AU2012204467A2 - Generation of antibodies to tumor antigens and generation of tumor specific complement dependent cytotoxicity by administration of oncolytic vaccinia virus - Google Patents
Generation of antibodies to tumor antigens and generation of tumor specific complement dependent cytotoxicity by administration of oncolytic vaccinia virus Download PDFInfo
- Publication number
- AU2012204467A2 AU2012204467A2 AU2012204467A AU2012204467A AU2012204467A2 AU 2012204467 A2 AU2012204467 A2 AU 2012204467A2 AU 2012204467 A AU2012204467 A AU 2012204467A AU 2012204467 A AU2012204467 A AU 2012204467A AU 2012204467 A2 AU2012204467 A2 AU 2012204467A2
- Authority
- AU
- Australia
- Prior art keywords
- cancer
- tumor
- virus
- subject
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 286
- 239000000427 antigen Substances 0.000 title claims description 38
- 108091007433 antigens Proteins 0.000 title claims description 38
- 102000036639 antigens Human genes 0.000 title claims description 38
- 230000000174 oncolytic effect Effects 0.000 title claims description 34
- 241000700618 Vaccinia virus Species 0.000 title claims description 15
- 230000004540 complement-dependent cytotoxicity Effects 0.000 title description 127
- 244000309459 oncolytic virus Species 0.000 claims abstract description 104
- 239000000203 mixture Substances 0.000 claims abstract description 85
- 238000000034 method Methods 0.000 claims abstract description 67
- 230000004044 response Effects 0.000 claims abstract description 51
- 230000001404 mediated effect Effects 0.000 claims abstract description 28
- 230000010076 replication Effects 0.000 claims abstract description 23
- 241001465754 Metazoa Species 0.000 claims abstract description 21
- 230000000295 complement effect Effects 0.000 claims abstract description 20
- 230000001939 inductive effect Effects 0.000 claims abstract description 14
- 230000001419 dependent effect Effects 0.000 claims abstract description 12
- 230000007402 cytotoxic response Effects 0.000 claims abstract description 5
- 238000004519 manufacturing process Methods 0.000 claims abstract description 5
- 210000002966 serum Anatomy 0.000 claims description 156
- 210000004027 cell Anatomy 0.000 claims description 117
- 201000011510 cancer Diseases 0.000 claims description 110
- 238000011282 treatment Methods 0.000 claims description 63
- 241000282414 Homo sapiens Species 0.000 claims description 42
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 claims description 37
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 37
- 241000711975 Vesicular stomatitis virus Species 0.000 claims description 29
- 206010073071 hepatocellular carcinoma Diseases 0.000 claims description 28
- 241000700605 Viruses Species 0.000 claims description 23
- 230000000259 anti-tumor effect Effects 0.000 claims description 21
- 210000004369 blood Anatomy 0.000 claims description 16
- 239000008280 blood Substances 0.000 claims description 16
- 238000009169 immunotherapy Methods 0.000 claims description 16
- 208000006265 Renal cell carcinoma Diseases 0.000 claims description 15
- 238000000338 in vitro Methods 0.000 claims description 15
- 201000001441 melanoma Diseases 0.000 claims description 14
- 241000700584 Simplexvirus Species 0.000 claims description 13
- 108090000623 proteins and genes Proteins 0.000 claims description 13
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 12
- 238000001727 in vivo Methods 0.000 claims description 12
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 11
- 230000001225 therapeutic effect Effects 0.000 claims description 11
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 10
- 206010017758 gastric cancer Diseases 0.000 claims description 10
- 201000005202 lung cancer Diseases 0.000 claims description 10
- 208000020816 lung neoplasm Diseases 0.000 claims description 10
- 150000007523 nucleic acids Chemical group 0.000 claims description 10
- 206010041823 squamous cell carcinoma Diseases 0.000 claims description 10
- 201000011549 stomach cancer Diseases 0.000 claims description 10
- 206010060862 Prostate cancer Diseases 0.000 claims description 9
- 230000012010 growth Effects 0.000 claims description 9
- 208000014018 liver neoplasm Diseases 0.000 claims description 9
- 206010006187 Breast cancer Diseases 0.000 claims description 8
- 208000026310 Breast neoplasm Diseases 0.000 claims description 8
- 206010009944 Colon cancer Diseases 0.000 claims description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 8
- 239000002299 complementary DNA Substances 0.000 claims description 8
- 208000014829 head and neck neoplasm Diseases 0.000 claims description 8
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 7
- 108700019146 Transgenes Proteins 0.000 claims description 7
- 230000002147 killing effect Effects 0.000 claims description 7
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 7
- 238000011275 oncology therapy Methods 0.000 claims description 7
- 201000002528 pancreatic cancer Diseases 0.000 claims description 7
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 7
- 206010005003 Bladder cancer Diseases 0.000 claims description 6
- 206010005949 Bone cancer Diseases 0.000 claims description 6
- 208000018084 Bone neoplasm Diseases 0.000 claims description 6
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims description 6
- 201000008808 Fibrosarcoma Diseases 0.000 claims description 6
- 208000017604 Hodgkin disease Diseases 0.000 claims description 6
- 208000021519 Hodgkin lymphoma Diseases 0.000 claims description 6
- 208000010747 Hodgkins lymphoma Diseases 0.000 claims description 6
- 206010027406 Mesothelioma Diseases 0.000 claims description 6
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 claims description 6
- 206010030155 Oesophageal carcinoma Diseases 0.000 claims description 6
- 206010033128 Ovarian cancer Diseases 0.000 claims description 6
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 6
- 208000007913 Pituitary Neoplasms Diseases 0.000 claims description 6
- 201000005746 Pituitary adenoma Diseases 0.000 claims description 6
- 206010061538 Pituitary tumour benign Diseases 0.000 claims description 6
- 208000015634 Rectal Neoplasms Diseases 0.000 claims description 6
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 6
- 208000029742 colonic neoplasm Diseases 0.000 claims description 6
- 239000003814 drug Substances 0.000 claims description 6
- 201000004101 esophageal cancer Diseases 0.000 claims description 6
- 206010027191 meningioma Diseases 0.000 claims description 6
- 208000021310 pituitary gland adenoma Diseases 0.000 claims description 6
- 206010038038 rectal cancer Diseases 0.000 claims description 6
- 201000001275 rectum cancer Diseases 0.000 claims description 6
- 241000701161 unidentified adenovirus Species 0.000 claims description 6
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 6
- 239000013604 expression vector Substances 0.000 claims description 5
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- 201000007270 liver cancer Diseases 0.000 claims description 5
- 206010061289 metastatic neoplasm Diseases 0.000 claims description 5
- 229940124597 therapeutic agent Drugs 0.000 claims description 5
- 206010003571 Astrocytoma Diseases 0.000 claims description 4
- 241000711404 Avian avulavirus 1 Species 0.000 claims description 4
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 4
- 241000701022 Cytomegalovirus Species 0.000 claims description 4
- 206010014967 Ependymoma Diseases 0.000 claims description 4
- 208000000172 Medulloblastoma Diseases 0.000 claims description 4
- 206010029260 Neuroblastoma Diseases 0.000 claims description 4
- 201000004404 Neurofibroma Diseases 0.000 claims description 4
- 201000010133 Oligodendroglioma Diseases 0.000 claims description 4
- 206010039491 Sarcoma Diseases 0.000 claims description 4
- 208000024770 Thyroid neoplasm Diseases 0.000 claims description 4
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 4
- 239000002246 antineoplastic agent Substances 0.000 claims description 4
- 201000010881 cervical cancer Diseases 0.000 claims description 4
- 201000010099 disease Diseases 0.000 claims description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 4
- 208000005017 glioblastoma Diseases 0.000 claims description 4
- 201000010536 head and neck cancer Diseases 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims description 4
- 201000009020 malignant peripheral nerve sheath tumor Diseases 0.000 claims description 4
- 230000001394 metastastic effect Effects 0.000 claims description 4
- 208000007538 neurilemmoma Diseases 0.000 claims description 4
- 208000029974 neurofibrosarcoma Diseases 0.000 claims description 4
- 201000001514 prostate carcinoma Diseases 0.000 claims description 4
- 206010039667 schwannoma Diseases 0.000 claims description 4
- 208000013076 thyroid tumor Diseases 0.000 claims description 4
- 231100000588 tumorigenic Toxicity 0.000 claims description 4
- 230000000381 tumorigenic effect Effects 0.000 claims description 4
- 101150096316 5 gene Proteins 0.000 claims description 3
- 241000712079 Measles morbillivirus Species 0.000 claims description 3
- 241000700635 Orf virus Species 0.000 claims description 3
- 238000003306 harvesting Methods 0.000 claims description 3
- 108020003175 receptors Proteins 0.000 claims description 3
- 241001529453 unidentified herpesvirus Species 0.000 claims description 3
- 241000712461 unidentified influenza virus Species 0.000 claims description 3
- 102000013392 Carboxylesterase Human genes 0.000 claims description 2
- 108010051152 Carboxylesterase Proteins 0.000 claims description 2
- 241000709687 Coxsackievirus Species 0.000 claims description 2
- 102000000311 Cytosine Deaminase Human genes 0.000 claims description 2
- 108010080611 Cytosine Deaminase Proteins 0.000 claims description 2
- 241000702421 Dependoparvovirus Species 0.000 claims description 2
- 241001466953 Echovirus Species 0.000 claims description 2
- 241000713666 Lentivirus Species 0.000 claims description 2
- 241000711386 Mumps virus Species 0.000 claims description 2
- 241000700562 Myxoma virus Species 0.000 claims description 2
- 241000150452 Orthohantavirus Species 0.000 claims description 2
- 241000125945 Protoparvovirus Species 0.000 claims description 2
- 241000837158 Senecavirus A Species 0.000 claims description 2
- 241000710960 Sindbis virus Species 0.000 claims description 2
- 238000010367 cloning Methods 0.000 claims description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 54
- 230000006698 induction Effects 0.000 description 48
- 230000003833 cell viability Effects 0.000 description 41
- 230000000694 effects Effects 0.000 description 40
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 24
- 241001529936 Murinae Species 0.000 description 22
- 210000004881 tumor cell Anatomy 0.000 description 22
- 206010046865 Vaccinia virus infection Diseases 0.000 description 21
- 238000011534 incubation Methods 0.000 description 21
- 208000007089 vaccinia Diseases 0.000 description 21
- 230000014509 gene expression Effects 0.000 description 18
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 16
- 238000002347 injection Methods 0.000 description 15
- 239000007924 injection Substances 0.000 description 15
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 14
- 239000002953 phosphate buffered saline Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 201000009030 Carcinoma Diseases 0.000 description 13
- 102000046157 human CSF2 Human genes 0.000 description 13
- 239000012528 membrane Substances 0.000 description 12
- 238000002560 therapeutic procedure Methods 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 11
- 230000003247 decreasing effect Effects 0.000 description 11
- 102000004127 Cytokines Human genes 0.000 description 10
- 108090000695 Cytokines Proteins 0.000 description 10
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 10
- 238000002203 pretreatment Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 238000001990 intravenous administration Methods 0.000 description 9
- 230000009885 systemic effect Effects 0.000 description 9
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 8
- 230000005904 anticancer immunity Effects 0.000 description 8
- 238000010609 cell counting kit-8 assay Methods 0.000 description 8
- 239000012091 fetal bovine serum Substances 0.000 description 8
- 230000002601 intratumoral effect Effects 0.000 description 8
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 8
- 230000003389 potentiating effect Effects 0.000 description 8
- 230000004083 survival effect Effects 0.000 description 8
- 241000702263 Reovirus sp. Species 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 230000028993 immune response Effects 0.000 description 7
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 6
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 206010025323 Lymphomas Diseases 0.000 description 6
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 206010042971 T-cell lymphoma Diseases 0.000 description 6
- 230000003308 immunostimulating effect Effects 0.000 description 6
- 238000001802 infusion Methods 0.000 description 6
- 230000000977 initiatory effect Effects 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 230000035899 viability Effects 0.000 description 6
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 5
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 5
- 210000001744 T-lymphocyte Anatomy 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000003013 cytotoxicity Effects 0.000 description 5
- 231100000135 cytotoxicity Toxicity 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 230000029812 viral genome replication Effects 0.000 description 5
- 230000003442 weekly effect Effects 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- 208000009746 Adult T-Cell Leukemia-Lymphoma Diseases 0.000 description 4
- 208000016683 Adult T-cell leukemia/lymphoma Diseases 0.000 description 4
- 206010019695 Hepatic neoplasm Diseases 0.000 description 4
- 208000002971 Immunoblastic Lymphadenopathy Diseases 0.000 description 4
- 208000008839 Kidney Neoplasms Diseases 0.000 description 4
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 description 4
- 206010038389 Renal cancer Diseases 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 4
- 208000024313 Testicular Neoplasms Diseases 0.000 description 4
- 206010057644 Testis cancer Diseases 0.000 description 4
- 208000002495 Uterine Neoplasms Diseases 0.000 description 4
- 206010002449 angioimmunoblastic T-cell lymphoma Diseases 0.000 description 4
- 230000001093 anti-cancer Effects 0.000 description 4
- 230000008090 antitumoral immunity Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000001361 intraarterial administration Methods 0.000 description 4
- 201000010982 kidney cancer Diseases 0.000 description 4
- 102000005861 leptin receptors Human genes 0.000 description 4
- 108010019813 leptin receptors Proteins 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 238000002271 resection Methods 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- 201000003120 testicular cancer Diseases 0.000 description 4
- 230000036962 time dependent Effects 0.000 description 4
- 206010046766 uterine cancer Diseases 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- YXHLJMWYDTXDHS-IRFLANFNSA-N 7-aminoactinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=C(N)C=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 YXHLJMWYDTXDHS-IRFLANFNSA-N 0.000 description 3
- 108700012813 7-aminoactinomycin D Proteins 0.000 description 3
- 101100326580 Arabidopsis thaliana CAD4 gene Proteins 0.000 description 3
- 101100123053 Arabidopsis thaliana GSH1 gene Proteins 0.000 description 3
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 3
- 101150081304 CAD2 gene Proteins 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- 101150096994 Cdx1 gene Proteins 0.000 description 3
- 108010034753 Complement Membrane Attack Complex Proteins 0.000 description 3
- 102000003886 Glycoproteins Human genes 0.000 description 3
- 108090000288 Glycoproteins Proteins 0.000 description 3
- 101000946053 Homo sapiens Lysosomal-associated transmembrane protein 4A Proteins 0.000 description 3
- 102100034728 Lysosomal-associated transmembrane protein 4A Human genes 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 229930182555 Penicillin Natural products 0.000 description 3
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 3
- 101100381325 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PCA1 gene Proteins 0.000 description 3
- 208000009956 adenocarcinoma Diseases 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000006037 cell lysis Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000002512 chemotherapy Methods 0.000 description 3
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 3
- 230000004154 complement system Effects 0.000 description 3
- 238000011498 curative surgery Methods 0.000 description 3
- 230000009089 cytolysis Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 201000003444 follicular lymphoma Diseases 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 239000002955 immunomodulating agent Substances 0.000 description 3
- 229940121354 immunomodulator Drugs 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 229940049954 penicillin Drugs 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 229960004641 rituximab Drugs 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 238000002255 vaccination Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QRXMUCSWCMTJGU-UHFFFAOYSA-N 5-bromo-4-chloro-3-indolyl phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP(O)(=O)O)=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-N 0.000 description 2
- 102100027447 ATP-dependent DNA helicase Q1 Human genes 0.000 description 2
- 206010000830 Acute leukaemia Diseases 0.000 description 2
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 201000003076 Angiosarcoma Diseases 0.000 description 2
- 208000003950 B-cell lymphoma Diseases 0.000 description 2
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 2
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 description 2
- 208000005024 Castleman disease Diseases 0.000 description 2
- 206010057248 Cell death Diseases 0.000 description 2
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 2
- 206010007953 Central nervous system lymphoma Diseases 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 208000005243 Chondrosarcoma Diseases 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 102100031856 ERBB receptor feedback inhibitor 1 Human genes 0.000 description 2
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 208000001258 Hemangiosarcoma Diseases 0.000 description 2
- 101000580659 Homo sapiens ATP-dependent DNA helicase Q1 Proteins 0.000 description 2
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 2
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 2
- 206010053574 Immunoblastic lymphoma Diseases 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 208000007766 Kaposi sarcoma Diseases 0.000 description 2
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 2
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 2
- 208000018142 Leiomyosarcoma Diseases 0.000 description 2
- 102000016267 Leptin Human genes 0.000 description 2
- 108010092277 Leptin Proteins 0.000 description 2
- 206010052178 Lymphocytic lymphoma Diseases 0.000 description 2
- 208000032271 Malignant tumor of penis Diseases 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 206010027193 Meningioma malignant Diseases 0.000 description 2
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 208000002471 Penile Neoplasms Diseases 0.000 description 2
- 206010034299 Penile cancer Diseases 0.000 description 2
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 208000009052 Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- 208000017414 Precursor T-cell acute lymphoblastic leukemia Diseases 0.000 description 2
- 206010065857 Primary Effusion Lymphoma Diseases 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- 206010041067 Small cell lung cancer Diseases 0.000 description 2
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 2
- 101710172711 Structural protein Proteins 0.000 description 2
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 2
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 description 2
- 208000029052 T-cell acute lymphoblastic leukemia Diseases 0.000 description 2
- 201000011176 T-cell adult acute lymphocytic leukemia Diseases 0.000 description 2
- 208000000389 T-cell leukemia Diseases 0.000 description 2
- 208000028530 T-cell lymphoblastic leukemia/lymphoma Diseases 0.000 description 2
- 206010042987 T-cell type acute leukaemia Diseases 0.000 description 2
- 239000006180 TBST buffer Substances 0.000 description 2
- 206010043276 Teratoma Diseases 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- 208000023915 Ureteral Neoplasms Diseases 0.000 description 2
- 206010046392 Ureteric cancer Diseases 0.000 description 2
- 201000003761 Vaginal carcinoma Diseases 0.000 description 2
- 206010047741 Vulval cancer Diseases 0.000 description 2
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 201000005188 adrenal gland cancer Diseases 0.000 description 2
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 2
- 201000006966 adult T-cell leukemia Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 238000011319 anticancer therapy Methods 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 238000009566 cancer vaccine Methods 0.000 description 2
- 229940022399 cancer vaccine Drugs 0.000 description 2
- 230000022534 cell killing Effects 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 208000025997 central nervous system neoplasm Diseases 0.000 description 2
- 208000019065 cervical carcinoma Diseases 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 208000006990 cholangiocarcinoma Diseases 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 208000024207 chronic leukemia Diseases 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002648 combination therapy Methods 0.000 description 2
- 230000024203 complement activation Effects 0.000 description 2
- 238000004624 confocal microscopy Methods 0.000 description 2
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 241001493065 dsRNA viruses Species 0.000 description 2
- 238000001378 electrochemiluminescence detection Methods 0.000 description 2
- 239000003974 emollient agent Substances 0.000 description 2
- 210000000750 endocrine system Anatomy 0.000 description 2
- 201000003914 endometrial carcinoma Diseases 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 201000001343 fallopian tube carcinoma Diseases 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 208000015419 gastrin-producing neuroendocrine tumor Diseases 0.000 description 2
- 201000000052 gastrinoma Diseases 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 208000030316 grade III meningioma Diseases 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 230000005931 immune cell recruitment Effects 0.000 description 2
- 239000012642 immune effector Substances 0.000 description 2
- 230000008076 immune mechanism Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000028709 inflammatory response Effects 0.000 description 2
- 230000015788 innate immune response Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 229940039781 leptin Drugs 0.000 description 2
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 2
- 206010024627 liposarcoma Diseases 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 208000012804 lymphangiosarcoma Diseases 0.000 description 2
- 201000000289 malignant teratoma Diseases 0.000 description 2
- 208000026037 malignant tumor of neck Diseases 0.000 description 2
- 208000026045 malignant tumor of parathyroid gland Diseases 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 208000021039 metastatic melanoma Diseases 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 208000001611 myxosarcoma Diseases 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 201000003913 parathyroid carcinoma Diseases 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 2
