AU2012211484A1 - Liquid level and composition sensing systems and methods using EMF wave propagation - Google Patents

Liquid level and composition sensing systems and methods using EMF wave propagation Download PDF

Info

Publication number
AU2012211484A1
AU2012211484A1 AU2012211484A AU2012211484A AU2012211484A1 AU 2012211484 A1 AU2012211484 A1 AU 2012211484A1 AU 2012211484 A AU2012211484 A AU 2012211484A AU 2012211484 A AU2012211484 A AU 2012211484A AU 2012211484 A1 AU2012211484 A1 AU 2012211484A1
Authority
AU
Australia
Prior art keywords
liquid
tank
resonant circuit
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2012211484A
Inventor
Idir Boudaoud
Alan Kenneth Mccall
Adrian M. Page
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schrader Electronics Ltd
Original Assignee
Schrader Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008299375A external-priority patent/AU2008299375A1/en
Application filed by Schrader Electronics Ltd filed Critical Schrader Electronics Ltd
Priority to AU2012211484A priority Critical patent/AU2012211484A1/en
Publication of AU2012211484A1 publication Critical patent/AU2012211484A1/en
Abandoned legal-status Critical Current

Links

Abstract

An automotive urea solution monitoring device is deployed in conjunction with the urea tank of a selective catalytic reduction vehicle. An RF signal of a constant frequency may 5 be generated across a resonant circuit, which may be comprised of an inductor and a PCB trace capacitor, or the like. Electromagnetic radiation is propagated into the automotive urea solution in the urea tank. The conductivity and dielectric properties of the liquid change the impedance of the discrete/trace capacitor and/or the discrete/trace inductor. These changes are proportional to ammonia content, temperature, and/or level of the automotive urea 10 solution in the urea tank and are preferably detected by a microcontroller, or the like, and then transmitted to a selective catalytic reduction vehicle engine management system, or the like. spec-951399

