 2B. Humanized 1OF4v1 was further modified at HVR-L1 position 28 (N28) (SEQ ID NO:9) (see Figure 2B. The asparagine residue at that position was replaced with a valine 20 residue (N28V) to generate HVR-L1 (SEQ ID NO:10) for the hu1OF4v2 and hu1OF4v3 variants, which showed improved binding affinity. These variants comprise the same variable and constant domain sequences of the mature antibody and differ only in a signal sequence not found in the mature antibody of the invention. Additional amino acid sequence modifications were generated at one or both of 25 amino acids Asn28 (N28) and/or Asn30 (N30) of the HVR-L1 hypervariable region (see Figure 2B) of hu1OF4v1. Because N28 and N30 are possible sites for deamination, amino acid changes at these sites were tested. For example, Asparagine at position 28 (N28) was replaced alternatively with A, Q, S, D, V, or 1, and Asparagine at position 30 (N30) was replaced alternatively with A or Q. Amino acid sequence changes in the HVR-L1 domain 30 according to the invention are provided in Table 2 along with their binding affinities as tested by competition analysis in a phage ELISA assay (IC50) using standard procedures. 218 3860770_1 (GHMatters) P79401 AU.3 14-Sep-12 Table 2 Substitution Variants of hu 10F4v1 antibody Amino Acid Change HVR-L1 SEQ ID NO Binding Affinity (nM) In HVR-L1 Figure 2B No change 9 8 (N28, N30) N28A, N30 19 8 N28Q, N30 20 7.3 N28S, N30 21 12 N28D, N30 22 12 N28V, N30 10 7.3 N281, N30 23 9.8 N28, N30A 32 7.7 N28, N30Q 33 10 For generation of full-length human IgG1 versions of humanized 10F4 antibody, the 5 heavy and light chains are subcloned separately into previously described pRK plasmids (Gorman, C.M. et al. (1990), DNA Protein Eng. Tech. 2: 3). Appropriate heavy and light chain plasmids (depending upon the sequence change(s) desired) are cotransfected into an adenovirus-transformed human embryonic kidney cell line, known as 293 (Graham, F.L. et al. (1977), J. Gen. Virol. 36: 59), using a high efficiency procedure (Graham et al., supra & 10 Gorman, C.M., Science 221: 551). Media is changed to serum free and harvested daily for up to 5 days. Antibodies are purified from the pooled supernatants using protein A Sepharose CL-4B (Pharmacia). The eluted antibody is buffer exchanged into PBS by G25 gel filtration, concentrated by ultrafiltration using a Centriprep-30 or Centricon-100 (Millipore), and stored at 4 0 C. The concentration of antibody is determined using total IgG 15 binding ELISA. Exemplary heavy chain IgG1 constant domains according to the invention are depicted in Figure 5A.- An exemplary human light chain K constant domain comprises, for example, RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQD 20 SKDSTYSLSSTLTLSKADYEKHDVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:37). The full length amino acid sequence of h10F4v2 is shown in Figure 5B in which the constant 219 360770_1 (GHMatter) P79401.AU 3 14-Sep-12 regions of the light and heavy chains are indicated by underlining. The hlOF4vl, v2, and v3 antibodies are IgG1 isotype. Characterization of anti-CD22 antibodies 5 Example 5: Epitope mapping: The epitopes of CD22 to which 10F4.4.1 and 5E8.1.8 antibodies bound were determined according to the following procedures. CD22 sequences lacking various of the seven immunoglobulin-like domains of the major CD22 isoform (CD22beta) were cloned and transformed into cells for stable expression. For example, CD22 variants lacking 10 domain 1 (Al), domain 2 (A2), or domains 3 and 4 (A3,4) were cloned, transformed into CHO cells, and expressed on the cells. Control cells expressed CD22beta. Deletions were performed using Stratagene QuikChange XLTM reagent kit. Deletion of domain 1 was performed by deletion of amino acids 22-138; deletion of domain 2 was performed by deletion of amino acids 139-242; and deleted domains 3 and 4 were available as the minor 15 isoform CD22alpha (deletion of amino acids 241-417). All amino acid numbers refer to the numbering of full length precursor CD22beta by Wilson, G.L. et al. (see Figure 1 in Wilson, G.L. et al., J. Exp. Med. 173:137-146 (1991)). Figure 14 is a diagram of the deleted domains. Binding was determined by flow cytometry using an isotype control. Binding of 10F4.4.1 was detected using goat anti-mouse IgG Alexa 488. Binding of 5E8.1.8 was 20 detected using biotinylated goat anti-mouse IgG plus streptavidin PE. An adverse affect on the binding of murine 10F4.4.1 or murine 5E8.1.8 antibodies in the absence of particular ECD domains indicated that the antibody bound those domains. Murine 10F4.4.1 and 5E8.1.8 showed the same binding characteristics under these conditions. Neither bound CD22 lacking domain 1 or domain 2, and both bound CD22 comprising domains 1 and 2, 25 but lacking domains 3 and 4. Using this method, it was determined that 10F4.4.1 and 5E8.1.8 bind to domains 1 and 2 of human CD22, within the sequence from amino acid 22 to amino acid 240 of SEQ ID NO:27 (see Wilson, G.L. et al., (1991) supra). Example 6: Characterization of Binding Affinity to Soluble Antigen The binding affinity of murine and humanized 10F4 antibody for soluble CD22 30 extracellular domain (ECD) was determined by surface plasmon resonance measurement using a BIACORE@ 3000 system (Biacore, Inc., Piscataway, NJ). Briefly, carboxymethylated dextran biosensor chips (CM5, Biacore Inc.) were activated with N-ethyl N'- (3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide 220 3660770_1 (GHManers) P79401 AU.3 14-Sep-12 (NHS) according to the supplier's instructions. These activated chips were coated with anti CD22 IgG1 antibody 10F4 (murine or humanized) by dilution to 5 pg/ml with 10mM sodium acetate, pH 4.8, before injection at a flow rate of 5pl/minute to achieve approximately 500 response units (RU) of coupled antibody. Next, 1 M ethanolamine was injected to block 5 unreacted groups. For kinetics measurements, two-fold serial dilutions of human CD22 beta-ECD-His tagged soluble antigen (approximately 500 nM to approximately 7.8 nM) were injected in PBS with 0.05% Tween 20 at 25 0 C at a flow rate of 30 pl/min. Association rates (ko,) and dissociation rates (koff) were calculated using a simple one-to-one Langmuir binding model (BlAevaluation Software version 3.2). The equilibrium dissociation constant 10 (Kd) was calculated as the ratio koff/kofn. Anti-CD22 antibody, RFB4, was used as a control (Chemicon International, Inc., Temecula, CA, catalog no. CBL147). The results of this experiment are shown in Table 2 below. TABLE 2 Anti-CD22 Binding Affinity to Soluble Human CD22 15 (BIACORE* analysis) Clone koJ10' koff/104 Kd (nM) Murine 10F4 0.19 2.8 15 Chimeric 10F4 0.26 4.2 16 Humanized 10F4v1 0.18 3.5 19 Humanized 10F4v2 0.32 2.5 7.8 Control RFB4 0.33 1.4 4.2 Example 7: Characterization of Binding Affinity to Cell Surface Antigen The binding affinity of murine 10F4.4.1 and humanized 10F4v1 and 10F4v2 for human and cynomolgus monkey (cyno) CD22 expressed on the surface of CHO cells was 20 examined using a competition assay. Briefly, CHO cells stably expressing full length human CD22 (SEQ ID NO:27) or cynomolgus monkey (cyno) CD22 (SEQ ID NO:31). Anti-CD22 antibody (murine or humanized 1 OF4v1 or v2) was iodinated with lodogen@ [l251] reagent to a specific activity of approximately 10 pCi/pg. A cell-based, competitive binding assay was performed using serially diluted, unlabeled anti-CD22 antibody. Antibodies were allowed to 25 bind to the cells for 4 hours at 4 0 C. Binding affinity, KD, of the antibodies was determined in 221 3680770_1 (GHMatters) P79401.AU.3 14-Sep.12 accordance with standard Scatchard analysis performed utilizing a non-linear curve fitting program (see, for example, Munson et al., Anal Biochem, 107: 220-239, 1980). The results of this experiment are shown in Table 3 below. TABLE 3 5 10F4 MAb Binding Affinity for Human and Cyno CD22 Human CD22 Cyno CD22 Kd(nM) Kd(nM) Mu 10F4.4.1 2.4 2.3 Hu 10F4v1* 1.1, 1.7 1.4, 1.8 Hu 10F4v2 1.6 2.1 *repeated assays The results indicate that murine and humanized 10F4 bind human and cyno CD22 expressed on the surface of CHO cells with approximately equivalent affinity. Example 8: Production of Anti-CD22 Antibody Drug Conjuqates 10 Anti-CD22 ADCs were produced by conjugating anti-CD22 antibodies RFB4, murine 5E8, murine 10F4, humanized 1OF4v1, humanized thioMAb 10F4v1 (thio-lOF4v1), humanized 10F4v2, and humanized 10F4v3 to the following drug-linker moieties: spp-DM1, smcc-DM1, MC-vc-PAB-MMAE; MC-vc-PAB-MMAF; MC-MMAE and MC-MMAF, which drug and linker moieties are disclosed herein as well as in WO 2004/010957, published February 15 5, 2004, and W02006/034488, published September 9, 2005 (each of which patent applications is herein incorporated by reference in its entirety). Prior to conjugation, the antibodies were partially reduced with TCEP using standard methods in accordance with the methodology described in WO 2004/010957. The partially reduced antibodies were conjugated to the above drug-linker moieties using standard methods in accordance with 20 the methodology described in Doronina et al. (2003) Nat. Biotechnol. 21:778-784 and US 2005/0238649 Al. Briefly, the partially reduced antibodies were combined with the drug linker moieties to allow conjugation of the moieties to cysteine residues. The conjugation reactions were quenched, and the ADCs were purified. The drug load (average number of drug moieties per antibody) for each ADC was determined by HPLC. Other useful linkers 25 for the preparation of ADCs include, without limitation, BMPEO, BMPS, EMCS, GMBS, HBVS, LC-SMCC, MBS, MPBH, SBAP, SIA, SIAB, SMPB, SMPH, sulfo-EMCS, sulfo GMBS, sulfo-KMUS, sulfo-MBS, sulfo-SIAB, sulfo-SMCC, and sulfo-SMPB, and SVSB 222 3680770_1 (GHMatlers) P79401 AU.3 14-Sep-12 (succinimidyl-(4-vinylsulfone)benzoate), and including bis-maleimide reagents: DTME, BMB, BMDB, BMH, BMOE, BM(PEO) 3 , and BM(PEO) 4 . Anti-CD22 ADCs are also produced by conjugation to lysine residues of the antibody. Lysines of the antibody are converted to sulfhydryl groups using, for example, 5 Traut's reagent (Pierce Chemical Co.) as disclosed herein. The resultant sulfhydryl groups are reactive with linkers or linker drug molecules for the preparation of ADCs. Alternatively, ADC's are produced by reacting a lysine on an anti-CD22 antibody with the linker, SPP (N succinimidyl 4-(2'-pyridyldithio) pentanoate, which may be already attached to a drug molecule or may be subsequently reacted with a drug molecule, such as a maytansinoid. 