- 230000000770 proinflammatory effect Effects 0.000 description 2
- 229940034080 provenge Drugs 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 230000007115 recruitment Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 201000007444 renal pelvis carcinoma Diseases 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 201000000849 skin cancer Diseases 0.000 description 2
- 208000000587 small cell lung carcinoma Diseases 0.000 description 2
- 201000002314 small intestine cancer Diseases 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229960003787 sorafenib Drugs 0.000 description 2
- 208000017572 squamous cell neoplasm Diseases 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 201000002510 thyroid cancer Diseases 0.000 description 2
- 208000013066 thyroid gland cancer Diseases 0.000 description 2
- 206010044412 transitional cell carcinoma Diseases 0.000 description 2
- 230000005747 tumor angiogenesis Effects 0.000 description 2
- 230000004565 tumor cell growth Effects 0.000 description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 2
- 201000011294 ureter cancer Diseases 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 201000004916 vulva carcinoma Diseases 0.000 description 2
- 208000013013 vulvar carcinoma Diseases 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- AXTGDCSMTYGJND-UHFFFAOYSA-N 1-dodecylazepan-2-one Chemical compound CCCCCCCCCCCCN1CCCCCC1=O AXTGDCSMTYGJND-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- VDABVNMGKGUPEY-UHFFFAOYSA-N 6-carboxyfluorescein succinimidyl ester Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=C2)OC(=O)C1=CC=C2C(=O)ON1C(=O)CCC1=O VDABVNMGKGUPEY-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 108091006112 ATPases Proteins 0.000 description 1
- 102000057290 Adenosine Triphosphatases Human genes 0.000 description 1
- 102100035984 Adenosine receptor A2b Human genes 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 241000272470 Circus Species 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 101710156695 ERBB receptor feedback inhibitor 1 Proteins 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 241000402362 Gekkonid adenovirus 1 Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 241000644555 Guppy reovirus Species 0.000 description 1
- 206010057110 Hepatic mass Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000783756 Homo sapiens Adenosine receptor A2b Proteins 0.000 description 1
- 101000920812 Homo sapiens ERBB receptor feedback inhibitor 1 Proteins 0.000 description 1
- 101000946040 Homo sapiens Lysosomal-associated transmembrane protein 4B Proteins 0.000 description 1
- 101001014223 Homo sapiens MAPK/MAK/MRK overlapping kinase Proteins 0.000 description 1
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 1
- 101001137535 Homo sapiens Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 Proteins 0.000 description 1
- 101001131829 Homo sapiens P protein Proteins 0.000 description 1
- 101000584908 Homo sapiens Ras-related protein Rab-1B Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 101000658157 Homo sapiens Thymosin beta-4 Proteins 0.000 description 1
- 101000838350 Homo sapiens Tubulin alpha-1C chain Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 241000710124 Human rhinovirus A2 Species 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 206010022004 Influenza like illness Diseases 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102100034726 Lysosomal-associated transmembrane protein 4B Human genes 0.000 description 1
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 1
- 102000000440 Melanoma-associated antigen Human genes 0.000 description 1
- 108050008953 Melanoma-associated antigen Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 102100021007 Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 Human genes 0.000 description 1
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 102100031243 Polypyrimidine tract-binding protein 3 Human genes 0.000 description 1
- 101710132760 Polypyrimidine tract-binding protein 3 Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 208000005585 Poxviridae Infections Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 102100029979 Ras-related protein Rab-1B Human genes 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 102100035000 Thymosin beta-4 Human genes 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 102100028985 Tubulin alpha-1C chain Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 108010087302 Viral Structural Proteins Proteins 0.000 description 1
- 102100023870 YLP motif-containing protein 1 Human genes 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 230000004721 adaptive immunity Effects 0.000 description 1
- 238000011360 adjunctive therapy Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229960000548 alemtuzumab Drugs 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000011224 anti-cancer immunotherapy Methods 0.000 description 1
- 229940124650 anti-cancer therapies Drugs 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 230000002137 anti-vascular effect Effects 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 238000000339 bright-field microscopy Methods 0.000 description 1
- 230000005880 cancer cell killing Effects 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 238000013043 cell viability test Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000002681 cryosurgery Methods 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229960003529 diazepam Drugs 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 241001492478 dsDNA viruses, no RNA stage Species 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000012645 endogenous antigen Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 238000012757 fluorescence staining Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 210000002767 hepatic artery Anatomy 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 102000049409 human MOK Human genes 0.000 description 1
- 102000047119 human OCA2 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000002584 immunomodulator Effects 0.000 description 1
- 238000011293 immunotherapeutic strategy Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 231100000405 induce cancer Toxicity 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 210000005007 innate immune system Anatomy 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000002430 laser surgery Methods 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 108010045758 lysosomal proteins Proteins 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 238000011587 new zealand white rabbit Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003571 opsonizing effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 238000011499 palliative surgery Methods 0.000 description 1
- 229960001972 panitumumab Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000011555 rabbit model Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 108700042226 ras Genes Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 208000015347 renal cell adenocarcinoma Diseases 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 230000037455 tumor specific immune response Effects 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 229940124954 vaccinia virus vaccine Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 210000000605 viral structure Anatomy 0.000 description 1
- 229960004854 viral vaccine Drugs 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/275—Poxviridae, e.g. avipoxvirus
- A61K39/285—Vaccinia virus or variola virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/26—Lymph; Lymph nodes; Thymus; Spleen; Splenocytes; Thymocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
- A61K35/761—Adenovirus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
- A61K35/763—Herpes virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
- A61K35/768—Oncolytic viruses not provided for in groups A61K35/761 - A61K35/766
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001102—Receptors, cell surface antigens or cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001102—Receptors, cell surface antigens or cell surface determinants
- A61K39/001103—Receptors for growth factors
- A61K39/001106—Her-2/neu/ErbB2, Her-3/ErbB3 or Her 4/ErbB4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001154—Enzymes
- A61K39/001164—GTPases, e.g. Ras or Rho
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/125—Picornaviridae, e.g. calicivirus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/145—Orthomyxoviridae, e.g. influenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/155—Paramyxoviridae, e.g. parainfluenza virus
- A61K39/165—Mumps or measles virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/155—Paramyxoviridae, e.g. parainfluenza virus
- A61K39/17—Newcastle disease virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/205—Rhabdoviridae, e.g. rabies virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/235—Adenoviridae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/245—Herpetoviridae, e.g. herpes simplex virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
- A61K2039/507—Comprising a combination of two or more separate antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55522—Cytokines; Lymphokines; Interferons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/10—Immunoglobulins specific features characterized by their source of isolation or production
- C07K2317/14—Specific host cells or culture conditions, e.g. components, pH or temperature
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/734—Complement-dependent cytotoxicity [CDC]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16611—Simplexvirus, e.g. human herpesvirus 1, 2
- C12N2710/16632—Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16611—Simplexvirus, e.g. human herpesvirus 1, 2
- C12N2710/16634—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/24011—Poxviridae
- C12N2710/24034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/24011—Poxviridae
- C12N2710/24111—Orthopoxvirus, e.g. vaccinia virus, variola
- C12N2710/24132—Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2720/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
- C12N2720/00011—Details
- C12N2720/12011—Reoviridae
- C12N2720/12211—Orthoreovirus, e.g. mammalian orthoreovirus
- C12N2720/12232—Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18111—Avulavirus, e.g. Newcastle disease virus
- C12N2760/18134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18411—Morbillivirus, e.g. Measles virus, canine distemper
- C12N2760/18434—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18711—Rubulavirus, e.g. mumps virus, parainfluenza 2,4
- C12N2760/18734—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/20011—Rhabdoviridae
- C12N2760/20034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/20011—Rhabdoviridae
- C12N2760/20211—Vesiculovirus, e.g. vesicular stomatitis Indiana virus
- C12N2760/20232—Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/32011—Picornaviridae
- C12N2770/32034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/32011—Picornaviridae
- C12N2770/32311—Enterovirus
- C12N2770/32334—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/36011—Togaviridae
- C12N2770/36034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Virology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Oncology (AREA)
- Organic Chemistry (AREA)
- Cell Biology (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Pulmonology (AREA)
- Hematology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Urology & Nephrology (AREA)
- Wood Science & Technology (AREA)
- Developmental Biology & Embryology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Communicable Diseases (AREA)
Abstract
The present invention relates to methods and compositions for use in inducing tumor-specific antibody mediated complement-dependent cytotoxic response in an animal having a tumor comprising administering to said animal a composition comprising a replication competent oncolytic virus wherein administration of the composition induces in the animal production of antibodies that mediate a CDC response specific to said tumor.
Description
WO 2012/094386 PCT/US2012/020173 FIG. 1. 3479F/R 2933F/R 3996F/R 3742F/R 3268F/R F5-R5 BM11C1-R14 515Dbm1 CAD2 (5.9 kb) and 6XN442 CAD2 (5.9 kb) 2933F/R 1022F/R 3444 bp insertion 3268F/R 3742F/R 547F/R 1995F/R 1501F/R 2687F/2643R 2132FF/R5 BM11C1-R14 F 5 / 1 4 9 R --------------- --------------- ---L- ------------ 3996F/R 3479F/R DASbml CAD2 (9.3 kb) AA insertion de 3444 pb WO 2012/094386 PCT/US2012/020173 -2 cancer vaccines are needed to express multiple tumor antigens, cytokines, immune cell recruitment and activation, and immune response danger signals. [0005] In contrast, oncolytic viruses were developed to take advantage of viruses' natural ability to infect, multiply within and subsequently lyse cancer cells' 1 14 . First generation oncolytic viruses were inherently cancer-selective (e.g. reovirus 15
~
16 , VSV17~ 18) whereas second-generation agents were engineered for cancer selectivity (e.g. adenovirus 1 9
-
20 and herpes simplex virus 21
-
22 deletion mutants). Clinical trial data with these agents demonstrated safety and cancer selectivity, but therapeutic potency was limited both after direct intratumoral or intravenous injection 23 ; systemic spread and/ or reproducible delivery to distant tumors were limited, however. Systemic anti-cancer potency and blood-borne delivery to metastatic tumors therefore had to be improved. [0006] Given both the potential and the limitations with each of these three individual virus-based approaches, we asked whether it was possible to combine and optimize the best attributes of each into a single therapeutic agent. Targeted and armed oncolytic poxviruses have the potential to do so. JX-594 is a 3rd-generation oncolytic poxvirus therapeutic designed to have three complementary MOA including: 1) direct replication-mediated oncolysis, and 2) active cancer vaccination. JX-594 is a Wyeth vaccinia virus vaccine-derived oncolytic with disruption of the viral thymidine kinase gene and expression of the human granulocyte-monocyte colony stimulating factor (hGM-CSF) and p-galactosidase transgenes under control of the synthetic early-late and p7.5 promoters, respectively 24 . Vaccinia was used as the virus backbone because of its stability in blood for blood-borne delivery to tumors 25 . JX-594 is designed to induce cancer vaccination through simultaneous cancer cell lysis and endogenous tumor antigen release, expression of hGM-CSF to support antigen-presenting cell activation, recruitment of immune effector cells and proinflammatory cytokine induction. Clearance of vaccinia itself is primarily via infected cell clearance through cell-mediated immune mechanisms. [0007] The inventors have now discovered a new method of treatment of cancer using oncolytic viruses to address the need in the art for new cancer therapies.
WO 2012/094386 PCT/US2012/020173 -3 BRIEF SUMMARY OF THE INVENTION [0008] The present invention relates to methods and compositions for use in inducing tumor-specific antibody mediated complement-dependent cytotoxic response in an animal having a tumor comprising administering to the animal a composition comprising a replication competent oncolytic virus wherein administration of the composition induces in the animal production of antibodies that mediate a CDC response specific to the tumor. [0009] In specific embodiments, the invention provides methods of inducing tumor-specific antibody mediated complement-dependent cytotoxic response in an animal having a tumor comprising administering to the animal a composition comprising a replication competent oncolytic virus wherein administration of the composition induces antibodies in the animal that mediate a CDC response specific to the tumor. More particularly, the administration of the oncolytic virus does not induce CDC response in an animal that does not have a tumor. [0010] The oncolytic virus may be any oncolytic virus. Exemplary such viruses may be selected from the group consisting of a poxvirus, adenovirus, adeno-associated virus, herpes simplex virus, Newcastle disease virus, vesicular stomatitis virus, mumps virus, influenza virus, Parvovirus, measles virus, human hanta virus, myxoma virus, cytomegalovirus (CMV), lentivirus, Coxsackievirus, Echoviruses, Seneca Valley Virus and Sindbis virus. In specific embodiments, the oncolytic virus is an oncolytic poxvirus. Specific examples of oncolytic viruses that may be used include for example mutated vaccinia virus expressing GM-CSF, p53 expressing viruses, vesicular stomatitis virus (VSV), ONYX-15, Delta24, adenoviruses mutated in the VA1 region, vaccinia viruses mutated in the K3L or E3L region, Telomelysin, Telomelysin-GFP, parapoxvirus orf viruses mutated in the OV20.OL gene, Genelux virus, and herpes viruses mutated in the gamma (1)34.5 gene. In a specific exemplary embodiment, the oncolytic poxvirus is JX 594. The oncolytic virus may comprise therapeutic or other transgene. For example, the transgene may be a heterologous nucleic acid sequence encodes GM-CSF, or other cytokine, chemokine, marker and/or imaging gene, suicide gene, prodrug enzyme genes carboxyl esterase and cytosine deaminase, tumor suppressor gene and the like.
WO 2012/094386 PCT/US2012/020173 -4 [0011] The tumor against which the antibodies are raised may be any tumor including but not limited to a tumor selected from the group consisting of astrocytoma, oligodendroglioma, meningioma, neurofibroma, glioblastoma, ependymoma, Schwannoma, neurofibrosarcoma, neuroblastoma, pituitary adenoma, medulloblastoma, head and neck cancer, melanoma, prostate carcinoma, renal cell carcinoma, pancreatic cancer, breast cancer, lung cancer, colon cancer, gastric cancer, bladder cancer, liver cancer, bone cancer, rectal cancer, ovarian cancer, sarcoma, gastric cancer, esophageal cancer, cervical cancer, fibrosarcoma, squamous cell carcinoma, neurectodermal, thyroid tumor, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hepatoma, mesothelioma, epidermoid carcinoma, and tumorigenic diseases of the blood. [0012] Also included is a method of generating in vivo antibodies that mediate an anti-tumor CDC response comprising administering to a subject a composition comprising a replication competent oncolytic virus wherein administration of the composition induces antibodies that mediate a CDC response specific to the tumor. The method may further comprise harvesting blood from the subject after the administration and isolating CDC-response producing antibodies from the blood. [0013] Also contemplated is a composition comprising CDC-response producing antibodies isolated from the blood of a subject that has been treated with a replication competent oncolytic virus in an amount and manner effective to induce antibodies that mediate a CDC response specific to a tumor. In specific embodiments, the composition is serum collected from the subject. [0014] Also contemplated is a method of inhibiting the growth of or killing a cancer cell comprising contacting the cancer cell with a composition of the invention. In specific embodiments, the contacting comprises contacting cancer cells in vitro with the composition. In other embodiments, the contacting comprises infusing a subject having cancer with a composition comprising harvested antibodies, harvested B cells, antibodies produced by the harvested B cells or a combination thereof. In the treatment methods of the invention, the cancer cell may be in vivo in a subject and the contacting comprising administering a medicament comprising the composition. In additional WO 2012/094386 PCT/US2012/020173 -5 embodiments, the treatment methods may further comprise administering to the subject a further anti-cancer therapeutic agent. [0015] The invention further comprises methods of treating a cancer subject comprising administering to the subject composition comprising a composition of the invention that comprises CDC-response producing antibodies isolated from the blood of a subject that has been treated with a replication competent oncolytic virus in an amount and manner effective to induce antibodies that mediate a CDC response specific to a tumor. In some embodiments, the composition is autologous to the patient and is isolated from the cancer patient and reinfused into the cancer patient. In other embodiments, the composition is heterologous to the cancer patient is isolated from a cancer patient that is different from the cancer patient being treated with the composition. In either case, the subject may be treated with a further anticancer therapeutic agent. [0016] In the treatment methods of the invention the cancer subject may have a solid tumor, and the composition is administered intratumorally, intravenously, intraperitoneally or a combination thereof. In specific embodiments, the cancer subject has a solid tumor that is resected prior to, concurrently or subsequent to administering the composition of the invention. In some embodiments, the cancer subject has a solid tumor and the composition reduces the size of the tumor. In other embodiments, the cancer subject has a solid tumor and the administration reduces metastatic spread of the solid tumor. In the treatment methods, the cancer may be selected from the group consisting of astrocytoma, oligodendroglioma, meningioma, neurofibroma, glioblastoma, ependymoma, Schwannoma, neurofibrosarcoma, neuroblastoma, pituitary adenoma, medulloblastoma, head and neck cancer, melanoma, prostate carcinoma, renal cell carcinoma, pancreatic cancer, breast cancer, lung cancer, colon cancer, gastric cancer, bladder cancer, liver cancer, bone cancer, rectal cancer, ovarian cancer, sarcoma, gastric cancer, esophageal cancer, cervical cancer, fibrosarcoma, squamous cell carcinoma, neurectodermal, thyroid tumor, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hepatoma, mesothelioma, epidermoid carcinoma, and tumorigenic diseases of the blood.
WO 2012/094386 PCT/US2012/020173 -6 [0017] The invention also provides a teaching of methods of tailoring a cancer therapy for a subject having cancer comprising: a) administering to the subject a composition comprising a replication competent oncolytic virus wherein administration of the composition induces in the subject production of antibodies that mediate a CDC response specific to the cancer in the subject; b) isolating blood from the subject wherein the blood comprises harvested antibodies, harvested B cells against the cancer; c) expanding or isolating the antibodies or producing antibodies from the B cells; to produce an immunotherapy composition specific for the subject and d) administering the subject with the immunotherapy composition of step (c). In such methods, the immunotherapy composition may be administered in immediately upon isolation of the antibodies. Alternatively, the immunotherapy composition is stored for further therapeutic treatment of the subject. [0018] A further aspect of the invention relates to a method of identifying a tumor specific antigen comprising cloning a cDNA library prepared from a cancer cell into an expression vector; performing a primary immunoscreen by contacting the expression vector with serum from a subject that has been treated with that has been treated with a replication competent oncolytic virus in an amount and manner effective to induce antibodies that mediate a CDC response specific to a tumor wherein the serum is isolated from the subject after administration of the oncolytic virus and generation of the CDC specific response; and isolating antigens from the cDNA library that are recognized by the serum. BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS [0019] For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the following accompanying drawings. [0020] Fig. 1: Serum effect of JX-594 injected into VX2 tumor bearing rabbit. Serum was collected at baseline, 3 weeks and 6 weeks post JX-594 or PBS treatment.