Description

AUSTRALIA Patents Act COMPLETE SPECIFICATION (ORIGINAL) Class Int. Class Application Number: Lodged: Complete Specification Lodged: Accepted: Published: Priority Related Art: Name of Applicant: Schrader Electronics Ltd. Actual Inventor(s): Idir Boudaoud, Alan Kenneth McCall, Adrian M. Page Address for Service and Correspondence: PHILLIPS ORMONDE FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne 3000 AUSTRALIA Invention Title: LIQUID LEVEL AND COMPOSITION SENSING SYSTEMS AND METHODS USING EMF WAVE PROPAGATION Our Ref: 951399 POF Code: 470733/488338 The following statement is a full description of this invention, including the best method of performing it known to applicant(s): 60060 TITLE: LIQUID LEVEL AND COMPOSITION SENSING SYSTEMS AND METHODS USING EMF WAVE PROPAGATION 5 [0001] The present application is a divisional application from Australian Patent Application No.2008299375, the entire disclosure of which is incorporated herein by reference. BACKGROUND OF THE INVENTION 10 Field of the Invention [0002] This invention relates generally to systems and methods for sensing the condition of liquid in a tank or container. More particularly, embodiments of the present invention relate to sensing characteristics of automotive urea solution in a urea tank in a 15 motor vehicle by propagating electromagnetic waves into a urea tank. Description of the Prior Art [0003] Selective Catalytic Reduction (SCR) vehicles, also referred to as Euro V vehicles, are diesel powered motor vehicles which are compatible with the use of an 20 operating fluid to reduce emissions. Typically, the SCR vehicle has a urea tank, separate from the fuel tank, which is used to carry an operating fluid such as an automotive urea solution, or the like. Automotive Urea Solution (AUS) is a solution of high purity urea in de mineralized water. AUS is stored in a urea tank of an SCR vehicle and is sprayed into the exhaust gases of the vehicle in order to covert oxides of nitrogen into elementary nitrogen 25 and water. An SCR vehicle may then advantageously satisfy the Euro V Emissions Standard. [0004] It is important for the Engine Management System (EMS) of an SCR vehicle to have information on the composition of the AUS, so that the EMS may adjust certain vehicle parameters to optimize vehicle performance, specifically emissions control. 30 [0005] In order to ensure this method of reducing emissions in an SCR vehicle remains effective, the quality of the AUS must be maintained. Contaminants, a change in spec-951399 1A the ratio of high purity urea to other constituents, temperature variation or other changes can impact the life expectancy of the AUS and the effectiveness of the AUS at reducing emissions. [0006] SCR vehicles generally rely on the use of direct measurement systems to determine the level of AUS in a tank. Such systems typically comprise a plurality of sensors disposed at different levels along the vertical plane inside the urea tank. Such sensors typically have poor resolution, are intrusive, and do not detect the quality or temperature of the AUS. Such direct measurement systems also require installation of mechanisms inside the urea tank. Repair, replacement, or adjustment of such an internal direct measurement system is problematic. Furthermore, such systems are ineffective when employed in an SCR vehicle which is exposed to temperatures under minus eleven degrees centigrade, which is the temperature that AUS typically freezes, because such systems do not provide a means of measuring AUS temperature to enable the correct application of heat to prevent freezing of the AUS. [0007] SCR vehicles generally rely on the use of indirect measurement systems to determine the effectiveness of the AUS in reducing vehicle emissions. Such indirect measurements are taken from the exhaust fumes and are passed to the EMS, whereupon the EMS may increase or reduce the quantity of AUS released from the tank. Such systems are typically slow to react and do not accurately reflect the actual quality or composition of the AUS. [0008] Thus, the prior art fails to provide a reliable, inexpensive, and accurate system and method of measuring the level or quality of AUS in a motor vehicle urea tank, let alone both. [0008A] A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission or a suggestion that that document or matter was, known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims. [0008B] Throughout the description and claims of the specification, the word "comprise" and variations of the word, such as "comprising" and "comprises", is not intended to exclude other additives, components, integers or steps. SUMMARY [0009] The present invention is directed to systems and methods which accurately measure the level, temperature and/or quality of liquid, particularly AUS, in a motor 2 vehicle by means of an internal or external AUS monitoring system. In particular, embodiments of the present invention may be used in SCR vehicles to detect certain characteristics of AUS including the amount of AUS in a urea tank and the percentage of ammonia content, and/or other constituents in the AUS. This information can be reported to the EMS or Body Control Module of the SCR vehicle, allowing the EMS to respond accordingly, thereby allowing adjustments to be made and improve, or at least, maintain 2a the SCR vehicle emissions reduction performance, quickly and accurately. Embodiments of the present invention detect characteristics of the AUS without any direct contact with AUS, minimizing risk of leaks, or wear of the measuring device due to exposure to ammonia, or the like. To this end, embodiments of the present invention may, be 5 deployed in conjunction with the urea tank at the bottom/side of a urea tank or internal to the urea tank. [0010] Embodiments of the present invention may generate an RF signal of a variable frequency across a resonant circuit, which comprises an inductor and a PCB trace capacitor, capacitor plates, and/or