10 For example, an antibody is modified by reaction with SPP, followed by conjugation with f as disclosed in Wang, L. et al., Protein Science 14:2436-2446 (2005), which reference is hereby incorporated by reference in its entirety. Lysine residues on an anti-CD22 antibody may also be reacted with the linker, SMCC (Pierce Chemical Co.), at pH 7-9 such that the amine-reactive N-hydroxysuccinimide (NHS ester) of SMCC forms a stable amide bond with 15 the antibody. The sulfhydryl-reactive maleimide group of SMCC is reacted with the sulfhydryl group of DM1 at pH 6.5-7.5 (see Pierce Chemical Co., piercenet.com) to form the ADC. Lysine or cysteine residues are reacted with linker-drug to produce ADCs comprising an average drug load of approximately 1-8 linker drug molecules per antibody, alternatively 1-6, 1-4, 1-3 or 1-2 linker drug molecules per antibody. 20 ADCs anti-CD22(RFB4)-SMCC-DM1 and anti-GP120-SMCC-DM1 were prepared according to this method, where RFB4-smcc-DM1 was prepared at low (1.95), medium (3.7) and high (6.75) drug loads. Anti-GP120-smcc-DM1 was prepared at high (6.1) drug load. These ADCs were shown to be efficacious in vivo, as shown in Example 9 and Table 9, herein below. 25 Example 9: Efficacy of Anti-CD22 Antibody Drug Conjuqates In vitro studies of efficacy determinants. The determinants of anti-CD22 ADC (or TDC) efficacy in a lymphoma cell line were determined. It is known that CD22 expressed on the surface of B cells is internalized upon binding of its ligand(s) or antibodies (Sato, S. et al., Immunity 5:551-562 (1996)). To test 30 whether and how the level of B cell surface expression of CD22 and/or internalization of CD22 affect efficacy, the following in vitro studies were performed. 223 380770.1 (GHMatter) P79401 AU.3 14-Sep-12 Surface expression of human CD22 on multiple lymphoma cell lines. Nineteen lymphoma cell lines expressing varying amounts of CD22 on their surface were cultured and harvested in log phase growth. Cells were resuspended in FACS wash buffer (PBS; 0.5% bovine serum albumin; 0.1% sodium azide) containing 100 pg/ml each normal mouse IgG 5 and normal human IgG and maintained on ice. Approximately 1 x 10A6 cells/1 00 pl were stained with anti-huCD22 APC (mlgG1, clone RFB4, Southern Biotech #9361-11) or murine IgG1 APC isotype (BD Pharmingen #555751) for 30 minutes on ice. Dead cells were stained with 7-AAD (BD Pharmingen #559925). Data were acquired on a BD FacsCalibur T M flow cytometer and analyzed with FIowJoTM software. The IC50 determination for 10 hulOF4v3-SMCC-DM1 or each free drug (DM1, MMAF, or MMAE) were determined by culturing lymphoma cells as above, harvesting the cultured cells in log phase and seeding 5,000 cells in 90 pl culture medium per well in 96 well plate. ADC and free drug were diluted serially within the detection range (starting at 300 pg/ml for ADC, or 90 nM for free drug and diluting to essentially zero assay target). Aliquots of 10 pl diluted ADC or free drug 15 were added to replicate wells containing cells and incubated for 3 days at 37 0C. To each well, 100 pl CellTiter GIoTM was added and incubated for 30 min. Chemiluminescence was detected and data were analyzed using PrismTM software. The results are shown in Figure 6A, in which high surface CD22 levels correlate with low IC50 (higher efficacy) of hu1OF4v3 SMCC-DM1. Figure 6C indicates that a stronger correlation exists between the intrinsic 20 sensitivity of the cells to free drug and the IC50 of the ADC. Internalization of hulOF4v3-SMCC-DM1 was determined by FACS assay. Briefly, lymphoma cells were stained by standard FACS techniques with CD22-FITC (RFB4) in the presence of hulOF4v3-SMCC-DM1 and incubated on ice for 20-30 minutes. To determine CD22 levels on the cell surface after the initial staining, cells were washed in cold 25 RPMI/10% FBS media and 200 pl pre-warmed RPMI/10% FBS was added and incubated at 37 0C for 15 minutes. 80 pl staining buffer and 20pl heat-inactivated normal mouse serum (HI NMS) were added, followed by incubation on ice for 15 minutes. Anti-DM1-Alexa-647 was added, incubated on ice for 20-30 minutes and cells were washed and fixed with 200 pl PBS/1 % paraformaldehyde prior to FACS analysis. To determine surface and internal 30 staining of CD22 after the initial staining, cells were washed with cold RPMI/10% FBS, pre warmed RPMI/10% FBS was added and the cells incubated for 15 minutes at 37 *C. Cells were then washed with FACS Wash and fixed with Fix Reagent A (Dako TM #k231 1) at room temperature for 15 minutes, and the step was repeated with Fix Reagent B (Dako TM). Staining buffer and HI NMS were added and the cell mixture was incubated on ice for 15 35 min. Fix Reagent B was added, followed by anti-DM1-Alexa-647 and incubated at room 224 380770_1 (GHMatters) P79401 AU.3 14-Sep-12 temperature for 20-30 minutes. Cells were washed in FACS Wash and fixed in PBS/1% paraformaldehyde. FACS analysis was performed on each cell mixture (surface, surface post-internalization, and internal staining) using a BD FacsCalibur TM flow cytometer and analyzed with FIowJo TM software. The results are shown in Figure 6B in which high 5 amounts of internalized DM1 correlated with low IC50 (high efficacy); and in Figure 6D in which internalized DM1 is visualized by fluorescent microscopy. In vivo efficacy studies. To test the efficacy of toxin-conjugated or unconjugated anti-CD22 monoclonal antibodies for the ability to reduce tumor volume in vivo, the following protocol was 10 employed. SCID mice were each inoculated subcutaneously in the flank with 2 x 107 a human B-cell lymphoma cell line. The human cell lines included human Burkitt lymphoma cell lines Daudi, Ramos, and Raji cells (available from the American Type Culture Collection, Manassas, VA, USA), and other B-cell lines including U-698-M cells and Su-DHL-4 cells 15 (available from DSMZ, Braunschweig, Germany; Su-DHL-4 cells were transfected with the luciferase reporter gene), DoHH2 cells (Kluin-Neilemans, H.C. (1991), supra), and Granta 519 (Mantle cell lymphoma cells, Jadayel, D.M. et al., Leukemia 11(1):64-72 (1997)), and BJAB-luc cells (BJAB human B-cell lymphoblastoid cell line which expresses reporter gene luciferase. When the tumors reached a mean tumor volume of between 100-200 mm3, the 20 mice were divided into groups, and treated on day 0 by intravenous injection with toxin conjugated antibody or unconjugated antibody as shown in Tables 4-16, below. Anti-CD22 maytansine drug conjuqates reduce B-cell tumor volume Sixty-five SCID mice were injected with 2x10A7 BJAB-luc cells subcutaneously in a volume of 0.2 ml per mouse in the flank. Cells were suspended in HBSS. When the mean 25 tumor size reached 100-200mmA3, mice were randomly grouped into four groups of 9 mice each and given a single 1.V. treatment (via the tail vein) of the anti-CD22 or control antibody indicated in Table 4, below. 225 3680770_1 (GHMatters) P79401 AU 3 14-Sep.12 Table 4 In Vivo Tumor Volume Reduction Antibody Administration Antibody TI PR CR Dose Ab Dose DM1 Drug ratio administered (mg/kg) (pg/m2) (Drug moieties/Ab) anti-Her2- 9/9 0 0 4.2 200 3.2 smcc-DM1 mulOF4- 9/9 2 0 3.0 200 4.6 smcc-DM1 hu1OF4v2- 9/9 0 0 3.4 200 4.0 smcc-DM1 hu10F4v1 9/9 0 0 3.4 5 "T- tumor incidence at the last time point of each group; the numerator refers to the number of tumor-bearing animals and the denominator refers to total number of animals. "PR" refers to the number of animals with tumor regressed 50-99% from its initial volume. "CR" refers to the number of animals attaining complete remission. 10 Mean tumor volume was monitored in each treatment group for 32 days post antibody injection. Tumor measurements were taken with calipers. Efficacy of the toxin conjugated anti-CD22 antibodies was determined by comparison to the control and unconjugated antibodies. The results are shown in Figure 7A. The murine and humanized 1OF4v1-smcc-DM1 monoclonal antibodies significantly slowed tumor growth relative to 15 unconjugated anti-CD22 antibody and non-specific control antibody. Using the same protocol as above, an assay was performed comparing toxin conjugated humanized 10F4v2 to toxin-conjugated murine and naked humanized antibody as indicated in Table 5, below. 20 Table 5 In Vivo Tumor Volume Reduction Antibody Administration Antibody TI PR CR Dose Ab Dose DM1 Drug ratio administered (mg/kg) (pg/m 2 ) (Drug moieties/Ab) anti-Her2- 9/9 0 0 4.2 200 3.2 smcc-DM1 mulOF4- 7/9 1 2 4.7 200 2.9 smcc-DM1 I I___ hu1OF4v2- 8/9 1 1 4.5 200 3.0 smcc-DM1 hu1OF4v2 9/9 0 0 4.5 -- "TI"- tumor incidence at the last time point of each group; the numerator refers to the number of tumor-animals in the study group and the denominator refers to total number of animals. 25 "PR" refers to the number of animals with tumor regressed 50-99% from its initial volume. "CR" refers to the number of animals attaining complete remission. 226 3860770_1 (GHMatters) P79401.AU.3 14-Sep-12 Mean tumor volume was monitored in each treatment group for 32 days post antibody injection. Tumor measurements were taken with calipers. Efficacy of the toxin conjugated anti-CD22 antibodies was determined by comparison to the control and 5 unconjugated antibodies. The results are shown in Figure 7B. The murine 10F4-smcc-DM1 and humanized 10F4v2-smcc-DM1 monoclonal antibodies significantly slowed tumor growth relative to unconjugated anti-CD22 antibody and non-specific control antibody. Anti-CD22 antibody was conjugated to DM1 via the spp linker or the smcc linker according to conjugation methods disclosed herein. The naked anti-CD20 antibody was 10 used as a positive control and the toxin conjugates, anti-HER2-spp-DM1 and anti-HER2 smcc-DM1, were used as negative controls. Eighty SCID mice were injected with 2x10A7 BJAB-luc cells subcutaneously in a volume of 0.2ml per mouse in the flank. Cells were suspended in HBSS. When the mean tumor size reached 100-200mmA3, the mice were randomly grouped into six groups of 10 mice each and intravenous injection of test or 15 control antibodies was performed. Doses were repeated once each week for a total of three doses. See Table 6. Table 6 In Vivo Tumor Volume Reduction Antibody Administration Antibody Dose Ab Dose DM1 administered (mg/kg) (pg/m2) anti-Her2- 4 214 spp-DM1 * anti-Her2- 6.9 405 smcc-DM1 ** anti-CD22- 5 214 spp-DMI * anti-CD22- 2.5 107 spp-DM1 anti-CD22- 10 405 smcc-DM1 ** naked anti- 10 -- CD22 I 1 _1 20 Matched drug load ** Matched drug load Mean tumor volume was monitored twice each week for 3 weeks and then once each week thereafter for a total of 8 weeks. Changes in tumor volume over time (Figure 25 7C) show that the anti-CD22-spp-DM1 dosed at 214 and 107 pg/mA2 DM1 and anti-CD22 227 3860770_1 (GHMatters) P79401.AU.3 14-Sep-12 smcc-DM1 dosed at 405 pg/mA2 showed robust and comparable anti-tumor activity in BJAB-luc xenograft tumors. All anti-CD22 ADC groups showed complete responses. The anti-CD22 antibodies, RFB4, 5E8, and 7A2 were conjugated to DM1 via the smcc linker according to conjugation methods disclosed herein. The toxin conjugate, anti 5 HER2-smcc-DM1 (referred to interchangeably herein as HER-smcc-DM1 or HER2-smcc DM1), was used as negative control. The ability of these antibodies to reduce tumor volume in various