WO 2012/094386 PCT/US2012/020173 -7 VX2 was isolated from VX2 tiuues enzymatically and maintained in vitro with Dulbecoo's modified Eagle's medium (DMEM) with 10 % FBS for 8 passages. Fig. 1A, Death of isolated VX2 tumor cell but not of rabbit PBMC by JX-594 injected but not by PBS injected serum into VX2 bearing but not into normal rabbit. 3% Serum obtained from JX594 injected into (normal vs. VX2 bearing rabbit) or PBS injected VX2 bearing rabbit were treated (each animal (n=3 for each condition, triplicates from each serum sample meaning reaction No.=9 for each) in isolated VX2 cells or rabbit PBMC. Fig. 2B, Time dependent antitumoral effect of serum against isolated VX2 cells after JX-594 injection into vx2 bearing rabbit. JX-594 (109 pfu for each rabbit) was injected at day 0 and day 7 and serum was serially obtained at each point. Fig. 2C, Dose dependent antitumoral effect of serum agains isolated VX2 cells after JX-594 injection into VX2 bearing rabbit. Fig. 2D, Western blotting of JX-594 injected serum. [0021] Figure 2A. Representative confocal microscopy of human RCC SNU349 cell line after treatment of JX-594 injected human serum (at day 92 after four cycle JX 594 injection into #301 renal cellular carcinoma patient). a, d - before serum (5%) addition; b, e -10 min later after serum (5%) addition, c, f - 30 min later after serum (5%) addition (no fluoresecent at 30 min, not displayed); g - magnified of yellow area in a, h - magnified view of red area in b (please note cell lysis via Membrane attack formation (MAF) which is typical of CDC effect; red arrows). [0022] Fig. 2B Change in cell viability of different types of human renal cellular carcinoma cell (RCC) lines after 5 % serum obtained from #301 RCC patient (at day 92 after four cycle JX-594 injection). Asterisk indicate each JX-594 injection. [0023] Fig. 2C Change in cell viability of different types of lung cancer cell lines after 5 % serum obtained from #103 lung cancer patient (at day 92 after four cycle JX 594 injection). Asterisk indicate each JX-594 injection. [0024] Fig. 3. Evidence for generation of antibody-mediated complement dependent cancer cell cytolysis after JX-594 multiple treatment in treatment-refractory solid tumor patients. A. Diagram to show different types of serum from same patient. (a) Base line naive serum before JX-594 treatment (designated as A serum); (b) Serum obtained at day 92 post JX-594 treatment (designated as B serum); (c) B serum was WO 2012/094386 PCT/US2012/020173 -8 treated at 56 OC for 30 min for complement heat inactivation (designated as C serum); (d) 50 % A serum was added into 50 % C serum (designated as D serum). Fig. 3B serum was treated by Ig removal resin (ProreoExtract*Albumin/lg Kit, Calbiochem) column (designated as E serum). [0025] Fig. 3C. Representative light microscopy of human cancer cell line after treatment of B, C or D serum (5 % for each). Photomicroscopy was taken at 4 hour post treatment of B, C or D serum obtained from #301 RCC patient in SNU349 RCC cell line. [0026] Fig. 3D Effect of duration of heat treatment in loss of cancer cell killing ability. (a) After addition of same volume of Naive serum (A serum) into heat inactivated C serum, this mixture serum was added into cultured A2790 or SNU349 cells. The killing effect of serum was significantly recovered suggesting complement addition into cancer specific antibody containing B serum. In CDC, antigen-antibody complex is major activator of complement. Antibody determines target specificity while complement activiation induce cell lysis via formation of membrane attack complex (MAC). (b) Finally B serum was eluted by IgG removal column (ProreoExtract*Albumin/Ig Kit, Calbiochem) which caused loss of killing activity suggesting IgG may be critical for CDC. [0027] Fig. 4 Profile of complement dependent cytotoxicity (CDC) for selected JX 594 treated patients in different types of human cancer cell lines. CDC activity was displayed as reverse ratio of cell viability by 5 % serum (archival samples of day 42 - 92 and day 56 post JX-594 treatment for phase 1 patients and for phase 2 patients were used) to by baseline naive 5% serum from each patient. a-d. Profile of CDC activity in different human can cell lines and normal cell lines by serum from JX-594 treated #301 RCC (a), #304 melanoma (b), #1702 HCC (c), and #1705 HCC (d) patients. [0028] Fig. 5. Overall analysis of CDC activity after JX-594 treatment in patients enrolled into Phase 1 (primary and metastatic hepatic mass) and Phase 2 JX-594 clinical trial (Hepatocellular carcinoma). Fig. 5A Phase 1 patients: Survival vs. reverse of CDC activity in A2780 cells. Fig. 5B Time dependent CDC change of Phase 2 patients (n=18) in different HCC cell line. Fig. 5C - 5E CDC profile of serum from CDC responder patients in different human HCC cell lines SUN739 (C), SNU475 (D) or WO 2012/094386 PCT/US2012/020173 -9 SNU449 (E). Responder was designated < 80 % cell viability at Day 56 post JX-594 treatment. [0029] Fig. 6 Western blotting of human serum obtained from JX-594 injected patients. [0030] Fig. 7 Sorafenib and sunitib synergism in vitro and in vivo with JX-594 injected serum. [0031] Fig. 8 Method Overview for Serex. [0032] Fig. 9 Oncolytic vaccinia, GM-CSF and reovirus effects on induction of tumor-specific antibodies mediating CDC. This figure shows % A2780 cell viability when compared to pre-treatment control following 3h incubation with indicated serum concentrations. Serum collected from VX2 tumor-bearing rabbits treated intravenously with the interventions indicated. [0033] Fig. 10 Oncolytic vaccinia, GM-CSF and VSV effects on induction of tumor-specific antibodies mediating CDC on human cancer cells. This figure shows % A2780 cell viability when compared to pre-treatment control following 3h incubation with indicated serum concentrations. Serum collected from VX2 tumor-bearing rabbits treated intravenously with the interventions indicated. [0034] Fig. 11 Oncolytic HSV and VSV-GM-CSF effects on induction of tumor specific antibodies mediating CDC on human cancer cells. This figure shows % A2780 cell viability when compared to pre-treatment control following 3h incubation with indicated serum concentrations. Serum collected from VX2 tumor-bearing rabbits treated intravenously with the interventions indicated. [0035] Fig. 12 Oncolytic vaccinia, GM-CSF and VSV effects on induction of tumor-specific antibodies mediating CDC on rabbit cancer cells derived from the in vivo target tumor. This figure shows % VX2 cell viability when compared to pre-treatment control following 24h incubation with 3% post-treatment serum spiked with 7% serum collected before VX2 implantation. Serum collected from VX2 tumor-bearing rabbits treated intravenously with the oncolytic viruses is indicated on the x axis.
WO 2012/094386 PCT/US2012/020173 -10 [0036] Fig. 13 Oncolytic vaccinia and murine GM-CSF expression mediate induction of tumor-specific antibodies mediating CDC in a murine tumor model. This fifure shows % A2780 cell viability when compared to pre-treatment control following 24 h incubation with 5% post-treatment serum. Serum collected from CT26 tumor-bearing mice treated intravenously with the oncolytic viruses is indicated on the x axis. DETAILED DESCRIPTION OF THE INVENTION [0037] Oncolytic viruses cause virus replication-dependent cancer cytolysis as their primary mechanism of action, yet the induction of cancer-specific immunity can be a major efficacy mediator in preclinical models as well. However, functional anti-cancer immunity induction has not been demonstrated in cancer patients to date. JX-594 is a targeted oncolytic vaccinia virus engineered to express human granulocyte-macrophage colony stimulating factor (GM-CSF) in order to augment the induction of anti-cancer immunity. JX-594 has demonstrated replication and GM-CSF expression, associated with tumor responses in patients on clinical trials. [0038] In the present invention, inventors discovered that JX-594 mediated induction of functional, anti-tumoral immunity induction both in rabbits and subsequently in patients with primary or metastatic liver tumors. Antibody-mediated complement dependent cancer cell cytotoxicity (CDC) was induced by JX-594 treatment in rabbits and patients with diverse array of tumor types on a Phase 1 trial. CDC induction was subsequently confirmed in patients on a Phase 2 trial in hepatocelluar carcinoma. Significant CDC was still evident even at 1-5% serum in many cases. CDC responses were more common against tumor cell lines of the same histology as that of the patient. Normal cells Were resistant to CDC effects. Patients with the longest survival duration had the highest CDC activity. To our knowledge, this is the first proof of 1) the induction of functional anti-cancer immunity by an oncolytic virus in patients, 2) induction of CDC by a therapeutic virus in cancer patients, and 3) the ability of a product to vaccinate patients with a diverse array of tumor types and without reliance on expression of a defined target antigen. [0039] In addition, the inventors performed a SEREX screen was performed to identify target antigens recognized by polyclonal antibodies induced by JX-594 WO 2012/094386 PCT/US2012/020173 -11 treatment. In addition to direct a cytolytic effect, JX-594 treatment results in the induction of functional systemic cancer-targeting antibodies and CDC in solid tumor patients. Furthermore, treatment with JX-594 can be used as a method to identify relevant tumor antigens in patients with various cancer types. [0040] To briefly further describe the findings upon which the present invention is based, the inventors found that in the Phase 1 clinical trial in patients with treatment refractory liver tumors, JX-594 demonstrated cancer-specific replication, GM-CSF expression, white blood cell stimulation (neutrophils, eosinophils and monoctyes) and objective cancer responses after intratumoral injections (2-8 total, every three weeks); infection and efficacy against non-injected tumors were also demonstrated 2 6 . A Phase 2 trial was initiated to evaluate three biweekly intratumoral injections in patients with hepatocellular carcinoma (HCC); preliminary anti-tumoral activity has also been observed on Phase 2 trial. Safety has been acceptable to date, with transient flu-like symptoms being the most common side-effects. An HSV deletion mutant expressing hGM-CSF 27 demonstrated tumor responses to melanoma in a Phase 2 clinical trial. [0041] While virus replication and transgene expression have been reproducibly demonstrated in clinical trials, systemic anti-cancer immunity induction is only beginning to be investigated 28 . However, directly functional immune mechanisms have not been demonstrated. The utility of JX-594 and other immunostimulatory viruses, and the design of future oncolytic products, would be improved dramatically if the anti-cancer immune responses in treated patients could be elucidated. The inventors therefore sought to assess anti-cancer immunity during and after JX-594 therapy. [0042] The inventors additionally evaluated immunity induction in preclinical models and subsequently in patients with liver tumors on both Phase 1 and 2 trials. Archival serum samples obtained at baseline and over time following JX-594 therapy were available for assessment. Antibody-mediated complement-dependent cytotoxicity (CDC) is a potent mechanism of cell killing 3 0 and CDC activity against tumor cell lines is a direct measure of functional systemic anti-cancer immunity. The inventors also assessed the impact of JX-594 on the induction of antibody-mediated CDC in patients' blood against a panel of tumor cell lines of different histologies over time. The date WO 2012/094386 PCT/US2012/020173 -12 presented herein provide the first clear demonstration of 1) the induction of functional anti-cancer immunity by an oncolytic virus in patients, 2) induction of CDC by a therapeutic virus in cancer patients, and 3) the ability of a product to vaccinate patients with a diverse array of tumor types and without reliance on expression of a defined target antigen. [0043] This invention is based on the discovery that oncolytic viruses can produce an antibody-mediated tumor specific CDC response. In specific embodiments, it is contemplated that recombinant oncolytic viruses having one or more nucleic acid sequences that encode immunomodulatory polypeptides, such as polypeptides that attenuate the innate immune response or inflammatory response. [0044] In specific studies performed with oncolytic viruses, the inventors demonstrated that virus replication is important in inducing anti-tumor antibodies mediating CDC. Numerous experiments (see Figs. 9-13 for example) demonstrated lack of CDC induction in serum collected from animals treated with UV inactivated control viruses. Of the various oncolytic viruses used, it was seen that vaccinia virus is best at inducing anti-tumor antibodies mediating CDC, however HSV and VSV also are effective. Specifically, HSV then VSV have an intermediate phenotype but reovirus was not shown to be able to induce CDC in models tested. [0045] Based on virus biology, different levels of CDC response can be observed; and from the data observations, it may be postulated that (enveloped) dsDNA viruses are most potent at inducing anti-tumor antibodies that mediate CDC. [0046] In addition, the studies showed that GM-CSF expression from oncolytic viruses may potentiate ability of virus to induce anti-tumor antibodies mediating CDC. These studies show in principle that immunostimulatory cytokines, of which GM-CSF can be used as an example, expressed in oncolytic oncolytic virus replication may be used to augment the ability of such oncolytic viruses to induce anti-tumor antibodies mediating CDC. [0047] The oncolytic virus may be selected from the group consisting of vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), retrovirus, measles virus, Sinbis virus, influenza virus, herpes simplex virus, vaccinia virus, and adenovirus, or the like, WO 2012/094386 PCT/US2012/020173 -13 or a recombinant variant thereof. Exemplary oncolytic viruses that may be useful include oncolytic virus selected from the group consisting of JX-594, p53 expressing viruses, reovirus, vesicular stomatitis virus (VSV), ONYX-15, Delta24, adenoviruses mutated in the VA1 region, vaccinia viruses mutated in the K3L or E3L region, Telomelysin, Telomelysin-GFP, parapoxvirus orf viruses mutated in the OV20.OL gene, and herpes viruses mutated in the 1134.5 gene. In specific exemplary embodiments the oncolytic virus is JX-594. [0048] The heterologous nucleic acid sequence may be any therapeutic protein that is to be delivered by the oncolytic virus. [0049] In still another embodiment, the recombinant oncolytic virus further comprises one or more heterologous viral internal ribosome entry site (IRES) that is neuronally-silent and operably linked to at least one nucleic acid sequence that encodes an oncolytic virus polypeptide needed for virus gene expression, replication or propagation, such as a polymerase (e.g., viral RNA-dependent RNA polymerase or DNA polymerase); a structural protein (e.g., nucleocapsid protein, phosphoprotein, or matrix protein); or a glycoprotein (e.g., envelope protein). In a further embodiment, the recombinant oncolytic virus has two or three IRESs and each is operably linked to a different nucleic acid sequence that encodes an oncolytic virus polypeptide. For exmple, one IRES may be linked to an oncolytic virus polymerase and a second IRES may be linked to a structural protein or a glycoprotein. In yet a further embodiment, the recombinant oncolytic virus has a first IRES operably linked to a nucleic acid sequence that encodes an oncolytic virus polymerase; a second IRES operably linked to a nucleic acid sequence that encodes an oncolytic virus glycoprotein; and a third IRES operably linked to a nucleic acid sequence that encodes an oncolytic virus structural protein. In another embodiment, the IRES is a picornavirus IRES, such as a type I IRES from a Rhinovirus, such as a human Rhinovirus 2, or a Foot and Mouth Disease virus or any combination thereof. [0050] In specific aspects of the present invention, the oncolytic virus is used to induce a tumor-specific antibody mediated complement-dependent cytotoxic response in an animal having a tumor comprising administering to said animal a composition WO 2012/094386 PCT/US2012/020173 -14 comprising a replication competent oncolytic virus wherein administration of said composition produces antibodies that mediate a CDC response specific to said tumor. In doing so the oncolytic virus may be used in order to inhibit the growth or promote the killing of a tumor cell. [0051] The methods generally will comprise administering the recombinant oncolytic virus at a multiplicity of infection sufficient to induce a tumor-specific antibody mediated CDC response in the animal to which it is administered. The tumor cell may be any tumor cell against which an anti-tumor response is desired. The cell may be contacted with the oncolytic virus in vivo, ex vivo, or in vitro. [0052] In some embodiments, the oncolytic virus is administered to an animal in vivo. The administration may be intravascularly into a vein or an artery. For example, in the case of a hepatic tumor, the oncolytic virus may be administered to a hepatic artery via an in-dwelling medical device such as a catheter. In other embodiments, the recombinant oncolytic virus may be administered intravascularly, intratumorally, or intraperitoneally. [0053] In specific embodiments, the methods of the invention relate to treatment of a cancer in a human patient by generating in said human a tumor-specific antibody mediated CDC response against the specific tumor experienced by said human. For example, such methods comprise the step of administering one or more oncolytic virus as described herein at an MOI that is sufficient to produce a tumor-specific antibody mediated CDC response. It is contemplated that this response will be sufficient to retard the growth of and/or kill a tumor cell in the human patient. In some embodiments, the response will be useful in treating a tumor in situ by directly administering to the patient the oncolytic virus. In other embodiments, it is contemplated that the tumor cells of the subject are removed and a tumor-specific antibody mediated CDC response is generated against said tumor cells ex vivo. The antibodies produced in this ex vivo response are then administered to the tumor patient in an autologous therapy for the cancer in the subject. Alternatively, the antibodies produced may be administered to a different subject than the individual from whom the tumor cells are initially obtained.