the like. Electromagnetic radiation is propagated into 10 the urea tank. The conductivity and dielectric properties of the AUS change the impedance of stated trace capacitor/capacitor plates and/or stated inductor. These changes are proportional to certain characteristics of the AUS including its level and/or the ammonia content of the AUS, and are preferably detected by a microcontroller, or the like, and then transmitted to the EMS. As such the present systems and methods provide 15 a cost effective solution, well suited, not only for original equipment applications but also for up-fit or retro-fit. The present systems and methods are highly responsive and provide immediate information to the EMS, allowing adjustments to be made and improve/maintain the SCR vehicle emissions reduction performance, quickly and accurately. In various embodiments, auto-compensation may be provided so that the 20 measured electrical parameter provides an accurate indication of the liquid level and composition in the tank, independent of variations in operating conditions, such as ambient temperature. The system can include a physical or wireless data interface to facilitate external transmission of the AUS measurement from the system to a central controller in the vehicle. The data can be transmitted periodically, in response to a 25 change, by request from the central controller, or by request from an extemal device such as a diagnostic device. [0011] Thus, in accordance with the present invention an embodiment of a method for liquid level and composition sensing using EMF wave propagation might include generating an RF signal at an operating frequency, coupling the RF signal to a resonant 30 circuit, the resonant circuit having a resonant frequency and including an inductor positioned proximate to liquid in a tank, measuring a change in an electrical parameter associated with the resonant circuit caused by a variation in at least one property of the liquid proximate to the inductor, and transmitting the measured change or information about the at least one property of the liquid to an external device. As noted, the liquid 35 may be urea. The RF signal may be substantially sinusoidal and may have a constant C.PrWAdSPEC-V?107c 3 frequency. The resonant circuit may be a series-resonant inductor, capacitor, resistor circuit or a parallel-resonant inductor, capacitor, resistor circuit. Preferably the inductor of the resonant circuit in placed in close proximity to the tank, causing electromagnetic radiation to propagate into a space defined within the tank, whereby the liquid in the tank 5 acts as an electrical load to the series resonant circuit in a manner proportionate to the constituents of the liquid in the tank. The property of the liquid may be an electrical property and the measured change in the electrical parameter may be a function of a variation in the electrical property of the liquid. Where the liquid is an automotive urea solution, the variation in the property may be a function of liquid composition such as the 10 ammonia concentration in the automotive urea solution or a function of the level of the automotive urea solution in the tank. The aforementioned measuring of a change in an electrical parameter associated with the resonant circuit may comprise measuring a change in voltage at the resonant circuit or a change in the resonant frequency of the resonant circuit. Preferably, the operating frequency of the RF signal may be calibrated to 15 compensate for physical and/or electrical properties of the tank and such calibration may be carried out automatically, hi particular, calibration of the operating frequency may include sweeping between a range of frequencies, from a first frequency to a second frequency, to identify the operating signal within the range and measuring a parameter of a resonant circuit from the operating frequency. The measured parameters may include 20 the resonant frequency of the resonant circuit and/or the amplitude of the resonant frequency of the resonant circuit. Also, in accordance with the present invention the measured change I the liquid may be converted to a value representing a concentration of ammonia in the liquid. [0012] Embodiments of a monitoring device of the present invention may include an 25 antenna driver having output terminals, and input terminals, coupled to an RF generator; a resonant circuit coupled to the antenna driver and having an inductor positioned proximate a liquid in a container or tank; and a controller, including the RF generator, and controlling an operating frequency of the RF generator to be proximate to a resonant frequency of the resonant circuit and measuring a change in an electrical parameter 30 associated with the resonant circuit caused by changes in the liquid in the tank. Again, the liquid may be an automotive urea solution and the changes in the liquid may include a change in level of the urea in the tank or a change in concentration of the urea, such as a change in ammonia concentration of the urea. The controller, antenna driver, and resonant circuit are mounted on a printed circuit board, which may be flexible and the C:VpAraU~Sr s?1047.doC 4 sensor may be installed external to the container or tank. As noted, the resonant circuit includes a capacitor, which may be a printed circuit board trace capacitor. [0013] An embodiment of a system for liquid level and composition sensing using EMF wave propagation might include an RF generator functional to generate an RF signal at an operating frequency; an antenna circuit electrically coupled to the RF generator, the antenna circuit including a resonant circuit and a radiating component mounted proximate to a urea tank, the resonant circuit having a resonant frequency; and a controller operatively connected to the RF generator and to the antenna circuit, the controller being functional to sweep between a range of a frequencies, from a first frequency to a second frequency, to identify