xenografts in SCID mice was examined. The human B-cell lymphoma cell lines used to generate xenograft tumors in mice were Ramos cells and BJAB-luc cells. For each xenograft, SCID mice were 10 injected with 5x10^6 human B-cell lymphoma Ramos cells subcutaneously in a volume of 0.1ml per mouse in the flank (or 2x10A7 BJAB-luc cells in 0.2ml). Cells were suspended in HBSS. When the mean tumor size reached 100-200mmA3, the mice were randomly grouped into groups of 8-10 mice each, and each mouse was given a single intravenous injection of test or control antibody. DM1 drug loading was normalized to 200 pg/m2 for 15 each group to provide the dose of DM1 administered. Mean tumor volume was monitored twice each week for 4 weeks. The results are shown below in Tables 7 and 8 and plotted in Figures 8A and 8B, respectively. Table 7 20 In Vivo Tumor Volume Reduction, Ramos Xenograft Antibody Administration Antibody Dose Ab Dose DM1 administered (mg/kg) (pg/m 2 ) anti-HER2- 4.2 200 smcc-DM1 Anti- 3.8 200 CD22(7A2) smcc-DM1 anti- 3.8 200 CD22(5E8) smcc-DM1 Anti- 3.2 200 CD22(RFB4) smcc-DM1 228 3680770_1 (GHMatters) P79401.AU.3 14-Sep-12 Table 8 In Vivo Tumor Volume Reduction, BJAB-luc Xenograft Antibody Administration Antibody Dose Ab Dose DM1 Drug ratio administered (mg/kg) (pg/m 2 ) (Drug moieties/Ab) anti-HER2- 4.2 200 3.2 smcc-DM1 Anti-CD22 3.8 200 3.6 (7A2)-smcc DM1 Anti- 3.8 200 3.6 CD22(5E8) smcc-DM1 Anti- 3.2 200 4.25 CD22(RFB4) smcc-DM1 5 These results show that anti-CD22-smcc-DM1 antibody drug conjugates significantly reduce B-cell tumor volume in Ramos, and BJAB-luc xenografts relative to control antibody or naked anti-CD22 antibody. The affect of antibody drug load (average number of drug molecules conjugated per 10 antibody in a population of antibodies) on the ability of anti-CD22-smcc-DM1 antibody drug conjugates to reduce tumor volume in BJAB-luc SCID mouse xenografts was examined. One hundred forty SCID mice were injected with 2x10A7 BJAB-luc cells subcutaneously in a volume of 0.2ml per mouse in the flank. Cells were suspended in HBSS. When the mean tumor size reached 100-200mmA3, the mice were randomly grouped into groups of 8-10 15 mice each, and each mouse was given a single intravenous injection of test or control antibody. Populations of anti-CD22(RFB4)-smcc-DM1 having relative low, medium or high drug loads (average drug loads 1.95, 3.7, or 6.75 conjugated DM1 molecules per antibody, resptectively) were administered as the test antibodies. Naked RFB4 antibody and anti GP120-smcc-DM1 (high drug load) were the controls. The doses of antibody drug 20 conjugates (test and control) were normalized to a dose of 5mg/kg protein level. Linker conjugate attachment to the antibodies was via lysine residues. See Table 9. 229 300770_1 (GHMater) P79401.AU.3 14-Sep-12 Table 9 In Vivo Tumor Volume Reduction, BJAB-luc Xenograft Anti-CD22(RFB4)-smcc-DM1 Administration Antibody Dose Ab Dose DM1 Drug ratio administered (mg/kg) (pg/m2) (Drug moieties/Ab) anti-CD22(RFB4) 10 -- - (naked antibody) anti-CD22(RFB4)- 5 144 1.95 smcc-DM1 (low) anti-CD22(RFB4) - 5 273 3.7 smcc-DM1 (medium) anti-CD22(RFB4)- 5 497 6.75 smcc-DM1 (high) anti-GP120-smcc- 5 449 6.1 DM1 (high) 5 When dosed at a matching protein level (5 mg/kg), anti-CD22(RFB4)-smcc-DM1 loaded with a high drug load (6.75 DM1 molecules per antibody molecule) reduced tumor volume slightly more than the antibody drug conjugate with a medium load of 3.7, whereas the affects of the antibody drug conjugate with a low drug load was not different from control conjugate or naked antibody. The results are plotted in Figure 9. 10 Anti-CD22 auristatin drug conjuqates reduce B-cell tumor volume The affect of anti-CD22 auristatin MMAF drug conjugates on tumor volume in mouse xenografts was examined. Anti-CD22(RFB4) and control antibody anti-GP120 were conjugated to MMAF via a MC-vcPAB linker or a MC linker according to methods disclosed herein. SCID mice were injected with 5x10A6 Ramos cells subcutaneously in a volume of 15 0.2ml per mouse in the flank. Cells were suspended in HBSS. When the mean tumor size reached 100-200mmA3, the mice were randomly grouped into groups of 8-10 mice each, and each mouse was given a single intravenous injection of test or control antibody. Drug dose, drug load (drug ratio) and antibody dose administered to the mice are shown in Table 10. 20 230 3660770_1 (GHMatlers) P79401.AU.3 14-Sep-1 2 Table 10 In Vivo Tumor Volume Reduction, Ramos Xenograft Anti-CD22(RFB4) MMAF Conjugate Administration Antibody Dose Dose Ab Drug ratio administered MMAF (mg/kg) (Drug (pg/m2) moieties/Ab) anti-CD22(RFB4)- 405 6.6 4.2 MCvcPAB-MMAF anti-CD22(RFB4)- 405 6.9 4.0 MC-MMAF anti-GP120- 405 5.8 4.8 MCvcPAB-MMAF anti-GP120-MC- 405 5.9 4.7 MMAF 5 Anti-CD22-MC-MMAF showed comparable activity compared to anti-CD22-MC-vc PAB-MMAF in Ramos RA1 xenografts. The results are plotted in Figure 10. The affect of anti-CD22 auristatin MMAE and DM1 drug conjugates on tumor volume in mouse xenografts was examined. Anti-CD22(RFB4) and control antibody anti-GP120 were conjugated to MMAE via a MC-vcPAB linker or a MC linker or to DM1 via a smcc linker 10 according to methods disclosed herein. SCID mice were injected with 5x10A6 Ramos cells subcutaneously in a volume of 0.1 ml per mouse in the flank. Cells were suspended in HBSS. PBS was administered as a control. When the mean tumor size reached 100 200mmA3, the mice were randomly grouped into groups of 8-10 mice each, and each mouse was given a single intravenous injection of test or control antibody. Drug dose, drug 15 load (drug ratio) and antibody dose administered to the mice are shown in Table 11. Table 11 In Vivo Tumor Volume Reduction, Ramos Xenograft Anti-CD22(RFB4 MMAE and DM1 Conj gate Administration Antibody Dose Dose Ab Drug ratio administered MMAE or (mg/kg) (Drug DM1 moieties/Ab) (pg/m2) Anti-GP120-smcc- 405 6.7 4.1 DM1 Anti-CD22(RFB4)- 405 6.5 4.25 smcc-DM1 Anti-GP120- 405 6.0 4.7 MCvcPAB-MMAE antiCD22(RFB4)- 405 6.3 4.5 MCvcPAB-MMAE PBS -- -- - 231 38M770_1 (GHMaflers) P79401 AU 3 14-Sep.12 Anti-CD22-MCvcPAB-MMAE showed potent anti-tumor activity in Ramos RA1 xenografts. The anti-CD22-MCvcPAB-MMAE showed superior activity compared to antiCD22-smcc-DM1. The ADC control, anti-GP120-MCvcPAB-MMAE, did not show significant activity. The results are plotted in Figure 11. 5 The affect of anti-CD22 auristatin MMAF and DM1 drug conjugates on tumor volume in mouse xenografts was examined. Anti-CD22 hu10F4v2-MC-MMAF, hulOF4v2-smcc DM1 and thio-1OF4v1-MC-MMAF were administered and compared for affect on tumor volume. Control antibodies were anti-Her2-MC-MMAF and anti-Her2-smcc-DM1. SCID mice were injected with 2x10A7 BJAB-luc cells subcutaneously in a volume of 0.2ml per 10 mouse in the flank. Cells were suspended in HBSS. When the mean tumor size reached 100-200mmA3, the mice were randomly grouped into groups of 8-10 mice each, and each mouse was given a single intravenous injection of test or control antibody. "Thio" refers to a thioMab, as disclosed herein, in which the linker-drug moiety is conjugated to the antibody via a cysteine engineered site on the antibody. Drug dose, drug load (drug ratio) and 15 antibody dose administered to the mice are shown in Table 12. Table 12 In Vivo Tumor Volume Reduction, BJAB-luc Xenograft Hu1OF4 MMAF and DM1 Conjugate Administration Antibody Dose Dose Ab Drug ratio administered MMAF or (mg/kg) (Drug DM1 moieties/Ab) (pg/rn Anti-Her2-MC-MMAF 100 1.1 6.3 Hu1OF4v2-MC-MMAF 100 2.0 3.4 Hu1OF4v2-MC-MMAF 50 1.0 3.4 Thio-hul0F4vl-MC- 100 4.6 1.5 MMAF Thio-hu1OF4v1-MC- 50 2.3 1.5 MMAF Anti-Her2-smcc-DM1 200 4.2 3.2 HulOF4v2-smcc-DM1 200 4.5 3.0 HulOF4v2-smcc-DMI 100 2.3 3.0 20 Hu1OF4v2 ADCs showed potent anti-tumor activity in BJAB-luc xenografts. The results are plotted in Figure 12. Using procedures as disclosed in the above experiments, hu1OF4v3 -smcc-DM1 and -MC-MMAF ADC efficacy in different xenografts at different doses was examined. Xenografts of SuDHL4-luc, DoHH2, and Granta-519 xenografts were prepared as disclosed 232 3680770_1 (GHMatters) P79401.AU.3 14-Sep-12 herein, above. When the tumor size reached 100-200mmA3, the mice were randomly grouped into groups of 8-10 mice each, and each mouse was given a single intravenous injection of test or control antibody. Drug dose, drug load (drug ratio) and antibody dose administered to the mice are shown in Tables 13A-13C and the results are shown in Figures 5 13A-13C. Table 13A In Vivo Tumor Volume Reduction, HulOF4v3 MMAF and DM1 Conjugate Administration In SuDHL-4-luc Xenografts Antibody Dose MMAF Dose Ab Drug ratio administered or DM1 (mg/kg) (Drug /Ab) (pg/m 2 ) Anti-Her2-smcc- 600 11.9 3.3 DM1 HulOF4v3-smcc- 600 13.6 2.9 DM1 Hu1OF4v3-smcc- 300 6.8 2.9 DM1 Anti-Her2-MC- 600 9.9 4.0 MMAF HulOF4v3-MC- 600 13.3 3.0 MMAF HulOF4v3-MC- 300 6.6 3.0 MMAF 10 Table 13B In Vivo Tumor Volume Reduction, HulOF4v3 MMAF and DM1 Conjugate Administration In DoHH2 Xenografts Antibody Dose MMAF Dose Ab Drug ratio administered or DM1 (mg/kg) (Drug /Ab) (pg/m 2 ) Anti-Her2-smcc- 600 11.9 3.3 DM1 HulOF4v3-smcc- 600 11.8 3.35 DM1 HulOF4v3-smcc- 300 5.9 3.35 DM1 Anti-Her2-MC- 600 9.9 4.0 MMAF HulOF4v3-MC- 600 13.1 3.04 MMAF HulOF4v3-MC- 300 6.6 3.04 MMAF Naked hu1OF4v3 -- 13.1 - 15 233 3560770_1 (GHMatters) P79401AU.3 14-Sep-12 Table 13C In Vivo Tumor Volume Reduction, Hu1OF4v3 MMAF and DM1 Conjugate Administration In Granta-519 Xe grafts Antibody Dose MMAF Dose Ab Drug ratio administered or DM1 (mg/kg) (Drug /Ab) (pg/m 2 Anti-Her2-smcc- 300 5.9 3.3 DM1 Hul0F4v3-smcc- 300 5.9 3.35 DM1 Hu1OF4v3-smcc- 150 2.9 3.35 DM1 Anti-Her2-MC- 300 4.9 4.0 MMAF HulOF4v3-MC- 300 6.6 3.04 MMAF HulOF4v3-MC- 150 3.3 3.04 MMAF Naked hulOF4v3 -- 6.6 - 5 Anti-CD22 hulOF4v3 -smcc-DM1 and -MC-MMAF ADCs showed potent tumor reduction in all of the xenograft models tested. Example 10: Preparation of Cysteine Engineered Anti-CD22 Antibodies Preparation of cysteine engineered anti-CD22 antibodies was performed as 10 disclosed herein. DNA encoding the 10F4v3 antibody, having the same variable and constant region sequences as 10F4v2 (light chain, SEQ ID NO:87; and heavy chain, SEQ ID NO:88, Figure 5B), was mutagenized by methods disclosed herein to modify the light chain, the heavy chain or the Fc region of the heavy chain. DNA encoding the light chain was mutagenized to substitute cysteine for valine at Kabat position 205 in the light chain 15 (sequential position 210) as shown in Figure 17A (light chain SEQ ID NO:91 of humanized antibody 10F4v3 thiomab). DNA encoding the heavy chain was mutagenized to substitute cysteine for alanine at EU position 118 in the heavy chain (sequential position 121) as shown in Figure 17B (heavy chain SEQ ID NO:92 of humanized antibody 10F4v3 thiomab). The Fc region was mutagenized to substitute cysteine for serine at EU position 400 in the 20 heavy chain Fc region (sequential position 403) as shown in Figure 17C (heavy chain SEQ ID NO:93). 