WO 2012/094386 PCT/US2012/020173 -15 [0054] It should be understood that the use of oncolytic viruses described herein for generating a tumor-specific antibody mediated CDC response will find utility in the treatment of a wide range of tumor cells or cancers including, for example, breast cancer (e.g., breast cell carcinoma), ovarian cancer (e.g., ovarian cell carcinoma), renal cell carcinoma (RCC), melanoma (e.g., metastatic malignant melanoma), prostate cancer, colon cancer, lung cancer (including small cell lung cancer and non-small cell lung cancer), bone cancer, osteosarcoma, rhabdomyosarcoma, leiomyosarcoma, chondrosarcoma, pancreatic cancer, skin cancer, fibrosarcoma, chronic or acute leukemias including acute lymphocytic leukemia (ALL), adult T-cell leukemia (T-ALL), acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, chronic lymphocytic leukemia, lymphangiosarcoma, lymphomas (e.g., Hodgkin's and non-Hodgkin's lymphoma, lymphocytic lymphoma, primary CNS lymphoma, T-cell lymphoma, Burkitt's lymphoma, anaplastic large-cell lymphomas (ALCL), cutaneous T cell lymphomas, nodular small cleaved-cell lymphomas, peripheral T-cell lymphomas, Lennert's lymphomas, immunoblastic lymphomas, T-cell leukemia/lymphomas (ATLL), entroblastic/centrocytic (cb/cc) follicular lymphomas cancers, diffuse large cell lymphomas of B lineage, angioimmunoblastic lymphadenopathy (AILD)-like T cell lymphoma and HIV associated body cavity based lymphomas), Castleman's disease, Kaposi's Sarcoma, hemangiosarcoma, multiple myeloma, Waldenstrom's macroglobulinemia and other B-cell lymphomas, nasopharangeal carcinomas, head or neck cancer, myxosarcoma, liposarcoma, cutaneous or intraocular malignant melanoma, uterine cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, transitional cell carcinoma, esophageal cancer, malignant gastrinoma, small intestine cancer, cholangiocellular carcinoma, adenocarcinoma, endocrine system cancer, thyroid gland cancer, parathyroid gland cancer, adrenal gland cancer, sarcoma of soft tissue, urethral, penile cancer, testicular cancer, malignant teratoma, solid tumors of childhood, bladder cancer, kidney or ureter cancer, carcinoma of the renal pelvis, malignant meningioma, neoplasm of the central nervous system (CNS), tumor angiogenesis, spinal axis tumor, pituitary adenoma, epidermoid cancer, squamous cell cancer, environmentally induced WO 2012/094386 PCT/US2012/020173 -16 cancers including those induced by asbestos, e.g., mesothelioma, and combinations of these cancers. [0055] It should further be understood that the oncolytic virus may comprise any heterologous nucleic acid that may need to be delivered to the subject. [0056] The term "therapeutically effective amount" or "effective amount" refers to an amount of a recombinant oncolytic virus composition sufficient to reduce, inhibit, or abrogate tumor cell growth, either in vitro or in a subject (e.g., a human, primate, dog, pig or cow). As noted herein, the reduction, inhibition, or abrogation of tumor cell growth may be the result of necrosis, apoptosis, or an immune response. The amount of a recombinant oncolytic virus composition that is therapeutically effective may vary depending on the particular oncolytic virus used in the composition, the age and condition of the subject being treated, or the extent of tumor formation, and the like. [0057] The recombinant oncolytic virus to be used in the methods of the invention may be administered in a convenient manner such as by the oral, intravenous, intra arterial, intra-tumoral, intramuscular, subcutaneous, intranasal, intradermal, or suppository routes or by implantation (e.g., using slow release molecules). Depending on the route of administration of an adjunctive therapy, like an immunotherapeutic agent, the agents contained therein may be required to be coated in a material to protect them from the action of enzymes, acids and other natural conditions which otherwise might inactivate the agents. In order to administer the composition by other than parenteral administration, the agents will be coated by, or administered with, a material to prevent inactivation. [0058] The recombinant oncolytic virus of the present invention may also be administered parenterally or intraperitoneally. Dispersions of the recombinant oncolytic virus component may also be prepared in, including but not limited to, glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations may contain a preservative to prevent the growth of microorganisms, such as an antibiotic like gentamycin. [0059] As used herein "pharmaceutically acceptable carrier and/or diluent" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal WO 2012/094386 PCT/US2012/020173 -17 agents, isotonic and absorption delaying agents and the like. The use of such media and agents for biologically active substances is well known in the art. Supplementary active ingredients, such as antimicrobials, can also be incorporated into the Compositions. [0060] The carrier can be a solvent or dispersion medium containing, for example, water, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be effected by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin. [0061] Sterile injectable solutions are prepared by incorporating the recombinant oncolytic viruses of the present disclosure in the required amount of the appropriate solvent with various other ingredients enumerated herein, as required, followed by suitable sterilization means. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle that contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying techniques, which yield a powder of the recombinant oncolytic virus plus any additional desired ingredient from a previously sterile-filtered solution thereof. [0062] It may be advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active material WO 2012/094386 PCT/US2012/020173 -18 calculated to produce the desired therapeutic effect in association with the required pharmaceutically or veterinary acceptable carrier. [0063] Pharmaceutical compositions comprising the recombinant oncolytic virus of this disclosure may be manufactured by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Pharmaceutical viral compositions may be formulated in conventional manner using one or more physiologically acceptable carriers, diluents, excipients or auxiliaries that facilitate formulating active recombinant oncolytic virus into preparations that can be used biologically or pharmaceutically. The recombinant oncolytic virus compositions can be combined with one or more biologically active agents and may be formulated with a pharmaceutically acceptable carrier, diluent or excipient to generate pharmaceutical or veterinary compositions of the instant disclosure. [0064] Pharmaceutically acceptable carriers, diluents or excipients for therapeutic use are well known in the pharmaceutical art, and are described herein and, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro, ed., 18.sup.th Edition (1990)) and in CRC Handbook of Food, Drug, and Cosmetic Excipients, CRC Press LLC (S. C. Smolinski, ed. (1992)). In certain embodiments, recombinant oncolytic virus compositions may be formulated with a pharmaceutically or veterinary-acceptable carrier, diluent or excipient is aqueous, such as water or a mannitol solution (e.g., about 1% to about 20%), hydrophobic solution (e.g., oil or lipid), or a combination thereof (e.g., oil and water emulsions). In certain embodiments, any of the biological or pharmaceutical compositions described herein have a preservative or stabilizer (e.g., an antibiotic) or are sterile. [0065] The biologic or pharmaceutical compositions of the present disclosure can be formulated to allow the recombinant oncolytic virus contained therein to be bioavailable upon administration of the composition to a subject. The level of recombinant oncolytic virus in serum, tumors, and other tissues after administration can be monitored by various well-established techniques, such as antibody-based assays (e.g., ELISA). In certain embodiments, recombinant oncolytic virus compositions are WO 2012/094386 PCT/US2012/020173 -19 formulated for parenteral administration to a subject in need thereof (e.g., a subject having a tumor), such as a non-human animal or a human. Preferred routes of administration include intravenous, intra-arterial, subcutaneous, intratumoral, or intramuscular. [0066] Proper formulation is dependent upon the route of administration chosen, as is known in the art. For example, systemic formulations are an embodiment that includes those designed for administration by injection, e.g. subcutaneous, intra-arterial, intravenous, intramuscular, intrathecal or intraperitoneal injection, as well as those designed for intratumoral, transdermal, transmucosal, oral, intranasal, or pulmonary administration. In one embodiment, the systemic or intratumoral formulation is sterile. In embodiments for injection, the recombinant oncolytic virus compositions of the instant disclosure may be formulated in aqueous solutions, or in physiologically compatible solutions or buffers such as Hanks's solution, Ringer's solution, mannitol solutions or physiological saline buffer. In certain embodiments, any of the recombinant oncolytic virus compositions described herein may contain formulator agents, such as suspending, stabilizing or dispersing agents. In embodiments for transmucosal administration, penetrants, solubilizers or emollients appropriate to the harrier to be permeated may be used in the formulation. For example, 1-dodecylhexahydro-2H azepin-2-one (Azon@), oleic acid, propylene glycol, menthol, diethyleneglycol ethoxyglycol monoethyl ether (Transcutol@), polysorbate polyethylenesorbitan monolaurate (Tween@-20), and the drug 7-chloro-1-methyl-5-phenyl-3H-1,4 benzodiazepin-2-one (Diazepam), isopropyl myristate, and other such penetrants, solubilizers or emollients generally known in the art may be used in any of the compositions of the instant disclosure. [0067] Administration can be achieved using a combination of routes, e.g., first administration using an intra-arterial route and subsequent administration via an intravenous or intratumoral route, or any combination thereof. [0068] In specific embodiments, the present disclosure provides methods of generating in vivo antibodies that mediate an anti-tumor CDC response comprising administering to a subject a composition comprising a replication competent oncolytic WO 2012/094386 PCT/US2012/020173 -20 virus wherein administration of said composition produces antibodies that mediate a CDC response specific to the tumor. It has been shown by the inventors that the tumor specific antibody mediated anti-tumor CDC response generated by administration of replication competent oncolytic virus may be used to inhibit the growth or even kill cancer cells. Thus, by administering a recombinant oncolytic virus according to the instant disclosure at a multiplicity of infection sufficient to generate a tumor-specific CDC response in the animal will inhibit the growth of a tumor cell or to kill a tumor cell. In certain embodiments, the recombinant oncolytic virus is administered more than once, preferably twice, three times, or up to 10 times. In certain other embodiments, the tumor cell is treated in vivo, ex vivo, or in vitro. [0069] Examples of tumor cells or cancers that may be treated using the methods of this disclosure include hepatic cell carcinoma, breast cancer (e.g., breast cell carcinoma), ovarian cancer (e.g., ovarian cell carcinoma), renal cell carcinoma (RCC), melanoma (e.g., metastatic malignant melanoma), prostate cancer, colon cancer, lung cancer (including small cell lung cancer and non-small cell lung cancer), bone cancer, osteosarcoma, rhabdomyosarcoma, leiomyosarcoma, chondrosarcoma, pancreatic cancer, skin cancer, fibrosarcoma, chronic or acute leukemias including acute lymphocytic leukemia (ALL), adult T-cell leukemia (T-ALL), acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, chronic lymphocytic leukemia, lymphangiosarcoma, lymphomas (e.g., Hodgkin's and non-Hodgkin's lymphoma, lymphocytic lymphoma, primary CNS lymphoma, T-cell lymphoma, Burkitt's lymphoma, anaplastic large-cell lymphomas (ALCL), cutaneous T-cell lymphomas, nodular small cleaved-cell lymphomas, peripheral T-cell lymphomas, Lennert's lymphomas, immunoblastic lymphomas, T-cell leukemia/lymphomas (ATLL), entroblastic/centrocytic (cb/cc) follicular lymphomas cancers, diffuse large cell lymphomas of B lineage, angioimmunoblastic lymphadenopathy (AILD)-like T cell lymphoma and HIV associated body cavity based lymphomas), Castleman's disease, Kaposi's Sarcoma, hemangiosarcoma, multiple myeloma, Waldenstrom's macroglobulinemia and other B cell lymphomas, nasopharangeal carcinomas, head or neck cancer, myxosarcoma, liposarcoma, cutaneous or intraocular malignant melanoma, uterine cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, WO 2012/094386 PCT/US2012/020173 -21 carcinoma of the fallopian tubes, carcinoma of the endometrium, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, transitional cell carcinoma, esophageal cancer, malignant gastrinoma, small intestine cancer, cholangiocellular carcinoma, adenocarcinoma, endocrine system cancer, thyroid gland cancer, parathyroid gland cancer, adrenal gland cancer, sarcoma of soft tissue, urethral, penile cancer, testicular cancer, malignant teratoma, solid tumors of childhood, bladder cancer, kidney or ureter cancer, carcinoma of the renal pelvis, malignant meningioma, neoplasm of the central nervous system (CNS), tumor angiogenesis, spinal axis tumor, pituitary adenoma, epidermoid cancer, squamous cell cancer, environmentally induced cancers including those induced by asbestos, e.g., mesothelioma, and combinations of these cancers. [0070] Given that the invention shows it is possible to raise an antibody mediated tumor-specific CDC response in cancer patients by treating the patient with a replication competent oncolytic virus, the inventors have discovered that it will be possible to specifically tailor a cancer therapy for a subject having cancer comprising by administering to the subject a composition that comprises the replication competent oncolytic virus to produce antibodies that mediate a CDC response specific to said cancer in said subject. Once this response is generated the serum containing the tumor specific antibodies and B cells against the cancer are harvested from the subject and expanded ex vivo. This expanded population of antibodies and/or harvested B cells producing those antibodies are uses as an immunotherapy composition that is specific for the cancer patient. As such, this immunotherapy can be administered to the subject to produce an anti-cancer effect. The immunotherapy composition can be prepared and administered to the subject immediately upon isolation of the antibodies or it can be stored for further treatment at a later stage in the therapy of the subject. [0071] Methods of ex vivo expansion of B cells and antibodies are well known to those of skill in the art and simply involve growth of the antibody producing cells in culture and harvesting of the antibodies using standard protein purification techniques. [0072] In still another embodiment, the methods involve parenteral administration of a recombinant oncolytic virus, preferably via an artery or via an in-dwelling medical device. As noted above, the recombinant oncolytic virus can be administered with an WO 2012/094386 PCT/US2012/020173 -22 immunotherapeutic agent or immunomodulator, such as an antibody that binds to a tumor-specific antigen (e.g., chimeric, humanized or human monoclonal antibodies). In another embodiment, the recombinant oncolytic virus treatment may be combined with surgery (e.g., tumor excision/resection), radiation therapy, chemotherapy, or immunotherapy, and can be administered before, during or after a complementary treatment. [0073] For example, it is contemplated that the methods of the invention comprise generating an antibody mediated tumor-specific CDC response by administering, an oncolytic virus to the subject wherein in combination with administration of the oncolytic virus the subject is treated with an additional cancer therapy to the human. In a specific embodiment, the additional cancer therapy is chemotherapy, radiation, surgery, immunotherapy, gene therapy, or a combination thereof. In specific embodiments, the cacner cell is in a human and/or the introduction step is further defined as administering at least about 1 x 10 9 plaque forming units (pfu) of the oncolytic virus to the human. [0074] It has been estimated that approximately 60% of persons with cancer will undergo surgery of some type, which includes preventative, diagnostic or staging, curative and palliative surgery. Curative surgery is a cancer treatment that may be used in conjunction with other therapies, such as the treatment of the present invention, chemotherapy, radiotherapy, hormonal therapy, gene therapy, immunotherapy and/or alternative therapies. [0075] Curative surgery includes resection in which all or part of cancerous tissue is physically removed, excised, and/or destroyed. Tumor resection refers to physical removal of at least part of a tumor. In addition to tumor resection, treatment by surgery includes laser surgery, cryosurgery, electrosurgery, and miscopically controlled surgery (Mohs' surgery). It is further contemplated that the present invention may be used in conjunction with removal of superficial cancers, precancers, or incidental amounts of normal tissue. [0076] Upon excision of part of all of cancerous cells, tissue, or tumor, a cavity may be formed in the body. Treatment may be accomplished by perfusion, direct WO 2012/094386 PCT/US2012/020173 -23 injection or local application of the area with an additional anti-cancer therapy such as administration of the oncolytic viruses described herein. Such treatment may be repeated, for example, every 1, 2, 3, 4, 5, 6, or 7 days, or every 1, 2, 3, 4, and 5 weeks or every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months. These treatments may be of varying dosages. [0077] In the therapeutic methods of the invention the oncolytic virus is used to produce an antibody-mediated response to a tumor or cancer in a subject. The response is sufficient to produce the treatment of the cancer or tumor, for example, by killing cancer cells, inducing apoptosis in cancer cells, reducing the growth rate of cancer cells, reducing the incidence or number of metastases, reducing tumor size, inhibiting tumor growth, reducing the blood supply to a tumor or cancer cells, promoting an immune response against cancer cells or a tumor, preventing or inhibiting the progression of cancer, or increasing the lifespan of a subject with cancer. More generally, the antibodies or B cells producing the antibodies may be used in combination with conventional anticancer therapies to provide a combined effect to kill or inhibit proliferation of the cell. [0078] The following non-limiting examples are provided to illustrate various aspects of the present disclosure. All references, patents, patent applications, published patent applications, and the like are incorporated by reference in their entireties herein. [0079] EXAMPLES [0080] The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention. [0081] Example 1: Methods WO 2012/094386 PCT/US2012/020173 -24 [0082] Viruses and Cell Lines: JX-594, Wyeth strain vaccinia virus (Thymidine Kinase [TK]-inactivated, expressing hGM-CSF) was used throughout this study and was prepared as published previously 24 . SNU349, SUN482 and SNU267 (human renal cell carcinoma; obtained from Korean Cell Line Bank [KCLB]) and SNU475 & SNU398 (human hepatocelluar carcinoma; obtained from KCLB), were cultured in RPMI 1640 (Gibco) supplemented with 10% FBS (Hyclone) with penicillin and streptomycin. HOP62, H157, H460 and PC10 (human lung carcinoma; obtained from American Type Culture Collection [ATCC]), HepG2 (human hepatocelluar carcinoma; obtained from ATCC), SF-295 (human gall bladder cancer; obtained from ATCC), PC-3 (human prostate cancer; obtained from ATCC), PANC-1 (human pancreatic cancer; ATCC), MCF-7 (human breast cancer; ATCC) were cultured in DMEM medium containing 10% FBS with penicillin and streptomycin. MRC-5 nontransformed cells (lung fibroblast; ATCC) and HUVEC (endothelial cells; ATCC) MRC-5 were cultured in endothelial cell medium EBM-2 (Lonza, MD, USA) supplemented with 2% fetal bovine serum (FBS) with penicillin and streptomycin. [0083] Rabbit VX2 tumor model and isolation of VX2 cells: VX2 tumors were grown and maintained in the muscle of inbred New Zealand white rabbit (Samtako, Oh San, Korea). JX-594 (1 x 10 9 pfu) or Phosphate-buffered saline (PBS) was injected at 3 weeks and 4 weeks post VX2 fragment implantation into skeletal muscle. Serum was collected at baseline, 3 weeks and 6 weeks post JX-594 or PBS treatment. VX2 was isolated as described previously 3 1 . In brief, VX2 cells were isolated from VX2 tissues enzymatically (collagenase 0.01 % protease 0.1 % overnight at 4 0 C), and maintained in vitro with Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS) for 8 passages. Fresh VX2 cells were used for each cell viability test. In a parallel study, JX-594 was injected into a normal, non-tumor-bearing rabbit, and serum was obtained. [0084] Cell viability & CDC assay: Cell viability was decreased when serum was added into (not heat treatment). CDC activity was assessed by measuring cell viability upon incubation with 5% serum in 96 well plates. Cell viability in serum post JX-594 administration was normalized to the cell viability of rabbit or patient serum at baseline WO 2012/094386 PCT/US2012/020173 -25 (prior to JX-594 treatment). Each cell line was seeded onto 96-well plates and incubated overnight. Cells were subsequently incubated with DMEM (no FBS) and the serum sample at 37 0C for 4 hours. Cells were subsequently exposed to PBS and 10 pl Cell counting kit-8 (CCK-8) solution (CCK-8 kit, Dojindo, Inc., Kumamoto, Japan) and incubated at 37 "C for 2 hours. Cell viability was measured by optical density at 450 nm. [0085] Western Blotting: VX2 cells, rabbit peripheral blood mononuclear cells, SNU349 or SNU739 cells were lysed at ~1x10 6 cells/mL in PRO-PREPTM protein extraction solution (iNtRON Biotechology, Korea) on ice for 30 min. After centrifugation, 50 pg of protein were separated using SDS-PAGE gels and transferred to PVDF membrane (Immunobilon-P; Millipore, Billerica, MA). Sera were diluted 1/100 in 0.1% TBST (5% skim milk powder; 0.1% Tween 20; 50 mmol/L Tris; 150 mmol/L NaCI) and incubated on PVDF membranes for 90 minutes at room temperature. The membrane was then incubated for 1 h at room temperature with horseradish peroxidase conjugated goat anti-rabbit IgG (Stanta Cruz) diluted 1/10,00 in 0.1% TBST (rabbit serum primary) or anti-human IgG (Sigma #A1543, 1:5,000) (human serum primary) and visualized by enhanced chemiluminescence (ECL kit; Pierce, Rockford, IL). [0086] Fluorescence & Confocal Microscopy: Each cell line was plated into 6-well plates and cells were incubated for 24h to reach 100 % cell density. For fluorescence staining, SNU349 cells were seeded into coverglass-bottom dish at 3 x 10 5 cells and left overnight. Carboxyfluorescein succinimidyl ester (CSFE) and 7-amino-actinomycin D (7 AAD) (ACT 1 TM Assay for CytoToxicity, Cell Technology) were added to stain viable and dying cells, respectively. In live cells, CSFE (green fluorescence in whole cells) can be detected while red fluorescence can be detected in nucleus of dead cells. [0087] SEREX study: A cDNA library was constructed from mRNA extracted from SNU449, a human hepatocellular carcinoma (HCC) cell line. The cDNA library was cloned into a A ZAP expression vector (ZAP-cDNA Syhthesis Kit, [Stratagene CA]). The titer of amplified library was 1x10 9 pfu/ml, and 5x105 pfu was used for primary immunoscreening against human serum. Phage plaques appeared after 6-8h incubation at 42"C and then transferred into 132mm nitrocellulose membranes (Millipore, Bedford) which were soaked in 10 mM IPTG (Sigma-Aldrich, USA) for 30 min WO 2012/094386 PCT/US2012/020173 -26 previously. The nitrocellulose membranes were blocked with 5% BSA (Santa Cruz, USA). Pooled serum from JX-594 treated HCC patients (D57 post JX-594 injection) was used for primary and secondary screening. The serum from patients with the highest CDC activity was pooled for this study (patients #1702, #1703, #1704, #1705, #1712, #1713 and #1715). Pooled serum was added (6 ml of 1:100 diluted serum) for primary antibody screening, bound antibody detected with 1:5000 diluted alkaline phosphatase labeled goat anti-human IgG (Sigma-Aldrich, USA) and then the membrane was developed with BCIP/NBT solution, premixed (Sigma-Aldrich, USA). Blue plaques were cored from the agar plate corresponding to the membranes and put into SM buffer 100mM NaCl, 50mM Tris-HCI (pH7.5), 10mM MgSO 4 ) containing 20 pl chloroform. After 70 plates were screened (5 plates for 1 round), we isolated 70 positive plaques. After a second round of screening (82 mm plate), 11 plaques were purified to monoclonality (> 90% positive phages with high density). After DNA extraction from each clone, DNA was sequenced. [0088] Dot blotting: E. coli phage lysates for each positive clone was diluted 5 fold in SM buffer and 1 pL of diluted lysates were spotted on test strip of Whartman membrane (Whartman, Germany). After air dry for 5 min, all test strips were immersed in blocking solution for 1 h. Membranes were incubated in 1:50 JX-594 preinjected (0 week, 2 week, 4 week) or postinjected (D57) human serum for 1 h. Bound antibody was detected with 1:2500 diluted alkaline phosphatase labeled goat anti-human IgG (Sigma Aldrich, USA) and developed with BCIP/NBT solution. [0089] Example 2: CDC is Induced in Both Animal Models and in Human Patients [0090] Decreased cell viability observed upon incubation of tumor cells with serum from tumor-bearing, JX-594-treated rabbits. To investigate induction of CDC in a rabbit model, serum was collected from rabbits bearing the VX2 adenocarcinoma implanted into muscle treated with JX-594 or PBS control. Serum collected at day 28 post injection was added to VX2 cells or rabbit peripheral blood mononuclear cells (PBMCs) in vitro at a concentration of 3%. A significant decrease (approximately 90%) in cell viability was only observed in cells incubated with serum from JX-594-treated, WO 2012/094386 PCT/US2012/020173 -27 VX2 tumor-bearing rabbits (Figure 1a). Incubation of VX2 cells with serum from VX2 tumor-bearing rabbits treated with PBS or non-tumor-bearing rabbits treated with JX 594 did not exhibit decreased cell viability. Furthermore, PBMC viability did not decrease significantly upon incubation with serum from any treatment group. VX2 cell viability was subsequently assessed upon incubation with serum collected at various timepoints post JX-594 (or PBS) injection. Decreased VX2 cell viability upon incubation with serum collected from Day 18 onward in VX2 tumor-bearing, JX-594-treated rabbits (Figure 1b). Increased concentration of serum (up until 2%) resulted in dose-dependent decreases in VX2 cell viability (Figure 1c). Incubation of cells with 2% serum resulted in approximately 20% VX2 cell viability when compared to treatment with normal rabbit serum control. In order to assess whether serum from VX2-bearing, JX-594-treated rabbits binds novel antigens, a Western blot was carried out on VX2 and PBMC cell lysates with serum from naYve rabbits and JX-594-treated tumor-bearing rabbits. Strong reactivity to new antigens was only observed in the VX2 cell line lysate and multiple new bands were recognized upon JX-594 treatment of VX2 tumor-bearing rabbits, indicating an induction of polyclonal antibodies to VX2 tumor antigens (Figure 1d). [0091] Evidence of decreased cell viability upon incubation of human cancer cell lines with serum from JX-594-treated patients Upon detection of significant decreases in cell viability triggered by incubation with rabbit serum from JX 594-treated, tumor-bearing rabbits, we sought to identify whether a similar activity could be observed in serum collected from JX-594-treated patients. The inventors began by testing serum from two patients treated on the Phase 1 liver tumor trial who had significant responses and long-term survival after JX-594 therapy (patient 103: lung cancer, 24.5 months survival; patient 301: renal cell cancer, 44.1 + months survival) 26 . Indeed, similar to observation in the preclinical model, incubation of cancer cell lines with JX-594-treated patient serum (5%) resulted in significant decreases in cell viability (Figure 2a). Cancer cell lines of the same origin as the patients' cancer were tested and a time-dependent decrease in cell viability was observed in most cell lines. Visualization of cells under bright field microscopy revealed formation of membrane attack complexes (MAC), which indicated the decrease cell viability is triggered by CDC (Figure 2b). CSFE and 7-AAD dyes were used to stain live and dead cells, respectively. 7-AAD WO 2012/094386 PCT/US2012/020173 -28 staining demonstrates cells treated with serum from JX-594 immune patients are undergoing cell death. [0092] Example 3: Decreased cell viability is due to antibody-mediated complement-dependent cytotoxicity [0093] We next tested the contribution of antibodies and complement to evaluate the mechanism of by which serum from JX-594 treated patients mediates cancer cell cytotoxicity. Serum from JX-594-treated patients was heat-inactivated to inhibit any complement activity. A column which binds IgG was used to remove antibodies from serum (refer to experimental outline in Figure 3a). Baseline serum (prior to JX-594 treatment, Serum A), serum obtained 92 days post JX-594 treatment (Serum B), heat inactivated Serum B (Serum C) and Serum B which was passed through the IgG resin (Serum E) were added to cancer cell line monolayers at a concentration of 5%. Serum collected at baseline did not result in decreased cell viability while serum collected 92 days post JX-594 treatment initiation exhibited potent anti-tumoral activity. However, cells remained viable upon heat-inactivation or IgG depletion. Furthermore, restoration of functional complement in Serum C (by addition of Serum A collected at baseline and not exhibiting decreased cell viability on its own) resulted in restoration of anti-tumoral activity. Similar observations were made with serum samples from a total of three patients treated on the Phase 1 study (301 - renal cancer; 103 - lung cancer; 304 melanoma) on the cell lines corresponding to the patients' tumor types (Figure 3b). Bright field images of cell lines post serum incubation (patient 301) are presented in Figure 3c. Finally, a time-dependent increase in cell viability was observed with respect to the length of heat inactivation (Figure 3d). [0094] .CDC activity specific to tumor cells and more effective in cells of same tumor type. We next investigated whether serum from JX-594-treated patients was capable of causing toxicity to normal human cells ex vivo. HUVEC endothelial cells and MRC-5 lung fibroblast cells did not exhibit significant decreased cell viability when incubated with serum from any of the five patients tested. Generally, decreased cell viability was observed in cells whose origin corresponded to the patients' tumor type (renal cancer, melanoma and HCC) (Figure 4 a-d). survival versus CDC Phase 1.