a signal at the resonant frequency within the range and measuring a change in an electrical parameter of the signal associated with the resonant circuit caused by changes in a concentration of ammonia in urea in the tank. The controller may also transmit the measured change in the electrical parameter and/or the controller may convert the measured change in the electrical parameter to an ammonia concentration signal. Thus the controller may transmit the ammonia concentration signal to an engine management system of a selective catalytic reduction vehicle. As noted, the resonant circuit may be a series resonant circuit. In which case the controller may comprise a calibration module operative to sweep between a range of a frequencies, from a first frequency to a second frequency, to identify a signal at the resonant frequency within the range and measuring a change in an electrical parameter of the signal associated with the resonant circuit caused by changes in concentration of ammonia the urea in the tank. The controller might also include a compensation module functional to adjust the ammonia concentration signal for changes in ambient temperature or changes in temperature of the liquid in the tank. [0013A] According to the present invention, there is provided a method including: generating an RF signal at an operating frequency; coupling the RF signal to a resonant circuit, the resonant circuit having a resonant frequency and including an inductor positioned proximate to urea in a tank; calibrating the operating frequency of the RF signal to compensate for physical and/or electrical properties of said tank; measuring a change in an electrical parameter associated with the resonant circuit caused by a variation in at least one property of the urea proximate to the inductor; and transmitting the measured change or information about said at least one property of the urea to an external device. 5 [0014] The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the systems and methods that follow may be better understood. Additional features and advantages of the systems and methods will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present 5a invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose, of illustration and description only and is not intended as a definition of the limits of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS [00151 The accompanying drawings, which are incorporated in and form part of the specification in which like numerals designate like parts, illustrate embodiments of the present invention and together with the description, serve to explain the principles of the invention. In the drawings: 100161 FIGURE 1 is a perspective view of an external embodiment of an AUS system of the present invention deployed in conjunction with a urea tank; [0017] FIGURE 2 is a partially fragmented perspective view of an internal embodiment of an AUS system of the present invention deployed in conjunction with a urea tank; [0018] FIGURE 3 is an exploded perspective view of the AUS monitoring device of Figure 1; 10019] FIGURE 4 is a block diagram view of certain functional elements within the AUS monitoring device of Figures 1, 2 and 3. DETAILED DESCRIPTION [0020] The present systems and methods can determine the type of liquid in a container, particularly where the liquid is substantially water and is not limited to the examples used in this description. In the illustrated and described embodiments, the present system can provide this information to an automotive EMS, which may use the information to prevent improper operation of SCR vehicles with water or the like in the urea tank rather than the AUS recommended by the vehicle manufacturer, as well as to detect the level and or concentration of urea in a tank. 6 100211 Figure I shows an embodiment of AUS monitoring device 100 of the present invention disposed in conjunction with urea tank 102, such as mounting the AUS monitoring device to the exterior of the tank. Various embodiments call for mounting the AUS monitoring device of the present invention to the exterior side or bottom of a tank. Urea tank 102 may be made from a non-conductive material such as plastic. AUS from urea tank 102 may be pumped by means of a pump 103 into exhaust 104 of a vehicle for emission control purposes. 100221 Figure 2 shows another embodiment (200) of the AUS monitoring device of the present invention disposed in conjunction with urea tank 102, such as mounting the AUS monitoring device 200 to the interior of the tank. This embodiment may be of particular use where urea tank 102 is comprised of a conductive material, such as metal. [00231 Figure 3 illustrates an embodiment of AUS monitoring device 100 or 200 including PCB 301 disposed in housing 302, shown as having two parts 302a and 302b. As discussed in greater detail with respect to Figure 4 below, PCB 301 may mount and or define controller 401, the controller might include RF generator 402 and analog-to-digital converter 403 (ADC). PCB 301 might also include antenna circuitry 405 including antenna driver 406 having output terminals, and input terminals, coupled to the RF generator and resonant circuit 410. Resonant circuit 410 preferably includes inductor 411 and capacitor or PCB trace capacitor 412 positioned proximate a liquid in tank or container 102. 10024) Embodiments of AUS monitoring devices 100 and 200 illustrated in Figures 1-3 may employ circuitry similar to circuitry 400 depicted in Figure 4. Resonant circuit 410, which may be an LCR (inductor-capacitor-resistor) circuit, may be a series or parallel resonant circuit. Resonant circuit 410 preferably comprises resistor 413 as well as capacitor 421 and inductor 411 discussed above. Inductor 411 and/or capacitor 412 may be in discrete form, in PCB trace form, or otherwise formed. By placing inductor 411 of resonant circuit 410 in close proximity to tank 102, electromagnetic radiation may be propagated into liquid space 103 defined within tank 102. Whereby, the AUS, other' liquid, and/or solids inside the tank acts as an electrical load on resonant circuit 410 in a manner proportionate to the level and/or the constituents of the liquid or the presence of solids in the tank. The conductivity and dielectric properties of the liquid change the impedance of discrete/trace capacitor 412 or discrete/trace inductor 411. 