234 3860770_1 (GHMatlers) P79401 AU.3 14-Sep-12 Preparation of cysteine engineered anti-CD22 antibodies for conjugation by reduction and reoxidation. Full length, cysteine engineered anti-CD22 monoclonal antibodies (ThioMabs) expressed in CHO cells are dissolved in 500mM sodium borate and 500 mM sodium 5 chloride at about pH 8.0 and reduced with about a 50-100 fold excess of 1 mM TCEP (tris(2 carboxyethyl)phosphine hydrochloride; Getz et al (1999) Anal. Biochem. Vol 273:73-80; Soltec Ventures, Beverly, MA) for about 1-2 hrs at 37 "C. The reduced ThioMab is diluted and loaded onto a HiTrap S column in 10 mM sodium acetate, pH 5, and eluted with PBS containing 0.3M sodium chloride. The eluted reduced ThioMab is treated with 2 mM 10 dehydroascorbic acid (dhAA) at pH 7 for 3 hours, or 2 mM aqueous copper sulfate (CuSO 4 ) at room temperature overnight. Ambient air oxidation may also be effective. The buffer is exchanged by elution over Sephadex G25 resin and eluted with PBS with 1mM DTPA. The thiol/Ab value is checked by determining the reduced antibody concentration from the absorbance at 280 nm of the solution and the thiol concentration by reaction with DTNB 15 (Aldrich, Milwaukee, WI) and determination of the absorbance at 412 nm. Example 11: Preparation of cysteine engineered anti-CD22 antibody drug conjuqates by conjugation of cysteine engineered anti-CD22 antibodies and drug-linker intermediates. After the reduction and reoxidation procedures of Example 10, the cysteine 20 engineered anti-CD22 antibody is dissolved in PBS (phosphate buffered saline) buffer and chilled on ice. About 1.5 molar equivalents relative to engineered cysteines per antibody of an auristatin drug linker intermediate, such as MC-MMAE (maleimidocaproyl-monomethyl auristatin E), MC-MMAF, MC-val-cit-PAB-MMAE, or MC-val-cit-PAB-MMAF, with a thiol reactive functional group such as maleimido, is dissolved in DMSO, diluted in acetonitrile 25 and water, and added to the chilled reduced, reoxidized antibody in PBS. After about one hour, an excess of maleimide is added to quench the reaction and cap any unreacted antibody thiol groups. The reaction mixture is concentrated by centrifugal ultrafiltration and the cysteine engineered anti-CD22 antibody drug conjugate is purified and desalted by elution through G25 resin in PBS, filtered through 0.2 pm filters under sterile conditions, and 30 frozen for storage. Preparation of hu 10F4v3 HC(A1 18C) thiomab-BMPEO-DM1 was performed as follows. The free cysteine on hu 10F4v3 HC(A1 18C) thiomab was modified by the bis maleimido reagent BM(PEO)4 (Pierce Chemical), leaving an unreacted maleimido group on 235 3860770_1 (GHMatters) P79401.AU.3 14-Sep.12 the surface of the antibody. This was accomplished by dissolving BM(PEO)4 in a 50% ethanol/water mixture to a concentration of 10 mM and adding a tenfold molar excess of BM(PEO)4 to a solution containing hu4D5Fabv8-(V 1 OC) ThioFab in phosphate buffered saline at a concentration of approximately 1.6 mg/ml (10 micromolar) and allowing it to react 5 for 1 hour. Excess BM(PEO)4 was removed by gel filtration (HiTrap column, Pharmacia) in 30 mM citrate, pH 6 with 150 mM NaCl buffer. An approximate 10 fold molar excess DM1 dissolved in dimethyl acetamide (DMA) was added to the hu4D5Fabv8-(V1 10C) ThioFab BMPEO intermediate. Dimethylformamide (DMF) may also be employed to dissolve the drug moiety reagent. The reaction mixture was allowed to react overnight before gel 10 filtration or dialysis into PBS to remove unreacted drug. Gel filtration on S200 columns in PBS was used to remove high molecular weight aggregates and furnish purified hu 1 0F4v3 HC(A 18C) thiomab-BMPEO-DM1. By the same protocols, control HC (A 118C) MAb-MC-MMAF, control HC ThioMAb MC-MMAF, contol HCThioMAb-MCvcPAB-MMAE, and control HC ThioMab-BMPEO-DM1 15 were prepared. By the procedures above, the following cysteine engineered anti-CD22 antibody drug conjugates were prepared and tested: thio hu thio-HC-1 0F4v3-MC-MMAF by conjugation of Al 18C thio hu 1 0F4v3 and MC-MMAF; 20 thio hu thio-HC-10F4v3-MC-val-cit-PAB-MMAE by conjugation of A118C thio hu 10F4v3 and MC-val-cit-PAB-MMAE; thio hu HC-10F4v3-bmpeo-DM1 by conjugation of A118C thio hu HC-10F4v3 and bmpeo-DM1; thio hu LC-10F4v3-MC-val-cit-PAB-MMAE by conjugation of V205C thio hu LC 25 10F4v3 and MC-val-cit-PAB-MMAE; and thio hu Fc-10F4v3-MC-val-cit-PAB-MMAE by conjugation of S400C thio hu Fc 10F4v3 and MC-val-cit-PAB-MMAE. 236 3ee0770_1 (GHMoltom) P70401AU.3 14.8ep12 Example 12: Characterization of Binding Affinity of Cysteine Engineered ThioMAb Drug Conjuqates to Cell Surface Antigen The binding affinity of thio hu 10F4v3 drug conjugates to CD22 expressed on BJAB lucs cells was determined by FACS analysis. Briefly, approximately 1x1 0A6 cells in 100 pl 5 were contacted with varying amounts of one of the following anti-CD22 ThioMAb drug conjugates: thio hu LC(V205C) 10F4v3-MCvcPAB-MMAE, thio hu Fc(S400C) 10F4v3 MCvcPAB-MMAE, thio hu HC(A118C) 10F4v3-MCvcPAB-MMAE, thio hu HC(A118C) 10F4v3-MC-MMAF, or thio hu HC(A118C) 10F4v3-BMPEO-DM1 (see Figures 18A-18E, respectively). Anti-CD22 antibody bound to the cell surface was detected using biotinylated 10 goat anti-huFc plus Streptavidin-PE. The plots of Figures 18A-18E indicate that antigen binding was approximately the same for all of the thiomab drug conjugates tested. Example 13: Assay for In Vivo Tumor Volume Reduction by Anti-CD22 ThioMab Drug Coniugates The ability of the thiomab drug conjugates prepared according to Example 11 to 15 reduce B-cell tumor volume in xenograft models was tested according to the procedure disclosed in Example 9, herein. To SCID mice having Granta-519 cell xenograft tumors, contol and anti-CD22 humanized 10F4v3 thiomab drug conjugates were administered at Day 0 in the doses shown in Table 14, below. The control HC(A1 18C) thiomab was anti HER2 4D5 antibody. 20 Table 14 In Vivo Tumor Volume Reduction, Thio Hu10F4v3 MMAE and MMAF Conjugate Administration In Granta-519 Xenografts Antibody administered Dose MMAF or Dose Ab Drug ratio DM1 (mg/kg) (Drug /Ab) (pg/m 2 ) Thio Control HC(A118C)-MC-MMAF 100 3.99 1.65 Thio Control HC(A118C)-MCvcPAB-MMAE 100 4.33 1.55 Thio 10F4v3-HC(A118C)-MC-MMAF 100 3.41 1.95 Thio 10F4v3-LC(V205C)-MCvcPAB-MMAE 100 4.23 1.6 Thio 1 0F4v3-HC(A1 18C)-MCvcPAB-MMAE 100 3.76 1.8 Thio 10F4v3-Fc(S400C)-MCvcPAB-MMAE 100 4.23 1.6 25 The results of this experiment are shown in Figure 19. Administration of the thio 1 0F4v3-LC-(V205C)-MCvcPAB-MMAE and thio 1 0F4v3-HC(A1 18C)-MCvcPAB-MMAE 237 3880770.1 (GHMatters) P79401 AU.3 14-Sep-12 thiomab drug conjugates at the doses shown in Table 14 caused a reduction in mean tumor volume for the duration of the study. Additional thiomab drug conjugates were tested in Granta-519 xenografts in CB17 SCID mice using the same protocol, although different drug doses were tested. The control 5 antibody or control thiomab was anti-HER2 4D5 antibody or HC(A1 18C) thiomab. The results are shown in Table 15, below. Table 15 In Vivo Tumor Volume Reduction, Thio Hu1OF4v3 MMAE, MMAF, and DM1 Conjugate Administration 10 In Granta-519 Xenografts Antibody administered Dose MMAF or Dose Ab Drug ratio DM1 (mg/kg) (Drug /Ab) (pg/m 2 ) 10F4v3-MC-MMAF 150 3.2 3.1 Thio Control HC(A118C)-BMPEO-DM1 300 10.3 1.9 Thio 10F4v3-HC(A118C)-BMPEO-DM1 150 5.2 1.9 Thio 10F4v3-HC(A118C)-BMPEO-DM1 300 10.4 1.9 Thio Control HC(A118C)-MCvcPAB-MMAE 150 6.5 1.55 Thio 10F4v3-HC(A118C)-MCvcPAB-MMAE 150 5.3 1.9 Thio 10F4v3-HC(A118C)-MCvcPAB-MMAE 75 2.7 1.9 Thio Control HC(A118C)-MC-MMAF 150 5.2 1.9 Thio 10F4v3-HC(A118C)-MC-MMAF 150 5.1 1.95 Thio 10F4v3-HC(A118C)-MC-MMAF 75 2.6 1.95 The results of this experiment are shown in Figure 20A. Administration of the thio 1 0F4v3-HC(A1 18C)-MCvcPAB-MMAE thiomab drug conjugate at 150 and 75 pg/m2 caused a reduction in mean tumor volume for the duration of the study. In the same study, the 15 percent body weight change in the first 7 days was determined in each dosage group. The results plotted in Figure 20B indicate administration of these thiomab drug conjugates did not cause weight loss during this time. In a similar study, using the same xenograft study protocol as disclosed in the above examples, varying the TDCs and doses administered, the efficacy of TDCs in follicular 20 lymphoma DOHH2 xenografts in CB17 SCID mice was studied. The TDCs and doses are shown in Table 16, below. 238 38807701 (GHMatters) P79401.AU.3 14-Sep-12 Table 16 In Vivo Tumor Volume Reduction, Thio Hu1OF4v3 MMAE, MMAF, and DM1 Conjugate Administration In DOHH2 Xenografts Antibody administered Dose MMAF or Dose Ab Drug ratio DM1 (mg/kg) (Drug /Ab) (pg/m 2 ) 10F4v3-MC-MMAF 300 6.4 3.1 Thio Control HC(A118C)-BMPEO-DM1 600 21.9 1.79 Thio 10F4v3-HC(A118C)-BMPEO-DM1 600 20.8 1.9 Thio 10F4v3-HC(A118C)-BMPEO-DM1 300 10.4 1.9 Thio Control HC(A118C)-MCvcPAB-MMAE 600 26.0 1.55 Thio 10F4v3-HC(A118C)-MCvcPAB-MMAE 600 21.4 1.9 Thio 10F4v3-HC(A118C)-MCvcPAB-MMAE 300 10.7 1.9 Thio Control HC(A118C)-MC-MMAF 600 20.8 1.9 Thio 10F4v3-HC(A118C)-MC-MMAF 600 20.4 1.95 Thio 10F4v3-HC(A118C)-MC-MMAF 300 10.2 1.95 5 Figure 20C is a graph plotting changes in mean tumor volume over time in the follicular lymphoma DOHH2 xenograft in CB17 SCID mice treated with the same heavy chain Al 18C anti-CD22 TDCs, but at higher doses as shown in Table 16. The anti-CD22 1 0F4v3-HC(A 18C)-MCvcPAB-MMAE TDC appeared to be the most efficacious of the test 10 agents in this study. However, at the increased dose levels in this experiment, some efficacy was noted in the anti-HER2-HC(A 18C)-MCvcPAB-MMAE controls. This activity is possibly attributable to release of the drug from the ADC in circulation. The anti-CD22 hu1OF4-HC(A118C)-MC-MMAF and -BMPEO-DM1 test agents showed intermediate efficacy and, consistent with the increased stability of these linkers, the non-binding anti 15 HER2 controls showed little activity. Figure 20D is a plot of percent weight change in the mice from the DOHH2 xenograft study showing that there was no significant change in weight during the first 14 days of the study. Example 14: Safety of Anti-CD22 Drug Coniugates in Rats and Cynomolgus Monkeys 20 The hu1OF4 anti-CD22 antibody cross-reacts with cynomolgus (cyno) monkey CD22 with an affinity equivalent to human CD22. The hu1OF4 anti-CD22 antibody does not cross 239 3860770_1 (GHMatters) P79401.AU.3 14-Sep-12 react with rat CD22. As a result, the target-independent and target-dependent safety and toxicity of anti-CD22 drug conjugates were assessed in rat and cyno, respectively. Safety and toxicity in rats. For safety and toxicity studies in rats, two studies were performed. In one study, rats 5 were dosed intravenously on Day 1 with hu1OF4v3-SMCC-DM1, -SPP-DM1, -MC-vc-PAB MMAE, or -MC-MMAF conjugates in which the drug was linked via a cleavable (-vc- or spp-) or uncleavable (MC or SMCC (also referred to as MCC)) linker. Vehicle was administered as the control. Blood samples were collected on Day 5 for pharmacokinetic analysis, and on Day 12 (at necropsy). Clinical observations and body weight recordings 10 were conducted at least three times per week. Serum AST (aspartate aminotransferase) was monitored as an indication of toxicity. Serum AST levels were increased at Day 5 relative to Day 0 in rats dosed with 20 mg/kg hulOF4v3-vcMMAE and hulOF4v3-SPP-DM1 comprising cleavable linkers (Figure 21A). Neutrophil levels were increased at Day 5 relative to Day 0 in rats dosed with 20 mg/kg hulOF4v3-MC-MMAF or hulOF4v3-MCC-DM1 15 (uncleavable linkers, Figure 21B). Neutrophil levels were decreased at Day 5 relative to Day 0 in rats dosed with hulOF4v3-vc-MMAE or hulOF4v3-SPP-DM1. Increased serum AST and decreased neutrophils in rats dosed with ADCs comprising cleavable linkers indicates increased toxicity of such ADCs In the same rat study, six animals per group were dosed with 20, 40, or 60 mg/kg 20 hulOF4v3-MC-MMAF or hulOF4v3-SMCC-DM1 at Day 1 and monitored for twelve days. In animals dosed with hu1OF4v3-MC-MMAF, there were no observations in the following indicators: decreased body weight, increases in serum liver enzymes, decreases in platelets, or decreases in neutrophils. In rats dosed with hulOF4v3-SMCC-DM1, reversible decreased body weight and reversible increases in serum liver enzymes were observed at 25 dose levels of 40 and 60 mg/kg, whereas reversible decreases in neutrophils and transient decreases in platelets were observed at 60 mg/kg doses. Safety and toxicity in cynomolqus monkeys. To assess safety and toxicity of anti-CD22 ADCs in a primate model, thirty cyno monkeys were assigned to the following treatment groups: vehicle control (6 animals), 30 hulOF4v3-SMCC-DM1 at doses of 2, 4, and 6 mg/mA2 drug dose (equivalent to 0, 10, 20, and 30 mg/kg antibody dose; 4 animals per dosage group), and hu1OF4v3-MC-MMAF at doses of 2, 4, and 6 mg/mA2 (4 animals per dosage group). Animals were dosed 240 3M60770.1 (GHMatters) P7400AU.3 14.Sep-12 intravenously on Day 1 and Day 22. The animals were evaluated for changes in body weight, food consumption, and pathology indices. Blood samples were collected and assayed to assess toxicological, pharmacodynamic, and anti-drug antibody effects. One-half of the animals in each group were euthanized at each of Day 25 and Day 43 and tissue 5 samples were collected. No noticeable body weight changes were noted in either ADC group. Levels of serum liver enzymes AST (aspartate aminotransferase), ALT (aminotransferase) and GGT (gamma-glutamyltranspeptidase) were assayed according to standard methods well known in the relevant arts. Reversible increases in serum liver enzymes were observed in animals 10 dosed at 30 mg/kg with either ADC, although ALT was elevated in the DM1 group, whereas AST and GGT were elevated in the MMAF group. Sciatic nerve degeneration was minimal to mild in the DM1 group in 2 of 4 animals at a dose of 20 mg/kg and in 4 of 4 animals at a dose of 30 mg/kg. Sciatic nerve degeneration was minimal in the MMAF group in 1 of 4 animals at a dose of 30 mg/kg. Tissue from various organs was examined microscopically. 15 Two of four animals in the 30 mg/kg MMAF group had lung lesionsof unknown significance, whereas none were observed in the DM1 group. Depletion of peripheral B cells by the hu10F4v3-MC-MMAF and -SMCC-DM1 ADCs was determined by measuring CD20' cell levels in blood over 43 days in cyno monkeys dosed at Day 0 and Day 22. Blood collected periodically during the study was assayed by 20 FACS using a fluorescently labeled anti-CD20 antibody. The anti-CD22 MMAF and DM1 ADCs deplete cyno peripheral B cells as shown in Figure 22A (MMAF group) and Figure 22B (DM1 group). No significant effects of MMAF or DM1 ADCs were observed for other lymphocyte populations as shown in Figures 23A and 23B in which it is shown that CD4' cells were not significantly depleted over the same time period. 25 HulOF4v3-SMCC-DM1 depleted germinal center B cells in the cyno monkey tonsil samples relative to control as shown in the photomicrographs in Figures 24A and 24B. Exemplary germinal centers are circled in Figure 24A. Complete ablation of germinal center B cells was observed at the 10 mg/kg dose level as shown if Figure 24B. The same results were obtained following administration of the hulOF4v3-MC-MMAF ADC under the same 30 conditions. Hu10F4v3-MC-MMAF dosed at 10 mg/kg depleted dividing B cells from the spleen follicle germinal centers of cyno monkeys. See the diagram in Figure 25A and the tissue photomicrographs in Figures 25B and 25C. The same results were obtained when the 241 3880770_1 (GHMatters) P79401 AU.3 14-Ser.12 hulOF4v3-SMCC-DM1 ADC was tested under the same conditions. Germinal centers appear as dark regions in Figure 25B using Ki-67 stain and as unstained areas surrounded by dark regions when stained with detectably labeled anti-IgD in Figure 25D. Loss of the germinal centers due to depletion of germinal center B cells by anti-10F4v3-MC-MMAF is 5 shown in Figures 25C and 25E. Thus, these anti-mitotic drugs have an impact on proliferating B cell populations. The following hybridoma has been deposited with the American Type Culture Collection, PO Box 1549, Manassas, VA, 20108, USA (ATCC): Cell Lines ATCC Accession No. Deposit Date 10 Hybridoma 10F4.4.1 PTA-7621 May 26, 2006 Hybridoma 5E8.1.8 PTA-7620 May 26, 2006 These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance 15 of a viable deposit for 30 years from the date of deposit. These cell lines will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the cell lines to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures 20 availability of the cell lines to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC §122 and the Commissioner's rules pursuant thereto (including 37 CFR §1.14 with particular reference to 886 OG 638). The assignee of the present application has agreed that if the deposited cell lines should be lost or destroyed when cultivated under suitable conditions, they will be promptly 25 replaced on notification with a specimen of the same cell line. Availability of the deposited cell lines is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, the descriptions and 30 examples should not be construed as limiting the scope of the invention. The disclosures of 242 3680770_1 (GHMatters) P79401.AU.3 14-Sep.12 all patent and scientific literatures cited herein are expressly incorporated in their entirety by reference. 243 3000770_1 (GHMatters) P79401.AU.3 14-Sep-12
Claims (238)
1. An antibody that binds to CD22, wherein the antibody comprises (a) an HVR-L1 comprising an amino acid sequence selected from SEQ ID NOs:9, 10, 19-23, 32 and 33, 5 and (b) at least one, two, three, four, or five HVRs selected from: (1) an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; (2) an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; (3) an HVR-H3 comprising the amino acid sequence of SEQ ID NO:6; (4) an HVR-L2 comprising the amino acid sequence of SEQ ID NO:12; and 10 (5) an HVR-L3 comprising an amino acid sequence of SEQ ID NO:14.
2. The antibody of claim 1, comprising an HVR-L1 comprising an amino acid sequence that conforms to the consensus sequence of SEQ ID NO:10.
3. The antibody of claim 2, further comprising an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; an HVR-H2 comprising the amino acid sequence of SEQ ID 15 NO:4; and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:6.
4. The antibody of claim 1, wherein the HVR-L1 comprises SEQ ID NO:9, and the antibody further comprises an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; and an HVR-H3 comprising the amino acid sequence of SEQ ID NO:6. 20
5. The antibody of claim 1, wherein the HVR-L1 comprises SEQ ID NO:19, and the antibody further comprises an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; and an HVR H3 comprising the amino acid sequence of SEQ ID NO:6.
6. The antibody of claim 1, wherein the HVR-L1 comprises SEQ ID NO:20, and the 25 antibody further comprises an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; and an HVR H3 comprising the amino acid sequence of SEEQ ID NO:6.
7. The antibody of claim 1, wherein the HVR-L1 comprises SEQ ID NO:21, and the antibody further comprises an HVR-H1 comprising the amino acid sequence of SEQ ID 30 NO:2; an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; and an HVR H3 comprising the amino acid sequence of SEQ ID NO:6.
8. The antibody of claim 1, wherein the HVR-L1 comprises SEQ ID NO:22, and the antibody further comprises an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; and an HVR 35 H3 comprising the amino acid sequence of SEQ ID NO:6. 244 3660770_1 (GHMatters) P79401.AU.3 14-Sep-12
9. The antibody of claim 1, wherein the HVR-L1 comprises SEQ ID NO:23, and the antibody further comprises an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; and an HVR H3 comprising the amino acid sequence of SEQ ID NO:6. 5
10. The antibody of claim 1, wherein the HVR-L1 comprises SEQ ID NO:32, and the antibody further comprises an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; and an HVR H3 comprising the amino acid sequence of SEQ ID NO:6.
11. The antibody of claim 1, wherein the HVR-L1 comprises SEQ ID NO:33, and the 10 antibody further comprises an HVR-H1 comprising the amino acid sequence of SEQ ID NO:2; an HVR-H2 comprising the amino acid sequence of SEQ ID NO:4; and an HVR H3 comprising the amino acid sequence of SEQ ID NO:6.
12. The antibody of any of claim 1, further comprising at least one framework selected from a VH subgroup III consensus framework and a VL subgroup I consensus framework. 15
13. The antibody of claim 1, wherein the antibody comprises a heavy chain variable domain having at least 90% sequence identity to an amino acid sequence selected from SEQ ID NO:16.
14. The antibody of claim 1, wherein the antibody comprises a light chain variable domain having at least 90% sequence identity to an amino acid sequence selected from SEQ ID 20 NO:17.
15. The antibody of claim 1, wherein the antibody comprises a light chain variable domain having at least 90% sequence identity to an amino acid sequence selected from SEQ ID NO:18.
16. The antibody of claim 1, wherein the antibody comprises a heavy chain variable domain 25 comprising one, two, three or four framework amino acid sequences selected from SEQ ID NOs:1, 3, 5, and 7.
17. The antibody of claim 1, wherein the antibody comprises a light chain variable domain comprising one, two, three or four framework amino acid sequences selected from SEQ ID NOs:8, 11, 13 and 15. 30
18. The antibody of claim 13, further comprising a light chain variable domain having at least 90% sequence identity to animo acid sequence selected from SEQ ID NO:17.