WO 2012/094386 PCT/US2012/020173 -29 [0095] CDC induction assessed in randomized Phase 2 trial CDC induction was analyzed in HCC patients treated on an ongoing randomized Phase 2 trial. Decreased cell viability was observed in HCC cell lines upon incubation with serum from JX-594-treated patients. CDC activity increased over time (Figure 4b summary, Figure c-e individual cell lines). [0096] Example 4: SEREX screening results in identification of endogenous, novel tumor antigens [0097] In order to assess whether patient serum binds novel antigens, Western blots were performed using cell lysates from cancer cell lines of the same tissue origin as the patients' tumors and patient serum (from patients on Phase 1 and 2 trials exhibiting significant CDC). Strong reactivity to new antigens was observed in serum after JX-594 treatment, suggestive of induction of polyclonal antibodies to the patients' endogenous tumor antigens (Figure 6). In order to identify novel target antigens a SEREX screen was performed using serum pooled from patients with HCC with strong CDC activity on a cDNA library generated from a human HCC cell line (SNU449). After two rounds of screening, 17 candidate antigens were identified (Figure 7, Table 1). A subset of antigens, e.g. RecQ protein-like (DNA helicase Q1-like) (RECQL) and leptin receptor (LEPR) have previously been identified as targets for HCC or other cancers, while others [including ERBB receptor feedback inhibitor 1(ERRF11), lysosomal protein transmembrane 4 alpha (LAPTM4A) and RAS oncogene family (RAB1B)] are putative HCC antigens and represent potentially novel targets in HCC. Reactivity of patient serum collected prior to JX-594 treatment was tested for reactivity against the 11 identified antigens. Antibodies against a subset of antigens existed prior to JX-594 treatment, however generally reactivity was stronger after JX-594 therapy, suggesting that treatment with a replication-competent poxvirus induces polyclonal antibodies recognizing tumor antigens. [0098] Example 5: Discussion [0099] The approval of the first immunotherapy for cancer (Provenge, Dendreon, Seattle WA) has validated this novel approach to cancer therapy. Autologous dendritic cell populations are exposed to a prostate cancer antigen fused to GM-CSF prior to re- WO 2012/094386 PCT/US2012/020173 -30 infusion into the patient and this approach has been demonstrated to improve survival of patients with castration-resistant prostate cancer 32 . Non-specific immunostimulatory approaches have also been evaluated as cancer immunotherapy, including treatment with immune-stimulatory cytokines, e.g. IL-2. Many replication-incompetent viral vaccines expressing tumor antigens in the context of immunostimulatory cytokines or co-stimulatory molecules have been evaluated as tumor vaccines. Though effective at inducing a tumor-specific immune response, these strategies have not resulted in significant survival benefit to patients and no viral cancer vaccine has yet been approved by regulatory agencies. Though generalized induction of antibodies to tumor antigens has been observed 9 3, it is unknown whether these antibodies are functional, e.g. whether they mediate CDC. [00100] While oncolytic virus replication and transgene expression have been reproducibly demonstrated in clinical trials, systemic functional anti-cancer immunity induction has not been systematically evaluated on any trial with JX-594 or other oncolytic viruses to date. Generalized induction of CD3+CD4+ and CD3+CD8+ lymphocytes, natural killer cells and various inflammatory cytokines has been demonstrated 2 6 . In a melanoma clinical trial with HSV-hGM-CSF (Oncovex, Biovex, Cambridge MA), phenotypic analysis of T cells derived from tumor samples suggested distinct differences from peripheral blood T cells. Compared to T cells derived from non treated control patients, there was an increase in melanoma-associated antigen recognized by T cells (MART-1 )-specific T cells in tumors undergoing regression after vaccination; functional anti-tumoral immunity was not assessed. Preclinical studies have demonstrated that oncolytic viruses can induce functional cancer-specific immunity, but clinical data has been lacking 24 , 34-38 [00101] The complement system is comprised of a series of serum proteins which are a part of the innate immune system. The complement system acts in the defense against infection (e.g. by opsonizing or directly lysing invading bacteria) and also forms a link between innate and adaptive immunity 30 . In particular, complement proteins have the potential to lyse cells opsonized by antibodies which were induced in response to a foreign antigen. Indeed, complement-mediated cytotoxicity (CDC) is one of the most potent cell killing systems 30 . CDC activity is harnessed by monoclonal antibodies (mAb) WO 2012/094386 PCT/US2012/020173 -31 currently used in the treatment of malignancies. The contribution of CDC to the anti tumoral efficacy of rituximab (a CD20 specific mAb) has been evaluated extensively preclinically 39
-
41 . Furthermore, involvement of the complement system in rituximab therapy in patients with follicular lymphoma is supported by the observation that patients with a polymorphism in the Clq complement cascade gene had an increased time to progression 42 . Other antibodies have been shown to mediate CDC in cancer cell lines or patient samples, including alemtuzumab for chronic lymphocytic leukemia 4 3 and panitumumab and cetuximab cancer cell lines of different origins 44 . These observations have led to the development of strategies to improve the inherent CDC activity of tumor targeted mAbs 45
-
47 as well as combination therapies with agents that improve CDC activity 48 . However, there is some concern with further enhancement of CDC activity with a therapeutic that is not cancer specific, such as rituximab, as potentiation of cytotoxicity versus normal CD20-expressing PBMCs can be observed 48 . [00102] Vaccinia viruses have been shown to be resistant to complement mediated neutralization in order to facilitate systemic spread of the virus. This is attributed to the inclusion of complement-regulatory proteins within the outside coat of the extracellular-enveloped virus (EEV) form of vaccinia 49 . However, it has been demonstrated that tumor cells infected with vaccinia virus may be more susceptible to complement-mediated neutralization due to depletion of the complement regulatory protein for incorporation into the envelope of released virions 49
,
50 . Expression of GM CSF from JX-594-infected cells within the tumor microenvironment may potentiate CDC-mediated killing through stimulation and expansion of NK cells and macrophages 51 . Indeed, JX-594 replication can trigger inflammation within tumors and inflammatory infiltrates have been detected in melanoma lesions treated intratumorally with JX-594 29 [00103] Here we demonstrate the first evidence of induction of functional anti tumoral immunity in patients treated with an oncolytic virus. JX-594 induces antibody dependent CDC of tumor cells ex vivo as demonstrated in serum obtained both from tumor-bearing rabbits as well as patients with various advanced, treatment-refractory tumors. The use of replication-competent, oncolytic poxviruses as an anti-cancer immunotherapy has major advantages over other immunotherapeutic strategies: 1) WO 2012/094386 PCT/US2012/020173 -32 induction of anti-cancer immune responses represent one mechanism-of-action of the therapy; others include direct infection and lysis of tumor cells and acute tumor vascular shutdown; 2) oncolytic poxvirus infection triggers a patient-specific/tailored immune response; 3) no ex vivo manipulation steps are required for the therapy (though effective, the clinically validated Provenge approach is laborious, requiring ex vivo manipulation of each patient's immune cells) and 4) immune stimulation is triggered by active virus infection of tumor cells which triggers an inflammatory reaction within the tumor microenvironment. A major hurdle in the immunotherapy field is for activated immune effector cells to be recruited to and activated within the tumor. Oncolytic poxviruses represent an optimal vehicle by which to stimulate induction of an adaptive immune response while simultaneously triggering induction of pro-inflammatory cytokines and a local inflammatory response within the tumor microenvironment which ensures recruitment and activation of immune cells in the tumor. [00104] The system outlined here represents a mechanism by which novel, patient endogenous tumor antigens can be identified. A SEREX screen identified previously characterized tumor antigens, validating the current approach, as well as novel tumor associated antigens which represent new potential targets for the treatment of HCC. The experimental design outlined here which involves (1) treatment of a patient with a replication-competent oncolytic poxvirus, (2) measurement of functional anti-tumoral immunity (CDC assay) ex vivo and (3) performing a SEREX screen on patient serum with high CDC activity to identify target antigens, represents a novel approach for the discovery of novel tumor antigens. This method allows for the identification of multiple relevant antigens (patient endogenous antigens able to be recognized by antibodies) to which the generation of antibodies is safe (as the antibodies were generated in humans with no deleterious effects). Here we have demonstrated a proof-of-concept for this method in patients with HCC however this methodology can similarly be used for any other tumor type. [00105] In addition, induction of cytotoxic T lymphocytes to tumor antigens, vaccinia virus as well as the JX-594 transgene p-galactosidase in JX-594 treated patients is currently being evaluated. Effect of combination therapy with anti- WO 2012/094386 PCT/US2012/020173 -33 angiogenics, including sorafenib (a regimen being tested in Phase 2 trials) on JX-594 induced CDC is being investigated. [00106] Example 6: Oncolytic vaccinia, GM-CSF and reovirus effects on induction of tumor-specific antibodies mediating CDC [00107] Studies were designed to show that replication-competent oncolytic viruses differentially induce tumor-specific antibodies mediating CDC. Antibody induction can be boosted by expression of immunostimulatory cytokines. In the first of these the effects of oncolytic vaccinia, GM-CSF and reovirus on induction of tumor specific antibodies mediating CDC response was assessed and the data are shown in Fiqi.9. [00108] VX2 tumor-bearing rabbits were treated with two weekly intravenous infusions of PBS, UV inactivated JX-594 expressing human GM-CSF, JX-594 expressing human GM-CSF, JX-594 expressing murine JX-594, JX-963 or reovirus (n=2) . Viruses were administered at a dose of 1 x 109 pfu. Serum was collected at baseline and 3 weeks post treatment initiation. Rabbit serum was incubated with A2780 cells in vitro at the indicated concentrations for 3 hours. Cell viability relative to viability of A2780 cells incubated with pre-treatment serum was assessed using CCK-8 kit. [00109] From these studies it can be seen that JX-594 expressing human GM CSF (a cytokine that is biologically active in rabbits) induced CDC starting at a serum concentration of 2.5%. Full CDC activity was reached at 5% serum concentration. Similarly, JX-963 induced CDC at 2.5% serum concentration, with maximal CDC reached at 5% serum concentration. Induction of antibodies mediating CDC was dependent on oncolytic vaccinia replication in rabbits as A2780 incubation with serum collected from rabbits treated with UV inactivated JX-594 expressing human GM-CSF (rendered replication-incompetent) or PBS did not induce CDC at any concentration tested. Similarly, serum collected from rabbits treated with reovirus, an double stranded RNA virus which is currently in clinical development as an oncolytic agent, did not induce CDC at any concentration tested. Finally, treatment with JX-594 expressing murine GM-CSF (which is not as biologically active in rabbits as human GM-CSF) induced CDC only at higher concentrations of serum. These results indicate that WO 2012/094386 PCT/US2012/020173 -34 expression of the immunostimulatory cytokine GM-CSF may potentiate induction of anti tumor antibodies mediating CDC. [00110] Example 7: Oncolytic vaccinia, GM-CSF and VSV effects on induction of tumor-specific antibodies mediating CDC on human cancer cells [00111] In the next set of studies, the effects of oncolytic vaccinia, GM-CSF and VSV on induction of tumor-specific antibodies mediating CDC response was assessed and the data are shown in Fig. 10. [00112] For these experiments, VX2 tumor-bearing rabbits were treated with two weekly intravenous infusions of JX-594 expressing human GM-CSF (1 x 10 9 pfu), JX 594 expressing murine JX-594 (1 x 109 pfu), Western Reserve vaccinia (1 x 10 9 pfu), Vesicular Stomatitis Virus (VSV) ( 6 x 108 pfu) or VSV expressing murine GM-CSF ( 6 x 108 pfu) (n=2) . Serum was collected at baseline and 3 weeks post treatment initiation. Rabbit serum was incubated with A2780 cells in vitro at the indicated concentrations for 3 hours. Cell viability relative to viability of A2780 cells incubated with pre-treatment serum was assessed using CCK-8 kit. [00113] In this experiment, JX-594 expressing human GM-CSF (JX-594) was most efficient at inducing CDC mediating antibodies, with a decrease in cell viability apparent upon incubation with 1.25% and 2.5% serum. In contrast, treatment with JX-594 expressing murine GM-CSF (which is not as biologically active in rabbits as human GM CSF) induced CDC only at higher concentrations of serum (note: as an additional control, VSV expressing murine GM-CSF did not induce CDC at any concentration tested). Furthermore, treatment of rabbits with the wild-type western reserve strain of vaccinia (which does not encode GM-CSF) was less efficient at inducing antibodies mediating COC. Finally treatment with the single-stranded negative sense RNA virus VSV induced CDC-mediating antibodies only at the highest serum concentration tested (10%). These results suggest that depending on oncolytic virus biology, different levels of CDC response can be observed. [00114] Example 8: Oncolytic HSV and VSV-GM-CSF effects on induction of tumor-specific antibodies mediating CDC on human cancer cells WO 2012/094386 PCT/US2012/020173 -35 [00115] In this set of experiments, the oncolytic HSV and VSV-GM-CSF on induction of tumor-specific antibodies mediating CDC on human cancer cells was assessed and the data are shown in Fig. 11. [00116] VX2 tumor-bearing rabbits were treated with two weekly intravenous infusions of VSV expressing murine GM-CSF (6 x 108 pfu) or Herpes Simplex Virus (HSV) (1 x 109 pfu) (n=2). Serum was collected at baseline and 3 weeks post treatment initiation. Rabbit serum was incubated with A2780 cells in vitro at the indicated concentrations for 3 hours. Cell viability relative to viability of A2780 cells incubated with pre-treatment serum was assessed using CCK-8 kit. [00117] In this experiment, HSV was most efficient at inducing CDC mediating antibodies, with a decrease in cell viability apparent upon incubation with 5% and 10% serum. VSV expressing GM-CSF did not induce CDC in this experiment (though high variability was observed at the 10% serum condition). [00118] Example 9: Oncolytic vaccinia, GM-CSF and VSV effects on induction of tumor-specific antibodies mediating CDC on rabbit cancer cells derived from the in vivo target tumor [00119] In this set of experiments, the effects of oncolytic vaccinia, GM-CSF and VSV on induction of tumor-specific antibodies mediating CDC on rabbit cancer cells from an in vivo target tumor were assessed and the data are shown in Fig. 12. [00120] VX2 tumor-bearing rabbits were treated with two weekly intravenous infusions of JX-594 expressing human GM-CSF (1 x 109 pfu), JX-594 expressing murine JX-594 (1 x 10 9 pfu), Western Reserve vaccinia (1 x 10 9 pfu), Vesicular Stomatitis Virus (VSV) ( 6 x 108 pfu) or VSV expressing murine GM-CSF ( 6 x 108 pfu) or UV inactivated JX-594 expressing human GM-CSF (n=2) . Serum was collected at baseline and 3 weeks post treatment initiation. Rabbit serum was incubated with VX2 cells in vitro for 24 hours. Cell viability relative to viability of VX2 cells incubated with pre-treatment serum was assessed using CCK-8 kit. [00121] In order to induce CDC on VX2 target cells, additional complement contained in serum collected prior to oncolytic virus administration was spiked into 3% WO 2012/094386 PCT/US2012/020173 -36 post-treatment serum. As in prior experiments, UV inactivated JX-594 was not able to induce antibodies mediating CDC in this setting. JX-594 expressing human GM-CSF, JX-594 expressing murine GM-CSF and western reserve vaccinia all induced CDC in this assay, supporting the ability of replication-competent vaccinia viruses to induce anti-tumor antibodies mediating CDC (in this setting the target cells were derived from the tumor against which antibodies were raised in the oncolytic virus treated rabbits). VSV (+/- murine GM-CSF) was not as efficient as inducing anti-tumor antibodies as any of the oncolytic vaccinia viruses tested. [00122] Example 10: OncolVic vaccinia and murine GM-CSF expression mediate induction of tumor-specific antibodies mediating CDC in a murine tumor model [00123] In this example, the effects of oncolytic vaccinia, and murine GM-CSF mediated induction of tumor-specific antibodies mediating CDC on murine tumor model were assessed and the data are shown in Fig. 13. [00124] CT26 tumor-bearing mice were treated with four weekly intravenous infusions of JX-594 expressing human GM-CSF, JX-594 expressing murine JX-594, PBS or UV inactivated JX-594 expressing human GM-CSF (n=3) . Viruses were administered at a dose of 1 x 10 7 pfu. Serum was collected at baseline and 4 weeks post treatment initiation. Mouse serum was incubated with A2780 cells in vitro for 24 hours. Cell viability relative to viability of A2780 cells incubated with pre-treatment serum was assessed using CCK-8 kit. [00125] - CDC experiments were repeated in a syngeneic mouse model (Balb/C mice bearing subcutaneous CT26 tumors). JX-594 expressing murine GM-CSF was most potent at inducing anti-tumor antibodies mediating CDC. Both JX-594 expressing human GM-CSF (JX-594; human GM-CSF is known not to be active in rodents) as well as UV-inactivated JX-594 expressing murine GM-CSF had an intermediate effect on CDC induction (when comparing to PBS and JX-594 expressing murine GM-CSF). This may indicate that in this mouse model both replication as well as high-level murine GM CSF expression (which only occurs upon treatment with the replication-competent WO 2012/094386 PCT/US2012/020173 -37 vaccinia backbone) is necessary to induce high-titer anti-tumor antibodies that mediate CDC in vitro.