7 [00251 The present invention measures properties of a liquid, such as AUS. These properties are preferably electrical properties and a measured change in an electrical parameter of the liquid is a function of a variation in the electrical property of the liquid. Where the liquid is AUS, the variation in electrical property may be a function of the amount of the liquid present and the composition of the liquid. Measurements of electrical properties may include measuring a change in voltage at resonant circuit 410 and/or measuring a change in the resonant frequency of the resonant circuit, such as may be accomplished by analog to digital converter (ADC) 403. 10026] Preferably, RF generator 402 generates an RF signal at an operating frequency and antenna circuit 405 is electrically coupled to RF generator 402. Also, resonant circuit 410 preferably has a frequency response curve centered around a resonant frequency. Controller 401 may be operatively connected to RF generator 402 and to antenna circuit 410 and may be functional to cause the operating frequency of RF generator 402 to be proximate to the resonant frequency of resonant circuit 410, and to measure a change in an electrical parameter associated with the resonant circuit caused by changes in the amount of AUS and/or the concentration and/or the ratio of ammonia in the AUS in tank 102 to other substances. [00271 More particularly, in embodiments of the present systems and methods, a substantially sinusoidal RF signal of variable frequency is generated and coupled, employing antenna driver 406, to resonant circuit 410. Consequently, the liquid AUS inside tank 102 or 202 acts as an electrical load to resonant circuit 410 in a manner proportionate to the AUS level in urea tank 102 and/or certain characteristics of the AUS including the constituents and temperature of the AUS in urea tank 102. The loading effect of the AUS on resonant circuit 410 can cause a shift in the resonant frequency of the circuit, and/or a change in the amplitude of the signal from the circuit, and/or a change in the Q (quality factor) of the resonant circuit. In accordance with various embodiments of the present invention, the loading effect of the AUS is detennined by monitoring a change in one or more electrical parameters associated with excited resonant circuit 410. For example, the voltage across resistor 413 in resonant circuit 410 may be monitored. Changes in this voltage may be detected and analyzed by controller 401 (processor 415), the EMS, or other circuitry associated with the SCR system, the results may be used to output a signal indicative of AUS composition, level or temperature. This output can be in the form of a digital or analog electrical signal. 8 100281 Controller 401 or similar circuitry of AUS monitoring device 100 or 200 is preferably functional to transmit a measured change in an electrical parameter. In particular, controller 401 may be further functional to convert the measured change in the electrical parameter to an ammonia concentration and/or liquid level signal and to transmit this signal, or other information to an SCR vehicle EMS, or the like. The signal, and/or other information may be transmitted via a physical or wireless data interface to a central controller in the vehicle periodically, in response to a change, by request from controller 401, or by request from an external device such as a diagnostic device. 100291 Preferably, the present invention allows for calibrating the operating frequency of the RF signal to compensate for physical and/or electrical properties of respective tank or container and external effects such as temperature. This calibration may be carried out by processor 415 or other circuitry when the tank is empty or full, or otherwise. For example, the calibration may be carried out automatically and/or periodically. The present systems and methods may employ calibration hardware and software that enable detection of a resonant frequency of resonant circuit 410 and the amplitude of that resonant frequency signal when the tank is empty. Alternatively or additionally, the present systems and methods may employ auto-calibration hardware and software that enable detection of the resonant frequency of resonant circuit 410 and the amplitude of the resonant frequency signal relative to previously known values. In particular embodiments, calibration might include sweeping to identify a resonant frequency signal in a range between a first frequency and a second frequency and measuring a parameter of the resonant circuit as the frequency of the RF signal is swept. [0030] Various embodiments of the present invention detect the temperature of the AUS. In accordance with such embodiments the AUS monitoring device may include other sensors 420 for temperature or humidity, or other sensors. Controller 401 might also include compensation module 421 functional to adjust the liquid concentration signal for changes in temperature of the liquid, ambient temperature, and/or other measured or calculated parameters. [0031] Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition 9 of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein maybe utilized according to the present invention. For example, as noted, the present systems and methods can sense and measure the composition of liquid in other containers and/or transmission lines and are not limited to the examples used in this description. The system can be used in a wide variety of scientific, consumer, industrial, and medical environments. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps. 10