19. The antibody of claim 13, further comprising a light chain variable domain having at least 90% sequence identity to animo acid sequence selected from SEQ ID NO:18.
20. The antibody of claim 1, wherein the antibody comprises a heavy chain having at least 35 90% sequence identity to an amino acid sequence selected from SEQ ID NO:88. 245 3680770_1 (GHMatters) P79401.AU3 14-Sep-12
21. The antibody of claim 1, wherein the antibody comprises a light chain having at least 90% sequence identity to an amino acid sequence selected from SEQ ID NO:87.
22. The antibody of claim 1, wherein the antibody comprises a heavy chain having the amino acid sequence of SEQ ID NO:88 and a light chain having an amino acid 5 sequence of SEQ ID NO:87.
23. An antibody that binds to CD22, wherein the antibody comprises a heavy chain variable domain having at least 90% sequence identity to the amino acid sequence of SEQ ID NO:16.
24. The antibody of claim 23, further comprising a light chain variable domain having at least 10 90% sequence identity to the amino acid sequence of SEQ ID NO:17.
25. The antibody of claim 23, further comprising a light chain variable domain having at least 90% sequence identity to the amino acid sequence of SEQ ID NO:18.
26. The antibody of claim 1, wherein the antibody comprises one, two, three, four, five or six of the HVRs from the antibody produced by the hybridoma ATCC accession no. PTA 15 7621 (10F4.4.1).
27. An antibody comprising one, two, three, four, five or six of the HVRs from the antibody produced by the hybridoma ATCC accession no. PTA-7620 (5E8.1.8).
28. The antibody of claim 1, wherein the antibody is humanized.
29. The antibody of claim 23, wherein the antibody is humanized. 20
30. The antibody of claim 1, wherein the CD22 is mammalian CD22.
31. The antibody of claim 30, wherein the CD22 is selected from rodent CD22 and primate CD22.
32. The antibody of claim 31, wherein the CD22 is human CD22.
33. The antibody of claim 23, wherein the CD22 is mammalian CD22. 25
34. The antibody of claim 33, wherein the CD22 is selected from rodent CD22 and primate CD22.
35. The antibody of claim 34, wherein the CD22 is human CD22.
36. A polynucleotide encoding an antibody of claim 1.
37. A polynucleotide encoding an antibody of claim 23. 30
38. A vector comprising the polynucleotide of claim 36.
39. A vector comprising the polynucleotide of claim 37.
40. A host cell comprising the vector of claim 38.
41. A host cell comprising the vector of claim 39.
42. The host cell of claim 40, wherein the host cell is eukaryotic. 35
43. The host cell of claim 42, wherein the host cell is a CHO cell. 246 3W60770_1 (GHMatters) P79401.AU.3 14-Sep-12
44. The host cell of claim 41, wherein the host cell is eukaryotic.
45. The host cell of claim 44, wherein the host cell is a CHO cell.
46. A method of making an anti-CD22 antibody, wherein the method comprises a) culturing the host cell of claim 38 under conditions suitable for expression of the polynucleotide 5 encoding the antibody, and b) isolating the antibody.
47. A method of making an anti-CD22 antibody, wherein the method comprises a) culturing the host cell of claim 39 under conditions suitable for expression of the polynucleotide encoding the antibody, and b) isolating the antibody.
48. The antibody of claim 28, wherein the CD22 is expressed on the surface of a cell. 10
49. The antibody of claim 48, wherein the cell is a B cell.
50. The antibody of claim 29, wherein the CD22 is expressed on the surface of a cell.
51. The antibody of claim 50, wherein the CD22 is a B cell.
52. The antibody of claim 1, wherein the antibody binds to an epitope within a region of CD22 from amino acid 22-240 of SEQ ID NO:27. 15
53. The antibody of claim 23, wherein the antibody binds to an epitope within a region of CD22 from amino acid 22-240 of SEQ ID NO:27.
54. The antibody of claim 49, wherein the B cell is associated with a B cell proliferative disorder.
55. The antibody of claim 54, wherein the B cell proliferative disorder is a cancer. 20
56. The antibody of claim 54, wherein the B cell proliferative disorder is selected from lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma. 25
57. The antibody of claim 51, wherein the B cell is associated with a B cell proliferative disorder.
58. The antibody of claim 57, wherein the B cell proliferative disorder is a cancer.
59. The antibody of claim 57, wherein the B cell proliferative disorder is selected from lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, 30 relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma.The antibody of any of claims 1-14, 16-23, or 30-33, wherein the antibody is a monoclonal antibody.
60. The antibody of claim 1, wherein the antibody is a monoclonal antibody. 247 3680770_1 (GHMatters) P79401AU.3 14-Sep.12
61. The antibody of claim 60, wherein the antibody is an antibody fragment selected from a Fab, Fab'-SH, Fv, scFv, or (Fab') 2 fragment.
62. The antibody of claim 60, wherein the antibody is humanized.
63. The antibody of claim 60, wherein the antibody is human. 5
64. The antibody of claim 23, wherein the antibody is a monoclonal antibody.
65. The antibody of claim 64, wherein the antibody is an antibody fragment selected from a Fab, Fab'-SH, Fv, scFv, or (Fab') 2 fragment.
66. The antibody of claim 64, wherein the antibody is humanized.
67. The antibody of claim 64, wherein the antibody is human. 10
68. The antibody of claim 1, wherein the antibody binds to the same epitope as an antibody selected from ATCC PTA-7621 (10F4.4.1); ATCC PTA-7620 (5E8.1.8); and an antibody comprising a heavy chain sequence of SEQ ID NO:88 and a light chain sequence of SEQ ID NO:87.
69. The antibody of claim 23, wherein the antibody binds to the same epitope as an antibody 15 selected from ATCC PTA-7621 (10F4.4.1); ATCC PTA-7620 (5E8.1.8); and an antibody comprising a heavy chain sequence of SEQ ID NO:88 and a light chain sequence of SEQ ID NO:87.
70. A method of detecting the presence of CD22 in a biological sample, the method comprising contacting the biological sample with an antibody of claim 1 under conditions 20 permissive for binding of the antibody to CD22, and detecting whether a complex is formed between the antibody and CD22.
71. The method of claim 70, wherein the biological sample is from a patient suspected of having a B cell proliferative disorder.
72. The method of claim 71, wherein the B cell proliferative disorder is selected from 25 lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma.
73. A method of detecting the presence of CD22 in a biological sample, the method 30 comprising contacting the biological sample with an antibody of claim 23 under conditions permissive for binding of the antibody to CD22, and detecting whether a complex is formed between the antibody and CD22.
74. The method of claim 73, wherein the biological sample is from a patient suspected of having a B cell proliferative disorder. 248 3e80770_1 (GHMIten) P79401.AU.3 14-Sep-12
75. The method of claim 74, wherein the B cell proliferative disorder is selected from lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), 5 acute lymphocytic leukemia (ALL), and mantle cell lymphoma.
76. An immunoconjugate comprising an antibody of claim 1 covalently attached to a cytotoxic agent.
77. An immunoconjugate comprising an antibody of claim 23 covalently attached to a cytotoxic agent. 10
78. The immunoconjugate of claim 76, wherein the cytotoxic agent is selected from a toxin, a chemotherapeutic agent, a drug moiety, an antibiotic, a radioactive isotope, and a nucleolytic enzyme.
79. The immunoconjugate of claim 78, the immunoconjugate having the formula Ab-(L-D)p, wherein: 15 (a) Ab is the antibody of claim 1; (b) L is a linker; (c) D is a drug moiety.
80. The immunoconjugate of claim 79, wherein L is selected from 6-maleimidocaproyl (MC), maleimidopropanoyl (MP), valine-citrulline (val-cit), alanine-phenylalanine (ala-phe), p 20 aminobenzyloxycarbonyl (PAB), N-Succinimidyl 4-(2-pyridylthio) pentanoate (SPP), N succinimidyl 4-(N-maleimidomethyl) cyclohexane-1 carboxylate (SMCC), and N Succinimidyl (4-iodo-acetyl) aminobenzoate (SIAB).
81. The immunoconjugate of claim 79, wherein D is selected from an auristatin and dolostantin. 25
82. The immunoconjugate of claim 81, wherein D is a drug moiety of formula DE or DF: R3 C0RH 3 R 9 N N R i R 2 0 R 4 R 5 R 6 R 8 0 R 8 0 DE 249
380770.1 (GHMatters) P79401.AU.3 14-Sep-12 R 3 0 R CH 3 R 9 0 N NZR1 N N R 2 O R 4 R 5 R6 R 8 0 R 8 0 R 10 DF and wherein R 2 and R 6 are each methyl, R 3 and R 4 are each isopropyl, R 7 is sec-butyl, each R 8 is independently selected from CH 3 , O-CH 3 , OH, and H; R 9 5 is H; R 10 is aryl; Z is -0- or -NH-; R" is H, C 1 -C 8 alkyl, or -(CH 2 ) 2 -0 (CH 2 ) 2 -O-(CH 2 ) 2 -0-CH 3 ; and R 18 is -C(R 8 ) 2 -C(R 5 ) 2 -aryl; and (d) p ranges from about 1 to 8.
83. The immunoconjugate of claim 76, having in vitro or in vivo cell killing activity.
84. The immunoconjugate of claim 79, wherein the linker is attached to the antibody through 10 a thiol group on the antibody.
85. The immunoconjugate of claim 79, wherein the linker is cleavable by a protease.
86. The immunoconjugate of claim 80, wherein the linker comprises a val-cit dipeptide.
87. The immunoconjugate of claim 79, wherein the linker comprises a p-aminobenzyl unit.
88. The immunoconjugate of claim 80, wherein the linker comprises 6-maleimidocaproyl. 15
89. The immunoconjugate of claim 82, wherein the drug is selected from MMAE and MMAF.
90. The immunoconjugate of claim 89, wherein the drug is MMAE.
91. The immunoconjugate of claim 89, wherein the drug is MMAF.
92. The immunoconjugate of claim 77, wherein the cytotoxic agent is selected from a toxin, a chemotherapeutic agent, a drug moiety, an antibiotic, a radioactive isotope, and a 20 nucleolytic enzyme.
93. The immunoconjugate of claim 92, the immunoconjugate having the formula Ab-(L-D)p, wherein: (a) Ab is the antibody of claim 23; (b) L is a linker; 25 (c) D is a drug moiety.
94. The immunoconjugate of claim 93, wherein L is selected from 6-maleimidocaproyl (MC), maleimidopropanoyl (MP), valine-citrulline (val-cit), alanine-phenylalanine (ala-phe), p aminobenzyloxycarbonyl (PAB), N-Succinimidyl 4-(2-pyridylthio) pentanoate (SPP), N succinimidyl 4-(N-maleimidomethyl) cyclohexane-1 carboxylate (SMCC), and N 30 Succinimidyl (4-iodo-acetyl) aminobenzoate (SIAB).
95. The immunoconjugate of claim 93, wherein the linker, L, is cleavable by a protease.
96. The immunoconjugate of claim 94, wherein L comprises a val-cit dipeptide. 250 360770_1 (GHMatters) P79401 AU 3 14-Sep.12
97. The immunoconjugate of claim 93, wherein L comprises a p-aminobenzyl unit.
98. The immunoconjugate of claim 97, wherein the p-aminobenzyl unit is p aminobenzyloxycarbonyl (PAB).
99. The immunoconjugate of claim 94, wherein L comprises 6-maleimidocaproyl (MC). 5
100. The immunoconjugate of claim 94, wherein the linker comprises 6-maleimidocaproyl and p-aminobenzyloxycarbonyl.
101. The immunoconjugate of claim 79, wherein the immunoconjugate has the formula Ab-(L-MMAE)p, wherein L is a linker and p ranges from 2 to 5. 10
102. The immunoconjugate of claim 101, wherein L comprises val-cit.
103. The immunoconjugate of claim 101, wherein L comprises MC.
104. The immunoconjugate of claim 101, wherein L comprises PAB.
105. The immunoconjugate of claim 101, wherein L comprises MC-PAB.
106. The immunoconjugate of claim 93, wherein the immunoconjugate has the formula 15 Ab-(L-MMAE)p, wherein L is a linker and p ranges from 2 to 5.