WO 2012/094386 PCT/US2012/020173 -38 REFERENCES CITED [00126] 1. Petrelli A, Giordano S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem. 2008;15(5):422-32. [00127] 2. Podar K, Tonon G, Sattler M, Tai YT, Legouill S, Yasui H, et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19478-83. [00128] 3. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006 Oct 14;368(9544):1329-38. [00129] 4. Le Tourneau C, Faivre S, Raymond E. New developments in multitargeted therapy for patients with solid tumours. Cancer Treat Rev. 2008 Feb;34(1):37-48. [00130] 5. Kerr D. Clinical development of gene therapy for colorectal cancer. Nat Rev Cancer. 2003 Aug;3(8):615-22. [00131] 6. Zeimet AG, Marth C. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol. 2003 Jul;4(7):415-22. [00132] 7. McCormick F. Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer. 2001 Nov;1 (2):130-41. [00133] 8. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004 Sep;10(9):909-15. [00134] 9. Amato RJ, Drury N, Naylor S, Jac J, Saxena S, Cao A, et al. Vaccination of prostate cancer patients with modified vaccinia ankara delivering the tumor antigen 5T4 (TroVax): a phase 2 trial. J Immunother. 2008 Jul-Aug;31(6):577-85. [00135] 10. Gulley JL, Arlen PM, Tsang KY, Yokokawa J, Palena C, Poole DJ, et al. Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based WO 2012/094386 PCT/US2012/020173 -39 vaccines in patients with metastatic carcinoma. Clin Cancer Res. 2008 May 15;14(10):3060-9. [00136] 11. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kim DH. ONYX-015, an EIB gene-attenuated adenovirus, causes tumor specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997 Jun;3(6):639-45. [00137] 12. Bell JC, Lichty B, Stojdl D. Getting oncolytic virus therapies off the ground. Cancer Cell. 2003 Jul;4(1):7-1 1. [00138] 13. Parato KA, Senger D, Forsyth PA, Bell JC. Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer. 2005 Dec;5(12):965-76. [00139] 14. Thorne SH, Hermiston T, Kirn D. Oncolytic virotherapy: approaches to tumor targeting and enhancing antitumor effects. Semin Oncol. 2005 Dec;32(6):537 48. [00140] 15. Coffey MC, Strong JE, Forsyth PA, Lee PW. Reovirus therapy of tumors with activated Ras pathway. Science. 1998 Nov 13;282(5392):1332-4. [00141] 16. Norman KL, Lee PW. Reovirus as a novel oncolytic agent. J Clin Invest. 2000 Apr;105(8):1035-8. [00142] 17. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med. 2000 Jul;6(7):821-5. [00143] 18. Stojdl DF, Lichty BD, tenOever BR, Paterson JM, Power AT, Knowles S, et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell. 2003 Oct;4(4):263-75. [00144] 19. Bischoff JR, Kim DH, Williams A, Heise C, Horn S, Muna M, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996 Oct 18;274(5286):373-6.
WO 2012/094386 PCT/US2012/020173 -40 [00145] 20. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A, et al. An adenovirus E1A mutant that demonstrates potent and selective antitumoral efficacy. Nature Medicine. 2000;6(10):1134-9. [00146] 21. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med. 1995 Sep;1(9):938-43. [00147] 22. Mineta T, Rabkin SD, Martuza RL. Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res. 1994 Aug 1;54(15):3963-6. [00148] 23. Liu TC, Hwang TH, Bell JC, Kirn DH. Translation of targeted oncolytic virotherapeutics from the lab into the clinic, and back again: a high-value iterative loop. Mol Ther. 2008 Jun;16(6):1006-8. [00149] 24. Kim JH, Oh JY, Park BH, Lee DE, Kim JS, Park HE, et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol Ther. 2006 Sep;14(3):361-70. [00150] 25. Payne LG. Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. J Gen Virol. 1980 Sep;50(1):89-100. [00151] 26. Park BH, Hwang T, Liu TC, Sze DY, Kim JS, Kwon HC, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008 Jun;9(6):533-42. [00152] 27. Senzer NN, Kaufman HL, Amatruda T, Nemunaitis M, Reid T, Daniels G, et al. Phase 11 clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol. 2009 Dec 1;27(34):5763-71. [00153] 28. Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim Schulze S. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IlIc and IV melanoma. Ann Surg Oncol. 2010 Mar;17(3):718-30.
WO 2012/094386 PCT/US2012/020173 -41 [00154] 29. Mastrangelo MJ, Maguire HC, Jr., Eisenlohr LC, Laughlin CE, Monken CE, McCue PA, et al. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. 1999 Sep Oct;6(5):409-22. [00155] 30. Walport MJ. Complement. First of two parts. N EngI J Med. 2001 Apr 5;344(14):1058-66. [00156] 31. Lee JH, Roh MS, Lee YK, Kim MK, Han JY, Park BH, et al. Oncolytic and immunostimulatory efficacy of a targeted oncolytic poxvirus expressing human GM-CSF following intravenous administration in a rabbit tumor model. Cancer Gene Ther. 2010 Feb;17(2):73-9. [00157] 32. Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009 Aug 15;115(16):3670-9. [00158] 33. Amato RJ, Shingler W, Naylor S, Jac J, Willis J, Saxena S, et al. Vaccination of renal cell cancer patients with modified vaccinia ankara delivering tumor antigen 5T4 (TroVax) administered with interleukin 2: a phase 11 trial. Clin Cancer Res. 2008 Nov 15;14(22):7504-10. [00159] 34. Aigner F, Conrad F, Widschwendter A, Zangerle R, Zelger B, Haidenberger A, et al. [Anal HPV infections]. Wien Klin Wochenschr. 2008;120(19 20):631-41. [00160] 35. Prestwich RJ, Ilett EJ, Errington F, Diaz RM, Steele LP, Kottke T, et al. Immune-mediated antitumor activity of reovirus is required for therapy and is independent of direct viral oncolysis and replication. Clin Cancer Res. 2009 Jul 1;15(13):4374-81. [00161] 36. Li H, Dutuor A, Fu X, Zhang X. Induction of strong antitumor immunity by an HSV-2-based oncolytic virus in a murine mammary tumor model. J Gene Med. 2007 Mar;9(3):161-9.
WO 2012/094386 PCT/US2012/020173 -42 [00162] 37. Li QX, Liu G, Wong-Staal F. Oncolytic virotherapy as a personalized cancer vaccine. Int J Cancer. 2008 Aug 1;123(3):493-9. [00163] 38. Parato KA, Lichty BD, Bell JC. Diplomatic immunity: turning a foe into an ally. CurrOpin Mol Ther. 2009 Feb;11(1):13-21. [00164] 39. Harjunpaa A, Junnikkala S, Meri S. Rituximab (anti-CD20) therapy of B-cell lymphomas: direct complement killing is superior to cellular effector mechanisms. Scand J Immunol. 2000 Jun;51(6):634-41. [00165] 40. Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E, et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol. 2003 Aug 1;171(3):1581-7. [00166] 41. Golay J, Cittera E, Di Gaetano N, Manganini M, Mosca M, Nebuloni M, et al. The role of complement in the therapeutic activity of rituximab in a murine B lymphoma model homing in lymph nodes. Haematologica. 2006 Feb;91(2):176-83. [00167] 42. Racila E, Link BK, Weng WK, Witzig TE, Ansell S, Maurer MJ, et al. A polymorphism in the complement component C1qA correlates with prolonged response following rituximab therapy of follicular lymphoma. Clin Cancer Res. 2008 Oct 15;14(20):6697-703. [00168] 43. Zent CS, Secreto CR, LaPlant BR, Bone ND, Call TG, Shanafelt TD, et al. Direct and complement dependent cytotoxicity in CLL cells from patients with high-risk early-intermediate stage chronic lymphocytic leukemia (CLL) treated with alemtuzumab and rituximab. Leuk Res. 2008 Dec;32(12):1849-56. [00169] 44. Dechant M, Weisner W, Berger S, Peipp M, Beyer T, Schneider Merck T, et al. Complement-dependent tumor cell lysis triggered by combinations of epidermal growth factor receptor antibodies. Cancer Res. 2008 Jul 1;68(13):4998-5003. [00170] 45. Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010 May;10(5):317-27. [00171] 46. Morris JC, Waldmann TA. Antibody-based therapy of leukaemia. Expert Rev Mol Med. 2009;1 1:e29.
WO 2012/094386 PCT/US2012/020173 -43 [00172] 47. Coiffier B, Lepretre S, Pedersen LM, Gadeberg 0, Fredriksen H, van Oers MH, et al. Safety and efficacy of ofatumumab, a fully human monoclonal anti CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1-2 study. Blood. 2008 Feb 1;111(3):1094-100. [00173] 48. Wang H, Liu Y, Li ZY, Fan X, Hemminki A, Lieber A. A recombinant adenovirus type 35 fiber knob protein sensitizes lymphoma cells to rituximab therapy. Blood. 2010 Jan 21;115(3):592-600. [00174] 49. Vanderplasschen A, Mathew E, Hollinshead M, Sim RB, Smith GL. Extracellular enveloped vaccinia virus is resistant to complement because of incorporation of host complement control proteins into its envelope. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7544-9. [00175] 50. Baranyi L, Okada N, Baranji K, Takizawa H, Okada H. Membrane bound complement regulatory activity is decreased on vaccinia virus-infected cells. Clin Exp Immunol. 1994 Oct;98(1):134-9. [00176] 51. Liu Z, Lee FT, Hanai N, Smyth FE, Burgess AW, Old LJ, et al. Cytokine enhancement of in vitro antibody-dependent cellular cytotoxicity mediated by chimeric anti-GD3 monoclonal antibody KM871. Cancer Immun. 2002 Oct 7;2:13. [00177] 52. Kim DH, Wang Y, Le Boeuf F, Bell J, Thorne SH. Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med. 2007 Dec;4(12):e353. [00178] 53. Thorne SH, Hwang TH, O'Gorman WE, Bartlett DL, Sei S, Kanji F, et al. Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, JX-963. J Clin Invest. 2007 Nov 1;117(11):3350-8. [00179] 54. McCart JA, Ward JM, Lee J, Hu Y, Alexander HR, Libutti SK, et al. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res. 2001 Dec 15;61(24):8751-7. [00180] 55. Guo ZS, Naik A, O'Malley ME, Popovic P, Demarco R, Hu Y, et al. The enhanced tumor selectivity of an oncolytic vaccinia lacking the host range and antiapoptosis genes SPI-1 and SPI-2. Cancer Res. 2005 Nov 1;65(21):9991-8.
WO 2012/094386 PCT/US2012/020173 -44 [00181] 56. Liu TC, Hwang T, Park BH, Bell J, Kim DH. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol Ther. 2008 Sep;16(9):1637-42.
-45 TABLE tubutin alpha 1 -Increased Levels in Liver Cancer Biochemitry 2008, 47, 7572-7582 (TUBA1C) (TUBAIC-icraeedleveo) EBB receptor feedback Mitogen-tnducible Gene-6 (migk) is a Negative Regulator of Epiderm-al Hepatology. 2010 Apr 51(4):1383 nhiUtor 1(ERRFI1) Growth Factor Receptor Signaling in Hepatocytes and Human P Hepatocellular Carcinoma (rmig6 = orbbil) chromosome 16 open Breast cancer over expression , function not known reading frame 61 (C16orf6l) ATPase inhibitory factor Function not known t (ATPIFI) stroma antigen 2 Transcriptional ce-activator (STAG2) ROD1 regalatorof Involsed in - Regulator of differeniation I RODI) binds to the amphipathiC-teminal J Cel Phy- 200k Sep;220(3}:k72-9 dlferentiation 1 mitcgenio peptde ofthmmbospondin-4 and is invoiced in its mitogenic actvity- (ROD1-mitogenic activity) (RODI) activity: leptin receptor (LEPR) Monnoonta Ab Potential rb of leptin expression in hepatcelolar carcinoma J Clin Pathou 2001;5S:930-934 agasI LEFPR is Ipt-h-) being developd -Leptie induces proliferation and arntiapoptosis i hrn as canner hpatncaeroma -uit by op-egating nyclin D1 and dcw- EndcrRne-feluted Cancer (2007) 14 therapeutic drug regulating 0ec via a Janos kinase 24nked pathway 513-529 (teptin- ani-apopiosis) Leptin Receptor-Reelatd immune Response ir Cotreeal Tumors Cancer Re- 200; 68: (220).NovemL TheaRo-eof Celnoeytes and lnekm-V s5, 2fO i (EEFIAI) crena cel bin s d-fere differeniation grade Ce ealt and DionIternan (2009) -Novel ceO death bydowtgiael tEF~Ik1 19, f39-1 50 expreuaion in tetrapkfsl lysosomal protein Membrane Protecn - Molecular elorng and horacteriatin of LAPTM4B, a nove Onnogene 200 2-2 5060-5069 trosmembrane 4 lpt gene upnegutated in hepatcelut cacnoma LAPTM46-tetratanrnembane (LAPTM4A) protein) - Structure anaskys arnd expression of a nove World J Gaeoenterof tetratrannen;bra- e protein lysuomanassos-ated vsotein 2004,10(1 155-1553 (LAPTM4S trarsmembrarse 4 beta assc-iated wokt hepatocebxar camrroma upregulated in oo) 1R2L etonhoecmteow - Char derizadof ehurnsn geinw quenIe o & Gone 234 1999 168-f -1,j9j6( Saccharomyces nerneviiae S1R2 RABB, fRAb oncogente sme gene n 2 Ras -00gne fam y HCC high Ievel httwiw* ne nnihgenpub faily (RAltf~ n)aopendentty metaled edili245021e clones among 15 civnes (ueondany sore ersng) tAnDprno-tkde4DfA siteApt ing Arseoaner aoct iofthee4ht freseslytpiA rnon antrerfei 2075; 88 122 -275 relioane 91-ike) (RECOL developed as nenografit models RecQlli aniioancer ctiity) nettcancer drug RfNA cot - QeUl- DNA repair hetibetie A ne - tenor toh-arke-I r c a nd hrapesli tiargel aginst bxepalccetloar narcicnnma ubted nuclear earsels kinsase and Functiorn not known oyclvr-dpeodent klnace sstrat 1{ NUCKS1) APkX nocleano I Genuonie install S-AdnsoytoiiveReggoApidNtpymindik CASiRO TEROLOGY (APEXI) Enoceaose iStabiy- mpatin n Hepancarcinogenesr s 2009,36 025-1036 A PEXI) -46 Horr, sapies ameshe A2 upeuaed by hypoxia, b receptor (ADORA2B). Potental herapeusc J 4r asoma -c -) Homo sapiens 3100 ca'crurn Function not clear, but probably invoved in tumor proliferation V rnk 30 sue 4 25 Dece hind rgs p ir A6 (Sin se), carcnogenesis, Increase in Extracear avity n e 2009, Pages 1087-1092 Hos ien ai beta Bad prognostic factor in NSCLS, Oncrrgne (2003) 22, 8031 4 XI (TMSB4X) 8041 M- 02119 3 Clin Cancer Rea 209;15. 17) 5518-27, 2r rs n HCC, reas cancer, and van nca Cane Resear ch 20 Homoi sapiens CD24 (0024) hernvu1U5n a 03 9,4906 yanc er12 o2 y 2002:l161:12151221 )
Claims (32)
1. A method of inducing tumor-specific antibody mediated complement dependent cytotoxic response in an animal having a tumor comprising administering to said animal a composition comprising a replication competent oncolytic virus wherein administration of said composition induces antibodies in said animal that mediate a CDC response specific to said tumor.
2. The method of claim 1 wherein administration of said oncolytic virus does not induce CDC response in an animal that does not have a tumor.
3. The method of claim 1 wherein said oncolytic virus is selected from the group consisting of a poxvirus, adenovirus, adeno-associated virus, herpes simplex virus, Newcastle disease virus, vesicular stomatitis virus, mumps virus, influenza virus, Parvovirus, measles virus, human hanta virus, myxoma virus, cytomegalovirus (CMV), lentivirus, Coxsackievirus, Echoviruses, Seneca Valley Virus and Sindbis virus.
4. The method of claim 1 wherein said oncolytic virus is an oncolytic poxvirus.
5. The method of claim 1 wherein said oncolytic virus is selected from the group consisting of JX-594, p53 expressing viruses, vesicular stomatitis virus (VSV), ONYX-15, Delta24, adenoviruses mutated in the VA1 region, vaccinia viruses mutated in the K3L or E3L region, Telomelysin, Telomelysin-GFP, parapoxvirus orf viruses mutated in the OV20.OL gene, Genelux virus, and herpes viruses mutated in the y(1)34.5 gene.