Claims (17)

1. A method including: generating an RF signal at an operating frequency; 5 coupling the RF signal to a resonant circuit, the resonant circuit having a resonant frequency and including an inductor positioned proximate to liquid in a tank; measuring a change in an electrical parameter associated with the resonant circuit caused by a variation in at least one property of the liquid proximate to the inductor: and transmitting the measured change or information about said at least one property 10 of the liquid to an external device.
2. A method according to claim 1, wherein said liquid is urea.
3. A method according to claim 1 or 2, further including placing an inductor of said 15 resonant circuit in close proximity to said tank, causing electromagnetic radiation to propagate into a space defined within said tank, whereby the liquid in said tank acts as an electrical load to said series resonant circuit in a manner proportionate to the constituents of said liquid in said tank. 20
4. A method according to claim 1 wherein the liquid is an automotive urea solution and the variation in said property is a function of the ammonia concentration in the automotive urea solution.
5. A method according to claim 4, further including compensating said measured 25 change or said at least one property of the liquid to adjust an ammonia concentration measurement for changes in ambient temperature.
6. A method according to claim 4, further including compensating said measured change or said at least one property of the liquid to adjust an ammonia concentration 30 measurement for changes in temperature of the liquid.
7. A method according to claim 1 wherein the liquid is a liquid automotive urea solution and the variation in said property is a function of the level of the automotive urea solution in said tank. 35 C~po,~.SfC-1O4?dcc11
8. A method according to any one of the preceding claims, further including calibrating the operating frequency of the RF signal to compensate for physical and/or electrical properties of said tank. 5
9. A method according to claim 8, wherein the operating frequency is calibrated automatically.
10. A method according to claim 9, wherein said calibrating the operating frequency includes sweeping between a range of a frequencies, from a first frequency to a second 10 frequency, to identify said operating signal within said range and measuring a parameter of a resonant circuit from said operating frequency.
11. A method according to claim 10 wherein the measured parameter includes the resonant frequency of the resonant circuit. 15
12. A method according to claim 10 wherein the measured parameter includes the amplitude of the resonant frequency of the resonant circuit.
13. A system including: 20 an RF generator functional to generate an RF signal at an operating frequency; an antenna circuit electrically coupled to the RF generator, the antenna circuit including a resonant circuit and a radiating component mounted proximate to a urea tank, the resonant circuit having a resonant frequency; and a controller operatively connected to the RF generator and to the antenna circuit, 25 the controller being functional to sweep between a range of a frequencies, from a first frequency to a second frequency, to identify a signal at said resonant frequency within said range and measuring a change in an electrical parameter of said signal associated with the resonant circuit caused by changes in a concentration of ammonia in urea in said tank. 30
14. A system according to claim 13, wherein the controller further includes a compensation module functional to adjust the ammonia concentration signal for changes in ambient temperature. C:olrdMPEC-871047.dc 12
15. A system according to claim 13, wherein the controller further includes a compensation module functional to adjust the ammonia concentration signal for changes in temperature of the liquid in the tank. 5
16. A method substantially as herein described.
17. A system substantially as herein described and illustrated. CWWOM1'VC471O474oC 13
AU2012211484A 2007-05-08 2012-08-10 Liquid level and composition sensing systems and methods using EMF wave propagation Abandoned AU2012211484A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012211484A AU2012211484A1 (en) 2007-05-08 2012-08-10 Liquid level and composition sensing systems and methods using EMF wave propagation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/800,965 2007-05-08
AU2008299375A AU2008299375A1 (en) 2007-05-08 2008-05-05 Liquid level and composition sensing systems and methods
AU2012211484A AU2012211484A1 (en) 2007-05-08 2012-08-10 Liquid level and composition sensing systems and methods using EMF wave propagation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2008299375A Division AU2008299375A1 (en) 2007-05-08 2008-05-05 Liquid level and composition sensing systems and methods

Publications (1)

Publication Number Publication Date
AU2012211484A1 true AU2012211484A1 (en) 2012-08-30

Family

ID=46728275

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2012211484A Abandoned AU2012211484A1 (en) 2007-05-08 2012-08-10 Liquid level and composition sensing systems and methods using EMF wave propagation

Country Status (1)

Country Link
AU (1) AU2012211484A1 (en)

Similar Documents

Publication Publication Date Title
US8482298B2 (en) Liquid level and composition sensing systems and methods using EMF wave propagation
AU2006244091B2 (en) System and method for sensing the level and composition of liquid in a fuel tank
AU2007334349B2 (en) Fuel composition sensing systems and methods using EMF wave propagation
US7836756B2 (en) Fuel composition sensing systems and methods using EMF wave propagation
US20100327884A1 (en) Liquid level and quality sensing apparatus, systems and methods using EMF wave propagation
US9851235B2 (en) Apparatus for determining and/or monitoring at least one process variable of a medium
WO2006028751A1 (en) Harmonic wireless transponder sensor and method
EP3086116B1 (en) Wireless saw moisture sensor
AU2012211484A1 (en) Liquid level and composition sensing systems and methods using EMF wave propagation

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application