107. The immunoconjugate of claim 106, wherein L comprises val-cit.
108. The immunoconjugate of claim 106, wherein L comprises MC.
109. The immunoconjugate of claim 106, wherein L comprises PAB. 20
110. The immunoconjugate of claim 106, wherein L comprises MC-PAB.
111. The immunoconjugate of claim 79, wherein the immunoconjugate has the formula Ab-(L-MMAF)p, wherein L is a linker and p ranges from 2 to 5.
112. The immunoconjugate of claim 111, wherein L comprises val-cit. 25
113. The immunoconjugate of claim 111, wherein L comprises MC.
114. The immunoconjugate of claim 111, wherein L comprises PAB.
115. The immunoconjugate of claim 111, wherein L comprises MC-PAB.
116. The immunoconjugate of claim 93, wherein the immunoconjugate has the formula Ab-(L-MMAF)p, 30 wherein L is a linker and p ranges from 2 to 5.
117. The immunoconjugate of claim 116, wherein L comprises val-cit.
118. The immunoconjugate of claim 116, wherein L comprises MC.
119. The immunoconjugate of claim 116, wherein L comprises PAB.
120. The immunoconjugate of claim 116, wherein L comprises MC-PAB. 35
121. The immunoconjugate of claim 79, wherein D is a maytansinoid. 251 36607701 (GHMatters) P79401.AU.3 14-Sep-12
122. The immunoconjugate of claim 121, wherein D is selected from DM1, DM3, and DM4.
123. The immunoconjugate of claim 121, having in vitro or in vivo cell killing activity.
124. The immunoconjugate of claim 121, wherein the linker is attached to the antibody 5 through a thiol group on the antibody.
125. The immunoconjugate of claim 121, wherein the linker, L, is selected from N Succinimidyl 4-(2-pyridylthio) pentanoate (SPP), N-succinimidyl 4-(N-maleimidomethyl) cyclohexane-1 carboxylate (SMCC), and N-Succinimidyl (4-iodo-acetyl) aminobenzoate (SIAB). 10
126. The immunoconjugate of claim 122, wherein the drug is DM1.
127. The immunoconjugate of claim 122, wherein L comprises a SPP.
128. The immunoconjugate of claim 122, wherein L comprises SMCC.
129. The immunoconjugate of claim 122, wherein p is from 2-4.
130. The immunoconjugate of claim 122, wherein p is from 3-4. 15
131. The immunoconjugate of claim 93, wherein D is a maytansinoid.
132. The immunoconjugate of claim 131, wherein D is selected from DM1, DM3, and DM4.
133. The immunoconjugate of claim 131, having in vitro or in vivo cell killing activity.
134. The immunoconjugate of claim 131, wherein the linker is attached to the antibody 20 through a thiol group on the antibody.
135. The immunoconjugate of claim 131, wherein the linker, L, is selected from N Succinimidyl 4-(2-pyridylthio) pentanoate (SPP), N-succinimidyl 4-(N-maleimidomethyl) cyclohexane-1 carboxylate (SMCC), and N-Succinimidyl (4-iodo-acetyl) aminobenzoate (SIAB). 25
136. The immunoconjugate of claim 132, wherein the drug is DM1.
137. The immunoconjugate of claim 136, wherein L comprises a SPP.
138. The immunoconjugate of claim 136, wherein L comprises SMCC.
139. The immunoconjugate of claim 136, wherein p is from 2-4.
140. The immunoconjugate of claim 136, wherein p is from 3-4. 30
141. A pharmaceutical composition comprising the immunoconjugate of claim 79 and a pharmaceutically acceptable carrier.
142. A method of treating a B cell proliferative disorder comprising administering to an individual an effective amount of the pharmaceutical composition of claim 141.
143. The method of claim 142, wherein the B cell proliferative disorder is selected from 35 lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, 252 3860770_1 (GHMatters) P79401 AU.3 14-Sep-12 relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma.
144. A pharmaceutical composition comprising the immunoconjugate of claim 93 and a 5 pharmaceutically acceptable carrier.
145. A method of treating a B cell proliferative disorder comprising administering to an individual an effective amount of the pharmaceutical composition of claim 144.
146. The method of claim 145, wherein the B cell proliferative disorder is selected from lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, 10 relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma.
147. A pharmaceutical composition comprising the immunoconjugate of claim 76, 77, 78, or 92 and a pharmaceutically acceptable carrier. 15
148. A method of treating a B cell proliferative disorder comprising administering to an individual an effective amount of the pharmaceutical composition of claim 147.
149. The method of claim 148, wherein the B cell proliferative disorder is selected from lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic 20 leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma.
150. A method of inhibiting B cell proliferation comprising exposing a cell to an immunoconjugate of claim 79 under conditions permissive for binding of the immunoconjugate to CD22. 25
151. The method of claim 150, wherein the B cell proliferation is associated with a disorder selected from lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma.. 30
152. The method of claim 150, wherein the B cell is a xenograft.
153. The method of claim 150, wherein the exposing takes place in vitro.
154. The method of claim 150, wherein the exposing takes place in vivo.
155. The antibody of claim 1, wherein the antibody is a cysteine engineered antibody comprising one or more free cysteine amino acids having a thiol reactivity value in the 253 3060770_1 (GHMatters) P79401 AU.3 14-Sep-12 range of 0.6 to 1.0, wherein the cysteine engineered antibody is prepared by a process comprising replacing one or more amino acid residues of a parent antibody by cysteine.
156. The cysteine engineered antibody of claim 155, wherein the cysteine engineered antibody is more reactive than the parent antibody with a thio-reactive reagent. 5
157. The cysteine engineered antibody of claim 155 wherein the process further comprises determining the thiol reactivity of the cysteine engineered antibody by reacting the cysteine engineered antibody with a thiol-reactive reagent; wherein the cysteine engineered antibody is more reactive than the parent antibody with the thiol-reactive reagent. 10
158. The cysteine engineered antibody of claim 155 wherein the one or more free cysteine amino acid residues are located in a light chain.
159. The cysteine engineered antibody of claim 155, wherein the antibody is an immunoconjugate comprising the cysteine engineered antibody covalently attached to a cytotoxic agent. 15
160. The cysteine engineered antibody of claim 159, wherein the cytotoxic agent is selected fom a toxin, a chemotherapeutic agent, a drug moiety, an antibiotic, a radioactive isotope, and a nucleolytic enzyme.
161. The cysteine engineered antibody of claim 155 wherein the antibody is covalently attached to a capture label, a detection label, or a solid support. 20
162. The cysteine engineered antibody of claim 161 wherein the antibody is covalently attached to a biotin capture label.
163. The cysteine engineered antibody of claim 161 wherein the antibody is covalently attached to a fluorescent dye detection label.
164. The cysteine engineered antibody of claim 163 wherein the fluorescent dye is 25 selected from a fluorescein type, a rhodamine type, dansyl, Lissamine, a cyanine, a phycoerythrin, Texas Red, and an analog thereof.
165. The cysteine engineered antibody of claim 161 wherein the antibody is covalently attached to a radionuclide detection label selected from 3 H, 11 C, 14 C, 18 F, 32 P, 35 s, 6Cu, 68 Ga, 8 Y, 99 Tc, '"In, 1231, 1241, 1251, 1311, 1 33 Xe, ' 77 Lu, 211 At, and 2 1 3 Bi. 30
166. The cysteine engineered antibody of claim 161 wherein the antibody is covalently attached to a detection label by a chelating ligand.
167. The cysteine engineered antibody of claim 166 wherein the chelating ligand is selected from DOTA, DOTP, DOTMA, DTPA and TETA.
168. The antibody of claim 23 wherein the antibody is a cysteine engineered antibody 35 comprising one or more free cysteine amino acids having a thiol reactivity value in the 254 3660770_1 (GHMatter) P79401.AU.3 14-Sep-12 range of 0.6 to 1.0, wherein the cysteine engineered antibody is prepared by a process comprising replacing one or more amino acid residues of a parent antibody by cysteine.
169. The cysteine engineered antibody of claim 168, wherein the cysteine engineered antibody is more reactive than the parent antibody with a thio-reactive reagent. 5
170. The cysteine engineered antibody of claim 168 wherein the process further comprises determining the thiol reactivity of the cysteine engineered antibody by reacting the cysteine engineered antibody with a thiol-reactive reagent; wherein the cysteine engineered antibody is more reactive than the parent antibody with the thiol-reactive reagent. 10
171. The cysteine engineered antibody of claim 168 wherein the one or more free cysteine amino acid residues are located in a light chain.
172. The cysteine engineered antibody of claim 168, wherein the antibody is an immunoconjugate comprising the cysteine engineered antibody covalently attached to a cytotoxic agent. 15
173. The cysteine engineered antibody of claim 172, wherein the cytotoxic agent is selected fom a toxin, a chemotherapeutic agent, a drug moiety, an antibiotic, a radioactive isotope, and a nucleolytic enzyme.
174. The cysteine engineered antibody of claim 168 wherein the antibody is covalently attached to a capture label, a detection label, or a solid support. 20
175. The cysteine engineered antibody of claim 174 wherein the antibody is covalently attached to a biotin capture label.
176. The cysteine engineered antibody of claim 174 wherein the antibody is covalently attached to a fluorescent dye detection label.
177. The cysteine engineered antibody of claim 176 wherein the fluorescent dye is 25 selected from a fluorescein type, a rhodamine type, dansyl, Lissamine, a cyanine, a phycoerythrin, Texas Red, and an analog thereof.
178. The cysteine engineered antibody of claim 174 wherein the antibody is covalently attached to a radionuclide detection label selected from 3 H, 11 C, 1 4 C, '"F, 32 P, 35 S, 64 Cu, 68Ga, 86Y, 99Tc, "'In, 231, 141, 151, 1 I, 13Xe, Lu, 211At, and mBi. 30
179. The cysteine engineered antibody of claim 178 wherein the antibody is covalently attached to a detection label by a chelating ligand.
180. The cysteine engineered antibody of claim 179 wherein the chelating ligand is selected from DOTA, DOTP, DOTMA, DTPA and TETA.
181. The immunoconjugate of claim 93, wherein the linker is attached to the antbody 35 through a thiol group on the antibody. 255 3680770_1 (GHMatters) P79401 AU 3 14-Sep-12
182. The antibody of claim 1 comprising an albumin binding peptide.
183. The antibody of claim 182, wherein the albumin binding peptide is selected from SEQ ID NOs:42-46.
184. The antibody of claim 23 comprising an albumin binding peptide. 5
185. The antibody of claim 184, wherein the albumin binding peptide is selected from SEQ ID NOs:42-46.
186. The antibody claim 1 wherein the antibody further comprises a cysteine at one or more positions selected from 15, 43, 110, 144, 168 and 205 of the light chain according to Kabat numbering convention and 41, 88, 115, 118, 120, 171, 172, 282, 375, and 400 of the 10 heavy chain according to EU numbering convention.
187. The antibody of claim 186, wherein a cysteine is at position 205 of the light chain.
188. The antibody of claim 186, wherein a cysteine is at position 118 of the heavy chain.
189. The antibody of claim 186, wherein a cysteine is at position 400 of the heavy chain.
190. The antibody of claim 186 wherein the antibody is selected from a monoclonal 15 antibody, a bispecific antibody, a chimeric antibody, a human antibody, and a humanized antibody.
191. The antibody of claim 186 which is an antibody fragment.
192. The antibody of claim 191 wherein the antibody fragment is a Fab fragment.
193. The antibody of claim 186 which is selected from a chimeric antibody, a human 20 antibody, or a humanized antibody.
194. The antibody of claim 186 which is produced in bacteria.
195. The antibody of claim 186 which is produced in CHO cells.
196. A method of determining the presence of a CD22 protein in a sample suspected of containing said protein, said method comprising exposing said sample to an antibody of 25 claim 186 and determining binding of said antibody to said CD22 protein in said sample, wherein binding of the antibody to said protein is indicative of the presence of said protein in said sample.
197. The method of Claim 196 wherein said sample comprises a cell suspected of expressing said CD22 protein. 30
198. The method of Claim 196 wherein said cell is B cell. 256 3680770_1 (GHMatters) P79401.AU.3 14-Sep-12
199. The method of Claim 196 wherein the antibody is covalently attached to a label selected from a fluorescent dye, a radioisotope, biotin, or a metal-complexing ligand.