6. The method of claim 4 wherein said oncolytic poxvirus is vaccinia virus.
7. The method of claim 4 wherein said oncolytic virus is JX-594.
8. The method of claim 1 wherein said oncolytic virus comprises a transgene. -48
9. The method of claim 8 wherein said heterologous nucleic acid sequence encodes GM-CSF, cytosine deaminase, carboxyl esterase, NIS, stomatostatin receptor,
10. The method of claim I wherein said tumor is selected from the group consisting of astrocytoma, oligodendroglioma, meningioma, neurofibroma, glioblastoma, ependymoma, Schwannoma, neurofibrosarcoma, neuroblastoma, pituitary adenoma, medulloblastoma, head and neck cancer, melanoma, prostate carcinoma, renal cell carcinoma, pancreatic cancer, breast cancer, lung cancer, colon cancer, gastric cancer, bladder cancer, liver cancer, bone cancer, rectal cancer, ovarian cancer, sarcoma, gastric cancer, esophageal cancer, cervical cancer, fibrosarcoma, squamous cell carcinoma, neurectodermal, thyroid tumor, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hepatoma, mesothelioma, epidermoid carcinoma, and tumorigenic diseases of the blood.
11. A method of generating in vivo antibodies that mediate an anti-tumor CDC response comprising administering to a subject a composition comprising a replication competent oncolytic virus wherein administration of said composition induces production of antibodies that mediate a CDC response specific to said tumor.
12. The method of claim 11 further comprising harvesting blood from said subject after said administration and isolating CDC-response producing antibodies from said blood.
13. A composition comprising CDC-response producing antibodies isolated according to a method of claim 12.
14. The composition of claim 13 wherein said composition is serum collected from said subject.
15. A method of inhibiting the growth of or killing a cancer cell comprising contacting said cancer cell with a composition of claim 13.
16. The method of claim 15 wherein said contacting comprises contacting cancer cells in vitro with said composition. -49
17. The method of claim 15 wherein said contacting comprises infusing a subject having cancer with a composition comprising harvested antibodies, harvested B cells, antibodies produced by said harvested B cells or a combination thereof.
18. The method of claim 15 wherein said cancer cell is in vivo in a subject and said contacting comprising administering a medicament comprising said composition.
19. The method of any of claims 1, 11 or 15 further comprising administering to said subject a further anti-cancer therapeutic agent.
20. A method of treating a cancer subject comprising administering to said subject composition comprising a composition of claim 13.
21. The method of claim 20 wherein said composition is autologous to said patient and is isolated from the said cancer patient and reinfused into said cancer patient.
22. The method of claim 20 wherein said composition heterologous to said cancer patient is isolated from a cancer patient that is different from the cancer patient being treated with said composition.
23. The method of claim 20 wherein said subject is treated with a further anticancer therapeutic agent.
24. The method of claim 20 wherein said cancer subject has a solid tumor and said composition is administered intratumorally, intravenously, intraperitoneally or a combination thereof.
25. The method of claim 24 wherein said cancer subject has a solid tumor that is resected prior to, concurrently or subsequent to administering said composition of claim 12.
26. The method of claim 20 wherein said cancer subject has a solid tumor and said composition reduces the size of said tumor. -50
27. The method of claim 20 wherein said cancer subject has a solid tumor and said administration reduces metastatic spread of said solid tumor.
28. The method of claim 20 wherein said cancer is selected from the group consisting of astrocytoma, oligodendroglioma, meningioma, neurofibroma, glioblastoma, ependymoma, Schwannoma, neurofibrosarcoma, neuroblastoma, pituitary adenoma, medulloblastoma, head and neck cancer, melanoma, prostate carcinoma, renal cell carcinoma, pancreatic cancer, breast cancer, lung cancer, colon cancer, gastric cancer, bladder cancer, liver cancer, bone cancer, rectal cancer, ovarian cancer, sarcoma, gastric cancer, esophageal cancer, cervical cancer, fibrosarcoma, squamous cell carcinoma, neurectodermal, thyroid tumor, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hepatoma, mesothelioma, epidermoid carcinoma, and tumorigenic diseases of the blood.
29. A method of tailoring a cancer therapy for a subject having cancer comprising: a) administering to said subject a composition comprising a replication competent oncolytic virus wherein administration of said composition induces in said subject production of antibodies that mediate a CDC response specific to said cancer in said subject; b) isolating blood from said subject wherein said blood comprises harvested antibodies, harvested B cells against said cancer; c) expanding or isolating said antibodies or producing antibodies from said B cells; to produce an immunotherapy composition specific for said subject and d) administering said subject with the immunotherapy composition of step (c).
30. The method of claim 29 wherein said immunotherapy composition is administered in immediately upon isolation of the antibodies. -51
31. The method of claim 29 wherein said immunotherapy composition is stored for further therapeutic treatment of said subject.
32. A method of identifying a tumor-specific antigen comprising a) cloning a cDNA library prepared from a cancer cell into an expression vector; b) performing a primary immunoscreen by contacting said expression vector with serum from a subject of claim 11 wherein said serum is isolated from said subject after administration of said oncolytic virus; and c) isolating antigens from said cDNA library that are recognized by said serum.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161429622P | 2011-01-04 | 2011-01-04 | |
US61/429,622 | 2011-01-04 | ||
PCT/US2012/020173 WO2012094386A1 (en) | 2011-01-04 | 2012-01-04 | Generation of antibodies to tumor antigens and generation of tumor specific complement dependent cytotoxicity by administration of oncolytic vaccinia virus |
Publications (3)
Publication Number | Publication Date |
---|---|
AU2012204467A1 AU2012204467A1 (en) | 2013-08-08 |
AU2012204467A2 true AU2012204467A2 (en) | 2013-10-24 |
AU2012204467B2 AU2012204467B2 (en) | 2016-08-18 |
Family
ID=46457693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2012204467A Active AU2012204467B2 (en) | 2011-01-04 | 2012-01-04 | Generation of antibodies to tumor antigens and generation of tumor specific complement dependent cytotoxicity by administration of oncolytic vaccinia virus |
Country Status (10)
Country | Link |
---|---|
US (2) | US9919047B2 (en) |
EP (1) | EP2661278B1 (en) |
JP (2) | JP6121910B2 (en) |
KR (1) | KR101942237B1 (en) |
CN (1) | CN103429258B (en) |
AU (1) | AU2012204467B2 (en) |
BR (1) | BR112013017096A2 (en) |
CA (1) | CA2824277C (en) |
HK (1) | HK1191874A1 (en) |
WO (1) | WO2012094386A1 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2922564B1 (en) * | 2012-11-21 | 2018-07-04 | Duke University | Oncolytic poliovirus for human tumors |
US10076547B2 (en) * | 2013-04-17 | 2018-09-18 | Shin Nihon Seiyaku Co., Ltd | Gene-modified coxsackievirus |
CN107735103B (en) | 2015-02-25 | 2022-05-27 | 纪念斯隆-凯特琳癌症中心 | Use of inactivated non-replicative modified vaccinia virus ankara (MVA) as a sole immunotherapy of solid tumors or in combination with immune checkpoint blockers |
CN116173193A (en) | 2015-04-17 | 2023-05-30 | 纪念斯隆凯特琳癌症中心 | Use of MVA or MVA delta E3L as immunotherapeutic agent against solid tumors |
CN108025056B (en) * | 2015-06-19 | 2022-01-14 | 新罗杰股份有限公司 | Compositions and methods for viral embolization |
CA2996120C (en) * | 2015-09-08 | 2024-02-20 | Sillajen, Inc. | Modified oncolytic vaccinia viruses expressing a cytokine and a carboxylesterase and methods of use thereof |
CN106591361A (en) * | 2015-10-20 | 2017-04-26 | 钱文斌 | Recombinant pox oncolytic virus, and construction method and application thereof |
WO2017147553A2 (en) | 2016-02-25 | 2017-08-31 | Memorial Sloan-Kettering Cancer Center | Replication competent attenuated vaccinia viruses with deletion of thymidine kinase with and without the expression of human flt3l or gm-csf for cancer immunotherapy |
JP7034080B2 (en) | 2016-02-25 | 2022-03-11 | メモリアル スローン ケタリング キャンサー センター | Recombinant MVA or MVAΔE3L expressing human FLT3L and their use as immunotherapeutic agents against solid tumors |
KR102190326B1 (en) * | 2016-07-21 | 2020-12-11 | 코오롱생명과학 주식회사 | Recombinant vaccinia virus and uses thereof |
CN109982708B (en) * | 2016-09-27 | 2023-05-23 | 萨特治疗学有限公司 | Optimized oncolytic viruses and uses thereof |
ES2950435T3 (en) * | 2016-10-03 | 2023-10-10 | Ottawa Hospital Res Inst | Compositions and methods for improving the growth, spread and oncolytic and immunotherapeutic efficacy of oncolytic RNA viruses |
CN108261426B (en) | 2017-01-04 | 2019-04-05 | 杭州康万达医药科技有限公司 | Pharmaceutical composition and its application in the drug for the treatment of tumour and/or cancer |
KR20190137911A (en) | 2017-04-21 | 2019-12-11 | 신라젠(주) | Anticancer Vaccinia Virus and Gateway Inhibitor Combination Therapy |
WO2018209315A1 (en) | 2017-05-12 | 2018-11-15 | Memorial Sloan Kettering Cancer Center | Vaccinia virus mutants useful for cancer immunotherapy |
CN109419818B (en) | 2017-08-24 | 2021-08-10 | 厦门大学 | Echovirus for treating tumors |
IL273689B2 (en) | 2017-10-10 | 2024-02-01 | Univ Yamaguchi | Enhancer for t-cells or b-cells having memory function, malignant tumor recurrence inhibitor, and inducer for inducing memory function in t-cells or b-cells |
CA3081436A1 (en) | 2017-10-31 | 2019-05-09 | Western Oncolytics Ltd. | Platform oncolytic vector for systemic delivery |
CN110387353B (en) | 2018-04-16 | 2023-07-18 | 厦门大学 | Coxsackie group B virus for treating tumor |
CN108624694B (en) * | 2018-08-02 | 2021-03-16 | 青岛泱深生物医药有限公司 | Application of CMC2 as cervical cancer diagnosis and treatment marker |
US10803222B1 (en) | 2018-09-30 | 2020-10-13 | Cadence Design Systems, Inc. | Methods, systems, and computer program product for implementing an electronic design having embedded circuits |
JP2022518142A (en) * | 2019-01-07 | 2022-03-14 | カリヴィル イムノセラピューティクス, インコーポレイテッド | How to treat cancer |
CN110184357A (en) * | 2019-06-13 | 2019-08-30 | 徐州医科大学 | Prognosis prediction diagnosis gene marker of colon cancer and application thereof |
CN110499324A (en) * | 2019-09-02 | 2019-11-26 | 中生康元生物科技(北京)有限公司 | A method of for identifying the bacterial expression vector and screening and identification tumour neoantigen of tumour neoantigen |
KR20220092543A (en) | 2019-10-28 | 2022-07-01 | 노일 이뮨 바이오테크 가부시키가이샤 | Medicines, combination medicines, pharmaceutical compositions, immune responsive cells, nucleic acid delivery vehicles and articles for the treatment of cancer |
JP2024516400A (en) | 2021-04-30 | 2024-04-15 | カリヴィル イムノセラピューティクス, インコーポレイテッド | Oncolytic viruses for modified MHC expression - Patents.com |
US20240148808A1 (en) * | 2021-06-11 | 2024-05-09 | Societe De Commercialisation Des Produits De La Recherche Appliquee Socpra Sciences Sante Et Humaine | Recombinant vsv for the treatment of bladder cancer |
Family Cites Families (156)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4554101A (en) | 1981-01-09 | 1985-11-19 | New York Blood Center, Inc. | Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity |
US5833975A (en) | 1989-03-08 | 1998-11-10 | Virogenetics Corporation | Canarypox virus expressing cytokine and/or tumor-associated antigen DNA sequence |
NL8200523A (en) | 1982-02-11 | 1983-09-01 | Univ Leiden | METHOD FOR TRANSFORMING IN VITRO PLANT PROTOPLASTS WITH PLASMIDE DNA. |
US4879236A (en) | 1984-05-16 | 1989-11-07 | The Texas A&M University System | Method for producing a recombinant baculovirus expression vector |
US4957858A (en) | 1986-04-16 | 1990-09-18 | The Salk Instute For Biological Studies | Replicative RNA reporter systems |
US4883750A (en) | 1984-12-13 | 1989-11-28 | Applied Biosystems, Inc. | Detection of specific sequences in nucleic acids |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4946773A (en) | 1985-12-23 | 1990-08-07 | President And Fellows Of Harvard College | Detection of base pair mismatches using RNAase A |
EP0232967B1 (en) | 1986-01-10 | 1993-04-28 | Amoco Corporation | Competitive homogeneous assay |
US4800159A (en) | 1986-02-07 | 1989-01-24 | Cetus Corporation | Process for amplifying, detecting, and/or cloning nucleic acid sequences |
AU622104B2 (en) | 1987-03-11 | 1992-04-02 | Sangtec Molecular Diagnostics Ab | Method of assaying of nucleic acids, a reagent combination and kit therefore |
IL86724A (en) | 1987-06-19 | 1995-01-24 | Siska Diagnostics Inc | Method and kits for the amplification and detection of nucleic acid sequences |
US5824311A (en) | 1987-11-30 | 1998-10-20 | Trustees Of The University Of Pennsylvania | Treatment of tumors with monoclonal antibodies against oncogene antigens |
CA1323293C (en) | 1987-12-11 | 1993-10-19 | Keith C. Backman | Assay using template-dependent nucleic acid probe reorganization |
JP2846018B2 (en) | 1988-01-21 | 1999-01-13 | ジェネンテク,インコーポレイテッド | Amplification and detection of nucleic acid sequences |
US4952500A (en) | 1988-02-01 | 1990-08-28 | University Of Georgia Research Foundation, Inc. | Cloning systems for Rhodococcus and related bacteria |
CA1340807C (en) | 1988-02-24 | 1999-11-02 | Lawrence T. Malek | Nucleic acid amplification process |
DE68911648T2 (en) | 1988-03-24 | 1994-06-23 | Univ Iowa Res Found | CATALYTIC HYBRIDIZING SYSTEMS FOR DETECTING NUCLEIC ACID SEQUENCES BASED ON THEIR ACTIVITY AS COFACTORS IN CATALYTIC REACTIONS IN WHICH A COMPLEMENTARY, MARKED NUCLEIC ACID SAMPLE IS SPLIT. |
US5932413A (en) | 1988-04-01 | 1999-08-03 | Celebuski; Joseph Eugene | DNA probe assay using neutrally charged probe strands |
US5858652A (en) | 1988-08-30 | 1999-01-12 | Abbott Laboratories | Detection and amplification of target nucleic acid sequences |
US5151509A (en) | 1988-12-16 | 1992-09-29 | United States Of America | Gene encoding serine protease inhibitor |
US5856092A (en) | 1989-02-13 | 1999-01-05 | Geneco Pty Ltd | Detection of a nucleic acid sequence or a change therein |
US5703055A (en) | 1989-03-21 | 1997-12-30 | Wisconsin Alumni Research Foundation | Generation of antibodies through lipid mediated DNA delivery |
US5284760A (en) | 1989-04-03 | 1994-02-08 | Feinstone Stephen M | Techniques for producing site-directed mutagenesis of cloned DNA |
AU5275290A (en) * | 1989-04-11 | 1990-11-05 | Board Of Regents, The University Of Texas System | Antitumor preparation obtained following oncolysate treatment |
US5925525A (en) | 1989-06-07 | 1999-07-20 | Affymetrix, Inc. | Method of identifying nucleotide differences |
US5302523A (en) | 1989-06-21 | 1994-04-12 | Zeneca Limited | Transformation of plant cells |
US5550318A (en) | 1990-04-17 | 1996-08-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US7705215B1 (en) | 1990-04-17 | 2010-04-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US5073627A (en) | 1989-08-22 | 1991-12-17 | Immunex Corporation | Fusion proteins comprising GM-CSF and IL-3 |
US5322783A (en) | 1989-10-17 | 1994-06-21 | Pioneer Hi-Bred International, Inc. | Soybean transformation by microparticle bombardment |
US5434076A (en) | 1989-12-18 | 1995-07-18 | Board Of Regents, The University Of Texas System | Tumor-specific, cell surface-binding monoclonal antibodies |
US5484956A (en) | 1990-01-22 | 1996-01-16 | Dekalb Genetics Corporation | Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin |
US5149797A (en) | 1990-02-15 | 1992-09-22 | The Worcester Foundation For Experimental Biology | Method of site-specific alteration of rna and production of encoded polypeptides |
US5220007A (en) | 1990-02-15 | 1993-06-15 | The Worcester Foundation For Experimental Biology | Method of site-specific alteration of RNA and production of encoded polypeptides |
US5466468A (en) | 1990-04-03 | 1995-11-14 | Ciba-Geigy Corporation | Parenterally administrable liposome formulation comprising synthetic lipids |
WO1991015581A1 (en) | 1990-04-05 | 1991-10-17 | Roberto Crea | Walk-through mutagenesis |
US5849481A (en) | 1990-07-27 | 1998-12-15 | Chiron Corporation | Nucleic acid hybridization assays employing large comb-type branched polynucleotides |
US5645987A (en) | 1990-09-21 | 1997-07-08 | Amgen Inc. | Enzymatic synthesis of oligonucleotides |
US5798339A (en) | 1990-12-17 | 1998-08-25 | University Of Manitoba | Treatment method for cancer |
US5384253A (en) | 1990-12-28 | 1995-01-24 | Dekalb Genetics Corporation | Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes |
US5399363A (en) | 1991-01-25 | 1995-03-21 | Eastman Kodak Company | Surface modified anticancer nanoparticles |
KR100242671B1 (en) | 1991-03-07 | 2000-03-02 | 고돈 에릭 | Genetically engineered vaccine strain |
CA2105277C (en) | 1991-03-07 | 2006-12-12 | William I. Cox | Genetically engineered vaccine strain |
GB9105383D0 (en) | 1991-03-14 | 1991-05-01 | Immunology Ltd | An immunotherapeutic for cervical cancer |
AU2515992A (en) | 1991-08-20 | 1993-03-16 | Genpharm International, Inc. | Gene targeting in animal cells using isogenic dna constructs |
US5846717A (en) | 1996-01-24 | 1998-12-08 | Third Wave Technologies, Inc. | Detection of nucleic acid sequences by invader-directed cleavage |
US5610042A (en) | 1991-10-07 | 1997-03-11 | Ciba-Geigy Corporation | Methods for stable transformation of wheat |
US5849486A (en) | 1993-11-01 | 1998-12-15 | Nanogen, Inc. | Methods for hybridization analysis utilizing electrically controlled hybridization |
AU671605B2 (en) | 1991-11-15 | 1996-09-05 | Smithkline Beecham Corporation | Combination chemotherapy |
US5846708A (en) | 1991-11-19 | 1998-12-08 | Massachusetts Institiute Of Technology | Optical and electrical methods and apparatus for molecule detection |