200. A pharmaceutical formulation comprising the anti-CD22 antibody of claim 186, and a pharmaceutically acceptable diluent, carrier or excipient. 5
201. The antibody of claim 186 wherein the antibody is covalently attached to an auristatin or a maytansinoid drug moiety whereby an antibody drug conjugate is formed.
202. The antibody-drug conjugate of claim 201 comprising an antibody (Ab), and an auristatin or maytansinoid drug moiety (D) wherein the cysteine engineered antibody is attached through one or more free cysteine amino acids by a linker moiety (L) to D; the 10 compound having Formula 1: Ab-(L-D), where p is 1, 2, 3, or 4.
203. The antibody-drug conjugate compound of claim 201 wherein p is 2.
204. The antibody-drug conjugate compound of claim 201 wherein L has the formula: -Aa-Ww-Yy where: A is a Stretcher unit covalently attached to a cysteine thiol of the cysteine engineered antibody (Ab); a is 0 or 1; 20 each W is independently an Amino Acid unit; w is an integer ranging from 0 to 12; Y is a Spacer unit covalently attached to the drug moiety; and y is 0, 1 or 2.
205. The antibody-drug conjugate compound of claim 204 having the formula: 0 0 N-R -C-W-PAB-D) Ab-S 25 O p where PAB is para-aminobenzylcarbamoyl, and R 17 is a divalent radical selected from (CH 2 )r, C 3 -C 8 carbocyclyl, 0-(CH 2 )r, arylene, (CH 2 )r-arylene, -arylene-(CH 2 )r-, 257 38807701 (GHMatters) P79401.AU.3 14-Sep-12 (CH 2 )r-(C 3 -C 8 carbocyclyl), (C 3 -C 8 carbocyclyl)-(CH 2 )r, C 3 -C 8 heterocyclyl, (CH 2 )r-(C 3 -CO heterocyclyl), -(C 3 -C 8 heterocyclyl)-(CH 2 )r-, -(CH 2 )rC(O)NR'(CH 2 )r-, -(CH 2 CH 2 0),-, -(CH 2 CH 2 0)r-CH 2 -, -(CH 2 ),C(O)NR'(CH 2 CH 2 0),-, -(CH 2 )rC(O)NR'(CH 2 CH 2 0)r-CH2-, -(CH 2 CH 2 0)rC(O)NRb(CH 2 CH 2 O)r-, -(CH 2 CH 2 0)rC(O)NR(CH 2 CH 2 0)r-CH 2 -, and 5 -(CH 2 CH 2 0)rC(O)NRb(CH 2 )r- ; where Rb is H, Cl-C 6 alkyl, phenyl, or benzyl; and r is independently an integer ranging from 1 to 10.
206. The antibody-drug conjugate compound of claim 204 wherein W, is valine-citrulline.
207. The antibody-drug conjugate compound of claim 204 wherein R' 7 is (CH 2 ) 5 or (CH 2 ) 2 . 10
208. The antibody-drug conjugate compound of claim 204 having the formula: 0 O 1 Ab-S N--R -C-D O p
209. The antibody-drug conjugate compound of claim 208 wherein R 17 is (CH 2 ) 5 or (CH 2 ) 2 .
210. The antibody-drug conjugate compound of claim 204 having the formula: 0 A b SO H H D HN 15 O "NH 2
211. The antibody-drug conjugate compound of claim 202 wherein L is SMCC, SPP or BMPEO.
212. The antibody-drug conjugate compound of claim 202 wherein D is MMAE, having the structure: 0 H H OH 0.N N 20 0 QQ 0 01 258 38e0770_1 (GHMatters) P79401 AU 3 14-Sep-12 wherein the wavy line indicates the attachment site to the linker L.
213. The antibody-drug conjugate compound of claim 202 wherein D is MMAF, having the structure: 0H N N 0Ia_ 0_ OHO 5 wherein the wavy line indicates the attachment site to the linker L.
214. The antibody-drug conjugate compound of claim 202 wherein D is DM1, having the structure: H 3 C CH 2 CH 2 S 0 H 3 C 0 O CI 'N 0 DM1 CH30DM O NO =HOI CH 3 0 H wherein the wavy line indicates the attachment site to the linker L. 10
215. The antibody-drug conjugate compound of claim 201 wherein the parent anti-CD22 antibody is selected from a monoclonal antibody, a bispecific antibody, a chimeric antibody, a human antibody, a humanized antibody, and an antibody fragment.
216. The antibody-drug conjugate compound of claim 201 wherein the antibody fragment is a Fab fragment. 15 259 3660770J (GHMatter) P79401 .AU.3 14-Sep-12
217. An antibody-drug conjugate compound selected from the structures: Ab-S 0 N H 0~ ~ N..N 0 O N VaI-Cit-N O O o oH 0OH Ab-MC-vc-PAB-MMAF 5 Ab-S 0 H 0 OH O N N N S( NIVaI-Cit-N " I 0 0<p 0 H Ab-MC-vc-PAB-MMAE Ab-S 0 N0 H 0 H OH N N N NN N 0 '0 O0 0,00 p 10 Ab-MC-MMAE Ab-S 0 3N8 N( sN1 00 I I 0 0, 0OH ! Ab-MC-MMAF 260 M080770_1 (GHMatterS) P79401 AUJ3 14Sepl12 0 N S Ab H3C CH2CH2S c O CH30 \ /J N O Ho I CH30 H Ab-BMPEO-DM1 wherein Val is valine; Cit is citrulline; p is 1, 2, 3, or 4; and Ab is an anti-CD22 antibody of claim 186. 5
218. The antibody drug conjugate of claim 201 wherein the auristatin is MMAE or MMAF.
219. The antibody drug conjugate of claim 202 wherein L is MC-val-cit-PAB or MC.
220. An assay for detecting B cells comprising: (a) exposing cells to an antibody-drug conjugate compound of claim 199; and (b) determining the extent of binding of the antibody-drug conjugate compound 10 to the cells.
221. A method of inhibiting cellular proliferation comprising treating mammalian cancerous B cells in a cell culture medium with an antibody-drug conjugate compound of claim 201, whereby proliferation of the cancerous B cells is inhibited.
222. A pharmaceutical formulation comprising the antibody drug conjugate of claim 201, 15 and a pharmaceutically acceptable diluent, carrier or excipient.
223. A method of treating cancer comprising administering to a patient the pharmaceutical formulation of claim 222.
224. The method of claim 223 wherein the cancer is selected from the group consisting of lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, 20 relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic 261 3580770_1 (GHMatlers) P79401.AU.3 14-Sep-12 leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma.
225. The method of claim 223 wherein the patient is administered a cytotoxic agent in combination with the antibody-drug conjugate compound. 5
226. An article of manufacture comprising the pharmaceutical formulation of claim 220; a container; and a package insert or label indicating that the compound can be used to treat cancer characterized by the overexpression of a CD22 polypeptide. 10
227. The article of manufacture of claim 226 wherein the cancer is selected from the group consisting of lymphoma, non-Hogkins lymphoma (NHL), aggressive NHL, relapsed aggressive NHL, relapsed indolent NHL, refractory NHL, refractory indolent NHL, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma, leukemia, hairy cell leukemia (HCL), acute lymphocytic leukemia (ALL), and mantle cell lymphoma. 15
228. A method for making an antibody drug conjugate compound comprising an anti CD22 antibody (Ab) of claim 186, and an auristatin or maytansinoid drug moiety (D) wherein the antibody is attached through the one or more engineered cysteine amino acids by a linker moiety (L) to D; the compound having Formula I: Ab-(L-D), 20 where p is 1, 2, 3, or 4; the method comprising the steps of: (a) reacting an engineered cysteine group of the antibody with a linker reagent to form antibody-linker intermediate Ab-L; and (b) reacting Ab-L with an activated drug moiety D; whereby the antibody-drug conjugate is formed; 25 or comprising the steps of: (c) reacting a nucleophilic group of a drug moiety with a linker reagent to form drug-linker intermediate D-L; and 262 3660770_1 (GHMatters) P79401.AU.3 14-Sep-12 (d) reacting D-L with an engineered cysteine group of the antibody; whereby the antibody-drug conjugate is formed.
229. The method of claim 228 further comprising the step of expressing the antibody in chinese hamster ovary (CHO) cells. 5
230. The method of claim 229 further comprising the step of treating the expressed antibody with a reducing agent.
231. The method of claim 230 wherein the reducing agent is selected from TCEP and DTT.
232. The method of claim 230 further comprising the step of treating the expressed 10 antibody with an oxidizing agent, after treating with the reducing agent.
233. The method of claim 232 wherein the oxidizing agent is selected from copper sulfate, dehydroascorbic acid, and air.
234. The antibody of claim 186 wherein the antibody comprises a heavy chain sequence selected from any one of SEQ ID NOS:88, 92, or 93. 15
235. The antibody of claim 186 wherein the antibody comprises a light chain sequence selected from SEQ ID NOS:87 or 91.
236. The antibody of claim 186 wherein the antibody comprises a light chain sequence of SEQ ID NO:87 and a heavy chain sequence of SEQ ID NO:92.
237. The antibody of claim 186 wherein the antibody comprises a light chain sequence of 20 SEQ ID NO:87 and a heavy chain sequence of SEQ ID NO:93.
238. The antibody of claim 186 wherein the antibody comprises a light chain sequence of SEQ ID NO:91 and a heavy chain sequence of SEQ ID NO:88. 263 38607701 (GHMatters) P79401 AU.3 14.Sep-12
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2012219413A AU2012219413A1 (en) | 2006-05-30 | 2012-09-14 | Antibodies and immunoconjugates and uses therefor |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60/809,328 | 2006-05-30 | ||
US60/908,941 | 2007-03-29 | ||
US60/911,829 | 2007-04-13 | ||
AU2011202920A AU2011202920C1 (en) | 2006-05-30 | 2011-06-17 | Antibodies and immunoconjugates and uses therefor |
AU2012219413A AU2012219413A1 (en) | 2006-05-30 | 2012-09-14 | Antibodies and immunoconjugates and uses therefor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2011202920A Division AU2011202920C1 (en) | 2006-05-30 | 2011-06-17 | Antibodies and immunoconjugates and uses therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2012219413A1 true AU2012219413A1 (en) | 2012-10-04 |
Family
ID=45930230
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2011202920A Ceased AU2011202920C1 (en) | 2006-05-30 | 2011-06-17 | Antibodies and immunoconjugates and uses therefor |
AU2012219413A Abandoned AU2012219413A1 (en) | 2006-05-30 | 2012-09-14 | Antibodies and immunoconjugates and uses therefor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2011202920A Ceased AU2011202920C1 (en) | 2006-05-30 | 2011-06-17 | Antibodies and immunoconjugates and uses therefor |
Country Status (1)
Country | Link |
---|---|
AU (2) | AU2011202920C1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7534427B2 (en) * | 2002-12-31 | 2009-05-19 | Immunomedics, Inc. | Immunotherapy of B cell malignancies and autoimmune diseases using unconjugated antibodies and conjugated antibodies and antibody combinations and fusion proteins |
CN1898267B (en) * | 2003-11-01 | 2012-05-23 | 默克专利股份有限公司 | Modified anti-CD52 antibody |
-
2011
- 2011-06-17 AU AU2011202920A patent/AU2011202920C1/en not_active Ceased
-
2012
- 2012-09-14 AU AU2012219413A patent/AU2012219413A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
AU2011202920A1 (en) | 2011-07-07 |
AU2011202920C1 (en) | 2012-11-15 |
AU2011202920B2 (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2007266521C1 (en) | Antibodies and immunoconjugates and uses therefor | |
AU2011202920C1 (en) | Antibodies and immunoconjugates and uses therefor | |
HK1165438B (en) | Anti-cd22 antibodies, their immunoconjugates and uses thereof | |
HK1169805B (en) | Anti-cd22 antibodies, their immunoconjugates and uses thereof | |
HK1127926B (en) | Antibodies and immunoconjugates and uses therefor | |
HK1182721B (en) | Antibodies and immunoconjugates and uses therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK5 | Application lapsed section 142(2)(e) - patent request and compl. specification not accepted |