ATE239089T1 (en) | 1991-12-24 | 2003-05-15 | Harvard College | TARGETED POINT MUtagenesis of DNA |
US20020146702A1 (en) * | 1992-01-31 | 2002-10-10 | Vielkind Juergen R. | Nucleic acid molecule associated with prostate cancer and melanoma immunodetection and immunotherapy |
ES2210239T3 (en) | 1992-04-01 | 2004-07-01 | The Johns Hopkins University School Of Medicine | METHOD FOR DETECTING NUCLEIC ACIDS OF MAMMALS ISOLATED IN MAKES AND REAGENTS FOR THE SAME. |
US5843640A (en) | 1992-06-19 | 1998-12-01 | Northwestern University | Method of simultaneously detecting amplified nucleic acid sequences and cellular antigens in cells |
EP0604662B1 (en) | 1992-07-07 | 2008-06-18 | Japan Tobacco Inc. | Method of transforming monocotyledon |
US5702932A (en) | 1992-07-20 | 1997-12-30 | University Of Florida | Microinjection methods to transform arthropods with exogenous DNA |
AU670316B2 (en) | 1992-07-27 | 1996-07-11 | Pioneer Hi-Bred International, Inc. | An improved method of (agrobacterium)-mediated transformation of cultured soybean cells |
DE4228457A1 (en) | 1992-08-27 | 1994-04-28 | Beiersdorf Ag | Production of heterodimeric PDGF-AB using a bicistronic vector system in mammalian cells |
US5389514A (en) | 1992-08-28 | 1995-02-14 | Fox Chase Cancer Center | Method for specifically altering the nucleotide sequence of RNA |
US5861244A (en) | 1992-10-29 | 1999-01-19 | Profile Diagnostic Sciences, Inc. | Genetic sequence assay using DNA triple strand formation |
GB9222888D0 (en) | 1992-10-30 | 1992-12-16 | British Tech Group | Tomography |
US5846945A (en) | 1993-02-16 | 1998-12-08 | Onyx Pharmaceuticals, Inc. | Cytopathic viruses for therapy and prophylaxis of neoplasia |
US5801005A (en) | 1993-03-17 | 1998-09-01 | University Of Washington | Immune reactivity to HER-2/neu protein for diagnosis of malignancies in which the HER-2/neu oncogene is associated |
US5658751A (en) | 1993-04-13 | 1997-08-19 | Molecular Probes, Inc. | Substituted unsymmetrical cyanine dyes with selected permeability |
US5279721A (en) | 1993-04-22 | 1994-01-18 | Peter Schmid | Apparatus and method for an automated electrophoresis system |
GB9311386D0 (en) | 1993-06-02 | 1993-07-21 | Pna Diagnostics As | Nucleic acid analogue assay procedures |
US5846709A (en) | 1993-06-15 | 1998-12-08 | Imclone Systems Incorporated | Chemical process for amplifying and detecting nucleic acid sequences |
US5543158A (en) | 1993-07-23 | 1996-08-06 | Massachusetts Institute Of Technology | Biodegradable injectable nanoparticles |
FR2708288B1 (en) | 1993-07-26 | 1995-09-01 | Bio Merieux | Method for amplification of nucleic acids by transcription using displacement, reagents and necessary for the implementation of this method. |
US5969094A (en) | 1993-10-12 | 1999-10-19 | Emory University | Anti-paramyxovirus screening method and vaccine |
US5925517A (en) | 1993-11-12 | 1999-07-20 | The Public Health Research Institute Of The City Of New York, Inc. | Detectably labeled dual conformation oligonucleotide probes, assays and kits |
GB2284208A (en) | 1993-11-25 | 1995-05-31 | Pna Diagnostics As | Nucleic acid analogues with a chelating functionality for metal ions |
JP2935950B2 (en) | 1993-12-03 | 1999-08-16 | 株式会社山田製作所 | Steering shaft and apparatus for manufacturing the same |
EP0663447B1 (en) | 1993-12-28 | 2003-07-09 | Eiken Chemical Co., Ltd. | Method of detecting a specific polynucleotide |
US5928905A (en) | 1995-04-18 | 1999-07-27 | Glaxo Group Limited | End-complementary polymerase reaction |
US5851770A (en) | 1994-04-25 | 1998-12-22 | Variagenics, Inc. | Detection of mismatches by resolvase cleavage using a magnetic bead support |
US5656465A (en) | 1994-05-04 | 1997-08-12 | Therion Biologics Corporation | Methods of in vivo gene delivery |
US6093700A (en) | 1995-05-11 | 2000-07-25 | Thomas Jefferson University | Method of inducing an immune response using vaccinia virus recombinants encoding GM-CSF |
DE69527355T2 (en) | 1994-05-28 | 2003-03-06 | Tepnel Medical Ltd., Manchester | PRODUCTION OF NUCLEIC ACID COPIES |
US5656610A (en) | 1994-06-21 | 1997-08-12 | University Of Southern California | Producing a protein in a mammal by injection of a DNA-sequence into the tongue |
US5942391A (en) | 1994-06-22 | 1999-08-24 | Mount Sinai School Of Medicine | Nucleic acid amplification method: ramification-extension amplification method (RAM) |
FR2722208B1 (en) | 1994-07-05 | 1996-10-04 | Inst Nat Sante Rech Med | NEW INTERNAL RIBOSOME ENTRY SITE, VECTOR CONTAINING SAME AND THERAPEUTIC USE |
US5849483A (en) | 1994-07-28 | 1998-12-15 | Ig Laboratories, Inc. | High throughput screening method for sequences or genetic alterations in nucleic acids |
CA2195562A1 (en) | 1994-08-19 | 1996-02-29 | Pe Corporation (Ny) | Coupled amplification and ligation method |
GB9506466D0 (en) | 1994-08-26 | 1995-05-17 | Prolifix Ltd | Cell cycle regulated repressor and dna element |
US5599668A (en) | 1994-09-22 | 1997-02-04 | Abbott Laboratories | Light scattering optical waveguide method for detecting specific binding events |
US5871986A (en) | 1994-09-23 | 1999-02-16 | The General Hospital Corporation | Use of a baculovirus to express and exogenous gene in a mammalian cell |
DE69535240T2 (en) | 1994-10-28 | 2007-06-06 | Gen-Probe Inc., San Diego | Compositions and methods for the simultaneous detection and quantification of a majority of specific nucleic acid sequences |
US5736524A (en) | 1994-11-14 | 1998-04-07 | Merck & Co.,. Inc. | Polynucleotide tuberculosis vaccine |
US5935825A (en) | 1994-11-18 | 1999-08-10 | Shimadzu Corporation | Process and reagent for amplifying nucleic acid sequences |
US5599302A (en) | 1995-01-09 | 1997-02-04 | Medi-Ject Corporation | Medical injection system and method, gas spring thereof and launching device using gas spring |
US5866337A (en) | 1995-03-24 | 1999-02-02 | The Trustees Of Columbia University In The City Of New York | Method to detect mutations in a nucleic acid using a hybridization-ligation procedure |
IE80468B1 (en) | 1995-04-04 | 1998-07-29 | Elan Corp Plc | Controlled release biodegradable nanoparticles containing insulin |
US5843650A (en) | 1995-05-01 | 1998-12-01 | Segev; David | Nucleic acid detection and amplification by chemical linkage of oligonucleotides |
US5929227A (en) | 1995-07-12 | 1999-07-27 | The Regents Of The University Of California | Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores |
CA2262403C (en) | 1995-07-31 | 2011-09-20 | Urocor, Inc. | Biomarkers and targets for diagnosis, prognosis and management of prostate disease |
US5916779A (en) | 1995-09-21 | 1999-06-29 | Becton, Dickinson And Company | Strand displacement amplification of RNA targets |
IL123653A0 (en) | 1995-09-29 | 1998-10-30 | Immunex Corp | Chemokine inhibitor |
US5866331A (en) | 1995-10-20 | 1999-02-02 | University Of Massachusetts | Single molecule detection by in situ hybridization |
DE19541450C2 (en) | 1995-11-07 | 1997-10-02 | Gsf Forschungszentrum Umwelt | Gene construct and its use |
US5780448A (en) | 1995-11-07 | 1998-07-14 | Ottawa Civic Hospital Loeb Research | DNA-based vaccination of fish |
US5789166A (en) | 1995-12-08 | 1998-08-04 | Stratagene | Circular site-directed mutagenesis |
US5612473A (en) | 1996-01-16 | 1997-03-18 | Gull Laboratories | Methods, kits and solutions for preparing sample material for nucleic acid amplification |
US5851772A (en) | 1996-01-29 | 1998-12-22 | University Of Chicago | Microchip method for the enrichment of specific DNA sequences |
US5928906A (en) | 1996-05-09 | 1999-07-27 | Sequenom, Inc. | Process for direct sequencing during template amplification |
US5739169A (en) | 1996-05-31 | 1998-04-14 | Procept, Incorporated | Aromatic compounds for inhibiting immune response |
US5939291A (en) | 1996-06-14 | 1999-08-17 | Sarnoff Corporation | Microfluidic method for nucleic acid amplification |
US5912124A (en) | 1996-06-14 | 1999-06-15 | Sarnoff Corporation | Padlock probe detection |
US5853990A (en) | 1996-07-26 | 1998-12-29 | Edward E. Winger | Real time homogeneous nucleotide assay |
US5945100A (en) | 1996-07-31 | 1999-08-31 | Fbp Corporation | Tumor delivery vehicles |
US5928870A (en) | 1997-06-16 | 1999-07-27 | Exact Laboratories, Inc. | Methods for the detection of loss of heterozygosity |
US5849546A (en) | 1996-09-13 | 1998-12-15 | Epicentre Technologies Corporation | Methods for using mutant RNA polymerases with reduced discrimination between non-canonical and canonical nucleoside triphosphates |
US5981274A (en) | 1996-09-18 | 1999-11-09 | Tyrrell; D. Lorne J. | Recombinant hepatitis virus vectors |
US5853992A (en) | 1996-10-04 | 1998-12-29 | The Regents Of The University Of California | Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels |
US5853993A (en) | 1996-10-21 | 1998-12-29 | Hewlett-Packard Company | Signal enhancement method and kit |
US5900481A (en) | 1996-11-06 | 1999-05-04 | Sequenom, Inc. | Bead linkers for immobilizing nucleic acids to solid supports |
US5905024A (en) | 1996-12-17 | 1999-05-18 | University Of Chicago | Method for performing site-specific affinity fractionation for use in DNA sequencing |
US5846225A (en) | 1997-02-19 | 1998-12-08 | Cornell Research Foundation, Inc. | Gene transfer therapy delivery device and method |
ATE323170T1 (en) | 1997-02-21 | 2006-04-15 | Oxxon Therapeutics Ltd | RECOMBINANT SMALLPOX VIRUS THAT CANNOT EXPRESS THE SOLUBLE CHEMOKINE-BINDING PROTEIN GENE A41L. |
US5846729A (en) | 1997-02-27 | 1998-12-08 | Lorne Park Research, Inc. | Assaying nucleotides in solution using a fluorescent intensity quenching effect |
US5849497A (en) | 1997-04-03 | 1998-12-15 | The Research Foundation Of State University Of New York | Specific inhibition of the polymerase chain reaction using a non-extendable oligonucleotide blocker |
US5846726A (en) | 1997-05-13 | 1998-12-08 | Becton, Dickinson And Company | Detection of nucleic acids by fluorescence quenching |
US5928869A (en) | 1997-05-30 | 1999-07-27 | Becton, Dickinson And Company | Detection of nucleic acids by fluorescence quenching |
US5919626A (en) | 1997-06-06 | 1999-07-06 | Orchid Bio Computer, Inc. | Attachment of unmodified nucleic acids to silanized solid phase surfaces |
US5866366A (en) | 1997-07-01 | 1999-02-02 | Smithkline Beecham Corporation | gidB |
US5916776A (en) | 1997-08-27 | 1999-06-29 | Sarnoff Corporation | Amplification method for a polynucleotide |
US5935791A (en) | 1997-09-23 | 1999-08-10 | Becton, Dickinson And Company | Detection of nucleic acids by fluorescence quenching |
ATE371372T1 (en) | 1997-10-09 | 2007-09-15 | Wellstat Biologics Corp | TREATMENT OF NEOPLASMS WITH INTERFERON SENSITIVE CLONAL VIRUSES |
US20030044384A1 (en) | 1997-10-09 | 2003-03-06 | Pro-Virus, Inc. | Treatment of neoplasms with viruses |
US5994624A (en) | 1997-10-20 | 1999-11-30 | Cotton Incorporated | In planta method for the production of transgenic plants |
US5932451A (en) | 1997-11-19 | 1999-08-03 | Incyte Pharmaceuticals, Inc. | Method for unbiased mRNA amplification |
WO1999029343A1 (en) | 1997-12-09 | 1999-06-17 | Thomas Jefferson University | Method of treating bladder cancer with wild type vaccinia virus |
JP2002529707A (en) * | 1998-11-03 | 2002-09-10 | セル ジェネシス インコーポレイテッド | Cancer-associated antigens and methods for their identification |
AU4246900A (en) | 1999-04-15 | 2000-11-02 | Pro-Virus, Inc. | Treatment of neoplasms with viruses |
WO2000073479A1 (en) | 1999-05-28 | 2000-12-07 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | A combined growth factor-deleted and thymidine kinase-deleted vaccinia virus vector |
EP1227828A1 (en) | 1999-11-12 | 2002-08-07 | Oncolytics Biotech, Inc. | Viruses for the treatment of cellular proliferative disorders |
US20020048777A1 (en) * | 1999-12-06 | 2002-04-25 | Shujath Ali | Method of diagnosing monitoring, staging, imaging and treating prostate cancer |
AU2001236525A1 (en) * | 2000-02-14 | 2001-08-27 | Gary R. Davis, M.D., L.L.C. | Neutralizing antibody and immunomodulatory enhancing compositions |
US20040091995A1 (en) | 2001-06-15 | 2004-05-13 | Jeffrey Schlom | Recombinant non-replicating virus expressing gm-csf and uses thereof to enhance immune responses |
DE10134955C1 (en) | 2001-07-23 | 2003-03-06 | Infineon Technologies Ag | Arrangement of trenches in a semiconductor substrate, in particular for trench capacitors |
WO2003010198A1 (en) * | 2001-07-26 | 2003-02-06 | Kenton Srl | Identification of specific tumour antigens by selection of cdna libraries with sera and use of said antigens in diagnostic techniques |
US20030206886A1 (en) | 2002-05-03 | 2003-11-06 | University Of Medicine & Dentistry Of New Jersey | Neutralization of immune suppressive factors for the immunotherapy of cancer |
JP2004097199A (en) * | 2002-07-15 | 2004-04-02 | Keio Gijuku | Method for screening tumor antigen |
EP1578396A4 (en) | 2002-08-12 | 2007-01-17 | David Kirn | Methods and compositions concerning poxviruses and cancer |
CN1279056C (en) * | 2003-06-06 | 2006-10-11 | 马菁 | Specific antibody of tumor-associated antigen SM5-1 and use thereof |
AU2004289953B2 (en) | 2003-06-18 | 2008-09-25 | Genelux Corporation | Modified recombinant vaccina viruses and other microorganisms, uses thereof |
US20050207974A1 (en) | 2004-03-17 | 2005-09-22 | Deng David X | Endothelial cell markers and related reagents and methods of use thereof |
CA2621982C (en) | 2005-09-07 | 2017-11-28 | Jennerex Biotherapeutics Ulc | Systemic treatment of metastatic and/or systemically-disseminated cancers using gm-csf-expressing poxviruses |
GB0519303D0 (en) | 2005-09-21 | 2005-11-02 | Oxford Biomedica Ltd | Chemo-immunotherapy method |
US20090317456A1 (en) | 2006-10-13 | 2009-12-24 | Medigene Ag | Use of oncolytic viruses and antiangiogenic agents in the treatment of cancer |
US20090098529A1 (en) | 2006-10-16 | 2009-04-16 | Nanhai Chen | Methods for attenuating virus strains for diagnostic and therapeutic uses |
EP1914242A1 (en) * | 2006-10-19 | 2008-04-23 | Sanofi-Aventis | Novel anti-CD38 antibodies for the treatment of cancer |
KR20080084528A (en) * | 2007-03-15 | 2008-09-19 | 제네렉스 바이오테라퓨틱스 인크. | Oncolytic vaccinia virus cancer therapy |
EP2202297B1 (en) * | 2007-07-18 | 2014-05-14 | Genelux Corporation | Use of a chemotherapeutic agent in the preparation of a medicament for treating or ameliorating an adverse side effect associated with oncolytic viral therapy |
-
2012
- 2012-01-04 AU AU2012204467A patent/AU2012204467B2/en active Active
- 2012-01-04 JP JP2013548477A patent/JP6121910B2/en active Active
- 2012-01-04 CA CA2824277A patent/CA2824277C/en active Active
- 2012-01-04 BR BR112013017096-4A patent/BR112013017096A2/en active Search and Examination
- 2012-01-04 US US13/978,113 patent/US9919047B2/en active Active
- 2012-01-04 EP EP12732263.4A patent/EP2661278B1/en active Active
- 2012-01-04 WO PCT/US2012/020173 patent/WO2012094386A1/en active Application Filing
- 2012-01-04 KR KR1020137020612A patent/KR101942237B1/en active IP Right Grant
- 2012-01-04 CN CN201280004628.8A patent/CN103429258B/en active Active
-
2014
- 2014-06-04 HK HK14105232.1A patent/HK1191874A1/en unknown
-
2017
- 2017-03-30 JP JP2017066586A patent/JP6457003B2/en active Active
-
2018
- 2018-02-08 US US15/892,247 patent/US10434169B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN103429258A (en) | 2013-12-04 |
WO2012094386A9 (en) | 2013-08-15 |
AU2012204467B2 (en) | 2016-08-18 |
US20150037355A1 (en) | 2015-02-05 |
EP2661278A4 (en) | 2015-10-07 |
CA2824277A1 (en) | 2012-07-12 |
US10434169B2 (en) | 2019-10-08 |
US9919047B2 (en) | 2018-03-20 |
CA2824277C (en) | 2021-08-31 |
US20180214538A1 (en) | 2018-08-02 |
EP2661278B1 (en) | 2019-06-19 |
JP6457003B2 (en) | 2019-01-23 |
CN103429258B (en) | 2016-03-09 |
BR112013017096A2 (en) | 2020-09-01 |
KR101942237B1 (en) | 2019-01-25 |
KR20140032991A (en) | 2014-03-17 |
HK1191874A1 (en) | 2014-08-08 |
JP2017165734A (en) | 2017-09-21 |
EP2661278A1 (en) | 2013-11-13 |
JP6121910B2 (en) | 2017-04-26 |
JP2014502970A (en) | 2014-02-06 |
WO2012094386A1 (en) | 2012-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10434169B2 (en) | Generation of antibodies to tumor antigens and generation of tumor specific complement dependent cytotoxicity by administration of oncolytic vaccinia virus | |
AU2012204467A1 (en) | Generation of antibodies to tumor antigens and generation of tumor specific complement dependent cytotoxicity by administration of oncolytic vaccinia virus | |
US20150250837A1 (en) | Oncolytic virus encoding pd-1 binding agents and uses of the same | |
CN109152827B (en) | Recombinant MVA or MVA delta E3L expressing human FLT3L and use thereof as immunotherapeutic agent against solid tumors | |
Maitra et al. | Reovirus: a targeted therapeutic—progress and potential | |
IL291844B2 (en) | Smc combination therapy for the treatment of cancer | |
CN116440176A (en) | Replication-competent attenuated vaccinia virus with thymidine kinase deficiency and with or without human FLT3L or GM-CSF expression | |
WO2008140621A2 (en) | Transgenic oncolytic viruses and uses thereof | |
JP7132339B2 (en) | Pseudorabies virus for treating tumors | |
Luo et al. | Tumor-targeting oncolytic virus elicits potent immunotherapeutic vaccine responses to tumor antigens | |
Lyons et al. | Inhibition of angiogenesis by a Semliki Forest virus vector expressing VEGFR-2 reduces tumour growth and metastasis in mice | |
US20220056481A1 (en) | M2-defective poxvirus | |
Patel et al. | Genetic engineering of oncolytic viruses for cancer therapy | |
Guinn et al. | 8th international conference on oncolytic virus therapeutics | |
CN118126965A (en) | Recombinant vaccinia oncolytic virus expressing OPCML, construction method and application thereof | |
Thomas | Evaluation of adoptive T cell therapy and oncolytic virotherapy for treatment of brain tumors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DA3 | Amendments made section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 25 SEP 2013 |
|
FGA | Letters patent sealed or granted (standard patent) |